WO2002049807A1 - Conditionneur pour polissage chimico-mecanique, procede pour agencer des grains rigides utilises dans un conditionneur pour polissage chimico-mecanique, et procede pour produire un conditionneur pour polissage chimico-mecanique - Google Patents

Conditionneur pour polissage chimico-mecanique, procede pour agencer des grains rigides utilises dans un conditionneur pour polissage chimico-mecanique, et procede pour produire un conditionneur pour polissage chimico-mecanique Download PDF

Info

Publication number
WO2002049807A1
WO2002049807A1 PCT/JP2001/011209 JP0111209W WO0249807A1 WO 2002049807 A1 WO2002049807 A1 WO 2002049807A1 JP 0111209 W JP0111209 W JP 0111209W WO 0249807 A1 WO0249807 A1 WO 0249807A1
Authority
WO
WIPO (PCT)
Prior art keywords
abrasive grains
support member
hard abrasive
cmp conditioner
cmp
Prior art date
Application number
PCT/JP2001/011209
Other languages
English (en)
French (fr)
Inventor
Toshiya Kinoshita
Eiji Hashino
Setsuo Sato
Ryuichi Araki
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000388994A external-priority patent/JP3598062B2/ja
Priority claimed from JP2001262167A external-priority patent/JP2003071718A/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to KR1020037007698A priority Critical patent/KR100552391B1/ko
Priority to US10/451,644 priority patent/US20040072510A1/en
Priority to EP01271276A priority patent/EP1346797B1/en
Priority to DE60124424T priority patent/DE60124424T2/de
Publication of WO2002049807A1 publication Critical patent/WO2002049807A1/ja
Priority to HK04107147A priority patent/HK1064324A1/xx
Priority to US11/385,297 priority patent/US7465217B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/017Devices or means for dressing, cleaning or otherwise conditioning lapping tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/12Dressing tools; Holders therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/14Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/14Zonally-graded wheels; Composite wheels comprising different abrasives

