WO2002026688A1 - Procede de production d'un compose ester fluore - Google Patents

Procede de production d'un compose ester fluore Download PDF

Info

Publication number
WO2002026688A1
WO2002026688A1 PCT/JP2001/008433 JP0108433W WO0226688A1 WO 2002026688 A1 WO2002026688 A1 WO 2002026688A1 JP 0108433 W JP0108433 W JP 0108433W WO 0226688 A1 WO0226688 A1 WO 0226688A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
reaction
ester
fluorinated
Prior art date
Application number
PCT/JP2001/008433
Other languages
English (en)
French (fr)
Inventor
Takashi Okazoe
Kunio Watanabe
Shin Tatematsu
Koichi Yanase
Yasuhiro Suzuki
Daisuke Shirakawa
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to AU2001292268A priority Critical patent/AU2001292268A1/en
Priority to EP01972529A priority patent/EP1323703B1/en
Priority to DE60130670T priority patent/DE60130670T2/de
Priority to JP2002531075A priority patent/JP4934940B2/ja
Priority to CA2423910A priority patent/CA2423910C/en
Priority to KR1020037004379A priority patent/KR100768026B1/ko
Publication of WO2002026688A1 publication Critical patent/WO2002026688A1/ja
Priority to US10/397,521 priority patent/US7034179B2/en
Priority to HK03105731A priority patent/HK1053459A1/xx
Priority to US11/105,518 priority patent/US7161025B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/287Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/05Preparation of ethers by addition of compounds to unsaturated compounds
    • C07C41/06Preparation of ethers by addition of compounds to unsaturated compounds by addition of organic compounds only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/58Preparation of carboxylic acid halides
    • C07C51/60Preparation of carboxylic acid halides by conversion of carboxylic acids or their anhydrides or esters, lactones, salts into halides with the same carboxylic acid part
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/14Preparation of carboxylic acid esters from carboxylic acid halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/297Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups

Definitions

  • the present invention relates to an industrially useful fluorine-containing ester compound and a method for producing a fluorine-containing compound such as an acid fluoride compound.
  • a fluorinated ester compound obtained by fluorinating all of the C—H portion in a hydrocarbon compound to C—F is useful as a precursor of a fluororesin raw material.
  • a method for fluorinating a C-H-containing hydrocarbon-based compound a method using cobalt trifluoride, a method using direct fluorination using fluorine (F 2 ), or a method using hydrogen fluoride in an electrolytic cell is used.
  • a method of performing a fluorination reaction by gas decomposition hereinafter referred to as an ECF method is known.
  • a solvent that does not react with fluorine but dissolves fluorine for example, a solvent composed of a perfluoro compound
  • a reaction solvent for forming the liquid phase used.
  • the reaction solvent to be employed in a conventional manner CC 1 2 FCC 1 F 2 ( hereinafter, R- 1 1 3 called.)
  • chlorinated fluorinated hydrocarbons such as, Perufuruoro hydrocarbons, black hole Perufuruo
  • a fluorinated solvent such as ropolyether (Japanese Patent Application Laid-Open No. H4-1500520).
  • the present inventors have attempted to produce perfluoroesters, such as perfluoro (alkyl vinyl ether), which can be converted into a raw material monomer of a fluororesin using a fluorination reaction in a liquid phase.
  • perfluoroesters such as perfluoro (alkyl vinyl ether)
  • ester compound and an acyl fluoride corresponding to the structure of the ester compound were used, the reaction process became extremely efficient without causing disadvantages such as lowering the yield of the fluorination reaction. did.
  • a partial fluorinated ester having a specific structure is employed as a substrate for the fluorination reaction, the solubility of the substrate in the liquid phase is improved, the volumetric efficiency is increased, and the reaction operation is facilitated.
  • an ester compound having a structure that can be fluorinated which is an ester of a compound having a hydroxyl group and a compound having an acyl fluoride group
  • a process for producing a fluorine-containing ester compound comprising fluorinating a liquid mixture with a compound having an acylfluoride group.
  • ester compound is a compound produced by subjecting a compound having an ⁇ acid group to an esterification reaction with a compound having an acyl fluoride group.
  • the ester compound is the following compound (3), which has an acyl fluoride group.
  • R A and R AF are monovalent organic groups which may be the same or different, and when R A and R AF are different, R AF is a monovalent organic group in which R A is fluorinated .
  • R BF is a perfluoro monovalent saturated organic group.
  • R 1 is a hydrogen atom or a monovalent organic group.
  • R 1F is a fluorine atom when R 1 is a hydrogen atom, and R 1 and R 1F when R 1 is a monovalent organic group are monovalent organic groups which may be the same or different.
  • R 1F is a monovalent organic group in which R 1 is fluorinated.
  • a reaction product obtained by reacting a liquid mixture of compound (3) and compound (2) with the following compound (1) and excess amount of compound (2) with respect to compound (1) The above-described production method.
  • R A and R 1 have the same meaning as described above.
  • R AF and R 1F have the same meaning as above.
  • the decomposition reaction of the ester bond of compound (4) is obtained by the fluorination reaction of a liquid mixture of compound (3) and compound (2).
  • the organic group in the present specification refers to a group that essentially requires a carbon atom, and may be a saturated group or an unsaturated group.
  • the atom that can be substituted by fluorine includes a hydrogen atom bonded to carbon.
  • Examples of the atomic group that can be substituted by fluorine include a carbon-carbon unsaturated double bond and a carbon-carbon unsaturated triple bond.
  • fluorine can be added to the carbon-carbon double bond by fluorination in a liquid phase to form a carbon-carbon single bond.
  • fluorine is added to the carbon-carbon triple bond by fluorination in a liquid phase to form a carbon-carbon single bond or a carbon-carbon double bond.
  • a bond may be formed.
  • a saturated organic group refers to a group in which a carbon-carbon bond in the group is composed of only a single bond.
  • Monovalent organic groups include monovalent hydrocarbon groups, heteroatom-containing monovalent hydrocarbon groups, halogenated monovalent hydrocarbon groups, and halogenated (heteroatom-containing monovalent hydrocarbon) groups.
  • the group selected from the above is preferable.
  • the monovalent organic group is a saturated group, the group selected when the monovalent organic group is a saturated group is preferable.
  • the organic group preferably has 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, from the viewpoint of solubility in the liquid phase used in the fluorination reaction.
  • the hydrocarbon group may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and is preferably an aliphatic hydrocarbon group. Further, in the aliphatic hydrocarbon group, a single bond, a double bond, or a triple bond may be present as a carbon-carbon bond.
  • the aliphatic hydrocarbon group may have any of a straight-chain structure, a branched structure, a ring structure, or a structure partially having a ring structure.
  • a monovalent saturated hydrocarbon group is preferable.
  • the monovalent saturated hydrocarbon group include an alkyl group, and the structure may be any of a linear structure, a branched structure, a cyclic structure, and a partially cyclic structure.
  • the carbon number of the alkyl group is preferably from 1 to 20 and particularly preferably from 1 to 10.
  • Examples of the alkyl group having a linear structure include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • Examples of the alkyl group having a branched structure include an isopropyl group, an isoptyl group, a sec-butyl group, a t-tert-butyl group, and the like.
  • alkyl group having a ring structure examples include, for example, a cycloalkyl group, a cycloalkyl group, a group having an alicyclic spiro structure, and a 3- to 6-membered cycloalkyl group is preferable, and a cyclopentyl group, And a cyclohexyl group.
  • alkyl group having an aromatic ring examples thereof include an aralkyl group such as a benzyl group and a phenethyl group, and an alkyl group having a heterocyclic ring (eg, a pyridylmethyl group, a furfuryl group, and the like).
  • the halogen atom in the halogenated group is a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, and is preferably a fluorine atom, a chlorine atom, or a bromine atom. Fluorine and chlorine are preferred.
  • halogenation means that one or more hydrogen atoms have been replaced with halogen atoms.
  • Partial halogenation means that a part of the hydrogen atom has been replaced by a halogen atom. That is, there is a hydrogen atom in the partial halogenated group.
  • Belha genogenesis means that all of the hydrogen atoms have been hemogenized. That is, there is no hydrogen atom in the perhalogenated group.
  • the meanings of the terms halogenation, partial halogenation, and perhalogenation have the same meaning when a halogen atom is specified.
  • the halogenated saturated hydrocarbon group refers to a group in which one or more of the hydrogen atoms present in the above saturated hydrocarbon group has been replaced by a nitrogen atom.
  • a hydrogen atom may or may not be present in the halogenated saturated hydrocarbon group.
  • the halogen atom in the halogenated saturated hydrocarbon group is preferably a fluorine atom, a chlorine atom, or a fluorine atom and a chlorine atom.
  • the partially octagenated saturated hydrocarbon group refers to a group in which a part of the hydrogen atoms present in the above saturated hydrocarbon group has been replaced by halogen atoms.
  • a hydrogen atom is present in the partially halogenated saturated hydrocarbon group.
  • the perhalogenated saturated hydrocarbon group is a group in which all of the hydrogen atoms present in the saturated hydrocarbon group have been replaced by Happagen atoms. There is no hydrogen atom in the Belha genated saturated hydrocarbon group.
  • the halogen atom present in the halogenated group and the perhalogenated group may be one kind or two or more kinds.
  • the halogenated saturated hydrocarbon group may have a straight-chain structure or a branched structure, a ring structure, or a structure having a ring portion.
  • the halogenated saturated hydrocarbon group preferably has 1 to 20 carbon atoms.
  • halogenated monovalent saturated hydrocarbon group examples include a fluoroalkyl group and a fluoro (partial cycloalkyl) group.
  • a perfluoroalkyl group or a perfluoro (partial alkyl group) group ie, a group in which all of the hydrogen atoms in the partial alkyl group are fluorinated
  • the perfluoro (partially fluoroalkyl) group is the same as the perfluoroalkyl group, and the perfluoro (partially fluoroalkylene) group is the same as the perfluoroalkylene group.
  • the heteroatom-containing saturated hydrocarbon group refers to a group including a heteroatom such as an oxygen atom, a nitrogen atom, or a sulfur atom, a carbon atom, and a hydrogen atom.
  • the heteroatom may be a heteroatom itself or a heteroatom formed by bonding heteroatoms or heteroatoms and other atoms. It is preferable that none of the hetero atom and the hetero atom group be changed by the thermal decomposition reaction.
  • the carbon number of the heteroatom-containing saturated hydrocarbon group is preferably 1 to 20.
  • heteroatom-containing saturated hydrocarbon group examples include a group in which a divalent heteroatom or a divalent heteroatom group is inserted between carbon and carbon atoms of the saturated hydrocarbon group, or a carbon atom in the saturated hydrocarbon group.
  • a group in which a hetero atom is bonded to an atom, or a group in which a divalent hetero atom or a divalent hetero atom group is bonded to a carbon atom at the bonding terminal of the saturated hydrocarbon group is preferable.
  • an etheric oxygen atom-containing group is particularly preferable in view of the usefulness of the compound.
  • an alkyl group containing an etheric oxygen atom (for example, an alkoxyalkyl group, etc.) is preferable as the monovalent group from the viewpoints of availability, production, and usefulness of the product.
  • etheric acid between carbon-carbon atoms Examples of the monovalent aliphatic hydrocarbon group having a ring portion in which an element atom is inserted include an alkyl group having a dioxolane skeleton.
  • alkoxyalkyl group a group in which one of the hydrogen atoms present in the alkyl group described above for the monovalent aliphatic hydrocarbon group is substituted with an alkoxy group is preferable.
  • the alkoxy group preferably has 1 to 10 carbon atoms. Examples of the alkoxyalkyl group include an ethoxymethyl group, an 11-propoxyl group, a 2-propoxyl group and the like.
  • halogenated (hetero atom-containing saturated hydrocarbon) group a fluoro (hetero atom-containing saturated hydrocarbon) group or a fluoro (partial chroma (hetero atom-containing saturated hydrocarbon)) group is preferable.
  • the number of carbon atoms in the halogenated (heteroatom-containing saturated hydrocarbon) group is:! ⁇ 20 is preferred.
  • the perhalogenated (heteroatom-containing monovalent saturated hydrocarbon) group may have a straight-chain structure or a branched structure, and may be a perfluoro (heteroatom-containing monovalent saturated hydrocarbon) group or a perfluoro (partial chromate).
