CN113526962A - 一种轧膜成型工艺生产氮化物陶瓷基板的方法 - Google Patents
一种轧膜成型工艺生产氮化物陶瓷基板的方法 Download PDFInfo
- Publication number
- CN113526962A CN113526962A CN202110858848.8A CN202110858848A CN113526962A CN 113526962 A CN113526962 A CN 113526962A CN 202110858848 A CN202110858848 A CN 202110858848A CN 113526962 A CN113526962 A CN 113526962A
- Authority
- CN
- China
- Prior art keywords
- rolling
- ceramic substrate
- blank
- mixing
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B3/00—Producing shaped articles from the material by using presses; Presses specially adapted therefor
- B28B3/12—Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein one or more rollers exert pressure on the material
- B28B3/123—Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein one or more rollers exert pressure on the material on material in moulds or on moulding surfaces moving continuously underneath or between the rollers, e.g. on an endless belt
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/027—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed by irradiation, e.g. by photons, alpha or beta particles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/14—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Engineering (AREA)
- Ceramic Products (AREA)
Abstract
本发明公开了一种轧膜成型工艺生产氮化物陶瓷基板的方法,S1、配料:将氮化硅粉、烧结助剂、聚乙烯醇粘合剂、ZS‑1071耐高温无机粘合剂,用球磨方式进行第一次混合;所述烧结助剂为稀土氧化物和氧化镁的混合物,稀土氧化物和氧化镁的质量比为1:0.5~1:3;所述烧结助剂和氮化硅粉的质量比为1:10~1:40,所述ZS‑1071耐高温无机粘合剂由无机纳米材料经缩聚反应制成;S2,混炼:采用混炼机进行混炼,ZS‑1071耐高温无机粘合剂与氮化硅粉均匀混合;S3,脱泡:将浆料倒入容器,置于真空脱泡机中进行脱泡处理;通过真空脱泡机对胚体进行脱泡,增加胚体的密度,保证产品的质量,且通过ZS‑1071耐高温无机粘合剂与烧结助剂配合,增加胚体整体的韧性,进而保证装置的使用寿命。
Description
技术领域
本发明涉及氮化物陶瓷基板生产技术领域,具体为一种轧膜成型工艺生产氮化物陶瓷基板的方法。
背景技术
氮化物陶瓷是氮与金属或非金属元素造成的陶瓷,是一类重要的结构与功能材料,具有良好的力学、化学、电学、热学及高温物理性能,在冶金、航空、化工、陶瓷、电子、机械及半导体等行业具有广泛的应用。氮化硅、氮化硼、氮化铝、氮化镓、氮化钛及过渡金属氮化物是研究与应用的热点。
