WO2002045888A1 - Procede de fabrication de films minces en composite metal/ceramique - Google Patents

Procede de fabrication de films minces en composite metal/ceramique Download PDF

Info

Publication number
WO2002045888A1
WO2002045888A1 PCT/FR2001/003855 FR0103855W WO0245888A1 WO 2002045888 A1 WO2002045888 A1 WO 2002045888A1 FR 0103855 W FR0103855 W FR 0103855W WO 0245888 A1 WO0245888 A1 WO 0245888A1
Authority
WO
WIPO (PCT)
Prior art keywords
suspension
ceramic
film
metal
binder
Prior art date
Application number
PCT/FR2001/003855
Other languages
English (en)
Inventor
Jean-François SILVAIN
Thierry Chartier
Pierre-Marie Geffroy
Original Assignee
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique filed Critical Centre National De La Recherche Scientifique
Priority to AU2002216188A priority Critical patent/AU2002216188A1/en
Priority to DE60128133T priority patent/DE60128133T2/de
Priority to EP01999450A priority patent/EP1343600B1/fr
Priority to KR1020037007642A priority patent/KR100847129B1/ko
Priority to JP2002547657A priority patent/JP4146228B2/ja
Priority to US10/433,413 priority patent/US7585456B2/en
Publication of WO2002045888A1 publication Critical patent/WO2002045888A1/fr
Priority to US12/434,994 priority patent/US7871562B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/006Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention relates to a process for manufacturing thin metal / ceramic composite films, in which the ceramic reinforcements are distributed homogeneously in the metal matrix.
  • the invention finds applications in all fields using substrates or films in metal / ceramic composite and, in particular, in the field of manufacturing electronic components intended, for example, in the automobile field or
  • metallic films are produced by a rolling process.
  • this rolling process does not make it possible to obtain a homogeneous distribution of the ceramic reinforcements in the metal matrix; it is therefore not suitable for the production of metal / ceramic composite films.
  • the residual stresses caused by rolling cause the film to crack.
  • Other processes used for the production of metal / ceramic composite films are the pressing, injection and extrusion processes.
  • none of these methods makes it possible to obtain films with an excellent surface condition.
  • these methods become expensive, since the film thickness must be less than a millimeter.
  • strip casting methods which make it possible to produce thin films. Such methods are described in the following articles: ALCOCK J., DESCRIBE S., Tape casting, a flexible approach to surface engineering, Materials orld, 13-14, February (2000); B ⁇ HNLEIN-MAU ⁇ J., SIGMUND W., EGNER G., MEYER. H., HE ⁇ EL F., SEITZ K, ROOSEN A., The function in the tape casting of alumina, Advanced Materials, vol. 4, No. 2, 73-81 (1992); MORENO R., The role of slip additives in tape casting technology: part I-Solvents and dispersants, American Ceramic Society Bulletin, vol. 71, no.
  • the object of the invention is precisely to remedy the methods of manufacturing thin films described above. To this end, it proposes a process for manufacturing thin films of metal / ceramic composite using a strip casting method.
  • the invention relates to a process for manufacturing thin films of metal / ceramic composite comprising: a) preparing a suspension (S) in an organic solvent from a substantially homogeneous mixture of ceramic reinforcements, particles metallic, a binder, a plasticizer, and a dispersant, the metallic particles constituting at least 5%, by mass, of the suspension; b) strip casting the suspension to form a thin film, then debinding this thin film; c) carrying out the densification of the unbinding thin film, in an oven.
  • the strip casting technique makes it possible to orient and control the distribution of ceramic reinforcements.
  • the method described according to the invention makes it possible to manufacture composite metal / ceramic films with an orientation of the ceramic particles in the plane of the film, in particular for very anisotropic particles, such as fibers and platelets. This improves some properties of the composite in the film plane, such as reducing the thermal coefficient of expansion and increasing the thermal conductivity.
  • the suspension has a viscosity of between 0.5 and 3 Pa. s.
  • the suspension is produced by mixing:
  • At least one metallic powder and at least one ceramic reinforcement constituting approximately 30 to 60% of the total volume of the suspension
  • an organic solvent constituting approximately 15 to 45% of the volume of the suspension; a binder and a plasticizer constituting approximately 30 to 70% of the volume of the suspension; - a dispersant representing approximately 0.1 to
  • the dispersant is a phosphoric ester, a polyacrylate, a sulfonate, a perfluorate or even a carbon chain acid of 2 to 30 carbon atoms.
  • the metal powder can be a powder of copper, aluminum, silver, gold, nickel, titanium, chromium, zinc or an alloy of two or more of these materials .
  • the ceramic reinforcement can be a powder and / or a short fiber (that is to say a fiber whose length varies between 1 and 500 ⁇ m) of graphite, carbides, nitrides or oxides.
  • the densification of the film consists of sintering the film in an oven.
  • the densification of the film consists of hot rolling and annealing of the film.
  • the preparation of the suspension consists of:
  • the invention further relates to a process for the preparation of composite parts with a laminated structure in which several thin films are formed.
  • the stacked thin films have different compositions.
  • FIG. 1 schematically shows the step of preparing the suspension from metal particles and ceramic reinforcements
  • FIG. 2 schematically represents the step of casting the suspension in a strip to form a thin film
  • - Figures 3A and 3B show two embodiments of the film densification step in an oven.
  • the invention relates to a method for manufacturing thin films of metal / ceramic composite. This process consists in preparing a suspension, also called "slip", comprising a substantially homogeneous mixture of ceramic reinforcements and metallic particles.
  • These metallic particles and ceramic reinforcements are chosen, respectively, in the form of one or more metallic powder (s) and one or more ceramic reinforcement (s). These powders and short fibers are mixed with an organic solvent, a dispersant, a binder and a plasticizer. The proportion of these different elements is as follows:
  • the metal powders and the ceramic reinforcements represent 30 to 60% of the total volume of dry matter of the suspension (that is to say of the whole volume occupied by the binder, the plasticizer, the dispersant and the metal powders and ceramic);
  • the solvent represents 15 to 45% of the total volume of dry matter;
  • the binder and the plasticizer represent 30 to 70% of the volume of dry matter;
  • the dispersant represents between 0.01 and 2% of the mass of metallic powders and ceramic reinforcements;
  • additives such as release agents and / or wetting agents, which represent between 0.01 and 2% of the mass of metallic and ceramic powders.
  • This step of preparing the suspension S consists, first of all, of grinding in a jar, or by attrition, the metallic and ceramic powders with the solvent and the dispersant.
