WO2010103811A1 - ガス発生剤組成物及びその成形体、並びにそれを用いたガス発生器 - Google Patents

ガス発生剤組成物及びその成形体、並びにそれを用いたガス発生器 Download PDF

Info

Publication number
WO2010103811A1
WO2010103811A1 PCT/JP2010/001665 JP2010001665W WO2010103811A1 WO 2010103811 A1 WO2010103811 A1 WO 2010103811A1 JP 2010001665 W JP2010001665 W JP 2010001665W WO 2010103811 A1 WO2010103811 A1 WO 2010103811A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
gas
generant composition
gas generant
perchlorate
Prior art date
Application number
PCT/JP2010/001665
Other languages
English (en)
French (fr)
Inventor
智博 緒方
英史 佐藤
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN2010800182086A priority Critical patent/CN102414147A/zh
Priority to JP2011503708A priority patent/JP5719763B2/ja
Priority to EP10750568.7A priority patent/EP2407443A4/en
Priority to US13/256,436 priority patent/US20120000583A1/en
Publication of WO2010103811A1 publication Critical patent/WO2010103811A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids

Definitions

  • the present invention relates to a gas generant composition, a molded article of the gas generant composition, and a gas generator using the molded article of the gas generant composition, and more particularly to an electric signal for starting combustion.
  • the gas generating composition is suitable for use in a gas generator for a vehicle occupant safety device.
  • airbags and seat belt pretensioners have been widely used as vehicle occupant safety devices using gunpowder in measures to improve automobile safety.
  • the principle of the airbag device is that an electric signal from a sensor that detects a vehicle collision generates a large volume of gas by burning a gas generating agent filled in the gas generator. Is deployed between the occupant and the inner wall of the vehicle body.
  • a seat belt pretensioner in which a vehicle collision is detected by a sensor, a gas generating agent filled in the gas generator is burned by an electric signal from the sensor, and a gas is generated. The occupant is protected by operating the seat belt winding mechanism and increasing the restraining force of the seat belt.
  • a gas generator for a vehicle occupant safety device is required to respond very quickly to an electrical signal from a collision detection sensor. That is, the gas generator has the ability to receive the electrical signal from the collision detection sensor, burn the gas generating agent to generate gas, and reach the maximum pressure of the generated gas in tens of milliseconds. Required.
  • gas generators with excellent responsiveness. Specifically, the ignition flame of the igniter in the gas generator is required.
  • a gas generating agent that can be ignited and ignited promptly and that can completely burn in a short time to generate gas. With such a gas generating agent with excellent responsiveness, it is suitable as a vehicle occupant safety device, and has an extremely short response time from the start signal due to a collision until reaching the maximum pressure of the generated gas.
  • a gas generator exhibiting properties can be provided.
  • the gas generating agent used in the gas generator is generally prepared with a mixed composition of a fuel component and an oxidant component as a main component.
  • a fuel component a nitrogen-containing organic compound is used instead of the metal azide compound that has been used before, and a non-azide gas generant composition comprising a combination of the nitrogen-containing organic compound and an inorganic oxidizing agent is proposed.
  • the role of the oxidant component is to supply oxygen to the fuel component to improve combustibility and to suppress the generation of undesirable gas components such as carbon monoxide, ammonia, nitric oxide, nitrogen dioxide, hydrogen chloride and the like. Required.
  • Patent Document 1 discloses a gas generating composition containing a nitrogen-containing compound, a basic metal nitrate, and a chloric acid compound.
  • Patent Document 2 discloses a gas generant composition containing a nitrogen-containing fuel, a copper-containing compound, and an alkali metal perchlorate having an average particle size exceeding 100 microns.
  • an object of the present invention is to solve the above-mentioned problems of the prior art and provide a gas generant composition having improved ignitability and combustibility and a molded body of the gas generant composition.
  • Another object of the present invention is to provide a molded product of the gas generant composition, so that the time from the transmission of an electric signal for starting combustion to the maximum pressure of the generated gas is extremely short, that is,
  • An object of the present invention is to provide a gas generator exhibiting excellent responsiveness.
  • the present inventors have found that a gas containing a nitrogen-containing organic compound as a fuel component and a metal nitrate and / or a basic metal nitrate and a perchlorate as an oxidant component.
  • the 50% particle size of the perchlorate is limited to a range of 1 to 50 ⁇ m, and the content of the perchlorate in the total mass of the oxidant component is 5% by mass or more and By limiting to the range of less than 35% by mass, it was found that the ignitability and combustibility of the gas generant composition can be remarkably improved, and the present invention has been completed.
  • the gas generant composition of the present invention comprises a nitrogen-containing organic compound as the fuel component (A), a metal nitrate and / or basic metal nitrate (B-1) as the oxidant component (B), and a 50% particle size.
  • a nitrogen-containing organic compound as the fuel component (A)
  • a metal nitrate and / or basic metal nitrate B-1
  • a 50% particle size 1 to 50 ⁇ m perchlorate (B-2)
  • the content of the perchlorate (B-2) in the total mass of the oxidant component (B) is 5% by mass or more. And less than 35% by mass.
  • the nitrogen-containing organic compound is at least one selected from the group consisting of guanidine, triazole, tetrazole, vitriazole, bitetrazole and derivatives thereof.
  • the metal nitrate and / or basic metal nitrate (B-1) is selected from the group consisting of potassium nitrate, sodium nitrate, strontium nitrate and basic copper nitrate. At least one kind.
  • the perchlorate (B-2) is at least selected from the group consisting of potassium perchlorate, sodium perchlorate and ammonium perchlorate. One type.
  • the content of the nitrogen-containing organic compound is 35 to 60% by mass, and the content of the metal nitrate and / or the basic metal nitrate (B-1) is 20 to 50% by mass. %, And the content of the perchlorate (B-2) is preferably 1 to 20% by mass.
  • the nitrogen-containing organic compound is guanidine nitrate
  • the metal nitrate and / or basic metal nitrate (B-1) is basic metal copper nitrate
  • the perchlorate (B-2) is peroxygen. More preferably, it is potassium chlorate.
  • the perchlorate (B-2) preferably has a 50% particle size of 1 to 30 ⁇ m.
  • a binder agent (C) is further included.
  • a slag forming agent (D) is further included.
  • the molded product of the gas generant composition of the present invention is a molded product of the gas generant composition described above.
  • the molded article has a columnar shape and a diameter of 4 mm or less.
  • the gas generator of the present invention is characterized by including a molded body of the above gas generant composition, and preferably includes a long cylindrical housing.
  • a gas generant composition containing a nitrogen-containing organic compound as a fuel component and a metal nitrate and / or a basic metal nitrate and a perchlorate as an oxidant component
  • a gas generant composition excellent in ignitability and combustibility and a molded product of the gas generant composition can be provided, and the gas generant composition and the molded product are used as a gas generator for a vehicle occupant safety device. Suitable for use in.
  • the gas generant composition of the present invention and the molded body thereof are excellent in thermal stability.
  • the time from the transmission of an electrical signal for starting combustion to the maximum pressure of the generated gas being extremely short, that is, gas generation exhibiting excellent responsiveness Can be provided.
  • the gas generator composition of the present invention is excellent in ignitability, it is not necessary to use an enhancer agent used in conventional air bag inflators, etc., and the gas generator can be downsized. It can be achieved, and is particularly suitable as a gas generator for a side impact (side impact) airbag that requires a quick response.
  • the gas generator of the present invention has a gas generator composition that is excellent in flammability, and therefore has a relatively small amount of carbon monoxide, ammonia, and nitrogen oxide components, and further contains no chlorine or hydrogen chloride. It is possible to generate exhaust gas.
  • Test Example 4 The pressure-time curve of Example 3 and Comparative Example 3 obtained by the flammability test (28.3 L tank test) is shown.
  • the gas generant composition of the present invention has a nitrogen-containing organic compound as the fuel component (A), metal nitrate and / or basic metal nitrate (B-1) as the oxidant component (B), and a 50% particle size of 1 And the perchlorate (B-2) content in the total mass of the oxidant component (B) is 5 mass% or more and 35 to 35 ⁇ m. It is characterized by being less than mass%, has excellent ignitability and combustibility, and is suitable for use in a gas generator for a vehicle occupant safety device.
  • the fuel component (A) of the gas generant composition of the present invention is a nitrogen-containing organic compound, and the nitrogen-containing organic compound is not particularly limited, and is a gas generator for a gas generator for a vehicle occupant safety device.
  • Nitrogen-containing organic compounds usually used in the agent composition can be preferably used, but guanidine or a derivative thereof, triazole or a derivative thereof, tetrazole or a derivative thereof, vitriazole or a derivative thereof, bitetrazole or a derivative thereof, azodicarbonamide or Derivatives thereof, hydrazine or derivatives thereof, and hydrazide derivatives are preferred.
  • nitrogen-containing organic compounds tetrazole derivatives, bitetrazole derivatives and guanidine derivatives are preferred because they are inexpensive, reactive and relatively easy to handle, and nitroguanidine, guanidine nitrate, bitetrazole, azobistetrazole and More preferred is 5-aminotetrazole.
  • guanidine nitrate contains oxygen in the molecule, so the amount of the oxidant component can be reduced, it has good thermal stability, and further, low cost and high gas yield during combustion are expected. There is a merit that it can be performed, and it is particularly preferable.
  • these nitrogen-containing organic compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the nitrogen-containing organic compound is preferably in the form of powder or granules because it is easy to handle, and the 50% particle size is preferably 5 to 80 ⁇ m, more preferably 10 to 50 ⁇ m.
  • the 50% particle size of the nitrogen-containing organic compound is too large, the strength of the molded product of the gas generant composition is lowered.
  • the particle size is too small, a large cost is required for pulverization.
  • the 50% particle size means a 50% particle size based on the number of measured particles, and can be measured by, for example, a laser diffraction / scattering method.
  • the content (mixing ratio) of the nitrogen-containing organic compound in the gas generating composition of the present invention is preferably 35 to 60% by mass, more preferably 40 to 58% by mass.
  • the content (mixing ratio) of the nitrogen-containing organic compound is less than 35% by mass, the number of generated gas moles per 100 g of the gas generant composition tends to decrease, and the generation of nitrogen oxides tends to increase due to excess oxygen.
  • the content (mixing ratio) of the nitrogen-containing organic compound exceeds 60% by mass, the organic matter increases, so the true specific gravity of the gas generant composition decreases, the filling amount per volume decreases, There is a tendency to generate a lot of toxic carbon monoxide due to a shortage of oxidant components.
  • the oxidizing agent component (B) of the gas generant composition of the present invention is composed of metal nitrate and / or basic metal nitrate (B-1) and perchlorate (B-2) having a 50% particle size of 1 to 50 ⁇ m. Use together.
  • Examples of the metal nitrate and / or basic metal nitrate (B-1) include metal salts selected from alkali metals, alkaline earth metals, iron, copper, magnesium, cobalt, nickel, zinc and the like.
  • Specific examples of the alkali metal nitrate include sodium nitrate and potassium nitrate
  • examples of the alkaline earth metal nitrate include magnesium nitrate, calcium nitrate, strontium nitrate, and barium nitrate.
  • these metal nitrates may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Examples of basic metal nitrates include basic copper nitrate, basic cobalt nitrate, basic zinc nitrate, basic magnesium nitrate, and basic iron nitrate.
  • basic copper nitrate is particularly preferable.
  • these basic metal nitrates may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the metal nitrate and / or basic metal nitrate (B-1) is preferably in the form of powder or granules because of easy handling, and the 50% particle size is preferably 1 to 80 ⁇ m. More preferably, it is ⁇ 50 ⁇ m. If the 50% particle size of the metal nitrate and / or basic metal nitrate (B-1) is too large, the strength of the molded article of the gas generant composition is lowered. I need.
  • Examples of the perchlorate (B-2) include alkali metal perchlorate, alkaline earth metal perchlorate, and ammonium perchlorate. Specifically, sodium perchlorate, potassium perchlorate, etc. as alkali metal perchlorate, magnesium perchlorate, calcium perchlorate, barium perchlorate, perchlorate as perchloric acid of alkaline earth metals Examples include strontium acid. In addition, these perchlorate may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the perchlorate (B-2) has a smaller contact size with the fuel component (A) as its particle size is smaller, and exhibits excellent reactivity with the fuel component (A). Since the ignitability and combustibility of the gas generant composition can be greatly improved, it is necessary to make the 50% particle size in the range of 1 to 50 ⁇ m, preferably in the range of 1 to 30 ⁇ m, and in the range of 5 to 30 ⁇ m. The range is more preferable, and the range of 8 to 25 ⁇ m is more preferable.
  • the 50% particle size of the perchlorate (B-2) is less than 1 ⁇ m, a large cost is required for pulverization, whereas if it exceeds 50 ⁇ m, the strength of the molded product of the gas generant composition decreases. In addition, the effect of improving gas generation characteristics such as ignitability and combustibility cannot be sufficiently obtained.
  • the perchlorate (B-2) has a very high reactivity with respect to the fuel component (A).
  • the perchlorate (B-2) is an oxidant component required for the gas generant composition. If all the perchlorate (B-2) is used, the reactivity is too sensitive and the handling becomes very difficult. For this reason, in the gas generant composition of the present invention, it is very important to control the content of perchlorate (B-2) in the oxidant component, and the present inventors have attempted optimization. As a result, it was found that the content of perchlorate (B-2) in the total mass of the oxidant component (B) must be limited to a range of 5% by mass or more and less than 35% by mass. .
