WO2010026342A1 - Procede pour former un revetement anti-adherent a base de carbure de silicium - Google Patents

Procede pour former un revetement anti-adherent a base de carbure de silicium Download PDF

Info

Publication number
WO2010026342A1
WO2010026342A1 PCT/FR2009/051666 FR2009051666W WO2010026342A1 WO 2010026342 A1 WO2010026342 A1 WO 2010026342A1 FR 2009051666 W FR2009051666 W FR 2009051666W WO 2010026342 A1 WO2010026342 A1 WO 2010026342A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
coating
carbide grains
silicon
grains
Prior art date
Application number
PCT/FR2009/051666
Other languages
English (en)
Inventor
Jean-Paul Garandet
Béatrice Drevet
Nicolas Eustathopoulos
Emmanuel Flahaut
Thomas Pietri
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to US13/062,456 priority Critical patent/US20110268958A1/en
Priority to BRPI0918852A priority patent/BRPI0918852A2/pt
Priority to EP09741363A priority patent/EP2347037A1/fr
Priority to RU2011107880/05A priority patent/RU2479679C2/ru
Priority to JP2011525597A priority patent/JP5492208B2/ja
Priority to KR1020117007630A priority patent/KR101451322B1/ko
Priority to CN200980134956.8A priority patent/CN102144053B/zh
Publication of WO2010026342A1 publication Critical patent/WO2010026342A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]