氮化物陶瓷基板生产多用到流延成型法和挤膜成型法这两种成型方法,其批量生产的能力非常高,但是用这两种成型方法制成的薄型压电陶瓷片致密度差,从而导致产品的绝缘电阻大大降低,甚至出现短路情况,且现有通过流延成型法和挤膜成型的陶瓷基板,其韧性较差。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种轧膜成型工艺生产氮化物陶瓷基板的方法,解决了上述背景技术中的问题。
(二)技术方案
基于背景技术存在的技术问题,本发明提出一种轧膜成型工艺生产氮化物陶瓷基板的方法,包括如下步骤:
S1、配料:将氮化硅粉、烧结助剂、聚乙烯醇粘合剂、ZS-1071耐高温无机粘合剂,用球磨方式进行第一次混合;所述烧结助剂为稀土氧化物和氧化镁的混合物,稀土氧化物和氧化镁的质量比为1:0.5~1:3;所述烧结助剂和氮化硅粉的质量比为1:10~1:40,所述ZS-1071耐高温无机粘合剂由无机纳米材料经缩聚反应制成;
S2,混炼:采用混炼机进行混炼,ZS-1071耐高温无机粘合剂与氮化硅粉均匀混合;
S3,脱泡:将浆料倒入容器,置于真空脱泡机中进行脱泡处理;
S4,将脱泡处理后的浆料用流延成型的方法制备出薄片状素坯;
S5,将薄片状素坯置于排胶炉中进行排胶处理;
S6、粗轧:将步骤S5所得坯料置将于两辊粗轧机上正转,转速调节为5r/min~8r/min,经过折迭、倒向、反复进行粗轧,坯料轧至表面不黏手、不粘辊、无气泡、然后修去边缘裂口;
S7、中轧:将步骤S5所得坯片经过中轧机辊轧;
S8、在坯片的表面涂抹纳米陶瓷粉;
S9、精轧:采用两台两辊轧膜机级联进行精轧,两台两辊精轧机正转;
S10、将排胶后的素坯置于高温烧结炉中进行烧结,得到氮化硅陶瓷基板;在高温烧结前先在真空条件下,加热至1000~1400℃后,保温3~5小时;然后,在1~10MPa的氮气压力下,继续加热至1800~1900℃,保温5~20小时烧结而成。
S11、然后根据需求对胚料进行裁切得到所需大小的坯片。
S12、然后在胚体的表面钻上通道孔,采用通过磁控溅射,图形化光刻,干法湿法蚀刻,电镀加厚工艺,在陶瓷基板上制作出超细线条电路图形。
优选的,所述的步骤S6包括以下步骤:打开混炼机,调节转速为8r/min~15r/min,将步骤S1所得浆料用料铲加入运转中的混炼机的轧辊上,将接料桶置于出料口处,循环碾压10次~15次。
优选的,所述的步骤S7包括以下步骤:打开两辊中轧机,压延机正转,调节转速为15r/min~25r/min,两侧辊距调至8mm,将坯片一端垂直放入两辊筒中间,从另一端辊筒上拉出坯片,再倒向后垂直放入压延机两轧辊间碾压,重复操作3次~5次。
优选的,所述S7的步骤包括以下步骤:将中轧二所得坯片在第一精轧机上轧膜2次~3次,测量厚度。
优选的,所述聚乙烯醇粘合剂通过将17-88型聚乙烯醇18份、去离子水73份、甘油2份和无水乙醇7份倒入搅拌机中搅拌形成混合液,同时加热到90℃,待17-88型聚乙烯醇完全溶解,将上述混合液趁热过40目筛制得。
优选的,所述排胶处理为在真空条件下,在400~600℃的温度下,保温5~10小时。
(三)有益效果
本发明提供了一种轧膜成型工艺生产氮化物陶瓷基板的方法。具备以下有益效果:S1、配料:将氮化硅粉、烧结助剂、聚乙烯醇粘合剂、ZS-1071耐高温无机粘合剂,用球磨方式进行第一次混合;烧结助剂为稀土氧化物和氧化镁的混合物,稀土氧化物和氧化镁的质量比为1:0.5~1:3;烧结助剂和氮化硅粉的质量比为1:10~1:40,ZS-1071耐高温无机粘合剂由无机纳米材料经缩聚反应制成,ZS-1071耐高温无机粘合剂和氮化硅粉的质量比为1:100~1:500;S2,混炼:采用混炼机进行混炼,ZS-1071耐高温无机粘合剂与氮化硅粉均匀混合;S3,脱泡:将浆料倒入容器,置于真空脱泡机中进行脱泡处理;S4,将脱泡处理后的浆料用流延成型的方法制备出薄片状素坯;S5,将薄片状素坯置于排胶炉中进行排胶处理;S6、粗轧:将步骤S5所得坯料置将于两辊粗轧机上正转,转速调节为5r/min~8r/min,经过折迭、倒向、反复进行粗轧,坯料轧至表面不黏手、不粘辊、无气泡、然后修去边缘裂口;S7、中轧:将步骤S5所得坯片经过中轧机辊轧;S8、在坯片的表面涂