Definitions

  • the present invention relates to a CMP conditioner used for removing clogging of a polishing pad for a semiconductor substrate and removing foreign matter, a method for arranging hard abrasive grains used for a CMP conditioner, and a CMP conditioner. It relates to a manufacturing method.
  • the CMP conditioner is also called a CMP dresser in the industry.
  • CMP Chemical Mechanical Polishing
  • silicic acid particles having a particle size of about 5 to 30 A chemical slurry 101 and a polishing cloth 102 made of polyurethane resin or the like are used for about 12 times.
  • a chemical slurry 101 and a polishing cloth 102 made of polyurethane resin or the like are used for about 12 times.
  • spread a chemical slurry 101 The polishing is performed by bringing the semiconductor substrate 103 into contact with the polishing cloth 102 at an appropriate pressure while rotating the semiconductor substrate 103 relative to each other as shown by arrows in FIG.
  • conditioning is performed using a CMP conditioner while flowing water or a chemical slurry 101 through the polishing cloth 102. The clogging of 102 was eliminated and foreign matter was removed.
  • Conditioning using the CMP conditioner is performed by bringing the CMP conditioner into contact with the polishing pad 102 after the polishing of the semiconductor substrate 103, or simultaneously with the polishing of the semiconductor substrate 103. This is performed by bringing the CMP conditioner into contact with the polishing pad 102 at a position different from the position at which 03 contacts.
  • diamond grains 202 are hardened on the surface of a disk-shaped support member 201 as hard abrasive grains.
  • the diamond particles 202 were fixed after being appropriately and uniformly distributed by, for example, dispersing.
  • a relief groove 203 for allowing the chemical slurry 101 to escape is formed in the support member 201, and at the time of polishing, The chemical slurry 101 was allowed to escape through the escape groove 203.
  • forming the relief groove 203 in the support member 201 may adversely affect the characteristics of the CMP conditioner.
  • the processing of the relief groove requires time and increases the cost. I will. [Summary of the Invention]
  • the present invention has been made in view of the above points, and in the first embodiment of the present invention, it is possible to suppress the occurrence of micro-clutch scratches on the surface of a semiconductor substrate and to obtain stable CMP conditioner characteristics.
  • the purpose is to.
  • a CMP conditioner is a CMP conditioner including a support member and a plurality of hard abrasive grains provided on a surface of the support member, wherein the plurality of hard abrasive grains are provided.
  • a CMP conditioner including a support member and a plurality of hard abrasive grains provided on a surface of the support member, wherein the plurality of hard abrasive grains are provided.
  • Another feature of the CMP conditioner according to the first aspect of the present invention is that the hard abrasive grains are arranged at each apex of a unit lattice formed of a square on the surface of the support member. On the point.
  • the hard abrasive grains are arranged at each vertex of a unit lattice formed of an equilateral triangle on the surface of the support member. It is in the point.
  • Another CMP conditioner according to the first aspect of the present invention is a CMP conditioner including a support member and a plurality of hard abrasive grains provided on a surface of the support member, It is characterized in that the variation in the density of the hard abrasive grains is within 50% of the soil between the areas having a certain area where the grains exist.
  • Another feature of the CMP conditioner according to the first aspect of the present invention is that the hard abrasive grains are diamond grains.
  • the CMP conditioner contains 0.5 to 20 wt% of at least one selected from the group consisting of titanium, chromium, and zirconium.
  • the diamond is obtained by brazing the diamond grains in a single layer to the support member made of a metal and / or alloy using an alloy having a melting point of 65 ° C .; The point is that a carbide layer of a metal selected from the group consisting of titanium, chromium, and zirconium is formed at the interface between the grains and the alloy.
  • the method includes the steps of positioning a thin plate-shaped arrangement member having a plurality of regularly arranged through-holes on a surface to be arranged, and inserting hard abrasive grains into each through-hole of the arrangement member. And a procedure.
  • Another feature of the method for arranging the hard abrasive used in the CMP conditioner according to the first aspect of the present invention is that the surface to be arranged is a surface of a support member constituting the CMP conditioner. At one point.
  • the method for arranging hard abrasive grains used in another CMP conditioner according to the first aspect of the present invention includes a step of holding a plurality of hard abrasive grains in a regularly arranged state on a holding member; Transferring the hard abrasive grains held by the method to the surface of a support member constituting the CMP conditioner.
  • Another feature of the method for arranging the hard abrasive used in the CMP conditioner according to the first aspect of the present invention is that a first member for holding the hard abrasive in the holding member is provided. An adhesive means is provided, a second adhesive means is provided on the surface of the support member, and a difference is provided between the properties of the first and second adhesive means.
  • the hard abrasive grains are arranged on the surface of the support member using the method of arranging the hard abrasive grains used in the CMP conditioner. Thereafter, the method is characterized in that the hard abrasive grains are fixed to the surface of the support member.
  • the abrasive grains in the slurry are agglomerated in the dense portions of the hard abrasive grains. None to do.
  • stable CMP conditioner characteristics can be obtained, and slurry and the like can be released during polishing without forming a relief groove or the like, thereby reducing micro scratches. Also aim.
  • a CMP conditioner according to a second aspect of the present invention is a CMP conditioner comprising: a support member; and a plurality of hard abrasive grains provided on a surface of the support member, wherein the plurality of hard abrasive grains are: It is characterized in that it is arranged on the surface of the support member regularly so that the density decreases from inside to outside of the support member.
  • Another CMP conditioner according to the second aspect of the present invention is a CMP conditioner comprising: a support member; and a plurality of hard abrasive grains provided on a surface of the support member. It is characterized in that a region where the plurality of hard abrasive grains are not present is secured in a substantially radial shape.
  • the method for arranging hard abrasive grains used in the CMP conditioner according to the second aspect of the present invention is characterized in that a plurality of through-holes are formed regularly and arranged so that the density decreases from inside to outside. It is characterized in that it comprises a step of positioning the thin plate-shaped arrangement member on the arrangement surface, and a step of inserting hard abrasive grains into each through hole of the arrangement member.
  • the method for arranging hard abrasive grains used in another CMP conditioner according to the second aspect of the present invention is a method for arranging a thin plate-shaped arrangement member in which regions where a plurality of through holes do not exist is secured in a substantially radial manner.
  • the method is characterized in that the method includes a step of positioning the abrasive grains on the upper side and a step of inserting hard abrasive grains into each through hole of the array member.
  • the method for arranging hard abrasive grains used in another CMP conditioner according to the second aspect of the present invention comprises arranging a plurality of hard abrasive grains regularly so that the density decreases from the inside to the outside. And a step of transferring the hard abrasive grains held by the holding member to a surface of a support member constituting the CMP conditioner.
  • the method for arranging hard abrasive grains used in another CMP conditioner according to the second aspect of the present invention includes the step of arranging the plurality of hard abrasive grains in a state where a plurality of hard abrasive grain-free regions are secured in a substantially radial manner. And a step of transferring the hard abrasive grains held by the holding member to the surface of a support member constituting the CMP conditioner.
  • the hard abrasive grains are arranged on the surface of the support member using a method for arranging hard abrasive grains used in the CMP conditioner. Thereafter, the method is characterized in that the hard abrasive grains are fixed to the surface of the support member.
  • FIG. 1 is a diagram for explaining a CMP conditioner according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of the arrangement of the diamond grains 2 according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of the arrangement of the diamond grains 2 according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining a method of arranging the diamond grains 2 according to the first method according to the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining the array plate 5 according to the first embodiment of the present invention.
  • FIGS. 6A and 6B are views for explaining a method of arranging the diamond grains 2 according to the second method in the first embodiment of the present invention, and FIG. FIG. 6B shows a state in which the adhesive sheet 10 is peeled off from the array plate 7.
  • FIG. 7 is a diagram for explaining a method of arranging diamond grains 2 according to the second method in the first embodiment of the present invention.
  • FIG. 8 is a diagram for explaining the CMP process.
  • FIG. 9 is a diagram for explaining a conventional CMP conditioner.
  • FIG. 10 is a diagram for explaining a CMP conditioner according to the second embodiment of the present invention.
  • FIG. 11 is a diagram showing an example of the arrangement of diamond grains 12 according to the second embodiment of the present invention.
  • FIG. 12 is a diagram showing an example of the arrangement of diamond grains 12 according to the second embodiment of the present invention.
  • FIG. 13 is a view for explaining an array plate 15 according to the second embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing a CMP conditioner in which a relief groove 203 is formed. [Specific description of the invention]
  • a CMP conditioner for a polishing cloth for a semiconductor substrate according to a first embodiment of the present invention, a method for arranging hard abrasive grains used in a CMP conditioner for a polishing cloth for a semiconductor substrate, and a CMP condition An embodiment of a manufacturing method will be described.
  • the CMP conditioner will be described with reference to FIG.
  • diamond grains 2 as hard abrasive grains are fixed to the surface of a disk-shaped support member 1 made of stainless steel or the like.
  • the appearance shown in FIG. 1 is an example, and the diamond particles 2 may not be present on the entire surface of the support member 1.
  • a relief groove for releasing the chemical slurry is formed on the surface of the support member 1. And so on.
  • FIG. 2 and 3 are enlarged views of the surface of the support member 1, showing the arrangement of the diamond grains 2.
  • diamond grains 2 are arranged in a grid pattern, and diamond grains 2 are arranged at the vertices of a unit cell A made of a square on the surface of the support member 1.
  • a dashed line in the figure a first straight line group arranged in parallel at a fixed interval, and a first straight line group arranged in parallel at a fixed interval, the first straight line groups 1 ⁇ and 9 second group of straight lines that intersect at an angle of 0 degree L 2 consider the (horizontal line in FIG. 1), are disposed diamond grains 2 at an intersection of these straight lines L ,, L 2 o
  • diamond grains 2 are arranged in a honeycomb shape, and diamond grains 2 are arranged at the vertices of a unit lattice B made of an equilateral triangle on the surface of the support member 1.
  • the third group of straight lines L 3 arranged in parallel at regular intervals, aligned in parallel at regular intervals, the third group of straight lines L 3