  • the gas generant composition of the present invention when the content of perchlorate (B-2) in the total mass of the oxidant component (B) is 35% by mass or more, the reactivity increases as described above. In addition to being difficult to handle, the generation amount of chlorine-derived gas components increases during operation, and an additive for recovering the gas components is required.
  • the effective components of the gas generant composition combustion components and It should be avoided to reduce the content of the oxidant component).
  • the self-sustainability may be lost, and in some cases, combustion may be interrupted.
  • the self-sustained combustibility means a property that the combustion is completely burned out without being interrupted after ignition.
  • the content of the perchlorate (B-2) in the total mass of the oxidant component (B) is less than 5% by mass, the effect of improving gas generation characteristics such as ignitability and combustibility is sufficiently obtained. I can't.
  • the content of perchlorate (B-2) in the total mass of the oxidant component (B) further increases gas generation characteristics such as ignitability and combustibility. From the viewpoint of improvement, a range of 8% by mass or more and less than 35% by mass is preferable, and a range of 10% by mass or more and less than 35% by mass is more preferable.
  • the content (mixing ratio) of the oxidant component (B) in the gas generant composition of the present invention varies depending on the type of the fuel component (A), the type of additive, the oxygen balance, etc. % By mass is preferable, and 35 to 60% by mass is more preferable.
  • the content (mixing ratio) of the metal nitrate and / or basic metal nitrate (B-1) in the gas generant composition of the present invention is preferably 20 to 50% by mass, and preferably 25 to 50% by mass. % Is more preferable.
  • the content (blending ratio) of the perchlorate (B-2) in the gas generating composition of the present invention is preferably 1 to 20% by mass, more preferably 3 to 18% by mass.
  • the gas generant composition of the present invention may further contain an additive.
  • the additive which can generally be used for the gas generant composition for gas generators for vehicle occupant safety devices can be used.
  • a binder agent (C) for imparting moldability and shape retention to maintain suitable combustion characteristics for example, a slag forming agent (D) for enabling easy filtration of combustion residues, combustion Additives such as regulators and lubricants can be used.
  • the content of these additives varies depending on the application, but in any application, if the content of the additive is excessive, the performance such as flammability deteriorates, so the addition in the gas generant composition
  • the content of the agent is preferably 0.1 to 15% by mass, more preferably 0.1 to 10% by mass.
  • the binder agent (C) is an additive that imparts moldability and shape retention in order to maintain suitable combustion characteristics.
  • an inflator The combustion performance can be maintained even under the harsh environment in which is used.
  • the binder agent (C) can be used without particular limitation as long as it does not have a significant adverse effect on the combustion behavior of the gas generant composition. Examples thereof include metal salts of carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, cellulose acetate, and propion.
  • Cellulose acid cellulose acetate butyrate, nitrocellulose, microcrystalline cellulose, guar gum, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylamide, starch and other polysaccharide derivatives, stearates and other organic binders, molybdenum disulfide, synthetic hydrotalcite, acidic
  • inorganic binders such as white clay, talc, bentonite, diatomaceous earth, kaolin, silica, and alumina.
  • cellulosic binders, acid clay and the like are particularly preferable.
  • the content of the binder agent (C) in the gas generant composition of the present invention is preferably 1.0 to 10% by mass, and more preferably 1.0 to 5% by mass.
  • the content of the binder agent (C) is high, the fracture strength of the molded product can be increased, but the number of carbon elements and hydrogen elements in the composition increases, and this is an incomplete combustion product of carbon elements. Since the concentration of the carbon oxide gas is increased, the quality of the generated gas is lowered, and combustion may be hindered, it is preferable to use it in the minimum amount capable of maintaining the shape of the gas generant composition.
  • the content of the binder agent (C) exceeds 10% by mass, it is necessary to increase the relative proportion of the oxidant component, and the relative proportion of the fuel component (nitrogen-containing organic compound) in the gas generant composition. There is a risk that the existing ratio is lowered and it is difficult to put the gas generator into practical use.
  • the slag forming agent (D) is an additive that enables easy filtration of the combustion residue generated after combustion of the gas generant composition, and is added for the purpose of preventing it from being released out of the inflator. Is done.
  • Specific examples of the slag forming agent (D) include natural minerals such as silicon nitride, silicon carbide, silicon dioxide, silicate, aluminum oxide, titanium oxide, acidic clay, and clay.
  • the content of the slag forming agent (D) in the gas generant composition of the present invention is preferably 0.5 to 10% by mass, more preferably 1.0 to 5.0% by mass. If the content of the slag forming agent (D) is high, the combustibility is lowered, and further the number of moles of the generated gas is lowered, so that the passenger protection performance may not be sufficiently exhibited.
  • the above-mentioned lubricant is added for the purpose of improving the mixing property and fluidity of the raw material components when preparing the gas generant composition.
  • Specific examples of the lubricant include graphite, magnesium stearate, zinc stearate, calcium stearate, sodium stearate, boron nitride, highly dispersed silica (silicon dioxide), talc and the like.
  • highly dispersed silica (silicon dioxide) has a function of uniformly dispersing and mixing while suppressing sticking and agglomeration during raw material mixing, and has the effect of maintaining the particle size characteristics and action of each component. It is particularly useful.
  • the content of the lubricant in the gas generant composition of the present invention is preferably 0.1 to 5.0% by mass, more preferably 0.1 to 2.0% by mass.
  • the content of the lubricant is high, there is a risk that the combustibility decreases, the number of moles of the generated gas decreases, and further the concentration of carbon monoxide in the generated gas increases.
  • the combustion modifier is an additive for adjusting the combustion of the gas generant composition.
  • Specific examples thereof include iron oxide, nickel oxide, copper oxide, zinc oxide, manganese oxide, chromium oxide, cobalt oxide, and oxidation.
  • Metal oxides such as molybdenum, vanadium oxide, and tungsten oxide, metal hydroxides such as copper hydroxide, cobalt hydroxide, zinc hydroxide, and aluminum hydroxide, carbons such as activated carbon powder, graphite, and carbon black .
  • the content of the combustion regulator in the gas generant composition of the present invention is preferably 10% by mass or less, and more preferably 5% by mass or less.
  • the gas generant composition of the present invention is preferably used as a molded product having an appropriate shape.
  • the molded body of the gas generating agent composition is also referred to as a gas generating agent.
  • the gas generant composition can be formed into various shapes according to the combustion performance of the gas generant composition and the combustion characteristics of the gas generator. Examples of the molding method include a pressure molding method and an extrusion molding method.
  • the shape of the molded article of the gas generant composition of the present invention is not particularly limited, and examples thereof include pellets, discs, spheres, rods, columns, cylinders, confetti, tetrapots, and the like.
  • the molded body may be non-porous, or may be single-hole or porous (for example, single-hole cylindrical shape or porous cylindrical shape). Further, the pellet-shaped or disk-shaped molded body may be provided with one to several protrusions on one side or both sides.
  • the shape of the protrusion is not particularly limited, and examples thereof include a columnar shape, a cylindrical shape, a conical shape, and a polygonal pyramid shape.
  • the combustibility of the gas generant can be remarkably improved if the cylinder diameter of the compact is small.
  • the diameter of the cylindrical molded body is small, the bulk density of the gas generating agent increases.
  • the gas generator is filled with the gas generator, an improvement in gas generation characteristics is expected at a filling amount similar to that of a cylinder having a large diameter.
  • the bulk density is high, because it is possible to increase the amount of the gas generating agent charged per unit volume and to achieve high output of the gas generator.
  • the bulk density is high because the space for filling the gas generating agent can be reduced, and the gas generator can be reduced in size.
  • the shape of the space filled with the gas generating agent is limited, it is important to improve the filling property of the gas generating agent applied to the gas generator.
  • the shape of the molded body is circular from the viewpoint of improving the filling property of the gas generator. It is preferable to use a columnar shape and reduce the diameter of the column.
  • the diameter of the cylindrical molded body is preferably 4.0 mm or less, more preferably 3.2 mm or less, and still more preferably 2.5 mm or less.
  • the diameter of a cylindrical molded object has preferable 2.0 mm or more.
  • the thickness / diameter ratio is preferably 30 to 80%, and more preferably 30 to 60%.
  • the thickness of the cylindrical molded body is preferably 3.0 mm or less, more preferably 2.0 mm or less, and even more preferably 1.5 mm or less. Moreover, although not particularly limited, the thickness of the cylindrical molded body is preferably 1.0 mm or more. As the cylindrical molded body, a pressure molded body having a thickness of 2.0 mm or less and a diameter of 4.0 mm or less is most preferable.
  • the columnar molded body includes a shape in which a curved surface is formed on the surface of the columnar molded body, and the height of the curved surface is preferably 0.5 mm or less, more preferably 0.3 mm or less, and 0 More preferably, it is 1 mm or less.
  • the shape which chamfered the molded object square surface is also contained.
  • a method for producing a molded product of the gas generant composition of the present invention by a pressure molding method will be exemplified.
  • the fuel component, oxidant component, and various additives are added to a dry mixer such as a V-type mixer or rocking mixer. And mix.
  • the spheres are dispersed and interposed in the mixture of the components, so that the powder of the components is subjected to force by the spheres in detail, so that each component is uniformly dispersed in the composition.
  • a solution (binder solution) containing the binder agent (C) is added to the obtained gas generant composition (powder), and the gas generant composition is added using a wet granulator such as a stirring granulator. Granulate.
  • the amount of the binder solution added cannot be generally specified, but 5 to 20% by mass can be added to the mixed powder. Thereafter, it is heat-treated at 80 to 100 ° C. to obtain granules.
  • the fluidity of the granule after heat treatment exceeds 1%, the fluidity may decrease, and there is a risk that the subsequent pressure molding cannot be performed stably.
  • it is 0.5% by mass or less.
  • the granules are pressed into a desired shape by a rotary tableting machine.
  • a commonly used lubricant such as magnesium stearate can be added in the range of 0.1 to 5% by mass.
  • the pressure-molded molded body can be used as a gas generating agent after heat treatment at 100 to 110 ° C. for 5 to 20 hours.
  • the water content in the gas generating agent after the heat treatment is 1% by mass or less, preferably 0.5% by mass or less, more preferably 0.3% by mass or less.
  • the molded product of the gas generant composition of the present invention is produced by an extrusion molding method
  • a fuel component, an oxidant component, and various additives are mixed in a mixer, and the obtained mixed powder is externally divided.
  • the wet agent is passed through a die that can be extruded into a desired shape, and the extruded product is appropriately cut.
  • the extruded molded body is a columnar body, and a more preferable form is a long cylindrical shaped body.
  • the shape has a diameter of 3.0 mm or less, more preferably 2.5 mm or less, and still more preferably 2.0 mm or less. Further, although not particularly limited, the diameter is preferably 1.0 mm or more.
  • the length / diameter ratio is preferably 130 to 350%, more preferably 130 to 250%, and still more preferably 130 to 200%.
  • the length of the long cylindrical shaped body is 6.5 mm or less, preferably 4.5 mm or less, more preferably 2.5 mm or less. Although not particularly limited, the length is preferably 2.0 mm or more.
  • the extruded molded body As the extruded molded body, a long cylindrical molded body having a length of 2.5 mm or less and a diameter of 2.0 mm or less is most preferable.
  • the extruded product thus obtained can be heat-treated and used as a gas generating agent.
  • a molded article of the gas generant composition with little change with time can be obtained by performing the heat treatment at a temperature of 50 to 150 ° C. for about 10 to 20 hours.
  • a molded body containing 10 to 20% by mass of water is heat-treated, and therefore it is necessary to heat-treat at a low temperature for a long time.
  • this heat treatment is extremely effective in order to pass a severe heat aging test of 107 ° C. ⁇ 400 hours. If the heat treatment time is less than 10 hours, the heat treatment is insufficient. On the other hand, the heat treatment time exceeding 20 hours is meaningless, so it is preferable to select the heat treatment time in the range of 10 to 20 hours.
  • the primary heat treatment is performed at 50 to 70 ° C.
  • the water content in the gas generating agent is set to 7% or less, preferably 5% or less
  • the secondary heat treatment is performed at 80 to 150 ° C. in the gas generating agent. It is desirable that the water content is 1 mass% or less, preferably 0.5 mass% or less.
  • the molded article of the gas generant composition of the present invention is suitable for use in a gas generator for a vehicle occupant safety device, and particularly suitable for use in a gas generator for an air bag device.
  • the gas generator of the present invention is characterized by comprising a molded body of the above gas generant composition. Since the gas generator of the present invention is provided with a molded body of such a gas generant composition, the time from the transmission of an electric signal for starting combustion to the maximum pressure of the generated gas is extremely short. It is suitable as a gas generator for personal safety devices.