  • This grinding step is carried out by means of an attritor mill (represented by the reference 1 in FIG. 1) or by a jar mill.
  • the assembly thus obtained is then mixed with binders and plasticizers, using a mixer, referenced 2.
  • the metal powder (s), intended to form the metallic matrix of the suspension can be, for example, a powder of copper, aluminum, silver, gold, nickel, titanium, chromium, zinc or an alloy of two or more of these metals.
  • the ceramic reinforcement (s) intended to form the ceramic reinforcements of this suspension can be, for example, a short graphite powder or fiber or else a powder or a short fiber based on carbides, such as silicon carbide, nitrides, such as aluminum nitride, or oxides, such as silica or zirconium tungstate.
  • the ceramic reinforcements may be in the form of fibers or else platelets or else substantially spherical grains, with a diameter of between approximately 0.1 ⁇ m and 100 ⁇ m.
  • the fibers are generally short fibers with a diameter of 10 nm to 10 ⁇ m, and with a length of 100 nm to 10 mm.
  • These ceramic reinforcements can be coated with a layer of metallic material, such as cobalt, nickel, silver or gold.
  • the thickness of the metal coating is at least 0.01 ⁇ m.
  • This coating can be carried out by immersion of the ceramic reinforcements in an electrolytic bath. This coating has the advantage of improving the densification of the material during the film densification step, and, in particular, when this densification consists of sintering, because it makes it possible to increase the metal / ceramic interface.
  • the suspension used according to the invention is a suspension or organic system.
  • the solvent used to make this suspension S is an organic solvent, generally chosen from ketones, alcohols and their mixtures.
  • the role of the dispersant used to produce this suspension is to ensure the homogeneity and stability of the suspension by developing repulsion between ceramic reinforcements and metallic particles.
  • the dispersant ensures good stability and good dispersion of the particles between them.
  • the dispersant makes it possible to obtain, after drying, a homogeneous and compact strip.
  • This dispersant is chosen from surfactants, macromolecules, such as fish oil, phosphoric esters, polyacrylates, sulfonates, perfluorates and carbon chain acids having from 2 to 30 carbon atoms, such as for example the oxalic acid and stearic acid.
  • This binder used to produce this suspension is to ensure the cohesion of the strip (or film), after evaporation of the solvent.
  • This binder is generally a compound which is not soluble in water chosen from polyalcohols, vinyl compounds, such as polyvinyl butyral and acrylic compounds and their mixtures.
  • This plasticizer used in this suspension is to provide great flexibility, great fluidity, to the strip; this flexibility is necessary when casting the suspension in strips and subsequently when handling the strip.
  • This plasticizer can be, for example, a polyethylene glycol or else dibutylphthalate.
  • the suspension also contains a plasticizer which makes it possible to obtain a strip, or thin film, in flexible raw and sufficiently solid to be manipulated.
  • the report binder / plasticizer makes it possible to adjust the mechanical cohesion of the strip and its flexibility. These strips can therefore be stacked and thermocompressed so as to produce stacks of strips of different compositions. This solution cannot be envisaged with the methods of the prior art.
  • FIG. 2 schematically represents the second step of the method of the invention, that is to say the step of pouring the suspension into strips.
  • the suspension S produced during the first step is cast on a casting bench 3 so as to form a strip B, also called a thin film.
  • Casting in strips consists in casting the suspension S on a support which can be, for example, a steel strip 8 or a polymer wire, referenced 5 in FIG. 2. To allow easy casting of the suspension, the latter must have a viscosity of the order of 0.5 to 3 Pa. s.
  • the suspension is poured by the relative movement between a shoe 6 of the casting bench and the support 5.
  • the shoe 6 has knives 7, the height of which is adjustable.
  • the thickness of the film can be modified by changing the height between these knives 7 and the support 5. It is thus possible, thanks to this strip casting, to a very regular film thickness.
  • thermal debinding consists in slowly heating the strip of material under a controlled atmosphere, in an oven or dryer 4 in order to remove the organic compounds contained therein, mainly the binder and the plasticizer.
  • the heating rate in the dryer is of the order of 0.2 to 2 ° C / minute between 100 ° C and 500 ° C.
  • FIGS. 3A and 3B represent two different embodiments of the third step of the method of the invention, that is to say the step of densification of the film.
  • This densification step consists of evaporating the solvent and drying the thin film obtained after debinding.
  • This film densification step has the role of evaporating the solvent. It can be produced, for example, in two different ways: the film can be densified by sintering in a pass-through oven or in a batch oven, or by hot rolling, using a rolling mill and an annealing furnace.
  • the first variant shows that the film B, obtained after debinding, is cut into plates PI to Pn. These plates are introduced into an oven, referenced 9, under a controlled atmosphere.
  • This oven can be a pass-through oven or a batch oven. Densification by sintering is carried out under a controlled atmosphere, or under a reducing atmosphere, such as for example hydrogen, hydrogenated nitrogen, argon or even hydrogenated argon, so as to avoid oxidation of the material.
  • the sintering temperature depends on the particle size and the nature of the metal powders and ceramic reinforcements. For example, for a metallic copper powder, the temperature is between 700 ° C and 1080 ° C; for aluminum, the temperature is between 450 ° C and 650 ° C.
  • the second variant of the densification step is shown in FIG. 3B.
  • the film B is introduced into a rolling mill 10, placed within an annealing furnace 11.
  • the film B is then hot rolled, in the furnace 11, under a controlled atmosphere.
  • the cutting of the film B into plates PI, P2, ... is carried out at the outlet of the annealing furnace 11.
  • This densification method by hot rolling and annealing of the film makes it possible to improve the densification of the material under the action of pressure and temperature.
  • This variant is therefore particularly well suited to metal / ceramic composites which are poorly densified by natural sintering and to composites consisting of ductile metals, such as copper, aluminum or gold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Procédé de fabrication de films minces en composite métal/céramique, caractérisé en ce qu'il consiste à: a) préparer une suspension (S) dans un solvant organique à partir d'un mélange sensiblement homogène de renforts céramiques de particules métalliques, d'un liant, d'un plastifiant et d'un dispersant organique, les particules métalliques constituant au moins 5 % en masse de la suspension ; b) effectuer un coulage en bande de la suspension (S) pour former un film mince (B), puis effectuer un déliantage de ce film mince ; c) réaliser la densification du film mince délianté dans un four.

