WO2002030850A1 - Composition d'agent de generation de gaz, et generateur de gaz fonctionnant avec cette composition - Google Patents

Composition d'agent de generation de gaz, et generateur de gaz fonctionnant avec cette composition Download PDF

Info

Publication number
WO2002030850A1
WO2002030850A1 PCT/JP2001/008780 JP0108780W WO0230850A1 WO 2002030850 A1 WO2002030850 A1 WO 2002030850A1 JP 0108780 W JP0108780 W JP 0108780W WO 0230850 A1 WO0230850 A1 WO 0230850A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
weight
gas generating
generating composition
nitrate
Prior art date
Application number
PCT/JP2001/008780
Other languages
English (en)
French (fr)
Inventor
Eishi Sato
Dairi Kubo
Kenjiro Ikeda
Original Assignee
Nippon Kayaku Kabushiki-Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kabushiki-Kaisha filed Critical Nippon Kayaku Kabushiki-Kaisha
Priority to EP01974697A priority Critical patent/EP1342705A4/en
Priority to KR10-2003-7004994A priority patent/KR100505835B1/ko
Priority to US10/398,215 priority patent/US6958100B2/en
Priority to AU2001294190A priority patent/AU2001294190A1/en
Publication of WO2002030850A1 publication Critical patent/WO2002030850A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/264Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
    • B60R21/2644Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder

Definitions

  • the present invention relates to a gas generating composition, and more particularly to a gas generating composition suitable for a small and lightweight gas generator and a gas generator using the same.
  • Gas generating compositions used in automotive safety devices generally contain a fuel based on sodium azide and an oxidizing agent.
  • sodium azide due to the toxicity and handling restrictions of sodium azide, attempts have previously been made to find alternatives to azide-containing gas-generating mixtures.
  • U.S. Pat. No. 5,783,773 discloses a phase stable ammonium nitrate as an oxidizing agent, a triaminoguanidine nitrate (hereinafter abbreviated as TA GN) as a fuel component, and a combination of TA GN / guanidine nitrate.
  • TA GN triaminoguanidine nitrate
  • US Pat. No. 5,780,768 discloses a composition containing guanidine nitrate / nitroguanidine as a fuel component and perchlorate as an oxidizing agent. All of these are intended to obtain a suitable combustion rate by combining highly reactive components such as TAGN and perchlorate with oxidants and fuels which are originally low in reactivity.
  • the calorific value of the composition also increases, so it cannot be said to be a suitable gas generating agent for a gas generator.
  • Japanese Patent Application Laid-Open No. 2000-086375 discloses a combination of a compound containing at least 25% of oxygen atoms in a molecule by atomic weight ratio as a fuel, a metal oxide and a metal double oxide.
  • the combustion temperature of this composition is designed to be low, the number of moles of gas generated per weight is reduced because metal oxide is used as the oxidizing agent. It is not satisfactory, and when trying to secure the number of moles of gas required to inflate the airbag, the amount of gas generant used increases, resulting in the amount of heat generated by combustion of the gas generant. Increases. That is, since a large amount of coolant is required in a gas generator using these compositions, it is difficult to reduce the size and weight of the gas generator.
  • An object of the present invention is to provide a gas generating agent composition which enables a gas generator to be reduced in size and weight, and a gas generator using the same. Disclosure of the invention
  • the gas generating composition of the present invention is a gas generating composition containing an organic compound containing a hydrogen atom, an oxidizing agent and an additive, and has a calorific value per mole of gas generated by combustion of the gas generating agent. Is less than or equal to 125 KJ.
  • the gas generator of the present invention is a gas generator using the gas generating composition of the present invention.
  • the present invention provides a gas generating composition having a suitable burning rate that can be used for a gas generator, by suppressing the amount of heat generated per mole of gas generated by combustion of the gas generating agent.
  • the generator has been made smaller and lighter.
  • the gas generating composition of the present invention comprises a nitrogen-containing organic compound, an oxidizing agent, and an additive.
  • a gas generating composition containing a gas generating agent and having a calorific value of 125 KJ or less per mole of gas generated by combustion of the gas generating agent.
  • a gas generator that uses a gas generating agent that generates a large amount of heat per mole requires a large amount of coolant inside the gas generator, making it difficult to reduce the size and weight of the gas generator. Therefore, the calorific value per 1 mol of gas is more preferably 115 KJ or less, more preferably 105 KJ or less.
  • the airbag is inflated by the combustion of the gas generating agent and the number of moles of gas generated from the gas generator and S3 ⁇ 4 of the generated gas. Therefore, a sufficient number of moles of generated gas and a low generated gas temperature are required to safely protect the occupants.
  • the calorific value per mole of gas is 7 3 KJ or more is preferred, and 95 KJ or more is extremely preferred.
  • the calorific value per mole of gas should be 95 to 105 KJ. Is the most suitable.
  • the gas generating composition of the present invention is preferably a composition in which the number of moles of the generated gas per 100 g is 2.70 mol or more, preferably 2.80 mol or more. If the number of moles generated is smaller than this, the amount of the gas generating agent used increases, and the size and weight of the gas generator cannot be reduced. 1 0 0 Even if the number of moles of gas generated per g is high, if the calorific value is high, a large amount of coolant is required in the gas generator, and even if the calorific value is low, 100 If the number of moles of the generated gas per g is low, the amount of the used gas generating agent eventually increases, and in any case, it is difficult to achieve a small and light gas generator.
  • the heat generation per 1 g of the gas generating composition is preferably 450 J or less, and 400 J or less. Is more preferably, and more preferably 330 J or less.
  • the temperature of the generated gas must be kept as low as possible from the viewpoint of damage to the bag and burns of the occupants.
  • the "heat generation amount per 1 mol of generated gas” "the heat generation amount per 1 g of the gas generating composition” "the number of moles of the generated gas per 100 g of the gas generating composition” are combined in such a way as to be the best according to the performance of the gas generator to be manufactured and the environment in which it is deployed.
  • a nitrogen-containing organic compound which can be generally used as a fuel for a gas generating agent for an air bag, for example, tetrazole, guanidine derivative, etc.
  • agent content in the composition, the oxidizing agent, the kind of additive, but Ru different by oxygen balance and the like preferably 3 0 wt 0/0 over 70 weight 0/0, more preferably 3 5 wt 0/0 than the 6 0% by weight or less.
  • the calorific value per mole of gas generated by combustion of the gas generating composition is set to 125 KJ or less (preferably 1 I 5 KJ or less), and the number of moles of generated gas is set to 2K / g.
  • guanidine carbonate In order to adjust the amount to 70 mol or more, it is preferable to use one selected from the group consisting of guanidine carbonate, guanidine nitrate, aminoguanidine nitrate and a mixture thereof as the nitrogen-containing organic compound.
  • guanidine nitrate is relatively inexpensive, has a melting point higher than 200 t, is extremely thermally stable, and is suitable as a gas generating agent from the viewpoint of environmental resistance and the like. .
  • these compounds contain oxygen atoms in the molecule and require less oxidizing agent for complete combustion, a high number of generated moles can be expected.
  • the particle size of the nitrogen-containing organic compound is 50%, if it is too large, the bow of the gas-generating agent molded article will be reduced, and if it is too small, crushing costs a great deal. It is preferably 80 im or less, more preferably 10 ILL mi 1 ⁇ 5 or less. In the present specification, the 50% particle size indicates a 50% average particle size based on the number.
  • an oxidizing agent that can be generally used as an oxidizing agent for a gas generator for an air bag can be used.
  • Content in the composition is a nitrogen-containing organic fuel, types of additives varies depending on the oxygen balance and the like, preferably 3 0 wt 0/0 or 7 0 wt% or less, the more preferred 3 5 weight 0/0 or 6 0 wt 0/0 or less.
  • the calorific value per mole of gas generated by the combustion of the gas generating composition is 125 KJ or less (preferably 115 KJ or less), and the number of moles of gas generated is 100 g or less.
  • phase-stabilized ammonium nitrate, ammonium perchlorate, basic metal nitrate, alkali metal nitrate, perchlorate or chlorate, and alkaline It is preferable to use one or more selected from the group consisting of earth metal nitrates, perchlorates and chlorates, but from the viewpoint of easy performance adjustment, two or more selected from the above groups are used. It is particularly preferable to use a mixed oxidizing agent.
  • the basic metal nitrate includes basic copper nitrate and the like
  • the alkali metal nitrate includes sodium nitrate, potassium nitrate, and strontium nitrate
  • the metal perchlorate includes perchlorate.
  • Examples include magnesium nitrate, calcium nitrate, and barium nitrate.
  • alkaline earth metal perchlorates include magnesium perchlorate, calcium perchlorate, and barium perchlorate.
  • chlorate examples include magnesium chlorate, calcium chlorate, and barium chlorate.
  • perchlorate contains a chlorine-based gas component and also contains metal chloride in the generated gas. It is preferable to use an oxidizing agent other than perchlorate as the oxidizing agent in the present invention since there is a possibility of producing a product component.
  • an oxidizing agent other than perchlorate as the oxidizing agent in the present invention since there is a possibility of producing a product component.
  • the effect of the present invention can be sufficiently obtained depending on, for example, an organic compound containing a room temperature mixed with or combined with another oxidizing agent.
  • the mixed oxidizer is composed of strontium nitrate, basic copper nitrate, and phase-stabilized ammonium nitrate in order to exclude solid components in the generated gas and improve flammability. It is preferable to contain one or more selected from the following. Further, it is preferable to prepare a mixed oxidizing agent of two or three selected from the group consisting of strontium nitrate, basic copper nitrate and phase-stabilized ammonium nitrate.
  • stotium nitrate is used as a part of the mixed oxidizing agent, a more appropriate burning rate can be obtained as a gas generating agent. Further, the strontium nitrate combustion residue becomes a product that can be easily filtered by a slag formation reaction with the silicon-containing compound and the metal acid compound, and can remove solid components in the generated gas.
  • a mixed oxidizing agent of basic copper nitrate and at least one selected from the group consisting of alkaline earth metal nitrates and phase-stabilized ammonium nitrate is also suitable.
  • the ignition performance of the gas generating composition can be improved.
  • a gas generant is ignited by an igniter and a transfer charge.
  • a large amount of transfer agent with a large amount of heat is required to be used in large quantities, and the total heat generation per gas generator increases, making it possible to achieve a smaller and lighter gas generator. Absent.
  • phase-stabilized ammonium nitrate As a part of the mixed oxidizing agent. It was found that the use of phase-stabilized ammonium nitrate had the effect of increasing the number of moles of generated gas and increasing the fuel J ⁇ velocity.
  • phase-stabilized ammonium nitrate when combined with a highly reactive component such as TAGN disclosed in U.S. Pat. Accompany. Therefore, when phase-stabilized ammonium nitrate is used, it is preferable to use a nitrogen-containing organic compound other than TAGN, but the effect of the present invention can also be achieved by combining TAGN with phase-stabilized ammonium nitrate. Can be sufficiently exerted, and depending on other oxidizing agents, nitrogen-containing organic compounds, and additives used, a safe gas generating composition can be obtained.
  • the method of stabilizing the phase-stabilized ammonium nitrate that can be used in the present invention is not particularly limited, and one known technique is a method of adding a potassium salt to ammonium nitrate.
  • the phase stabilization is achieved by adding a small amount of potassium perchlorate, potassium nitrate, potassium chloride, nitrite, sulfuric acid, sulfuric acid, potassium salt, potassium oxalate to potassium nitrate.
  • ammonium nitrate phase-stabilized with perchloric acid or nitric acid is particularly preferable.
  • a metal complex such as a diammine metal complex
  • a phase stabilizer When a diammine metal complex is used, copper or nickel is used as the metal component. Gels and are preferred.
  • the content of the phase-stabilized ammonium nitrate used as the mixed oxidizer in the gas generating composition varies depending on the nitrogen-containing organic fuel, the type of additive, the oxygen balance, and the like, but is preferably 1% by weight or more and 40% by weight. % or less, still more preferably 1 wt 0/0 to 3 0 wt 0/0 or less.