  • the gas generator for the vehicle occupant safety device is not particularly limited, and examples thereof include a gas generator for an airbag device as shown in FIGS. 1 and 2.
  • FIG. 1 is a cross-sectional view of an example of the gas generator of the present invention, and the gas generator is usually used in a front collision airbag apparatus.
  • a gas generator 1 shown in FIG. 1 includes a housing 2 made of a metal container in which a plurality of gas discharge holes 6 are installed, and an outer shell is formed by the housing 2.
  • the housing 2 is provided with an ignition device 3 and a filter 5 and filled with a gas generating agent 4.
  • An ignition chamber 7 is installed in the vicinity of the ignition device 3, and is usually filled with an enhancer agent (fire transfer agent) that transmits the ignition flame generated from the ignition device 3 to the gas generating agent 4.
  • an enhancer agent becomes unnecessary or can be reduced in quantity. Therefore, since the ignition chamber 7 is unnecessary or can be reduced in volume, the gas generator can be reduced in size, weight, and cost.
  • FIG. 2 is a cross-sectional view of another example of the gas generator of the present invention.
  • the gas generator includes a long cylindrical housing and is preferably used for a side impact airbag device.
  • the long term here means that the ratio (L / D) of the length (L) to the diameter (D) of the cross section is 3 or more, and when the shape of the cross section is other than a circle.
  • the area equivalent circle diameter is D.
  • the cross-sectional shape of the long cylindrical housing includes, for example, a triangle, a quadrangle, a trapezoid, a circle, and an ellipse.
  • the 2 includes a long cylindrical housing 12 made of a metal container in which a plurality of gas discharge holes 16 are installed, and an outer shell is formed by the housing 12.
  • the housing 12 is provided with an ignition device 13 and a filter 15 and filled with a gas generating agent 14.
  • An ignition chamber 17 is installed in the vicinity of the ignition device 13 and is usually filled with an enhancer agent (a transfer agent) that transmits an ignition flame generated from the ignition device 13 to the gas generating agent 14.
  • an enhancer agent becomes unnecessary or can be reduced in quantity. Therefore, since the ignition chamber 17 is unnecessary or can be reduced in volume, the gas generator can be reduced in size, weight, and cost. Further, the gas generator 11 shown in FIG.
  • the gas generator 2 is easy to downsize as compared with the gas generator 1 shown in FIG. 1, and is suitable as a gas generator for an air bag used in a place where the installation space in the vehicle is small. It is. Moreover, since the gas generator of the present invention exhibits excellent responsiveness, the gas generator 11 shown in FIG. 2 is used as a gas generator for a side impact, lower limb protection, or seat seat elevation airbag device. Particularly preferred.
  • 50% particle size was measured using a laser diffraction / scattering method particle size measurement device (Microtrack MT3300II manufactured by Nikkiso Co., Ltd.). Note that the 50% particle size refers to the 50% particle size based on the number of measured particles as described above.
  • Flammability test (18cc tank test) 2.0 g of a molded product (gas generating agent) of the gas generating agent composition was filled in a closed container for combustion having a volume of 18 cc to burn the gas generating agent, and the maximum pressure reached and the time to reach the maximum pressure were measured. Further, the pressure generation speed was obtained based on the measured value.
  • Flammability test (28.3L tank test) A gas generator having a long cylindrical housing was filled with 9.9 g of a molded product (gas generant) of the gas generant composition, a 28.3 L tank test was conducted, and a pressure-time curve was measured. .
  • Ignition test 0.5 g of a molded product (gas generant) of the gas generant composition was ignited by a burner in the atmosphere, and it was confirmed whether the gas generant was ignited and combusted.
  • Example 1 Mixing 55 parts by mass of guanidine nitrate, 40 parts by mass of basic copper nitrate, 5 parts by mass of potassium perchlorate having a 50% particle size of 19.84 ⁇ m, 0.4 parts by mass of highly dispersed silica, and further 0.6% by mass 11 parts by mass of an aqueous polyvinyl alcohol solution was sprayed and then heat treated at 90 ° C. for 5 hours to produce granules. Thereafter, 0.4 parts by mass of magnesium stearate is added and formed into a cylinder having a diameter of 4.0 mm and a thickness of 1.50 mm, and then heat-treated at 110 ° C. for 10 hours to form the gas generating composition of the present invention. A body (gas generating agent) was obtained.
  • Example 2 56 parts by mass of guanidine nitrate, 34 parts by mass of basic copper nitrate, 10 parts by mass of potassium perchlorate having a 50% particle size of 19.84 ⁇ m, and 0.4 parts by mass of highly dispersed silica were mixed, and then 0.6% by mass 11 parts by mass of an aqueous polyvinyl alcohol solution was sprayed and then heat treated at 90 ° C. for 5 hours to produce granules. Next, 0.4 parts by mass of magnesium stearate is added and formed into a cylindrical body having a diameter of 4.0 mm and a thickness of 1.50 mm, and then heat-treated at 110 ° C. for 10 hours to obtain the gas generating composition of the present invention. A molded body (gas generating agent) was obtained.
  • Example 3 45 parts by mass of guanidine nitrate, 31.2 parts by mass of basic copper nitrate, 15 parts by mass of potassium perchlorate having a 50% particle size of 19.84 ⁇ m, 1.4 parts by mass of polyvinylpyrrolidone, 2.2 parts by mass of hydroxypropylmethylcellulose, 0.4 parts by mass of highly dispersed silica and 4.8 parts by mass of acid clay were mixed, then 16 parts by mass of water and 3 parts by mass of denatured ethanol were added and kneaded with a universal mixer. Thereafter, it was molded into a cylindrical product having a diameter of 1.5 mm and a length of 2.5 mm with an extruder, and then heat treated at 55 ° C. for 8 hours and at 110 ° C. for 8 hours, and the molded product of the gas generant composition of the present invention ( Gas generating agent) was obtained.
  • Gas generant composition of the present invention Gas generating agent
  • Example 4 55 parts by mass of guanidine nitrate, 40 parts by mass of basic copper nitrate, 5 parts by mass of potassium perchlorate having a 50% particle size of 14.89 ⁇ m, and 0.4 parts by mass of highly dispersed silica are mixed, and then 0.6% by mass 11 parts by mass of an aqueous polyvinyl alcohol solution was sprayed and then heat treated at 90 ° C. for 5 hours to produce granules. Next, 0.4 parts by mass of magnesium stearate is added and formed into a cylindrical body having a diameter of 4.0 mm and a thickness of 1.50 mm, and then heat-treated at 110 ° C. for 10 hours to obtain the gas generating composition of the present invention. A molded body (gas generating agent) was obtained.
  • Example 5 55 parts by mass of guanidine nitrate, 40 parts by mass of basic copper nitrate, 5 parts by mass of potassium perchlorate having a 50% particle size of 44.41 ⁇ m, and 0.4 parts by mass of highly dispersed silica are mixed, and then 0.6% by mass 11 parts by mass of an aqueous polyvinyl alcohol solution was sprayed and then heat treated at 90 ° C. for 5 hours to produce granules. Next, 0.4 parts by mass of magnesium stearate is added and formed into a cylindrical body having a diameter of 4.0 mm and a thickness of 1.50 mm, and then heat-treated at 110 ° C. for 10 hours to obtain the gas generating composition of the present invention. A molded body (gas generating agent) was obtained.
  • Example 6 56 parts by mass of guanidine nitrate, 34 parts by mass of basic copper nitrate, 10 parts by mass of potassium perchlorate having a 50% particle size of 19.84 ⁇ m, and 0.4 parts by mass of highly dispersed silica were mixed, and then 0.6% by mass 11 parts by mass of an aqueous polyvinyl alcohol solution was sprayed and then heat treated at 90 ° C. for 5 hours to produce granules. Next, 0.4 parts by mass of magnesium stearate is added and formed into a cylindrical body having a diameter of 3.2 mm and a thickness of 1.50 mm, and then heat-treated at 110 ° C. for 10 hours to obtain the gas generating composition of the present invention. A molded body (gas generating agent) was obtained.
  • Example 7 56 parts by mass of guanidine nitrate, 34 parts by mass of basic copper nitrate, 10 parts by mass of potassium perchlorate having a 50% particle size of 19.84 ⁇ m, and 0.4 parts by mass of highly dispersed silica were mixed, and then 0.6% by mass 11 parts by mass of an aqueous polyvinyl alcohol solution was sprayed and then heat treated at 90 ° C. for 5 hours to produce granules. Next, 0.4 parts by mass of magnesium stearate is added and formed into a cylindrical body having a diameter of 2.5 mm and a thickness of 1.50 mm, and then heat-treated at 110 ° C. for 10 hours to obtain the gas generating composition of the present invention. A molded body (gas generating agent) was obtained.
  • Comparative Example 7 55 parts by mass of guanidine nitrate, 40 parts by mass of basic copper nitrate, 5 parts by mass of potassium perchlorate having a 50% particle size of 222.9 ⁇ m, and 0.4 parts by mass of highly dispersed silica are mixed, and then 0.6% by mass 11 parts by mass of an aqueous polyvinyl alcohol solution was sprayed and then heat treated at 90 ° C. for 5 hours to produce granules. Next, 0.4 parts by mass of magnesium stearate is added and formed into a cylindrical body having a diameter of 4.0 mm and a thickness of 1.50 mm, and then heat-treated at 110 ° C. for 10 hours to obtain the gas generating composition of the present invention. A molded body (gas generating agent) was obtained.
  • Example 1 Environmental resistance test (high temperature stability test)> The molded product of the gas generant composition of Example 2 was put into an environmental resistance test at 107 ° C. for 400 hours, 800 hours, and 1200 hours. Table 1 shows the weight loss rate calculated from the initial weight and the weight after the test. The weight reduction rate of Example 2 is 1% or less, and it can be confirmed that the performance is acceptable as a gas generating agent with almost no decomposition under high temperature conditions. Moreover, about the gas generating agent of Example 2 used for this environmental resistance test, performance evaluation was performed in the said flammability test (18cc tank test). The results are shown in Table 2.
  • Example 2 In the gas generating agent of Example 2 that passed the environmental resistance test, the maximum ultimate pressure (PMax), the time to reach the maximum pressure (tPmax), and the pressure generation rate (dP / dt) changed compared to the initial stage. It can be seen that the high temperature stability is excellent.
  • Example 2 Flammability test (18cc tank test)> For the gas generant composition molded bodies of Example 1, Example 2, Comparative Example 1 and Comparative Example 2, an 18 cc tank test was conducted. The results are shown in Table 3. In Examples 1 and 2, the maximum pressure arrival time (tPmax) is shorter than that in Comparative Example 1, and the pressure increase rate (dP / dt) is also high, indicating that the combustion rate is high. Further, in comparison between Example 1 and Comparative Example 2 using potassium perchlorate having different 50% particle size, Example 1 has a shorter maximum pressure arrival time (tPmax) and a pressure increase rate (dP / dt). ) Is also large, so it can be confirmed that the combustion speed is high. It can also be confirmed that the maximum ultimate pressure (Pmax) is higher in Example 1 than in Comparative Example 2.
  • Example 3 Exhaust gas measurement (18cc tank test)>
  • Example 2 Comparative Example 1 and Comparative Example 2
  • the exhaust gas after the 18 cc tank test was collected, and the generated gas after combustion was analyzed.
  • Table 4 The results are shown in Example 1.
  • Example 1 it can be confirmed that the amount of generated gas is less than that of Comparative Example 1 and Comparative Example 2 in all of the generated gas components. Also, it can be seen that the same result as in Example 1 is obtained in Example 2. In all gas generating agents, hydrogen chloride is not generated.
  • Example 5 ⁇ Test Example 5. Ignition test> The gas generant composition molded bodies of Example 1, Example 2, Example 3 and Comparative Example 4 were subjected to an ignitability test using a burner. The results are shown in Table 5. It can be seen that the gas generating agent of Comparative Example 4 has difficulty in self-sustaining combustion because the content of potassium perchlorate in the oxidant component is too high.
  • Example 7 Flammability test (18 cc tank test); Influence of molded product shape of gas generant composition>
  • the gas generation of Examples 2, 6 and 7 with different diameters of the tableting molded article The molded product of the agent composition was subjected to an 18 cc tank test.
  • the results are shown in Table 7.
  • Example 2 Example 6 and Example 7 have the same composition, the smaller the diameter, the shorter the maximum pressure attainment time (tPmax). Therefore, a difference in the maximum attainment pressure (PMax) is recognized. However, as a result, it can be seen that the pressure increase rate (dP / dt) is increased.
  • Example 8 Measurement of bulk density; influence of the shape of the gas generant composition> About the molded object of the gas generant composition of Example 2, Example 6, and Example 7, the bulk density of the molded object was measured using a cylindrical container with a capacity of 100 cc. Table 7 shows the measurement results. It can be seen that the smaller the diameter of the gas generating agent, the higher the bulk density.
  • the molded article of the gas generant composition according to the present invention has a higher pressure rise rate and lower flammability as the cylinder diameter decreases. It can be seen that it can be improved. Although the reason for this has not been elucidated, it is expected that the smaller the diameter of the molded body, the larger the surface area of the gas generant per unit mass of the gas generant, which contributes to the improvement of combustibility.
  • the result was obtained that the smaller the diameter, the larger the bulk density. This indicates that the filling property of the gas generating agent into the gas generator is improved, so that the filling amount of the gas generating agent per unit volume can be increased, and high output of the gas generator can be achieved. There is an effect. Moreover, if the diameter of the cylindrical molded body of the gas generant composition of the present invention is reduced, the filling property is improved and the responsiveness is excellent. Therefore, the volume for filling the gas generator with the gas generant is reduced. It is possible to achieve a reduction in the size of the gas generator.
  • the gas generant composition of the present invention is excellent in ignitability and combustibility, it quickly responds to an electrical signal for starting combustion and quickly ignites to generate a large amount of combustion gas.
  • the time from the generation of the starting signal until the maximum pressure of the product gas is reached can be extremely shortened. For this reason, it is suitable for use in a gas generator for a vehicle occupant safety device for which excellent responsiveness is desired, and in particular, a gas generator for an airbag device for side impact, for lower limb protection, or for raising a seat seat Suitable for use in.