Description

PROCEDE DE FABRICATION DE FILMS MINCES EN COMPOSITE METAL/CERAMIQUE
DESCRIPTION
Domaine de l'invention
L'invention concerne un procédé de fabrication de films minces en composite métal/céramique, dans lequel les renforts céramiques sont répartis de façon homogène dans la matrice métallique .
L'invention trouve des applications dans tous les domaines utilisant des substrats ou des films en composite métal/céramique et, en particulier, dans le domaine de la fabrication des composants électroniques destinés, par exemple, au domaine de l'automobile ou de
1' aéronautique .
Etat de la technique
Classiquement, les films métalliques sont réalisés par un procédé de laminage. Cependant, ce procédé de laminage ne permet pas d' obtenir une répartition homogène des renforts céramiques dans la matrice métallique ; il n'est donc pas adapté à la fabrication de films en composite métal/céramique. De plus, au-delà d'une certaine concentration de poudre céramique, les contraintes résiduelles, provoquées par le laminage, entraînent la fissuration du film. D'autres procédés, utilisés pour la fabrication de films en composite métal/céramique, sont les procédés de pressage, d'injection et d'extrusion. Or, aucun de ces procédés ne permet d'obtenir des films avec un excellent état de surface. En outre, ces procédés deviennent coûteux, dès lors que l'épaisseur du film doit être inférieure au millimètre.
Par ailleurs, il existe des procédés de coulage en bande qui permettent de réaliser des films minces. De tels procédés sont décrits dans les articles suivants : ALCOCK J., DESCRIBE S., Tape casting, a flexible approach to surface engineering, Materials orld, 13-14, February (2000) ; BÔHNLEIN-MAUβ J., SIGMUND W., EGNER G., MEYER . H., HEβEL F., SEITZ K, ROOSEN A., The fonction in the tape casting of alumina, Advanced Materials, vol. 4, n° 2, 73-81 (1992) ; MORENO R., The rôle of slip additives in tape casting technology : part I-Solvents and dispersants, American Ceramic Society Bulletin, vol. 71, n° 10, 1 521 - 1 531 (1992) ; MORENO R., The rôle of slip additives in tape casting technology : part II-Blinders and Plasticizers, American Ceramic Society Bulletin, vol. 71, n° 11, 1 647-1 657 (1992) et dans les brevets US-5 002 710 et US-5 473 008. Cependant, il n'est pas possible de trouver, dans l'ensemble de ces travaux liés au coulage en bande, un dispositif (banc + suspension) permettant le coulage de bandes en matériau composite métal/céramique . Exposé de l'invention
L'invention a justement pour but de remédier aux procédés de fabrication de films minces décrits précédemment. A cette fin, elle propose un procédé de fabrication de films minces en composite métal/céramique utilisant une méthode de coulage en bande .
De façon plus précise, l'invention concerne un procédé de fabrication de films minces en composite métal/céramique consistant à : a) préparer une suspension (S) dans un solvant organique à partir d'un mélange sensiblement homogène de renforts céramiques, de particules métalliques, d'un liant, d'un plastifiant, et d'un dispersant, les particules métalliques constituant au moins 5 %, en masse, de la suspension ; b) effectuer un coulage en bande de la suspension pour former un film mince, puis effectuer un déliantage de ce film mince ; c) réaliser la densification du film mince déliante, dans un four.
La technique du coulage en bande permet d'orienter et de contrôler la répartition des renforts céramiques.
Autrement dit, le procédé décrit selon l'invention permet de fabriquer des films composites métal/céramique avec une orientation des particules céramiques dans le plan du film, en particulier pour les particules très anisotropes, comme les fibres et les plaquettes. Ceci permet d'améliorer certaines propriétés du composite dans le plan du film, comme diminuer le coefficient thermique d'expansion et augmenter la conductivité thermique.
Avantageusement, la suspension a une viscosité comprise entre 0,5 et 3 Pa . s .
De préférence, la suspension est réalisée en mélangeant :
- au moins une poudre métallique et au moins un renfort céramique constituant environ 30 à 60 % du volume total de la suspension ;
- un solvant organique constituant environ 15 à 45 % du volume de la suspension ; un liant et un plastifiant constituant environ 30 à 70 % du volume de la suspension ; - un dispersant représentant environ 0,1 à
2 % de la masse des poudres céramique et métallique ; et
- des additifs représentant environ 0,01 à 2 % de la masse des poudres métallique et céramique. Selon un mode de réalisation de l'invention, le dispersant est un ester phosphorique, un polyacrylate, un sulfonate, un perfluorate ou encore un acide à chaîne carbonée de 2 à 30 atomes de carbone.
Selon l'invention, la poudre métallique peut être une poudre de cuivre, d'aluminium, d'argent, d'or, de nickel, de titane, de chrome, de zinc ou d'un alliage de deux ou plusieurs de ces matériaux. Le renfort céramique peut être une poudre et/ou une fibre courte (c'est-à-dire une fibre dont la longueur varie entre 1 et 500 μm) de graphite, de carbures, de nitrures ou d' oxydes . Selon une variante de l'invention, la densification du film consiste en un frittage du film dans un four.