  • ammonium nitrate stabilized with potassium salt combustion of the gas generating agent produces low-melting-point, low-boiling-point oxidized lithium, carbonated lime, or lithium chloride. It is extremely difficult to filter these conjugation products with the filter inside the gas generator, and it flows out of the gas generator, which may damage the bag and burn the occupants.
  • the content of the phase-stabilized ammonium oxalate in the gas generating composition is preferably designed within the above range.
  • the particle size of the oxidizing agent is too large, the strength of the molded article as a gas generating agent decreases, and if the particle size is too small, a great cost is required for pulverization.
  • m or more and 80 m or less are preferable, and those having a 50% particle size of i0 m or more and 50 m or less are more preferable.
  • an additive that can be generally used as an additive to a gas generating agent for an air bag can be used, and a component (slag forming agent) that enables the combustion residue to be easily filtered.
  • a component slag forming agent
  • Binders for imparting environmental resistance are given.
  • the content of the additive in the gas generating composition is preferably 1% by weight to 15% by weight, more preferably 1% by weight to 10% by weight.
  • a slag forming agent that can be generally used as an additive to an airbag gas generating agent can be used, and examples thereof include silicon dioxide, silicon carbide, silicon dioxide, and silicate.
  • examples thereof include silicon dioxide, silicon carbide, silicon dioxide, and silicate.
  • a silane compound is an organic silicon compound, and in particular, a silane compound known as a silane coupling agent such as vinyl silane, epoxy silane, acrylic silane, and amino silane is preferable.
  • Content of the gas generating agent silane compound in the composition of the present invention 0s.
  • a binder that can be used in the present invention a binder that can be generally used as an additive to a gas generating agent for an air bag can be used, and it differs depending on the molding method.
  • Specific examples of the binder for press molding include synthetic hydrotalcite, acid clay, talc, bentonite, gaysoearth, disulfide molybdenum, crystalline cellulose, graphite, magnesium stearate, and calcium stearate.
  • the binder for extrusion molding include sodium carboxymethylcellulose, methylcellulose, hydroxyethyl cellulose, and hydroxyph.
  • Mouth Pilcell Mouth polyvinyl alcohol, guar gum, polyvinyl pyrrolidone, polyacrylamide, or a mixture thereof, and the like.
  • these binders and slips are used, specifically, surfactants and force softeners.
  • the content of the binder in the gas generating composition of the present invention is 0.1.
  • a fuel J3 ⁇ 4 adjuster can be used as an additive.
  • Any usable fuel adjusting agent may be used as long as it can adjust the expansion of the gas generating agent.
  • Specific examples include iron oxide, nickel oxide, copper oxide, zinc oxide, oxidized manganese, and oxidized chromium.
  • Metal oxides such as cobalt oxide, molybdenum oxide, vanadium oxide and tungsten oxide, copper hydroxide, hydroxide hydroxide, 7 metal oxides such as zinc oxide and aluminum hydroxide, And carbons such as activated carbon powder, graphite, and black carbon black.
  • the content of the combustion regulator in the gas generating composition is from 0% by weight to 10% by weight, more preferably from 0% by weight to 5% by weight.
  • the gas generating composition of the present invention it is preferable to use at least two members selected from the group consisting of guanidine nitrate as the nitrogen-containing organic compound, strontium nitrate, basic copper nitrate, and phase-stabilized ammonium nitrate as the oxidizing agent.
  • at least two members selected from the group consisting of guanidine nitrate as the nitrogen-containing organic compound, strontium nitrate, basic copper nitrate, and phase-stabilized ammonium nitrate as the oxidizing agent.
  • nitrate guanidine 4 0 wt 0/0 or 6 0 wt 0/0 or less
  • nitrate Sutoronchi ⁇ 1 5 by weight 0/0 over 5 0 wt 0/0 or less
  • basic copper nitrate 1 by weight 0/0 or more 30% by weight or less
  • additive residual (preferably 0.5% by weight or more and 10% by weight or less)
  • nitrate guanidine 4 0 wt 0/0 or 6 0 wt 0/0 or less
  • nitrate Sutoronchi ⁇ beam 1 5% by weight or more 5 0 wt% or less
  • basic copper nitrate 1 wt% to 3 0 wt 0/0 or less
  • phase stabilizing nitrate Anmoniumu 1 by weight 0/0 to 3 0 wt 0/0 or more
  • Additives residue (preferably, 5% by weight or more and 10% by weight or less of Or).
  • a combination of a silane coupling agent and a synthetic hydrotalcite, a combination of an extrusion molding binder and a slipping agent, and an acid clay are preferred.
  • nitrate guanidine 4 0 wt 0/0 or 6 0 wt 0/0 or less
  • nitrate scan Bok launch ⁇ beam 1 5% by weight or more 5 0 wt% or less
  • basic copper nitrate 1 by weight 0/0 or 2 0 weight 0/0 or less
  • the silane force coupling agent . 0 5 wt 0/0 or 1 0 wt 0/0 hereinafter
  • synthetic hydrotalcite synthetic hydrotalcite:. 0 5 wt% or more 1 0 wt% or less
  • nitrate guanidine 4 0 wt% or more 6 0 wt 0/0 or less
  • nitrate Sutoronchi ⁇ beam 1 5% by weight or more 5 0 wt% or less
  • basic copper nitrate 1 wt% to 3 0% by weight or less
  • acid clay 0.5% by weight or more and 10% by weight or less
  • nitrate guanidine 4 0 wt 0/0 or 6 0 wt 0/0 or less
  • nitrate scan Bok port inch ⁇ beam 1 5% by weight or more 5 0 wt 0/0 or less
  • basic copper nitrate 1 wt% or more 2 0 wt% or less
  • phase stabilizing nitrate Anmoniumu 1 wt% to 3 0 wt 0/0 hereinafter
  • silane coupling agent . 0 5 wt 0/0 or 1 0 wt 0/0 or less
  • synthetic human hydrotalcite synthetic human hydrotalcite :. 0 5 wt 0/0 or more and 1 or 0 weight 0/0 or less
  • nitrate guanidine 4 0 wt% or more 6 0 wt%
  • nitric strike opening Lynch ⁇ beam 1 5% by weight or more 5 0 weight or less 0/0
  • basic copper nitrate 1 by weight 0/0 to 3 0 wt%
  • Extrusion molding binders i% to 10% by weight
  • lubricants 0% to 5% by weight
  • nitrate guanidine 4 0 wt% or more 6 0 wt%
  • nitric Sutoronchi ⁇ 1 5 by weight 0/0 over 5 0 wt 0/0 or less
  • basic copper nitrate 1 by weight 0/0 to 3 0 wt%
  • Binder 1% by weight or more and 10% by weight or less
  • acid clay 1 W
  • the nitrogen-containing organic compound, the oxidizing agent, and the additive are mixed by a V-type mixer, a ball mill, or the like.
  • an appropriate amount of the silane coupling agent is sprayed and further mixed while spraying water or a solvent to obtain a wet drug mass.
  • the silane coupling agent may be previously mixed with water or a solvent and then sprayed.
  • the nitrogen-containing organic compound, the oxidizing agent and the silane coupling agent form a chemical bond, and the bonding force between the two increases.
  • the granulation is performed and dried to obtain strong granules. This may be tableted to form a gas generating agent molded article.
  • the wet medicine mass may be extruded as it is by an extruder.
  • the gas generating agent is
  • the dog for forming the gas generating composition of the present invention may be in any form such as, for example, powdery, granular, spherical, cylindrical, monocylindrical, and porous cylindrical. However, there is no particular limitation.
  • Guanidine nitrate 52.9 parts by weight (50% particle size, 20 wm) as the nitrogen-containing organic compound component, and strontium nitrate: 30.8 parts by weight (50% particle size, 3 m) and basic copper nitrate: 10.9 parts by weight
  • the granules After drying the granules at 90 ° C for 15 hours, they are pressed into a dog with a diameter of 5 mm and a height of 5 mm using a rotary tableting machine;] and then pressed at 105 ° C for 15 hours. After drying, tablets of the gas generating composition of the present invention were obtained.
  • the calorific value of the obtained tablet was measured with a calorimeter (model: CA-4P, manufactured by Shima Ritsu Seisakusho). The results are shown in Table 1 together with the calorific value per g, the number of moles of generated gas, and the calorific value per mole.
  • Guanidine nitrate as a nitrogen-containing organic compound component 5 to 0 parts by weight (50% particle size, 20 m), strontium nitrate as an oxidant component: 25.I parts by weight (50% particle size, 13 m), basic copper nitrate: 8.9 parts by weight (50% particle diameter 1 0 m), (containing 1 5 weight 0/6 potassium nitrate as a phase stabilizer) phase stabilized nitric Anmoniumu: 9.6 parts by weight, synthesized as binder Hydrotalcite: 2.7 parts by weight (50% particle size, 10 urn), N- (aminoethyl) -aminoaminopropyltrimethoxysilane: 2.7 parts by weight as silane compound
  • a gas generating composition was prepared in the same manner as in Example 1, and the calorific value was measured. The results are shown in Table 1 together with the calorific value per g, the number of moles of generated gas, and the calorific value per mole.
  • Guanidine nitrate as a nitrogen-containing organic compound component 54.5 parts by weight (50% particle size, 20 urn), strontium nitrate as an oxidizing agent component: 22.0 parts by weight (50% particle size, 13 m), base Copper nitrate: 21.5 parts by weight (50% particle size IQ), mixed with acid clay: 2, 0 parts by weight as binder
  • a gas generating composition was prepared, and the calorific value was measured. The results are shown in Table 1 together with the calorific value per g, the number of moles of generated gas, and the calorific value per mole.
  • Guanidine nitrate as a nitrogen-containing organic compound component 52.7 parts by weight (50% particle size, 20 m), strontium nitrate as an oxidant component: 22.4 parts by weight (50% particle size, 13 im)
  • Basic copper nitrate 21.9 parts by weight (50% particle size: 10 ⁇ )
  • Acid clay as binder 0 parts by weight
  • Graphite as combustion modifier 0 parts by weight
  • 5-aminotetrazole as a nitrogen-containing organic compound component 32.5 weight% P (5 °% particle size, 15).
  • Strontium nitrate as an oxidizing agent component 59.5 parts by weight (50% particle size, 1 3 m)
  • silicon nitride as a silane compound 3.5 parts by weight (50% particle size, 5 m)
  • synthetic hydrofluorite as a binder 4.5 parts by weight (50% particle size, 10 ⁇ m)
  • the calorific value was measured. The results are shown in Table 1 together with the calorific value per g, the number of moles of generated gas, and the calorific value per mole.
  • Nitrogen-containing guanidine as a nitrogen-containing organic compound component 50.7 parts by weight (50% particle size, 15 m), and strontium nitrate as an oxidizing agent component: 22.8 parts by weight (50% particle size, 1%) 3 m), ammonium perchlorate: 21.7 parts by weight (50% particle size, 30 m), silicon nitride: 1.
  • 5 parts by weight (50% particle size, 5 wm) and 3.3 parts by weight (50% particle size, 10 rn) of synthetic hydrotalcite as a binder gas was generated in the same manner as in Comparative Example 1.
  • a tablet of the drug composition was prepared, and the calorific value was measured. The results are shown in Table 1 together with the calorific value per g, the number of moles of generated gas, and the calorific value per mole.
  • Nitroguanidine as a nitrogen-containing organic compound component 31.5 parts by weight (50% —particle size, 15 urn).
  • Strontium nitrate as an oxidant component 51
  • Example 2 and Comparative Example 1 which are the gas generant compositions of the present invention, were each assembled in a gas generator, and a closed tank test was carried out.
  • the amount of gas generating agent used in the test was adjusted so that the number of moles of generated gas was 1 mole.
  • Table 2 The results are summarized in Table 2 below.
  • Coolant material SWM (JIS standard)
  • the gas generator using the gas generating composition of the present invention can greatly reduce the amount of stool and the amount of coolant used. It is. That is, the gas generating composition of the present invention can be said to be a composition capable of achieving a small and lightweight gas generator.
  • the present invention relates to a gas generating composition having a suitable fuel rate that can be used for a gas generator, and by suppressing the amount of heat generated per mole of gas generated by burning of the gas generating agent by burning,
  • the vessel has been reduced in size and weight. Therefore, the gas generating composition of the present invention is most suitable as a gas generating composition capable of reducing the size and weight of a gas generator.
  • the gas of the present invention A gas generator using a generator composition is most suitable as a gas generator that can be reduced in size and weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Air Bags (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