抹纳米陶瓷粉;S9、精轧:采用两台两辊轧膜机级联进行精轧,两台两辊精轧机正转,精轧机一辊筒速比为1:1.5~2,精轧机二辊筒速比为1:1~1.3,精轧机的辊距调节至0.2-5mm;S10、将排胶后的素坯置于高温烧结炉中进行烧结,得到氮化硅陶瓷基板;在高温烧结前先在真空条件下,加热至1000~1400℃后,保温3~5小时;然后,在1~10MPa的氮气压力下,继续加热至1800~1900℃,保温5~20小时烧结而成;S11、然后根据需求对胚料进行裁切得到所需大小的坯片;S12、然后在胚体的表面钻上通道孔,采用通过磁控溅射,图形化光刻,干法湿法蚀刻,电镀加厚工艺,在陶瓷基板上制作出超细线条电路图形,通过真空脱泡机对胚体进行脱泡,增加胚体的密度,保证产品的质量,且通过ZS-1071耐高温无机粘合剂与烧结助剂配合,增加胚体整体的韧性,进而保证装置的使用寿命。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供两种技术方案:一种轧膜成型工艺生产氮化物陶瓷基板的方法,具体包括以下实施例:
实施例1
S1、配料:将氮化硅粉、烧结助剂、聚乙烯醇粘合剂、ZS-1071耐高温无机粘合剂,用球磨方式进行第一次混合;烧结助剂为稀土氧化物和氧化镁的混合物,稀土氧化物和氧化镁的质量比为1:0.5;烧结助剂和氮化硅粉的质量比为1:10,ZS-1071耐高温无机粘合剂由无机纳米材料经缩聚反应制成,ZS-1071耐高温无机粘合剂和氮化硅粉的质量比为1:100;
S2,混炼:采用混炼机进行混炼,ZS-1071耐高温无机粘合剂与氮化硅粉均匀混合;
S3,脱泡:将浆料倒入容器,置于真空脱泡机中进行脱泡处理;
S4,将脱泡处理后的浆料用流延成型的方法制备出薄片状素坯;
S5,将薄片状素坯置于排胶炉中进行排胶处理;
S6、粗轧:将步骤S5所得坯料置将于两辊粗轧机上正转,转速调节为5r/min,经过折迭、倒向、反复进行粗轧,坯料轧至表面不黏手、不粘辊、无气泡、然后修去边缘裂口;
S7、中轧:将步骤S5所得坯片经过中轧机辊轧;
S8、在坯片的表面涂抹纳米陶瓷粉;
S9、精轧:采用两台两辊轧膜机级联进行精轧,两台两辊精轧机正转,精轧机一辊筒速比为1:1.5~2,精轧机二辊筒速比为1:1,精轧机的辊距调节至1mm;
S10、将排胶后的素坯置于高温烧结炉中进行烧结,得到氮化硅陶瓷基板;在高温烧结前先在真空条件下,加热至1000℃后,保温3小时;然后在1MPa的氮气压力下,继续加热至1800℃,保温5小时烧结而成;
S11、然后根据需求对胚料进行裁切得到所需大小的坯片;
S12、然后在胚体的表面钻上通道孔,采用通过磁控溅射,图形化光刻,干法湿法蚀刻,电镀加厚工艺,在陶瓷基板上制作出超细线条电路图形。
实施例2
S1、配料:将氮化硅粉、烧结助剂、聚乙烯醇粘合剂、ZS-1071耐高温无机粘合剂,用球磨方式进行第一次混合;烧结助剂为稀土氧化物和氧化镁的混合物,稀土氧化物和氧化镁的质量比为1:3;烧结助剂和氮化硅粉的质量比为1:40,ZS-1071耐高温无机粘合剂由无机纳米材料经缩聚反应制成,ZS-1071耐高温无机粘合剂和氮化硅粉的质量比为1:500;
S2,混炼:采用混炼机进行混炼,ZS-1071耐高温无机粘合剂与氮化硅粉均匀混合;
S3,脱泡:将浆料倒入容器,置于真空脱泡机中进行脱泡处理;
S4,将脱泡处理后的浆料用流延成型的方法制备出薄片状素坯;
S5,将薄片状素坯置于排胶炉中进行排胶处理;
S6、粗轧:将步骤S5所得坯料置将于两辊粗轧机上正转,转速调节为8r/min,经过折迭、倒向、反复进行粗轧,坯料轧至表面不黏手、不粘辊、无气泡、然后修去边缘裂口;
S7、中轧:将步骤S5所得坯片经过中轧机辊轧;
S8、在坯片的表面涂抹纳米陶瓷粉;
S9、精轧:采用两台两辊轧膜机级联进行精轧,两台两辊精轧机正转,精轧机一辊筒速比为1:2,精轧机二辊筒速比为1:1.3,精轧机的辊距调节至5mm;
S10、将排胶后的素坯置于高温烧结炉中进行烧结,得到氮化硅陶瓷基板;在高温烧结前先在真空条件下,加热至1400℃后,保温5小时;然后在10MPa的氮气压力下,继续加热至1900℃,保温20小时烧结而成;
S11、然后根据需求对胚料进行裁切得到所需大小的坯片;