Definitions

  • the present invention aims to provide a new type of surface coating for materials, and more particularly crucibles, intended to be brought into contact with high temperature liquid materials, such as liquid silicon, in order to allow a solidification, for example in the form of ingots.
  • Photovoltaic cells are mainly made from mono- or poly-crystalline silicon, in dies that involve the solidification of ingots from a liquid bath. The ingot is then cut into platelets which serve as a basis for the manufacture of the cells.
  • the most common technique is based on the implementation of a silicon nitride coating on the inner faces of the crucibles to be in contact with the molten silicon.
  • the mechanism proposed to explain the detachment is a rupture, in the deposition zone, due to the differential expansion stresses between the silicon ingot and the thus treated surface-treated silica crucible. Indeed, the mechanical cohesion of the deposition layer is low, the annealing being made at temperatures too low to initiate sintering of the powders.
  • US Pat. No. 6,491,971 describes a universal technology making it possible to apply a wide variety of coatings such as silicon nitride, silicon carbide, zirconium oxide, magnesium or barium zirconate, on the inner surface of crucible.
  • silicon carbide as a coating material may, at first glance, seem to be an advantageous alternative. Unfortunately, it is not totally devoid of inconvenience. Thus, great difficulties during the sawing step are associated with the presence of silicon carbide precipitates in the ingots. At the scale of the p-n junction of the photovoltaic cells, the precipitated silicon carbide, on the dislocations and other crystallographic defects, plays the role of a short-circuit and thus limits the performances of the devices (2).
  • the main object of the invention is to provide a method for producing a non-stick coating which does not have the difficulties or limitations set forth above.
  • the invention aims to provide a simple and inexpensive coating system for crucibles intended more particularly for implementation in the field of the manufacture of silicon ingot or other materials.
  • An object of the invention is in particular to provide an economical method of producing a non-stick coating formed of a silicon carbide structure and silicon oxide, as defined below.
  • the invention relates to a method useful for forming a release coating, particularly with respect to solid silicon, on the surface of the face (s) of a material comprising at least the steps of:
  • step (2) depositing said medium on the surface of the face (s) of the material to be treated in an amount sufficient to provide, upon drying of the applied composition, a film formed at least of silicon carbide grains, (3) exposing the treated material according to step (2) to a heat treatment under an oxidizing atmosphere and under conditions sufficient to cause the formation of a silicon oxide layer on the surface of the silicon carbide grains.
  • the coating formed according to the present invention comprises at least one porous layer formed of grains of silicon carbide which are coated at least in part with a nanometric layer of silica.
  • the porosity can be from 30% to 60% by volume. It can be controlled by the initial composition of the fluid.
  • the composition of step (1) further comprises at least one binder.
  • the dry film obtained at the end of step (2) is formed of grains of silicon carbide and of said binder, and the heat treatment exposed in step (3) is suitable for ensuring debinding of this film. .
  • step (2) may be renewed one or more times before implementation of step (3).
  • the method according to the invention as defined above can be reproduced at the end of step (3).
  • the layer formed of silicon carbide grains coated with a nanometric layer of silica is covered with a new thickness of the fluid composition as defined in step (1) and this deposited layer undergoes step (3). ) consecutive.
  • the coating formed in the context of the present invention is advantageous for several reasons. It simultaneously exhibits good adhesion properties to the base material forming the crucible, satisfactory anti-adhesion properties with respect to the ingot formed by solidification of the liquid silicon poured into this crucible and good mechanical resistance to liquid silicon.
  • the porous layer formed of silicon carbide grains may have a thickness ranging from 5 ⁇ m to 1 mm, in particular from 10 to 200 ⁇ m.
  • the silica layer formed on the surface of the silicon carbide grains, it may have a thickness ranging from 2 to 100 nm, and in particular from 10 to 30 nm.
  • the method according to the invention involves a first step for applying a fluid medium based on silicon carbide grains on the surface (s) of the material to be treated.
  • the coating derived therefrom has the characteristic of being formed of silicon carbide grains coated wholly or partly with silica.
  • the silicon carbide grains intended to form this coating generally have a particular size and dispersibility adequate to make them compatible with spray application by conventional methods.
  • the silicon carbide grains considered in the context of the present invention may have a size less than 5 microns. More particularly, their size varies from 20 nm to 5 ⁇ m and in particular from 200 nm to 1 ⁇ m.
  • This liquid medium besides the silicon carbide grains, may contain an effective amount of at least one organic binder having the appropriate chemical and physical properties to facilitate the application of the liquid coating mixture using conventional equipment.
  • the organic binder considered in the context of the present invention may be chosen from polyvinyl alcohol, polyethylene glycol or carboxymethylcellulose.
  • the mass ratio of silicon carbide / binder (s) may be at least 3: 1 and more preferably 5: 1.
  • the fluid medium dedicated to forming the coating according to the invention combines from 0 to 20% by weight relative to its total weight of at least one binder, to 20 to 60% by weight of silicon carbide, the associated liquid medium, usually water, ensuring the balance to 100%.
  • the corresponding fluid medium is formed by incorporation of silicon carbide grains and generally a binder to the liquid medium, generally water, under agitating so as to form a liquid mixture conducive to an application on the face or faces to be treated of the material in question.