明 細 書
ガス発生剤組成物およびそれを使用したガス発生器 技術分野
本発明は、 ガス発生剤組成物に関し、 特に小型 ·軽量のガス発生器に 好適なガス発生剤組成物及びこれを使用したガス発生器に関する。 背景技術
自動車の安全装置に用いられるガス生成用組成物は、 一般に、 ナトリ ゥムアジドを基剤とする燃料と、 酸化剤を含有する。 しかし、 ナトリウ ムアジドの毒性、及び取り扱い上の制約より、 以前からアジド含有ガス 生成用混合物に代わる代替物を見いだす試みがなされて来た。
米国特許第 5 7 8 3 7 7 3には、 酸化剤に相安定ィ匕硝酸アンモニゥム 、 燃料成分にトリアミノグァニジンナイトレ一ト (以下 TA G Nと省略 する) 、 及び TA G N /硝酸グァニジンの組合せが開示されている。 さ' らに米国特許 5 7 8 0 7 6 8では燃料成分に硝酸グァニジン/ニトログ ァニジンを、 酸化剤としては過塩素酸塩を主剤とした組成物が開示され ている。 これらはいずれも本来、 反応性の低い酸化剤、 及び燃料に対し 、 例えば、 TA G N、 過塩素酸塩のように反応性の高い成分を組み合わ せることで好適な燃焼速度を得ようとするものであるが、 その反面で組 成物の発熱量も上昇するため、 ガス発生器にとつては好適なガス発生剤 とは言えない。
特開平 2 0 0 0— 8 6 3 7 5では燃料として分子中に酸素原子を原子 量比で 2 5 %以上含有する化合物と金属酸化物及び金属複酸化物の組合 せが開示されている。 本組成物では燃焼温度は低く設計されているが、 酸化剤に金属酸化物を用いているために重量当たりのガス発生モル数が 満足いくものではなく、 エアバッグを膨らますために必要な発生ガスの モル数を確保しょうとすると、 使用するガス発生剤量が増加することか ら、 結果的にガス発生剤の燃焼により発生する熱量は増加する。 即ち、 これら組成物を使用したガス発生器では多量の冷却材が必要となること から、 ガス発生器の小型 ·軽量化を達成するのは困難である。
本発明は、 ガス発生器の小型 ·軽量化を可能とするガス発生剤組成物 およびそれを使用したガス発生器の提供を目的とするものである。 発明の開示
本発明者等は、鋭意検討した結果、 ガス発生剤組成物の燃焼により発 生するガス 1モル当たりの発熱量を特定の範囲に 1¾¾することにより上 記課題を解決できることを見出し、 本発明を完成するに至つたものであ る。
即ち、 本発明のガス発生剤組成物は、 含室素有機化合物、 酸化剤及び 添加剤を含有するガス発生剤組成物にあって、 ガス発生剤の燃焼により 発生するガス 1モル当たりの発熱量が 1 2 5 K J以下であるガス発生剤 組成物である。 そして、 本発明のガス発生器は、 前記本発明のガス発生 剤組成物を使用したガス発生器である。
このように、 本発明は、 ガス発生器に使用可能な好適な燃焼速度を有 したガス発生剤組成物において、 ガス発生剤の燃焼により発生するガス 1 モル当たりの発熱量を抑えることで、 ガス発生器の小型.軽量化を達 成している。 発明を実施するための最良の形態
以下、 本発明について詳細に説明する。
本発明のガス発生剤組成物は、 含窒素有機化合物、 酸化剤、 及び添加 剤を含有し、 ガス発生剤の燃焼により発生するガス 1モル当たりの発熱 量が 1 2 5 K J以下であるガス発生剤組成物である。 ガス発生器の小型
-軽量化を追及していく上で、 ガス発生剤の燃焼により発生するガス i モル当たりの発 を抑えることは極めて重要な因子である。 発生ガス
1モル当たりの発熱量が大きいガス発生剤を用いたガス発生器では、 ガ ス発生器内に多量の冷却材を必要とし、 ガス発生器の小型 ·軽量化が困 難となる。 そのため、 ガス 1モル当たりの発熱量はさらに 1 1 5 K J以 下が好ましく、 1 0 5 K J以下がより好ましい。 エアバッグは、 ガス発 生剤が燃焼し、 ガス発生器から発生する発生ガスのモル数と発生ガスの S¾によって膨らむ。 従って、 安全に乗員を保護するためには充分な発 生ガスのモル数と低い発生ガス温度が必要となってくる。
しかし、 発生ガスの温度が低く過ぎると、 エアバッグを膨らませるた めに必要なガス量 (体積) を得るためには多くにガスモル数、 すなわち 多くのガス発生剤が必要となる。 これが過度となればガス発生器の小型 •軽量ィ匕を可能とするガス発生剤組成物を提供しょうという本発明の趣 旨が没却しかねない。 そのため、 必要とされるガス発生器の小型 '軽量 化の程度にもよつてガス 1モル当たりの発熱量の下限値は適当に設定す ることが好ましいが、 ガス 1モル当たりの発熱量は 7 3 K J以上が好ま しく、 9 5 K J以上が極めて好適である。 つまり、 必要とされるガス発 生剤量及び冷却材量を最小とし、 以つてガス発生器を小型 ·軽量化する には、 ガス 1モル当たりの発熱量を 9 5 ~ 1 0 5 K Jとするのが最も好 適であるといえる。
また、 本発明のガス発生剤組成物は 1 0 0 g当たりの発生ガスのモル 数が、 2 . 7 0モル以上、 好ましくは 2 . 8 0モル以上の組成物である ことが好ましい。 これよりも発生モル数が少ない場合には、 ガス発生剤 の使用量が増大し、 ガス発生器の小型 .軽量化が達成できない。 1 0 0 g当たりの発生ガスのモル数が高い場合であっても、 発熱量が高ければ 、 ガス発生器内に多量の冷却剤を必要とし、 また、 発熱量が低い場合で あっても、 1 0 0 g当たりの発生ガスのモル数が低くければ、 結局、 使 用ガス発生剤量が増し、 何れの場合においても、 ガス発生器の小型 -軽 量化達成は困難となる。
また、 ガス発生剤組成物 1 0 0 g当りの発生ガスのモル数が多ければ 、 極めて高温の発熱量を示しても、 発生ガス 1モル当りの発熱量を抑え ることができるが、 ガス発生剤組成物が装填されるガス発生器内の部品 の耐熱性の点から、 ガス発生剤組成物 1 gあたりの発熱量が 4 5 0 0 J 以下であることが好ましく、 4 0 0 0 J以下であることが更に好ましく 、 3 3 0 0 J以下であることがより好ましい。
また、 発生ガスの温度については、 バッグの損傷、 乗員の火傷の点か ら、 出来るだけ低く抑える必要がある。
このように、 本発明において、 前記 「発生するガス 1モル当たりの発 熱量」 「ガス発生剤組成物 1 gあたりの発熱量」 「ガス発生剤組成物 1 0 0 g当りの発生ガスのモル数」 といった特徴は製造するガス発生器の 性能やそれが配備される環境等に応じて最良となるように組み合わされ る。
なお、 上述した 「発生するガス 1モル当たりの発熱量」 「ガス発生剤 組成物 1 gあたりの発熱量」 「ガス発生剤組成物 1 0 0 g当りの発生ガ スのモル数」 は、 通常の方法により測定することができるが、 ガス発生 剤組成物の酸素バランスが 0の場合 (すなわち、 完全燃焼を起こす場合 ) などにおいては、 理論計算によってこれらの値を求めることができる 。 ガス発生剤成分中の炭素原子は C O 2 に、 窒素原子は N 2 になるとし て計算する。 また、 H 2 0が発生する場合は、 通常ガス (水蒸気) とし ッグに供給されるので、 ガスとして計富する。 本発明で用いる含窒素有機化合物としては、 一般的にエアバッグ用ガ ス発生剤に燃料として使用可能な含窒素有機化合物、 例えば、 テトラゾ —ル類、 グァニジン誘導体などを用いることができ、 ガス発生剤組成物 における含有量は、 酸化剤、 添加剤の種類、 酸素バランス等により異な るが、 好ましくは 3 0重量0 /0以上 70重量0 /0、 更に好ましく 3 5重量0 /0以 上 6 0重量%以下である。 また、 ガス発生剤組成物の燃焼により発生す るガス 1モル当たりの発熱量を 1 2 5 K J以下 (好ましくは 1 I 5 K J 以下) に、 発生するガスのモル数を 1 0 0 g当たり 2 . 7 0モル以上に 調整するために、 含窒素有機化合物として、 炭酸グァニジン、 硝酸グァ 二ジン、 硝酸アミノグァ二ジン及びそれらの混合物より成る群から選ば れる 1種を用いるのが好ましい。 特に硝酸グァニジンは比較的低コスト であり、 2 0 0 tより高い融点を有し、 極めて熱的に安定性であること 、更には耐環境性の観点などからガス発生剤に好適なものである。 更に 、 これらの化合物は、 分子中に、 酸素原子を含有し、 完全燃焼に必要な 酸化剤が少なくてすむことから高い発生モル数が期待できる。 また、 高 い負の標準生成ェンタルピ一厶 f を有し、 その結果、 ガス発生剤組成 物の燃焼中に放出されるエネルギー量は小さく、 ガス混食物の燃焼温度 を低く抑えることが出来る。 従って、 本発明の意図する発生ガス 1モル 当たりの発熱量を抑えるために好ましい燃料と言える。
含窒素有機化合物の 5 0 %粒径は、 大きすぎるとガス発生剤成形体と した場合の弓艘が低下し、 また、 小さすぎると粉砕に多大なコストを必 要とするため、 5 u m以上 8 0 i m以下が好ましく、 さらに好ましくは 、 1 0 ILL mi¾± 5 以下である。 なお、 本明細書において 5 0 %粒 径とは個数基準 5 0 %平均粒径を示すものである。
本発明で用いる酸化剤としては、 一般的にエアバッグ用ガス発生剂に 酸化剤として使用可能な酸化剤を用いることができ、 本発明のガス発生 剤組成物における含有量は、 含窒素有機燃料、添加剤の種類、 酸素バラ ンス等により異なるが、 好ましくは 3 0重量0 /0以上 7 0重量%以下、 更 に好ましく 3 5重量0 /0以上 6 0重量0 /0以下である。 また、 ガス発生剤組 成物の燃焼により発生するガス 1モル当たりの発熱量を 1 2 5 K J以下 (好ましくは 1 1 5 K J以下) に、 発生するガスのモル数を 1 0 0 g当 たり 2 . 7 0モル以上に調整するために、 酸化剤として、 相安定化硝酸 アンモニゥム、 過塩素酸アンモニゥム、 塩基性硝酸金属、 アルカリ金属 の硝酸塩、 過塩素酸塩又は塩素酸塩、 及びアル力リ土類金属の硝酸塩、 過塩素酸塩又は塩素酸塩からなる群より選ばれる 1種以上を用いるのが 好ましいが、 性能調整の容易さなどの点から、 前記の群より選ばれる 2 種以上を混合した混合酸化剤を用いるのが特に好ましい。