S12、然后在胚体的表面钻上通道孔,采用通过磁控溅射,图形化光刻,干法湿法蚀刻,电镀加厚工艺,在陶瓷基板上制作出超细线条电路图形。
效果实施例
某氮化物陶瓷基板加工工厂,分别采用实施例1-2的加工工艺,在加工完成后,采用实施例1-2陶瓷基板加工工艺其密度为2.05g/cm3,采用普通抛光工艺加工的机电设备其表面平面度在2.5g/cm3以上,采用实施例1-2氮化物陶瓷基板成型工艺,保证成型陶瓷基板的密度和韧性。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (6)
1.一种轧膜成型工艺生产氮化物陶瓷基板的方法,其特征在于,包括如下步骤:
S1、配料:将氮化硅粉、烧结助剂、聚乙烯醇粘合剂、ZS-1071耐高温无机粘合剂,用球磨方式进行第一次混合;所述烧结助剂为稀土氧化物和氧化镁的混合物,稀土氧化物和氧化镁的质量比为1:0.5~1:3;所述烧结助剂和氮化硅粉的质量比为1:10~1:40,所述ZS-1071耐高温无机粘合剂由无机纳米材料经缩聚反应制成,ZS-1071耐高温无机粘合剂和氮化硅粉的质量比为1:100~1:500;
S2,混炼:采用混炼机进行混炼,ZS-1071耐高温无机粘合剂与氮化硅粉均匀混合;
S3,脱泡:将浆料倒入容器,置于真空脱泡机中进行脱泡处理;
S4,将脱泡处理后的浆料用流延成型的方法制备出薄片状素坯;
S5,将薄片状素坯置于排胶炉中进行排胶处理;
S6、粗轧:将步骤S5所得坯料置将于两辊粗轧机上正转,转速调节为5r/min~8r/min,经过折迭、倒向、反复进行粗轧,坯料轧至表面不黏手、不粘辊、无气泡、然后修去边缘裂口;
S7、中轧:将步骤S5所得坯片经过中轧机辊轧;
S8、在坯片的表面涂抹纳米陶瓷粉;
S9、精轧:采用两台两辊轧膜机级联进行精轧,两台两辊精轧机正转,精轧机一辊筒速比为1:1.5~2,精轧机二辊筒速比为1:1~1.3,所述精轧机的辊距调节至0.2-5mm;
S10、将排胶后的素坯置于高温烧结炉中进行烧结,得到氮化硅陶瓷基板;在高温烧结前先在真空条件下,加热至1000~1400℃后,保温3~5小时;然后,在1~10MPa的氮气压力下,继续加热至1800~1900℃,保温5~20小时烧结而成;
S11、然后根据需求对胚料进行裁切得到所需大小的坯片;
S12、然后在胚体的表面钻上通道孔,采用通过磁控溅射,图形化光刻,干法湿法蚀刻,电镀加厚工艺,在陶瓷基板上制作出超细线条电路图形。
2.根据权利要求1所述一种轧膜成型工艺生产氮化物陶瓷基板的方法,其特征在于,所述的步骤S6包括以下步骤:打开混炼机,调节转速为8r/min~15r/min,将步骤S1所得浆料用料铲加入运转中的混炼机的轧辊上,将接料桶置于出料口处,循环碾压10次~15次。
3.根据权利要求1所述一种轧膜成型工艺生产氮化物陶瓷基板的方法,其特征在于,所述的步骤S7包括以下步骤:打开两辊中轧机,压延机正转,调节转速为15r/min~25r/min,两侧辊距调至8mm,将坯片一端垂直放入两辊筒中间,从另一端辊筒上拉出坯片,再倒向后垂直放入压延机两轧辊间碾压,重复操作3次~5次。
4.根据权利要求1所述一种轧膜成型工艺生产氮化物陶瓷基板的方法,其特征在于,所述S7的步骤包括以下步骤:将中轧二所得坯片在第一精轧机上轧膜2次~3次,测量厚度。
5.根据权利要求1所述一种轧膜成型工艺生产氮化物陶瓷基板的方法,其特征在于,所述聚乙烯醇粘合剂通过将17-88型聚乙烯醇18份、去离子水73份、甘油2份和无水乙醇7份倒入搅拌机中搅拌形成混合液,同时加热到90℃,待17-88型聚乙烯醇完全溶解,将上述混合液趁热过40目筛制得。
6.根据权利要求1所述一种轧膜成型工艺生产氮化物陶瓷基板的方法,其特征在于,所述排胶处理为在真空条件下,在400~600℃的温度下,保温5~10小时。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110858848.8A CN113526962A (zh) | 2021-07-28 | 2021-07-28 | 一种轧膜成型工艺生产氮化物陶瓷基板的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110858848.8A CN113526962A (zh) | 2021-07-28 | 2021-07-28 | 一种轧膜成型工艺生产氮化物陶瓷基板的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113526962A true CN113526962A (zh) | 2021-10-22 |