Selon une autre variante de l'invention, la densification du film consiste en un laminage à chaud et un recuit du film.
De préférence, la préparation de la suspension consiste :
- à broyer en jarre ou par attrition les poudres métalliques et les renforts céramiques avec le solvant et le dispersant ; et
- à ajouter et à mélanger à cette substance un liant et un plastifiant.
L'invention a trait en outre à un procédé de préparation de pièces en composite à structure stratifiée dans lequel on forme plusieurs films minces
(films « en cru ») par les étapes a) et b) décrites plus haut, puis on empile lesdits films minces et on soumet l'empilement à une thermocompression. De préférence, les films minces empilés ont des compositions différentes.
Brève description des figures
- La figure 1 représente schématiquement l'étape de préparation de la suspension à partir de particules métalliques et de renforts céramiques ; la figure 2 représente schématiquement l'étape de coulage en bande de la suspension pour former un film mince ; et - les figures 3A et 3B représentent deux modes de réalisation de l'étape de densification du film dans un four.
Description détaillée de modes de réalisation
L' invention concerne un procédé de fabrication de films minces en composite métal/céramique . Ce procédé consiste à préparer une suspension, appelée aussi « barbotine », comportant un mélange sensiblement homogène de renforts céramiques et de particules métalliques.
Ces particules métalliques et renforts céramiques sont choisies, respectivement, sous forme d'une ou plusieurs poudre (s) métallique (s) et d'un ou plusieurs renfort (s) céramique (s) . Ces poudres et fibres courtes sont mélangées à un solvant organique, un dispersant, un liant et un plastifiant. La proportion de ces différents éléments est la suivante :
- les poudres métalliques et les renforts céramiques représentent 30 à 60 % du volume total de matière sèche de la suspension (c'est-à-dire de l'ensemble du volume occupé par le liant, le plastifiant, le dispersant et les poudres métallique et céramique) ;
- le solvant représente 15 à 45 % du volume total de matière sèche ; - le liant et le plastifiant représentent 30 à 70 % du volume de matière sèche ; - le dispersant représente entre 0,01 et 2 % de la masse des poudres métallique et des renforts céramiques ;
- d'autres additifs sont ajoutés, tels que des agents de décollement et/ou des agents mouillants, qui représentent entre 0,01 et 2 % de la masse des poudres métallique et céramique.
Sur la figure 1, on a représenté cette première étape du procédé de l'invention, à savoir l'étape de préparation de la suspension.
Cette étape de préparation de la suspension S consiste, tout d'abord, en un broyage en jarre, ou par attrition, des poudres métallique et céramique avec le solvant et le dispersant. Cette étape de broyage est réalisée au moyen d'un broyeur attriteur (représenté par la référence 1 sur la figure 1) ou par un broyeur en jarre.
L'ensemble ainsi obtenu est ensuite mélangé à des liants et plastifiants, grâce à un mélangeur, référencé 2.
La (ou les) poudre (s) métallique (s) , destinée (s) à former la matrice métallique de la suspension, peu (ven) t être, par exemple, une poudre de cuivre, d'aluminium, d'argent, d'or, de nickel, de titane, de chrome, de zinc ou encore d'un alliage de deux ou plusieurs de ces métaux.
Le (ou les) renfort (s) céramique (s) destiné (s) à former les renforts céramiques de cette suspension peu (ven) t être, par exemple, une poudre ou une fibre courte de graphite ou bien une poudre ou une fibre courte à base de carbures, comme le carbure de silicium, de nitrures, comme le nitrure d'aluminium, ou encore d'oxydes, comme la silice ou le tungstate de zirconium. Les renforts céramiques peuvent se présenter sous la forme de fibres ou bien de plaquettes ou encore de grains sensiblement sphériques, de diamètre compris entre environ 0,1 μm et 100 μm.
Les fibres sont généralement des fibres courtes d'un diamètre de 10 nm à 10 μm, et d'une longueur de 100 nm à 10 mm.
Ces renforts de céramique peuvent être enrobés d'une couche de matériau métallique, tel que du cobalt, du nickel, de l'argent ou de l'or. Dans ce cas, l'épaisseur de l'enrobage métallique est d'au moins 0,01 μm. Cet enrobage peut être réalisé par immersion des renforts céramiques dans un bain électrolytique. Cet enrobage a l'avantage d'améliorer la densification du matériau pendant l'étape de densification du film, et, en particulier, lorsque cette densification consiste en un frittage, car il permet d'augmenter l'interface métal/céramique.
La suspension mise en oeuvre selon l'invention est une suspension ou système organique. Ainsi, le solvant utilisé pour réaliser cette suspension S est un solvant organique, choisi généralement parmi les cétones, les alcools et leurs mélanges .
Le dispersant utilisé pour réaliser cette suspension a pour rôle d'assurer l'homogénéité et la stabilité de la suspension en développant des forces de répulsion entre les renforts céramiques et les particules métalliques.
En d'autres termes, le dispersant assure une bonne stabilité et une bonne dispersion des particules entre elles. Le dispersant permet d'obtenir, après séchage, une bande homogène et compacte.