また、 塩基性硝酸金属としては、 塩基性硝酸銅などが、 アルカリ金属 の硝酸塩としては、 硝酸ナトリウム、 硝酸力リウム、 硝酸ストロンチウ ムなどが、 アル力リ金属の過塩素酸塩としては、 過塩素酸ナトリウム、 過塩素酸力リウム、 過塩素酸ストロンチウムなどが、 アル力リ金属の塩 素酸塩としては、 塩素酸ナトリウム、 塩素酸力リゥム、 塩素酸ストロン チウムなどが、 アルカリ土類金属の硝酸塩としては、 硝酸マグネシゥム 、 硝酸カルシウム、 硝酸バリウムなどが、 アルカリ土類金属の過塩素酸 塩としては、 過塩素酸マグネシウム、 過塩素酸カルシウム、 過塩素酸バ リウムなどが、 アル力リ土頁金属の塩素酸塩としては、 塩素酸マグネシ ゥム、 塩素酸カルシウム、 塩素酸バリウムなどが、 それぞれ例示できる なお、 燃焼性を改善する目的で米国特許 5 7 8 0 7 6 8に開示されて いるように、 過塩素酸塩を使用することは、 塩素系のガス成分を含み、 また、 発生ガス中に金属塩化物成分を生ずるおそれがあるので、 本発明 における酸化剤としては過塩素酸塩以外の酸化剤を用いるのが好ましい が、 その他の酸化剤と混合して、 または組み合わせる含室素有機化合物 などによっては、 十分本発明の効果を得ることができる。
酸化剤として混合酸化剤を用いる場合、 発生ガス中の固体成分を排他 し、 燃 性を改善するために、 混合酸化剤は、 硝酸ストロンチウム、 塩 基性硝酸銅及び相安定化硝酸アンモニゥムからなる群より選ばれる 1種 以上を含有するのが好ましい。 更に、 硝酸ストロンチウム、 塩基性硝酸 銅及び相安定化硝酸ァンモユウムからなる群より選ばれる 2種または 3 種で混合酸化剤を調製するのが好ましい。
混合酸化剤の一部に硝酸スト口ンチウムを使用すると、 ガス発生剤と してより適切な燃焼速度を得ることができる。 また、 硝酸ストロンチウ ムの燃 残渣は する含珪素化合物、 金属酸化合物とのスラグ形成反 応により、 容易にろ過しうる生成物となり、 発生ガス中の固体成分を排 他することができる。
また、 塩基性硝酸銅と、 アルカリ土類金属の硝酸塩及び相安定化硝酸 アンモニゥムからなる群より選ばれる少なくとも 1種との混合酸化剤も 好適である。
混合酸化剤の一部として塩基性硝酸銅を使用すると、 ガス発生剤組成 物の着火能を改善することができる。 一般に、 ガス発生剤は点火具と伝 火薬によって、 着火される。 着火能の悪いガス発生剤では発熱量の大き な伝火薬を多量に使用することを余儀なくされ、 ガス発生器当たりの総 発熱量が増大することとなり、 ガス発生器の小型 ·軽量化は達成できな い。
更に、 塩基性硝酸銅の燃焼時に発生する燃焼残渣は溶融状態の CiuO (ra • P. =1232°C ) /Cu (m. p. =1083 °C ) ミス卜であるが、 高融点化合物である ことから、 ガス発生器中の冷却部材により容易に除去できる。 また、 後 述する硝酸ス卜ロンチウ厶のスラグ、' 形成反応と共存させることにより 、 更に除去し易くなる。 この点においても、 酸化剤混合系は効果的であ る。
また、 混合酸化剤の一部に相安定化硝酸ァンモニゥムを使用すること が極めて有用である。 相安定化硝酸アンモニゥムを用いることにより、 発生ガスのモル数が増加し、 更に燃 J¾速度を増大させる効果があること がわかった。
また、 相安定化硝酸アンモニゥムを用いた系では、 例えば、 米国特許 第 5 7 8 3 7 7 3に開示されている T A G Nのような反応性の高い成分 と組合せると、 製造上の危険性が伴う。 そのため、 相安定化硝酸アンモ 二ゥムを用いる場合においては、 T A G N以外の含窒素有機化合物を用 いるのが好ましいが、 T A G Nと相安定化硝酸ァンモニゥムとの組み合 わせにおいても、 本発明の効果を十分発揮することができ、 その他の酸 化剤や含窒素有機化合物、 用いる添加剤によっては、 安全なガス発生剤 組成物となすことが可能である。
本発明に用いることのできる相安定化硝酸アンモニゥムの相安定化の 方法は特に限定されるものではなく、 1つの公知技術としては硝酸ァン モニゥムにカリウム塩を加える方法が挙げられる。 本発明では、 硝酸力 リウムに少量の過塩素酸力リウム、 硝酸力リゥム、 塩素酸力リウム、 亜 硝酸力リゥム、 硫酸力リゥム、 塩ィ匕カリウム、 蓚酸力リゥムを加えるこ とにより相安定化した硝酸アンモニゥムが好ましく、 熱安定性、 酸化能 力等から考えると、 過塩素酸力リゥム或いは硝酸力リゥムで相安定化し た硝酸ァンモニゥムが特に好ましい。 これらの力リウム塩の硝酸ァンモ ニゥムへの添加量は 1重量%以上 3 0重量0 /0以下で、 更に好ましくは 1 重量%以上〖 5重量%以下である。
相安定化剤として、 ジアンミン金属錯体などの金属錯休の使用も可能 である。 ジアンミ ン金属錯体を用いる場合、 金属成分としては銅、 ニッ ゲル、 及び亜^^が好ましい。
また、 混合酸化剤として用いる相安定化硝酸アンモニゥムのガス発生 剤組成物における含有量は、 含窒素有機燃料、 添加剤の種類、 酸素バラ ンス等により異なるが、 好ましくは 1重量%以上 4 0重量%以下、 更に 好ましく 1重量0 /0以上 3 0重量0 /0以下である。 カリウム塩を用いて相安 定化された硝酸アンモニゥムを用いる場合には、 ガス発生剤の燃焼によ り低融点、 低沸点の酸化力リウム、 炭酸力リゥム、 或いは塩化力リウム を生成する。 これらのィ匕合物はガス発生器内のフィルターでろ過するこ とが極めて困難であり、 ガス発生器より外へ流出し、 バッグの損傷、 乗 員の火傷の恐れがあること力ヽら、 ガス発生剤組成物における相安定化石肖 酸ァンモニゥムの含有量は上記範囲内に設計することが好ましい。 また、 酸化剤の粒径は、 大きすぎるとガス発生剤成形体とした場合の 強度が低下し、 また、 小さすぎると粉砕に多大なコストを必要とするた め、 5 0 %粒径が 5 m以上 8 0 m以下のものが好ましく、 5 0 %粒 径が i 0 m以上 5 0〃m以下であるものはさらに好ましい。
本発明で用いる添加剤としては、 一般的にエアバッグ用ガス発生剤に 添加剤として使用可能な添加剤を用いることができ、 燃焼残渣を容易に ろ過可能にするための成分 (スラグ形成剤) ゃ耐環境性能を付与するた めのバインダなどが挙げられる。 添加剤のガス発生剤組成物中における 含有量は、 好ましくは 1重量%以上 1 5重量%以下、 更に好ましくは 1 重量%以上 1 0重量%以下である。
本発明において使用しうるスラグ形成剤としては、 一般的にエアバッ グ用ガス発生剤に添加剤として使用可能なスラグ形成剤を用いることが でき、 窆化珪素、 炭化珪素、 二酸化珪素、 珪酸塩などを具体例としてあ げることができるが、 本発明においては特にシラン化合物を採用するの が好ましい。 本発明においてスラグ形成剤として使用しうるシラン化合物は、 有機 珪素化合物であり、 特に、 ビニルシラン、 エポキシシラン、 アクリルシ ラン、 アミノシランなどのシランカツプリング剤として知られているシ ラン化合物が好適である。 本発明のガス発生剤組成物中のシラン化合物 の含有量は 0 . 1重量0 /o以上 1 5重量%以下、 より好ましくは Q . 5重 量%以上 1 0重量%以下、 更に好ましくは 0 . 5重量%以上 8重量%以 下である。 この範囲よりも多い場合には、 燃焼温度が上昇し、 発生ガス 中に人体に害のある窒素酸化物を発生するおそれがある。 更には、 ガス 発生剤の発熱量が増加し、 本発明の目的が達成できないおそれがある。 本発明のガス発生剤組成物にシラン力ップリング剤を含有することによ り、 硝酸ス卜口ンチウムの'燃焼反応から生成する燃 残渣は、 ガス発生 器内のフィルタ一により容易にろ過される化合物へと変化する。 また、 シランカツプリング剤を含有させることにより、 成形体としての強度を 保証し、 更には、 燃焼速度を増加させる効果があることがわかった。 本発明において使用しうるバインダとしては、 一般的にエアバッグ用 ガス発生剤に添加剤として使用可能なバインダを用いることができ、 そ の成形方法により異なる。 具体的なプレス成形用バインダとしては合成 ヒドロタルサイ ト、 酸 白土、 タルク、 ベントナイ ト、 ゲイソゥ土、 二 硫ィ匕モリブデン、 結晶'性セルロース、 グラフアイ ト、 ステアリン酸マグ ネシゥム、 ステアリン酸カルシウム等が挙げられる。 また、 押出成形用 バインダとしては、 カルボキシメチルセルロースのナト リウム塩、 メチ ルセルロース、 ヒドロキシェチルセル口一ル、 ヒドロキシフ。口ピルセル 口一ス、 ポリビニルアルコール、 グァガム、 ポリビニルピロリ ドン、 ボ リアクリルアミ ド又はこれらの混合物等をあげることができる。 押出成 形の場合、 これらバインダと滑り斉リ、具体的には界面活性剤、 力'ソフ。リ ング剤、 グラフアイ ト、 二硫化モリブデン等を 0 · 5重量0 /0以上 5重量 %以下添加することにより、 成形性が向上する。
本発明のガス発生剤組成物中におけるバインダの含有量は 0 .
%以上 1 5重量。 /0以下が好ましく、 更に好ましくは 1 . 0重量%以上 1 0重量06以下である。 含有量がこれより多い場合には、 燃焼速度を低下 させ、 さらには発生ガスのモル数が低下することから、 充分な乗員保護 性能を果たさないおそれがある。 また、 これより少ない場合には耐環境 性能に劣るおそれがある。
また、 本発明においては添加剤として燃 J¾調整剤を用いることができ る。 使用可能な燃魏調整剤としてはガス発生剤の膨兗を調整できるもの であればよいが、 具体的には酸化鉄、 酸化ニッケル、 酸化銅、酸化亜鉛 、 酸ィ匕マンガン、酸ィ匕クロム、 酸ィ匕コバルト、 酸化モリプデン、 酸化バ ナジゥム、 酸ィ匕タングステン等の金属酸化物、 水酸化銅、 水酸ィ匕コバル ト、 7 酸化亜鉛、 水酸化アルミニウム等の金属水酸ィ匕物、 及び活性炭粉 末、 グラフアイ ト、 力一ボンブラック等の炭素類等を例示することがで きる。 ガス発生剤組成物中の燃焼調整剤含有量は 0重量%以上 1 0重量 %以下、 更に好ましくは 0重量%以上 5重量%以下である。
次に、 本発明の好ましい組合せの具体例について説明する。 本発明の ガス発生剤組成物において、 含窒素有機化合物に硝酸グァニジン、 酸化 剤に硝酸ストロンチウム、 塩基性硝酸銅、 相安定化硝酸アンモニゥムか らなる群より選ばれる少なくとも 2種を用いたものが好ましく、 具体的 には、
♦硝酸グァニジン: 4 0重量0 /0以上 6 0重量0 /0以下、 硝酸ストロンチ ゥ厶: 1 5重量0 /0以上 5 0重量0 /0以下、 塩基性硝酸銅: 1重量0 /0以上 3 0重量%以下、 添加剤:残余分 (好適には 0 . 5重量%以上 1 0重量% 以下)
♦硝酸グァニジン: 4 0重量0 /0以上 6 0重量0 /0以下、 硝酸ストロンチ ゥム : 1 5重量%以上 5 0重量%以下、塩基性硝酸銅: 1重量%以上 3 0重量0 /0以下、 相安定化硝酸アンモニゥム : 1重量0 /0以上 3 0重量0 /0以 下、 添加剤:残余分 (好適には O r 5重量%以上 1 0重量%以下) などが挙げられる。
添加剤としては、 シランカツプリング剤と合成ヒドロタルサイ 卜の組 合せ、押出成形用バインダと滑り剤との組合せ、 酸^白土などが好まし く、 これらを用いた具体例として、