  • (Hetero atom-containing monovalent saturated hydrocarbon)) group is preferable, and perfluoro (hetero atom-containing alkyl) group or perfluoro port (partial chroma (hetero atom-containing alkyl)) group is particularly preferable, and perfluoro (alkoxyl) group or perfluoro ( Partial chroma (alkoxy)) groups are particularly preferred. Specific examples of these groups are shown in specific compounds described later.
  • the ester compound in the present invention is an ester of a compound having a 7-carboxylic acid group and a compound having an acylfluoride group (one FC ( ⁇ ) group) and has a structure that can be fluorinated.
  • the method of obtaining the ester compound is not particularly limited as long as it is a compound having a structure formed particularly by an esterification reaction between a compound having a hydroxyl group and a compound having an acyl fluoride group.
  • the ester compound a compound having a hydroxyl group, one C 1 C ( ⁇ ) group, one B r C ( ⁇ ) group, and And a compound obtained by subjecting one or more compounds selected from carbonyl groups to an esterification reaction.
  • the ester compound in the present invention may be a compound obtained by subjecting a portion other than an ester bond to another chemical transformation after the esterification reaction.
  • the number of ester bonds in the ester compound is not particularly limited.
  • the ester compound is preferably a compound produced by an esterification reaction between a compound having a hydroxyl group and a compound having an acylfluoride group.
  • a compound having one or more hydroxyl groups can be employed as the compound having a hydroxyl group
  • a compound having one or more acyl fluoride groups can be employed as the compound having an acyl fluoride group.
  • the ester compound is preferably a compound produced by an esterification reaction between a compound having one hydroxyl group and a compound having one acylfluoride group, and particularly the following compound (3).
  • the compound (3) include the following compound (3A) when R 1 is a hydrogen atom and the following compound (3B) when R 1 is a monovalent organic group (R 1Q ).
  • R A is a monovalent organic group, and is preferably a group containing a hydrogen atom because raw materials are easily available, and a saturated group having a hydrogen atom is preferable in terms of yield of the desired reaction. It can be carried out well, and is preferable from the viewpoint of usefulness of the target compound.
  • RA is a monovalent saturated hydrocarbon group, a partially halogenated monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, or a partially halogenated (etherified oxygen atom containing 1 (Valent saturated hydrocarbon) groups are preferred.
  • R A is an alkyl group, It is preferably an alkyl group, an alkoxyalkyl group, or a (chloroalkyl) group.
  • RA can be appropriately changed depending on the structure of RAF of the target compound.
  • One of the advantages of the method of the present invention is that various structures having different structures of RA can be employed.
  • R BF is a perfluorinated monovalent organic group, which is a monovalent saturated hydrocarbon group, a partially halogenated monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, and a partially halogenated (etheric oxygen atom (Containing monovalent saturated hydrocarbon) It is preferable that all of the hydrogen atoms present in the group selected from the group are substituted with a fluorine atom (that is, a perfluorinated group), and particularly, an alkyl group, A group in which all of the hydrogen atoms present in a group selected from a partially halogenated alkyl group, an alkoxyalkyl group and a partially halogenated (alkoxyalkyl) group are substituted with fluorine atoms is preferable.
  • R 1 represents a hydrogen atom or a monovalent organic group.
  • R 1 is a monovalent organic group, an alkyl group is preferable, and a methyl group is particularly preferable.
  • the compound (3) in the present invention preferably has a fluorine content of 30% by mass or more from the viewpoint of easiness of conducting a fluorination reaction described below, particularly a reaction using fluorine. In particular, it is preferably from 30 to 86% by mass, more preferably from 30 to 76% by mass. If the fluorine content is too low, the solubility in the liquid phase will be extremely low, the reaction system of the fluorination reaction will be uneven, and the compound (3) carried out in a continuous reaction will be successfully fed into the reaction system. There is a problem that cannot be done.
  • the upper limit of the fluorine content is not limited, but if it is too high, it is difficult to obtain the compound (3) and the price is high, which is not economical.
  • the molecular weight of compound (3) is 200 to 100,000, which prevents undesirable fluorination in the gas phase and facilitates fluorination in the liquid phase. It is preferable from the point of view. If the molecular weight is too small, the compound (3) is likely to evaporate. The decomposition reaction may occur in the gas phase during the fluorination reaction. On the other hand, if the molecular weight is too large, purification of compound (3) may be difficult.
  • CH 2 CHCH ( ⁇ CH 3 ) CH 2 OCOCF (CF 3 ) OCF 2 CF 2 CF 3
  • CH 2 CHCH 2 O (CH 2 ) gOCOCF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 2 CF 3
  • Compound (3) is preferably a compound produced by an esterification reaction between compound (1) and compound (2).
  • Examples of the compound (1) include the following compound (1A) when R 1 is a hydrogen atom and the following compound (1 B) when R 1 is a monovalent organic group (R 1 G ).
  • R A, RK R 1 Q , and R BF are as defined above.
  • Specific examples of compound (1A) include the following compounds.
  • CH 2 CHCH 2 ⁇ CH 2 CH 2 CH 2 ⁇ H
  • Compound (1A) is a compound that is easily available or can be easily synthesized by a known method.
  • 3,4-dichloro-1-butanol can be easily synthesized by a known method described in US Pat. No. 4,261,901.
  • 2-alkoxy alcohols are described in J. Am. Chem. Soc., 49, 1080 (1927), Bull. Soc. Chim. Fr., 1813 (1960), and Can. J. Chem., 43, 1030 (1965), Synthesis, 280 (1981), etc., and can be easily synthesized.
  • the compound (1) is preferably a compound in which RA is a group containing no fluorine atom, from the viewpoint of availability.
  • Compounds in which R A is a group containing a fluorine atom (1 ) Is preferably a compound having a fluorine content of less than 20%, particularly preferably a compound having a fluorine content of less than 10%.
  • R BF in compound (2) is a perfluoro monovalent saturated organic group.
  • Specific examples of the compound (2) include the following compounds.
  • the compound (2) itself is not fluorinated, it can be conveniently used as a liquid solvent forming a liquid phase of the fluorination reaction.
  • fluorination is performed on a liquid mixture of an ester compound and the compound having an acylfluoride group.
  • This liquid mixture may be obtained by incorporating an ester compound obtained by various methods into a compound having an acylfluoride group.
  • the liquid mixture in the present invention is preferably obtained by an esterification reaction between a compound having a hydroxyl group and a compound having an acylfluoride group.
  • a compound having an amount larger than the stoichiometric amount required for esterifying all of the hydroxyl groups of the compound having a hydroxyl group and having an unreacted acyl fluoride group is contained in the reaction product. It is preferable to obtain a liquid mixture of an ester compound and a compound having an acylfluoride group by performing an esterification reaction using a compound having an acylfluoride group in such an amount as to remain.
  • the reaction product when obtaining a liquid mixture of the compound (3) and the compound (2), when the compound (1) is esterified with the compound (2), a stoichiometric
  • the reaction product can be a liquid mixture of the compound (3) and the compound (2) . Since the esterification reaction can proceed at a high conversion rate, when the esterification reaction is carried out using an excessive amount of the compound (2), substantially all of the compound (1) is consumed in the reaction.
  • the reaction product can be a liquid mixture of the compound (3) formed by the esterification reaction and the unreacted compound (2).
  • the compound (2) is preferably used in a molar amount of at least 1.1 times, more preferably at least 1.1 to 10 times the molar amount of the compound (1).
  • the esterification reaction between compound (1) and compound (2) may be carried out in the presence of a solvent other than compound (2) (hereinafter referred to as solvent 1). It is preferable to use it in the absence of solvent 1 from the viewpoint of working efficiency. Even if the solvent 1 is not particularly used, an excessive amount of the compound (2) also acts as a solvent, so that the esterification reaction can proceed sufficiently.
  • solvent 1 a solvent other than compound (2)
  • solvent 1 an excessive amount of the compound (2) also acts as a solvent, so that the esterification reaction can proceed sufficiently.
  • an alkali metal fluoride such as sodium fluoride
  • a HF scavenger it is particularly preferable to use the HF scavenger when compound (1) or compound (2) is acid-labile.
  • the HF scavenger is not used, it is preferable to discharge HF out of the reaction system by accompanying the HF with a nitrogen stream.
  • the amount is preferably 1 to 10 times the molar amount of the compound (2).
  • the reaction temperature of the reaction of the compound (1) with the compound (2) is preferably 150 ° C. or higher, more preferably + 100 ° C. or lower or the boiling point of the solvent or lower.
  • the reaction time of the reaction can be appropriately changed depending on the supply rate of the raw materials and the amount of the compound used in the reaction.
  • the reaction pressure gauge pressure, hereinafter the same is preferably normal pressure to 2 MPa.
  • fluorination is performed on a liquid mixture of an ester compound and a compound having an acylfluoride group.
  • the ester compound is the compound (3)
  • the fluorination reaction is performed in a liquid mixture of the compound (3) and the compound (2).
  • Compound (2) can function as a liquid phase in a fluorination reaction.
  • the compound having an acylfluoride group is a compound having a similar or common structure to the ester compound, and is therefore a compound that can dissolve the ester compound well.
  • compound (2) is required because R BF is a fluorine-containing group. Can be well dissolved in the liquid mixture.
  • compound (2) is a good solvent for compound (3) because some of its structure is similar or common to compound (3).
  • Compound (2) in the liquid mixture is different from compound (3)
  • the mass is preferably 5 times or more, particularly preferably 10 to 100 times.
  • RBF in compound (2) is adjusted so that compound (3) can be easily dissolved in the liquid phase during fluorination, while being related to the structure of RA in compound (1).
  • the fluorine content of the compound (3) is equal to or greater than 30 wt%, preferably adjusted to the structure of R BF.
  • R 1 is a hydrogen atom and R BF is selected to be the same as R AF , which will be described later, it is particularly preferable because the step of separating the reaction product can be simplified.
  • the crude reaction product of the esterification reaction can be used as it is, but post-treatment may be performed if necessary.
  • post-treatment methods of the crude product include a method in which the crude product is distilled as it is, a method in which the crude product is treated with dilute water and the like to separate the crude product, and a method in which the crude product is extracted with an appropriate organic solvent. Later, a method of distillation, a silica gel gel column chromatography and the like can be mentioned.
  • a compound having a hydroxyl group for example, compound (1)
  • the content of the compound having a hydroxyl group in the liquid phase is preferably 10% or less, particularly preferably 3% or less, particularly preferably 1% or less.
  • the fluorination reaction in the present invention refers to a reaction in which one or more fluorine atoms are introduced into an ester compound.
  • the fluorination reaction is carried out by a liquid phase reaction.
  • ECF method ECF method
  • cobalt fluorination method reaction with fluorine (F 2 )
  • F 2 fluorine
  • a fluorine gas may be used as it is, or a fluorine gas diluted with an inert gas may be used.
  • an inert gas nitrogen gas and helium gas are preferable, and nitrogen gas is particularly preferable for economic reasons.
  • the amount of fluorine gas in the nitrogen gas is not particularly limited, and is preferably 10 V o 1% or more from the viewpoint of efficiency, and particularly preferably 20 V o 1% or more.
  • liquid phase of the liquid phase fluorination reaction a compound having an acyl fluoride group is essential.
  • compound (2) is required as a liquid phase.
  • the compound (3) which is a substrate of the fluorination reaction and the compound (4) formed by the fluorination reaction can also be in a liquid phase.
  • the liquid phase of the liquid phase fluorination reaction may contain a solvent other than compound (2), compound (3), and compound (4) (hereinafter, referred to as solvent 2). In order to maximize the effect, it is preferable not to use the solvent 2.
  • the reaction system of the liquid phase fluorination reaction is preferably a batch system or a continuous system.
  • the liquid-phase fluorination reaction of compound (3) is preferably carried out by the following fluorination method 1 or fluorination method 2. Particularly, from the viewpoint of reaction yield and selectivity, fluorination method 2 is preferred. preferable.
  • the fluorine gas may be diluted with an inert gas such as nitrogen gas when using a batch method or a continuous method.
  • [Fluorination method 2] Compound (2) is charged into a reactor, and stirring is started. Next place A method in which a liquid mixture of compound (3) and compound (2) and fluorine gas are continuously and simultaneously supplied to a liquid phase in a reactor at a predetermined reaction temperature and reaction pressure at a predetermined molar ratio.