  • the diamond grains 2 are arranged by the following two methods.
  • an adhesive 4 is applied to the surface of the support member 1 on which the brazing material 3 is provided. Then, the arrangement plate 5 is placed on the surface of the support member 1 to which the adhesive 4 has been applied, and masking is performed.
  • the arrangement plate 5 has through holes 6 for arranging the diamond grains 2. That is, through holes 6 are arranged on the arrangement plate 5 in the same manner as the arrangement shown in FIGS.
  • the diameter X of the through-hole 6 is 1.0 D ⁇ X ⁇ 2.0 D with respect to the size D of the diamond grain 2, and one or more diamond grains 2 are provided in one through-hole 6. I try not to get in at the same time.
  • a scattering prevention wall 5 a is provided around the array plate 5.
  • the diamond particles 2 are sprayed on the arrangement plate 5.
  • the diamond grains 2 enter all the through holes 6 by applying an appropriate vibration to the arrangement plate 5 or the like.
  • the excess diamond grains 2 on the array plate 5 are removed using a brush or the like.
  • the arrangement plate 5 is removed from the surface of the support member 1, the diamond grains 2 remain on the surface of the support member 1 in a state of being arranged as shown in FIGS.
  • the adhesive 4 applied to the surface of the support member 1 is sublimated by heating the brazing material 3 and does not remain on the surface of the support member 1. '
  • a mesh woven with wires may be used instead of the array plate 5. That is, each opening portion of the mesh is used as a through hole 6 in the arrangement plate 5, and the diamond particles 2 are put into the opening portion so that the surface of the support member 1 Arrange them.
  • the diamond particles 2 are not directly arranged on the surface of the support member 1 as in the first method, but are arranged on a holding member such as an adhesive sheet, and then the support member Transfer to the surface of 1.
  • the arrangement plate 7 has a recess 8 for arranging the diamond grains 2. That is, the concave portions 8 are arranged on the arrangement plate 7 in the same manner as the arrangement shown in FIGS.
  • the diameter X of the concave portion 8 is set to be 1.0 D ⁇ X and 2.0 D with respect to the diamond grain size D, as in the case of the through hole 6 described in the first method. .
  • the diamond grains 2 are scattered on the arrangement plate 7. Also at this time, as described in the first method, the diamond grains 2 enter all the concave portions 8 by applying an appropriate vibration to the array plate 7 or the like. Once the diamond grains 2 have entered all the recesses 8, remove excess diamond grains 2 on the array plate 7 using a brush 9 etc. c Then, on the surface of the array plate 7 where the recess 8 opens Adhesive sheet 10 is attached. Then, as shown in FIG. 6 (b), when the adhesive sheet 10 is peeled off by turning the arrangement plate 7 upside down or the like, the diamond particles 2 are held in a state where the diamond particles 2 are arranged on the adhesive sheet 10. It will be.
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive sheet 10 holding the diamond particles 2 is bonded to the surface of the support member 1 to which the adhesive 4 has been applied. Therefore, as shown in FIG. 7, one end of the diamond grain 2 is supported by the adhesive sheet 10 and the other end is supported by the surface of the support member 1. After that, the diamond particles 2 can be arranged on the surface of the support member 1 by leaving the diamond particles 2 on the surface side of the support member 1 and removing only the adhesive sheet 10.
  • a difference may be made between the solubility of the adhesive of the adhesive sheet 10 and the solubility of the adhesive 4 on the supporting member 1 side.
  • the adhesive 4 of the adhesive sheet 10 is maintained while maintaining the adhesive force 4 on the support member 1 side. Only the adhesive sheet 10 can be removed.
  • the diamond grains 2 are arranged on the surface of the support member 1 as described above, For example, a single layer, brazing is performed, and the diamond grains 2 are fixed. During this brazing, the adhesive 4 applied to the surface of the support member 1 is sublimated by heating the brazing material 3 and does not remain on the surface of the support member 1.
  • the concave portions 8 are formed in the array plate 7, but may be formed as through holes.
  • the support member 1 shown in FIG. 4 is changed to an adhesive sheet 10
  • diamond particles can be arranged on the adhesive sheet 10, and it is sufficient to transfer it to the surface of the support member 1.
  • the diamond grains are regularly arranged, so that the distribution of the diamond grains is not uneven, and even if the CMP conditioner is used, the slurry is formed in the dense portions of the diamond grains. Abrasive grains in the center are not aggregated, and micro scratches on the surface of the semiconductor substrate can be minimized. In addition, there is no solid difference between the CMP conditioners, and stable characteristics of the CMP conditioner can be obtained.
  • the diamond grains are arranged as shown in FIGS. 2 and 3.However, from the viewpoint of preventing the distribution of the diamond grains from becoming uneven, a method other than that shown in FIGS.
  • the arrangement may have a certain rule regarding the density of diamond grains.
  • the diamond grains 2 are located between a certain area and an average of several to several tens, for example, 20 diamond grains 2. It suffices if the variation in density is within ⁇ 50%.
  • diamond grains 2 are used as hard abrasive grains in the present invention, but other materials such as cubic boron nitride, boron carbide, silicon carbide, aluminum oxide, or the like are used. Is also good.
  • a method of fixing the diamond particles 2 to the support member 1 a method other than brazing, for example, nickel electrodeposition or the like may be used.
  • a method of fixing diamond particles by brazing will be described.
  • a brazing material a melting point containing 0.5 to 20 wt% of at least one selected from titanium, chromium, and zirconium.
  • an alloy at 65 ° C. to 1200 ° C.
  • a carbide layer of the metal is formed at the interface between the diamond grains and the brazing alloy. It is formed. Selected from titanium, chromium, or zirconium contained in brazing material
  • one or more of them is 0.5 to 2 Owt% is that if the content is less than 0.5 wt%, a carbide layer of the metal is not formed at the interface between the diamond and the brazing alloy. If this is done, a carbide layer showing sufficient bonding strength will be formed.
  • the brazing alloy is an alloy with a melting point of 650 ° C; ⁇ 1200 ° C, bonding strength cannot be obtained at brazing temperatures below 650 ° C, and at brazing temperatures above 1200 ° C, This is because deterioration occurs, which is not preferable.
  • An appropriate thickness of the brazing alloy is 0.2 to 1.5 times the thickness of diamond grains. If the thickness is too small, the bonding strength between the diamond and the brazing alloy will be low. If the thickness is too large, the brazing material and the support member will be easily separated.
  • the diameter of the diamond grains is preferably in the range of 50 m to 300 m. This is because fine diamond particles having a particle diameter of less than 50 / m cannot obtain a sufficient polishing rate, tend to aggregate easily, and are likely to fall off. On the other hand, coarse diamond grains of more than 300 m have a high stress concentration during polishing and tend to fall off.
  • the abrasive grains in the slurry are not aggregated in the dense portions of the hard abrasive grains, and the semiconductor substrate surface Micro scratches can be minimized.
  • the CMP conditioners since there is no solid difference between the CMP conditioners and stable characteristics of the CMP conditioner can be obtained, a stable mass production CMP process can be realized.
  • the CMP conditioner will be described with reference to FIG.
  • diamond grains 12 as hard abrasive grains are fixed to the surface of a disk-shaped support member 11 made of stainless steel or the like.
  • FIGS. 11 and 12 show an outline of the arrangement of the diamond grains 12 on the surface of the support member 11.
  • the example shown in FIG. 11 considers a plurality of straight lines (dashed-dotted line L) extending radially from the center of the disk-shaped support member 11, and arranges diamond grains 12 on these straight lines.
  • the diamond grains 12 are arranged so that the density decreases from the inside to the outside of the support member 11, and there is no diamond grain 12 on the surface of the support member 11. The area will be secured radially.
  • Fig. 12 considers a plurality of curves (dashed lines L) extending radially from the center of the disk-shaped support member 11 and arranges diamond grains 12 on those curves. .
  • the diamond grains 12 are arranged so that the density decreases from the inside to the outside of the support member 11, and the diamond grains 12 are present on the surface of the support member 11.
  • the area not to be covered is radially secured.
  • substantially radial used in the present invention includes not only a case where light is emitted linearly as shown in FIG. 11 but also a case where light is emitted in a curved line as shown in FIG.
  • the actual diamond grain 12 is very small compared to the support member 11, but in FIG. 10 and FIGS. 11 and 12 described later, the diamond grain 12 is used for simplicity. Are shown in large scale. In addition, the number of straight lines and curves should be radiated in a more dense state, but they are simply illustrated in Figs.
  • the array plate 15 shown in FIG. 13 is used instead of the array plate 5 shown in FIG. Except for this, the method can be performed in the same manner as the first method and the second method described in the first embodiment.
  • through-holes 16 for arranging diamond grains 12 are formed in the arrangement plate 15. ing. That is, the through holes 16 are arranged on the arrangement plate 15 in the same manner as the arrangement shown in FIGS.
  • the diameter X of the through hole 16 is 1.0D x X 2.0D with respect to the size D of the diamond grain 12, so that one or more diamond grains 12 cannot enter into one through hole 16 at the same time.
  • a scattering prevention wall 15a is provided around the arrangement plate 15.
  • the diamond grains 12 are regularly arranged, there is no individual difference between CMP conditioners, and stable CMP conditioner characteristics can be obtained.
  • the diamond grains 12 are arranged radially from the center of the support member 11 so that the density decreases from the inside to the outside of the support member 11, and the area where the diamond grains 12 do not exist is radially arranged.
  • the slurry can escape toward the outside of the support member 11 during polishing, thereby reducing micro-scratch.c
  • the CMP conditioners there is no solid difference between the CMP conditioners, and stable CMP conditioner characteristics can be obtained, so that a stable mass production CMP process can be realized. Becomes possible.
  • the slurry can be released during polishing, micro scratches can be reduced, and it is not necessary to perform special processing for the supporting member, so that labor and cost of processing can be reduced.
  • brazing metal of Ag—Cu—3Zr melting point: 800 ° C
  • brazing in a vacuum of 10 to 5 Torr The brazing temperature was maintained at 850 ° C for 30 minutes, and a single layer was brazed.
  • Conventional CMP conditioners include type A (with diamond grains scattered by hand), type B (with a grid pattern shown in Fig. 2), and type C (with a honeycomb shape shown in Fig. 3). Arrangement), three types were prepared for each of them.
  • a polishing experiment was performed on ten semiconductor wafers with a TEOS film. That is, for each type of A, B, and C, polishing was performed for every 100 wafers. The dressing was performed for 2 minutes for each polishing. Thereafter, the number of micro-clutches was measured for a total of 10 wafers, one for every 10 wafers out of 100 polished wafers. Assuming that the number of micro scratches when using the type A CMP conditioner is 100, the relative numbers of micro scratches when using the type B and C dressers are 26 and 17, respectively.
  • the B and C type CMP conditioners can significantly reduce micro scratches on the c surface compared to the A type conventional dresser.
  • the small difference between the CMP conditioners and the specific condition of the CMP conditioners makes it possible to realize a stable mass production CMP process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