♦硝酸グァニジン : 4 0重量0 /0以上 6 0重量0 /0以下、 硝酸ス卜ロンチ ゥム : 1 5重量%以上 5 0重量%以下、 塩基性硝酸銅: 1重量0 /0以上 2 0重量0 /0以下、 シラン力ップリング剤: 0 . 5重量0 /0以上 1 0重量0 /0以 下、 合成ヒドロタルサイト : 0 . 5重量%以上 1 0重量%以下
♦硝酸グァニジン : 4 0重量%以上 6 0重量0 /0以下、 硝酸ストロンチ ゥム : 1 5重量%以上 5 0重量%以下、塩基性硝酸銅: 1重量%以上 3 0重量%以下、 酸性白土: 0 . 5重量%以上 1 0重量%以下
♦硝酸グァニジン : 4 0重量0 /0以上 6 0重量0 /0以下、 硝酸ス卜口ンチ ゥム : 1 5重量%以上 5 0重量0 /0以下、 塩基性硝酸銅: 1重量%以上 2 0重量%以下、 相安定化硝酸アンモニゥム : 1重量%以上 3 0重量0 /0以 下、 シランカップリング剤: 0 . 5重量0 /0以上 1 0重量0 /0以下、合成ヒ ドロタルサイト : 0 . 5重量0 /0以上 1 0重量0 /0以下
♦硝酸グァニジン: 4 0重量%以上 6 0重量%以下、 硝酸スト口ンチ ゥム : 1 5重量%以上 5 0重量以下0 /0、塩基性硝酸銅: 1重量0 /0以上 3 0重量%以下、押出成形用バインダ: i重量%以ヒ 1 0重量%以下、 滑 り剤: 0重量%以上 5重量%以下
♦硝酸グァニジン : 4 0重量%以上 6 0重量%以下、 硝酸ストロンチ ゥ厶 : 1 5重量0 /0以上 5 0重量0 /0以下、 塩基性硝酸銅: 1重量0 /0以上 3 0重量%以下、 バインダ: 1重量%以上 1 0重量%以下、酸性白土: 1 W
重量%以上 5重量%以下、 グラフアイ ト : 0 . 2重量%以上 5重量%以 下などが挙げられる。
次に本発明のガス発生剤組成物の製造方法の一例を説明する。 前記し た含窒素有機化合物、 酸化剤、 及び添加剤は、 まず、 V型混合機、 また はボールミル等によって混合される。 ここに、 シランカップリング剤を 適量噴霧し、 さらに水、 又は溶媒を噴霧しながら混合し、 湿状の薬塊を 得る。 また、 予めシランカップリング剤を水、 または溶媒と混合してか ら噴霧してもよい。 この時、 含窒素有機化合物、 酸ィ匕剤とシランカップ リング剤が化学結合を起こし、 両者を結合する力が増加する。 この後、 造粒をネ亍い、 乾燥させると強固な顆粒が得られる。 これを打錠し、 ガス 発生剤成型体としてもよい。 また、 湿状の薬塊をそのまま押出成型機に より、 押出成型品してもよい。 いずれの場合も、 ガス発生剤は成型後、
1 0 51前後の温度で乾燥させることによって、 過酷な環境条件にも耐 えうる強固なガス発生剤成型体が得られる。
また、 本発明のガス発生剤組成物の成形体制犬については、例えば、 粉状、 顆粒状、 球状、 円柱状、 単子し円筒状、 多孔円筒状等のいずれの形 態をとつてもよく、 特に限定されるものではない。
[実施例]
以下に実施例及び比較例を挙げて本発明を更に具体的に説明するが、 本発明はこれらの実施例のみに限定されるものではない。
実施例 1
含窒素有機化合物成分として硝酸グァニジン: 5 2 . 9重量部 ( 5 0 %粒径、 2 0 w m) 、 酸ィ匕剤成分として硝酸ストロンチウム: 3 0 . 8 重量部 ( 5 0 %粒径、 1 3 m) 、 及び塩基性硝酸銅 : 1 0 . 9重量部
( 5 0 %粒径 1 0 m) 、 バインダとして合成ヒドロタルサイ ト : 2 . 7重量部 ( 5 0 %粒径、 1 0 ^ m) を V型混合機により乾式混合した。 次に、 シラン化合物として N— 一 (アミノエチル) 一 γ—ァミ ノプロ ビルトリメ トキシシラン: 2. 7重量部を、 ガス発生剤組成物全量に対 して、 1 0重量0 /0の水で希釈し、 この水溶液を噴霧しながら混合し、 そ の後湿式造粒を行い、 粒径 1 mm以下の顆粒状にした。 この顆粒を 90 °Cで 1 5時間乾燥した後、 回転式打錠機で直径 5 mm、 高さ し 5 mm の形;]犬にプレス成形し、 その後、 1 0 5°Cで 1 5時間乾燥させ、 本発明 のガス発生剤組成物の錠剤を得た。
得られた錠剤をカロリーメータ (島律製作所製、 型式; CA— 4 P) により発熱量を測定した。 その結果を、 1 g当りの発熱量、 発生ガスの モル数、 モル当たり発熱量とともに表 1に示す。
実施例 2
含窒素有機化合物成分として硝酸グァニジン: 5 し 0重量部 ( 50 %粒径、 20 m) 、 酸化剤成分として硝酸ストロンチウム: 2 5. I 重量部 ( 50 %粒径、 1 3 m) 、 塩基性硝酸銅: 8. 9重量部 ( 50 %粒径 1 0 m) 、 相安定化硝酸アンモニゥム (相安定化剤として 1 5 重量0 /6の硝酸カリウムを含有) : 9. 6重量部、 バインダとして合成ヒ ドロタルサイト : 2. 7重量部 ( 50%粒径、 1 0 urn) 、 シラン化合 物として N— 一 (アミノエチル) 一ァーァミノプロビルトリメ トキシ シラン: 2. 7重量部を用い、 実施例 1と同様の方法にてガス発生剤組 成物を調製し、 発熱量を測定した。 その結果を、 1 g当りの発熱量、 発 生ガスのモル数、 モル当たり発熱量とともに表 1に示す。
実施例 3
含窒素有機化合物成分として硝酸グァニジン: 54. 5重量部 ( 50 %粒径、 20 urn) 、 酸化剤成分として硝酸ストロンチウム: 2 2. 0 重量部 ( 5 0%粒径、 1 3 m) 、 塩基性硝酸銅 : 2 1. 5重量部 ( 5 0%粒径 I Q ) 、 バインダとして酸性白土: 2、 0重量部を混合、 プレス成形後、 ガス発生剤組成物を調製し、 発熱量を測定した。 その結 果を、 1 g当りの発熱量、 発生ガスのモル数、 モル当たり発熱量ととも に表 1に示す。
実施例 4
含窒素有機化合物成分として硝酸グァニジン: 5 2. 7重量部 ( 5 0 %粒径、 2 0 m) 、 酸化剤成分として硝酸ストロンチウム: 2 2. 4 重量部 ( 5 0%粒径、 1 3 im) .塩基性硝酸銅 : 2 1. 9重量部 ( 5 0%粒径 1 0 μτη) . バインダとして酸性白土: 、 0重量部、 燃焼調 整剤としてグラフアイ卜 : し 0重量部を混合、 プレス成形後、 ガス発 生剤組成物を調製し、 発熱量を測定した。 その結果を、 1 g当りの発熱 量、 発生ガスのモル数、 モル当たり発熱量とともに表 Iに示す。
比較例 1
含窒素有機化合物成分として 5—アミノテトラゾール: 3 2. 5重量 咅 P ( 5◦ %粒径、 1 5 ) . 酸化剤成分として硝酸ストロンチウム: 5 9. 5重量部 ( 5 0 %粒径、 1 3 m) 、 シラン化合物として窒化珪 素: 3. 5重量部 (5 0%粒径、 5 m) 、 バインダとして合成ヒドロ 夕ルサイト : 4. 5重量部 ( 5 0%粒径、 1 0〃m) を V型混合機によ り乾式混合した。 その後、 回転式打錠機で直径 5 mm、 高さ 2. 2 mm の形状にプレス成形し、 その後、 1 0 5°Cで 1 5時間乾燥させ、 ガス発 生剤組成物の錠剤を調製し、発熱量を測定した。 その結果を、 1 g当り の発熱量、 発生ガスのモル数、 モル当たり発熱量とともに表 1に示す。
比較例 2
含窒素有機化合物成分として二ト口グァニジン: 5 0. 7重量部 ( 5 0%粒径、 1 5 m) 、酸化剤成分として硝酸ストロンチウム: 2 2. 8重量部 ( 5 0%粒径、 1 3 m) 、 過塩素酸アンモニゥム: 2 1 . 7 重量部 ( 5 0 %粒径、 3 0 m) 、 シラン化合物として窒化珪素: 1. 5重量部 ( 5 0 %粒径、 5 w m) 、 バインダとして合成ヒドロタルサイ ト : 3. 3重量部 ( 5 0%粒径、 1 0 rn) を用い、 比較例 1と同様の 方法にてガス発生剤組成物の錠剤を調製し、 発熱量を測定した。 その結 果を、 1 g当りの発熱量、 発生ガスのモル数、 モル当たり発熱量ととも に表 1に示す。
比較例 3
含窒素有機化合物成分としてニトログァニジン : 3 1. 5重量部 ( 5 0 %—粒径、 1 5 urn) .酸化剤成分として硝酸ス卜ロンチウム : 5 1
. 5重量部 ( 5 0%粒径、 1 3 um) 、 バインダとして酸性白土: 7. 0重量部 (5 0%粒径、 5〃m) 及びカルボキシメチルセル口一ルのナ トリゥム塩: 1 0重量部 ( 5 0%粒径、 1 0 urn) を粉末混合した後、 組成物に対し、 1 0重量。 /0の水を加え、混連した後、 真空混連押出成形 器にて、 直径 2imn、 高さ 2 mmのペレツ卜の押出成形した。 得られた 成形体は、 1 0 5°Cで 1 5時間乾燥させ、 試験サンプルを得た。 本組成 物についても同様に、 発熱量を測定した。 その結果を、 1 g当りの発熱 量、 発生ガスのモル数、 モル当たり発熱量とともに表 1 に示す。
(表 1 )
発驢 発生ガスのモル数 モル当たり発熱:
[ J/g] [ モル/ 0 0 g] [K J/モ 実施例 1 3 0 2 0 3. 1 1 9 7 実施例 2 3 2 7 0 3. 3 1 9 9 実施例 3 2 9 4 0 2. 9 6 9 9 実施例 4 2 9 7 0 2. 9 6 1 0 0 比較例 1 3 2 0 0 2. 2 9 1 4 0 比較例 2 4 6 5 0 3. 6 0 1 2 9 比較例 3 3 5 0 0 2. 4 2 1 5 [試験例]
次に、 本発明のガス発生剤組成物である実施例 2と比較例 1の組成物 をガス発生器にそれぞれ組み、 密閉式 6 0しタンク試験を実施した。 試 験に用いたガス発生剤量は何れも発生ガスのモル数が 1モルとなるよう 調整した。 結果を以下の表 2にまとめた。
(表 2 )
実施例 2 比較例 1
[g] 3 0 4 3 使用冷却材重量 [g] 7 0 1 40 タンク内圧力 [KP a] 1 6 7 1 75 最高圧到達時間 [msec] 7 6. 2 75. 4 タンク内温度 [°C] 2 2 2 2 47 注) 冷却材の材質: SWM (J I S規格)
表 2の結果から、 ガス発生器の出力性能を合わせた場合、 本発明のガ ス発生剤組成物を用いたガス発生器では、 便用薬量及び使用冷却剤量を 大幅に減らすことが可能である。 即ち、 本発明のガス発生剂組成物はガ ス発生器の小型 ·軽量化を達成しうる組成物と言える。 産業上の利用可能性
本発明は、 ガス発牛器に使用可能な好適な燃 速度を有したガス発生 剤組成物において、 ガス発生剤の燃:焼により発生するガス 1モル当たり の発熱量を抑えることで、 ガス発生器の小型 ·軽量化を達成している。 従って、 本発明のガス発生剤組成物は、 ガス発生器の小型 .軽量化を 可能とするガス発生剂組成物として最適である。 そして、 本発明のガス 発生剤組成物を使用したガス発生器は小型 .軽量化を可能とするガス発 生器として最適である。