  • the liquid mixture of the compound (3) and the compound (2) in the fluorination method 2 may be a reaction product obtained by reacting the compound (1) with an excess amount of the compound (2) as it is or, if necessary, further comprising a compound (2). 2) may be used.
  • the concentration of the compound (3) is preferably 20% by mass or less, particularly preferably 10% by mass or less.
  • the amount of fluorine used in the fluorination reaction is always an excess equivalent to the amount of hydrogen atoms in the ester compound. It is preferable to carry out the reaction in a state in which fluorine is present, and it is particularly preferable to use fluorine in an amount of 1.5 equivalents or more (that is, 1.5 times or more mol) from the viewpoint of selectivity. It is preferable that the amount of fluorine is always kept in an excessive amount from the start to the end of the reaction.
  • the reaction temperature of the fluorination reaction is usually preferably ⁇ 60 or higher and lower than the boiling point of the ester compound. From the viewpoint of the reaction yield, selectivity, and the ease of industrial implementation, the reaction temperature is preferably 150 ° C. to + 10 ° C. 0 ° C is particularly preferred, and 120 to +50 is particularly preferred.
  • the reaction pressure of the fluorination reaction is not particularly limited, and 0 to 2 MPa is particularly preferable from the viewpoint of the reaction yield, selectivity, and the ease of industrial implementation.
  • the ester compound present in the reaction system can be efficiently fluorinated, and the reaction rate can be dramatically improved.
  • the C—H bond-containing compound is an organic compound other than an ester compound, particularly preferably an aromatic hydrocarbon, particularly preferably benzene, toluene and the like.
  • the amount of the C—H bond-containing compound to be added is from 0.1 to the hydrogen atom in the ester compound. It is preferably 10 mol%, particularly preferably 0.1 to 5 mol%.
  • the diluting solvent is preferably a compound having an acylfluoride group (for example, compound (2)).
  • the C—H bond-containing compound is preferably added in a state where fluorine gas is present in the reaction system. Further, when a C—H bond-containing compound is added, it is preferable to pressurize the reaction system.
  • the pressure at the time of pressurization is preferably 0.01 to 5 MPa.
  • HF fluorine atom
  • a fluorine atom in a fluorination reaction, HF is by-produced.
  • a HF scavenger coexist in the reaction system or that the HF scavenger and the outlet gas be brought into contact at the reactor gas outlet.
  • the HF scavenger those similar to those described above are used, and NaF is preferable.
  • the amount is preferably 1 to 20 moles, more preferably 1 to 5 moles, based on the total amount of hydrogen atoms present in the ester compound.
  • a cooler preferably maintained at 10 ° C to room temperature, particularly preferably maintained at about 20 ° C
  • A)-(a) NaF pellet packed bed and
  • a cooler preferably maintained at -78 ° C to + 10 ° C, preferably-30 ° C to 0 ° C
  • a liquid return line for returning the aggregated liquid from the cooler in (c) to the reactor may be provided.
  • a fluorinated ester compound is produced.
  • a fluorinated ester compound having a structure corresponding to the carbon skeleton of the ester compound is formed.
  • the bonding state may be changed by adding a fluorine atom to one or more of the unsaturated bonds.
  • fluorination of compound (3) produces compound (4).
  • Compound (4) is a compound in which one or more fluorine atoms have been introduced into the molecule of compound (3).
  • R AF in compound (4) is a group corresponding to R A.
  • R A can be fluorinated R AF when a monovalent organic group having an elemental atom or an unsaturated bond and the group is fluorinated, is a group in which R A is fluorinated.
  • R AF is a monovalent organic group which is not fluorinated, or when it is a group which can be fluorinated but is not fluorinated, it is the same group as RA .
  • R BF is the same group as R BF in compound (3).
  • R 1F is, R 1F where R 1 is a hydrogen atom is a fluorine atom.
  • 1 ⁇ is a monovalent If an organic group R 1 and the monovalent organic group may be the same as or different from each other, R 1 F in the case where R 1 and the R 1 F are different fluorination R 1 It is a monovalent organic group.
  • the fluorine-containing ester compound is preferably a compound in which the ester compound is perfluorinated.
  • the R AF of the compound (4) is preferably a fluorinated group, since the case where R A in the compound (3) is a hydrogen-containing group is preferable in terms of the availability of the compound. Preferably, it is a perfluorinated group.
  • the compound (4) includes the following compound (4A) and the following compound (4B).
  • R AF and R BF have the same meaning as described above.
  • RA is a monovalent saturated hydrocarbon group, a partially halogenated monovalent saturated hydrocarbon group, an etheric oxygen atom-containing monovalent saturated hydrocarbon group, or a partially halogenated (etheric oxygen atom containing A monovalent saturated hydrocarbon) group
  • R AF is preferably a group in which all of the hydrogen atoms present in R A are substituted with fluorine atoms.
  • R A is an alkyl group
  • R AF be a group in which all of the hydrogen atoms present in R A are substituted with fluorine atoms.
  • R 1QF compound (4B) is R 1Q the same, which may be optionally different monovalent organic group, when different is a monovalent organic group R 1 G is fluorinated.
  • R 1 GF is preferably a monovalent organic group in which R 1 Q is perfluorinated, particularly preferably a perfluoroalkyl group, and a trifluoromethyl group is a useful point of the compound. Is particularly preferred.
  • the fluorinated ester compound which is the reaction product of the fluorination reaction can be usefully used as it is or by being chemically converted into another compound.
  • the fluorinated ester compound is a compound having an ester bond that can be decomposed, particularly when the compound is a compound (4), the compound is converted into another compound by performing an ester bond decomposition reaction. It may be.
  • the product of the fluorination reaction includes a fluorinated ester compound.
  • the fluorination reaction is performed in the presence of a compound having an acylfluoride group
  • the compound having the acylfluoride group is a compound that is not fluorinated, the same compound as the compound is used.
  • fluorinated a compound having a fluorinated acyl fluoride group is contained in the product of the fluorination reaction.
  • the HF scavenger / solvent 2 these may also be present in the reaction product.
  • the fluorinated ester compound When the ester bond is decomposed in the fluorinated ester compound, the fluorinated ester compound may be purified and taken out from the reaction product of the fluorination reaction, or the reaction product may be used as it is in the next step. It may be used for an ester bond decomposition reaction, and it is particularly preferable to perform an ester bond decomposition reaction in the latter case. In the case of purification, a method of distilling the crude product as it is under normal pressure or reduced pressure can be mentioned.
  • the ester bond is decomposed in the compound (4), the following compound (5) and the compound (2) are produced.
  • the compound (5) includes the compound (5A) and the compound (5B).
  • R AF , R 1F and R 1 OF have the same meaning as described above.
  • Compound (5B) is a compound useful as a fluorinated ketone and itself as a solvent and the like. Further, it can be led to a fluorinated alcohol by a reduction reaction.
  • Compound (5A) is a compound useful as a raw material for a fluororesin monomer or a fluorinated alcohol.
  • the compound (5A) include the following compounds. CF 3 CF 2 C ⁇ F,
  • the decomposition reaction of the ester bond is preferably carried out by decomposing the ester bond by heating, or by decomposing the ester bond in the presence of a nucleophile or an electrophile.
  • thermal decomposition When the ester bond is decomposed by heating (hereinafter referred to as thermal decomposition), it is preferable to select the type of thermal decomposition reaction according to the boiling point of the fluorine-containing ester compound and its stability.
  • thermally decomposing a fluorinated ester compound which is easily vaporized a gas phase pyrolysis method of continuously decomposing in a gas phase and condensing and recovering an outlet gas containing a product may be employed.
  • the reaction temperature of the gas phase pyrolysis method is preferably from 50 to 350 ° C, particularly preferably from 50 to 300, and particularly preferably from 150 to 250 ° C.
  • an inert gas not directly involved in the reaction may be allowed to coexist in the reaction system.
  • the inert gas include nitrogen gas and carbon dioxide gas.
  • the inert gas is preferably added in an amount of about 0.01 to 50 V o 1% based on the fluorine-containing ester compound. If the amount of inert gas added is large, the amount of product recovered may decrease.
  • the reaction pressure is not particularly limited.
  • the fluorine-containing ester compound is a high boiling point compound, the reaction is preferably carried out under reduced pressure.
  • the fluorinated ester compound is a low-boiling compound, it is preferable to carry out the reaction under pressure because decomposition of the product is suppressed and the reaction rate is increased.
  • the gas phase reaction is carried out using a tubular reactor, it is preferable to fill the reaction tube with glass, an alkali metal salt, or an alkaline earth metal salt in order to promote the reaction.
  • an alkali metal salt or an alkaline earth metal salt in order to promote the reaction.
  • these fillers do not promote the decomposition reaction of the compound having an acylfluoride group. It is preferred to choose from those.
  • metal salt of alkaline metal or the salt of alkaline earth metal carbonate or fluoride is preferable.
  • the glass include common soda glass, and particularly, glass beads in a bead form and having improved fluidity are preferable.
  • Salts of metal salts include sodium carbonate, sodium fluoride, potassium carbonate, or lithium carbonate.
  • Examples of the alkaline earth metal salt include calcium carbonate, calcium fluoride, and magnesium carbonate.
  • the reaction tube is filled with a glass, an alkali metal salt, or an alkaline earth metal salt, glass beads, light ash of sodium carbonate, or the like having a particle size of 100 to 2 It is particularly preferable to use the one having a length of about 50 m since a fluidized bed type reaction system can be employed.
  • the fluorinated ester compound is a compound that is difficult to vaporize
  • a liquid phase pyrolysis method in which the liquid is heated in a liquid state in the reactor.
  • the reaction pressure in this case is not limited.
  • the product of the ester bond decomposition reaction has a lower boiling point than that of the fluorine-containing ester compound. Therefore, the product is preferably obtained by a reactive distillation method in which the product is vaporized and continuously extracted. After the heating is completed, A method of collectively extracting a product may be used.
  • the reaction temperature of this liquid phase pyrolysis method is preferably from 50 to 300 ° C, particularly preferably from 100 to 250 ° C.
  • the ester bond is decomposed by the liquid phase thermal decomposition method
  • a solvent may be added to the reaction product, but preferably no solvent is added.
  • the compound (2) and the compound (4) are contained in the product, but the decomposition reaction of the ester bond is performed by the compound ( It is preferable that the reaction is performed on a mixture of 2) and compound (4), and no solvent other than compound (2) (hereinafter, referred to as solvent 3) be present. In this case, the compound (2) may be appropriately added.
  • the compound (2) can also act as a liquid phase in the ester bond decomposition reaction.
  • the ester bond decomposition reaction may be performed without a solvent.
  • the method using no solvent is preferred from the viewpoint of volumetric efficiency and suppression of by-products.
  • the solvent 3 it is preferable to select a solvent that does not react with the compound (4), is compatible with the compound (4), and does not react with the product.
  • the solvent 3 include an inert solvent such as perfluorotrialkylamine, and a chlorofluoroethylene oligomer having a high boiling point among chlorofluorocarbons (for example, trade name: CFC). Are preferred.
  • an inert solvent such as perfluorotrialkylamine
  • a chlorofluoroethylene oligomer having a high boiling point among chlorofluorocarbons for example, trade name: CFC.
  • the method of reacting a fluorinated ester compound with a nucleophile or an electrophile in a liquid phase may be carried out in the case of performing an ester bond decomposition reaction, in the absence of a solvent, or in the presence of a solvent.
  • the reaction of compound (4) is performed in the presence of a solvent, it is preferable to perform the reaction in the presence of compound (2).
  • the nucleophile F— is preferable, and particularly, F— derived from the fluoride of alkali metal is preferable.
  • NaF, NaHF 2 , KF and CsF are preferred as fluorides of Alkyri metal. Of these, NaF is particularly preferred in terms of economy, and KF is particularly preferred in terms of reaction efficiency.
  • the ester bond is decomposed by reacting compound (4) with a nucleophile (eg, F—), F— is added to the strong luponyl group present in the ester bond of compound (4).
  • the compound (2) is formed at the same time as R AF CFR 1F 0— is eliminated.
  • F_ is further eliminated from R AF CFR 1F O— to produce compound (5).
  • compound (4) may be further decomposed to form another compound (for example, an unsaturated compound).
  • the eliminated F— reacts in the same way as another compound (4).