Abstract

 本発明は、優れた着火性及び燃焼性を有し、燃焼起動のための電気信号に迅速に呼応することが可能なガス発生剤組成物に関し、より詳細には、燃料成分(A)として含窒素有機化合物と、酸化剤成分(B)として金属硝酸塩及び/又は塩基性金属硝酸塩(B-1)並びに50%粒径が1~50μmの過塩素酸塩(B-2)とを含有し、酸化剤成分(B)の全質量中に占める前記過塩素酸塩(B-2)の含有量が5質量%以上で且つ35質量%未満であることを特徴とするガス発生剤組成物に関するものである。

Description

ガス発生剤組成物及びその成形体、並びにそれを用いたガス発生器
 本発明は、ガス発生剤組成物及び該ガス発生剤組成物の成形体、並びに該ガス発生剤組成物の成形体を用いたガス発生器に関し、特には、燃焼起動のための電気信号に迅速に呼応し(即ち、燃焼起動のための電気信号に対する応答性に優れる)、車両搭乗者安全装置用ガス発生器への使用に好適なガス発生剤組成物に関するものである。
 自動車の安全性向上の方策において、近年、火薬を利用した車両搭乗者安全装置としてエアバッグ、シートベルトプリテンショナーが広く採用されている。エアバッグ装置の原理は、車両の衝突を検出したセンサーからの電気信号により、ガス発生器内に充填されているガス発生剤を燃焼させて大容量のガスを生成し、そのガス圧力によりエアバッグを乗員と車体内壁との間に展開させるものである。また、シートベルトプリテンショナーにおいても同様であり、車両の衝突をセンサーにより検知し、該センサーからの電気信号によりガス発生器に充填したガス発生剤を燃焼させてガスを生成し、そのガス圧力によりシートベルト巻取り機構を作動させ、そのシートベルトの拘束力を高めることにより乗員を保護するというものである。車両の衝突において、車両搭乗者安全装置用ガス発生器は、衝突感知センサーからの電気信号に対して極めて迅速な応答が要求される。即ち、該ガス発生器には、衝突感知センサーからの電気的な信号を受けてガス発生剤を燃焼させ、ガスを生成させると共に、その生成ガスの最大圧力に数十ミリ秒で到達する性能が要求される。
 車両搭乗者安全装置用ガス発生器としての極めて迅速な応答性能要求に応えるため、応答性に優れたガス発生剤が求められており、具体的には、ガス発生器内点火器の点火炎を受けて速やかに着火すると共に、短時間で完全に燃焼してガスを生成できるガス発生剤が求められている。そして、このような応答性に優れたガス発生剤により、車両搭乗者安全装置として好適で、衝突による起動信号を発してから生成ガスの最大圧力に到達するまでの時間が極めて短い、優れた応答性を示すガス発生器を提供することができる。
 また、車両安全機能に関する意識の高まりから、近年では、従来装備されてきた運転者及び助手席搭乗者のための前方衝突用エアバッグ以外にも、車両内側壁面及びガラス面並びに車両内天井面における衝突用エアバックの装備や下肢部保護用の衝突用エアバッグの装備が進められている。このような側面、頭部面、下肢部相対面は、搭乗者との距離が近いため、前方衝突用エアバッグより迅速に展開させる優れた応答性が要求され、このような位置への装備に適用可能な車両搭乗者安全装置用ガス発生器の開発が進められている。
 ガス発生器に用いるガス発生剤は、一般に、燃料成分と酸化剤成分との混合組成物を主成分として調製される。燃料成分としては、かつて用いられてきたアジ化金属化合物に代えて含窒素有機化合物が使用されており、該含窒素有機化合物と無機酸化剤を組み合わせてなる非アジド系ガス発生剤組成物が提案されている。酸化剤成分の役割としては、燃料成分に酸素を供給し燃焼性を向上させると共に、一酸化炭素、アンモニア、一酸化窒素、二酸化窒素、塩化水素等の好ましくないガス成分の生成を抑制する機能が要求される。ここで、ガス発生剤組成物の酸化剤成分としては、各種硝酸塩が広く使用されており、具体的には、金属硝酸塩、塩基性金属硝酸塩、硝酸アンモニウム、相安定化硝酸アンモニウム等が知られている。更に、酸化剤成分としてかかる硝酸塩と過塩素酸塩とを併用したガス発生剤組成物の例が知られている。特許文献1には、含窒素化合物、塩基性金属硝酸塩及び塩素酸化合物を含有するガス発生剤組成物が開示されている。また、特許文献2には、窒素含有燃料、銅含有化合物及び平均粒径が100ミクロンを超えるアルカリ金属過塩素酸塩を含有するガス発生剤組成物が開示されている。これらの特許文献は、いずれも生成ガス成分中に含まれる窒素酸化物やアンモニア等の有毒なガス成分の生成を抑制できるガス発生剤組成物に関するものである。しかしながら、これらの特許文献に記載のガス発生剤組成物は、十分な燃焼速度を有するものではない。
特開2005-119926号公報 米国特許出願公開第2006/0016529号明細書
 そこで、本発明の目的は、上記従来技術の問題を解決し、着火性及び燃焼性が向上したガス発生剤組成物及び該ガス発生剤組成物の成形体を提供することにある。また、本発明の他の目的は、該ガス発生剤組成物の成形体を備えることで、燃焼起動のための電気信号の発信から生成ガスの最大圧力に到達するまでの時間が極めて短い、即ち優れた応答性を示すガス発生器を提供することにある。
 本発明者らは、上記目的を達成するために鋭意検討した結果、燃料成分として含窒素有機化合物と、酸化剤成分として金属硝酸塩及び/又は塩基性金属硝酸塩並びに過塩素酸塩とを含有するガス発生剤組成物において、該過塩素酸塩の50%粒径を1~50μmの範囲に限定し、酸化剤成分の全質量中に占める該過塩素酸塩の含有量を5質量%以上で且つ35質量%未満の範囲に限定することで、ガス発生剤組成物の着火性及び燃焼性が顕著に向上できることを見出し、本発明を完成させるに至った。
 即ち、本発明のガス発生剤組成物は、燃料成分(A)として含窒素有機化合物と、酸化剤成分(B)として金属硝酸塩及び/又は塩基性金属硝酸塩(B-1)並びに50%粒径が1~50μmの過塩素酸塩(B-2)とを含有し、酸化剤成分(B)の全質量中に占める前記過塩素酸塩(B-2)の含有量が5質量%以上で且つ35質量%未満であることを特徴とする。
 本発明のガス発生剤組成物の好適例においては、前記含窒素有機化合物が、グアニジン、トリアゾール、テトラゾール、ビトリアゾール、ビテトラゾール及びそれらの誘導体からなる群から選択される少なくとも1種である。
 本発明のガス発生剤組成物の他の好適例においては、金属硝酸塩及び/又は塩基性金属硝酸塩(B-1)が、硝酸カリウム、硝酸ナトリウム、硝酸ストロンチウム及び塩基性硝酸銅からなる群から選択される少なくとも1種である。
 本発明のガス発生剤組成物の他の好適例においては、前記過塩素酸塩(B-2)が、過塩素酸カリウム、過塩素酸ナトリウム及び過塩素酸アンモニウムからなる群から選択される少なくとも1種である。
 本発明のガス発生剤組成物においては、前記含窒素有機化合物の含有量が35~60質量%で、前記金属硝酸塩及び/又は塩基性金属硝酸塩(B-1)の含有量が20~50質量%で、前記過塩素酸塩(B-2)の含有量が1~20質量%であることが好ましい。ここで、前記含窒素有機化合物が硝酸グアニジンであり、前記金属硝酸塩及び/又は塩基性金属硝酸塩(B-1)が塩基性金属硝酸銅であり、前記過塩素酸塩(B-2)が過塩素酸カリウムであることが更に好ましい。
 本発明のガス発生剤組成物において、前記過塩素酸塩(B-2)は、50%粒径が1~30μmであることが好ましい。
 本発明のガス発生剤組成物の他の好適例においては、更にバインダー剤(C)を含む。
 本発明のガス発生剤組成物の他の好適例においては、更にスラグ形成剤(D)を含む。
 また、本発明のガス発生剤組成物の成形体は、上述のガス発生剤組成物の成形体である。
 本発明のガス発生剤組成物の成形体の好適例においては、成形体の形状が円柱状であり、その直径が4mm以下である。
 更に、本発明のガス発生器は、上述のガス発生剤組成物の成形体を備えることを特徴とし、長尺筒状のハウジングを備えることが好ましい。
 本発明によれば、燃料成分として含窒素有機化合物と、酸化剤成分として金属硝酸塩及び/又は塩基性金属硝酸塩並びに過塩素酸塩とを含有するガス発生剤組成物において、該過塩素酸塩の50%粒径を1~50μmの範囲に限定し、酸化剤成分の全質量中に占める該過塩素酸塩の含有量を5質量%以上で且つ35質量%未満の範囲に限定することで、着火性及び燃焼性に優れるガス発生剤組成物及び該ガス発生剤組成物の成形体を提供することができ、該ガス発生剤組成物及びその成形体は、車両搭乗者安全装置用ガス発生器への使用に好適である。なお、本発明のガス発生剤組成物及びその成形体は、熱安定性にも優れる。また、かかるガス発生剤組成物の成形体を備えることで、燃焼起動のための電気信号の発信から生成ガスの最大圧力に到達するまでの時間が極めて短い、即ち優れた応答性を示すガス発生器を提供することができる。なお、本発明のガス発生器は、ガス発生剤組成物が着火性に優れることから、従来のエアバック用インフレータ等に使用されるエンハンサー剤の使用が不要であり、ガス発生器の小型化を達成でき、特に迅速な応答が要求される側面衝突(側突)用エアバック用ガス発生器として好適である。また、本発明のガス発生器は、ガス発生剤組成物が燃焼性に優れることから、一酸化炭素、アンモニア及び窒素酸化物成分が比較的少なく、更には塩素や塩化水素をほとんど含んでいない清浄な排気ガスを生成することが可能である。
本発明のガス発生器の一例の断面図である。 本発明のガス発生剤の他の例の断面図である。 試験例4.燃焼性試験(28.3Lタンク試験)によって得られた実施例3及び比較例3の圧力-時間曲線を示す。
 以下に、本発明を詳細に説明する。本発明のガス発生剤組成物は、燃料成分(A)として含窒素有機化合物と、酸化剤成分(B)として金属硝酸塩及び/又は塩基性金属硝酸塩(B-1)並びに50%粒径が1~50μmの過塩素酸塩(B-2)とを含有し、酸化剤成分(B)の全質量中に占める前記過塩素酸塩(B-2)の含有量が5質量%以上で且つ35質量%未満であることを特徴とし、着火性及び燃焼性に優れ、車両搭乗者安全装置用ガス発生器への使用に好適である。
 本発明のガス発生剤組成物の燃料成分(A)は、含窒素有機化合物であり、ここで、該含窒素有機化合物としては、特に限定されず、車両搭乗者安全装置用ガス発生器用ガス発生剤組成物に通常使用される含窒素有機化合物を好適に使用できるが、グアニジン又はその誘導体、トリアゾール又はその誘導体、テトラゾール又はその誘導体、ビトリアゾール又はその誘導体、ビテトラゾール又はその誘導体、アゾジカルボンアミド又はその誘導体、ヒドラジン又はその誘導体、及びヒドラジド誘導体が好ましく、より具体的には、5-オキソ-1,2,4-トリアゾール、テトラゾール、5-アミノテトラゾール、硝酸アミノテトラゾール、ニトロアミノテトラゾール、ビテトラゾール(5,5'-ビ-1H-テトラゾール)、5,5'-ビ-1H-テトラゾールジアンモニウム塩、アゾビステトラゾール、5,5'-アゾビステトラゾールジグアニジウム塩、グアニジン、ニトログアニジン、シアノグアニジン、トリアミノグアニジン硝酸塩、硝酸グアニジン、硝酸アミノグアニジン、ビウレット、アゾジカルボンアミド、カルボヒドラジド、カルボヒドラジド硝酸塩錯体、シュウ酸ヒドラジド、ヒドラジン硝酸塩錯体、アンミン錯体等が好適に挙げられる。これらの含窒素有機化合物の中でも、安価で反応性が良く比較的取り扱いが容易であることから、テトラゾール誘導体、ビテトラゾール誘導体及びグアニジン誘導体が好ましく、ニトログアニジン、硝酸グアニジン、ビテトラゾール、アゾビステトラゾール及び5-アミノテトラゾールが更に好ましい。これらの中でも、硝酸グアニジンは、分子中に酸素を含有するため酸化剤成分の配合量を低減でき、また良好な熱安定性を有し、更には低コスト、燃焼時の高いガス収率が期待できる等のメリットがあり、特に好ましい。なお、これら含窒素有機化合物は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 また、上記含窒素有機化合物は、取り扱いが容易であることから粉末若しくは顆粒状であることが好ましく、その50%粒径は、5~80μmが好ましく、10~50μmが更に好ましい。なお、含窒素有機化合物の50%粒径は、大き過ぎるとガス発生剤組成物成形体の強度が低下する一方で、小さ過ぎると粉砕に多大なコストを必要とする。また、本発明において、50%粒径とは、測定粒子数基準の50%粒径を意味し、例えばレーザー回折・散乱法等で測定できる。