Claims

請 求 の 範 囲
1 . 含窒素有機化合物、酸化剤及び添加剤を含有するガス発生剤組 成物にあって、 ガス発生剤の燃焼により発生するガス 1モル当たりの発 熱量が 1 2 5 K J以下であるガス発生剤組成物。
2. 発生するガス 1モル当たりの発熱量が 1 1 5 K J以下である請 求項 1に記載のガス発生剤組成物。
3. ガス発生剤組成物の燃焼により発生するガスのモル数が該組成 物 1 0 0 g当たり 2 . 7 0モル以上である請求項 1に記載のガス発生剤 組成物。
4. ガス発生剤組成物 1 g当りの発熱量が 4 5 0 0 J以下である請 求項 1に己載のガス発生剤組成物。
5. 上記含窒素有機化合物が、炭酸グァニジン、 硝酸グァニジン、 硝酸アミノグァ二ジン及びそれらの混合物より成る群から選ばれる 1種 である請求項 1に記載の組成物。
6. 上記酸化剤が塩基性石肖酸銅と、 アルカリ土類金属の硝酸塩及び 相安定化硝酸アンモニゥムからなる群より選ばれる少なくとも 1種との 混合酸化剤である請求項 1に記載の組成物。
7. 上記添加剤がシラン化合物であり、 その含有量が、 0 . 1重量 %以上 1 5重量%以下である請求項 1に記載のガス発生剤組成物。
8. 上記添加剤が成形用バインダであり、 その含有量が 0 . 1重量 %以上 1 5重量%以下である請求項 1に記載のガス発生剤組成物。
9. 4 0重量%以上 6 0重量%以下の硝酸グァニジン、 1 5重量% 以上 5 0重量0 /0以下の硝酸ストロンチウム、 1重量%以上 3 0重量0 /0以 下の塩基性硝酸銅、 0 . 5重量%以下 1 0重量%以上の添加剤からなる 請求項 1に記載のガス発生剤組成物。
10. 4 0重量%以上 6 0重量%以下の硝酸グァニジン、 1 5重量% 以上 5 0重量%以下の硝酸ストロンチウム、 1重量%以上 3 0重量%以 下の塩基性硝酸銅、 1重量%以上 3 0重量%以下の相安定化硝酸ァンモ 二ゥム、 0 . 5重量0 /0以上 1 0重量0 /0以下の添、加剤からなる請求項 1に 記載のガス発生剤組成物。
11. 請求項 Iに記載のガス発生剤組成物を使用したガス発生器。
12. 請求項 2に記載のガス発生剤組成物を使用したガス発生器。
13. 請求項 3に記載のガス発生剤組成物を使用したガス発生器。
14. 請求項 4に記載のガス発生剤組成物を使用したガス発生器。
2
15. 請求項 5に記載のガス o発生剤組成物を使用したガス発生器。
16. 請求項 6に記載のガス発生剤組成物を使用したガス発生器。
17. 請求項 7に記載のガス発生剤組成物を使用したガス発生器。
18. 請求項 8に記載のガス発生剤組成物を使用したガス発生器。
19. 請求項 9に記載のガス発生剤組成物を使用したガス発生器。
20. 請求項 10に記載のガス発生剤組成物を使用したガス発生器。
PCT/JP2001/008780 2000-10-10 2001-10-05 Composition d'agent de generation de gaz, et generateur de gaz fonctionnant avec cette composition WO2002030850A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01974697A EP1342705A4 (en) 2000-10-10 2001-10-05 GAS GENERATOR COMPOSITION AND GAS GENERATOR IN WHICH IT IS USED
KR10-2003-7004994A KR100505835B1 (ko) 2000-10-10 2001-10-05 가스 발생제 조성물 및 그것을 사용한 가스 발생기
US10/398,215 US6958100B2 (en) 2000-10-10 2001-10-05 Gas-generating agent composition and gas generator employing the same
AU2001294190A AU2001294190A1 (en) 2000-10-10 2001-10-05 Gas-generating agent composition and gas generator employing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000308685 2000-10-10
JP2000-308685 2000-10-10
JP2001-284371 2001-09-19
JP2001284371A JP4641130B2 (ja) 2000-10-10 2001-09-19 ガス発生剤組成物およびそれを使用したガス発生器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP11156057.9A Previously-Filed-Application EP2399884B1 (en) 2000-10-10 2001-10-05 Gas-generating agent composition and gas generator employing the same

