WO2002040442A1 - Procede d'introduction un groupe amino et procede de synthese d'acide amine - Google Patents

Procede d'introduction un groupe amino et procede de synthese d'acide amine Download PDF

Info

Publication number
WO2002040442A1
WO2002040442A1 PCT/JP2001/009499 JP0109499W WO0240442A1 WO 2002040442 A1 WO2002040442 A1 WO 2002040442A1 JP 0109499 W JP0109499 W JP 0109499W WO 0240442 A1 WO0240442 A1 WO 0240442A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
reaction
ammonia
temperature
amino acid
Prior art date
Application number
PCT/JP2001/009499
Other languages
English (en)
French (fr)
Inventor
Kiyotaka Hatakeda
Yutaka Ikushima
Osamu Sato
Hajime Kawanami
Mitsuhiro Kanakubo
Kazuo Torii
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to AU2002210968A priority Critical patent/AU2002210968A1/en
Priority to EP01978942A priority patent/EP1336603A4/en
Priority to US10/416,494 priority patent/US20040092725A1/en
Publication of WO2002040442A1 publication Critical patent/WO2002040442A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/38Separation; Purification; Stabilisation; Use of additives
    • C07C227/40Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/04Formation of amino groups in compounds containing carboxyl groups
    • C07C227/06Formation of amino groups in compounds containing carboxyl groups by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid
    • C07C227/08Formation of amino groups in compounds containing carboxyl groups by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid by reaction of ammonia or amines with acids containing functional groups