  • This mixture intended to form the coating may, of course, contain other additives intended either to improve its qualities at the time of spraying and / or application, or to give the corresponding coating additional properties.
  • they may be polycarbonate dispersing agents, for example carboxylic acid or stearic acid.
  • the silicon carbide grains, the binder and the solvent considered in the context of the present invention have the advantage of leading to crucible coatings which are non-contaminating for the material to be produced.
  • the method according to the invention involves a first step aimed at applying a fluid medium based at least on silicon carbide grains on the surface or faces of the material to be treated.
  • fluid means a deformable state, capable of flowing and which is therefore compatible with an application by brush and / or spray gun for example.
  • the generally liquid fluid medium is transferred out of the spray gun at a pressure of compressed air and with a nozzle adjusted to obtain the desired coating thickness.
  • such a gun with a 0.4 mm nozzle can be used at a compressed air pressure of 2.5 bar.
  • This application of the liquid coating mixture can also be carried out by other modes of application, such as, for example, the brush or by soaking the parts in a bath.
  • the application of the fluid mixture for forming the coating can be carried out at ambient temperature or at a higher temperature.
  • the face or faces of the material to be treated according to the invention can be heated so as to be conducive to rapid drying of the applied coating layer.
  • at least the face or faces of the material to be treated, or even the whole of the material can be heated to a temperature ranging from 25 to 80 ° C., especially from 30 to 50 ° C., thus leading to Evaporation of the solvent.
  • the liquid mixture dedicated to form the coating is applied on the surface of the face (s) to be treated with a thickness adapted to prevent cracking during drying, for example less than 50 microns.
  • step (2) it is possible to proceed to a new application of a layer of the liquid mixture dedicated to form the coating on a first layer of grains of silicon carbide applied and dried, that is to say as formed in result of step (2).
  • the method according to the invention also comprises a heating step in an oxidizing atmosphere, at a temperature and within a time sufficient to allow the formation of a silicon oxide layer on the surface of the silicon carbide grains, or even the decomposition thermal binder, when it is present.
  • This heat treatment is therefore carried out in an oxidizing atmosphere. It is more specifically air.
  • this thermal step is carried out at a temperature below 1095 ° C.
  • the oxidation step may be carried out in an oxidizing atmosphere for 1 to 5 hours at a temperature ranging from 500 ° C. to 1050 ° C., and more particularly from 800 ° C. to 1050 ° C.
  • this heat treatment is in fact carried out at a temperature adjusted so as not to modify the porosity of the coating formed. In other words, this temperature remains below the temperature required to obtain sintering of the coating. Moreover, at the end of this annealing, the coating has a sufficient hardness with respect to the mechanical stresses it will have to undergo, typically less than 50 Shore A. At the end of this heat treatment, the piece is allowed to cool to room temperature.
  • the present invention also relates to materials having a coating formed by the method as described above.
  • the material treated according to the invention is advantageously a crucible.
  • This crucible is generally based on silicon, such as silica or silicon carbide but can also be based on graphite.
  • a slip consisting of 23% silicon carbide powder, 4% PVA polyvinyl alcohol and 73% water in percentages by weight is passed through a planetary mill filled with silicon carbide or agate balls to reduce the losses. agglomerates of powder.
  • the size of the grains of silicon carbide formed is between 500 nm and 1 ⁇ m.
  • the fluid medium thus formed is then spray-dried (compressed air pressure 2.5 bar, 0.4 mm nozzle placed at about thirty centimeters from the substrate) on the internal faces of a crucible (of a chemical nature) to be coated. .
  • the deposit thus obtained is dried with hot air at a temperature below 50 ° C.
  • the thickness of the coating finally obtained is of the order of 200 microns, and the thickness of the oxide layer on the silicon carbide grains is of the order of 30 nm.
  • the coating obtained according to the present invention is very porous.
  • the procedure of elaboration of a layer (deposition of layers with intermediate drying then high temperature annealing for debinding and oxidation of the powders) can be repeated several times. times.
  • a slurry consisting of 52% pre-sieved powder, 16% polyethylene glycol (PEG) and 32% water in percentages by weight, is passed through a planetary mill filled with silicon carbide or agate balls to reduce powder agglomerates. .
  • the slip is also passed to the ultrasound.
  • the slip is then either deposited by spray guns (compressed air pressure of 2.5 bars, 0.4 mm nozzle placed at about thirty centimeters from the substrate) or with the aid of a brush on the crucible to be coated.
  • the deposit thus obtained is dried in ambient air or hot (temperature below 50 0 C).
  • This layer is subjected to a step of 3 hours at 900 ° C. under air to dilute and oxidize the powders.
  • the thickness of the oxide layer obtained on the silicon carbide grains is of the order of 30 nm.
  • a slip consisting of 57% of previously screened powder and 43% of water in percentages by weight, is passed through a planetary mill filled with silicon carbide balls or agate to reduce powder agglomerates. The slip is also passed to the ultrasound.
  • the slip is then either deposited by spray guns (compressed air pressure of 2.5 bars, 0.4 mm nozzle placed at about thirty centimeters from the substrate) or with the aid of a brush on the crucible to be coated.
  • the deposit thus obtained is dried in ambient air or hot (temperature below 50 0 C).
  • This pistol (or brush) and drying procedure is repeated until the desired layer thickness is obtained.
  • This layer is subjected to a step of 3 hours at 900 ° C. under air to dilute and oxidize the powders.
  • the thickness of the oxide layer obtained on the silicon carbide grains is of the order of 30 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Catalysts (AREA)