Publications (1)

Publication Number Publication Date
WO2002030850A1 true WO2002030850A1 (fr) 2002-04-18

Family

ID=26601753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008780 WO2002030850A1 (fr) 2000-10-10 2001-10-05 Composition d'agent de generation de gaz, et generateur de gaz fonctionnant avec cette composition

Country Status (8)

Country Link
US (1) US6958100B2 (ja)
EP (2) EP1342705A4 (ja)
JP (1) JP4641130B2 (ja)
KR (1) KR100505835B1 (ja)
CN (1) CN1255363C (ja)
AU (1) AU2001294190A1 (ja)
CZ (1) CZ20031260A3 (ja)
WO (1) WO2002030850A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030230367A1 (en) * 2002-06-14 2003-12-18 Mendenhall Ivan V. Micro-gas generation
US7618506B2 (en) * 2002-10-31 2009-11-17 Daicel Chemical Industries, Ltd. Gas generating composition
US8101033B2 (en) * 2004-07-26 2012-01-24 Autoliv Asp, Inc. Alkali metal perchlorate-containing gas generants
JP4782485B2 (ja) * 2004-08-10 2011-09-28 ダイセル化学工業株式会社 エアバッグ用ガス発生器
US7811397B2 (en) 2004-09-27 2010-10-12 Daicel Chemical Industries, Ltd. Gas generating agent
WO2007012348A1 (en) * 2005-07-26 2007-02-01 Dalphi Metal España, S.A. Gas generating composition for automotive use manufactured by pellet formation
US7758709B2 (en) 2006-06-21 2010-07-20 Autoliv Asp, Inc. Monolithic gas generant grains
JP5422096B2 (ja) * 2006-11-02 2014-02-19 株式会社ダイセル ガス発生剤組成物
US9193639B2 (en) * 2007-03-27 2015-11-24 Autoliv Asp, Inc. Methods of manufacturing monolithic generant grains
US8057611B2 (en) * 2007-08-13 2011-11-15 Autoliv Asp, Inc. Multi-composition pyrotechnic grain
US8815029B2 (en) * 2008-04-10 2014-08-26 Autoliv Asp, Inc. High performance gas generating compositions
US8808476B2 (en) * 2008-11-12 2014-08-19 Autoliv Asp, Inc. Gas generating compositions having glass fibers
WO2010103811A1 (ja) * 2009-03-13 2010-09-16 日本化薬株式会社 ガス発生剤組成物及びその成形体、並びにそれを用いたガス発生器
US8231747B2 (en) * 2009-07-29 2012-07-31 Autoliv Asp, Inc. Inflator assembly
EP2489649A4 (en) * 2009-10-15 2014-01-01 Nippon Kayaku Kk COMPOSITION FOR A GAS GENERATOR, COMPOSITION OF THE COMPOSITION AND GAS PRODUCING EQUIPMENT EQUIPPED WITH THE FORM PRODUCT
FR2975097B1 (fr) 2011-05-09 2015-11-20 Sme Composes pyrotechniques generateurs de gaz
WO2014061355A1 (ja) * 2012-10-15 2014-04-24 積水化学工業株式会社 ガス発生材及びマイクロポンプ
JP5639137B2 (ja) * 2012-10-15 2014-12-10 積水化学工業株式会社 ガス発生材及びマイクロポンプ
US9051223B2 (en) 2013-03-15 2015-06-09 Autoliv Asp, Inc. Generant grain assembly formed of multiple symmetric pieces
JP5580923B1 (ja) * 2013-03-18 2014-08-27 積水化学工業株式会社 ガス発生材、ガス発生材の製造方法及びマイクロポンプ
FR3097546B1 (fr) * 2019-06-24 2021-09-24 Arianegroup Sas Composition pyrotechnique génératrice de gaz
CN111675589B (zh) * 2020-05-15 2021-08-06 湖北航鹏化学动力科技有限责任公司 一种气体发生剂组合物、制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259085A (ja) * 1997-03-21 1998-09-29 Daicel Chem Ind Ltd 低残渣エアバッグ用ガス発生剤組成物
JPH10297991A (ja) * 1997-04-25 1998-11-10 Daicel Chem Ind Ltd 低残渣エアバッグ用ガス発生剤組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545272A (en) * 1995-03-03 1996-08-13 Olin Corporation Thermally stable gas generating composition
US5641938A (en) * 1995-03-03 1997-06-24 Primex Technologies, Inc. Thermally stable gas generating composition
KR100253750B1 (ko) 1995-07-27 2000-04-15 다께다 가즈히꼬 에어백용화약조성물및그화약조성물의제조방법
US5608183A (en) * 1996-03-15 1997-03-04 Morton International, Inc. Gas generant compositions containing amine nitrates plus basic copper (II) nitrate and/or cobalt(III) triammine trinitrate
JP4409632B2 (ja) 1996-12-28 2010-02-03 日本化薬株式会社 エアバッグ用ガス発生剤
US5841065A (en) * 1997-04-15 1998-11-24 Autoliv Asp, Inc. Gas generants containing zeolites
DE29806504U1 (de) * 1998-04-08 1998-08-06 TRW Airbag Systems GmbH & Co. KG, 84544 Aschau Azidfreie, gaserzeugende Zusammensetzung
US6045638A (en) * 1998-10-09 2000-04-04 Atlantic Research Corporation Monopropellant and propellant compositions including mono and polyaminoguanidine dinitrate
US6077372A (en) * 1999-02-02 2000-06-20 Autoliv Development Ab Ignition enhanced gas generant and method
JP4131486B2 (ja) 1999-07-09 2008-08-13 日本化薬株式会社 自動発火性エンハンサー剤組成物
CZ20033101A3 (cs) 2001-04-20 2004-03-17 Nippon Kayaku Kabushiki-Kaisha Plynotvorná směs

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259085A (ja) * 1997-03-21 1998-09-29 Daicel Chem Ind Ltd 低残渣エアバッグ用ガス発生剤組成物
JPH10297991A (ja) * 1997-04-25 1998-11-10 Daicel Chem Ind Ltd 低残渣エアバッグ用ガス発生剤組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1342705A4 *

Also Published As

Publication number Publication date
EP2399884A2 (en) 2011-12-28
JP2002187790A (ja) 2002-07-05
US6958100B2 (en) 2005-10-25
CZ20031260A3 (cs) 2003-08-13
US20040000362A1 (en) 2004-01-01
EP2399884B1 (en) 2017-02-22
AU2001294190A1 (en) 2002-04-22
EP2399884A3 (en) 2012-01-18
KR20030040525A (ko) 2003-05-22
CN1468204A (zh) 2004-01-14
EP1342705A1 (en) 2003-09-10
EP1342705A4 (en) 2011-01-19
JP4641130B2 (ja) 2011-03-02
KR100505835B1 (ko) 2005-08-02
CN1255363C (zh) 2006-05-10

Similar Documents

Publication Publication Date Title
WO2002030850A1 (fr) Composition d'agent de generation de gaz, et generateur de gaz fonctionnant avec cette composition
US5670740A (en) Heterogeneous gas generant charges
US6605233B2 (en) Gas generant composition with coolant
KR19990082100A (ko) 비아지드 개스 발생 조성물
WO1998029361A1 (fr) Agent gazogene pour airbag
WO1999046009A2 (en) Smokeless gas generant compositions
JPH10501516A (ja) ビルトイン触媒を含有する非アジドガス発生組成物
WO2004024652A1 (ja) ガス発生剤組成物
JP3848257B2 (ja) ガス発生物のための推進薬
WO1999030926A2 (en) Pyrotechnic gas generant composition including high oxygen balance fuel
JP2000103691A (ja) ガス発生剤組成物
JP3907548B2 (ja) メラミンシアヌレートを含むインフレータ用ガス発生剤組成物
US6589375B2 (en) Low solids gas generant having a low flame temperature
WO2003086814A2 (en) Gas generating composition
WO2000014032A1 (fr) Composition emettant du gaz
WO1998042641A1 (fr) Composition servant a generer un gaz pour sac gonflable avec une quantite limitee de residus
JP2002160992A (ja) ガス発生剤
JP2000169276A (ja) ガス発生剤組成物
US6113713A (en) Reduced smoke gas generant with improved mechanical stability
JP3953187B2 (ja) ガス発生剤組成物
JP2002519278A (ja) 高酸素バランス燃料を含んでなる着火式気体発生組成物
JP4318238B2 (ja) ガス発生剤組成物
WO1995032165A1 (fr) Generateur de gaz pour coussin gonflable
JPH08165186A (ja) エアバッグ用ガス発生剤
EP1448497A2 (en) Gas-generant formulations containing guanidine dinitramide and inflatable devices employing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 018169996

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10398215

Country of ref document: US

Ref document number: 1020037004994

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001974697

Country of ref document: EP

Ref document number: PV2003-1260

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1020037004994

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: PV2003-1260

Country of ref document: CZ

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001974697

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020037004994

Country of ref document: KR