 本発明のガス発生剤組成物中に占める含窒素有機化合物の含有率(配合割合)は、35~60質量%が好ましく、40~58質量%が更に好ましい。該含窒素有機化合物の含有率(配合割合)が35質量%未満では、ガス発生剤組成物100g当たりの発生ガスモル数が減少し、酸素過剰で窒素酸化物の発生が増加する傾向にある。一方、含窒素有機化合物の含有率(配合割合)が60質量%を超えると、有機物が多くなるため、ガス発生剤組成物の真比重が減少し、体積当たりの充填量が減少し、また、酸化剤成分が不足するために有毒な一酸化炭素が多く発生する傾向にある。
 本発明のガス発生剤組成物の酸化剤成分(B)は、金属硝酸塩及び/又は塩基性金属硝酸塩(B-1)と50%粒径が1~50μmの過塩素酸塩(B-2)を併用する。
 上記金属硝酸塩及び/又は塩基性金属硝酸塩(B-1)としては、例えば、アルカリ金属、アルカリ土類金属、鉄、銅、マグネシウム、コバルト、ニッケル、亜鉛等から選択される金属塩が挙げられる。具体的には、アルカリ金属の硝酸塩として硝酸ナトリウム、硝酸カリウム等、アルカリ土類金属の硝酸塩として硝酸マグネシウム、硝酸カルシウム、硝酸ストロンチウム、硝酸バリウム等が挙げられる。なお、これら金属硝酸塩は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、塩基性金属硝酸塩としては、塩基性硝酸銅、塩基性硝酸コバルト、塩基性硝酸亜鉛、塩基性硝酸マグネシウム、塩基性硝酸鉄等が挙げられる。これらの中でも、塩基性硝酸銅が特に好ましい。なお、これら塩基性金属硝酸塩は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 また、上記金属硝酸塩及び/又は塩基性金属硝酸塩(B-1)は、取り扱いが容易であることから粉末若しくは顆粒状であることが好ましく、その50%粒径は、1~80μmが好ましく、1~50μmが更に好ましい。なお、金属硝酸塩及び/又は塩基性金属硝酸塩(B-1)の50%粒径は、大き過ぎるとガス発生剤組成物成形体の強度が低下する一方で、小さ過ぎると粉砕に多大なコストを必要とする。
 上記過塩素酸塩(B-2)としては、例えば、アルカリ金属の過塩素酸塩、アルカリ土類金属の過塩素酸塩、過塩素酸アンモニウム等が挙げられる。具体的には、アルカリ金属の過塩素酸塩として過塩素酸ナトリウム、過塩素酸カリウム等、アルカリ土類金属の過塩素酸として過塩素酸マグネシウム、過塩素酸カルシウム、過塩素酸バリウム、過塩素酸ストロンチウム等が挙げられる。なお、これら過塩素酸塩は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 また、上記過塩素酸塩(B-2)は、その粒径が小さい程、燃料成分(A)との接触面積が増大し、該燃料成分(A)に対して優れた反応性を示すため、ガス発生剤組成物の着火性及び燃焼性を大幅に向上できることから、その50%粒径を1~50μmの範囲にすることが必要であり、1~30μmの範囲が好ましく、5~30μmの範囲が更に好ましく、8~25μmの範囲が一層好ましい。なお、上記過塩素酸塩(B-2)の50%粒径が1μm未満では、粉砕に多大なコストを必要とする一方、50μmを超えると、ガス発生剤組成物成形体の強度が低下することに加えて、着火性、燃焼性等のガス発生特性の向上効果が十分に得られない。
 上述のように、上記過塩素酸塩(B-2)は、該燃料成分(A)に対して反応性が非常に高いので、例えば、ガス発生剤組成物に必要とされる酸化剤成分の全てを該過塩素酸塩(B-2)としてしまうと、反応性が鋭敏すぎ、その取り扱いが非常に困難になる。このため、本発明のガス発生剤組成物においては、酸化剤成分中に占める過塩素酸塩(B-2)の含有量の制御が非常に重要であり、本発明者らが最適化を試みたところ、酸化剤成分(B)の全質量中に占める過塩素酸塩(B-2)の含有量を5質量%以上で且つ35質量%未満の範囲に限定する必要があることを見出した。本発明のガス発生剤組成物において、酸化剤成分(B)の全質量中に占める過塩素酸塩(B-2)の含有量が35質量%以上では、上記した通り、反応性が高くなり過ぎ、その取り扱いが困難になる他、作動時に塩素由来のガス成分の発生量が増加し、該ガス成分を回収するための添加剤が必要となり、ガス発生剤組成物の有効成分(燃焼成分及び酸化剤成分)の含有量を低減するため回避すべきである。また、自立燃焼性を喪失し、場合によっては燃焼が中断してしまうおそれがある。なお、ここでいう自立燃焼性とは、着火後に燃焼が中断せずに完全に燃え尽きる性質を意味する。一方、酸化剤成分(B)の全質量中に占める過塩素酸塩(B-2)の含有量が5質量%未満では、着火性、燃焼性等のガス発生特性の向上効果が十分に得られない。なお、本発明のガス発生剤組成物において、酸化剤成分(B)の全質量中に占める過塩素酸塩(B-2)の含有量は、着火性、燃焼性等のガス発生特性を更に向上させる観点から、8質量%以上で且つ35質量%未満の範囲が好ましく、10質量%以上で且つ35質量%未満の範囲が更に好ましい。
 本発明のガス発生剤組成物中に占める酸化剤成分(B)の含有率(配合割合)は、上記燃料成分(A)の種類、添加剤の種類、酸素バランス等によって異なるが、30~65質量%が好ましく、35~60質量%が更に好ましい。ここで、本発明のガス発生剤組成物中に占める上記金属硝酸塩及び/又は塩基性金属硝酸塩(B-1)の含有量(配合割合)は、20~50質量%が好ましく、25~50質量%が更に好ましい。また、本発明のガス発生剤組成物中に占める上記過塩素酸塩(B-2)の含有量(配合割合)は、1~20質量%が好ましく、3~18質量%が更に好ましい。
 本発明のガス発生剤組成物は、更に添加剤を含有していてもよい。該添加剤としては、一般的に車両搭乗者安全装置用ガス発生器用のガス発生剤組成物に使用可能な添加剤を用いることができる。例えば、好適な燃焼特性を維持するために成形性や形状保持性を付与するためのバインダー剤(C)、燃焼残渣を容易にろ過することを可能にするためのスラグ形成剤(D)、燃焼調整剤、滑剤等の添加剤を用いることができる。これら添加剤の含有量は、その用途により異なるが、いずれの用途においても、添加剤の含有量が多くなり過ぎると、燃焼性等の性能が低下するため、ガス発生剤組成物中に占める添加剤の含有量は、0.1~15質量%が好ましく、0.1~10質量%が更に好ましい。
 上記バインダー剤(C)は、好適な燃焼特性を維持させるために成形性、形状保持性を付与する添加剤であり、例えば、ガス発生剤組成物がバインダー剤(C)を含有する場合、インフレータが使用される過酷な環境下であっても、燃焼性能を保持することができる。該バインダー剤(C)としては、ガス発生剤組成物の燃焼挙動に大幅な悪影響を与えなければ特に制限なく使用でき、例えば、カルボキシメチルセルロースの金属塩、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、酢酸セルロース、プロピオン酸セルロース、酢酸酪酸セルロース、ニトロセルロース、微結晶性セルロース、グアガム、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、デンプン等の多糖誘導体、ステアリン酸塩等の有機バインダー、二硫化モリブデン、合成ヒドロタルサイト、酸性白土、タルク、ベントナイト、ケイソウ土、カオリン、シリカ、アルミナ等の無機バインダーが好適に挙げられる。これらの中でも、セルロース系バインダー、酸性白土等が特に好ましい。本発明のガス発生剤組成物中におけるバインダー剤(C)の含有量は、1.0~10質量%が好ましく、1.0~5質量%が更に好ましい。バインダー剤(C)の含有量が高いと、成形体の破壊強度を高めることができるが、組成物中の炭素元素及び水素元素の数が増大し、炭素元素の不完全燃焼生成物である一酸化炭素ガスの濃度が増大し、発生ガスの品質を低下させ、また燃焼を阻害してしまうおそれもあることから、ガス発生剤組成物の形状を維持できる最低量での使用が好ましい。特に、バインダー剤(C)の含有量が10質量%を超えると、酸化剤成分の相対的存在割合の増大が必要となり、ガス発生剤組成物中における燃料成分(含窒素有機化合物)の相対的存在割合が低下し、ガス発生器の実用化が困難になるおそれがある。
 上記スラグ形成剤(D)は、ガス発生剤組成物の燃焼後に生成する燃焼残渣を容易にろ過することを可能にする添加剤であり、インフレータの外に放出することを防ぐことを目的に添加される。該スラグ形成剤(D)の具体例としては、例えば、窒化珪素、炭化珪素、二酸化珪素、珪酸塩、酸化アルミニウム、酸化チタン、酸性白土、クレー等の天然鉱物等が挙げられる。本発明のガス発生剤組成物中におけるスラグ形成剤(D)の含有量は、0.5~10質量%が好ましく、1.0~5.0質量%が更に好ましい。スラグ形成剤(D)の含有量が高いと、燃焼性を低下させ、更には発生ガスのモル数を低下させることから、乗員保護性能が十分に発揮されないおそれがある。
 上記滑剤は、ガス発生剤組成物の調製時において原料成分の混合性向上、流動性改善を目的として添加される。該滑剤の具体例としては、例えば、グラファイト、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸ナトリウム、窒化ホウ素、高分散シリカ(二酸化珪素)、タルク等が挙げられる。これらの中でも、高分散シリカ(二酸化珪素)は、原料混合時の固着や凝集を抑制して均一に分散混合する機能を有しており、各成分の粒度特性・作用を維持する効果があり、特に有用である。本発明のガス発生剤組成物中における滑剤の含有量は、0.1~5.0質量%が好ましく、0.1~2.0質量%が更に好ましい。滑剤の含有量が高いと、燃焼性の低下、発生ガスのモル数の低下、更には発生ガス中の一酸化炭素の濃度の増大等が起きるおそれがある。
 上記燃焼調整剤は、ガス発生剤組成物の燃焼を調整するための添加剤であり、具体例としては、酸化鉄、酸化ニッケル、酸化銅、酸化亜鉛、酸化マンガン、酸化クロム、酸化コバルト、酸化モリブデン、酸化バナジウム、酸化タングステン等の金属酸化物、水酸化銅、水酸化コバルト、水酸化亜鉛、水酸化アルミニウム等の金属水酸化物、活性炭粉末、グラファイト、カーボンブラック等の炭素類等が挙げられる。本発明のガス発生剤組成物中における燃焼調整剤の含有量は、10質量%以下が好ましく、5質量%以下が更に好ましい。
 本発明のガス発生剤組成物は、適当な形状を有する成形体として使用することが好ましい。以下、ガス発生剤組成物の成形体をガス発生剤とも称する。なお、ガス発生剤組成物は、ガス発生剤組成物の燃焼性能、ガス発生器の燃焼特性に合わせて様々な形状に成形することができる。その成形方法としては、加圧成形方法、押出成形方法が挙げられる。本発明のガス発生剤組成物の成形体の形状は、特に限定されず、ペレット状、ディスク状、球状、棒状、円柱状、円筒状、金平糖状、テトラポット状等が挙げられる。また、該成形体は、無孔のものでもよいし、単孔又は多孔といった有孔のもの(例えば、単孔円筒状又は多孔円筒状)でもよい。更に、ペレット状、ディスク状の成形体は、片面又は両面に1~数個程度の突起を設けてもよい。突起の形状は特に制限されず、例えば、円柱状、円筒状、円錐状、多角錘状等が挙げられる。