Abstract

La présente invention concerne un procédé pour former un revêtement anti-adhérent, ledit revêtement étant formé de grains de carbure de silicium, revêtus en surface d'une couche d'oxyde de silicium. Elle vise outre les matériaux possédant un revêtement formé par ce procédé.

Description

Procédé pour former un revêtement anti-adhérent à base de carbure de silicium
La présente invention vise à proposer un nouveau type de revêtement de surfaces pour des matériaux, et plus particulièrement des creusets, destinés à être mis en contact avec des matières liquides à haute température, telles que le silicium liquide, en vue d'y permettre une solidification, par exemple sous la forme de lingots.
Les cellules photovoltaïques sont majoritairement fabriquées à partir de silicium mono- ou poly-cristallin, dans des filières qui mettent en jeu la solidification de lingots à partir d'un bain liquide. Le lingot est ensuite découpé en plaquettes qui servent de base à la fabrication des cellules.
Diverses techniques ont déjà été décrites dans la littérature pour prévenir une adhérence du matériau solidifié, au creuset.
La technique la plus usitée repose sur la mise en œuvre d'un revêtement de type nitrure de silicium sur les faces internes des creusets devant être en contact avec le silicium fondu. Le mécanisme proposé pour expliquer le détachement est une rupture, dans la zone de dépôt, due aux contraintes de dilatation différentielle entre le lingot de silicium et le creuset de silice ainsi traité en surface. En effet, la cohésion mécanique de la couche de dépôt est faible, les recuits étant faits à des températures trop basses pour initier un frittage des poudres.
Cependant, un tel revêtement doit, outre sa capacité à assurer le détachement, satisfaire à un autre impératif. Il doit posséder une tenue mécanique suffisante pendant la phase de contact avec le silicium liquide. Un revêtement ayant tendance à s'écailler conduit à la mise en solution de particules de céramique solides qui vont être incorporées dans le silicium en cours de croissance, ce qui n'est pas acceptable. Or, l'utilisation de poudres de nitrure de silicium comme revêtement anti-adhérent ne donne pas une totale satisfaction sur ce second aspect. Buonassisi et al (1) montrent en particulier que les impuretés présentes dans la poudre de nitrure de silicium peuvent avoir un effet négatif sur les propriétés photovoltaïques des lingots solidifiés. Ils font également état de la présence de particules de nitrures de silicium incluses dans les lingots solidifiés, dont l'origine peut être liée soit à la dissolution de l'azote dans le silicium, soit au déchaussement de grains de nitrure du fait d'une cohésion insuffisante du revêtement. D'autres alternatives de revêtements et/ou de techniques pour réaliser de tels revêtements ont donc été parallèlement mises au point.
Par exemple, le brevet US 6,491,971 décrit une technologie universelle permettant d'appliquer une grande diversité de revêtements tels que le nitrure de silicium, le carbure de silicium, l'oxyde de zirconium, le zirconate de magnésium ou de barium, en surface interne de creuset.
L'utilisation de carbure de silicium à titre de matériau de revêtement peut, de prime abord, sembler une alternative avantageuse. Malheureusement, il n'est pas totalement dénué d'inconvénients. Ainsi, de grosses difficultés lors de l'étape de sciage sont associées à la présence de précipités de carbure de silicium dans les lingots. A l'échelle de la jonction p-n des cellules photovoltaïques, le carbure de silicium précipité, sur les dislocations et autres défauts cristallographiques, joue le rôle de court-circuit et limite ainsi les performances des dispositifs (2).
L'invention a précisément pour objet principal de proposer un procédé de réalisation d'un revêtement anti-adhérent ne présentant pas les difficultés ou limitations exposées ci-dessus.
Ainsi, l'invention vise à proposer un système de revêtement simple et peu coûteux pour des creusets destinés plus particulièrement à une mise en œuvre dans le domaine de la confection de lingot de silicium ou autres matériels. Un but de l'invention est en particulier de proposer un procédé économique de réalisation d'un revêtement anti-adhérent formé d'une structure en carbure de silicium et en oxyde de silicium, telle que définie ci-après.
Plus particulièrement, l'invention porte sur un procédé utile pour former un revêtement anti-adhérent, notamment à l'égard du silicium solide, en surface de face(s) d'un matériau comprenant au moins les étapes consistant à :
(1) disposer d'un milieu fluide comprenant au moins une dispersion de grains de carbure de silicium,
(2) procéder au dépôt dudit milieu en surface de la ou des face(s) du matériau à traiter en une quantité suffisante pour procurer, au séchage de la composition appliquée, un film formé au moins de grains de carbure de silicium, (3) exposer le matériau traité selon l'étape (2) à un traitement thermique sous atmosphère oxydante et dans des conditions suffisantes pour provoquer la formation d'une couche d'oxyde de silicium en surface des grains de carbure de silicium.
Avantageusement, le revêtement formé selon la présente invention comprend au moins une couche poreuse formée de grains de carbure de silicium qui sont revêtus au moins en partie d'une couche nanométrique de silice. La porosité peut être de 30 % à 60 % en volume. Elle peut être contrôlée par la composition initiale du fluide.
Selon un mode de réalisation préféré, la composition de l'étape (1) comprend en outre au moins un liant. Dans cette alternative, le film sec obtenu à l'issue de l'étape (2) est formé de grains de carbure de silicium et dudit liant, et le traitement thermique exposé en étape (3) est apte à assurer le déliantage de ce film.
Selon une variante de réalisation, l'étape (2) peut être renouvelée une ou plusieurs fois avant mise en œuvre de l'étape (3).
Selon encore une variante de réalisation, le procédé selon l'invention tel que défini ci-dessus peut être reproduit à l'issue de l'étape (3). Dans cette alternative, la couche formée de grains de carbure de silicium revêtus d'une couche nanométrique de silice est recouverte d'une nouvelle épaisseur de la composition fluide telle que définie en étape (1) et cette couche déposée subit l'étape (3) consécutive.