Definitions

  • the present invention relates to a method for introducing an amino group into an organic acid under high temperature and high pressure, and more particularly, to an organic acid obtained by reacting an organic acid with ammonia or an ammonium salt compound under high temperature and high pressure water conditions.
  • the present invention relates to a method for introducing an amino group into a compound, a method for synthesizing an amino acid from an organic acid by the above method, and a method for producing an amino acid from an organic acid.
  • the present invention uses an organic acid and ammonia or an ammonium salt compound as a reaction substrate to synthesize or produce an amino acid in a batchwise manner or continuously at high temperature and high pressure without involving an organic solvent or a catalyst in the synthesis process. It provides a method that is suitable and useful as industrial technology. Background art
  • amino acids are generally produced by various production means such as a fermentation method, a hydrolysis method, and an organic synthesis method.
  • a fermentation method for example, for the synthesis of alanine, a microorganism fermentation method, It has been produced by a method using the hydrolyzate or an organic synthetic method using an organic reagent.
  • Representative examples of conventional methods for synthesizing alanine are shown below.
  • the present invention provides a method for introducing an amino group under high-temperature high-pressure water, a method for synthesizing an amino acid, and a method for producing an amino acid.
  • the present invention provides an amino group-introducing method, which comprises introducing an amino group into an organic acid by reacting the organic acid with ammonia under high-temperature and high-pressure water conditions.
  • a method of synthesizing an amino acid by introducing an amino group into an organic acid to synthesize an amino acid reacting an organic acid with ammonia under high-temperature and high-pressure water conditions to synthesize an amino acid by introducing an amino group into the organic acid. And then separating and purifying with an ion exchange resin. Disclosure of the invention
  • an object of the present invention is to provide a novel amino group introduction method for introducing an amino group by reacting an organic acid with ammonia or an ammonium salt compound under high temperature and high pressure water conditions.
  • Another object of the present invention is to provide a novel amino acid synthesis method for synthesizing an amino acid from an organic acid and ammonia or an ammonium salt compound by the above amino group introduction method.
  • the present invention provides a method for introducing an amino group according to the present invention, which comprises, for example, alanine from lactic acid and ammonia or ammonium salt of hydroxy acid type, glycine from dalicholate, aspartic acid from malic acid, or tartaric acid. It is an object of the present invention to provide a novel amino acid synthesis method for synthesizing an amino acid from an organic acid, such as synthesizing 3-diaminosuccinic acid.
  • the present invention introduces an organic acid and ammonia or an ammonium salt compound into a reactor under high-temperature and high-pressure water conditions, and performs a batch-type amino acid synthesis It is an object of the present invention to provide a synthesis method or a continuous amino acid synthesis method for continuously synthesizing amino acids.
  • an amino acid is synthesized from an organic acid and ammonia or an ammonium salt compound by the above-described amino group introduction method, and the amino acid is separated from the obtained reaction solution using an amino acid separating material such as an ion exchange resin. It is an object of the present invention to provide a method for producing a high-purity amino acid characterized by separation and purification.
  • the present invention for solving the above problems is constituted by the following technical means.
  • a method for introducing an amino group which comprises introducing an amino group into an organic acid by reacting the organic acid with ammonia or an ammonium salt compound under high-temperature and high-pressure water conditions.
  • a method for synthesizing an amino acid comprising reacting an organic acid with ammonia or an ammonium salt under high-temperature and high-pressure water conditions, and synthesizing an amino acid by introducing an amino group into the organic acid.
  • a method for producing an amino acid characterized in that the obtained reaction solution is separated and purified using an amino acid separating material such as an ion exchange resin to obtain an amino acid.
  • the corresponding hydroxy acids are reacted with ammonium and ammonium salt compounds at high temperature and high pressure to give, for example, amino acids alanine, glycine, aspartic acid or ⁇ , ⁇ -diaminosuccinic acid.
  • ammonium and ammonium salt compounds at high temperature and high pressure to give, for example, amino acids alanine, glycine, aspartic acid or ⁇ , ⁇ -diaminosuccinic acid.
  • lactic acid and ammonia aqueous solution ammonium acetate aqueous solution or ammonium carbonate aqueous solution are introduced into a reactor under high temperature and high pressure water conditions. Then, a method of synthesizing alanine by passing at a high speed is exemplified.
  • raw material reagents used in the synthesis method of the present invention only organic acids and ammonia or ammonium salt compounds are used.
  • high-temperature high-pressure water is used. Used as a reaction field or reaction solvent, no organic solvent or catalyst is used, and no particular use is required.
  • the waste solvent and the waste catalyst that must be treated and the waste that requires some kind of treatment will not be discharged. Unreacted organic acid and water used can be reused in the reaction of the present invention.
  • the method of the present invention is considered to be the most suitable method as a means for producing such amino acids and the like, since useful products such as amino acids can be continuously synthesized at high speed. This reaction can be carried out in a batch reactor.
  • an amino acid can be synthesized by reacting ⁇ -hydroxy acid with ammonia or an ammonium salt compound under high-temperature and high-pressure water conditions, and introducing an amino group into ⁇ -hydroxy acid.
  • amino acids are mainly synthesized in living organisms, but can also be synthesized organically.
  • the amino acids mentioned here can be synthesized, for example, by reacting ⁇ -alanine ( ⁇ -alanine) with / 3-propiolactone (/ 3-propion 1 actone) with ammonia in an acetonitrile solvent.
  • amino acid synthesis As specific examples of the amino acid synthesis according to the present invention, the respective synthetic reaction formulas of alanine, glycine, aspartic acid and arsenic ⁇ -diaminosuccinic acid are shown below.
  • the temperature of the high-temperature and high-pressure water can be controlled from outside the reactor by using a heater, molten salt, or the like, or can be controlled by an internal heat method in the reactor. is there.
  • high-temperature and high-pressure water can be produced in advance and injected into the reactor from outside to cause a reaction.
  • the pressure in the reaction vessel can be controlled by a pressure regulating valve if it is a flow type.
  • the autogenous pressure at the operating temperature can be calculated.
  • the pressure can be controlled by injecting another gas such as nitrogen gas.
  • the pressure used should be higher than the autogenous pressure at the operating temperature.