明 細 書
C M Pコンディショナ一、 C MPコンディショナ一に使用する 硬質砥粒の配列方法、 及び CM Pコンディショナ一製造方法
[発明の背景]
発明の分野
本発明は、 半導体基板用の研磨布の目詰まりを解消し、 異物を除去するのに使 用される CM Pコンディショナ一、 C M Pコンディショナ一に使用する硬質砥粒 の配列方法、 及び C M Pコンディショナー製造方法に関する。 なお、 CM Pコン ディショナ一は、 当業界において C MPドレッサーとも称されるものである。
背景技術
ウェハのポリヅシングにおいては、 C M P (Chemical Mechanical Polishing) と呼ばれる研磨方法が提案されている。 CM Pは、 機械的研磨作用に化学的研磨 作用を重畳して働かせることにより、 研磨速度の確保と被研磨材が無欠陥である ことの両立を可能としたものであり、 シリコンゥェハの仕上げポリッシング工程 で広く使用されている。
また、 近年ではデバイスの高集積化に伴い、 集積回路を製造する所定の段階で、 ウェハ表面やウェハ表面に導電体 ·誘電体層が形成された半導体基板表面を研磨 することが必要になってきた。 半導体基板は、 研磨されて、 高い隆起、 引つかき 傷、 粗さ等の表面欠陥が除去される。 通常、 この工程は、 ウェハ上に種々の素子 及び集積回路を形成する間に行われる。 この研磨工程では、 シリコンウェハの仕 上げポリッシング工程と同様に、 研磨速度と無欠陥であることの両立が必要であ る。 化学スラリーを導入することにより、 半導体表面により大きな研磨除去速度 及び無欠陥性が与えられる化学的かつ機械的平坦ィ匕が行われる。
C M P工程の一例としては、 図 8に示すように、 例えば 5〜3 0 O nm程度の 粒径を有するシリ力粒子を苛性ソーダ、 アンモニア及びァミン等のアル力リ溶液 に懸濁させて P H 9〜1 2程度に化学スラリー 1 0 1と、 ポリウレタン樹脂等か らなる研磨布 1 0 2とが用いられる。 研磨時には、 化学スラリー 1 0 1を流布し ながら、 半導体基板 1 0 3を研磨布 1 0 2に適当な圧力で当接させ、 同図の矢印 に示すように相対回転させる.ことにより研磨が行われる。
そして、 前記研磨布 1 0 2のコンディショニング法 (ドレッシング法) として は、 研磨布 1 0 2に水又は化学スラリー 1 0 1を流しながら、 CMPコンデイシ ョナ一を用いたコンディショニングを行って、 研磨布 1 0 2の目詰まりを解消し、 異物を除去していた。 C MPコンディショナーを用いたコンディショニングは、 半導体基板 1 0 3の研磨が終わった後に、 C M Pコンディショナーを研磨布 1 0 2に当接させ か、 或いは、 半導体基板 1 0 3の研磨と同時に、 半導体基板 1 0 3が当接する位置とは別の位置で C MPコンディショナ一を研磨布 1 0 2に当接 させるかして行われる。
従来の研磨布のコンディショニング (プラッシング) に用いられる CM Pコン ディショナ一では、 図 9に示すように、 円板状の支持部材 2 0 1の表面に、 硬質 砥粒としてダイヤモンド粒 2 0 2を人手で撒く等して適当に均一に分布させた後、 これらダイヤモンド粒 2 0 2を固着させていた。
しかし、 この場合、 いかに丁寧にダイヤモンド粒 2 0 2を散布したとしても、 その分布には粗密ができてしまう。 このようにダイヤモンド粒 2 0 2の分布に粗 密ができたドレヅサ一を使用すると、 ダイヤモンド粒 2 0 2の集合部分 (密部 分) に化学スラリー中の砥粒が凝集しやすくなつてしまう。 そして、 その砥粒の 凝集が研磨布 (図 8中 1 0 2 ) に付着し、 半導体基板 (図 8中 1 0 3 ) にミクロ スクラッチ傷をつけてしまうといった深刻な問題を引き起こしていた。 また、 ダ ィャモンド粒 2 0 2の不均一な分布は、 ドレヅサ一固体間での相違の原因となり、 安定したドレッサー特性の発現が妨げられていた。
また、 従来の C M Pコンディショナーでは、 スラリーの逃げが悪いため、 マイ クロスクラッチが多くなつた。 また、 スラリーの逃げを改良するためには、 図 1 4に示すように、 支持部材 2 0 1に化学スラリー 1 0 1を逃すための逃し溝 2 0 3等を形成しておき、 研磨時に、 この逃し溝 2 0 3を介して化学スラリー 1 0 1 を逃すことがなされていた。 しかし、 支持部材 2 0 1に逃し溝 2 0 3を形成する のでは、 C M Pコンディショナー特性に悪影響を与えるおそれがあり、 また、 そ の逃し溝の加工に手間がかかり、 コストアップの要因となってしまう。 [発明の概要]
本発明は前記のような点に鑑みてなされたものであり、 本発明の第一の態様に おいては、 半導体基板表面のミクロスクラッチ傷を抑えるとともに、 安定した C MPコンディショナー特性が得られるようにすることを目的とする。
本発明の第一の態様による C M Pコンディショナーは、 支持部材と、 前記支持 部材の面上に設けられた複数の硬質砥粒とを備えた C MPコンディショナ一であ つて、 前記複数の硬質砥粒が、 前記支持部材の面上に規則的に配列されてなる点 に特徴を有する。
また、 本発明の第一の態様による C M Pコンディショナ一の他の特徴とすると ころは、 前記硬質砥粒が、 前記支持部材の面上で正方形で作られる単位格子の各 頂点に配置されてなる点にある。
また、 本発明の第一の態様による C M Pコンディショナ一の他の特徴とすると ころは、 前記硬質砥粒が、 前記支持部材の面上で正三角形で作られる単位格子の 各頂点に配置されてなる点にある。
また、 本発明の第一の態様による別の C M Pコンディショナーは、 支持部材と、 前記支持部材の面上に設けられた複数の硬質砥粒とを備えた C M Pコンディショ ナ一であって、 前記硬質砥粒が存在する一定面積の領域間で、 前記硬質砥粒の密 度のばらつきが土 5 0 %以内である点に特徴を有する。
また、 本発明の第一の態様による C M Pコンディショナ一の他の特徴とすると ころは、 前記硬質砥粒がダイヤモンド粒である点にある。
また、 本発明の第一の態様による C M Pコンディショナ一の他の特徴とすると ころは、 チタン、 クロム、 およびジルコニウムからなる群より選択される 1種以 上を 0 . 5〜2 0 w t %含む融点 6 5 0 °C;〜 1 2 0 0 °Cの合金を用いて、 前記ダ ィャモンド粒が金属及び/又は合金からなる前記支持部材に、 単層で、 ろう付け されることにより、 前記ダイヤモンド粒と前記合金との界面にチタン、 クロム、 およびジルコニウムからなる群より選択される金属の炭化物層が形成されてなる 点にある。
本発明の第一の態様による C M Pコンディショナ一に使用する硬質砥粒の配列 方法は、 規則的に配列させられた複数の貫通穴が形成されてなる薄板状の配列部 材を被配列面上に位置させる手順と、 前記配列部材の各貫通穴に硬質砥粒を入れ 込む手順とを含んでなる点に特徴を有する。
また、 本発明の第一の態様による C M Pコンディショナ一に使用する硬質砥粒 の配列方法の他の特徴とするところは、 前記被配列面は、 CMPコンディショナ —を構成する支持部材の表面である点にある。
また、 本発明の第一の態様による別の C M Pコンディショナーに使用する硬質 砥粒の配列方法は、 複数の硬質砥粒を規則的に配列させた状態で保持部材に保持 する手順と、 前記保持部材により保持された硬質砥粒を、 C M Pコンディショナ —を構成する支持部材の表面に転写する手順とを含んでなる点に特徴を有する。 また、 本発明の第一の態様による C M Pコンディショナ一に使用する硬質砥粒 の配列方法の他の特徴とするところは、 前記保持部材には前記硬質砥粒を保持す るための第 1の接着手段を設け、 前記支持部材の表面には第 2の接着手段を設け、 これら第 1および第 2の接着手段の性質に差を持たせる点にある。
本発明の第一の態様による C M Pコンディショナ一製造方法は、 上記 C M Pコ ンディショナ一に使用する硬質砥粒の配列方法を利用して前記硬質砥粒を前記支 持部材の表面上に配列させた後、 前記硬質砥粒を前記支持部材の表面に固着する 点に特徴を有する。
上記のようにした本発明第一の態様においては、 硬質砥粒の分布に粗密がなく なるので、 当該 C M Pコンディショナーを使用しても、 硬質砥粒の密部分にスラ リー中の砥粒が凝集してしまうようなことがない。
—方、 本発明の第二の態様においては、 安定した C MPコンディショナー特性 が得られるとともに、 逃し溝等を形成しなくとも研磨時にスラリー等を逃すこと ができ、 マイクロスクラッチを減らすようにすることも目的とする。
本発明の第二の態様による C M Pコンディショナーは、 支持部材と、 前記支持 部材の面上に設けられた複数の硬質砥粒とを備えた C M Pコンディショナーであ つて、 前記複数の硬質砥粒が、 前記支持部材の面上に、 規則的に、 かつ、 前記支 持部材の内側から外側にかけて密度が減少するように配列されてなる点に特徴を 有する。 本発明の第二の態様による他の C M Pコンディショナーは、 支持部材と、 前記 支持部材の面上に設けられた複数の硬質砥粒とを備えた C M Pコンディショナー であって、 前記支持部材の面上に、 前記複数の硬質砥粒が存在しない領域を略放 射状に確保している点に特徴を有する。
本発明の第二の態様による C M Pコンディショナ一に使用する硬質砥粒の配列 方法は、 規則的に、 かつ、 内側から外側にかけて密度が減少するように配列させ た複数の貫通穴が形成された薄板状の配列部材を被配列面上に位置させる手順と、 前記配列部材の各貫通穴に硬質砥粒を入れ込む手順と含んでなる点に特徴を有す る。
本発明の第二の態様による他の C M Pコンディショナ一に使用する硬質砥粒の 配列方法は、 複数の貫通穴の存在しない領域が略放射状に確保された薄板状の配 列部材を被配列面上に位置させる手順と、 前記配列部材の各貫通穴に硬質砥粒を 入れ込む手順とを含んでなる点に特徴を有する。