Le revêtement formé dans le cadre de la présente invention est avantageux à plusieurs titres. Il manifeste simultanément des bonnes propriétés d'adhésion au matériau de base formant le creuset, des propriétés satisfaisantes d'anti-adhésion à l'égard du lingot formé par solidification du silicium liquide versé dans ce creuset et une bonne résistance mécanique au silicium liquide.
La couche poreuse formée de grains de carbure de silicium peut posséder une épaisseur variant de 5 μm à 1 mm, en particulier de 10 à 200 μm.
Pour ce qui est de la couche de silice, formée en surface des grains de carbure de silicium, elle peut posséder une épaisseur variant de 2 à 100 nm, et notamment de 10 à 30 nm.
D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description qui suit. Cette description correspond à un mode de mise en œuvre particulier de l'invention et est donnée à titre purement illustratif et non limitatif. Revêtement de carbure de silicium
Comme il ressort de ce qui précède, le procédé selon l'invention implique une première étape visant à appliquer un milieu fluide à base de grains de carbure de silicium en surface de la face ou des faces du matériau à traiter. Le revêtement qui en dérive a pour caractéristique d'être formé de grains en carbure de silicium enrobés en tout ou partie de silice.
Les grains de carbure de silicium destinées à former ce revêtement possèdent généralement une taille particulière et une dispersibilité adéquate pour les rendre compatible avec une application par pulvérisation selon des méthodes conventionnelles. Ainsi, les grains de carbure de silicium considérés dans le cadre de la présente invention peuvent posséder une taille inférieure à 5 μm. Plus particulièrement, leur taille varie de 20 nm à 5 μm et notamment de 200 nm à 1 μm.
La quantité de grains de carbure de silicium nécessaire pour obtenir le revêtement est pour des raisons évidentes directement liée à la surface du matériau à traiter. Son appréciation relève clairement des compétences de l'homme de l'art.
Ces grains sont maintenus en suspension dans un milieu liquide peu onéreux, et plus particulièrement de l'eau.
Ce milieu liquide, outre les grains de carbure de silicium, peut contenir une quantité efficace d'au moins un liant organique possédant les propriétés chimiques et physiques adéquates pour faciliter l'application du mélange liquide de revêtement en utilisant des équipements traditionnels.
Ainsi, le liant organique considéré dans le cadre de la présente invention peut être choisi parmi l'alcool polyvinylique, le polyéthylèneglycol ou encore la carboxyméthylcellulose. Par exemple, le rapport en masse grains de carbure de silicium/liant(s) peut être d'au moins 3: 1 et plus particulièrement de 5: 1 .
D'une manière générale, le milieu fluide dédié à former le revêtement conforme à l'invention associe de 0 à 20 % en poids par rapport à son poids total d'au moins un liant, à 20 à 60 % en poids de grains de carbure de silicium, le milieu liquide associé, généralement de l'eau, assurant la balance à 100 %.
Le milieu fluide correspondant est formé par incorporation des grains de carbure de silicium et généralement un liant au milieu liquide, généralement l'eau, sous agitation de manière à former un mélange liquide propice à une application sur la ou les faces à traiter du matériau considéré.
Ce mélange destiné à former le revêtement peut, bien entendu, contenir d'autres additifs destinés soit à améliorer ses qualités au moment de la pulvérisation et/ou l'application, soit pour conférer au revêtement correspondant des propriétés annexes.
Il peut par exemple s'agir d'agents dispersants de type polycarbonate, par exemple l'acide carboxylique ou l'acide stéarique.
Les grains de carbure de silicium, le liant et le solvant considérés dans le cadre de la présente invention ont pour avantage de conduire à des revêtements sur creuset qui ne sont pas contaminants pour le matériau à élaborer.
Description détaillée du procédé selon l'invention
Le procédé selon l'invention implique une première étape visant à appliquer un milieu fluide à base au moins de grains de carbure de silicium en surface de la face ou des faces du matériau à traiter.
Au sens de la présente invention, le terme « fluide » entend désigner un état déformable, capable de s'écouler et qui est donc compatible avec une application au pinceau et/ou au pistolet par exemple.
Dans le cas d'une application par pistolet, le milieu fluide généralement liquide est transféré hors du pistolet de pulvérisation à une pression d'air comprimé et avec une buse ajustée pour obtenir l'épaisseur de revêtement souhaitée.
Par exemple, un tel pistolet, muni d'une buse de 0,4 mm, peut être utilisé à une pression d'air comprimé de 2,5 bars.
Cette application du mélange liquide de revêtement peut être également effectuée par d'autres modes d'application, tels que par exemple le pinceau, ou encore par trempage des pièces dans un bain.
Ces techniques d'application relèvent clairement des compétences de l'homme de l'art et ne sont pas décrites ici de manière détaillée.
L'application du mélange fluide destiné à former le revêtement peut être réalisée à température ambiante ou à une température supérieure. Ainsi, la ou les faces du matériau devant être traitée selon l'invention peut être chauffée de manière à être propice à un séchage rapide de la couche de revêtement appliquée. Dans ce mode de réalisation, au moins la ou les faces du matériau à traiter, voire l'ensemble du matériau, peut être chauffée à une température variant de 25 à 800C, notamment de 30 à 50 0C, conduisant ainsi à l'évaporation du solvant.
Le mélange liquide dédié à former le revêtement est appliqué en surface de la ou des face(s) à traiter avec une épaisseur adaptée pour empêcher tout craquage durant le séchage, par exemple inférieure à 50 μm.
Si nécessaire, il est possible de procéder à une nouvelle application d'une couche du mélange liquide dédiée à former le revêtement sur une première couche de grains de carbure de silicium appliquée et séchée, c'est-à-dire telle que formée à l'issue de l'étape (2).