  • the nucleophile used at the beginning of the reaction may be a catalytic amount or may be used in excess.
  • the amount of the nucleophile such as F— is preferably 1 to 500 mol%, particularly preferably 10 to 100 mol%, and particularly preferably 5 to 50 mol%, based on the compound (4).
  • the reaction temperature is from 130 ° C to the solvent or compound.
  • the reaction product of the ester decomposition reaction contains the compound (2) together with the compound (5A) under ordinary conditions.
  • the reaction product contains the compound (2).
  • the compound (5A) and the compound (2) in the reaction product can be easily separated by an ordinary separation method, but the starting compound was selected so that the compound (5A) had the same structure as the compound (2).
  • the group structure is selected so that R AF and R BF have the same structure in compound (4A)
  • compound (5A) which is the reaction product, and compound (2) are the same compound. Because of this, it is possible to save the trouble of separating the reaction product.
  • the structure of the group is selected so that R AF and R BF have the same structure, and compound (3A) is converted to fluorine in a liquid phase in which an excess amount of compound (2) is essential.
  • compound (4A) and compound (2) formed by the fluorination The compound can be introduced into the next ester bond decomposition reaction.
  • the compound (5A) which is the product of the decomposition reaction of the ester bond, and the compound (2) become the same compound, and the step of separating and purifying the product can be simplified.
  • the type of solvent used can be reduced by employing only the compound (2) as a solvent, and post-treatment can be omitted.
  • the compound (3) and the compound (2) are reacted in the presence of an excessive amount of the compound (2).
  • Still another preferred embodiment includes a method of reusing the compound (5A) or the compound (2) obtained from the decomposition reaction product of the ester bond as the compound (2) to be reacted with the compound (1).
  • the method is a method that can continuously produce the compound (5A). That is, using a liquid mixture of the compound (4A) and the compound (2), a compound (2) is obtained from a reaction product obtained by performing a decomposition reaction of an ester bond, and a part or the whole of the compound (2) is re-used. By using the compound (1A) for the reaction, the compound (5A) can be continuously produced. This method allows continuous production of the desired compound (5A) from the raw material compound (1A) which is available at low cost.
  • gas chromatography is referred to as GC
  • gas chromatography mass spectrometry as GC-MS
  • milliliter as mL.
  • NMR ⁇ The vector data are shown as apparent chemical shift ranges. 13 reference values of the reference substance CD C 1 3 that put the C-NMR was set to 76. 9 ppm. For quantification by 19 F-NMR, C 6 F 6 was used as an internal standard.
  • the total injection amount of benzene was 0.309 g, and the total injection amount of CF 3 CF 2 CF 2 OCF (CF 3 ) CO F was 3 OmL. Further, nitrogen gas was blown for 2.0 hours. After the reaction, the product was purified by distillation to obtain a reaction product containing the title compound (85.3 g) and CF 3 CF 2 CF 2 OCF (CF 3 ) COF. The analysis results of the title compound in the reaction product are shown below.
  • Boiling point 46-51 ° CZ 5.2 kPa.
  • the reaction product containing CF 3 CF 2 CF 2 OCF (CF 3 ) COOCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 (83.0 g) obtained in Example 1-2 was mixed with NaF powder (1.lg). ) And heated in an oil bath at 140 ° C. for 15 hours with vigorous stirring. A liquid sample (81.3 g) was recovered at the top of the flask through a reflux condenser adjusted to a temperature of 7O :. The production of CF 3 CF 2 CF 2 OCF (CF 3 ) COF was confirmed by analyzing the product obtained by distilling and purifying the liquid sample by GC-MS.
  • Example 1-4 Example of continuous production of CF 3 CF 2 CF 2 OCF (CF 3 ) COF
  • Example 1 CF 3 CF 2 CF 2 OCF (CF 3 ) COF (81.2 g) obtained by the method of 3 and CH 3 CH 2 CH 2 OCH (CH 3 ) CH 2 ⁇ H (14.0 g) And by reacting in the same manner as in Example 1-1, CF 3 CF 2 CF 2 OCF (CF 3 ) C ⁇ OCH 2 CH (CH 3 ) OCH 2 CH 2 CH 3 and CF 3 CF 2 CF 2 A liquid mixture (94.0 g) containing OCF (CF 3 ) COF was obtained. Next, in the liquid mixture, the same reaction as in Examples 1-2 and 1-3 was carried out to obtain the title compound.
  • Example 2-2 CH 2 C 1 CHC 1 CH (OCH 3 ) CH 2 ⁇ C ⁇ CF (CF 3 ) OCF 2 CF 2 CF 3 and FCOCF (CF 3 ) OCF 2 CF 2 CF 3
  • Example 9 —CH 9 CHCH (OCH 3 ) CH 2 OCOCF (CF )
  • the liquid mixture containing OCF 2 CF 2 CF 3 (981) was charged into a 2 L three-necked flask equipped with a Jim port cooled to 0 ° C, and stirred at 110 to 0 ° C. While reacting, chlorine gas was introduced at a rate of 0.8 g / min. When 170 g of chlorine gas was introduced, the reaction was terminated to obtain 1084 g of a crude liquid.
  • Example of manufacturing CF 3 CF 2 CF 2 OCF (CF 3 ) CO F (3523 g) was added to a 3 L nickel autoclave, stirred, and kept at 5 ° C. A cooler maintained at 110 ° C was installed at the autoclave gas outlet. After nitrogen gas was blown in for 3.5 hours, 20% fluorine gas was blown in at a flow rate of 26.52 L / h for 1 hour.
  • the crude reaction mixture was analyzed by GC-MS, and as a result, it was found that CF 3 CF 2 CF 2 ⁇ CF (CF 3 ) COF and a mixture containing the title compound as main components.
  • the yield of the title compound (1A) was 71%. %Met.
  • CF 4 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COF 4992 g was added to 4 L of nickel auto crepe, stirred, and kept at 20.
  • a cooler maintained at 0 ° C was installed at the autocrepe gas outlet.
  • fluorine gas diluted to 50% with nitrogen gas hereinafter referred to as 50% fluorine gas
  • 50% fluorine gas was blown at a flow rate of 50 l OLZh for 2.0 hours.
  • CH 1 CHCH 2 ⁇ CH 2 CH 2 CH 2 OH (11.6 kg) and CF 3 CF 2 CF 2OCF (CF 3 ) CF 2 OCF (CF 3 ) COF (50.8 k)
  • Example 1 _1 The same reaction as described above was carried out to obtain the title liquid mixture.
  • CH 2 CHCH 2 ⁇ CH 2 CH 2 CH 2 OCOCF (CF 3 ) OCF 2 CF (CF 3 )
  • the GC purity of OCF 2 CF 2 CF 3 was 98%.
  • CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COF 5003 g was added to a 4 L nickel autoclave reactor, and the mixture was stirred and kept at 25.
  • a cooler maintained at 110 was installed at the autoclave gas outlet. After blowing nitrogen gas for 2.0 hours, 50% fluorine gas was blown at a flow rate of 65.33 LZh for 1.0 hour.
  • CH 2 CHCH 2 CH (CH 3 ) OH (1.3.0 kg) was charged into the reactor and stirred while bubbling nitrogen gas.
  • CF 3 CF 2 CF 2 ⁇ CF (CF 3 ) COF 4732 g
  • a cooler maintained at -10 was installed at the autocrepe gas outlet. After blowing nitrogen gas for 2.0 hours, 20% fluorine gas was blown at a flow rate of 144.30 LZh for 1.0 hour.
  • Example 6-2 was it obtained by the method of Example 6-2 while continuing to blow 20% fluorine gas at a flow rate of 144.30 L / h? 3 2 0 2 0 (CF 3 ) COOCH (CH 3) CH 2 CHC 1 CH 2 C 1 (740 g) was injected over a crude liquid 22 hours including, extracted crude reaction liquid (820 g) ( Operation 1). The purity of the title compound GC (excluding the solvent) contained in the reaction crude liquid was 28%. Operations 2 to 7 shown in the table below were performed in the same manner. After the completion of Step 7, 3731 g of the crude reaction liquid remained inside the reactor. [Table 5]
  • Tetrahydrofuran 50 four-necked flask OmL THF, 16 OmL
  • sodium hydride 60%, 24 g
  • HO CH 2OH
  • the mixture was stirred at a bath temperature of 70 for 2.5 hours.
  • water (40 OmL) and methylene chloride (40 OmL) were added under ice-cooling, and the layers were separated to obtain a methylene chloride layer as an organic layer.
  • the organic layer was further washed with water (40 OmL) and dried to separate the title compound.
  • the analysis results for the title compound are as follows.
  • CHC 1 CC 1 O (CH 2 ) 5 ⁇ H (1.3 kg) and triethylamine (2.5 kg) obtained in the same manner as in Example 7-1 were placed in a reactor and stirred in an ice bath. did. CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 ⁇ CF (CF 3 ) COF (3.4 k) was added dropwise over 10 hours while maintaining the internal temperature at 10 ° C. or lower. After completion of the dropwise addition, the mixture was stirred at room temperature for 2 hours, and water 301 ⁇ was added at an internal temperature of 15 at the following temperature.
  • the obtained crude liquid was separated, and the lower layer was washed twice with 50 L of water, separated, dehydrated with a molecular sieve, and filtered to obtain the title liquid mixture.
  • the GC purity of the title compound was 92%.
  • ⁇ CF 2 CF (CF 3 ) After injecting CF 2 CF 2 CF 3 (169 g) over 5 hours, a crude reaction liquid (262 g) was extracted (operation 1). Operations 2 to 6 shown in the table below were performed similarly.
  • Example 8 CF 2 C l CFC l CF 2 CF 2 OCOCF 2 CFC l CF 2 C l in Preparation 4 L of nickel autoclave reactor, CF 2 C 1 CFC 1 CF 2 COF as a solvent (3600 g) was added and stirred, and kept at 25 ° C. A cooler held at 110 was installed at the autoclave gas outlet. After injecting nitrogen gas for 2.0 hours, inject 50% fluorine gas at a flow rate of 201.42 / 11 for 1.0 hour It is.
  • a high yield is obtained by performing a fluorination reaction of an ester compound in the presence of a compound having an acylfluoride group, which is excellent in solubility of an ester compound and can also act as a liquid phase of the fluorination reaction.
  • the fluorine-containing ester compound can be produced at a high rate.
  • a liquid mixture of an ester compound and a compound having an acylfluoride group used in the fluorination reaction can be obtained by an esterification reaction between a compound having an excess amount of an acylfluoride group and a compound having a hydroxyl group.
  • the esterification reaction is also advantageous in that the remaining amount of the hydroxyl-containing compound in the reaction product can be reduced.
  • the purification step after the esterification reaction can be simplified.
  • the fluorination reaction product may be a mixture with a compound having an acyl fluoride group together with the fluorinated ester compound.
  • the fluorinated ester compound is a compound (4) or the like in which an ester bond can be decomposed, a method of performing the decomposition reaction using the product of the fluorination reaction as it is is an efficient method.
  • the method of using the compound (2) obtained from the decomposition reaction product of the ester bond of the compound (4) as the compound (2) to be reacted with the compound (1) includes the steps of using the desired compound (4) and the compound (5).
  • This is an advantageous method as a method for efficient continuous production.