本発明の第二の態様による他の C M Pコンディショナ一に使用する硬質砥粒の 配列方法は、 複数の硬質砥粒を規則的に、 かつ、 内側から外側にかけて密度が減 少するように配列させた状態で保持部材に保持する手順と、 前記保持部材により 保持された硬質砥粒を、 C M Pコンディショナ一を構成する支持部材の表面に転 写する手順とを含んでなる点に特徴を有する。
本発明の第二の態様による他の C M Pコンディショナ一に使用する硬質砥粒の 配列方法は、 複数の硬質砥粒の存在しない領域が略放射状に確保された状態で前 記複数の硬質砥粒を保持部材に保持する手順と、 前記保持部材により保持された 硬質砥粒を、 C M Pコンディショナ一を構成する支持部材の表面に転写する手順 とを含んでなる点に特徴を有する。
本発明の第二の態様による C M Pコンディショナ一製造方法は、 前記 C M Pコ ンディショナ一に使用する硬質砥粒の配列方法を利用して前記硬質砥粒を前記支 持部材の表面上に配列させた後、 前記硬質砥粒を前記支持部材の表面に固着する 点に特徴を有する。
[図面の簡単な説明] 図 1は、 本発明の第一の態様による C MPコンディショナーについて説明する ため図である。
図 2は、 本発明の第一の態様によるダイヤモンド粒 2の配列の一例を示す図で ある。
図 3は、 本発明の第一の態様によるダイヤモンド粒 2の配列の一例を示す図で ある。
図 4は、 本発明の第一の態様における第 1の方法によるダイャモンド粒 2の配 列方法を説明するための図である。
図 5は、 本発明の第一の態様による配列板 5を説明するための図である。 図 6 Aおよび図 6 Bは、 本発明の第一の態様における第 2の方法によるダイャ モンド粒 2の配列方法を説明するための図であり、 図 6 Aは前記配列板 7上にダ ィャモンド粒 2を散布する様子を表し、 図 6 Bは配列板 7から粘着シート 1 0を 剥がした際の状態を示す。
図 7は、 本発明の第一の態様における第 2の方法によるダイヤモンド粒 2の配 列方法を説明するための図である。
図 8は、 CMP工程を説明するための図である。
図 9は、 従来の C M Pコンディショナ一について説明するための図である。 図 1 0は、 本発明の第二の態様による C M Pコンディショナーについて説明す るため図である。
図 1 1は、 本発明の第二の態様によるダイヤモンド粒 1 2の配列の一例を示す 図である。
図 1 2は、 本発明の第二の態様によるダイヤモンド粒 1 2の配列の一例を示す 図である。
図 1 3は、 本発明の第二の態様による配列板 1 5を説明するための図である。 図 1 4は、 逃し溝 2 0 3を形成した C M Pコンディショナーを示す模式図であ [発明の具体的説明]
第一の態様による C M Pコンディショナー
以下、 図面を参照して、 本発明の第一の態様による半導体基板用研磨布の C M Pコンディショナ一、 半導体基板用研磨布の C M Pコンディショナ一に使用する 硬質砥粒の配列方法、 及び C M Pコンディショナ一製造方法の実施の形態につい て説明する。
図 1を用いて、 C M Pコンディショナーについて説明する。 同図に示すように、 ステンレス鋼等からなる円板状の支持部材 1の表面には、 硬質砥粒としてダイャ モンド粒 2が固着されている。 なお、 図 1に示す外観は一例であり、 支持部材 1 の表面全てにダイヤモンド粒 2が存在しなくてもよく、 例えば、 支持部材 1の表 面に化学スラリーを逃すための逃し溝を形成する等してもよい。
図 2、 3は、 支持部材 1の表面を拡大した図であり、 ダイヤモンド粒 2の配列 を示す。 図 2に示すものは、 ダイヤモンド粒 2を碁盤状に配列したものであり、 支持部材 1の表面において、 正方形で作られる単位格子 Aの各頂点にダイヤモン · ド粒 2を配置している。 換言すれば、 同図において一点鎖線で示すように、 一定 の間隔をおいて平行に並ぶ第 1の直線群 と、 一定の間隔をおいて平行に並び、 前記第 1の直線群 1^と 9 0度の角度を持って交わる第 2の直線群 L 2 (図 1中の 横線) とを考え、 これら直線群 L ,、 L2の交点にダイヤモンド粒 2を配置してい o
図 3に示すものは、 ダイヤモンド粒 2をハニカム状に配列したものであり、 支 持部材 1の表面において、 正三角形で作られる単位格子 Bの各頂点にダイヤモン ド粒 2を配置している。 換言すれば、 同図において一点鎖線で示すように、 一定 の間隔をおいて平行に並ぶ第 3の直線群 L 3と、 一定の間隔をおいて平行に並び、 前記第 3の直線群 L 3と 1 2 0度の角度を持って交わる第 4の直線群! ^とを考え、 これら直線群 L3、 I ^の交点にダイヤモンド粒 2を配置している。
図 2に示す配列では、 あるダイヤモンド粒 2に対して、 上下左右方向に隣り合 う 4つのダイヤモンド粒 2までの距離が rとなり、 また、 斜め方向に隣り合う 4 つのダイヤモンド粒 2までの距離が ( 2 ) Γとなる。
図 3に示す配列では、 あるダイヤモンド粒 2に対して、 隣り合う 6つのダイヤ モンド粒 2までの距離が全て rとなる。 したがって、 図 3に示す配列の方がダイ ャモンド粒 2の分布がより厳密な意味で均一となり、 より優れた C M Pコンディ ショナー特性を得ることができる。
以下、 図 4〜7を参照して、 本発明の第二の態様によるダイヤモンド粒 2の配 列方法について説明する。 本実施の形態では、 次の 2通りの方法により、 ダイヤ モンド粒 2を配列させている。
第 1の方法では、 図 4に示すように、 ろう材 3が設けられた支持部材 1の表面 に、 接着剤 4を塗布しておく。 そして、 接着剤 4を塗布した支持部材 1の表面上 に配列板 5を載置して、 マスキングする。
配列板 5には、 図 5にも示すように、 ダイヤモンド粒 2を配列させるための貫 通穴 6が形成されている。 すなわち、 配列板 5には、 図 2、 3に示す配列と同様 に貫通穴 6が配列させられている。 貫通穴 6の口径 Xは、 ダイヤモンド粒 2のサ ィズ Dに対して、 1 . 0 D < X< 2 . 0 Dとなっており、 1つの貫通穴 6に 1個 以上のダイヤモンド粒 2が同時に入り込まないようにしている。 なお、 配列板 5 の周囲には、 飛散防止用壁 5 aが設けられている。
図 4に示すように、 前記配列板 5を支持部材 1の表面に載置した状態で、 配列 板 5上にダイヤモンド粒 2を散布する。 このとき、 配列板 5に適当な振動を加え る等して、 ダイヤモンド粒 2が全ての貫通穴 6に入り込むようにする。 全ての貫 通穴 6にダイヤモンド粒 2が入り込んだならば、 配列板 5上の余分なダイヤモン ド粒 2をはけ等を用いて取り除く。 その後、 配列板 5を支持部材 1の表面から取 り外せば、 ダイヤモンド粒 2は、 図 2、 3に示すように配列された状態で支持部 材 1の表面上に残ることになる。
以上述べたようにして支持部材 1の表面にダイャモンド粒 2を配列させたなら ば、 単層、 ろう付けを行い、 ダイヤモンド粒 2を固定する。 このろう付けの際に、 支持部材 1の表面に塗布された接着剤 4はろう材 3への加熱によって昇華し、 支 持部材 1の表面上に残留しない。 '
なお、 第 1の方法において、 配列板 5の代わりに、 ワイヤで編まれたメッシュ を用いてもよい。 すなわち、 メッシュの各開口部分を配列板 5でいう貫通穴 6と して使用し、 該開口部分にダイヤモンド粒 2を入れ込んで、 支持部材 1の表面に 配列させる。
第 2の方法では、 前記第 1の方法のようにダイャモンド粒 2を支持部材 1の表 面に直接的に配列するのではなく、 粘着シート等の保持部材にいつたん配列させ てから、 支持部材 1の表面に転写するようにしている。
図 6 ( a ) に示すように、 配列板 7には、 ダイヤモンド粒 2を配列させるため の凹部 8が形成されている。 すなわち、 配列板 7には、 図 2、 3に示す配列と同 様に凹部 8が配列させられている。 なお、 凹部 8の口径 Xを、 ダイヤモンド粒サ ィズ Dに対して、 1 . 0 D < Xく 2 . 0 Dとすることは、 前記第 1の方法で述べ た貫通穴 6と同じである。
前記配列板 7上にダイヤモンド粒 2を散布する。 このときも、 前記第 1の方法 で説明したように、 配列板 7に適当な振動を加える等して、 ダイヤモンド粒 2が 全ての凹部 8に入り込むようにする。 全ての凹部 8にダイヤモンド粒 2が入り込 んだならば、 配列板 7上の余分なダイャモンド粒 2をはけ 9等を用いて取り除く c 次に、 配列板 7の凹部 8が開口する面に粘着シート 1 0を貼り付ける。 そして、 図 6 ( b ) に示すように、 配列板 7の上下を逆にする等して、 粘着シート 1 0を 剥がすと、 粘着シート 1 0にダイヤモンド粒 2が配列された状態で保持されるこ とになる。
前記粘着シート 1 0のダイヤモンド粒 2を保持する粘着面を、 接着剤 4が塗布 された支持部材 1の表面に貼り合わせるようにする。 したがって、 図 7に示すよ うに、 ダイヤモンド粒 2は、 一端が粘着シート 1 0側で、 他端が支持部材 1の表 面側で支持された状態となる。 その後、 支持部材 1の表面側にダイヤモンド粒 2 を残し、 粘着シート 1 0だけを取り除けば、 ダイヤモンド粒 2を支持部材 1の表 面上に配列させることができる。
粘着シート 1 0だけを取り除く手法としては、 例えば、 粘着シート 1 0の接着 材の溶解性と、 支持部材 1側の接着剤 4の溶解性とに差を持たせておけばよい。 この場合、 図 7に示す状態で粘着シ一卜 1 0の接着剤が溶けるような環境にすれ ば、 支持部材 1側の接着剤 4は保持力を維持したまま、 粘着シート 1 0の接着材 だけを溶かし、 粘着シート 1 0だけを取り除くことができる。
以上述べたようにして支持部材 1の表面にダイャモンド粒 2を配列させたなら ば、 単層、 ろう付けを行い、 ダイヤモンド粒 2を固定する。 このろう付けの際に、 支持部材 1の表面に塗布された接着剤 4はろう材 3への加熱によって昇華し、 支 持部材 1の表面上に残留しない。