 本発明のガス発生剤組成物の加圧成形体において、その形状が円柱状である場合、該成形体の円柱直径が小さいと、ガス発生剤の燃焼性を顕著に向上できることを見出した。加えて、円柱状成形体の直径が小さいと、ガス発生剤の嵩密度が高くなることを見出した。ガス発生器に該ガス発生剤を充填した場合、円柱直径が大きいものと同程度の充填量において、ガス発生特性の向上が期待される。また、嵩密度が高いと、単位体積当たりのガス発生剤充填量の増量が可能となり、ガス発生器の高出力を図るこが可能となるため望ましい。また、別の観点では、嵩密度が高いと、ガス発生剤を充填する空間の小容量化が可能となり、ガス発生器の小型化が達成できるため望ましい。特に、ガス発生剤を充填する空間の形状が制限される長尺円筒状のハウジングを備えるガス発生器においては、該ガス発生器に適用されるガス発生剤の充填性の向上が重要な課題となる。従って、本発明のガス発生剤組成物の成形体を長尺円筒状のハウジングを備えるガス発生器に充填する場合、該ガス発生器への充填性を向上させる観点から、成形体の形状を円柱状とし、その円柱直径を小さくすることが好ましい。具体的には、円柱状成形体の直径は、好ましくは4.0mm以下、より好ましくは3.2mm以下、更に好ましくは2.5mm以下である。また、特に限定されるものではないが、円柱状成形体の直径は、2.0mm以上が好ましい。更に、円柱状成形体の厚み(高さ)は、薄く(低く)すると、燃焼性能は向上するものの充填性が低下し、一方、厚く(高く)すると、充填性は向上するものの燃焼性能が低下するため、厚み/直径の比率は、30~80%が好ましく、30~60%が更に好ましい。加えて、燃焼性、充填性、成形体の強度等を考慮した場合、円柱状成形体の厚みは3.0mm以下が好ましく、2.0mm以下が更に好ましく、1.5mm以下が一層好ましい。また、特に限定されるものではないが、円柱状成形体の厚みは、1.0mm以上が好ましい。なお、円柱状成形体としては、厚みが2.0mm以下で、直径が4.0mm以下の加圧成形体が、最も好適である。また、円柱状成形体とは、該円柱状成形体の表面に曲面を形成した形状も含まれるものであり、その曲面高さは0.5mm以下が好ましく、0.3mm以下が更に好ましく、0.1mm以下が一層好ましい。また、成形体角面の面取りをした形状も含まれる。
 次に、本発明のガス発生剤組成物の成形体の加圧成形方法による製造方法を例示する。加圧成形により、錠剤状、ペレット状又はディスク状にガス発生剤組成物を成形する場合、燃料成分、酸化剤成分、任意の各種添加剤をV型混合機又はロッキングミキサー等の乾式混合機にて混合する。混合の際には、該成分の混合物中に球体を分散し介在させることで、該成分の粉末が球体による力を細部にわたって受けるため、組成物中に各成分が均一に分散する。ロッキングミキサーのような回転と揺動運動を行う混合機を用いることで、各成分がより均一に分散したガス発生剤組成物を得ることができるため望ましい。得られたガス発生剤組成物(粉末)に、バインダー剤(C)を含有する溶液(バインダー溶液)を添加し、撹拌造粒機等の湿式造粒機を用いて該ガス発生剤組成物を造粒する。バインダー溶液の添加量は、一概には言えないが、混合粉末に対して5~20質量%添加することができる。その後、80~100℃にて熱処理して顆粒を得る。熱処理後の顆粒の水分量は、1%を超えると流動性の低下が起こり、安定して次工程の加圧成形を行うことができないおそれがあるため、顆粒中の水分量は1質量%以下、好ましくは0.5質量%以下が望ましい。次に、該顆粒をロータリー打錠機によって所望の形状に加圧成形する。加圧成形の際、通常使用されるステアリン酸マグネシウム等の滑剤を0.1~5質量%の範囲で添加することも可能である。加圧成形された成形体は、100~110℃で5~20時間熱処理した後、ガス発生剤として使用できる。熱処理後のガス発生剤中の水分量は1質量%以下、好ましくは0.5質量%以下、更に好ましくは0.3質量%以下が望ましい。
 一方、押出成形方法により本発明のガス発生剤組成物の成形体を製造する場合には、燃料成分、酸化剤成分、各種添加剤を混合機にて混合し、得られた混合粉末に外割で10~20質量%の水又は有機溶媒を加えて十分に混練し、粘性を有する湿薬にする。その後、所望の形状に押出成形可能なダイスに該湿薬を通し、押出成形体を適宜切断していく。押出成形体は柱状体であり、より好ましい形体としては長尺円柱状成形体である。その形状は、直径が3.0mm以下、より好ましくは2.5mm以下、更に好ましくは2.0mm以下である。また、特に限定されるものではないが、該直径は、1.0mm以上が好ましい。長さ/直径の比率は、130~350%が好ましく、130~250%が更に好ましく、130~200%が一層好ましい。加えて、燃焼性、充填性等を考慮した場合、長尺円柱状成形体の長さは、6.5mm以下、好ましくは4.5mm以下、更に好ましくは2.5mm以下が望ましい。また、特に限定されるものではないが、長さは、2.0mm以上が好ましい。押出成形体としては、長さが2.5mm以下で、直径が2.0mm以下の長尺円柱状成形体が、最も好適である。このようにして得られた押し出し成形体を熱処理し、ガス発生剤として使用できる。
 なお、上記熱処理では、50~150℃の温度で10~20時間程度熱処理を行うことにより、経時変化の少ないガス発生剤組成物の成形体を得ることができる。押出成形による製造方法では、水分を10~20質量%含んだ成形体を熱処理するため、低温で長時間熱処理することが必要である。特に、107℃×400時間の過酷な耐熱老化試験にパスするためには、この熱処理が極めて有効である。なお、熱処理時間が10時間未満では、熱処理が不十分であり、一方、20時間を超える熱処理時間も意味が無いため、10~20時間の範囲で適宜選択するのが良い。また、熱処理温度は、50℃未満では、成形体の品質を向上させる効果が小さく、80℃を超えると、水分の蒸発速度が早すぎるため、成形体内に気泡が生じ、成形体の強度不足、燃焼中の異常燃焼の原因となる。そのため、50~70℃にて一次熱処理を行い、ガス発生剤中の水分量を7%以下、好ましくは5%以下とし、その後、80~150℃にて二次熱処理を行い、ガス発生剤中の水分量を1質量%以下、好ましくは0.5質量%以下にすることが望ましい。
 本発明のガス発生剤組成物の成形体は、車両搭乗者安全装置用ガス発生器への使用に好適で、特にエアバッグ装置用ガス発生器への使用に好適である。
 以下に、図を参照しながら本発明のガス発生器を詳細に説明する。本発明のガス発生器は、上述のガス発生剤組成物の成形体を備えることを特徴とする。本発明のガス発生器は、かかるガス発生剤組成物の成形体を備えることで、燃焼起動のための電気信号の発信から生成ガスの最大圧力に到達するまでの時間が極めて短いため、車両搭乗者安全装置用ガス発生器として好適である。なお、車両搭乗者安全装置用ガス発生器としては、特に限定されるものではないが、例えば、図1及び図2に示されるような、エアバック装置用ガス発生器が挙げられる。
 図1は、本発明のガス発生器の一例の断面図であり、該ガス発生器は、通常、前方衝突用エアバッグ装置に使用される。図1に示すガス発生器1は、ガス放出孔6が複数個設置された金属製容器からなるハウジング2を備え、該ハウジング2により外殻が形成されている。また、該ハウジング2の内部には、点火装置3、フィルター5が装備され、ガス発生剤4が充填されている。上記点火装置3の近接部には、点火室7が設置されおり、通常、点火装置3から発生する点火炎をガス発生剤4に伝達するエンハンサー剤(伝火薬)が充填されている。なお、本発明のガス発生剤組成物は、着火性に優れるため、エンハンサー剤が不要又は少量化することが可能となる。従って、点火室7が不要であったり、小容積化することが可能であるため、ガス発生器の小型化、軽量化及び低コスト化を達成することができる。
 図2は、本発明のガス発生器の他の例の断面図であり、該ガス発生器は、長尺筒状のハウジングを備えており、側突用エアバック装置に好適に使用される。なお、ここでいう長尺とは、長さ(L)と断面の径(D)の比(L/D)が3以上であることを意味し、また、断面の形状が円以外の場合は、面積円相当径をDとする。また、長尺筒状のハウジングの断面形状には、例えば、三角形、四角形、台形、円形、楕円形等がある。図2に示すガス発生器11は、ガス放出孔16が複数個設置された金属製容器からなる長尺筒状ハウジング12を備え、該ハウジング12により外殻が形成されている。また、該ハウジング12の内部には、点火装置13、フィルター15が装備され、ガス発生剤14が充填されている。上記点火装置13の近接部には、点火室17が設置されおり、通常、点火装置13から発生する点火炎をガス発生剤14に伝達するエンハンサー剤(伝火薬)が充填されている。なお、本発明のガス発生剤組成物は、着火性に優れるため、エンハンサー剤が不要又は少量化することが可能となる。従って、点火室17が不要であったり、小容積化することが可能であるため、ガス発生器の小型化、軽量化及び低コスト化を達成することができる。また、図2に示すガス発生器11は、図1に示すガス発生器1に比べて小型化が容易であり、車両内の設置スペースが小さい場所で使用されるエアバック用ガス発生器として好適である。その上、本発明のガス発生器は優れた応答性を示すため、図2に示すガス発生器11は、側突用、下肢部保護用又はシート座面上昇用エアバッグ装置用ガス発生器として特に好適である。
 以下、実施例及び比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。なお、各試験は以下の方法で行った。
1.粒度測定法
 レーザー回折・散乱法式粒度測定装置(日機装株式会社製 マイクロトラック MT3300II)を用いて、50%粒径を測定した。なお、50%粒径とは、上述の通り、測定粒子数基準の50%粒径を指す。
2.耐環境試験(高温安定性試験)
 ガス発生剤組成物の成形体(ガス発生剤)をアルミ容器に入れて密封した後、107℃に調温された恒温槽に入れて放置した。その後、任意の時間でガス発生剤を取り出し、ガス発生剤の重量減少率を測定し、分解の有無について確認した。
3.燃焼性試験(18ccタンク試験)
 ガス発生剤組成物の成形体(ガス発生剤)2.0gを容積18ccの燃焼用密閉容器に充填してガス発生剤を燃焼させ、最大到達圧力及び最大圧力への到達時間を計測した。また、この計測値に基づき、圧力発生速度を求めた。
4.排ガス測定(18ccタンク試験)
 18ccタンク試験後、タンク内のガスをテドラーバックに回収し、ガステック製検知管を用いて生成ガス成分の濃度分析を実施した。
5.燃焼性試験(28.3Lタンク試験)
 ガス発生剤組成物の成形体(ガス発生剤)9.9gを、長尺筒状のハウジングを備えたガス発生器に充填し、28.3Lタンク試験を実施し、圧力-時間曲線を計測した。
6.着火性試験
 ガス発生剤組成物の成形体(ガス発生剤)0.5gを大気中でバーナーにより着火し、ガス発生剤が着火し燃焼するかどうかについて確認した。
(実施例1)
 硝酸グアニジン55質量部、塩基性硝酸銅40質量部、50%粒径が19.84μmの過塩素酸カリウム5質量部、高分散シリカ0.4質量部を混合し、更に0.6質量%のポリビニルアルコール水溶液11質量部を噴霧添加し、次いで、90℃で5時間熱処理して顆粒を作製した。その後、ステアリン酸マグネシウム0.4質量部を添加し、直径4.0mm、厚さ1.50mmの円柱物に成形した後、110℃で10時間熱処理して本発明のガス発生剤組成物の成形体(ガス発生剤)を得た。
(実施例2)
 硝酸グアニジン56質量部、塩基性硝酸銅34質量部、50%粒径が19.84μmの過塩素酸カリウム10質量部、高分散シリカ0.4質量部を混合し、次いで、0.6質量%のポリビニルアルコール水溶液11質量部を噴霧添加し、その後、90℃で5時間熱処理して顆粒を作製した。次に、ステアリン酸マグネシウム0.4質量部を添加し、直径4.0mm、厚さ1.50mmの円柱物に成形した後、110℃で10時間熱処理して本発明のガス発生剤組成物の成形体(ガス発生剤)を得た。
(実施例3)
 硝酸グアニジン45質量部、塩基性硝酸銅31.2質量部、50%粒径が19.84μmの過塩素酸カリウム15質量部、ポリビニルピロリドン1.4質量部、ヒドロキシプロピルメチルセルロース2.2質量部、高分散シリカ0.4質量部、酸性白土4.8質量部を混合し、次いで、水16質量部、変性エタノール3質量部を添加し、万能混合機で混練した。その後、押出機にて直径φ1.5mm、長さ2.5mmの円柱物に成形した後、55℃で8時間、110℃で8時間熱処理して本発明のガス発生剤組成物の成形体(ガス発生剤)を得た。
(実施例4)
 硝酸グアニジン55質量部、塩基性硝酸銅40質量部、50%粒径が14.89μmの過塩素酸カリウム5質量部、高分散シリカ0.4質量部を混合し、次いで、0.6質量%のポリビニルアルコール水溶液11質量部を噴霧添加し、その後、90℃で5時間熱処理して顆粒を作製した。次に、ステアリン酸マグネシウム0.4質量部を添加し、直径4.0mm、厚さ1.50mmの円柱物に成形した後、110℃で10時間熱処理して本発明のガス発生剤組成物の成形体(ガス発生剤)を得た。