  • high-temperature and high-pressure water with a temperature of 250 or more and a pressure of 20 MPa or more The present invention can be achieved under such conditions, but the present invention can be more suitably achieved under high-temperature and high-pressure water conditions of a temperature of 300 or more and a pressure of 25 MPa or more. Furthermore, the present invention is most preferably achieved by selecting high-temperature and high-pressure water conditions in a temperature range of 300 to 420 and a pressure range of 25 MPa to 5 OMPa. The optimal temperature conditions will vary with the treatment time, but in general, a temperature range of 250 to 450 can be preferably selected. Further, appropriate temperature and pressure conditions may be employed depending on the throughput and the reaction apparatus.
  • the reactor for example, a high-temperature and high-pressure reactor is used.
  • the type of the reactor is not limited as long as it can set a reaction system under high-temperature and high-pressure water conditions.
  • suitable reactors include the flow-type high-temperature and high-pressure reactor and the batch-type reactor used in the present invention.
  • Commercially available autoclaves are preferably used. .
  • the reaction conditions vary depending on the type and concentration of the organic acid used, the types and concentrations of ammonia and ammonium salt compounds, the reaction time, and the conditions of high temperature and high pressure water.
  • the organic acid used as a reaction substrate includes, for example, lactic acid, glycolic acid, malic acid, tartaric acid, hydroxy-n-butyric acid, mandelic acid, 2-hydroxy-3-methylbutyric acid, citric acid, glyceric acid And hydroxy acids having one or more hydroxyl groups and one or more hydroxyl groups in one molecule, such as tropic acid, benzylic acid, and hydroxyvaleric acid.
  • hydroxy acid any of ⁇ -hydroxy acid, / 3-hydroxy acid, ⁇ -hydroxy acid, ⁇ -hydroxy acid, ⁇ -hydroxy acid, etc. can be suitably used for the reaction.
  • the organic acid used for the reaction is not limited to one type, and the reaction suitably proceeds even when a mixture of two or more types is used.
  • aliphatic saturated hydroxy carboxylic acids aliphatic unsaturated hydroxy carboxylic acids
  • Organic acids such as hydroxycarboxylic acid such as boric acid and aromatic hydroxycarboxylic acid, and steroids are also suitably used as the reaction substrate of the present invention.
  • metal salts of the above organic acids can also be used as a raw material of the present invention.
  • organic acid salts such as sodium, potassium, magnesium, calcium, and ammonium are preferably used.
  • the concentration of the organic acid introduced into the reactor can be controlled by controlling the flow rate of the high-temperature and high-pressure water used as the carrier water and the flow rate of the organic acid as the reaction substrate.
  • the organic acid, ammonia or ammonium salt compound may be simultaneously or separately dissolved in carrier water and then subjected to the reaction.
  • the concentration of the organic acid to be introduced into the reactor can be selected in the range of 1 mM to 10M.
  • an appropriate concentration value between 2 mM and 5 M can be selected, and most preferably, an appropriate concentration value between 4 mM and 2 M is selected. It is not limited to these density values.
  • the concentration of the charged organic acid may be simply controlled.
  • the concentration of the organic acid in the reactor changes depending on the density of the high-temperature and high-pressure water involved in the reaction.
  • the amount of amino group introduced and the amount of amino group introduced are controlled by adjusting the temperature, pressure, reaction time, concentration of the reaction substrate and concentration of ammonia and ammonium salt in the reaction system according to the type of the organic acid.
  • the position, species of amino acid produced, amount produced or reaction yield can be manipulated.
  • ammonia water or liquefied ammonia having a concentration of 28% is generally preferably used, but the reaction proceeds even if gaseous ammonia is introduced into high-temperature high-pressure water.
  • ammonium salt compound ammonium acetate, ammonium carbonate, ammonium formate, ammonium chloride, ammonium sulfate and the like are preferably used.
  • Ammonia and ammonium salt compounds are usually used as organic acids It is often mixed with a salt or an organic acid ester and introduced into the reactor. At that time, the ammonia and the ammonium salt compound are usually used as an aqueous solution, and when liquefied ammonia is used, it finally becomes an aqueous solution, and the reaction concentration is 1 to 1 of the organic acid salt or organic acid ester concentration. It can be selected from an appropriate value in the 0-fold concentration range. For example, the concentrations of the aqueous ammonia solution and the aqueous ammonia solution can be selected from ImM to 20 M, preferably from 2 mM to 10 M.
  • an appropriate value between 4 mM and 8 M can be selected, but the present invention is not limited to these concentration values.
  • the reaction of the present invention proceeds even if the organic acid and the ammonia or ammonium salt compound are separately introduced into the reactor, or if they are directly mixed with the carrier water and used. Also, the reaction of the present invention can be achieved by using a mixture of ammonia and an ammonium salt.
  • the organic acid and ammonia or an ammonium salt compound of the reaction substrate may be present in high-temperature, high-pressure water at a temperature of 250 or more and a pressure of 20 MPa or more. It is not necessary to add a water-soluble catalyst such as a metal ion, an acid, or a base, a metal-supported catalyst, a solid catalyst such as a solid acid or a solid base, or an enzyme, and it is necessary to use an organic solvent. Nor.
  • the present invention basically comprises reacting an organic acid with ammonia or an ammonium salt compound in the presence of the above reaction substrate in high-temperature and high-pressure water under non-catalytic conditions or without involving an organic solvent in the reaction.
  • the main feature is to introduce an amino group into an organic acid and to synthesize an amino acid by using the amino acid.
  • organic solvents such as methanol, ethanol, and ethylene glycol, metal ions, acids, or bases
  • organic solvents such as methanol, ethanol, and ethylene glycol, metal ions, acids, or bases
  • an amino group is introduced into an organic acid or an amino acid is synthesized by the above reaction system in a short period of time, for example, from about 0.01 second to about 10 minutes.
  • the reaction time controls the reaction temperature, reaction pressure, high-temperature high-pressure water flow rate, reaction substrate introduction flow rate, reactor size, reactor flow path length, etc. By doing so, the reaction time can be controlled.
  • the reaction time can be selected from a value in the range of 0.01 to 5 minutes, and most preferably, a value in the range of 0.05 to 2 minutes. It is not limited to a value.
  • the present inventors have found that under high-temperature and high-pressure water conditions, it is possible to introduce an amino group into an organic acid in a short time (for example, a reaction time of about 0.1 second), as shown in Examples described later.
  • LC-MS equipment (LC-MS equipment) ⁇ Confirmed using a FLIR-IR infrared spectrophotometer (FTIR equipment). Furthermore, by using an LC-MS apparatus, the types of organic acids and amino acids can be separated and identified, and their contents can be accurately quantified. In addition, continuously obtained amino acids are separated and purified using an ion-exchange resin, etc., and the infrared absorption spectrum is measured with an FTIR device, and compared with that of a high-grade, special-grade reagent product. It can be accurately identified. Similarly, the type and purity of the amino acid can be confirmed by NMR measurement.
  • the reaction yield of the amino acid produced in the present invention varies depending on reaction conditions such as temperature and pressure, the type of organic acid, the concentration of organic acid, the concentration of ammonia and ammonium compounds, the configuration of the reaction apparatus, the size of the reactor, and the like. I do.