なお、 第 2の方法では、 配列板 7に凹部 8を形成するようにしたが、 貫通穴と してよい。 この場合、 図 4に示す支持部材 1を粘着シート 1 0に変更すれば、 粘 着シート 1 0にダイヤモンド粒を配列させることができるので、 それを支持部材. 1の表面に転写すればよい。
以上述べたように本実施の形態によれば、 ダイヤモンド粒を規則的に配列させ ているので、 ダイヤモンド粒の分布に粗密がなく、 当該 C M Pコンディショナー を使用しても、 ダイャモンド粒の密部分にスラリ一中の砥粒が凝集することがな くなり、 半導体基板表面のミクロスクラッチ傷を最小限に抑えることができる。 また、 C MPコンディショナー間での固体差がなくなり、 安定した C MPコンデ ィショナ一特性を得ることができる。
なお、 本実施の形態では、 図 2、 3に示すようにダイヤモンド粒を配列させた が、 ダイヤモンド粒の分布に粗密ができないようにするといつた点からいえば、 図 2、 3に示す以外の配列でも、 ダイヤモンド粒の密度について一定の規則を有 するようにすればよい。 例えば、 支持部材 1の表面のうちダイヤモンド粒 2が存 在するエリアにおいて、 ダイヤモンド粒 2が平均数個〜数十個、 例えば 2 0個存 在するある一定面積の領域間で、 ダイャモンド粒 2の密度のばらつきが ± 5 0 % 以内に収まっていればよい。
また、 本実施の形態では、 本発明でいう硬質砥粒としてダイヤモンド粒 2を用 いたが、 その他の材質、 例えば立方晶窒化ホウ素、 炭化ホウ素、 炭化珪素又は酸 化アルミニゥム等からなるものであってもよい。
また、 ダイヤモンド粒 2の支持部材 1への固着方法としては、 ろう付け以外の 方法、 例えばニッケル電着等により固着させてもよい。
ここで、 好適な一例として、 ダイヤモンド粒をろう付けにより固着する方法に ついて説明すると、 ろう材として、 チタン、 クロム、 又はジルコニウムより選ば れた 1種以上を 0 . 5〜2 0 w t %含む融点 6 5 0 °C〜1 2 0 0 °Cの合金を用い ることにより、 ダイヤモンド粒とろう付け合金との界面に当該金属の炭化物層が 形成される。 ろう材に含まれるチタン、 クロム、 又はジルコニウムより選ばれた
1種以上を 0. 5〜2 Owt %とするのは、 0. 5 wt%より少ない含有量では ダイャモンド一ろう付け合金の界面に当該金属の炭化物層が形成されないためで あり、 2 Owt %添加すれば十分な接合強度を示す炭化物層が形成されるためで める。
ろう付け合金を融点 650°C;〜 1200°Cの合金とするのは、 650°C未満の ろう付け温度では、 接合強度が得られず、 1200°C超のろう付け温度では、 ダ ィャモンドの劣化が起こるので好ましくないからである。
ろう付け合金の厚さは、 ダイヤモンド粒の 0. 2〜1. 5倍の厚さが適当であ る。 薄すぎると、 ダイヤモンドとろう付け合金との接合強度が低くなり、 厚すぎ ると、 ろう材と支持部材との剥離が起こりやすくなるためである。
ダイヤモンド粒の径は、 50〃m〜300 mとすることが好ましい。 50 / m未満の微粒ダイヤモンド粒では、 十分な研磨速度が得られず、 また、 凝集しや すい傾向があり、 脱落しやすくなるためである。 また、 300 m超の粗粒のダ ィャモンド粒では、 研磨時の応力集中が大きくなり、 脱落しやすくなるためであ ο
以上述べたように本発明の第一の態様によれば、 当該 CMPコンディショナー を使用しても硬質砥粒の密部分にスラリ一中の砥粒が凝集してしまうことがなく なり、 半導体基板表面のミクロスクラッチ傷を最小限に抑えることができる。 ま た、 CMPコンディショナー間での固体差がなくなり、 安定した CMPコンディ ショナ一特性を得ることができるので、 安定した量産 CMPプロセスを実現する ことが可能となる。 第二の態様による CMPコンディショナ一
以下、 図面を参照して、 本発明の第二の態様による半導体基板用研磨布の CM Pコンディショナーの実施の形態について説明する。 なお、 本態様における半導 体基板用研磨布の C MPコンディショナ一に使用する硬質砥粒の配列方法、 及び CMPコンディショナ一製造方法については、 図 5に示される配列板 5の代わり に図 13に示される配列板 15を使用することを除いて、 第一の態様における第 1および第 2の方法と同様に行うことができるので第一の態様における説明を援 用するものとする。
図 1 0を用いて、 C M Pコンディショナーについて説明する。 同図に示すよう に、 ステンレス鋼等からなる円板状の支持部材 1 1の表面には、 硬質砥粒として ダイヤモンド粒 1 2が固着されている。
図 1 1、 1 2には、 支持部材 1 1の表面におけるダイヤモンド粒 1 2の配列の 概要を示す。 図 1 1に示す例は、 円板状の支持部材 1 1の中心から放射状に伸び る複数の直線 (一点鎖線 L ) を考え、 それら直線上にダイヤモンド粒 1 2を配置 したものである。 このようにした C M Pコンディショナーでは、 ダイヤモンド粒 1 2が支持部材 1 1の内側から外側にかけて密度が小さくなるように配列されて おり、 支持部材 1 1の表面上には、 ダイヤモンド粒 1 2の存在しない領域が放射 状に確保されることになる。
また、 図 1 2に示す例は、 円板状の支持部材 1 1の中心から放射状に伸びる複 数の曲線 (一点鎖線 L ) を考え、 それら曲線上にダイヤモンド粒 1 2を配置した ものである。 このようにした C MPコンディショナーでは、 ダイヤモンド粒 1 2 が支持部材 1 1の内側から外側にかけて密度が小さくなるように配列されており、 支持部材 1 1の表面上には、 ダイヤモンド粒 1 2が存在しない領域が放射状に確 保されることになる。 本発明でいう略放射状とは、 図 1 1に示すように直線的に 放射する場合だけでなく、 図 1 2に示すように曲線的に放射する場合も含むもの とする。
なお、 実際のダイヤモンド粒 1 2は、 支持部材 1 1に比べて非常に小さなもの であるが、 図 1 0や後述する図 1 1、 1 2では、 説明を簡単にするためダイヤモ ンド粒 1 2を大きく図示する。 また、 直線や曲線の数についても、 より密な状態 で放射させるようにするが、 図 1 1、 1 2では簡単に図示する。
本発明の第二の態様におけるダイャモンド粒 1 2の配列方法および C MPコン ディショナ一の製造方法は、 図 5に示される配列板 5の代わりに図 1 3に示され る配列板 1 5を使用することを除いて、 第一の態様において説明した第 1の方法 および第 2の方法と同様にして行うことができる。 この配列板 1 5には、 図 1 3 にも示すように、 ダイヤモンド粒 1 2を配列させるための貫通穴 1 6が形成され ている。 すなわち、 配列板 15には、 図 11、 12に示す配列と同様に貫通穴 1 6が配列させられている。 貫通穴 16の口径 Xは、 ダイヤモンド粒 12のサイズ Dに対して、 1. 0Dく Xく 2. 0Dとなっており、 1つの貫通穴 16に 1個以 上のダイヤモンド粒 12が同時に入り込まないようにしている。 なお、 配列板 1 5の周囲には、 飛散防止用壁 15 aが設けられている。
以上述べたように本実施の形態によれば、 ダイヤモンド粒 12を規則的に配列 させているので、 CMPコンディショナー間での固体差がなくなり、 安定した C MPコンディショナー特性を得ることができる。 また、 ダイヤモンド粒 12を、 支持部材 11の中心から略放射状に配列させることにより、 支持部材 11の内側 から外側にかけて密度が小さくなるよう配列するようにし、 また、 ダイヤモンド 粒 12が存在しない領域を放射状に確保するようにしたので、 研磨時にスラリー を支持部材 11の外側に向けて逃すことができ、 マイクロスクラッチが減少する c そして、 スラリーを逃すための特別な加工を支持部材 1に施す必要がなくなるの で、 加工の手間やコストを軽減させることができる。
以上述べたように本発明の第二の態様によれば、 C MPコンディショナ一間で の固体差がなくなり、 安定した C M Pコンディショナー特性を得ることができる ので、 安定した量産 CMPプロセスを実現することが可能となる。 また、 研磨時 にスラリーを逃すことができ、 マイクロスクラッチを減らすことができ、 しかも、 そのための特別な加工を支持部材に施す必要がなくなるので、 加工の手間ゃコス トを軽減させることができる。
[実 施 例]
以下、 本発明の第一の態様を実施例に基づいて詳細に説明するが、 本発明はこ れらの実施例に限定されるものではない。
ダイヤモンド粒径を 150〜210 mとし、 フェライ ト系ステンレス製の支 持部材に Ag— Cu— 3 Zr (融点: 800°C) のろう付け金属を用いて、 10 _5Torrの真空中、 ろう付け温度 850°Cで 30分間保持し、 単層、 ろう付け した。 CMPコンディショナーは、 従来タイプ A (ダイヤモンド粒を人手で撒い たもの) 、 タイプ B (図 2示す碁盤状配列) 、 タイプ C (図 3に示すハニカム状 配列) の 3つのタイプについて、 それそれ 10枚づっ準備した。
そして、 各 CMPコンディショナーについて、 10枚の T EOS膜付き半導体 ウェハについて研磨実験を行った。 すなわち、 A、 B、 Cの各タイプについて、 100枚づっ研磨を行つた。 ドレヅシングは、 1回の研磨ごとに 2分間行つた。 その後、 100枚の研磨したウェハから 10枚ごとに 1枚づつ、 計 10枚のゥ ェハについてミクロスクラッチの数を計測した。 タイプ Aの CMPコンディショ ナ一を使用した場合におけるミクロスクラッチ傷の数を 100とすると、 タイプ B、 Cのドレッサーを使用した場合におけるミクロスクラヅチ傷の数の相対値は、 それぞれ 26, 17となった。
この結果からも、 B、 Cタイプの CMPコンディショナーでは、 Aタイプの従 来のドレッサに比べて、 ゥヱハ表面のミクロスクラッチ傷を大幅に減少させられ ることがわかった。 また、 CMPコンディショナー間での CMPコンディショナ —特定の差が小さいので、 安定した量産 CMPプロセスを実現することが可能と なる。