Ce dispersant est choisi parmi les tensioactifs, les macromolécules, comme l'huile de poisson, les esters phosphoriques, les polyacrylates, les sulfonates, les perfluorates et les acides à chaîne carbonée ayant de 2 à 30 atomes de carbone, comme par exemple l'acide oxalique et l'acide stéarique .
Le liant utilisé pour réaliser cette suspension a pour rôle d'assurer la cohésion de la bande (ou film), après évaporation du solvant. Ce liant est généralement un composé non-soluble dans l'eau choisi parmi les polyalcools, les composés vinyliques, tels que le polyvinyl-butyral et les composés acryliques et leurs mélanges.
Le plastifiant utilisé dans cette suspension a pour rôle d'assurer une grande souplesse, une grande fluidité, à la bande ; cette souplesse est nécessaire lors du coulage en bande de la suspension et, ultérieurement, lors de la manipulation de la bande. Ce plastifiant peut être, par exemple, un polyéthylène glycol ou bien du dibutylphtalate.
En d'autres termes, la suspension contient également un plastifiant qui permet d'obtenir une bande, ou film mince, en cru souple et suffisamment solide pour être manipulable. En effet, le rapport liant/plastifiant permet d'ajuster la cohésion mécanique de la bande et sa souplesse. Ces bandes peuvent donc être empilées et thermocompressées de façon à réaliser des empilements de bandes de compositions différentes. Cette solution n'est pas envisageable avec les procédés de l'art antérieur.
Notons, en outre, que le système, la suspension mise en œuvre selon l'invention, ne nécessite pas de lubrifiant.
La figure 2 représente schématiquement la deuxième étape du procédé de l'invention, c'est-à-dire l'étape de coulage en bande de la suspension. En effet, la suspension S réalisée lors de la première étape est coulée sur un banc de coulage 3 de façon à former une bande B, appelée aussi film mince. Le coulage en bandes consiste à couler la suspension S sur un support qui peut être, par exemple, une bande d'acier 8 ou un fil polymère, référencé 5 sur la figure 2. Pour permettre un coulage aisé de la suspension, celle-ci doit avoir une viscosité de l'ordre de 0,5 à 3 Pa . s .
Le coulage de la suspension est obtenu par le mouvement relatif entre un sabot 6 du banc de coulage et le support 5. Le sabot 6 comporte des couteaux 7, dont la hauteur est réglable. Ainsi, l'épaisseur du film peut être modifiée en changeant la hauteur entre ces couteaux 7 et le support 5. On peut ainsi obtenir, grâce à ce coulage en bande, une épaisseur de film très régulière . Lorsque la suspension S a été coulée sous forme de bande B, celle-ci défile à l'intérieur d'un séchoir 4, sous atmosphère contrôlée, afin d'en éliminer les composés organiques. Cette étape est appelée déliantage. Plus précisément, le déliantage thermique consiste à chauffer lentement la bande de matériau sous atmosphère contrôlée, dans un four ou séchoir 4 afin d'en éliminer les composés organiques contenus principalement le liant et le plastifiant. Par exemple, la vitesse de chauffe, dans le séchoir, est de l'ordre de 0,2 à 2°C/minute entre 100°C et 500°C.
Les figures 3A et 3B représentent deux modes de réalisation différents de la troisième étape du procédé de l'invention, c'est-à-dire l'étape de densification du film. Cette étape de densification consiste à évaporer le solvant et à sécher le film mince obtenu après déliantage.
Cette étape de densification du film a pour rôle d'évaporer le solvant. Elle peut être réalisée, par exemple, de deux façons différentes : le film peut être densifié par frittage dans un four à passage ou dans un four discontinu, ou bien par un laminage à chaud, à l'aide d'un laminoir et d'un four de recuit.
La première variante, représentée sur la figure 3A, montre que le film B, obtenu après déliantage, est découpé en plaques PI à Pn. Ces plaques sont introduites dans un four, référencé 9, sous une atmosphère contrôlée. Ce four peut être un four à passage ou bien un four discontinu. La densification par frittage est réalisée sous atmosphère contrôlé, ou sous atmosphère réductrice, comme par exemple l'hydrogène, l'azote hydrogéné, l'argon ou bien l'argon hydrogéné, de façon à éviter l'oxydation du matériau.
La température de frittage dépend de la granulometrie et de la nature des poudres métalliques et des renforts céramiques. Par exemple, pour une poudre métallique en cuivre, la température est comprise entre 700 °C et 1 080 °C ; pour l'aluminium, la température est comprise entre 450 °C et 650 °C.
La seconde variante de l'étape de densification est représentée sur la figure 3B. Dans cette variante, le film B est introduit dans un laminoir 10, placé au sein d'un four de recuit 11. Le film B est alors laminé à chaud, dans le four 11, sous atmosphère contrôlée. La découpe du film B en plaques PI, P2,... est s' effectuée en sortie du four de recuit 11.
Ce mode de densification par laminage à chaud et recuit du film permet d'améliorer la densification du matériau sous l'action de la pression et de la température. Cette variante est donc particulièrement bien adaptée aux composites métal/céramique qui se densifient mal par un frittage naturel et aux composites constitués de métaux ductiles, comme le cuivre, l'aluminium ou l'or.