  • the reaction yield in the case of aspartic acid synthesis using a flow-through apparatus was from 4.2% to 21.3%.
  • these aspartic acids are recovered after being mixed with the raw material such as malic acid.
  • various amino acids are recovered together with the raw material substrate from various organic acids or a mixture thereof.
  • the obtained reaction solution is subjected to an ion exchange resin such as a cation exchange resin or an anion resin.
  • amino acids and raw material substrates can be separated and purified by using an exchange resin or a combination thereof, and amino acids can be separated from each other. Therefore, amino acids can be purified and concentrated for each type.
  • the raw material substrate recovered at the same time can be used again as a raw material.
  • amino acids can be separated and purified by using general appropriate amino acid separation materials such as alumina, silica gel for reversed phase, zeolite, cellulose, and carbon.
  • an amino acid is synthesized by reacting an organic acid with ammonia or an ammonium salt compound under high-temperature and high-pressure water conditions, and an amino acid such as an ion-exchange resin, alumina, silica gel for reversed phase, and cellulose is added to the obtained reaction solution.
  • Amino acids can be separated and purified using a separating material to produce high-purity amino acids suitably.
  • the presence of a predetermined concentration of an organic acid and ammonia or an ammonium salt compound as a reaction substrate in high-temperature hot water under high-temperature and high-pressure water conditions allows, for example, the production of ⁇ -hydroxy acid type lactic acid and ammonia.
  • Alanine is synthesized.
  • Amino groups are introduced into these organic acids by reacting nicotinic acid or tartaric acid with ammonia, and glycine, aspartic acid or ⁇ , ⁇ -diaminosuccinic acid is synthesized.
  • various amino acids corresponding to the respective organic acids can be continuously synthesized.
  • the present invention provides a method for introducing an amino group into an organic acid by adjusting the reaction conditions, the type of organic acid as a reaction substrate, and the concentration of an organic acid and an aqueous ammonia solution or an ammonium salt compound in the reaction system. Therefore, it is possible to synthesize an amino acid in a short time, and it is useful as a novel amino group introduction method, an amino acid synthesis method or an amino acid production method.
  • Fig. 1 shows the flow sheet of a flow-type reaction device attached to two water pumps used in the present invention.
  • FIG. 2 shows a flow sheet of a flow-type reaction apparatus attached to three water pumps used in the present invention.
  • FIG. 3 shows an outline of a batch-type reaction tube used for the batch-type reaction and a shaking stirring-type salt bath using a mixed salt of sodium nitrate and nitrite.
  • the reactor material is Alloy C one 2 7 6, the reactor internal diameter: 0. 6 5 mm and the reactor length: at 2 5 cm, therefore, the reactor volume is issued calculated as 0. 0 8 3 cm 3 Was.
  • Each introduced preparation was injected with a high-pressure pump. Distilled water was used as the water used for the reaction, and Carrier water, which had been purged of dissolved oxygen by bubbling with nitrogen gas, was passed at a flow rate of 9 m1 Zmin. Using distilled water treated in the same manner, prepare a substrate solution containing 0.10 M malic acid and 0.30 M ammonia water, and react this substrate solution at a flow rate of 4.7 m1 min.
  • the concentrations of each substrate before entering the reactor were malic acid: 34.3 mM and aqueous ammonia: 0.128 M.
  • the reaction time was 0.240 seconds, and the aqueous solution after the reaction was examined with a high-performance liquid chromatography Ichika mass spectrometer.It was confirmed that amino groups were introduced into malic acid and aspartic acid was generated. did.
  • the concentration of aspartic acid was 7.3 mM, and the reaction yield was 21.3%.
  • Example 3 Under the same conditions as in Example 1, malic acid and ammonia water were continuously reacted for 1 hour.
  • the resulting reaction solution was passed through a column of a cation exchange resin (50 W-X8, manufactured by Dow Chemical Company) to separate malic acid as a raw material and aspartic acid produced, and the aspartic acid-containing solution was concentrated and purified, and then purified with ethanol.
  • the precipitate was collected by filtration, dried and dried to obtain 0.78 g of the product of the present invention.
  • the obtained product of the present invention was in the form of a pure white powder, and it was confirmed from the results of FTIR absorption spectrum and NMR measurement that it was high-purity aspartic acid containing almost no impurities.
  • Example 3 Example 3
  • reaction was carried out by partially changing the reaction conditions as follows.
  • the concentrations of each substrate before entering the reactor were malic acid: 19.5 mM and ammonia water: 0.0585 M.
  • the reaction time was 0.22 second.When the aqueous solution after the reaction was examined with a high performance liquid chromatography mass spectrometer, it was confirmed that an amino group was introduced into the linoleic acid and aspartic acid was generated. did.
  • the concentration of aspartic acid was 4.6 mM, and the reaction yield was 23.6%.
  • the concentrations of the respective substrates before entering the reactor were malic acid: 47.8 mM and ammonia water: 0.144 M.
  • the reaction time was 0.328 seconds.
  • the concentration of aspartic acid was 5.4 mM, and the reaction yield was 11.3%. Comparative example
  • the concentrations of the respective substrates before entering the reactor were malic acid: 47.8 mM and ammonia water: 0.144 M.
  • the reaction time was 0.379 seconds.
  • the concentrations of each substrate before entering the reactor were malic acid: 4.8 mM and aqueous ammonia: 0.0142 M.
  • the reaction time was 0.064 seconds, and the aqueous solution after the reaction was examined with a high performance liquid chromatography mass spectrometer, and it was confirmed that amino groups were introduced into the malic acid and aspartic acid was generated. .
  • the concentration of aspartic acid was 0.2 mM, and the reaction yield was 4.2%.
  • the concentrations of the respective substrates before entering the reactor were dalicholate: 27.7 mM and ammonia water: 55.2 mM.
  • the reaction time was 0.353 seconds, and the aqueous solution after the reaction was examined with a high-performance liquid chromatography mass spectrometer, and it was confirmed that an amino group was introduced into glycolic acid and glycine was generated. .
  • the concentration of glycine was 1.2 mM, and the reaction yield was 4.3%.
  • the concentrations of the respective substrates before entering the reactor were glycolic acid: 16.7 mM and ammonia water: 33.2 mM.
  • the reaction time was 0.197 seconds, and the aqueous solution after the reaction was examined with a high-performance liquid chromatography mass spectrometer, and it was confirmed that an amino group was introduced into glycolic acid and glycine was generated. .
  • the concentration of glycine was 0.7 mM, and the reaction yield was 4.2%.
  • the concentrations of each substrate before entering the reactor were lactic acid: 0.310 M and aqueous ammonia: 1.429 M.
  • the reaction time was 0.418 seconds, and the aqueous solution after the reaction was examined with a high performance liquid chromatography-mass spectrometer. As a result, it was confirmed that amino groups were introduced into lactic acid and alanine was generated.
  • the concentration of alanine was 8.6 mM, and the reaction yield was 2.8%.
  • Substrate solution flow rate 1.35 ml / min