  • the method of the present invention is a method that can be carried out without having to prepare a solvent for each reaction. When the next step is performed, it can be performed without separating the solvent before the step. This is the way to go. Further, this is an advantageous method which can be carried out without using an environmentally unfriendly solvent such as R-113.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書
含フッ素エステル化合物の製造方法 ぐ技術分野 >
本発明は、 工業的に有用な含フッ素エステル化合物、 および、 酸フルオリド化 合物等の含フッ素化合物の製造方法に関する。 ぐ背景技術 >
炭化水素系化合物中の C一 H部分の全てを C - Fにフッ素化した含フッ素エス テル化合物は、 フッ素樹脂原料の前駆体等として有用である。 C一 H含有炭化水 素系化合物をフッ素化する方法として、 三フッ化コバルトを用いる方法、 フッ素 (F 2) を用いて直接フッ素化する方法、 または、 電解槽中で、 フッ化水素を電 気分解してフッ素化反応を行う方法 (以下、 E C F法という) が知られている。 フッ素を用いて液相でフッ素化反応を行う場合には、 通常の場合、 液相を形成 する反応溶媒として、 フッ素とは反応せずフッ素を溶解する溶媒 (たとえばペル フルォロ化合物からなる溶媒) が用いられる。 従来の方法で採用される反応溶媒 としては、 C C 1 2 F C C 1 F 2 (以下、 R— 1 1 3という。 ) 等の塩素化フッ 素化炭化水素や、 ペルフルォロ炭化水素、 クロ口ペルフルォロポリエーテル等の フッ素系溶媒がある (特表平 4一 5 0 0 5 2 0号公報) 。 これらの溶媒のうち塩 素化フッ素化炭化水素は、 オゾン層破壊係数が大であることから製造が制限され、 将来は入手できなくなる問題があった。 また、 フッ素化反応の基質としてしばし ば用いられる炭化水素系化合物は、 溶媒に対する溶解性が低いために、 フッ素化 反応をきわめて薄い濃度で行うことになり、 生産効率が悪い問題や、 反応には不 利な懸濁系での反応になる問題があった。 <発明の開示 >
本発明者らは、 ペルフルォロ (アルキルビニルエーテル) 等の、 フッ素樹脂の 原料モノマ一等に変換し得るペルフルォロエステル類を、 液相中でのフッ素化反 応を用いて製造しょうとした場合に、 エステル化合物と該エステル化合物の構造 に対応するァシルフルオリド類を用いると、 フッ素化反応の収率を低下させる等 の不都合を生じさせることなく、 反応プロセスがきわめて効率的になることを見 いだした。 特に、 フッ素化反応の基質として特定の構造を有する部分フッ素化工 ステル類を採用すると、 液相に対する基質の溶解性が向上し、 容積効率が高くな り、 かつ、 反応操作が容易になり、 この部分フッ素化エステルの構造に対応する ペルフルォロアシルフルオリド類との液状混合物においてフッ素化反応を行うと、 より効率的な反応プロセスが実施できることを見いだした。 すなわち本発明は以 下の製造方法を提供する。
1 . 水酸基を有する化合物とァシルフルオリド基を有する化合物とのエステル であってフッ素化されうる構造を有するエステル化合物を、 液相中でフッ素化し て含フッ素エステル化合物を製造する際に、 エステル化合物と前記ァシルフルォ リド基を有する化合物との液状混合物においてフッ素化を行うことを特徴とする 含フッ素エステル化合物の製造方法。
2 . エステル化合物が、 τΚ酸基を有する化合物にァシルフルオリド基を有する 化合物をエステル化反応させて製造される化合物である上記の製造方法。
3 . 該水酸基を有する化合物の水酸基の全てをエステル化するために必要な化 学量論量より多い量であり、 かつ、 反応生成物中に未反応のァシルフルオリド基 を有する化合物が残る程度の量のァシルフルオリド基を有する化合物を用いてェ ステル化反応させることによりエステル化合物とァシルフルオリド基を有する化 合物との液状混合物を得る上記の製造方法。
4. エステル化合物が下記化合物 (3 ) であり、 ァシルフルオリド基を有する 化合物が下記化合物 (2) であり、 含フッ素エステル化合物が下記化合物 (4) である上記の製造方法。
FCORBF (2)
Figure imgf000005_0001
ひ RBF (3)
RAF C F R lFO C O RBF (4)
ただし、 RAおよび RAFは、 それぞれ同一でも異なっていてもよい 1価有機基 であり、 RAと RAFとが異なる場合の RAFは RAがフッ素化された 1価有機基で ある。 RBFは、 ペルフルォロ 1価飽和有機基である。 R1は水素原子または 1価 有機基である。 R1Fは、 R1が水素原子である場合にはフッ素原子、 R1が 1価 有機基である場合の R1と R1Fは、 それぞれ同一でも異なっていてもよい 1価有 機基であり、 R1と R1Fとが異なる場合の R1Fは、 R1がフッ素化された 1価有 機基である。
5. 化合物 (3) と化合物 (2) との液状混合物が、 下記化合物 (1) と該ィ匕 合物 (1) に対して過剰量の化合物 (2) を反応させて得た反応生成物である上 記の製造方法。
RACHR1OH (1)
ただし、 RAおよび R1は上記と同じ意味を示す。
6. 上記の製造方法で得た化合物 (4) において、 エステル結合の分解反応を 行うことを特徴とする下記化合物 (5) および Zまたは下記化合物 (2) の製造 方法。
RAF C O R IF (5)
RBFCOF (2)
ただし、 RAFおよび R1Fは、 上記と同じ意味を示す。
7. 化合物 (4) のエステル結合の分解反応を、 化合物 (3) と化合物 (2) との液状混合物のフッ素化反応により得た化合物 (4) と化合物 (2) との液状 混合物において行う Ji記の製造方法。
8 . 化合物 (4 ) と化合物 (2 ) との液状混合物に、 化合物 (2 ) 以外に溶媒 を添加することなくエステル結合の分解反応を行う上記の製造方法。
9 . 前記の製造方法で得た化合物 (2 ) の一部または全部、 または R 1 Fがフ ッ素原子である場合には化合物 (5 ) および Zまたは化合物 (2 ) の一部または 全部を、 化合物 (1 ) と反応させる化合物 (2 ) として用いる上記の製造方法。
10. RAFと RB Fとが同一構造の基である上記の製造方法。
11.液相中でのフッ素化を、 液相中でフッ素と反応させることにより行う上記 の製造方法。
12.液相中でのフッ素化を、 化合物 (2 ) 以外の溶媒を存在させることなく行 う上記の製造方法。
<発明を実施するための最良の形態 >
本明細書における有機基とは、 炭素原子を必須とする基をいい、 飽和の基であ つても、 不飽和の基であってもよい。 フッ素に置換されうる原子としては、 炭素 に結合する水素原子が挙げられる。
フッ素に置換されうる原子団としては、 炭素一炭素不飽和二重結合や炭素—炭 素不飽和三重結合等が挙げられる。 たとえば、 有機基中に炭素一炭素二重結合が 存在する場合には、 液相中でのフッ素化により該炭素一炭素二重結合にフッ素が 付加して炭素一炭素単結合になりうる。 また、 有機基中に炭素一炭素三重結合が 存在する場合には、 液相中でのフッ素化により該炭素一炭素三重結合にフッ素が 付加して、 炭素一炭素単結合や炭素一炭素二重結合が形成されうる。 また、 飽和 有機基とは、 該基中の炭素一炭素結合が単結合のみからなる基をいう。
1価有機基としては、 1価炭化水素基、 ヘテロ原子含有 1価炭化水素基、 ハロ ゲン化 1価炭化水素基、 およびハロゲン化 (ヘテロ原子含有 1価炭化水素) 基か ら選ばれる基が好ましく、 1価有機基が飽和の基である場合には、 飽和の基であ る場合の該選ばれる基が好ましい。 有機基としては、 フッ素化反応時に用いる液 相への溶解性の観点から、 その炭素数が 1〜2 0であるのが好ましく、 特に炭素 数が 1〜1 0であるのが好ましい。
ここで炭化水素基としては、 脂肪族炭化水素基であっても芳香族炭化水素基で あってもよく、 脂肪族炭化水素基が好ましい。 また、 脂肪族炭化水素基中には、 炭素一炭素結合として、 単結合、 二重結合、 または三重結合が存在していてもよ い。 脂肪族炭化水素基は、 直鎖構造、 分岐構造、 環構造、 または環構造を部分的 に有する構造のいずれであってもよい。
1価飽和有機基としては、 1価飽和炭化水素基が好ましい。 1価飽和炭化水素 基としては、 アルキル基が挙げられ、 その構造は、 直鎖構造、 分岐構造、 環構造、 または部分的に環である構造のいずれであってもよい。
アルキル基の炭素数は 1〜 2 0が好ましく、 特に 1〜 1 0が好ましい。 直鎖構 造であるアルキル基としては、 メチル基、 ェチル基、 プロピル基、 ブチル基等が 挙げられる。 分岐構造であるアルキル基としては、 イソプロピル基、 イソプチル 基、 s e c—ブチル基、 t e r t—ブチル基等が挙げられる。 環構造であるアル キル基としては、 たとえば、 シクロアルキル基、 ピシクロアルキル基、 脂環式ス ピロ構造の基等が挙げられ、 3〜 6員環のシクロアルキル基が好ましく、 シクロ ペンチル基、 シクロへキシル基等が挙げられる。
環部分を有するアルキル基としては、 上記環構造のアルキル基で置換された ( 直鎖構造または分岐構造の) アルキル基、 または該アルキル基の環基部分がさら に (直鎖構造または分岐構造の) アルキル基で置換された基が挙げられ、 アルキ ル基の水素原子の 1個以上が 3〜 6員環のシクロアルキル基で置換された基が好 ましく、 シクロペンチルメチル基、 シクロへキチルェチル基、 ェチルシクロへキ シルメチル基等が特に好ましい。 他の基としては、 芳香環を有するアルキル基 ( たとえば、 ベンジル基、 フエネチル基等のァラルキル基) 、 複素環を有するアル キル基 (たとえば、 ピリジルメチル基、 フルフリル基等) が挙げられる。
ハロゲン化された基におけるハロゲン原子としては、 フッ素原子、 塩素原子、 臭素原子、 またはヨウ素原子であり、 フッ素原子、 塩素原子、 または臭素原子が 好ましく、 とりわけ化合物の有用性の観点からフッ素原子、 またはフッ素原子と 塩素原子が好ましい。
本明細書において、 ハロゲン化とは水素原子の 1個以上がハロゲン原子に置換 されたことをいう。 部分ハロゲン化とは水素原子の一部がハ口ゲン原子に置換さ れたことをいう。 すなわち、 部分ハロゲン化基の基中には、 水素原子が存在する。 ベルハ口ゲン化とは水素原子の全てがハ口ゲン化されたことをいう。 すなわち、 ペルハロゲン化基の基中には水素原子が存在しない。 ハロゲン化、 部分ハロゲン 化、 ペルハロゲン化の用語の意味は、 ハロゲン原子が特定される場合においても 同様の意味である。
ハロゲン化飽和炭化水素基とは、 上記飽和炭化水素基中に存在する水素原子の 1個以上がノヽロゲン原子によって置換された基をいう。 ハロゲン化飽和炭化水素 基中には水素原子が存在していても存在しなくてもよい。 ハロゲン化飽和炭化水 素基におけるハロゲン原子としては、 フッ素原子、 塩素原子、 またはフッ素原子 と塩素原子が好ましい。
部分八口ゲン化飽和炭化水素基とは、 上記飽和炭化水素基中に存在する水素原 子の一部がハロゲン原子によって置換された基をいう。 部分ハロゲン化飽和炭化 水素基中には、 水素原子が存在する。