Claims

REVENDICATIONS
1. Procédé de fabrication de films minces en composite métal/céramique, caractérisé en ce qu'il consiste à : a) préparer une suspension (S) dans un solvant organique à partir d'un mélange sensiblement homogène de renforts céramiques de particules métalliques, d'un liant, d'un plastifiant et d'un dispersant, les particules métalliques constituant au moins 5 % en masse de la suspension ; b) effectuer un coulage en bande de la suspension (S) pour former un film mince (B) , puis effectuer un déliantage de ce film mince ; c) réaliser la densification du film mince déliante dans un four.
2. Procédé selon la revendication 1, caractérisé en ce que la suspension (S) a une viscosité comprise entre 0,5 et 3 Pa.s.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la suspension (S) est réalisée en mélangeant :
- au moins une poudre métallique et au moins un renfort céramique, constituant ensemble environ 30 à 60 % du volume total de la suspension ;
- un solvant organique constituant environ 15 à 45 % du volume de la suspension ;
- un liant et un plastifiant constituant environ 30 à 70 % du volume de la suspension ; - un dispersant représentant environ 0,1 à 2 % de la masse des renforts céramiques et poudres métalliques ; et
- des additifs représentant environ 0,01 à 2 % de la masse des renforts céramiques et des poudres métalliques .
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le liant est un composé non soluble dans l'eau choisi parmi les polyalcools, les composés vinyliques, les composés acryliques et leurs mélanges.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le solvant organique est choisi parmi les cétones, les alcools et leurs mélanges.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le dispersant est choisi parmi les tensioactifs, les macromolécules comme l'huile de poisson, les esters phosphoriques, les polyacrylates, les sulfonates, les perfluorates et les acides à chaîne carbonée de 2 à 30 atomes de carbone.
7. Procédé selon l'une quelconque des revendications 3 à 6, caractérisé en ce que la poudre métallique est une poudre de cuivre, d'aluminium, d'argent, d'or, de nickel, de titane, de chrome, de zinc ou d'un alliage de deux ou plusieurs de ces matériaux.
8. Procédé selon l'une quelconque des revendications 3 à 7, caractérisé en ce que le renfort céramique est une poudre et/ou une fibre courte de graphite, de carbures, de nitrures ou d'oxydes.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la densification du film consiste en un frittage du film dans un four.
10. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la densification du film consiste en un laminage à chaud et un recuit du film.
11. Procédé selon l'une quelconque des revendications 3 à 10, caractérisé en ce que la préparation de la suspension consiste :
- à broyer en jarre ou par attrition les poudres métallique et céramique avec le solvant et le dispersant ; puis - à ajouter et à mélanger à cette substance un liant et un plastifiant.
12. Procédé de préparation d'une pièce en composite à structure stratifiée dans lequel on forme plusieurs films minces conformément aux étapes a) et b) de la revendication 1, on empile lesdits films minces, et on soumet l'empilement à une thermocompression.
13. Procédé selon la revendication 12, dans lequel les films minces ont des compositions différentes .
PCT/FR2001/003855 2000-12-08 2001-12-06 Procede de fabrication de films minces en composite metal/ceramique WO2002045888A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2002216188A AU2002216188A1 (en) 2000-12-08 2001-12-06 Method for making thin films in metal/ceramic composite
DE60128133T DE60128133T2 (de) 2000-12-08 2001-12-06 Herstellungsverfahren für dünne bänder aus metall/keramik-kompositmaterial
EP01999450A EP1343600B1 (fr) 2000-12-08 2001-12-06 Procede de fabrication de films minces en composite metal/ceramique
KR1020037007642A KR100847129B1 (ko) 2000-12-08 2001-12-06 금속과 세라믹의 복합재료로 이루어진 박막의 제조 방법
JP2002547657A JP4146228B2 (ja) 2000-12-08 2001-12-06 金属とセラミックとの複合体からなる薄膜の製造方法
US10/433,413 US7585456B2 (en) 2000-12-08 2001-12-06 Manufacturing process for thin films made of metal/ceramic composite
US12/434,994 US7871562B2 (en) 2000-12-08 2009-05-04 Manufacturing process for thin films made of metal /ceramic composite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0015984 2000-12-08
FR0015984A FR2818015B1 (fr) 2000-12-08 2000-12-08 Procede de fabrication de films minces en composite metal/ceramique

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10433413 A-371-Of-International 2001-12-06
US12/434,994 Continuation US7871562B2 (en) 2000-12-08 2009-05-04 Manufacturing process for thin films made of metal /ceramic composite

Publications (1)

Publication Number Publication Date
WO2002045888A1 true WO2002045888A1 (fr) 2002-06-13

Family

ID=8857412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/003855 WO2002045888A1 (fr) 2000-12-08 2001-12-06 Procede de fabrication de films minces en composite metal/ceramique

Country Status (10)