  • concentrations of the respective substrates before entering the reactor were lactic acid: 0.250 M and aqueous ammonia: 1.154 M.
  • the reaction time was 0.518 seconds, and the aqueous solution after the reaction was examined with a high performance liquid chromatography-mass spectrometer. As a result, it was confirmed that an amino group was introduced into lactic acid and alanine was generated.
  • the concentration of alanine was 7.7 mM, and the reaction yield was 3.1%.
  • the concentrations of the respective substrates before entering the reactor were lactic acid: 0.354 M and aqueous ammonia: 1.631 M.
  • the reaction time was 0.201 seconds, and the aqueous solution after the reaction was examined using a high-performance liquid chromatograph mass spectrometer.It was confirmed that amino groups were introduced into lactic acid and alanine was generated. did.
  • the concentration of alanine was 7.3 mM, and the reaction yield was 2.1%.
  • the concentrations of the respective substrates before entering the reactor were lactic acid: 0.249 M and aqueous ammonia: 1.150 M.
  • the reaction time was 0.278 seconds, and the aqueous solution after the reaction was examined by a high performance liquid chromatography mass spectrometer. As a result, it was confirmed that an amifu group was introduced into lactic acid and alanine was generated.
  • the concentration of alanine was 4.5 mM, and the reaction yield was 1.8%.
  • the concentrations of the respective substrates before entering the reactor were lactic acid: 0.155 M and aqueous ammonia: 0.715 M.
  • the reaction time was 0.373 seconds, and the aqueous solution after the reaction was examined with a high performance liquid chromatography mass spectrometer. As a result, it was confirmed that amino groups were introduced into lactic acid and alanine was generated.
  • the concentration of alanine was 5.5 mM, and the reaction yield was 3.6%.
  • the concentrations of the respective substrates before entering the reactor were lactic acid: 0.325 M and aqueous ammonium acetate solution: 0.423 M.
  • the reaction time was 0.293 seconds, and the aqueous solution after the reaction was examined with a high-performance liquid chromatography-mass spectrometer. As a result, it was confirmed that an amino group was introduced into lactic acid and alanine was generated.
  • the concentration of alanine was 6. O mM, and the reaction yield was 1.8%.
  • the concentrations of the respective substrates before entering the reactor were lactic acid: 0.3252 M and ammonium carbonate aqueous solution: 0.8071 M.
  • the reaction time was 0.278 seconds.
  • the concentration of alanine was 6.5 mM, and the reaction yield was 2.0%.
  • the substrate concentrations before entering the reactor were tartaric acid: 0.3103 M and ammonia water: 1.4307 M.
  • the reaction time was 0.22 seconds, and the aqueous solution after the reaction was examined with a high performance liquid chromatography mass spectrometer. It was confirmed that two amino groups were introduced into the lithic acid, and ⁇ , -diaminosuccinic acid was generated. The concentration of ⁇ , / 3-diaminosuccinic acid was 0.75 mM, and the reaction yield was 0.2%.
  • reaction substrates Using lactic acid and aqueous ammonia as reaction substrates, we attempted to introduce amino groups into lactic acid under high-temperature, high-pressure water conditions.
  • the reaction was performed in a batch reactor capable of shaking and stirring during the reaction shown in FIG.
  • reaction tube having an inner volume of 1 0. 5 cm 3 as a reactor, the temperature 35 0, pressure 3 0 Set to be MP a, 6 0 seconds salt bath temperature of sodium nitrate Z potassium nitrate mixed salt
  • the amino group was introduced to perform an amino group introduction reaction. It took 40 seconds to rise to the reaction temperature, and the reaction time was 40 seconds.
  • the lactic acid concentration in the reaction solution before the reaction was 1.085 M and the aqueous ammonia concentration was 5.002 M: After the reaction, the obtained solution was examined with a high performance liquid chromatography mass spectrometer, and it was confirmed that 13.7 mM of alanine was produced. The reaction yield of alanine was 1.4%.
  • Substrate solution (0.556 M lactic acid aqueous solution) Flow rate: 0.5 ml Zmin Substrate solution (liquefied ammonium) Flow rate: lml Zmin
  • the concentration of each substrate in the reactor was 26.5 mM for lactic acid and 0.28 M for aqueous ammonia.
  • the reaction time was 0.305 seconds, and the aqueous solution after the reaction was examined with a high-performance liquid chromatography-mass spectrometer. As a result, it was confirmed that an amino group was introduced into lactic acid and alanine was generated.
  • the concentration of alanine was 5.4 mM, and the reaction yield was 20.4%.
  • the present invention relates to a method for introducing an amino group, which comprises introducing an amino group into an organic acid by reacting the organic acid with ammonia or an ammonium salt compound under high temperature and high pressure water conditions.
  • the present invention relates to a method for synthesizing an amino acid, which comprises reacting an organic acid with ammonia or an ammonium salt compound under high-pressure water conditions to synthesize an amino acid from the organic acid.
  • An amino acid can be synthesized by reacting an organic acid and ammonia or an ammonium salt compound at a high temperature and a high pressure.3)
  • the above-mentioned amino group introduction method can be applied to a flow system. 4)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明細書 アミノ基導入法及びアミノ酸の合成方法 技術分野
本発明は、 高温高圧下で有機酸にアミノ基を導入する方法等に関する ものであり、 更に詳しくは、 高温高圧水条件下で有機酸とアンモニアあ るいはアンモニゥム塩化合物を反応させることによる有機酸へのァミノ 基導入方法、 上記方法によって有機酸からアミノ酸を合成する方法、 及 び有機酸からアミノ酸を製造する方法に関するものである。
本発明は、 有機酸及びアンモニアあるいはアンモニゥム塩化合物を反 応基質として、 合成過程に有機溶媒、 触媒を関与させること無しに、 バ ツチ方式であるいは連続的に高温高圧下でアミノ酸を合成あるいは製造 することを可能とするものであり、 産業技術として好適かつ有用な方法 を提供するものである。 背景技術
従来、 一般的にアミノ酸は、 発酵法、 加水分解法、 有機合成法等の多 様な生産手段により生産されているが、 それらの方法のうち、 例えば、 ァラニンの合成については、 微生物発酵法、 その加水分解物を利用する 方法や有機試薬を用いた有機合成的な方法により生産されてきている。 従来のァラニンの合成方法の代表的な例は、 以下に示される。
a ) パラジウム電極を使用した硫酸中の 3—ァミノ— 1 —プロパノー ルの電気的酸化による合成
(文献 : J u b i l e e V o l . E m i 1 B a r e 1 1 1 9 4 6 , 8 5 - 9 1.)
b ) エチレンシァノヒドリンからの合成
(文献 : B o a t r i g h t , U. S . P a t e n t 2, 7 3 4 , 0 8 1 ( 1 9 5 6 t o Am. C y a n am i d ).)
c ) 3—ァミノプロピオ二トリルからの合成
(文献 : F o r d , O r g. S y s . C o l l . V o l . Ill, 3 4 ( 1 9 5 5 ). )
d ) 上記 c ) の改良法
(文献 : B e u t e l , K l e m c h u k, U. S . P a t e n t 2 , 9 5 6 , 0 8 0 ( 1 9 6 0 t o M e r c k & C o ).) 等の触媒を用いた電極合成や通常の有機合成による方法などがある。 従来のこれらの合成方法では、 例えば、 使用した触媒の処理、 合成反 応に使用した有機溶媒の廃棄処理、 有機溶媒の人体に対する有害性等に 対する対策やそれらの使用にあたっての安全性等に対する数々の配慮等 が必要である。 また、 合成規模が大きくなればなるほど、 それらのゥェ —トが増してくる。 従って、 使用した有機溶媒、 触媒等の処理技術の開 発が必要とされている。 一方、 これらの有機溶媒、 触媒等を使用しない 全く新しい合成方法を開発できれば、 上記諸問題の根本的な解決策とな り得る。
このような状況の中で、 本発明者らは、 上記従来技術に鑑みて、 高温 高圧下での有機酸に対するアミノ基導入法について種々研究を進める過 程で、 高温高圧水条件下で有機酸とアンモニアあるいはアンモニゥム塩 化合物を反応させることにより有機酸にアミノ基を導入することができ ることを見出し、 かかる知見に基づいて、 更に研究を重ねて、 本発明を 完成させるに至った。 発明の要約
本発明は、 高温高圧水下でのアミノ基導入法、 アミノ酸の合成方法及 びアミノ酸の製造方法を提供する。
本発明は、 高温高圧水条件下で有機酸とアンモニアを反応させること により有機酸にアミノ基を導入することを特徴とするアミノ基導入法、 高温高圧水条件下で有機酸とアンモニアを反応させ、 有機酸にアミノ基 を導入してアミノ酸を合成することを特徴とするアミノ酸の合成方法、 高温高圧水条件下で有機酸とアンモニアを反応させ、 有機酸にアミノ基 を導入してアミノ酸を合成し、 次いでイオン交換樹脂で分離精製するこ とを特徴とするアミノ酸の製造方法、 に関する。 発明の開示
即ち、 本発明は、 高温高圧水条件下で有機酸にアンモニアあるいはァ ンモニゥム塩化合物を反応させてアミノ基を導入する新規なアミノ基導 入方法を提供することを目的とするものである。
また、 本発明は、 上記アミノ基導入方法により、 有機酸とアンモニア あるいはアンモニゥム塩化合物からアミノ酸を合成する新規なアミノ酸 合成方法を提供することを目的とするものである。
また、 本発明は、 上記アミノ基導入方法により、 例えば、 ヒドロキシ 酸型の乳酸とアンモニアあるいはアンモニゥム塩からァラニンを、 ダリ コール酸からグリシンを、 リンゴ酸からァスパラギン酸を、 あるいは酒 石酸からひ, )3—ジアミノコハク酸を合成する等の、 有機酸からァミノ 酸を合成する新規なアミノ酸合成方法を提供することを目的とするもの である。
更に、 本発明は、 高温高圧水条件下で、 有機酸とアンモニアあるいは アンモニゥム塩化合物を反応器に導入し、 バッチ方式によるアミノ酸合 成方法、 あるいは連続的にアミノ酸を合成するアミノ酸連続合成方法を 提供することを目的とするものである。
そして、 本発明は、 上記アミノ基導入方法により、 有機酸とアンモニ ァあるいはアンモニゥム塩化合物からアミノ酸を合成し、 得られた反応 溶液に対してイオン交換樹脂等のアミノ酸分離材を用いてアミノ酸を分 離精製することを特徴とする高純度のアミノ酸の製造方法を提供するこ とを目的とするものである。 上記課題を解決するための本発明は、 以下の技術的手段から構成され る。
( 1 ) 高温高圧水条件下で有機酸とアンモニアあるいはアンモニゥム塩 化合物を反応させることにより有機酸にアミノ基を導入することを特徴 とするアミノ基導入法。