ペルハロゲン化飽和炭化水素基とは、 飽和炭化水素基中に存在する水素原子の 全てがハ口ゲン原子によつて置換された基をいう。 ベルハ口ゲン化飽和炭化水素 基中には水素原子は存在しない。 ハロゲン化基およびペルハロゲン化基中に存在 するハロゲン原子は、 1種であっても 2種以上であってもよい。 ハロゲン化飽和炭化水素基としては、 直鎖構造であっても分岐構造であっても よく、 環構造でも、 環部分を有する構造であってもよい。 ハロゲン化飽和炭化水 素基の炭素数は 1〜2 0が好ましい。 ハロゲン化 1価飽和炭化水素基としては、 フルォロアルキル基またはフルォロ (部分クロ口アルキル) 基等が挙げられる。 ペルハロゲン化 1価飽和炭化水素基としては、 ペルフルォロアルキル基または ペルフルォロ (部分クロ口アルキル) 基 (すなわち、 部分クロ口アルキル基中の 水素原子の全てがフッ素化された基) が好ましい。 なお、 ペルフルォロ (部分フ ルォロアルキル) 基は、 ペルフルォロアルキル基と同じであり、 ペルフルォロ ( 部分フルォロアルキレン) 基は、 ペルフルォロアルキレン基と同じである。
ヘテロ原子含有飽和炭化水素基とは、 酸素原子、 窒素原子、 または硫黄原子等 のへテロ原子と、 炭素原子と、 水素原子とからなる基をいう。 そして、 ヘテロ原 子は、 ヘテロ原子そのものであっても、 ヘテロ原子同士またはへテロ原子と他の 原子が結合してヘテロ原子団となっていてもよい。 ヘテロ原子およびへテロ原子 団は、 いずれも熱分解反応によって変化しないものが好ましい。 ヘテロ原子とし ては、 エーテル性酸素原子 (C一 0— Cの〇) 、 =0等が挙げられ、 エーテル性 酸素原子が特に好ましい。 ヘテロ原子含有飽和炭化水素基の炭素数は 1〜2 0が 好ましい。 ヘテロ原子含有飽和炭化水素基としては、 前記飽和炭化水素基の炭素 一炭素原子間に 2価へテロ原子または 2価へテロ原子団が揷入された基、 または 前記飽和炭化水素基中の炭素原子にヘテロ原子が結合した基、 または前記飽和炭 化水素基の結合末端の炭素原子に 2価へテロ原子または 2価へテロ原子団が結合 した基が好ましい。
ヘテロ原子含有基としては、 化合物の有用性の点からエーテル性酸素原子含有 基が特に好ましい。 特に入手しやすさ、 製造しやすさ、 および生成物の有用性の 点から、 1価の基としてはエーテル性酸素原子を含むアルキル基 (たとえば、 ァ ルコキシアルキル基等。 ) が好ましい。 また、 炭素一炭素原子間にエーテル性酸 素原子が挿入された環部分を有する 1価脂肪族炭化水素基としては、 たとえば、 ジォキゾラン骨格を有するアルキル基等が挙げられる。
アルコキシアルキル基としては、 前記 1価脂肪族炭化水素基で挙げたアルキル 基中に存在する水素原子の 1個がアルコキシ基に置換された基が好ましい。 該ァ ルコキシ基の炭素数は 1〜1 0が好ましい。 アルコキシアルキル基としては、 ェ トキシメチル基、 1一プロポキシェチル基、 2—プロポキシェチル基等が挙げら れる。
ハロゲン化 (ヘテロ原子含有飽和炭化水素) 基としては、 フルォロ (ヘテロ原 子含有飽和炭化水素) 基またはフルォロ (部分クロ口 (ヘテロ原子含有飽和炭化 水素) ) 基が好ましい。 ハロゲン化 (ヘテロ原子含有飽和炭化水素) 基の炭素数 は:!〜 2 0が好ましい。
ペルハロゲン化 (ヘテロ原子含有 1価飽和炭化水素) 基としては、 直鎖構造で あっても分岐構造であってもよく、 ペルフルォロ (ヘテロ原子含有 1価飽和炭化 水素) 基またはペルフルォロ (部分クロ口 (ヘテロ原子含有 1価飽和炭化水素) ) 基が好ましく、 ペルフルォロ (ヘテロ原子含有アルキル) 基またはペルフルォ 口 (部分クロ口 (ヘテロ原子含有アルキル) ) 基が特に好ましく、 ペルフルォロ (アルコキシル) 基またはペルフルォロ (部分クロ口 (アルコキシル) ) 基がと りわけ好ましい。 これらの基の具体例としては、 後述する具体的な化合物中に示 される。
本発明におけるエステル化合物は、 7_Κ酸基を有する化合物とァシルフルオリド 基 (F C (Ο) 一基) を有する化合物とのエステルでありフッ素化されうる構造 を有する化合物である。 該エステル化合物は、 水酸基を有する化合物とァシルフ ルオリド基を有する化合物とをエステル化反応させた特に形成する構造の化合物 であれば、 特にその入手方法は限定されない。 たとえば、 該エステル化合物とし ては、 水酸基を有する化合物と、 C 1 C (〇) 一基や B r C (〇) 一基、 および 力ルポキシル基から選ばれる 1種以上の化合物をエステル化反応させた化合物が 挙げられる。 また本発明におけるエステル化合物は、 エステル化反応後に、 エス テル結合以外の部分に他の化学変換を加えて得られた化合物であってもよい。 該 化学変換としては、 炭素一炭素二重結合 (C = C) に塩素を付加させて V i c一 ジクロロ構造 (CC 1 -CC 1) にする反応が挙げられる。 また、 エステル化合 物中のエステル結合の数は特に限定されない。
エステル化合物は、 水酸基を有する化合物とァシルフルオリド基を有する化合 物とのエステル化反応により製造した化合物であるのが好ましい。 この場合の水 酸基を有する化合物としては、 1個以上の水酸基を有する化合物が採用でき、 ァ シルフルオリド基を有する化合物としては、 1個以上のァシルフルオリド基を有 する化合物が採用できる。
エステル化合物としては、 水酸基を 1個有する化合物とァシルフルオリド基を 1個有する化合物とのエステル化反応により製造した化合物であるのが好ましく、 特に下記化合物 (3) が好ましい。 化合物 (3) としては、 R1が水素原子であ る場合の下記化合物 (3A) および R1が 1価有機基 (R1Q) である場合の下記 化合物 (3B) が挙げられる。
ACHR1OCORBF (3)
RACH2〇CORBF (3 A)
RACHR10OCORBF (3 B)
RAは 1価有機基であり、 原料が入手しやすいことから、 水素原子を含有する 基であることが好ましく、 さらに水素原子を有する飽和の基であるのが、 目的と する反応を収率よく実施でき、 目的化合物の有用性の点からも好ましい。
さらに、 RAとしては、 1価飽和炭化水素基、 部分ハロゲン化 1価飽和炭化水 素基、 エーテル性酸素原子含有 1価飽和炭化水素基、 または部分ハロゲン化 (ェ 一テル性酸素原子含有 1価飽和炭化水素) 基が好ましい。 特に RAがアルキル基、 部分クロ口アルキル基、 アルコキシアルキル基、 または部分クロ口 (アルコキシ アルキル) 基であるのが好ましい。
RAは、 目的とする化合物の RAFの構造に応じて適宜変更されうる。 本発明の 方法は、 RAの構造が異なる種々の構造を採用できる点が利点の一つである。
R B Fはペルフルォロ 1価有機基であり、 1価飽和炭化水素基、 部分ハロゲン 化 1価飽和炭化水素基、 エーテル性酸素原子含有 1価飽和炭化水素基、 および部 分ハロゲン化 (エーテル性酸素原子含有 1価飽和炭化水素) 基から選ばれる基の 基中に存在する水素原子の全てがフッ素原子に置換された基 (すなわち、 ペルフ ルォロ化された基) であるのが好ましく、 特にアルキル基、 部分ハロゲン化アル キル基、 アルコキシアルキル基、 および部分ハロゲン化 (アルコキシアルキル) 基から選ばれる基の基中に存在する水素原子の全てがフッ素原子に置換された基 であるが好ましい。
R 1は水素原子または 1価有機基を示す。 R 1が 1価有機基である場合には、 アルキル基が好ましく、 特にメチル基が好ましい。
本発明における化合物 (3 ) は、 後述するフッ素化反応、 特にフッ素を用いた 反応の実施しやすさの点から、 化合物中のフッ素含有量は、 3 0質量%以上であ るのが好ましく、 特に 3 0〜8 6質量%であるのが好ましくは、 さらに 3 0〜7 6質量%であるのが好ましい。 フッ素含有量が少なすぎると液相中への溶解性が 極端に低くなり、 フッ素化反応の反応系が不均一になり、 連続反応で実施する化 合物 (3 ) をうまく反応系中フィードすることができない問題がある。 また、 フ ッ素含有量の上限は限定されないが、 あまりに高すぎるものは、 化合物 (3 ) の 入手が困難であり、 価格が高く経済的ではない問題がある。
さらに、 化合物 (3 ) の分子量は 2 0 0 ~ 1 0 0 0であるのが、 気相中での好 ましくないフッ素化反応を防止し、 液相中でのフッ素化反応を円滑に行いうる点 で好ましい。 分子量が小さすぎると化合物 (3 ) が気化しやすくなるため、 液相 でのフッ素化反応時に気相中で分解反応が起こるおそれがある。 一方、 分子量が 大きすぎると化合物 (3) の精製が困難になるおそれがある。
化合物 (3A) の具体例としては、 下記化合物が挙げられる。
CH3 (CH2) 2〇COCF2CF3
CH3 (CH2) 2OCH (CH3) CH2OCOCF (CF3) OCF2CF2C F3
CH3 (CH2) 2〇CH (CH3) CH2OCH (CH3) CH2OCOCF (C F3) OCF2CF (CF3) O (CF2) 2CF3
CH2 = CHCH (〇CH3) CH2OCOCF (CF3) OCF2CF2CF3、 CH2 = CHCH2O (CH2) gOCOCF (CF3) OCF2CF (CF3) O (CF2) 2CF3
CHC 1 =CC 1 O (CH2) 5OCOCF (CF3) OCF2CF (CF3) O し F 2) 2 C F 3
CH2C l CHC l CH2CH2OCOCF2CFC l CF2C l。
化合物 (3 B) の具体例としては、 下記化合物が挙げられる。
(CH3) 2CH〇COCF (CF3) OCF2CF (CF3) OCF2CF2CF
3、
CH2 = CHCH2CH (CH3) OCOCF (CF3) O (CF2) 2CF3。 化合物 (3) は、 化合物 (1) と化合物 (2) とのエステル化反応により製造 される化合物であるのが好ましい。 化合物 (1) としては、 R1が水素原子であ る場合の下記化合物 (1A) および R1が 1価有機基 (R1 G) である場合の下記 化合物 (1 B) が挙げられる。 ただし、 RA、 RK R1 Q、 および RBFは、 前記 と同じ意味を示す。
RACHR1OH (1)
FCORBF (2) RACH2OH (1 A)
RACHR10〇CORBF (IB) · 化合物 (1A) の具体例としては、 下記化合物が挙げられる。
CH3CH2OH、
CH3CH2CH2OH、
CH2 = CHCH2OH,
CH3CH2CH2CH2OH、
CH2C 1 CHC 1 CH2CH2OH、
CH3CH2CH2OCH (CH3) CH2OH、
CH2 = CHCH (OCH3) CH2OH、
CH2 = CHCH2〇CH2CH2CH2〇H、
CHC 1 =CC 1 O (CH2) 5OH、
CF2C 1 CFC 1 CH2CH2OH。
化合物 (1A) は、 容易に入手可能であるか、 または公知の方法により容易に 合成できる化合物である。 たとえば、 3, 4—ジクロ口— 1—ブタノールは、 U S 4261901などに記載される公知の方法で容易に合成できる。 また、 2— アルコキシアルコール類は、 J. Am. Ch em. S o c. , 49, 1080 ( 1927) 、 Bu l l . So c. C h i m. F r. , 1813 (1960) 、 C an. J. Ch em. , 43, 1030 (1965) 、 Syn t he s i s, 2 80 (1981) などに記載される公知の方法で、 容易に合成できる。
また化合物 (1 B) の具体例としては、 下記化合物が挙げられる。
CH2 = CHCH2CH (CH3) 〇H、
(CH3) 2CHOH。
化合物 (1) は、 入手の容易さの点から、 RAがフッ素原子を含まない基であ る化合物が好ましい。 また、 RAがフッ素原子を含む基である場合の化合物 (1 ) は、 フッ素含量が 20%未満である化合物が好ましく、 特に 10%未満である 化合物であるのが好ましい。
化合物 (2) における RBFは、 ペルフルォロ 1価飽和有機基である。 化合物 (2) の具体例としては、 下記化合物が挙げられる。
CF3CF2COF、
CF3 (CF2) 2COF、
CF2C 1 CFC 1 CF2C〇F、
CF3 (CF2) 2OCF (CF3) COF、
CF3 (CF2) 2OCF (CF3) CF2OCF (CF3) COF。
化合物 (2) 自身はフッ素化されないためにフッ素化反応の液相を形成する液 状溶媒としても好都合に使用できる。