Family
ID=78089521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110858848.8A Pending CN113526962A (zh) | 2021-07-28 | 2021-07-28 | 一种轧膜成型工艺生产氮化物陶瓷基板的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113526962A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114804890A (zh) * | 2022-02-21 | 2022-07-29 | 郑州大学 | 一种凝胶流延成型制备氮化硅陶瓷基板的方法 |
CN115894019A (zh) * | 2022-12-13 | 2023-04-04 | 西安交通大学 | 一种反铁电陶瓷材料及其低温烧结制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040013556A1 (en) * | 2000-12-08 | 2004-01-22 | Jean-Francois Silvain | Method for making thin films in metal/ceramic composite |
CN103640075A (zh) * | 2013-11-01 | 2014-03-19 | 宁波凯普电子有限公司 | 厚度为0.1mm的薄型压电陶瓷片轧膜成型装置及成型方法 |
CN104441207A (zh) * | 2014-11-28 | 2015-03-25 | 电子科技大学 | 一种基于轧膜工艺的nfc磁性基板成型制备方法 |
CN106631039A (zh) * | 2016-11-04 | 2017-05-10 | 广东工业大学 | 一种氮化硅陶瓷基板的制备方法 |
CN107915476A (zh) * | 2017-12-06 | 2018-04-17 | 王增倍 | 一种穿孔顶头及制备方法 |
CN111018542A (zh) * | 2019-12-22 | 2020-04-17 | 贵州振华红云电子有限公司 | 提高超薄压电陶瓷片致密度的方法 |
CN112159236A (zh) * | 2020-10-19 | 2021-01-01 | 江苏贝色新材料有限公司 | 高导热氮化硅陶瓷基板及其制备方法 |
-
2021
- 2021-07-28 CN CN202110858848.8A patent/CN113526962A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040013556A1 (en) * | 2000-12-08 | 2004-01-22 | Jean-Francois Silvain | Method for making thin films in metal/ceramic composite |
CN103640075A (zh) * | 2013-11-01 | 2014-03-19 | 宁波凯普电子有限公司 | 厚度为0.1mm的薄型压电陶瓷片轧膜成型装置及成型方法 |
CN104441207A (zh) * | 2014-11-28 | 2015-03-25 | 电子科技大学 | 一种基于轧膜工艺的nfc磁性基板成型制备方法 |
CN106631039A (zh) * | 2016-11-04 | 2017-05-10 | 广东工业大学 | 一种氮化硅陶瓷基板的制备方法 |
CN107915476A (zh) * | 2017-12-06 | 2018-04-17 | 王增倍 | 一种穿孔顶头及制备方法 |