Claims

請 求 の 範 囲
1. 支持部材と、 前記支持部材の面上に設けられた複数の硬質砥粒とを備え た C MPコンディショナ一であって、
前記複数の硬質砥粒が、 前記支持部材の面上に規則的に配列されてなる、 CM Pコンディショナ一。
2. 前記硬質砥粒が、 前記支持部材の面上で正方形で作られる単位格子の各 頂点に配置されてなる、 請求項 1に記載の C M Pコンディショナー。
3. 前記硬質砥粒が、 前記支持部材の面上で正三角形で作られる単位格子の 各頂点に配置されてなる、 請求項 1に記載の C M Pコンディショナ一。
4. 支持部材と、 前記支持部材の面上に設けられた複数の硬質砥粒とを備え た CMPコンディショナ一であって、
前記硬質砥粒が存在する一定面積の領域間で、 前記硬質砥粒の密度のばらつき が ±50%以内である、 CMPコンディショナー。
5. 前記硬質砥粒がダイヤモンド粒である、 請求項 1〜4のいずれか 1項に 記載の CMPコンディショナ一。
6. チタン、 クロム、 およびジルコニウムからなる群より選択される 1種以 上を 0. 5〜2 Owt %含む融点 650°C;〜 1200°Cの合金を用いて、 前記ダ ィャモンド粒が金属及び/又は合金からなる前記支持部材に、 単層で、 ろう付け されることにより、 前記ダイヤモンド粒と前記合金との界面にチタン、 クロム、 およびジルコニウムからなる群より選択される金属の炭化物層が形成されてなる、 請求項 5に記載の CMPコンディショナ一。
7. 規則的に配列させられた複数の貫通穴が形成されてなる薄板状の配列部 材を被配列面上に位置させる手順と、
前記配列部材の各貫通穴に硬質砥粒を入れ込む手順とを含んでなる、 CMPコ ンディショナ一に使用する硬質砥粒の配列方法。
8. 前記被配列面が、 CMPコンディショナーを構成する支持部材の表面で ある、 請求項 7に記載の方法。
9. 複数の硬質砥粒を規則的に配列させた状態で保持部材に保持する手順と、 前記保持部材により保持された硬質砥粒を、 CMPコンディショナーを構成す る支持部材の表面に転写する手順とを含んでなる、 CMPコンディショナ一に使 用する硬質砥粒の配列方法。
10. 前記保持部材には前記硬質砥粒を保持するための第 1の接着手段を設 け、 前記支持部材の表面には第 2の接着手段を設け、 これら第 1および第 2の接 着手段の性質に差を持たせる、 請求項 9に記載の方法。
11. 請求項?〜 10のいずれか 1項に記載の CMPコンディショナーに使 用する硬質砥粒の配列方法を利用して前記硬質砥粒を前記支持部材の表面上に配 列させた後、 前記硬質砥粒を前記支持部材の表面に固着することを含んでなる、 CMPコンディショナ一製造方法。
12. 支持部材と、 前記支持部材の面上に設けられた複数の硬質砥粒とを備 えた C MPコンディショナ一であって、
前記複数の硬質砥粒が、 前記支持部材の面上に、 規則的に、 かつ、 前記支持部 材の内側から外側にかけて密度が減少するように配列されてなる、 C M Pコンデ ィショナ一。
13. 前記硬質砥粒が、 前記支持部材の中心から略放射状に配列されてなる、 請求項 12に記載の CMPコンディショナー。
14. 支持部材と、 前記支持部材の面上に設けられた複数の硬質砥粒とを備 えた CM Pコンディショナーであって、
前記支持部材の面上に、 前記複数の硬質砥粒が存在しない領域が略放射状に確 保されてなる、 CMPコンディショナー。
15. 前記硬質砥粒がダイヤモンド粒である、 請求項 12〜 14のいずれか 1項に記載の C M Pコンディショナー。
16. チタン、 クロム、 およびジルコニウムからなる群より選択される 1種 以上を 0. 5〜20wt%含む融点 650°C〜 1200°Cの合金を用いて、 前記 ダイヤモンド粒が金属及び/又は合金からなる前記支持部材に、 単層で、 ろう付 けされることにより、 前記ダイヤモンド粒と前記合金との界面にチタン、 クロム、 およびジルコニウムからなる群より選択される金属の炭化物層が形成されてなる、 請求項 15に記載の C M Pコンディショナー。
17. 前記融点 650°C~ 1200°Cの合金がニッケル基合金である、 請求 項 16に記載の CMPコンディショナー。
18. 規則的に、 かつ、 内側から外側にかけて密度が減少するように配列さ せた複数の貫通穴が形成された薄板状の配列部材を被配列面上に位置させる手順 と、
前記配列部材の各貫通穴に硬質砥粒を入れ込む手順とを含んでなる、 CMPコ ンディショナ一に使用する硬質砥粒の配列方法。
19. 複数の貫通穴の存在しない領域が略放射状に確保された薄板状の配列 部材を被配列面上に位置させる手順と、
前記配列部材の各貫通穴に硬質砥粒を入れ込む手順とを含んでなる、 CMPコ ンディショナ一に使用する硬質砥粒の配列方法。
20. 前記被配列面が、 CMPコンディショナーを構成する支持部材の表面 である、 請求項 18又は 19に記載の方法。
21. 複数の硬質砥粒を規則的に、 かつ、 内側から外側にかけて密度が減少 するように配列させた状態で保持部材に保持する手順と、
前記保持部材により保持された硬質砥粒を、 CMPコンディショナーを構成す る支持部材の表面に転写する手順とを含んでなる、 CMPコンディショナ一に使 用する硬質砥粒の配列方法。
22. 複数の硬質砲粒の存在しない領域が略放射状に確保された状態で前記 複数の硬質砥粒を保持部材に保持する手順と、
前記保持部材により保持された硬質砥粒を、 CMPコンディショナ一を構成す る支持部材の表面に転写する手順とを含んでなる、 CMPコンディショナーに使 用する硬質砥粒の配列方法。
23. 前記保持部材には前記硬質砥粒を保持するための第 1の接着手段を設 け、 前記支持部材の表面には第 2の接着手段を設け、 これら第 1および第 2の接 着手段の性質に差を持たせる、 請求項 21又は 22に記載の方法。
24. 請求項 18〜23のいずれか 1項に記載の CMPコンディショナ一に 使用する硬質砥粒の配列方法を利用して前記硬質砥粒を前記支持部材の表面上に 配列させた後、 前記硬質砥粒を前記支持部材の表面に固着することを含んでなる、 CMPコンディショナ一製造方法。
PCT/JP2001/011209 2000-12-21 2001-12-20 Conditionneur pour polissage chimico-mecanique, procede pour agencer des grains rigides utilises dans un conditionneur pour polissage chimico-mecanique, et procede pour produire un conditionneur pour polissage chimico-mecanique WO2002049807A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020037007698A KR100552391B1 (ko) 2000-12-21 2001-12-20 Cmp 컨디셔너, cmp 컨디셔너에 사용하는 경질지립(砥粒)의 배열방법 및 cmp 컨디셔너 제조방법
US10/451,644 US20040072510A1 (en) 2000-12-21 2001-12-20 Cmp conditioner, method for arranging rigid grains used for cmp conditioner, and method for manufacturing cmp conditioner
EP01271276A EP1346797B1 (en) 2000-12-21 2001-12-20 Cmp conditioner and method for arranging hard abrasive grains used for cmp conditioner
DE60124424T DE60124424T2 (de) 2000-12-21 2001-12-20 CMP-Konditionierer und Verfahren zur Anordnung von für den CMP-Konditionierer verwendeten harten Schleifkörnern
HK04107147A HK1064324A1 (en) 2000-12-21 2004-09-17 Cmp conditioner, method for arranging hard abrasive grains for use in cmp conditioner, and process for producing cmp conditioner
US11/385,297 US7465217B2 (en) 2000-12-21 2006-03-20 CMP conditioner, method for arranging hard abrasive grains for use in CMP conditioner, and process for producing CMP conditioner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000388994A JP3598062B2 (ja) 2000-12-21 2000-12-21 Cmpドレッサー、cmpドレッサーに使用する硬質砥粒の配列方法、及びcmpドレッサーの製造方法
JP2000-388994 2000-12-21
JP2001-262167 2001-08-30
JP2001262167A JP2003071718A (ja) 2001-08-30 2001-08-30 Cmpコンディショナー、cmpコンディショナーに使用する硬質砥粒の配列方法、及びcmpコンディショナー製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10451644 A-371-Of-International 2001-12-20
US11/385,297 Division US7465217B2 (en) 2000-12-21 2006-03-20 CMP conditioner, method for arranging hard abrasive grains for use in CMP conditioner, and process for producing CMP conditioner

Publications (1)

Publication Number Publication Date
WO2002049807A1 true WO2002049807A1 (fr) 2002-06-27

Family

ID=26606289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011209 WO2002049807A1 (fr) 2000-12-21 2001-12-20 Conditionneur pour polissage chimico-mecanique, procede pour agencer des grains rigides utilises dans un conditionneur pour polissage chimico-mecanique, et procede pour produire un conditionneur pour polissage chimico-mecanique

Country Status (8)

Country Link
US (2) US20040072510A1 (ja)
EP (1) EP1346797B1 (ja)
KR (1) KR100552391B1 (ja)
CN (1) CN100361786C (ja)
DE (1) DE60124424T2 (ja)
HK (1) HK1064324A1 (ja)
TW (1) TW575477B (ja)
WO (1) WO2002049807A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1595645A1 (en) * 2002-12-19 2005-11-16 Kabushiki Kaisha Miyanaga Diamonid disk
WO2009158507A2 (en) * 2008-06-26 2009-12-30 Saint-Gobain Abrasives, Inc. Chemical mechanical planarization pad conditioner and method of forming

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9409280B2 (en) 1997-04-04 2016-08-09 Chien-Min Sung Brazed diamond tools and methods for making the same
US9463552B2 (en) 1997-04-04 2016-10-11 Chien-Min Sung Superbrasvie tools containing uniformly leveled superabrasive particles and associated methods
US9221154B2 (en) 1997-04-04 2015-12-29 Chien-Min Sung Diamond tools and methods for making the same
US9199357B2 (en) 1997-04-04 2015-12-01 Chien-Min Sung Brazed diamond tools and methods for making the same
US9868100B2 (en) 1997-04-04 2018-01-16 Chien-Min Sung Brazed diamond tools and methods for making the same
US9238207B2 (en) 1997-04-04 2016-01-19 Chien-Min Sung Brazed diamond tools and methods for making the same
JP2005313310A (ja) * 2004-03-31 2005-11-10 Mitsubishi Materials Corp Cmpコンディショナ
US20060258276A1 (en) * 2005-05-16 2006-11-16 Chien-Min Sung Superhard cutters and associated methods
US7658666B2 (en) * 2004-08-24 2010-02-09 Chien-Min Sung Superhard cutters and associated methods
US7762872B2 (en) * 2004-08-24 2010-07-27 Chien-Min Sung Superhard cutters and associated methods
US20070060026A1 (en) * 2005-09-09 2007-03-15 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US8622787B2 (en) 2006-11-16 2014-01-07 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US8398466B2 (en) 2006-11-16 2013-03-19 Chien-Min Sung CMP pad conditioners with mosaic abrasive segments and associated methods
US9724802B2 (en) 2005-05-16 2017-08-08 Chien-Min Sung CMP pad dressers having leveled tips and associated methods
US8393934B2 (en) 2006-11-16 2013-03-12 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US9138862B2 (en) 2011-05-23 2015-09-22 Chien-Min Sung CMP pad dresser having leveled tips and associated methods
US8678878B2 (en) * 2009-09-29 2014-03-25 Chien-Min Sung System for evaluating and/or improving performance of a CMP pad dresser
KR100723436B1 (ko) * 2005-12-29 2007-05-30 삼성전자주식회사 연마패드의 컨디셔너 및 이를 구비하는 화학기계적연마장치
US20080271384A1 (en) * 2006-09-22 2008-11-06 Saint-Gobain Ceramics & Plastics, Inc. Conditioning tools and techniques for chemical mechanical planarization
US7959694B2 (en) * 2007-03-05 2011-06-14 3M Innovative Properties Company Laser cut abrasive article, and methods
US8080072B2 (en) 2007-03-05 2011-12-20 3M Innovative Properties Company Abrasive article with supersize coating, and methods
TW200906546A (en) * 2007-08-07 2009-02-16 Tian-Yuan Yan Adjusting device for resin-bonded polishing pad and manufacturing method thereof
CN104708539A (zh) * 2007-09-28 2015-06-17 宋健民 具有镶嵌研磨块的cmp衬垫修整器和相关方法
KR20100106328A (ko) 2007-11-13 2010-10-01 치엔 민 성 Cmp 패드 드레서
TWI388402B (en) 2007-12-06 2013-03-11 Methods for orienting superabrasive particles on a surface and associated tools
JP5255860B2 (ja) * 2008-02-20 2013-08-07 新日鉄住金マテリアルズ株式会社 研磨布用ドレッサー
JP2009302136A (ja) * 2008-06-10 2009-12-24 Panasonic Corp 半導体集積回路
EP2411181A1 (en) 2009-03-24 2012-02-01 Saint-Gobain Abrasives, Inc. Abrasive tool for use as a chemical mechanical planarization pad conditioner
US20110104989A1 (en) * 2009-04-30 2011-05-05 First Principles LLC Dressing bar for embedding abrasive particles into substrates
US8801497B2 (en) * 2009-04-30 2014-08-12 Rdc Holdings, Llc Array of abrasive members with resilient support
US9221148B2 (en) 2009-04-30 2015-12-29 Rdc Holdings, Llc Method and apparatus for processing sliders for disk drives, and to various processing media for the same
WO2010141464A2 (en) 2009-06-02 2010-12-09 Saint-Gobain Abrasives, Inc. Corrosion-resistant cmp conditioning tools and methods for making and using same
US20100330890A1 (en) * 2009-06-30 2010-12-30 Zine-Eddine Boutaghou Polishing pad with array of fluidized gimballed abrasive members
CN102612734A (zh) 2009-09-01 2012-07-25 圣戈班磨料磨具有限公司 化学机械抛光修整器
KR101091030B1 (ko) * 2010-04-08 2011-12-09 이화다이아몬드공업 주식회사 감소된 마찰력을 갖는 패드 컨디셔너 제조방법
TWI464839B (zh) 2010-09-21 2014-12-11 Ritedia Corp 單層鑽石顆粒散熱器及其相關方法
EP4086043A1 (en) * 2011-02-16 2022-11-09 3M Innovative Properties Company Method of making a coated abrasive article having rotationally aligned formed ceramic abrasive particles
CN103329253B (zh) 2011-05-23 2016-03-30 宋健民 具有平坦化尖端的化学机械研磨垫修整器
USD686255S1 (en) * 2011-05-25 2013-07-16 Saint-Gobain Abrasives, Inc. Abrasive disc with a distribution of holes
USD687471S1 (en) * 2011-05-25 2013-08-06 Saint-Gobain Abrasives, Inc. Abrasive disc with a distribution of holes
USD689913S1 (en) * 2011-05-25 2013-09-17 Saint-Gobain Abrasives, Inc. Abrasive disc with a distribution of holes
USD689912S1 (en) * 2011-05-25 2013-09-17 Saint-Gobain Abrasives, Inc. Abrasive disc with a distribution of holes
KR101413530B1 (ko) * 2012-07-02 2014-08-06 신한다이아몬드공업(주) Cmp 패드 컨디셔너 및 그 제조방법
US9204693B2 (en) 2012-08-20 2015-12-08 Forever Mount, LLC Brazed joint for attachment of gemstones to each other and/or a metallic mount
KR102008782B1 (ko) * 2013-01-30 2019-08-08 새솔다이아몬드공업 주식회사 패드 컨디셔너 및 그의 제조방법
USD748352S1 (en) * 2013-12-12 2016-01-26 Whirlpool Corporation Sprayer for dishwasher
JP6602540B2 (ja) * 2015-02-10 2019-11-06 日鉄ケミカル&マテリアル株式会社 板ガラス用工具
GB201504759D0 (en) 2015-03-20 2015-05-06 Rolls Royce Plc Abrading tool for a rotary dresser
TWI616279B (zh) 2016-08-01 2018-03-01 中國砂輪企業股份有限公司 Chemical mechanical polishing dresser and manufacturing method thereof
USD816132S1 (en) * 2016-09-08 2018-04-24 Mirka Ltd Abrasive disc
USD816131S1 (en) * 2016-09-08 2018-04-24 Mirka Ltd Abrasive disc
JP1624794S (ja) * 2018-07-24 2019-02-18
JP1624793S (ja) 2018-07-24 2019-02-18
JP1624795S (ja) 2018-07-24 2019-02-18
DK180350B1 (da) * 2019-09-18 2021-01-22 Flex Trim As Slibeelement til brug i roterende slibe- eller pudseværktøj