( 2 ) 高温高圧水条件下で有機酸とアンモニアあるいはアンモニゥム塩: 化合物を反応させ、 有機酸にアミノ基を導入してアミノ酸を合成するこ とを特徴とするアミノ酸合成方法。
( 3 ) 2 5 0 以上の温度及ぴ圧力 2 O M P a以上の圧力の範囲である 高温高圧水条件下で有機機酸とアンモニアあるいはアンモニゥム塩化合 物を反応させることを特徴とする前記 ( 2 ) 記載のアミノ酸合成方法。
( 4 ) 高温高圧水条件下で有機酸とアンモニア水、 酢酸アンモニゥムぁ るいは炭酸アンモニゥムを反応させることを特徴とする前記 ( 2 ) 又は
( 3 ) 記載のアミノ酸合成方法。
( 5 ) 高温高圧水条件下で有機酸と液化アンモニアを反応させることを 特徴とする前記 ( 2 ) 又は ( 3 ) 記載のアミノ酸合成方法。
( 6 ) 有機酸として、 ヒドロキシ酸を使用することを特徴とする前記 ( 2 ) から ( 5 ) のいずれかに記載のアミノ酸合成方法。
( 7 ) 有機酸として、 乳酸、 グリコール酸、 リンゴ酸又は酒石酸を使用 することを特徵とする前記 ( 2 ) から ( 6 ) のいずれかに記載のァミノ 酸合成方法。
( 8 ) 有機酸とアンモニアあるいはアンモニゥム塩化合物を高温高圧水 条件下の反応器に導入して連続的に反応させることを特徴とする前記 ( 2 ) から ( 7 ) のいずれかに記載のアミノ酸合成方法。
( 9 ) 高温高圧水条件下で有機酸とアンモニアあるいはアンモニゥム塩 化合物を反応基質としてアミノ酸を製造する方法であって、 有機酸とァ ンモニァあるいはアンモニゥム塩化合物を高温高圧水条件下の反応器に 導入して連続的に反応させ、 反応後、 得られた反応液をイオン交換樹脂 等のアミノ酸分離材を用いて分離精製処理してアミノ酸を得ることを特 徴とするアミノ酸製造方法。 次に、 本発明について更に詳細に説明する。
本発明の説明を容易にするために、 以下、 相当するヒ ドロキシ酸にァ ンモニァ及びアンモニゥム塩化合物を高温高圧下で反応させて、 例えば 、 アミノ酸であるァラニン、 グリシン、 ァスパラギン酸あるいは α, β ージアミノコハク酸を合成した場合を例にとって詳細に説明するが、 本 発明はこれらの例に限定されるものではない。
本発明者らが、 種々の実験を経て開発した本発明の合成法の代表的な 例として、 例えば、 乳酸とアンモニア水溶液、 酢酸アンモニゥム水溶液 あるいは炭酸アンモニゥム水溶液を高温高圧水条件下の反応器に導入し て高速で通過させることにより、 ァラニンを合成する方法が例示される 。 本発明の合成方法で使用する原料試薬としては、 有機酸及びアンモニ ァあるいはアンモニゥム塩化合物だけである。 本発明では高温高圧水を 反応場あるいは反応溶媒として用いており、 有槔溶媒あるいは触媒は使 用しないし、 また、 特に使用する必要はない。 従って、 この方法を用い れば、 処理しなければならない廃溶媒や廃触媒といつた類の処理を必要 とする廃棄物は排出されない。 また、 未反応の有機酸や使用水は本発明 の反応に再使用することが可能である。 更に、 本発明の方法は、 有用な アミノ酸等の製品を連続的に高速で合成できることから、 それらの製造 方法の手段として最も好適な方法であると考えられる。 なお、 この反応 はバッチ型反応器においても実施できる。
本発明のアミノ基導入法あるいはアミノ酸合成方法について、 以下に 詳しく説明する。
本発明では、 例えば、 高温高圧水条件下で α —ヒ ドロキシ酸とアンモ ニァあるいはアンモニゥム塩化合物を反応させ、 α —ヒ ドロキシ酸にァ ミノ基を導入することによりアミノ酸を合成することができる。
一般に、 アミノ酸は、 主に生物体内で合成されるが、 有機合成的にも 合成できる。 こ こで取り上げるアミノ酸は、 例えば、 β —了ラニン ( β - a l a n i n e ) は、 /3—プロピオラク トン (/3— p r o p i o n 1 a c t o n e ) にァセトニトリル溶媒中でアンモニアと反応させること で合成できる。
化 1
CH2COOH
Figure imgf000008_0001
/3—プロビオラクトン β —ァラニン これに対し、 本発明者らは、 高温高圧水条件下で α—ヒドロキシ酸で ある乳酸 ( l a c t i c a c i d )、 ダリコール酸 (g l y c o l i c a c i d )、 リンゴ酸 (m a l i c a c i d ) あるいは酒石酸 ( t a r t a r i c a c i d ) 等の有機酸とアンモニア ( ammo n i a) あるいはアンモニゥム塩化合物を反応させることにより、 それぞれ ァラニン、 グリシン (g l y c i n e )、 ァスパラギン酸 ( a s p a r t i c a c i d) あるいは a, j3—ジアミノコハク酸 ( ひ , ^ - d i am i n o s u c c i n i c a c i d) 等のアミノ酸を合成できるこ とを見出した。
本発明によるアミノ酸合成の具体例として、 ァラニン、 グリシン、 ァ スパラギン酸及びひ , β -ジアミノコハク酸のそれぞれの合成反応式を 以下に示す。
化 2
ァラニン合成の反応式
0 O
ΗΟ CH― C OH H2 —— CH— C—— OH + H20
CH3 CH3
latic acid ammonia alanine water
化 3
グリシン合成の反応式
0 O
HO- ΪΗ— C OH NH, H2N- -CH― C- -OH ¾0
H H
glycolic acid ammonia
glycine water
化 4
ァスパラギン酸合成の反応式
Figure imgf000010_0001
OH malic acid ammonia aspartic acid water 化 5
a , )3—ジアミノコハク酸合成の反応式
2
H,0
Figure imgf000011_0001
tartaric acid ammonia a , jS -diaminosuccinic acid water
本発明の方法において、 高温高圧水は反応器の外からヒー夕一や溶融 塩等を用いて温度を制御することが可能であり、 あるいは反応器内で内 熱方式で制御することも可能である。 また、 予め高温高圧水を製造して おき、 外部から反応器内に注入して反応させることもできる。 温度圧力 条件の異なる 2種類以上の高温高圧水を反応系に供給して反応条件を制 御することも可能である。 反応容器内での圧力は流通式であれば圧力調 整弁で制御することができる。 また、 バッチ方式による反応圧力は、 例 えば、 使用温度における自生圧力を計算することができる。 更に、 窒素 ガスなど他の気体を注入することによって圧力をコントロールすること もできる。 一般的には使用する圧力は使用温度における自生圧力以上で あればよい。
基本的には、 温度 2 5 0 以上及び圧力 2 0 M P a以上の高温高圧水 条件下であれば本発明は達成されるが、 温度 3 0 0 以上及び圧力 2 5 M P a以上の高温高圧水条件下では、 より好適に本発明を達成できる。 更に、 3 0 0〜 4 2 0 の温度範囲及び 2 5 M P a〜 5 O M P aの圧力 範囲の高温高圧水条件を選択すれば、 最も好適に本発明は達成される。 最適の温度条件は処理時間によっても変化するが、 一般に、 好適には 2 5 0でから 4 5 0 の温度範囲を選択できる。 また、 処理量や反応装置 によつて適宜の温度及び圧力条件を採用すればよい。
反応装置としては、 例えば、 高温 · 高圧反応装置が使用されるが、 こ れに限らず、 高温高圧水条件下の反応系を設定できる装置であれば、 そ の種類は制限されない。
ここで、 好適な反応装置として、 例えば、 本発明で使用した流通式の 高温高圧反応装置やバッチ式の反応装置が例示される。 市販のオートク レーブは好適に用いられる。.
本発明の方法において、 反応条件は、 使用する有機酸の種類及び濃度 、 アンモニアやアンモニゥム塩化合物の種類及び濃度、 反応時間、 高温 高圧水条件によって変化する。
本発明では、 反応基質の有機酸としては、 例えば、 乳酸、 グリコール 酸、 リンゴ酸、 酒石酸、 ヒドロキシ— n—酪酸、 マンデル酸、 2—ヒ ド 口キシ— 3—メチルブチル酸、 クェン酸、 グリセリン酸、 トロパ酸、 ベ ンジル酸、 ヒ ドロキシ吉草酸等の 1分子内に 1個以上の力ルポキシル と 1個以上の水酸基とを有するヒドロキシ酸が例示される。 ヒドロキシ 酸であれば、 α —ヒ ドロキシ酸、 /3—ヒドロキシ酸、 ァ —ヒドロキシ酸 、 δ—ヒ ドロキシ酸、 ε —ヒドロキシ酸等はいずれも好適に反応に用い ることができる。 本発明では、 反応に用いる有機酸は 1種類に限定され るものでなく、 2種類以上の混合物を用いても反応は好適に進行する。 また、 脂肪族飽和ヒドロキシカルボン酸、 脂肪族不飽和ヒドロキシカル ボン酸、 芳香族ヒ ドロキシカルボン酸の様なヒ ドロキシカルボン酸、 ス テロイ ド等の有機酸も本発明の反応基質として好適に用いられる。
また、 上記有機酸の金属塩も本発明の原料として用いることが可能で あり、 例えば、 ナトリウム、 カリウム、 マグネシウム、 カルシウム、 ァ ンモニゥム等の有機酸塩が好適に用いられる。
流通方式の装置を用いる場合は、 例えば、 キヤリャ一水として用いる 高温高圧水の流速及び反応基質である有機酸の導入流速を制御すること によって反応器に導入する有機酸の濃度をコントロールできる。 有機酸 やアンモニアあるいはアンモニゥム塩化合物を、 同時にあるいは別個に 、 予めキヤリャ一水中に溶解して反応に供してもよい。 通常、 反応器に 導入する有機酸の濃度としては 1 m Mから 1 0 Mの濃度範囲で選択でき る。 好適には 2 m Mから 5 Mの間の適宜な濃度の値を選択でき、 最も好 適には 4 m Mから 2 Mの間の適宜な濃度の値が選択されるが、 本発明は 、 これらの濃度の値に限定されるものではない。 バッチ法の場合は単に 仕込みの有機酸の濃度を制御すればよい。 反応器内の有機酸の濃度は反 応に関与する高温高圧水の密度によつて変化する。
本発明では、 有機酸の種類に応じて、 反応系の温度、 圧力、 反応時間 、 反応基質の濃度とアンモニア及びアンモニゥム塩の濃度を調節するこ とによって、 ァミノ基の導入量、 ァミノ基の導入位置、 アミノ酸の生成 種、 生成量あるいは反応収率を操作することができる。
反応に用いるアンモニアとしては、 通常、 濃度 2 8 %のアンモニア水 ないし液化アンモニアが好適に用いられるが、 気体状のアンモニアを高 温高圧水に導入しても反応は進行する。 アンモニゥム塩化合物としては 、 酢酸アンモニゥム、 炭酸アンモニゥム、 ギ酸アンモニゥム、 塩化アン モニゥム、 硫酸アンモニゥム等が好適に用いられる。
アンモニアやアンモニゥム塩化合物は、 通常、 反応基質である有機酸 塩ないし有機酸エステルと混合して反応器内に導入される場合が多い。 その際、 アンモニアやアンモニゥム塩化合物は、 通常、 水溶液として用 いられ、 また、 液化アンモニアを用いた場合も最終的には水溶液となり 、 反応濃度は、 有機酸塩ないし有機酸エステル濃度の 1 - 1 0倍の濃度 範囲の適宜な値から選択できる。 例えば、 アンモニア水溶液及びアンモ ニゥム水溶液の濃度は、 I m Mから 2 0 M、 好適には 2 m Mから 1 0 M の値を選択できる。 最も好適には 4 m Mから 8 Mの間の適宜な値を選択 できるが、 本発明は、 これらの濃度の値に限定されるものではない。 な お、 有機酸とアンモニアやアンモニゥム塩化合物は、 別々に反応器に導 入しても、 また、 キヤリャ一水に直接混合して使用しても本発明の反応 は進行する。 また、 アンモニアとアンモニゥム塩を混合して用いても本 発明の反応は達成される。
本発明の反応系は、 温度 2 5 0 以上、 及び圧力 2 0 M P a以上の高 温高圧水中に上記反応基質の有機酸とアンモニアあるいはアンモニゥム 塩化合物を存在させればよく、 その際、 例えば、 金属イオン、 酸、 ある いは塩基等のような水溶性の触媒、 金属担持触媒、 固体酸、 固体塩基等 の固体触媒あるいは酵素等は特に添加する必要がなく、 また、 有機溶媒 を使用する必要もない。
本発明は、 基本的には、 高温高圧水中に上記反応基質を存在させて、 無触媒条件下で、 あるいは有機溶媒を反応に関与させることなく、 有機 酸とアンモニアあるいはアンモニゥム塩化合物を反応させて有機酸にァ ミノ基を導入すること、 及びそれによりアミノ酸を合成することを最大 の特徴としているが、 必要により、 メタノール、 エタノール、 エチレン グリコール等の有機溶媒、 金属イオン、 酸、 あるいは塩基等のような水 溶性の触媒、 金属担持触媒、 固体酸、 固体塩基等の固体触媒あるいは酵 素を添加して反応させても一向にさしつかえない。 本発明では、 上記反応系により、 例えば、 反応時間 0. 0 0 1秒から 1 0分程度の短時間で有機酸にアミノ基が導入され、 あるいはアミノ酸 が合成される。 例えば、 流通式反応装置を用いる場合、 反応時間は、 反 応温度、 反応圧力、 高温高圧水の流速、 反応基質の導入流速、 反応器の 大きさ、 反応器の流通経路の長さ等を制御することによって反応時間を コントロールできる。 好適には反応時間は 0. 0 1秒から 5分の範囲の 値を選択でき、 最も好適には 0. 0 5秒から 2分の範囲の値を選択でき るが、 本発明は、 これらの値に限定されるものではない。
本発明者らは、 後記する実施例に示されるように、 高温高圧水条件下 では、 短時間 (例えば、 反応時間 0. 1秒前後) で有機酸へのアミノ基 の導入が可能であることを、 高速液体クロマトグラフィー質量分析装置
(L C一 M S装置) ゃフリエ一赤外分光光度計 (F T I R装置) を用い て確認している。 更に、 L C一 M S装置を用いることにより、 有機酸や アミノ酸の種類を分離して同定でき、 それらの含有量を正確に定量でき る。 また、 連続的に得られるアミノ酸をイオン交換樹脂等を用いて分離 精製して、 F T I R装置により赤外線吸収スペク トルを計測し、 純度の 高い特級試薬製品のそれと比較すること【こより、 アミノ酸の種類を正確 に同定できる。 同様に NMR測定によってもアミノ酸の種類や純度を確 認できる。
例えば、 流通式装置を用いて 3 0 0 〜 4 2 0 、 圧力 3 5 MP a及 び反応時間 0. 0 6秒〜 0. 3 3秒の条件下で、 4. 8 mM〜 4 7. 8 mM濃度のリンゴ酸とアンモニア水から 0. 2 mM〜 7. 3 mM濃度の ァスパラギン酸が合成できた。 また、 同様にバッチ方式では乳酸とアン モニァ水から温度 3 5 0 、 圧力 3 0 M P a及び反応時間 4 0秒で 1 3 . 7 mM濃度のァラニンを合成した。 これらの反応の結果、 アンモニア がこれらの有機酸の水酸基と反応して水酸基を引き抜き、 その位置にァ ミノ基が導入されていることが L C— M S装脣、 N M R測定装置や F T I R装置より得られた測定結果から確認された。
本発明で生成したアミノ酸の反応収率は、 温度、 圧力等の反応条件、 有機酸の種類、 有機酸の濃度、 アンモニアやアンモニゥム化合物の濃度 、 反応装置の形態、 反応器の大きさ等によって変動する。 例えば、 流通 式装置を用いたァスパラギン酸合成の場合の反応収率は 4 . 2 %から 2 1 . 3 %であった。 これらのァスパラギン酸は、 原料のリンゴ酸等と混 合して回収される。 同様に、 本発明によって種々の有機酸あるいはそれ らの混合物から多種のアミノ酸が原料基質とともに回収されるが、 反応 後、 得られた反応液をイオン交換樹脂、 例えば、 陽イオン交換樹脂や陰 イオン交換樹脂あるいはそれらの併用によってアミノ酸と原料基質を分 離精製でき、 更に、 アミノ酸同士の分離も可能なので、 アミノ酸は、 そ の種類毎に精製濃縮できる。 また、 同時に回収された原料基質は、 再度 原料として用いることができる。 また、 イオン交換樹脂の代わりにアル ミナ、 逆相用シリカゲル、 ゼォライ ト、 セルロース、 カーボン等の一般 的な適宜のアミノ酸分離用資材を利用してアミノ酸を分離精製すること もできる。
従って、 高温高圧水条件下で有機酸とアンモニアあるいはアンモニゥ ム塩化合物を反応させてアミノ酸を合成し、 得られた反応溶液に対して イオン交換樹脂、 アルミナ、 逆相用シリカゲ 、 セルロース等のアミノ 酸分離材を用いてアミノ酸を分離精製して、 高純度のアミノ酸を好適に 製造できる。
本発明では、 高温高圧水条件下の高温熱水中に、 反応基質として所定 の濃度の有機酸及びアンモニアあるいはアンモニゥム塩化合物を存在さ せることにより、 例えば、 α —ヒドロキシ酸型の乳酸及びアンモニアか らァラニンが合成される。 この場合、 乳酸に代えて、 グリコール酸、 リ ンゴ酸あるいは酒石酸とアンモニアを反応させることによりアミノ基が これらの有機酸に導入され、 グリシン、 ァスパラギン酸あるいは α, β ージアミノコハク酸が合成される。 また、 これらの有機酸等とアンモニ ァ水溶液あるいはアンモニゥム塩化合物を反応器に連続的に導入するこ とにより、 連続的にそれぞれの有機酸に対応した種々のアミノ酸を合成 することができる。
これらのことから、 本発明は、 上記反応系において、 反応条件、 反応 基質の有機酸の種類、 有機酸及びアンモニア水溶液あるいはアンモニゥ ム塩化合物の濃度を調節することにより、 有機酸にアミノ基を導入する こと、 それによりアミノ酸を短時間で合成することを可能とし、 新規の アミノ基導入法及びアミノ酸合成方法あるいはアミノ酸製造方法として 有用である。 図面の簡単な説明
図 1は、 本発明に用いた送水ポンプ 2台付属の流通式反応装置のフロ —シートを示 -。
図 2は、 本発明に用いた送水ポンプ 3台付属の流通式反応装置のフロ 一シート 示す。
図 3は、 バッチ式反応に用いたバッチ式反応管及び硝酸ナトリウム 硝酸力リゥム混合塩を使用した振とう攪拌式塩浴槽の概要を示す。 発明を実施するための最良の形態
次に、 実施例に基づいて本発明を具体的に説明するが、 本発明は以下 の実施例によつて何ら限定されるものではない。
実施例 1