CN111018542A (zh) * | 2019-12-22 | 2020-04-17 | 贵州振华红云电子有限公司 | 提高超薄压电陶瓷片致密度的方法 |
CN112159236A (zh) * | 2020-10-19 | 2021-01-01 | 江苏贝色新材料有限公司 | 高导热氮化硅陶瓷基板及其制备方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114804890A (zh) * | 2022-02-21 | 2022-07-29 | 郑州大学 | 一种凝胶流延成型制备氮化硅陶瓷基板的方法 |
CN115894019A (zh) * | 2022-12-13 | 2023-04-04 | 西安交通大学 | 一种反铁电陶瓷材料及其低温烧结制备方法 |
CN115894019B (zh) * | 2022-12-13 | 2023-09-22 | 西安交通大学 | 一种反铁电陶瓷材料及其低温烧结制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113526962A (zh) | 一种轧膜成型工艺生产氮化物陶瓷基板的方法 | |
CN112876260B (zh) | 一种超薄氮化铝陶瓷基片的生产工艺 | |
CN109207947B (zh) | 一种靶材的制备方法 | |
JP2011178598A (ja) | 窒化珪素基板の製造方法および窒化珪素基板 | |
KR20090098908A (ko) | Mo계 스퍼터링 타겟판 및 그 제조방법 | |
CN110562936A (zh) | 氮化铝钪材料 | |
CN106891420A (zh) | 一种轧膜成型制作氧化锆陶瓷制品的方法 | |
EP4293713A1 (en) | Silicon nitride substrate | |
CN113857402A (zh) | 一种合金高纯铜靶材的制备方法 | |
CN114293158B (zh) | 一种钨硅合金靶材的制备方法 | |
CN105601285A (zh) | 一种流延法制备厚陶瓷膜片的方法 | |
KR20210116881A (ko) | 내플라즈마를 위한 코팅 방법 및 코팅체 | |
US8016967B2 (en) | Multilayer ceramic substrate, method for manufacturing the same, and method for reducing substrate warping | |
CN114212760A (zh) | 一种超细氮化铜粉体的制备方法 | |
CN113817994A (zh) | 一种高纯铝硅靶材及其制备方法 | |
JP4533994B2 (ja) | プラズマ耐食材料、その製造方法及びその部材 | |
CN113582582B (zh) | 一种宽工作温区的电子陶瓷复合基片的制备工艺 | |
CN113897566B (zh) | 一种高纯铝靶材的制备方法 | |
CN111548136B (zh) | 一种二氧化硅基复合陶瓷基板、其制作方法及封装基板 | |
CN115636664B (zh) | 一种收缩率可调控的玻璃-陶瓷体系陶瓷基板材料及其制备方法 | |
CN115650759A (zh) | 一种应用于气体传感器封装的多孔氧化铝陶瓷薄片及其制备方法 | |
CN113307498A (zh) | 一种应用于3mm厚度以下大规格岩板的施釉工艺 | |
CN116332630B (zh) | 一种半导体设备用氧化铝陶瓷制备方法 | |
CN115572073B (zh) | 一种可控强析晶高频低损耗ltcc基板材料及其制备方法 | |
CN102468296A (zh) | 99.6%氧化铝陶瓷薄膜基片的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20211022 |
|
RJ01 | Rejection of invention patent application after publication |