Le procédé selon l'invention comprend en outre une étape de chauffage en atmosphère oxydante, à une température et dans un délai suffisants pour permettre la formation d'une couche d'oxyde de silicium en surface des grains de carbure de silicium, voire la décomposition thermique du liant, lorsque celui-ci est présent.
Cette étape est déterminante à plusieurs titres.
Tout d'abord, elle a pour vocation de générer, en surface des grains de carbure de silicium formant le revêtement, une couche d'oxyde de silicium.
Ce traitement thermique est donc réalisé en atmosphère oxydante. Il s'agit plus particulièrement de l'air.
Elle permet donc également si nécessaire d'éliminer le liant lorsque celui-ci est présent. Le traitement thermique est alors réalisé en un temps suffisant pour permettre l'élimination totale du liant organique.
Avantageusement, cette étape thermique est réalisée à une température inférieure à 1095 0C.
Plus particulièrement, l'étape d'oxydation peut être réalisée en atmosphère oxydante pendant 1 à 5 heures à une température variant de 500 0C à 1050 0C, et plus particulièrement de 800 à 1050 0C.
Dans le cadre de la présente invention, ce traitement thermique est en effet réalisé à une température ajustée pour ne pas modifier la porosité du revêtement formé. En d'autres termes, cette température demeure inférieure à la température requise pour obtenir un frittage du revêtement. De plus à l'issue de ce recuit, le revêtement présente une dureté suffisante vis-à-vis des contraintes mécaniques qu'il aura à subir, typiquement inférieure à 50 Shore A. A l'issue de ce traitement thermique, la pièce est laissée refroidir à température ambiante.
La présente invention a également pour objet les matériaux possédant un revêtement formé par le procédé tel que décrit précédemment.
Le matériau traité selon l'invention est avantageusement un creuset. Ce creuset est généralement à base de silicium, comme la silice ou le carbure de silicium mais peut également être à base de graphite.
L'invention va maintenant être décrite au moyen des exemples suivants donnés bien entendu à titre illustratif et non limitatif de l'invention.
Exemple 1
Une barbotine, constituée à 23 % de poudre de carbure de silicium, 4 % d'alcool polyvinylique PVA et 73 % d'eau en pourcentages massiques, est passée dans un broyeur planétaire rempli de billes en carbure de silicium ou en agate pour réduire les agglomérats de poudre. La taille des grains de carbure de silicium formés est comprise entre 500 nm et 1 μm.
L'objectif n'étant que de réduire les agglomérats, des billes en nitrure de silicium sont également envisageables, le risque de pollution à l'azote étant très limité.
Le milieu fluide ainsi formé est ensuite pistoletté (pression d'air comprimé de 2,5 bars, buse de 0,4 mm placée à une trentaine de centimètres du substrat) sur les faces internes d'un creuset (de nature chimique) à revêtir.
Le dépôt ainsi obtenu est séché à l'air chaud à une température inférieure à 5O 0C.
On obtient ainsi une sous-couche d'une épaisseur de l'ordre de 50 μm constituée de grains de carbure de silicium liés par le PVA. Cette procédure de pistolettage et de séchage est répétée 3 fois pour obtenir une couche qui est ensuite soumise à un palier de 3h à 1050 0C sous air pour déliantage et oxydation des poudres.
Dans ces conditions, l'épaisseur du revêtement finalement obtenu est de l'ordre de 200 μm, et l'épaisseur de la couche d'oxyde sur les grains de carbure de silicium est de l'ordre de 30 nm.
Le revêtement obtenu selon la présente invention est très poreux.
Pour prévenir l'infiltration du silicium jusqu'au creuset et obtenir des revêtements plus épais, la procédure d'élaboration d'une couche (dépôt de sous couches avec séchage intermédiaire puis recuit haute température pour déliantage et oxydation des poudres) peut être répétée plusieurs fois.
D'une manière générale, on considère que 2 couches sont généralement suffisantes pour obtenir l'effet anti-adhérent recherché.
Exemple 2
Une barbotine, constituée à 52 % de poudre préalablement tamisée, 16 % de polyéthylèneglycol (PEG) et 32 % d'eau en pourcentages massiques est passée dans un broyeur planétaire rempli de billes en carbure de silicium ou en agate pour réduire les agglomérats de poudre. La barbotine est également passée aux ultrasons.
La barbotine est ensuite soit déposée par pistolettage (pression d'air comprimé de 2,5 bars, buse de 0,4 mm placée à une trentaine de centimètres du substrat) ou à l'aide d'un pinceau sur le creuset à revêtir.
Le dépôt ainsi obtenu est séché à l'air ambiant ou chaud (température inférieure à 50 0C).
On obtient ainsi une sous-couche d'une épaisseur de l'ordre de 50 μm constituée de poudres liées par le PEG. Cette procédure de pistolettage (ou de pinceau) et de séchage est répétée jusqu'à l'obtention de l'épaisseur de couche souhaitée.
Cette couche est soumise à un palier de 3h à 900 0C sous air pour délianter et oxyder les poudres.
Dans ces conditions, l'épaisseur de la couche d'oxyde obtenue sur les grains de carbure de silicium est de l'ordre de 30 nm. Exemple 3
Une barbotine, constituée à 57 % de poudre préalablement tamisée et 43 % d'eau en pourcentages massiques, est passée dans un broyeur planétaire rempli de billes en carbure de silicium ou en agate pour réduire les agglomérats de poudre. La barbotine est également passée aux ultrasons.
La barbotine est ensuite soit déposée par pistolettage (pression d'air comprimé de 2,5 bars, buse de 0,4 mm placée à une trentaine de centimètres du substrat) ou à l'aide d'un pinceau sur le creuset à revêtir.
Le dépôt ainsi obtenu est séché à l'air ambiant ou chaud (température inférieure à 50 0C).
On obtient ainsi une sous-couche d'une épaisseur de l'ordre de 50 μm constituée de poudres liées par les forces de Van der Waals. Cette procédure de pistolettage (ou de pinceau) et de séchage est répétée jusqu'à l'obtention de l'épaisseur de couche souhaitée. Cette couche est soumise à un palier de 3h à 900 0C sous air pour délianter et oxyder les poudres.
Dans ces conditions, l'épaisseur de la couche d'oxyde obtenue sur les grains de carbure de silicium est de l'ordre de 30 nm.
Références bibliographiques
(1) Buonassisi et al, J. Crystal Growth 287 (2006) 402-407
(2) Bauer et al, Phys. Stat. Sol. (a). 204 (2007) 2190-2195