(実施例5)
 硝酸グアニジン55質量部、塩基性硝酸銅40質量部、50%粒径が44.41μmの過塩素酸カリウム5質量部、高分散シリカ0.4質量部を混合し、次いで、0.6質量%のポリビニルアルコール水溶液11質量部を噴霧添加し、その後、90℃で5時間熱処理して顆粒を作製した。次に、ステアリン酸マグネシウム0.4質量部を添加し、直径4.0mm、厚さ1.50mmの円柱物に成形した後、110℃で10時間熱処理して本発明のガス発生剤組成物の成形体(ガス発生剤)を得た。
(実施例6)
 硝酸グアニジン56質量部、塩基性硝酸銅34質量部、50%粒径が19.84μmの過塩素酸カリウム10質量部、高分散シリカ0.4質量部を混合し、次いで、0.6質量%のポリビニルアルコール水溶液11質量部を噴霧添加し、その後、90℃で5時間熱処理して顆粒を作製した。次に、ステアリン酸マグネシウム0.4質量部を添加し、直径3.2mm、厚さ1.50mmの円柱物に成形した後、110℃で10時間熱処理して本発明のガス発生剤組成物の成形体(ガス発生剤)を得た。
(実施例7)
 硝酸グアニジン56質量部、塩基性硝酸銅34質量部、50%粒径が19.84μmの過塩素酸カリウム10質量部、高分散シリカ0.4質量部を混合し、次いで、0.6質量%のポリビニルアルコール水溶液11質量部を噴霧添加し、その後、90℃で5時間熱処理して顆粒を作製した。次に、ステアリン酸マグネシウム0.4質量部を添加し、直径2.5mm、厚さ1.50mmの円柱物に成形した後、110℃で10時間熱処理して本発明のガス発生剤組成物の成形体(ガス発生剤)を得た。
(比較例1)
 硝酸グアニジン53質量部、塩基性硝酸銅47質量部、高分散シリカ0.4質量部を混合し、次いで、0.6質量%のポリビニルアルコール水溶液12質量部を噴霧添加し、その後、90℃で5時間熱処理して顆粒を作製した。次に、ステアリン酸マグネシウム0.4質量部を添加し、直径4.0mm、厚さ1.50mmの円柱物に成形した後、110℃で熱処理をして比較例用のガス発生剤組成物の成形体(ガス発生剤)を得た。
(比較例2)
 硝酸グアニジン55質量部、塩基性硝酸銅40質量部、50%粒径が194.4μmの過塩素酸カリウム5質量部、高分散シリカ0.4質量部を混合し、次いで、0.6質量%のポリビニルアルコール水溶液11質量部を噴霧添加し、その後、90℃で5時間熱処理して顆粒を作製した。次に、ステアリン酸マグネシウム0.4質量部を添加し、直径4.0mm、厚さ1.50mmの円柱物に成形した後、110℃で熱処理して本発明のガス発生剤組成物の成形体(ガス発生剤)を得た。
(比較例3)
 硝酸グアニジン40.2質量部、塩基性硝酸銅51質量部、ポリビニルピロリドン1.4質量部、ヒドロキシプロピルメチルセルロース2.2質量部、高分散シリカ0.4質量部、酸性白土4.8質量部を混合し、次いで、水16質量部、変性エタノール3質量部を添加し、万能混合機で混練した。その後、押出機にて直径φ1.5mm、長さ2.5mmの円柱物に成形した後、55℃で8時間、110℃で8時間熱処理して本発明のガス発生剤組成物の成形体(ガス発生剤)を得た。
(比較例4)
 硝酸グアニジン59質量部、塩基性硝酸銅21質量部、50%粒径が19.84μmの過塩素酸カリウム20質量部、高分散シリカ0.4質量部を混合し、次いで、0.6質量%のポリビニルアルコール水溶液11質量部を噴霧添加し、その後、90℃で5時間熱処理して顆粒を作製した。次に、ステアリン酸マグネシウム0.4質量部を添加し、直径4.0mm、厚さ1.50mmの円柱物に成形した後、110℃で熱処理して本発明のガス発生剤組成物の成形体(ガス発生剤)を得た。
(比較例5)
 硝酸グアニジン55質量部、塩基性硝酸銅40質量部、50%粒径が92.73μmの過塩素酸カリウム5質量部、高分散シリカ0.4質量部を混合し、次いで、0.6質量%のポリビニルアルコール水溶液11質量部を噴霧添加し、その後、90℃で5時間熱処理して顆粒を作製した。次に、ステアリン酸マグネシウム0.4質量部を添加し、直径4.0mm、厚さ1.50mmの円柱物に成形した後、110℃で10時間熱処理して本発明のガス発生剤組成物の成形体(ガス発生剤)を得た。
(比較例6)
 硝酸グアニジン55質量部、塩基性硝酸銅40質量部、50%粒径が144.8μmの過塩素酸カリウム5質量部、高分散シリカ0.4質量部を混合し、次いで、0.6質量%のポリビニルアルコール水溶液11質量部を噴霧添加し、その後、90℃で5時間熱処理して顆粒を作製した。次に、ステアリン酸マグネシウム0.4質量部を添加し、直径4.0mm、厚さ1.50mmの円柱物に成形した後、110℃で10時間熱処理して本発明のガス発生剤組成物の成形体(ガス発生剤)を得た。
(比較例7)
 硝酸グアニジン55質量部、塩基性硝酸銅40質量部、50%粒径が222.9μmの過塩素酸カリウム5質量部、高分散シリカ0.4質量部を混合し、次いで、0.6質量%のポリビニルアルコール水溶液11質量部を噴霧添加し、その後、90℃で5時間熱処理して顆粒を作製した。次に、ステアリン酸マグネシウム0.4質量部を添加し、直径4.0mm、厚さ1.50mmの円柱物に成形した後、110℃で10時間熱処理して本発明のガス発生剤組成物の成形体(ガス発生剤)を得た。
<試験例1.耐環境試験(高温安定性試験)>
 実施例2のガス発生剤組成物の成形体を、107℃にて400時間、800時間、1200時間の耐環境試験に投入した。初期重量及び試験後重量から算出した重量減少率を表1に示す。実施例2の重量減少率は1%以下であり、高温条件下における分解はほとんどなくガス発生剤として容認できる性能であることを確認できる。また、この耐環境試験に供した実施例2のガス発生剤について、上記燃焼性試験(18ccタンク試験)にて性能評価を行なった。その結果を表2に示す。耐環境試験を経た実施例2のガス発生剤は、最大到達圧力(PMax)及び最大圧力への到達時間(tPmax)、並びに圧力発生速度(dP/dt)が、初期と比較して変化しておらず、高温安定性に優れていることが分かる。
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
<試験例2.燃焼性試験(18ccタンク試験)>
 実施例1、実施例2、比較例1及び比較例2のガス発生剤組成物成形体について、18ccタンク試験を実施した。その結果を表3に示す。実施例1及び実施例2は、比較例1より最大圧力到達時間(tPmax)が短く、圧力上昇速度(dP/dt)も高い値を示しており、燃焼速度が速くなっていることが分かる。また、50%粒径が異なる過塩素酸カリウムを使用した実施例1と比較例2の比較では、実施例1の方が、最大圧力到達時間(tPmax)が短く、圧力上昇速度(dP/dt)も大きいことから、燃焼速度が速くなっていることを確認できる。また、最大到達圧力(Pmax)も、実施例1の方が比較例2より高くなることが確認できる。
Figure JPOXMLDOC01-appb-I000003
<試験例3.排ガス測定(18ccタンク試験)>
 実施例1、実施例2、比較例1及び比較例2のガス発生剤組成物成形体について、18ccタンク試験後の排ガスを回収し、燃焼後の発生ガス分析を実施した。その結果を表4に示す。実施例1は、発生ガス成分の全てにおいて比較例1及び比較例2より発生量が少ないことを確認できる。また、実施例2においても、実施例1と同程度の結果が得られることが分かる。なお、全てのガス発生剤において塩化水素の生成は認められない。
Figure JPOXMLDOC01-appb-I000004
<試験例4.燃焼性試験(28.3Lタンク試験)>
 実施例3及び比較例3のガス発生剤組成物成形体について、28.3Lタンク試験を実施した。通常、ガス発生器には点火具からの火炎を増幅させるエンハンサー剤が使用されているが、この実験では、エンハンサー剤を取り除いた仕様で行った。その結果を図3に示す。実施例3は、エンハンサー剤がなくても着火しタンク圧を上昇させているが、比較例3では、着火が起きていないことが分かる。このことから、実施例3のガス発生剤は、着火性に優れることが分かる。また、得られた圧力-時間曲線の結果から、実施例3のガス発生剤が、優れた応答性と十分なガス発生特性とを有することは明らかである。
<試験例5.着火性試験>
 実施例1、実施例2、実施例3及び比較例4のガス発生剤組成物成形体について、バーナーを用いた着火性試験を実施した。その結果を表5に示す。比較例4のガス発生剤は、酸化剤成分中に占める過塩素酸カリウムの含有量が高過ぎるため、自立燃焼が困難になることが分かる。
Figure JPOXMLDOC01-appb-I000005
<試験例6.燃焼性試験(18ccタンク試験);過塩素酸カリウム粒径の影響>
 過塩素酸カリウム(PP)の50%粒径が異なる実施例1、実施例4、実施例5及び比較例5~7のガス発生剤組成物成形体について、18ccタンク試験を実施した。その結果を表6に示す。使用した過塩素酸カリウムの50%粒径が小さい程、最大圧力到達時間(tPmax)が速く、圧力上昇速度(dP/dt)が大きくなる傾向を示しており、燃焼速度が速くなることが分かる。その上、50%粒径が小さい程、最大到達圧力(PMax)も大きくなる傾向を示す。これらの例では、酸化剤成分中に占める過塩素酸カリウムの含有量が同一であるため、過塩素酸カリウムの50%粒径を小さくすることで、ガス発生剤の性能向上が達成できることが明らかとなる。また、50%粒径が50μm以下の過塩素酸カリウムを用いることにより、ガス発生剤の燃焼性を向上できることが分かる。
Figure JPOXMLDOC01-appb-I000006
<試験例7.燃焼性試験(18ccタンク試験);ガス発生剤組成物の成形体形状の影響>
 本発明のガス発生剤組成物の成形体において、成形体の形状が燃焼性に与える影響を検証するため、打錠成形体の直径が異なる実施例2、実施例6及び実施例7のガス発生剤組成物の成形体について、18ccタンク試験を実施した。結果を表7に示す。実施例2、実施例6及び実施例7は、同一の組成であるにもかかわらず、直径が小さい程、最大圧力到達時間(tPmax)が短くなるため、最大到達圧力(PMax)の差異は認められないが、結果として、圧力上昇速度(dP/dt)が速くなることが分かる。
<試験例8.嵩密度測定;ガス発生剤組成物の成形体形状の影響>
 実施例2、実施例6及び実施例7のガス発生剤組成物の成形体について、容積100ccの円筒容器を用いて、成形体の嵩密度の測定を行った。測定結果を表7に示す。ガス発生剤の直径が小さい程、嵩密度が高くなることが分かる。
Figure JPOXMLDOC01-appb-I000007
 ガス発生剤組成物の成形体形状に関する試験例7及び試験例8の結果から、本発明に係るガス発生剤組成物の成形体は、円柱直径が小さい程、圧力上昇速度が速く、燃焼性を向上できることが分かる。この理由は解明されていないが、成形体の直径が小さい程、ガス発生剤単位質量当たりのガス発生剤表面積が大きいため、燃焼性の向上に寄与するものと予想される。
 更に、本発明のガス発生剤組成物の円柱状成形体においては、直径が小さい程、嵩密度が大きくなるという結果が得られた。これは、該ガス発生剤のガス発生器への充填性が向上することを示すものであるため、単位容積当たりのガス発生剤の充填量を増加でき、ガス発生器の高出力化を達成できるという効果を奏する。また、本発明のガス発生剤組成物の円柱状成形体の直径を小さくすれば、充填性が向上する上、応答性に優れるため、ガス発生器へガス発生剤を充填する容積を小さくすることが可能であり、ガス発生器の小型化を達成できるという効果を奏する。
 本発明のガス発生剤組成物は、着火性及び燃焼性に優れるため、燃焼起動のための電気信号に迅速に呼応し、速やかに着火して大量の燃焼ガスは発生させるものであり、該電気起信号の発信から生成ガスの最大圧力に到達するまでの時間を極めて短くすることができる。このため、優れた応答性が望まれる車両搭乗者安全装置用ガス発生器への使用に好適で、特には、側突用、下肢部保護用又はシート座面上昇用エアバッグ装置用ガス発生器への使用に好適である。
 1,11  ガス発生器
 2,12  ハウジング
 3,13  点火装置
 4,14  ガス発生剤
 5,15  フィルター
 6,16  ガス放出孔
 7,17  点火室