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076965A (ja) * 1983-09-30 1985-05-01 Komatsu Ltd 砥石の製造法
JPH04250978A (ja) * 1990-12-28 1992-09-07 Toyoda Mach Works Ltd 電着砥石の製造方法
JP2000052254A (ja) * 1998-08-07 2000-02-22 Mitsubishi Heavy Ind Ltd 超薄膜砥石及び超薄膜砥石の製造方法及び超薄膜砥石による切断方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3435595A1 (de) * 1983-09-30 1985-04-18 Kabushiki Kaisha Komatsu Seisakusho, Tokio/Tokyo Verfahren zur herstellung von schleifsteinen
US6371838B1 (en) * 1996-07-15 2002-04-16 Speedfam-Ipec Corporation Polishing pad conditioning device with cutting elements
KR100328108B1 (ko) * 1996-10-15 2002-03-09 아사무라 타카싯 반도체 기판용 연마패드의 드레서, 그 제조방법 및 그것을 사용한 화학적 기계적 연마방법
JPH10193269A (ja) * 1996-12-27 1998-07-28 Asahi Diamond Ind Co Ltd 電着工具及びその製造方法
US6368198B1 (en) * 1999-11-22 2002-04-09 Kinik Company Diamond grid CMP pad dresser
US6537140B1 (en) * 1997-05-14 2003-03-25 Saint-Gobain Abrasives Technology Company Patterned abrasive tools
US6093280A (en) * 1997-08-18 2000-07-25 Lsi Logic Corporation Chemical-mechanical polishing pad conditioning systems
JPH1177535A (ja) * 1997-09-09 1999-03-23 Asahi Diamond Ind Co Ltd コンディショナ及びその製造方法
KR19990081117A (ko) * 1998-04-25 1999-11-15 윤종용 씨엠피 패드 컨디셔닝 디스크 및 컨디셔너, 그 디스크의 제조방법, 재생방법 및 세정방법
JP2000106353A (ja) * 1998-07-31 2000-04-11 Nippon Steel Corp 半導体基板用研磨布のドレッサ―
US6439986B1 (en) * 1999-10-12 2002-08-27 Hunatech Co., Ltd. Conditioner for polishing pad and method for manufacturing the same
US6517424B2 (en) * 2000-03-10 2003-02-11 Abrasive Technology, Inc. Protective coatings for CMP conditioning disk

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076965A (ja) * 1983-09-30 1985-05-01 Komatsu Ltd 砥石の製造法
JPH04250978A (ja) * 1990-12-28 1992-09-07 Toyoda Mach Works Ltd 電着砥石の製造方法
JP2000052254A (ja) * 1998-08-07 2000-02-22 Mitsubishi Heavy Ind Ltd 超薄膜砥石及び超薄膜砥石の製造方法及び超薄膜砥石による切断方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1346797A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1595645A1 (en) * 2002-12-19 2005-11-16 Kabushiki Kaisha Miyanaga Diamonid disk
EP1595645A4 (en) * 2002-12-19 2007-09-12 Miyanaga Kk DIAMOND DISC
US7357705B2 (en) 2002-12-19 2008-04-15 Kabushiki Kaisha Miyanaga Diamond disk
WO2009158507A2 (en) * 2008-06-26 2009-12-30 Saint-Gobain Abrasives, Inc. Chemical mechanical planarization pad conditioner and method of forming
WO2009158507A3 (en) * 2008-06-26 2010-04-01 Saint-Gobain Abrasives, Inc. Chemical mechanical planarization pad conditioner and method of forming
US8795035B2 (en) 2008-06-26 2014-08-05 Saint-Gobain Abrasives, Inc. Chemical mechanical planarization pad conditioner and method of forming

Also Published As

Publication number Publication date
EP1346797B1 (en) 2006-11-08
CN100361786C (zh) 2008-01-16
US20040072510A1 (en) 2004-04-15
KR100552391B1 (ko) 2006-02-20
US20060160477A1 (en) 2006-07-20
DE60124424D1 (de) 2006-12-21
DE60124424T2 (de) 2007-10-04
EP1346797A1 (en) 2003-09-24
TW575477B (en) 2004-02-11
HK1064324A1 (en) 2005-01-28
US7465217B2 (en) 2008-12-16
KR20030063408A (ko) 2003-07-28
CN1482959A (zh) 2004-03-17
EP1346797A4 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
WO2002049807A1 (fr) Conditionneur pour polissage chimico-mecanique, procede pour agencer des grains rigides utilises dans un conditionneur pour polissage chimico-mecanique, et procede pour produire un conditionneur pour polissage chimico-mecanique
TWI522447B (zh) 延長壽命之研磨物件及方法
US6755720B1 (en) Vitrified bond tool and method of manufacturing the same
EP2845221B1 (en) Cmp conditioner pads with superabrasive grit enhancement
CN1312740C (zh) 用于研磨的工件保持盘及工件研磨装置及研磨方法
JP7191153B2 (ja) ダイヤモンド粒子を含む反応結合型炭化ケイ素を有するセラミック基板
JP4456691B2 (ja) コンディショナの製造方法
JP2004098214A (ja) 研磨布用ドレッサー及びそれを用いた研磨布のドレッシング方法
JP2003071718A (ja) Cmpコンディショナー、cmpコンディショナーに使用する硬質砥粒の配列方法、及びcmpコンディショナー製造方法
WO2009104224A1 (ja) 研磨布用ドレッサー
JP2007152493A (ja) 研磨パッドのドレッサー及びその製造方法
JP2001025973A (ja) ビトリファイドボンド工具及びその製造方法
JP3598062B2 (ja) Cmpドレッサー、cmpドレッサーに使用する硬質砥粒の配列方法、及びcmpドレッサーの製造方法
TWI287485B (en) Retaining ring with dresser for CMP
JP3759399B2 (ja) 研磨布用ドレッサーおよびその製造方法
CN111590467B (zh) 具有磨粒的蓝宝石晶片及其制备方法、蓝宝石修整器
JP2006218577A (ja) 研磨布用ドレッサー
JP3482313B2 (ja) 半導体基板用研磨布のドレッサーおよびその製造方法
JP2010173016A (ja) 半導体研磨布用コンディショナー、半導体研磨布用コンディショナーの製造方法及び半導体研磨装置
JP3281563B2 (ja) ビトリファイドボンド工具及びその製造方法
JP3482322B2 (ja) 半導体基板用研磨布のドレッサーおよびその製造方法
US20240360049A1 (en) Ceramic substate with reaction-bonded silicon carbide having diamond particles
JP3537300B2 (ja) 半導体基板用研磨布のドレッサーおよびその製造方法
JPH10175156A (ja) 半導体基板用研磨布のドレッサーおよびその製造方法
JP2002126997A (ja) Cmp加工用ドレッサ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020037007698

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10451644

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018210228

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001271276

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037007698

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001271276

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020037007698

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001271276

Country of ref document: EP