化合物 (1) と化合物 (2) のエステル化反応によって化合物 (3) を製造す る方法は、 目的とする化合物 (3) の RAFに応じた RAを有する化合物 (1) と して種々の構造のものが入手できることから、 種々の構造の化合物 (3) が製造 できる。 さらに該ィ匕合物 (3) を用いてフッ素化を行うことにより、 従来の方法 では入手が困難であった化合物 (4) を製造できる。 従来の方法では入手が困難 であった化合物 (4) としては、 RAF—部分の構造が複雑であるものや、 気相 フッ素化反応で製造すると多種類の副生成物が生じる低分子量の含フッ素エステ ル化合物が挙げられる。
本発明においては、 エステル化合物と前記ァシルフルオリド基を有する化合物 との液状混合物においてフッ素化を行う。 この液状混合物は、 種々の方法で入手 したエステル化合物をァシルフルオリド基を有する化合物に含ませることによつ て入手してもよい。 しかし、 本発明における液状混合物は水酸基を有する化合物 とァシルフルオリド基を有する化合物とのエステル化反応により入手するのが好 ましい。 たとえば、 該エステル化反応において、 水酸基を有する化合物の水酸基の全て をエステル化するために必要な化学量論量より多い量であり、 かつ、 未反応のァ シルフルオリド基を有する化合物が反応生成物中に残る程度の量であるァシルフ ルオリド基を有する化合物を用いて、 エステル化反応をすることにより、 エステ ル化合物とァシルフルオリド基を有する化合物との液状混合物を入手するのが好 ましい。
たとえば、 化合物 (3) と化合物 (2) との液状混合物を入手する場合には、 化合物 (1) を化合物 (2) とエステル化反応させる際に、 化合物 (1) に対し て化学量論的量よりも多い量 (以下、 「過剰量」 という) の化合物 (2) の存在 下に反応を行うことにより、 該反応生成物は化合物 (3) と化合物 (2) との液 状混合物となりうる。 エステル化反応は高転化率で進行しうる反応であることか ら、 化合物 (2) を過剰量用いてエステル化反応を実施した場合には、 化合物 ( 1) の実質的に全てが反応に消費され、 反応生成物はエステル化反応で生成する 化合物 (3) と、 未反応の化合物 (2) との液状混合物になりうる。 この場合に おいて、 化合物 (2) は化合物 (1) に対して 1. 1倍モル以上を用いるのが好 ましく、 特に 1. 1〜10倍モル以上を用いるが好ましい。
ァシルフルオリド基を有する化合物 (たとえば化合物 (2) ) を過剰量用いて 水酸基を有する化合物 (たとえば化合物 (1) ) とのエステル化反応を実施する 方法では、 7K酸基を有する化合物の実質的に全てが反応に消費されうる。 したが つて、 つぎのフッ素化反応を実施する前において、 反応生成物中の水酸基を有す る化合物の除去工程を省略できる利点がある。 また、 つぎのフッ素化反応におい て、 水酸基が、 取り扱いに注意を要する一 OF基に変換されるのを防止できる利 点もある。 すなわち、 化合物 (1) と過剰量の化合物 (2) とのエステル化反応 生成物を液状混合物とする方法を採用した場合には、 エステル化反応後の化合物 (1) を分離する工程を実施しなくても、 次のフッ素化反応を実施できる有利な 方法である。
化合物 (1) と化合物 (2) とのエステル化反応は、 化合物 (2) 以外の溶媒 (以下、 溶媒 1という。 ) の存在下に実施してもよいが、 化合物 (2) の過剰量 を用い、 かつ溶媒 1の不存在下に実施するのが、 作業効率の点から好ましい。 溶 媒 1を特に用いなくても、 過剰量の化合物 (2) は溶媒としても作用するため、 エステル化反応は充分に進行しうる。
また、 化合物 (1) と化合物 (2) との反応では HFが発生するため、 HFの 捕捉剤としてアルカリ金属フッ化物 (フッ化ナトリウム等) を反応系中に存在さ せてもよい。 HFの捕捉剤は、 化合物 (1) または化合物 (2) が酸に不安定で ある場合には使用するのが特に好ましい。 また、 HFの捕捉剤を使用しない場合 には、 HFを窒素気流に同伴させて反応系外に排出するのが好ましい。 アルカリ 金属フッ化物を用いる場合の量は化合物 (2) に対して 1〜10倍モルとするの が好ましい。
化合物 (1) と化合物 (2) との反応における反応温度は、 通常の場合、 一 5 0°C以上であるのが好ましく、 +100°C以下または溶媒の沸点温度以下が好ま しい。 また、 該反応の反応時間は原料の供給速度と反応に用いる化合物量に応じ て適宜変更されうる。 反応圧力 (ゲージ圧、 以下同様) は常圧〜 2MPaが好ま しい。
本発明においては、 エステル化合物とァシルフルオリド基を有する化合物との 液状混合物においてフッ素化を行う。 たとえば、 エステル化合物が化合物 (3) である場合には、 化合物 (3) と化合物 (2) との液状混合物においてフッ素化 反応を行う。 化合物 (2) は、 フッ素化反応の液相として機能しうる。
ァシルフルオリド基を有する化合物は、 エステル化合物と類似または共通の構 造を有する化合物であることから、 エステル化合物を良好に溶解しうる化合物で ある。 特に化合物 (2) は、 RBFが含フッ素の基であることから、 これを必須 とする液状混合物にはフッ素が良好に溶解しうる。 また化合物 (2) は化合物 ( 3) と一部の構造が類似または共通であることから化合物 (3) の良溶媒である, 液状混合物中の化合物 (2) は、 化合物 (3) に対して 5倍質量以上にするの が好ましく、 特に 10〜100倍質量にするのが好ましい。 また、 フッ素化反応 においては、 化合物 (2) が消費されるため、 適宜フッ素化反応の反応系中に化 合物 (2) を添加して該量となるように調節するのが好ましい。
また、 化合物 (2) 中の RBFの構造は、 化合物 (1) 中の RAの構造と関係さ せながら、 化合物 (3) がフッ素化時に液相中に溶解しやすいように調節するの が好ましい。 たとえば、 化合物 (3) において、 該化合物 (3) のフッ素含有量 が 30質量%以上になるように、 RBFの構造を調節するのが好ましい。 また後 で説明する R1が水素原子である場合において、 RBFを RAFと同一になるように 選択した場合には、 反応生成物の分離工程を簡略化できることから、 特に好まし い。
液状混合物をエステル化反応により調製した場合には、 エステル化反応の反応 粗生成物は、 そのままを用いることができるが、 必要に応じて後処理を行っても よい。 該粗生成物の後処理方法としては、 粗生成物をそのまま蒸留する方法、 粗 生成物を希アル力リ水などで処理して分液する方法、 粗生成物を適当な有機溶媒 で抽出した後に蒸留する方法、 シリ力ゲル力ラムクロマトグラフィ等が挙げられ る。 また、 該粗生成物中に水酸基を有する化合物 (たとえば、 化合物 く 1) ) が 含まれていた場合には、 該化合物 (1) できるだけ除去するのが望ましい。 水酸 基を有する化合物は、 液相中に 10%以下であるのが好ましく、 3%以下である のが特に好ましく、 1 %以下とするのがとりわけ好ましい。
本発明におけるフッ素化反応とは、 エステル化合物中に、 1原子以上のフッ素 原子が導入される反応をいう。 フッ素化反応は、 液相反応で実施する。 該フッ素 化反応としては、 ECF法、 コバルトフッ素化法、 またはフッ素 (F2) と反応 させる方法が挙げられる。 このうち、 収率が高く、 エステル化合物のフッ素化を 有利に進行させうる、 液相中でフッ素と反応させる方法 (以下、 液相フッ素化法 という) によるのが好ましい。
液相フッ素化法におけるフッ素としては、 フッ素ガスをそのまま用いても、 不 活性ガスで希釈されたフッ素ガスを用いてもよい。 不活性ガスとしては、 窒素ガ ス、 ヘリウムガスが好ましく、 経済的な理由から窒素ガスが特に好ましい。 窒素 ガス中のフッ素ガス量は特に限定されず、 1 0 V o 1 %以上とするのが効率の点 で好ましく、 2 0 v o 1 %以上とするのが特に好ましい。
液相フッ素化反応の液相としては、 ァシルフルオリド基を有する化合物を必須 とする。 化合物 (3 ) のフッ素化においては、 液相としてこの化合物 (2 ) を必 須とする。 さらにフッ素化反応の基質である化合物 (3 ) や、 フッ素化反応で生 成する化合物 (4 ) も、 液相となりうる。 また、 液相フッ素化反応の液相として は、 化合物 (2 ) 、 化合物 (3 ) 、 および化合物 (4 ) 以外の溶媒 (以下、 溶媒 2という) を含ませてもよいが、 本発明の効果を最大限に発揮させるためには、 溶媒 2は使用しないのが好ましい。
液相フッ素化反応の反応形式は、 バッチ方式または連続方式が好ましい。 また 化合物 (3 ) の液相フッ素化反応は、 下記フッ素化法 1またはフッ素化法 2の方 法で実施するのが好ましく、 特に反応収率と選択率の点からは、 フッ素化法 2が 好ましい。 またフッ素ガスは、 バッチ方式で実施する場合においても、 連続方式 で実施する場合においても、 窒素ガス等の不活性ガスで希釈したものを使用して もよい。
[フッ素化法 1 ] 反応器に、 化合物 (3 ) と化合物 (2 ) との液状混合物を仕 込み、 撹拌を開始する。 つぎに、 所定の反応温度と反応圧力下で、 フッ素ガスを 反応器中の液相に連続的に供給しながら反応させる方法。
[フッ素化法 2 ] 反応器に化合物 (2 ) を仕込み、 撹捽を開始する。 つぎに所 定の反応温度と反応圧力下で、 化合物 (3 ) と化合物 (2 ) の液状混合物とフッ 素ガスとを反応器中の液相に所定のモル比で連続的かつ同時に供給する方法。 フッ素化法 2における化合物 (3 ) と化合物 (2 ) との液状混合物は、 化合物 ( 1 ) を過剰量の化合物 (2 ) と反応させた反応生成物をそのまま、 または必要 に応じてさらに化合物 (2 ) を加えたものを用いればよい。 また、 フッ素化法 2 において化合物 (3 ) を希釈する際には、 化合物 (3 ) の濃度を 2 0質量%以下 とするのが好ましく、 特に 1 0質量%以下とするのが好ましい。
フッ素化反応に用いるフッ素量は、 バッチ方式で反応を実施する場合にも、 連 続方式で実施する場合にも、 エステル化合物中の水素原子に対して、 フッ素の量 が常に過剰当量となるようにフッ素を存在させた状態で反応を行うのが好ましく、 特に 1 . 5倍当量以上 (すなわち、 1 . 5倍モル以上) となるようにフッ素を使 用するのが選択率の点から好ましい。 またフッ素量は、 反応の開始時点から終了 時点まで常に過剰当量に保つのが好ましい。
フッ素化反応の反応温度は、 通常は— 6 0 以上かつエステル化合物の沸点以 下が好ましく、 反応収率、 選択率、 および工業的実施のしゃすさの点から一 5 0 °C〜+ 1 0 0 °Cが特に好ましく、 一 2 0 〜+ 5 0 がとりわけ好ましい。 フッ 素化反応の反応圧力は特に限定されず、 0〜2 M P aが、 反応収率、 選択率、 ェ 業的な実施のしゃすさの観点から特に好ましい。
さらに、 フッ素化反応を効率的に進行させるためには、 反応系中に C一 H結合 含有化合物を添加する、 または、 紫外線照射を行う等の操作を行うのが好ましい。 該操作を行つた場合には、 反応系中に存在するエステル化合物を効率的にフッ素 化でき、 反応率を飛躍的に向上させうる。
C一 H結合含有化合物としては、 エステル化合物以外の有機化合物であり、 特 に芳香族炭化水素が好ましく、 とりわけベンゼン、 トルエン等が好ましい。 該 C 一 H結合含有化合物の添加量は、 エステル化合物中の水素原子に対して 0 . 1〜 10モル%であるのが好ましく、 特に 0. 1〜5モル%であるのが好ましい。 ま た、 この C一 H含有化合物を溶媒で希釈して添加する場合には、 希釈溶媒もァシ ルフルオリド基を有する化合物 (たとえば化合物 (2) ) であるのが好ましい。
C - H結合含有化合物は、 反応系中にフッ素ガスが存在する状態で添加するの が好ましい。 さらに、 C一 H結合含有化合物を加えた場合には、 反応系を加圧す るのが好ましい。 加圧時の圧力としては、 0. 01〜5MP aが好ましい。