図 1に示す連続式反応装置を用い、 温度 3 5 0で、 圧力 3 5 M P a及 び密度 0. 6 5 9 3 g/ c m3 の高温高圧水条件下でリンゴ酸 (和光純 薬社製特級試薬) とアンモニア水 (和光純薬社製特級試薬) を反応させ 、 ァミノ基の導入によるァスパラギン酸の連続合成を試みた。
反応器材料は合金 C一 2 7 6であり、 反応器内径 : 0. 6 5 mm及び 反応器長さ : 2 5 c mで、 従って、 反応器容積は 0. 0 8 3 c m3 と算 出された。 各導入調製液は高圧ポンプで注入した。 反応に使用した水は 蒸留水を使用し、 窒素ガスでバブリングして溶存酸素を追い出したキヤ リャ一水を 9 m 1 Zm i nの流速で通水した。 同様に処理した蒸留水を 用い、 0. 1 0 0 Mリンゴ酸及び 0. 3 0 0 Mアンモニア水を含有した 基質溶液を調製し、 この基質溶液を 4. 7 m 1ノ m i nの流速で反応器 に導入した ά 反応器に入る前の各基質濃度はリンゴ酸 : 3 4. 3 mM及 びアンモニア水 : 0. 1 0 2 8 Mであった。 反応時間は 0. 2 4 0秒で あり、 反応後の水溶液を高速液体クロマトグラフィ一賀量分析装置で調 ベた所、 リンゴ酸にアミノ基が導入され、 ァスパラギン酸が生成してい ることを確認した。 ァスパラギン酸の含有濃度は 7. 3 mMであり、 そ の反応収率は 2 1. 3 %であった。 実施例 2
実施例 1 と全く同じ条件で一時間、 連続してリンゴ酸とアンモニア水 を反応させた。 得られた反応溶液を陽イオン交換樹脂 (ダウケミカル社 製 5 0 W- X 8 ) カラムに通して原料のリンゴ酸と生成したァスパラギ ン酸を分離し、 ァスパラギン酸含有溶液を濃縮精製後、 エタノールにて 析出させ、 濾過、 乾燥して、 本発明製品 0. 7 8 gを得た。 得られた本 発明製品は、 純白の粉末状をしており、 F T I R吸収スペク トル結果及 び NMR測定結果から不純物をほとんど含まない高純度のァスパラギン 酸であることを確認した。 実施例 3
実施例 1 と同様に反応させて、 リンゴ酸とアンモニア水からァスパラ ギン酸の連続合成を試みた。 また、 図 2に示した連続反応装置を用い、 別々に調製した 0. 1 0 0 Mリンゴ酸水溶液と 0. 3 0 0 Mアンモニア 水溶液を異なった 2つの送水ポンプで反応器に注入した。
ただし、 反応条件を一部下記の様に変更して実施した。
変更した反応条件
反応温度 : 3 7 4
高温高圧水密度 0. 5 8 8 gZ c m3
キヤリャ—水流速: l O m l Zm i n
基質溶液 ( 0. 1 0 0 Mリンゴ酸水溶液) 流速: 3. 2 m 1 /m i n
基質溶液 ( 0. 3 0 0 Mアンモニア水溶液) 流速: 3. 2 m l Z m i n
反応器に入る前の各基質濃度はリンゴ酸 : 1 9. 5 mM及びアンモニ ァ水 : 0. 0 5 8 5 Mであった。 反応時間は 0. 2 2 2秒であり、 反応 後の水溶液を高速液体クロマトグラフィー質量分析装置で調べた所、 リ ンゴ酸にアミノ基が導入され、 ァスパラギン酸が生成していることを確 認した。 ァスパラギン酸の含有濃度は 4. 6 mMであり、 その反応収率 は 2 3. 6 %であった。 実施例 4
実施例 1 と同様に反応させて、 リンゴ酸とアンモニア水からァスパラ ギン酸の連続合成を試みた。 ただし、 反応条件を一部下記の様に変更し て実施した。 変更した反応条件
反応温度 : 3 0 0で
高温高圧水密度 0. 7 5 8 0 gZ c m3
キヤリャ一水流速: e m l Zm i n
基質溶液流速: 5. 5 m 1 /m i n
反応器に入る前の各基質濃度はリンゴ酸 : 4 7. 8 mM及びアンモニ ァ水 : 0. 1 4 3 4 Mであった。 反応時間は 0. 3 2 8秒であり、 反応 後の水溶液を高速液体クロマトグラフィ一質量分析装置で調べた所、 リ ンゴ酸にアミノ基が導入され、 ァスパラギン酸が生成していることを確 認した。 ァスパラギン酸の含有濃度は 5. 4mMであり、 その反応収率 は 1 1. 3 %であった。 比較例
実施例 1 と同様に反応させて、 リンゴ酸とアンモニア水からァスパラ ギン酸の連続合成を試みた。 ただし、 反応条件を一部下記の様に変更し て実施した。
変更した反応条件
反応温度 : 2 0 0で
反応圧力 : 1 5 M P a
高温高圧水密度 0. 8 7 4 6 gZ c m3
キヤリャ一水流速: 6 m 1 /m i n
基質溶液流速 : 5. 5 m 1 /m i n
反応器に入る前の各基質濃度はリンゴ酸 : 4 7. 8 mM及びアンモニ ァ水 : 0. 1 4 3 4 Mであった。 反応時間は 0. 3 7 9秒であり、 反応 後の水溶液を高速液体クロマトグラフィー質量分析装置で調べた所、 原 料のリンゴ酸だけが検出され、 ァスパラギン酸は全く得られなかった。 実施例 5
実施例 1 と同様に反応させて、 リンゴ酸とアンモニア水からァスパラ ギン酸の連続合成を試みた。 ただし、 反応条件を一部下記の様に変更し て実施した。
変更した反応条件
反応温度 : 4 2 0^
高温高圧水密度 0. 2 7 0 0 gZ c m3
キヤリャ一水流速: 2 0 m l Zm i n
基質溶液流速: 1 m 1 i n
反応器に入る前の各基質濃度はリンゴ酸 : 4. 8 mM及びアンモニア 水 : 0. 0 1 4 2 Mであった。 反応時間は 0. 0 6 4秒であり、 反応後 の水溶液を高速液体クロマトグラフィー質量分析装置で調べた所、 リン ゴ酸にアミノ基が導入され、 ァスパラギン酸が生成していることを確認 した。 ァスパラギン酸の含有濃度は 0. 2 mMであり、 その反応収率は 4. 2 %であった。 実施例 6
実施例 1 と同様に反応させて、 グリコール酸 (和光純薬社製 1級試薬 ) とアンモニア水からグリシンの連続合成を試みた。 溶存酸素を除去し た蒸留水を用い、 0. 1 0 0 Mグリコール酸及び 0. 1 9 9 Mアンモニ ァ水を含有した基質溶液を調製し反応に供した。 ただし、 反応条件を一 部下記の様に変更して実施した。
変更した反応条件
反応温度 : 3 7 4で 高温高圧水密度 0. 5 8 8 gZ c m3
キヤリャ一水流速: 6 m l Zm i n
基質溶液流速 : 2. 3 m 1 /m i n
反応器に入る前の各基質濃度はダリコール酸 : 2 7. 7 mM及びアン モニァ水 : 5 5. 2 mMであった。 反応時間は 0. 3 5 3秒であり、 反 応後の水溶液を高速液体クロマトグラフィー質量分析装置で調べた所、 グリコール酸にアミノ基が導入され、 グリシンが生成していることを確 認した。 グリシンの含有濃度は 1. 2 mMであり、 その反応収率は 4. 3 %であった。 実施例 7
実施例 6と同様に反応させて、 グリコール酸とアンモニア水からダリ シンの連続合成を試みた。 ただし、 反応条件を一部下記の様に変更して 実施した。
変更した反応条件
反応温度 : 4 0 0
高温高圧水密度 0. 4 7 4 9 gZ c m3
キヤリャ一水流速: 1 0 m l / i n
基質溶液流速: 2 m l / i n
反応器に入る前の各基質濃度はグリコール酸 : 1 6. 7 mM及びアン モニァ水 : 3 3. 2 mMであった。 反応時間は 0. 1 9 7秒であり、 反 応後の水溶液を高速液体クロマトグラフィー質量分析装置で調べた所、 グリコール酸にアミノ基が導入され、 グリシンが生成していることを確 認した。 グリシンの含有濃度は 0. 7 mMであり、 その反応収率は 4. 2 %であった。 実施例 8
実施例 1 と同様に反応させて、 乳酸 (和光純薬社製特級試薬) とアン モニァ水からァラニンの連続合成を試みた。 溶存酸素を除去した蒸留水 を用い、 1. 0 8 5 M乳酸及び 5. 0 0 2 Mアンモニア水とした基質溶 液を調製し反応に供した。 ただし、 反応条件を一部下記の様に変更して 実施した。
変更した反応条件
反応温度 : 3 7 4
高温高圧水密度 0. 5 8 8 gZ c m3
キヤリャ一水流速: 5 m l Zm i n
基質溶液流速: 2 m 1 /m i n
反応器に入る前の各基質濃度は乳酸 : 0. 3 1 0 M及びアンモニア水 : 1. 4 2 9 Mであった。 反応時間は 0. 4 1 8秒であり、 反応後の水 溶液を高速液体クロマトグラフィ一質量分析装置で調べた所、 乳酸にァ ミノ基が導入され、 ァラニンが生成していることを確認した。 ァラニン の含有濃度は 8. 6 mMであり、 その反応収率は 2. 8 %であった。 実施例 9
実施例 8 と同様に反応させて、 乳酸とアンモニア水からァラニンの連 続合成を試みた。 ただし、 反応条件を一部下記の様に変更して実施した 変更した反応条件
反応圧力 : 4 0 M P a
高温高圧水密度 0. 6 0 9 0 gZ c m3
キヤリャ一水流速: 4. 5 m 1 /m i n
基質溶液流速: 1. 3 5 m l /m i n 反応器に入る前の各基質濃度は乳酸 : 0. 2 5 0 M及びアンモニア水 : 1. 1 5 4 Mであった。 反応時間は 0. 5 1 8秒であり、 反応後の水 溶液を高速液体クロマトグラフィ一質量分析装置で調べた所、 乳酸にァ ミノ基が導入され、 ァラニンが生成していることを確認した。 ァラニン の含有濃度は 7. 7 mMであり、 その反応収率は 3. 1 %であった。 実施例 1 0
実施例 8と同様に反応させて、 乳酸とアンモニア水からァラニンの連 続合成を試みた。 ただし、 反応条件を一部下記の様に変更して実施した 変更した反応条件
反応圧力 : 3 0 M P a
高温高圧水密度 0. 5 5 8 0 g/ c m3
キヤリャ一水流速: 9. 3 m 1 /m i n
基質溶液流速: 4. 5 m 1 / i n
反応器に入る前の各基質濃度は乳酸 : 0. 3 5 4 M及びアンモニア水 : 1. 6 3 1 Mであった。 反応時間は 0. 2 0 1秒であり、 反応後の水 溶液を高速液体ク口マトグラフィー質量分析装置で調べた所、 乳酸にァ ミノ基が導入され、 ァラニンが生成していることを確認した。 ァラニン の含有濃度は 7. 3 mMであり、 その反応収率は 2. 1 %であった。 実施例 1 1
実施例 8と同様に反応させて、 乳酸とアンモニア水からァラニンの連 続合成を試みた。 ただし、 反応条件を一部下記の様に変更して実施した 変更した反応条件 反応圧力 : 2 5 M P a
高温高圧水密度 0. 4 8 5 1 gZ c m3
キヤリャ一水流速 : 6. 7 m 1 / i n
基質溶液流速: 2 m l / i n
反応器に入る前の各基質濃度は乳酸 : 0. 2 4 9 M及びアンモニア水 : 1. 1 5 0 Mであった。 反応時間は 0. 2 7 8秒であり、 反応後の水 溶液を高速液体クロマトグラフィー質量分析装置で調べた所、 乳酸にァ ミフ基が導入され、 ァラニンが生成していることを確認した。 ァラニン の含有濃度は 4. 5 mMであり、 その反応収率は 1. 8 %であった。 実施例 1 2
実施例 8と同様に反応させて、 乳酸とアンモニア水からァラニンの連 続合成を試みた。 ただし、 反応条件を一部下記の様に変更して実施した 変更した反応条件
反応温度 : 4 0 0
反応圧力 : 4 0 M P a
高温高圧水密度 0. 5 2 3 7 g c m3
キヤリャ一水流速: 6 m 1 / i n
基質溶液流速: 1 m l / i n
反応器に入る前の各基質濃度は乳酸 : 0. 1 5 5 M及びアンモニア水 : 0. 7 1 5 Mであった。 反応時間は 0. 3 7 3秒であり、 反応後の水 溶液を高速液体クロマトグラフィー質量分析装置で調べた所、 乳酸にァ ミノ基が導入され、 ァラニンが生成していることを確認した。 ァラニン の含有濃度は 5. 5 mMであり、 その反応収率は 3. 6 %であった。 実施例 1 3
実施例 1 と同様に反応させて、 乳酸と酢酸アンモニゥム (和光純薬社 製特級試薬) からァラニンの連続合成を試みた。 溶存酸素を除去した蒸 留水を用い、 1. 0 8 5 ^1乳酸及び 1. 4 0 9 M酢酸アンモニゥム水溶 液を含有した基質溶液を調製し反応に供した。 ただし、 反応条件を一部 下記の様に変更して実施した。
変更した反応条件
反応温度 : 3 7 4
高温高圧水密度 0. 5 8 8 gZ c m3
キヤリャ一水流速: 7 m l Zm i n
基質溶液流速: 3 m l Zm i n
反応器に入る前の各基質濃度は乳酸 : 0. 3 2 5 M及び酢酸アンモニ ゥム水溶液: 0. 4 2 3 Mであった。 反応時間は 0. 2 9 3秒であり、 反応後の水溶液を高速液体ク口マトグラフィ一質量分析装置で調べた所 、 乳酸にァミノ基が導入され、 ァラニンが生成していることを確認した 。 ァラニンの含有濃度は 6. O mMであり、 その反応収率は 1. 8 %で あつ.た。 実施例 1 4
実施例 1 と同様に反応させて、 乳酸と炭酸アンモニゥム (国産化学社 製特級試薬) からァラニンの連続合成を試みた。 溶存酸素を除去した蒸 留水を用い、 1. 1 5 3 M炭酸アンモニゥム水溶液を調製し、 キヤリャ 一水として用いた。 また溶存酸素を除去した蒸留水を用いて 1. 0 8 4 M乳酸基質溶液を調製し反応に供した。 ただし、 反応条件を一部下記の 様に変更して実施した。
変更した反応条件 反応温度 : 3 7 4
反応圧力 : 3 0 M P a
高温高圧水密度 0. 5 5 8 gZ c m3
キヤリャ一水流速: 7 m l /m i n
基質溶液流速: 3 m l / i n
反応器に入る前の各基質濃度は乳酸 : 0. 3 2 5 2 M及び炭酸アンモ ニゥム水溶液: 0. 8 0 7 1 Mであった。 反応時間は 0. 2 7 8秒であ り、 反応後の水溶液を高速液体クロマトグラフィー質量分析装置で調べ た所、 乳酸にァミノ基が導入され、 ァラニンが生成していることを確認 した。 ァラニンの含有濃度は 6. 5 mMであり、 その反応収率は 2. 0 %であった。 実施例 1 5
実施例 1 と同様に反応させて、 L—酒石酸 (半井化学社製特級試薬) とアンモニア水から(¾, )3—ジアミノコハク酸の連続合成を試みた。 溶 存酸素を除去した蒸留水を用い、 1. 0 0 ML—酒石酸及び 4. 6 1 M アンモニア水とした基質溶液を調製し反応に供した。 ただし、 反応条件 を一部下記の様に変更して実施した。
変更した反応条件
反応温度 : 3 7 4
高温高圧水密度 0. S S S gZ c m3
キヤリャ一水流速: 1 0 m l /m i n
基質溶液流速: 4. 5 m 1 / i n
反応器に入る前の各基質濃度は酒石酸 : 0. 3 1 0 3 M及びアンモニ ァ水 : 1. 4 3 0 7 Mであった。 反応時間は 0. 2 0 2秒であり、 反応 後の水溶液を高速液体クロマトグラフィー質量分析装置で調べた所、 酒 石酸に 2個のアミノ基が導入され、 α, —ジアミノコハク酸が生成し ていることを確認した。 α , /3—ジアミノコハク酸の含有濃度は 0. 7 5 mMであり、 その反応収率は 0. 2 %であった。 実施例 1 6
乳酸とアンモニア水を反応基質として用い、 高温高圧水条件下で乳酸 に対してアミノ基の導入を試みた。 反応は図 3に示した反応中に振とう 攪拌ができるバッチ反応装置で行った。 反応器として内容積 1 0. 5 c m3 の反応管を用いて、 温度 3 5 0 、 圧力 3 0 MP aになるように設 定し、 硝酸ナトリウム Z硝酸カリウム混合塩の塩浴槽温度に 6 0秒投入 してアミノ基導入反応を行った。 反応温度まで上昇するのに 4 0秒を要 し、 反応時間は 4 0秒であった。 反応前の反応溶液中の乳酸濃度は 1. 0 8 5 M及びアンモニア水濃度は 5. 0 0 2 Mであった:。 反応後、 得ら れた溶液を高速液体クロマトグラフィー質量分析装置で調べた所、 1 3 . 7 mMのァラニンが生成していることを確認した。 ァラニンの反応収 率は 1. 4 %であった。 実施例 1 7
実施例 1 と同様に反応させて、 乳酸と液化アンモニアからァラニンの 連続合成を試みた。 溶存酸素を除去した蒸留水から 0. 5 5 6 M乳酸水 溶液を調製した。 図 2に示した連続反応装置を用い、 0. 5 5 6 M乳酸 水溶液と液化アンモニアを異なった 2つの送水ポンプで反応器に注入し た。
ただし、 反応条件を下記の様に変更して実施した。
変更した反応条件
反応温度 : 3 8 0 反応圧力 : 3 0 M P a
高温高圧水密度 0. 5 3 4 0 gZ c m3
キヤリャ一水流速: l O m l Zm i n
基質溶液 ( 0. 5 5 6 M乳酸水溶液) 流速: 0. 5 m l Zm i n 基質溶液 (液化アンモニゥム) 流速 : l m l Zm i n
反応器の各基質濃度は乳酸 : 2 6. 5 mM及びアンモニア水 : 0. 2 8 Mであった。 反応時間は 0. 3 0 5秒であり、 反応後の水溶液を高速 液体クロマトグラフィ一質量分析装置で調べた所、 乳酸にアミノ基が導 入され、 ァラニンが生成していることを確認した。 ァラニンの含有濃度 は 5. 4mMであり、 その反応収率は 2 0. 4 %であった。 産業上の利用可能性
以上詳述した通り、 本発明は、 高温高圧水条件下で有機酸とアンモニ ァあるいはアンモニゥム塩化合物を反応させることにより有機酸にアミ ノ基を導入することを特徴とするアミノ基導入法、 高温高圧水条件下で 有機酸とアンモニアあるいはアンモニゥム塩化合物を反応させ、 有機酸 からアミノ酸を合成することを特徴とするアミノ酸合成方法に係り、 本 発明により、 1 ) 高温高圧下での新規のアミノ基導入法を提供すること ができる、 2 ) 有機酸及びアンモニアあるいはアンモニゥム塩化合物を 高温高圧下で反応させてアミノ酸を合成することができる、 3 ) 上記ァ ミノ基導入法を流通式に適用して、 有機酸からアミノ酸を連続的に高速 で合成することができる、 4 ) 有機溶媒、 触媒を一切使用しないアミノ 酸合成方法を提供することができる、 5 ) 高純度のアミノ酸を製造する ことができる、 6 ) 環境に優しい化学物質生産システムとして有用であ る、 という格別の効果が奏される。