Claims (13)

  1.  燃料成分(A)として含窒素有機化合物と、酸化剤成分(B)として金属硝酸塩及び/又は塩基性金属硝酸塩(B-1)並びに50%粒径が1~50μmの過塩素酸塩(B-2)とを含有し、酸化剤成分(B)の全質量中に占める前記過塩素酸塩(B-2)の含有量が5質量%以上で且つ35質量%未満であることを特徴とするガス発生剤組成物。
  2.  前記含窒素有機化合物が、グアニジン、トリアゾール、テトラゾール、ビトリアゾール、ビテトラゾール及びそれらの誘導体からなる群から選択される少なくとも1種であることを特徴とする請求項1に記載のガス発生剤組成物。
  3.  金属硝酸塩及び/又は塩基性金属硝酸塩(B-1)が、硝酸カリウム、硝酸ナトリウム、硝酸ストロンチウム及び塩基性硝酸銅からなる群から選択される少なくとも1種であることを特徴とする請求項1又は2に記載のガス発生剤組成物。
  4.  前記過塩素酸塩(B-2)が、過塩素酸カリウム、過塩素酸ナトリウム及び過塩素酸アンモニウムからなる群から選択される少なくとも1種であることを特徴とする請求項1~3のいずれかに記載のガス発生剤組成物。
  5.  前記含窒素有機化合物の含有量が35~60質量%で、前記金属硝酸塩及び/又は塩基性金属硝酸塩(B-1)の含有量が20~50質量%で、前記過塩素酸塩(B-2)の含有量が1~20質量%であることを特徴とする請求項1~4のいずれかに記載のガス発生剤組成物。
  6.  前記含窒素有機化合物が硝酸グアニジンであり、前記金属硝酸塩及び/又は塩基性金属硝酸塩(B-1)が塩基性金属硝酸銅であり、前記過塩素酸塩(B-2)が過塩素酸カリウムであることを特徴とする請求項5に記載のガス発生剤組成物。
  7.  前記過塩素酸塩(B-2)は、50%粒径が1~30μmであることを特徴とする請求項1~6のいずれかに記載のガス発生剤組成物。
  8.  更に、バインダー剤(C)を含むことを特徴とする請求項1~7のいずれかに記載のガス発生剤組成物。
  9.  更に、スラグ形成剤(D)を含むことを特徴とする請求項1~8のいずれかに記載のガス発生剤組成物。
  10.  請求項1~9のいずれかに記載のガス発生剤組成物の成形体。
  11.  成形体の形状が円柱状であり、その直径が4mm以下であることを特徴とする請求項10に記載のガス発生剤組成物の成形体。
  12.  請求項10又は11に記載のガス発生剤組成物の成形体を備えることを特徴とするガス発生器。
  13.  長尺筒状のハウジングを備えることを特徴とする請求項12に記載のガス発生器。
PCT/JP2010/001665 2009-03-13 2010-03-09 ガス発生剤組成物及びその成形体、並びにそれを用いたガス発生器 WO2010103811A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800182086A CN102414147A (zh) 2009-03-13 2010-03-09 气体产生剂组合物及其成形体、以及使用该成形体的气体产生器
JP2011503708A JP5719763B2 (ja) 2009-03-13 2010-03-09 ガス発生剤組成物及びその成形体、並びにそれを用いたガス発生器
EP10750568.7A EP2407443A4 (en) 2009-03-13 2010-03-09 GAS GENERATION COMPOSITION, SHAPED OBJECT, AND GAS GENERATOR THEREWITH
US13/256,436 US20120000583A1 (en) 2009-03-13 2010-03-09 Gas generant composition and molded article thereof, and gas generator using the molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-061450 2009-03-13
JP2009061450 2009-03-13

Publications (1)

Publication Number Publication Date
WO2010103811A1 true WO2010103811A1 (ja) 2010-09-16

Family

ID=42728107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001665 WO2010103811A1 (ja) 2009-03-13 2010-03-09 ガス発生剤組成物及びその成形体、並びにそれを用いたガス発生器

Country Status (5)

Country Link
US (1) US20120000583A1 (ja)
EP (1) EP2407443A4 (ja)
JP (1) JP5719763B2 (ja)
CN (1) CN102414147A (ja)
WO (1) WO2010103811A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504507A (ja) * 2009-09-10 2013-02-07 エスエムウー 火工ガス発生物
CN103517887A (zh) * 2011-05-09 2014-01-15 海瑞克里兹 产气烟火复合物
JP2015171847A (ja) * 2014-03-12 2015-10-01 日本化薬株式会社 ガス発生器
JP2016525992A (ja) * 2013-04-25 2016-09-01 フィッシャーヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトfischerwerke GmbH & Co. KG 電気的に点火可能なケースレスの発射薬、その製造方法及び使用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105157493B (zh) * 2015-09-30 2016-08-24 马卫国 一种爆破用膨胀管及其爆破方法
JP6970190B2 (ja) 2016-05-23 2021-11-24 ジョイソン セーフティー システムズ アクウィジション エルエルシー ガス発生組成物ならびにそれらの製造方法及び使用方法
CN110317120B (zh) * 2019-05-30 2020-10-20 湖北航鹏化学动力科技有限责任公司 点火药及其制备方法与应用以及安全气囊气体发生器
AU2020210211B2 (en) 2019-09-18 2022-09-08 Innovatus Design Pty Ltd A modular partition and fabrication thereof
EP4095120A1 (en) * 2020-01-22 2022-11-30 Xi'an Crysten Materials Technology Corporation Limited Compounds and preparation method therefor and use thereof as energetic materials
CN116789506A (zh) * 2023-06-30 2023-09-22 陕西庆华汽车安全系统有限公司 用于汽车安全带预紧器的产气组合物及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10297419A (ja) * 1997-05-01 1998-11-10 Nippon Kayaku Co Ltd ガス発生器
JP2000319086A (ja) * 1999-05-10 2000-11-21 Nippon Kayaku Co Ltd ガス発生剤成形体
JP2004155645A (ja) * 2002-09-12 2004-06-03 Daicel Chem Ind Ltd ガス発生剤組成物
JP2006076849A (ja) * 2004-09-10 2006-03-23 Nippon Kayaku Co Ltd ガス発生剤組成物及びこれを有するガス発生器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2926040B2 (ja) * 1997-05-09 1999-07-28 ダイセル化学工業株式会社 エアバッグ用ガス発生器及びエアバッグ装置
JP2000103692A (ja) * 1998-09-30 2000-04-11 Daicel Chem Ind Ltd エアバッグ用ガス発生剤組成物成型体
KR20020048419A (ko) * 1999-09-27 2002-06-22 고지마 아끼로, 오가와 다이스께 염기성 금속 질산염, 그 제조법 및 가스 발생제 조성물
JP4641130B2 (ja) * 2000-10-10 2011-03-02 日本化薬株式会社 ガス発生剤組成物およびそれを使用したガス発生器
WO2002083464A1 (fr) * 2001-04-10 2002-10-24 Nippon Kayaku Kabushiki-Kaisha Generateur de gaz
EP1386899B1 (en) * 2001-05-10 2011-07-13 Nippon Kayaku Kabushiki Kaisha Igniting agent composition, and igniter using the igniting agent composition
US6875295B2 (en) * 2001-12-27 2005-04-05 Trw Inc. Cool burning gas generating material for a vehicle occupant protection apparatus
WO2003066390A1 (en) * 2002-02-06 2003-08-14 Nippon Kayaku Kabushiki-Kaisha Gas generator
JP4767487B2 (ja) * 2003-10-20 2011-09-07 ダイセル化学工業株式会社 ガス発生剤組成物
US20050127324A1 (en) * 2003-10-22 2005-06-16 Jianzhou Wu Gas generating composition
US7665764B2 (en) * 2004-01-15 2010-02-23 Daicel Chemical Industries, Ltd. Gas generator for air bag
US20050161135A1 (en) * 2004-01-28 2005-07-28 Williams Graylon K. Auto-igniting pyrotechnic booster composition
JP5090184B2 (ja) * 2006-01-18 2012-12-05 日本化薬株式会社 ガスアクチュエータ用小型ガス発生器及びプリテンショナーシステム
FR2949778B1 (fr) * 2009-09-10 2013-05-10 Snpe Materiaux Energetiques Composes pyrotechniques generateurs de gaz

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10297419A (ja) * 1997-05-01 1998-11-10 Nippon Kayaku Co Ltd ガス発生器
JP2000319086A (ja) * 1999-05-10 2000-11-21 Nippon Kayaku Co Ltd ガス発生剤成形体
JP2004155645A (ja) * 2002-09-12 2004-06-03 Daicel Chem Ind Ltd ガス発生剤組成物
JP2006076849A (ja) * 2004-09-10 2006-03-23 Nippon Kayaku Co Ltd ガス発生剤組成物及びこれを有するガス発生器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2407443A4 *
SHINGO DATE ET AL., JOURNAL OF THE JAPAN EXPLOSIVES SOCIETY, vol. 60, no. 1, 1999, pages 31 - 37, XP008167540 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504507A (ja) * 2009-09-10 2013-02-07 エスエムウー 火工ガス発生物
CN103517887A (zh) * 2011-05-09 2014-01-15 海瑞克里兹 产气烟火复合物
US9249063B2 (en) 2011-05-09 2016-02-02 Herakles Pyrotechnic gas generator compounds
JP2016525992A (ja) * 2013-04-25 2016-09-01 フィッシャーヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトfischerwerke GmbH & Co. KG 電気的に点火可能なケースレスの発射薬、その製造方法及び使用
JP2015171847A (ja) * 2014-03-12 2015-10-01 日本化薬株式会社 ガス発生器

Also Published As

Publication number Publication date
US20120000583A1 (en) 2012-01-05
JP5719763B2 (ja) 2015-05-20
CN102414147A (zh) 2012-04-11
EP2407443A4 (en) 2013-11-27
EP2407443A1 (en) 2012-01-18
JPWO2010103811A1 (ja) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5719763B2 (ja) ガス発生剤組成物及びその成形体、並びにそれを用いたガス発生器
US20060219340A1 (en) Gas generating system
JP2004155645A (ja) ガス発生剤組成物
JP5689065B2 (ja) ガス発生剤組成物及びその成型体、並びにこれを用いたガス発生器
JP4257740B2 (ja) ガス発生器
JP4498927B2 (ja) ガス発生剤及びその製造方法並びにエアバッグ用ガス発生器
WO2000018619A1 (fr) Corps moule forme d'une composition d'agent generateur de gaz, pour airbags
JP6970190B2 (ja) ガス発生組成物ならびにそれらの製造方法及び使用方法
JP6995006B2 (ja) ガス発生剤組成物
JP4514024B2 (ja) 伝火薬成形体及びこれを有するガス発生器
JP7266956B2 (ja) ガス発生剤組成物
JP6781654B2 (ja) ガス発生剤組成物
JP2006076849A (ja) ガス発生剤組成物及びこれを有するガス発生器
JP6562659B2 (ja) ガス発生剤組成物
JP2002160992A (ja) ガス発生剤
JP5391440B2 (ja) パイロ型ガス発生器及びガス発生剤組成物の成型体
JP5031255B2 (ja) ガス発生剤組成物
JP2015086095A (ja) ガス発生剤組成物
JP4318238B2 (ja) ガス発生剤組成物
JP2018158872A (ja) ガス発生剤組成物およびその成形体ならびにそれを用いたガス発生器
JP2019206473A (ja) ガス発生剤組成物
JP5325099B2 (ja) ガス発生剤組成物及びガス発生剤組成物成形体、並びにそれに用いる化合物の製造方法、並びにガス発生器
JP2006001792A (ja) ガス発生器用の着火剤
JPH08165186A (ja) エアバッグ用ガス発生剤
WO2004080767A1 (ja) ガス発生器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080018208.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011503708

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13256436

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010750568

Country of ref document: EP