Claims

REVENDICATIONS
1. Procédé utile pour former un revêtement anti-adhérent, poreux et constitué de grains de carbure de silicium revêtus au moins en partie d'une couche nanométrique de silice en surface de face(s) d'un matériau comprenant au moins les étapes consistant à :
(1) disposer d'un milieu fluide comprenant au moins une dispersion de grains de carbure de silicium,
(2) procéder au dépôt dudit milieu en surface de la ou des face(s) du matériau à traiter en une quantité suffisante pour procurer, au séchage de la composition appliquée, un film formé au moins de grains de carbure de silicium, et
(3) exposer le matériau traité selon l'étape (2) à un traitement thermique sous atmosphère oxydante et dans des conditions suffisantes pour provoquer la formation d'une couche d'oxyde de silicium en surface des grains de carbure de silicium.
2. Procédé selon la revendication 1, dans lequel l'étape (2) peut être renouvelée une ou plusieurs fois avant mise en œuvre de l'étape (3).
3. Procédé selon l'une quelconque des revendications 1 ou 2, dans lequel l'ensemble des étapes (2) et (3) peuvent être renouvelées au moins une fois à l'issue de l'étape (3).
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel la composition de l'étape (1) comprend en outre au moins un liant organique.
5. Procédé selon la revendication précédente dans lequel le liant est choisi parmi l'alcool polyvinylique, le polyéthylèneglycol ou encore la carboxyméthylcellulose.
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel le milieu fluide associé à l'étape (1) est à base d'eau.
7. Procédé selon l'une quelconque des revendications précédentes, dans lequel le milieu fluide de l'étape (1) associe de 0 à 20 % en poids d'au moins un liant, à 20 à 60 % en poids de carbure de silicium.
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape (3) est réalisée à une température inférieure à 1095 0C.
9. Procédé selon l'une quelconque des revendications précédentes, dans lequel le séchage de l'étape (2) est réalisé à une température variant de 25 à 80 0C, notamment de 30 à 50 0C.
10. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape (3) peut être réalisée en atmosphère oxydante pendant 1 à 5 heures à une température variant de 500 0C à 1050 0C, et plus particulièrement de 800 à 1050 0C.
11. Procédé selon l'une quelconque des revendications précédentes, dans lequel le dépôt de l'étape (2) est effectué au pinceau et/ou au pistolet.
12. Procédé selon l'une quelconque des revendications précédentes, dans lequel la couche poreuse formée de grains de carbure de silicium peut posséder une épaisseur variant de 5 μm à 1 mm, en particulier de 10 μm à 200 μm.
13. Procédé selon l'une quelconque des revendications précédentes, dans lequel la couche de silice, formée en surface des grains de carbure de silicium, elle peut posséder une épaisseur variant de 2 à 100 nm, et notamment de 10 à 30 nm.
14. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit matériau est choisi parmi la silice, le carbure de silicium et le graphite.
15. Matériau possédant un revêtement formé selon l'une quelconque des revendications précédentes.
16. Matériau selon la revendication 15, caractérisé en ce qu'il s'agit d'un creuset.
PCT/FR2009/051666 2008-09-05 2009-09-03 Procede pour former un revetement anti-adherent a base de carbure de silicium WO2010026342A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/062,456 US20110268958A1 (en) 2008-09-05 2009-09-03 Process for forming a non-stick coating based on silicon carbide
BRPI0918852A BRPI0918852A2 (pt) 2008-09-05 2009-09-03 processo útil para formar um revestimento anti-aderente, poroso e constituído de grãos de carboneto de silício, e , material
EP09741363A EP2347037A1 (fr) 2008-09-05 2009-09-03 Procede pour former un revetement anti-adherent a base de carbure de silicium
RU2011107880/05A RU2479679C2 (ru) 2008-09-05 2009-09-03 Способ получения неприлипающего покрытия на основе карбида кремния
JP2011525597A JP5492208B2 (ja) 2008-09-05 2009-09-03 炭化ケイ素を主成分とする非−粘着性被膜の製造方法
KR1020117007630A KR101451322B1 (ko) 2008-09-05 2009-09-03 실리콘 카바이드계 비-접착 코팅을 형성하기 위한 공정
CN200980134956.8A CN102144053B (zh) 2008-09-05 2009-09-03 用于形成基于碳化硅的不粘涂层的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0855971A FR2935618B1 (fr) 2008-09-05 2008-09-05 Procede pour former un revetement anti-adherent a base de carbure de silicium
FR0855971 2008-09-05

Publications (1)

Publication Number Publication Date
WO2010026342A1 true WO2010026342A1 (fr) 2010-03-11

Family

ID=40429256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/051666 WO2010026342A1 (fr) 2008-09-05 2009-09-03 Procede pour former un revetement anti-adherent a base de carbure de silicium

Country Status (9)

Country Link
US (1) US20110268958A1 (fr)
EP (1) EP2347037A1 (fr)
JP (1) JP5492208B2 (fr)
KR (1) KR101451322B1 (fr)
CN (1) CN102144053B (fr)
BR (1) BRPI0918852A2 (fr)
FR (1) FR2935618B1 (fr)
RU (1) RU2479679C2 (fr)
WO (1) WO2010026342A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023036958A1 (fr) 2021-09-10 2023-03-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d'un lingot de silicium à partir de germes oxydés en surface

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2979638A1 (fr) * 2011-09-05 2013-03-08 Commissariat Energie Atomique Dispositif de fabrication de materiau cristallin a partir d'un creuset a resistance thermique non uniforme
CN102861711B (zh) * 2012-06-15 2014-04-16 江苏同力机械有限公司 电梯或扶梯表面不粘涂层的喷涂工艺
KR101697027B1 (ko) * 2012-06-25 2017-01-16 실리코르 머티리얼즈 인코포레이티드 실리콘 용융물의 정제용 내화 도가니의 표면용 라이닝 및 용융 및 추가적인 방향성 고체화를 위하여 상기 도가니(들)를 이용하는 실리콘 용융물의 정제 방법
FR3010715B1 (fr) * 2013-09-16 2017-03-10 Commissariat Energie Atomique Substrat a revetement peu permeable pour solidification de silicium
FR3026414B1 (fr) * 2014-09-26 2019-04-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Creuset pour la cristallisation de silicium multi-cristallin ou quasi-monocristallin par reprise sur germe
KR101673720B1 (ko) * 2014-12-30 2016-11-23 현대자동차주식회사 김서림 방지용 다공성 실리카 박막의 제조방법
US10801097B2 (en) * 2015-12-23 2020-10-13 Praxair S.T. Technology, Inc. Thermal spray coatings onto non-smooth surfaces
CN107311671A (zh) * 2017-06-30 2017-11-03 长兴泓矿炉料有限公司 一种抗氧化碳化硅系耐火材料及其制备方法
CN107382364A (zh) * 2017-06-30 2017-11-24 长兴泓矿炉料有限公司 一种轻量低损耗碳化硅系耐火材料及其制备方法
JP7145773B2 (ja) * 2019-01-29 2022-10-03 株式会社フジミインコーポレーテッド 被覆粒子
RU2728985C1 (ru) * 2019-12-30 2020-08-03 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Способ питания электролизера глиноземом и устройство для его осуществления