Claims

請求の範囲
1 . 高温高圧水条件下で有機酸とアンモニアあるいはアンモニ ゥム塩化合物を反応させることにより有機酸にアミノ基を導入すること を特徴とするアミノ基導入法。
2 . 高温高圧水条件下で有機酸とアンモニアあるいはアンモニ ゥム塩化合物を反応させ、 有機酸にアミノ基を導入してアミノ酸を合成 することを特徴とするアミノ酸合成方法。
3 . 2 5 0 以上の温度及び圧力 2 0 M P a以上の圧力の範囲 である高温高圧水条件下で有機機酸とアンモニアあるいはアンモニゥム 塩化合物を反応させることを特徴とする請求項 2記載のアミノ酸合成方 法。
4 . 高温高圧水条件下で有機酸とアンモニア水、 酢酸アンモニ ゥムあるいは炭酸アンモニゥムを反応させることを特徴とする請求項 2 又は請求項 3記載のアミノ酸合成方法。
5 . 高温高圧水条件下で有機酸と液化アンモニアを反応させる ことを特徴とする請求項 2又は請求項 3記載のアミノ酸合成方法。
6 . 有機酸として、 ヒドロキシ酸を使用することを特徴とする 請求項 2から 5のいずれかに記載のアミノ酸合成方法。
7 . 有機酸として、 乳酸、 グリコール酸、 リンゴ酸又は酒石酸 を使用することを特徵とする請求項 2から 6のいずれかに記載のァミノ 酸合成方法。
8 . 有機酸とアンモニアあるいはアンモニゥム塩化合物を高温 高圧水条件下の反応器に導入して連続的に反応させることを特徴とする 請求項 2から 7のいずれかに記載のアミノ酸合成方法。
9 . 高温高圧水条件下で有機酸とアンモニアあるいはアンモニ ゥム塩化合物を反応基質としてアミノ酸を製造する方法であって、 有機 酸とアンモニアあるいはアンモニゥム塩化合物を高温高圧水条件下の反 応器に導入して連続的に反応させ、 反応後、 得られた反応液をイオン交 換樹脂等のアミノ酸分離材を用いて分離精製処理してアミノ酸を得るこ とを特徴とするアミノ酸製造方法。
PCT/JP2001/009499 2000-11-17 2001-10-30 Procede d'introduction un groupe amino et procede de synthese d'acide amine WO2002040442A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2002210968A AU2002210968A1 (en) 2000-11-17 2001-10-30 Method of introducing amino group and method of synthesizing amino acid
EP01978942A EP1336603A4 (en) 2000-11-17 2001-10-30 METHOD OF INTRODUCING AMINO GROSSPS AND METHOD FOR SYNTHESIS OF AMINO ACIDS
US10/416,494 US20040092725A1 (en) 2000-11-17 2001-10-30 Method of introducing amino group and method of synthesizing amino acid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-350836 2000-11-17
JP2000350836 2000-11-17
JP2001309752A JP3762980B2 (ja) 2000-11-17 2001-10-05 アミノ基導入法及びアミノ酸の合成方法
JP2001-309752 2001-10-05

Publications (1)

Publication Number Publication Date
WO2002040442A1 true WO2002040442A1 (fr) 2002-05-23

Family

ID=26604158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009499 WO2002040442A1 (fr) 2000-11-17 2001-10-30 Procede d'introduction un groupe amino et procede de synthese d'acide amine

Country Status (5)

Country Link
US (1) US20040092725A1 (ja)
EP (1) EP1336603A4 (ja)
JP (1) JP3762980B2 (ja)
AU (1) AU2002210968A1 (ja)
WO (1) WO2002040442A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113893570A (zh) * 2021-06-11 2022-01-07 长春市吉达自动化系统有限公司 一种赖氨酸高效生产系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4798426B2 (ja) * 2005-06-20 2011-10-19 独立行政法人産業技術総合研究所 ヒドロキシカルボン酸の製造方法
JP2007320918A (ja) * 2006-06-01 2007-12-13 Mitsuyoshi Akatsuka アミノ酸の製造方法
US9512061B2 (en) 2011-12-19 2016-12-06 Basf Se Process for the preparation of racemic alpha-amino acids
KR20140097586A (ko) * 2011-12-19 2014-08-06 바스프 에스이 라세미 알파 아미노산의 제조 방법
CN105392773A (zh) 2013-05-24 2016-03-09 巴斯夫欧洲公司 生产氨基酸的方法
CN103601664A (zh) * 2013-11-18 2014-02-26 大连杰信生物科技有限公司 一种离子液体液—液萃取分离色氨酸方法
MX2020010831A (es) * 2018-04-13 2020-10-28 Archer Daniels Midland Co Deshidratacion y aminacion de compuestos de alfa-, beta-dihidroxi carbonilo a alfa-aminoacidos.
CN111018727A (zh) * 2018-10-10 2020-04-17 中国石油化工股份有限公司 甘氨酸的生产方法
CN109438283B (zh) * 2018-12-25 2021-08-20 江苏兄弟维生素有限公司 一种β-氨基丙腈的合成方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350826A (en) * 1977-05-26 1982-09-21 Imperial Chemical Industries Limited Process for preparing p-hydroxy phenylglycine
JPH05201940A (ja) * 1991-11-25 1993-08-10 Kao Corp セリン又はその誘導体の製造方法
JPH06271518A (ja) * 1993-03-19 1994-09-27 Kao Corp グリシンの製造方法
JPH06329605A (ja) * 1993-05-25 1994-11-29 Kao Corp セリン又はその誘導体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734081A (en) * 1956-02-07 Preparation of
US2956080A (en) * 1953-06-01 1960-10-11 Merck & Co Inc Processes for preparing beta-alanine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350826A (en) * 1977-05-26 1982-09-21 Imperial Chemical Industries Limited Process for preparing p-hydroxy phenylglycine
JPH05201940A (ja) * 1991-11-25 1993-08-10 Kao Corp セリン又はその誘導体の製造方法
JPH06271518A (ja) * 1993-03-19 1994-09-27 Kao Corp グリシンの製造方法
JPH06329605A (ja) * 1993-05-25 1994-11-29 Kao Corp セリン又はその誘導体の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113893570A (zh) * 2021-06-11 2022-01-07 长春市吉达自动化系统有限公司 一种赖氨酸高效生产系统
CN113893570B (zh) * 2021-06-11 2022-11-01 长春市吉达智慧工业科技有限公司 一种赖氨酸高效生产系统

Also Published As

Publication number Publication date
JP3762980B2 (ja) 2006-04-05
AU2002210968A1 (en) 2002-05-27
JP2002212153A (ja) 2002-07-31
US20040092725A1 (en) 2004-05-13
EP1336603A1 (en) 2003-08-20
EP1336603A4 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
WO2002040442A1 (fr) Procede d'introduction un groupe amino et procede de synthese d'acide amine
CN113788765B (zh) 一种α,β-不饱和酰胺的制备方法
KR20220101115A (ko) 하이드록삼산의 합성을 위한 연속 유동 프로세스
JP3605635B2 (ja) アミノ基導入方法及びアミノ酸化合物合成方法
JP3845723B2 (ja) アルキルアミノ基導入法及びアミノ酸の合成方法
Khusnutdinov et al. Synthesis of N-(adamantan-1-yl) amides by reaction of carboxylic acid amides with 1-bromo (chloro) adamantane catalyzed by manganese compounds.
US4510326A (en) Process for the preparation of formylalkanolamines
WO1999046202A1 (en) Method of producing dinitramide salts
WO2002050026A1 (fr) Synthèse du lactame
JP4487064B2 (ja) アミノカルボン酸の製造法
JP3829185B2 (ja) β−アミノ酸の合成方法
US6750336B2 (en) Method of production of lactam
JP4195929B2 (ja) ラクタムの製造法
JP4238348B2 (ja) ラクタム製造法
RU2382025C2 (ru) Способ получения 1-13с-каприловой кислоты
JPH10287644A (ja) 高温熱水中におけるラクタムの製造方法
WO2002070474A1 (en) Process for producing lactam
US3981916A (en) Reduction of nitroparaffin substrates to their corresponding oximes using a silver salt catalyst
JPH02121946A (ja) コハク酸の連続製造法
Madadi Strecker Synthesis of a-aminonitriles Facilitated by N-methyl Imidazolium Acetate.
WO2002050025A1 (en) PROCESS FOR SYNTHESIZING β-LACTAM
WO2021199589A1 (ja) グリコール酸塩およびグリコール酸の製造方法
CN112500316A (zh) 一种制备boc-(r)-3-氨基-4-(2,4,5-三氟苯基)丁酸的方法
SU1302651A1 (ru) Способ получени аммониевых солей алифатических кислот
CN113861093A (zh) 一种多取代γ-丁内酰胺的合成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN IN KR MX NO NZ RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001978942

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 00791/DELNP/2003

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2001978942

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10416494

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2001978942

Country of ref document: EP