Country Link
US (2) US7585456B2 (fr)
EP (1) EP1343600B1 (fr)
JP (1) JP4146228B2 (fr)
KR (1) KR100847129B1 (fr)
CN (1) CN1247352C (fr)
AT (1) ATE360493T1 (fr)
AU (1) AU2002216188A1 (fr)
DE (1) DE60128133T2 (fr)
FR (1) FR2818015B1 (fr)
WO (1) WO2002045888A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387763B2 (en) * 2004-07-27 2008-06-17 General Electric Company Preparation of sheet by injection molding of powder, consolidation, and heat treating
CN101371316B (zh) * 2006-01-11 2011-06-29 同和电子科技有限公司 银导电膜及其制造方法
KR100857725B1 (ko) * 2007-11-21 2008-09-10 한국지질자원연구원 석회석의 정제방법
KR101098973B1 (ko) 2009-05-22 2011-12-28 전남대학교산학협력단 서멧 박막 형성 방법
DE102011014583A1 (de) * 2011-03-21 2012-09-27 Epcos Ag Verfahren zur Herstellung eines Folienstapels und Anlage zur Herstellung eines Folienstapels
KR101565631B1 (ko) 2012-06-04 2015-11-03 삼성전기주식회사 내부 전극용 도전성 페이스트 조성물, 적층 세라믹 커패시터 및 이의 제조방법
EP2722143B1 (fr) 2012-10-22 2016-10-19 Imerys Ceramics France Procédé de fabrication de feuille inorganique
CN103958138B (zh) * 2012-11-14 2016-05-04 霓佳斯株式会社 陶瓷纤维的制造方法和陶瓷纤维制造用的陶瓷原料组合液
CN103084072A (zh) * 2013-01-19 2013-05-08 南昌航空大学 一种利用钽铌尾矿砂制备中空纤维陶瓷膜的方法
TW201643129A (zh) * 2015-06-04 2016-12-16 優克材料科技股份有限公司 成型線材及陶瓷立體物件的製作方法
US9806619B2 (en) * 2015-07-20 2017-10-31 Texas Instruments Incorporated Time-interleaved current feedback droop function for multiphase buck converters
JP6801173B2 (ja) * 2015-10-29 2020-12-16 セイコーエプソン株式会社 三次元構造物の製造方法、その製造装置及びその制御プログラム
CN107740095A (zh) * 2017-10-19 2018-02-27 西安科技大学 金属复合耐磨板
CN115297972A (zh) * 2020-01-31 2022-11-04 密执安州立大学董事会 用于卷对卷连续制造薄膜的快速感应烧结锻造
CN111774572B (zh) * 2020-07-15 2022-11-04 重庆凯烽原电线电缆有限公司 一种电子设备用的高散热铜箔及其制备方法
CN113526962A (zh) * 2021-07-28 2021-10-22 福建臻璟新材料科技有限公司 一种轧膜成型工艺生产氮化物陶瓷基板的方法
CN113526982A (zh) * 2021-07-29 2021-10-22 广东电网有限责任公司 陶瓷膜的制作方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772322A (en) * 1986-05-20 1988-09-20 John Bellis Production of flat products from particulate material
EP0294198A2 (fr) * 1987-06-05 1988-12-07 Mixalloy Limited Procédé pour la fabrication d'articles contenant des particules abrasives
US5002710A (en) * 1989-01-12 1991-03-26 Rutgers University A Not For Profit Corporation Of The State Of New Jersey Composition useful for producing thin ceramic sheets
US5473008A (en) * 1993-05-20 1995-12-05 Hoechst Aktiengesellschaft Casting composition for producing green ceramic sheets containing polyvinyl alcohol/fatty acid ester as dispersant
RU2064700C1 (ru) * 1993-06-15 1996-07-27 Наталия Михайловна Семецкая Способ изготовления терморезистора
US6261336B1 (en) * 2000-08-01 2001-07-17 Rutgers, The State University Of New Jersey Stable aqueous iron based feedstock formulation for injection molding

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904473A (en) * 1973-08-29 1975-09-09 Gte Sylvania Inc Apparatus for producing a bilayered green ceramic tape
US4003716A (en) * 1974-07-15 1977-01-18 Gte Sylvania Incorporated Cast cemented refractory metal carbides having improved sintered density
JPS59205433A (ja) 1983-05-06 1984-11-21 Ngk Spark Plug Co Ltd セラミツクと金属の複合焼結体の製造法
US4707583A (en) * 1983-09-19 1987-11-17 Kennecott Corporation Plasma heated sintering furnace
US4904411A (en) * 1986-04-25 1990-02-27 Ceramics Process Systems Corp. Highly loaded, pourable suspensions of particulate materials
US4916027A (en) * 1988-01-21 1990-04-10 Rockwell International Corporation Primary structure multi-layer insulation
US4946808A (en) * 1988-11-10 1990-08-07 Ceramics Process Systems Corporation Method for preparing dense, pressureless sintered SiC whisker reinforced composite ceramics
JPH04141535A (ja) 1990-10-02 1992-05-15 Kobe Steel Ltd 金属―セラミックス複合焼結成形体の製造方法
US5118026A (en) * 1991-04-05 1992-06-02 Rockwell International Corporation Method for making titanium aluminide metallic sandwich structures
US5240782A (en) * 1991-07-08 1993-08-31 Southwest Research Institute Fiber and whisker reinforced composites and method for making the same
US5405571A (en) * 1992-06-16 1995-04-11 Aluminum Company Of America Tape casting fiber reinforced composite structures
US5511603A (en) * 1993-03-26 1996-04-30 Chesapeake Composites Corporation Machinable metal-matrix composite and liquid metal infiltration process for making same
JPH07150205A (ja) 1993-11-29 1995-06-13 Mitsubishi Heavy Ind Ltd 傾斜機能膜及びその製造方法
US5660781A (en) * 1994-06-28 1997-08-26 Sumitomo Metal Industries, Ltd. Process for preparing glass ceramic green sheets
US5592686A (en) * 1995-07-25 1997-01-07 Third; Christine E. Porous metal structures and processes for their production
US5902429A (en) * 1995-07-25 1999-05-11 Westaim Technologies, Inc. Method of manufacturing intermetallic/ceramic/metal composites
CA2297179C (fr) * 1997-07-22 2007-03-13 Metabolix, Inc. Compositions de moulage de polyhydroxyalcanoate
US6296667B1 (en) * 1997-10-01 2001-10-02 Phillips-Origen Ceramic Technology, Llc Bone substitutes
US6030472A (en) * 1997-12-04 2000-02-29 Philip Morris Incorporated Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders
JP4207218B2 (ja) * 1999-06-29 2009-01-14 住友電気工業株式会社 金属多孔体とその製造方法及びそれを用いた金属複合材
US6605316B1 (en) * 1999-07-31 2003-08-12 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772322A (en) * 1986-05-20 1988-09-20 John Bellis Production of flat products from particulate material
EP0294198A2 (fr) * 1987-06-05 1988-12-07 Mixalloy Limited Procédé pour la fabrication d'articles contenant des particules abrasives
US5002710A (en) * 1989-01-12 1991-03-26 Rutgers University A Not For Profit Corporation Of The State Of New Jersey Composition useful for producing thin ceramic sheets
US5473008A (en) * 1993-05-20 1995-12-05 Hoechst Aktiengesellschaft Casting composition for producing green ceramic sheets containing polyvinyl alcohol/fatty acid ester as dispersant
RU2064700C1 (ru) * 1993-06-15 1996-07-27 Наталия Михайловна Семецкая Способ изготовления терморезистора
US6261336B1 (en) * 2000-08-01 2001-07-17 Rutgers, The State University Of New Jersey Stable aqueous iron based feedstock formulation for injection molding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section EI Week 199714, Derwent World Patents Index; Class V01, AN 1997-153039, XP002196023 *