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020146510A1 (en) * 2000-11-15 2002-10-10 Costantini Michael A. Release coating system for crucibles
US20040211496A1 (en) * 2003-04-25 2004-10-28 Crystal Systems, Inc. Reusable crucible for silicon ingot growth
WO2006107769A2 (fr) * 2005-04-01 2006-10-12 Gt Solar Incorporated Solidification de silicium cristallin a partir de moules de creuset reutilisables

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321037A (ja) * 2001-04-26 2002-11-05 Kyocera Corp シリコン鋳造方法
JP4116914B2 (ja) * 2003-03-27 2008-07-09 京セラ株式会社 シリコン鋳造用鋳型の製造方法、シリコンインゴットの製造方法
US7678700B2 (en) * 2006-09-05 2010-03-16 Cabot Microelectronics Corporation Silicon carbide polishing method utilizing water-soluble oxidizers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020146510A1 (en) * 2000-11-15 2002-10-10 Costantini Michael A. Release coating system for crucibles
US20040211496A1 (en) * 2003-04-25 2004-10-28 Crystal Systems, Inc. Reusable crucible for silicon ingot growth
WO2006107769A2 (fr) * 2005-04-01 2006-10-12 Gt Solar Incorporated Solidification de silicium cristallin a partir de moules de creuset reutilisables

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023036958A1 (fr) 2021-09-10 2023-03-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d'un lingot de silicium à partir de germes oxydés en surface
FR3126999A1 (fr) 2021-09-10 2023-03-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d’un lingot de silicium à partir de germes oxydés en surface

Also Published As

Publication number Publication date
US20110268958A1 (en) 2011-11-03
FR2935618B1 (fr) 2011-04-01
RU2011107880A (ru) 2012-10-10
JP5492208B2 (ja) 2014-05-14
CN102144053B (zh) 2014-03-26
KR101451322B1 (ko) 2014-10-15
JP2012501944A (ja) 2012-01-26
EP2347037A1 (fr) 2011-07-27
BRPI0918852A2 (pt) 2015-12-08
KR20110069043A (ko) 2011-06-22
CN102144053A (zh) 2011-08-03
RU2479679C2 (ru) 2013-04-20
FR2935618A1 (fr) 2010-03-12

Similar Documents

Publication Publication Date Title
WO2010026342A1 (fr) Procede pour former un revetement anti-adherent a base de carbure de silicium
EP2326607B1 (fr) Materiau a architecture multicouche, dedie a une mise en contact avec du silicium liquide
EP2632877B1 (fr) Procédé pour revêtir une pièce d'un revêtement de protection contre l'oxydation.
JP2007146132A (ja) 窒化ケイ素を含有する耐久性ハードコーティング
EP3169648B1 (fr) Procédé de fabrication d'une pièce en matériau composite par synthèse par réaction auto-entretenue a haute température
FR3059663A1 (fr) Procede pour la siliciuration surfacique de graphite
EP2114841A1 (fr) Procede de fabrication d'un corps poreux ceramique a base de sic
EP1343600A1 (fr) Procede de fabrication de films minces en composite metal/ceramique
FR2829045A1 (fr) Procede de production de poudres sous la forme d'une coquille en ceramique pour pulverisation thermique
FR2998295A1 (fr) Materiau composite a matrice en aluminosilicate, notamment en aluminosilicate de baryum " bas " renforcee par des renforts en oxyde de metal, et son procede de preparation.
EP2809836B1 (fr) Creuset pour la solidification de lingot de silicium et son procede de fabrication
EP3046895A1 (fr) Substrat à revêtement peu perméable pour solidification de silicium
WO2014068230A1 (fr) Creuset incorporant un revetement sialon
WO2015036975A1 (fr) Substrat pour la solidification de lingot de silicium
FR2856397A1 (fr) Procede de preparation de couches d'oxydes d'elements metalliques
FR2857009A1 (fr) Materiau ceramique a base de carbure de silicium pour utilisation dans des milieux agressifs
FR2795430A1 (fr) Materiau tungstene a haute densite fritte a basse temperature
EP0580832A1 (fr) Procede pour la fabrication d'un materiau refractaire isolant, rigide et a forte porosite ouverte, et materiau ainsi obtenu
FR2849022A1 (fr) Procede de fabrication d'un composite a matrice ceramique et a fibres de carbure de silicium et composite ainsi obtenu
FR2857008A1 (fr) Materiau ceramique a base de carbure de silicium pour utilisation dans des milieux agressifs
EP2513122A1 (fr) Polymetallosilazane pour la preparation de nanocomposites a proprietes decoratives, pouvant se presenter sous la forme d'objets massifs
JPS60215590A (ja) 炭化珪素質焼結体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980134956.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09741363

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2009741363

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009741363

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011525597

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117007630

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011107880

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13062456

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0918852

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110304