Also Published As

Publication number Publication date
KR20030069179A (ko) 2003-08-25
EP1343600A1 (fr) 2003-09-17
AU2002216188A1 (en) 2002-06-18
US20090208645A1 (en) 2009-08-20
KR100847129B1 (ko) 2008-07-18
DE60128133T2 (de) 2007-12-27
US20040013556A1 (en) 2004-01-22
US7871562B2 (en) 2011-01-18
FR2818015A1 (fr) 2002-06-14
CN1247352C (zh) 2006-03-29
US7585456B2 (en) 2009-09-08
JP2004515648A (ja) 2004-05-27
FR2818015B1 (fr) 2003-09-26
JP4146228B2 (ja) 2008-09-10
DE60128133D1 (de) 2007-06-06
EP1343600B1 (fr) 2007-04-25
CN1479659A (zh) 2004-03-03
ATE360493T1 (de) 2007-05-15

Similar Documents

Publication Publication Date Title
EP1343600B1 (fr) Procede de fabrication de films minces en composite metal/ceramique
EP2964590B1 (fr) Procede de preparation d'un revetement multicouche de ceramiques carbures sur, et eventuellement dans, une piece en un materiau carbone, par une technique d'infiltration reactive a l'etat fondu rmi
BE1009486A5 (fr) Matieres ceramiques de charge enrobees.
EP0458865A1 (fr) Corps fa onnes contenant des fibres organiques courtes
EP3728162B1 (fr) Procede de fabrication d'une piece en materiau composite a matrice ceramique
Singer et al. Metal matrix composites produced by spray codeposition
WO2010026342A1 (fr) Procede pour former un revetement anti-adherent a base de carbure de silicium
WO2017068283A1 (fr) Grains fondus de zircone - spinelle et produit refractaire obtenu a partir desdits grains
EP3563950B1 (fr) Liant pour composition de moulage par injection
EP2943598B1 (fr) Procédé d'élaboration d'un matériau nanocomposite al-tic
EP1520057B1 (fr) Procede de fabrication d'un produit composite et en particulier d'un drain thermique
US20110150694A1 (en) METHOD FOR MANUFACTURING Ti PARTICLE-DISPERSED MAGNESIUM-BASED COMPOSITE MATERIAL
WO2003039792A1 (fr) Procede de fabrication de plaques en composite metal/ceramique
FR2684684A1 (fr) Pieces denses autolubrifiantes en fluorures de terres rares frittes et leur procede d'obtention.
EP1391444B1 (fr) Procédé de fabrication d'un materiau réfractaire, revêtement protecteur susceptible d'être obtenu par ce procédé et leurs utilisations
FR2637208A1 (fr) Recipient pour metaux en fusion, materiau pour ce recipient et procede de fabrication du materiau
EP0277450B1 (fr) Procédé de fabrication de matériaux composites céramique-métal par utilisation de métaux tensio-actifs aux interfaces céramique-métal
CH714966A2 (fr) Liant pour composition de moulage par injection.
SE442962B (sv) Sintrad diamantkropp samt forfarande for dess framstellning
WO2001095393A1 (fr) Drain thermique pour circuit imprime et procedes de realisation de ce drain
Pooja et al. Role of SiC on mechanical and tribological behavior of Mg metal matrix composites prepared by powder metallurgy route
EP4302903A1 (fr) Procédé de fabrication d'une pièce de forme complexe et d'une contre-forme densifiable utile pour la préparation de ladite pièce
Amestoy et al. Fabrication and tribological properties of Al reinforced with carbon fibres
CH672640A5 (fr)
CA2162100A1 (fr) Procede d'obtention d'une matiere ceramique superplastique a base de nitrure de silicium, matieres obtenues et application a la realisation d'une piece finie

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001999450

Country of ref document: EP

Ref document number: 10433413

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018201334

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020037007642

Country of ref document: KR

Ref document number: 1020037007632

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002547657

Country of ref document: JP

WWR Wipo information: refused in national office

Ref document number: 1020037007632

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1020037007632

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037007642

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001999450

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001999450

Country of ref document: EP