フッ素化反応において、 水素原子がフッ素原子に置換された場合には、 HFが 副生する。 副生した HFを除去するには、 反応系中に HFの捕捉剤を共存させる、 または反応器ガス出口で HF捕捉剤と出口ガスを接触させるのが好ましい。 該 H F捕捉剤としては、 前述のものと同様のものが用いられ、 N a Fが好ましい。 反応系中に H F捕捉剤を共存させる場合の量は、 エステル化合物中に存在する 全水素原子量に対して 1〜 20倍モルが好ましく、 1〜 5倍モルが特に好ましい。 反応器ガス出口に HF捕捉剤をおく場合には、 (a) 冷却器 (10°C〜室温に保 持するのが好ましく、 特には約 20°Cに保持するのが好ましい。 ) (b) NaF ペレツト充填層、 および (c) 冷却器 (—78°C〜+10°Cに保持するのが好ま しく、 — 30°C〜0°Cに保持するのが好ましい) を (a) - (b) 一 (c) の順 に直列に設置するのが好ましい。 なお、 (c) の冷却器からは凝集した液を反応 器に戻すための液体返送ラインを設置してもよい。
本発明のフッ素化では、 含フッ素エステル化合物が生成する。 フッ素化反応で は、 エステル化合物の炭素骨格に対応する構造の含フッ素エステル化合物が生成 する。 ただし、 エステル化合物中に炭素一炭素不飽和結合がある場合には、 該不 飽和結合の 1個以上にフッ素原子が付加して結合状態が変化していてもよい。 た とえば、 化合物 (3) のフッ素化では化合物 (4) が生成する。 化合物 (4) は 化合物 (3) の分子中に 1原子以上のフッ素原子が導入された化合物である。 化合物 (4) 中の RAFは RAに対応する基である。 RAがフッ素化されうる水 素原子や不飽和結合を有する 1価有機基であって該基がフッ素化された場合の R AFは、 RAがフッ素化された基である。 また、 R Aがフッ素化されない 1価有機 基である場合やフッ素化されうる基であってもフッ素化されなかった場合には、 RAと同一の基である。 RAFと RAにおいてはフッ素化反応の前後で炭素原子の 並び方に変更はない。 また、 RBFは化合物 (3) 中の RBFと同一の基である。 R1Fは、 R1が水素原子である場合の R1Fはフッ素原子である。 1^が1価有機 基である場合の R は 1とそれぞれ同一でも異なっていてもよい 1価有機基で あり、 R 1と R 1 Fとが異なる場合の R 1 Fは R 1がフッ素化された 1価有機基であ る。
含フッ素エステル化合物は、 エステル化合物がペルフルォロ化された化合物で あるのが好ましい。 化合物 (4) の RAFは、 化合物 (3) における RAが水素含 有基である場合が化合物の入手しやすさの点で好ましいことから、 フッ素化され た基であるのが好ましく、 特にペルフルォロ化された基であるのが好ましい。 化合物 (4) としては、 下記化合物 (4A) および下記化合物 (4B) が挙げ られる。 ここで、 RAF、 RBFは、 前記と同じ意味を示す。
RAFCFR1FOCORBF (4)
RMCFsOCORBF (4 A)
RAFC F RIOF0CORBF (4B)
さらに、 RAFは、 RAが 1価飽和炭化水素基、 部分ハロゲン化 1価飽和炭化水 素基、 エーテル性酸素原子含有 1価飽和炭化水素基、 または部分ハロゲン化 (ェ テル性酸素原子含有 1価飽和炭化水素) 基であり、 RAFがこれらの RAに存在 する水素原子の全てがフッ素原子に置換された基であるのが好ましく、 特に、 R Aがアルキル基、 部分クロ口アルキル基、 アルコキシアルキル基、 または部分ク ロロ (アルコキシアルキル) 基であり、 RAFがこれらの RAに存在する水素原子 の全てがフッ素原子に置換された基であるのが好ましい。 また、 化合物 (4B) の R1QFは、 R1Qと同一であっても異なっていてもよい 1価有機基であり、 異なる場合には R 1 Gがフッ素化された 1価有機基である。
R 1 GFは R 1 Qがペルフルォロ化された 1価有機基であるのが好ましく、 ペルフル ォ口アルキル基であるのが特に好ましく、 トリフルォロメチル基であるのが化合 物の有用性の点でとりわけ好ましい。
化合物 (4A) の具体例としては、 次の化合物が挙げられる。
CF3 (CF2) 2OC〇CF2CF3
CF3 (CF2) 2OCF (CF3) CF2OCOCF (CF3) OCF2CF2C F3
CF3 (CF2) 2OCF (CF3) CF2OCF (CF3) CF2〇COCF (C F3) OCF2CF (CF3) O (CF2) 2CF3
CF3CF2CF (OCF3) CF2OCOCF (CF3) OCF2CF2CF3、 CF3CF2CF20 (CF2) 3OCOCF (CF3) OCF2CF (CF3) O (CF2) 2CF3
CF2C 1 CFC 1 O (CF2) 5OC〇CF (CF3) OCF2CF (CF3) 〇 (CF2) 2CF3
CF2C l CFC l CF2CF2OCOCF2CFC l CF2C l。
化合物 (4B) の具体例としては、 下記化合物が挙げられる。
(CF3) 2CF〇C〇CF (CF3) 〇CF2CF (CF3) OCF2CF2CF
3、
CF3CF2CF2CF (CF3) OCOCF (CF3) 〇 (CF2) 2CF3。 フッ素化反応の反応生成物である含フッ素エステル化合物は、 そのまま、 また は他の化合物に化学変換されることにより有用に用いうる。 含フッ素エステル化 合物が、 分解されうるエステル結合を有する化合物である場合、 特に化合物 (4 ) である場合には、 エステル結合の分解反応を行うことにより、 他の化合物に導 いてもよい。
ここで、 フッ素化反応の生成物中には、 含フッ素エステル化合物が含まれる。 また、 フッ素化反応をァシルフルオリド基を有する化合物の存在下に行った場合 に、 該ァシルフルオリド基を有する化合物がフッ素化されない化合物である場合 には該化合物と同一の化合物、 ァシルフルオリド基を有する化合物がフッ素化さ れた場合にはフッ素化されたァシルフルオリド基を有する化合物、 がフッ素化反 応の生成物中に含まれる。 また、 HF補捉剤ゃ溶媒 2を用いた場合にはこれらも 反応生成物中に存在しうる。
含フッ素エステル化合物において、 エステル結合の分解反応を行う際には、 フ ッ素化反応の反応生成物から含フッ素エステル化合物を精製して取り出してもよ く、 または、 反応生成物をそのまま次のエステル結合分解反応に用いてもよく、 特に後者においてエステル結合の分解反応を行うのが好ましい。 精製をする場合 には、 粗生成物をそのまま常圧または減圧下に蒸留する方法等が挙げられる。 化合物 (4) においてエステル結合の分解反応を行った場合には、 下記化合物 (5) および前記化合物 (2) が生成する。 該化合物 (5) としては、 化合物 ( 5A) と化合物 (5B) が挙げられる。 ただし、 RAF、 R1F、 および R1 OFは、 前記と同じ意味を示す。
RAFCOR1F (5)
RAFCOF (5 A)
RAFCOR10F (5B)
化合物 (5B) は含フッ素ケトンとして、 それ自体が溶剤等として有用な化合 物である。 また、 還元反応により含フッ素アルコールに導くこともできる。 また、 化合物 (5A) は、 フッ素樹脂モノマーや含フッ素アルコールの原料として有用 な化合物である。
化合物 (5A) の具体例としては、 次の化合物が挙げられる。 CF3CF2C〇F、
CF3 (CF2) 2COF、
CF2C 1 CFC 1 CF2C〇F、
CF3CF2CF2OCF (CF3) COF、
CF3CF2CF2OCF (CF3) CF2OCF (CF3) C〇F、
CF3 (CF2) 2OCF (CF3) CF2OCF (CF3) COF、
CF2C 1 CFC 1 O (CF2) 4COF。
また化合物 (5B) の具体例としては、 次の化合物が挙げられる。
(CF3) 2C (O) 、
CF3CF2CF2C (O) (CF3) 。
エステル結合の分解反応は、 加熱することによりエステル結合を分解する、 ま たは、.求核剤の存在もしくは求電子剤の存在下にエステル結合を分解する、 こと により実施するのが好ましい。
加熱することによりエステル結合を分解する場合 (以下、 熱分解という) 、 含 フッ素エステル化合物の沸点とその安定性により熱分解反応の形式を選択するの が好ましい。 たとえば、 気化しやすい含フッ素エステル化合物を熱分解する場合 には、 気相で連続的に分解させて、 生成物を含む出口ガスを凝縮、 回収する気相 熱分解法を採用しうる。
気相熱分解法の反応温度は 50〜 350 °Cが好ましく、 50〜 300 が特に 好ましく、 とりわけ 150〜250°Cが好ましい。 また、 反応には直接は関与し ない不活性ガスを反応系中に共存させてもよい。 不活性ガスとしては、 窒素ガス, 二酸化炭素ガス等が挙げられる。 不活性ガスは含フッ素エステル化合物に対して 0. 01〜 50 V o 1 %程度を添加するのが好ましい。 不活性ガスの添加量が多 いと、 生成物回収量が低減することがある。
また気相熱分解法においては、 管型反応器を用いるのが好ましい。 管型反応器 を用いる場合の滞留時間は、 空塔基準で 0 . 1秒〜 1 0分程度が好ましい。 反応 圧力は特に限定されない。 また、 含フッ素エステル化合物が高沸点化合物の場合 には、 減圧下で反応を実施するのが好ましい。 特に含フッ素エステル化合物が低 沸点化合物である場合には、 生成物の分解が抑制され、 かつ反応率が高くなるこ とから、 加圧下で反応を実施するのが好ましい。
管型反応器を用いて気相反応を行う場合には、 反応を促進させる目的で、 反応 管中にガラス、 アルカリ金属の塩、 またはアルカリ土類金属の塩を充填するのが 好ましい。 エステル結合の分解反応を含フッ素エステル化合物と、 ァシルフルォ リド基を有する化合物または該化合物のフッ素化物との混合物において行う場合 には、 これらの充填物は、 ァシルフルオリド基を有する化合物の分解反応を促進 させないものから選択するのが好ましい。
アル力リ金属の塩またはアル力リ土類金属の塩としては、 炭酸塩またはフッ化 物が好ましい。 ガラスとしては、 一般的なソーダガラスが挙 られ、 特にビーズ 状にして流動性を上げたガラスビーズが好ましい。 アル力リ金属の塩としては、 炭酸ナトリウム、 フッ化ナトリウム、 炭酸カリウム、 または炭酸リチウムが挙げ られる。 アルカリ土類金属の塩としては、 炭酸カルシウム、 フッ化カルシウムま たは炭酸マグネシウム等が挙げられる。 さらに、 反応管中にガラス、 アルカリ金 属の塩、 またはアルカリ土類金属の塩を充填させる場合に、 ガラスビーズや、 炭 酸ナトリウムの軽灰等であって、 粒径が 1 0 0〜2 5 0 m程度であるものを用 いると、 流動層型の反応形式を採用できることから特に好ましい。
一方、 含フッ素エステル化合物が気化しにくい化合物である場合には、 反応器 内で液のまま加熱する液相熱分解法を採用するのが好ましい。 この場合の反応圧 力は限定されない。 通常の場合、 エステル結合分解反応の生成物は、 含フッ素ェ ステル化合物より低沸点であることから、 生成物を気化させて連続的に抜き出す 反応蒸留形式による方法で得るのが好ましい。 また加熱終了後に反応器中から一 括して生成物を抜き出す方法であってもよい。 この液相熱分解法の反応温度は 5 0-300 °Cが好ましく、 特に 100〜 250 °Cが好ましい。
液相熱分解法でエステル結合の分解反応を行う場合には、 フッ素化反応の反応 生成物をそのまま用いて反応を行うのが作業性の点で好ましい。 該反応生成物に は、 溶媒を加えてもよいが、 溶媒は加えないのが好ましい。 たとえば、 化合物 ( 2) と化合物 (3) との液状混合物のフッ素化反応では、 化合物 (2) と、 化合 物 (4) が生成物中に含まれるが、 エステル結合の分解反応は、 化合物 (2) と 化合物 (4) の混合物において行い、 化合物 (2) 以外の溶媒 (以下、 溶媒 3と いう。 ) は存在させないのが好ましい。 この場合、 化合物 (2) は適宜添加しう る。 化合物 (2) は、 エステル結合の分解反応における液相としても作用しうる また、 化合物 (4) 自体が液状である場合には、 無溶媒でエステル結合の分解 反応を行ってもよい。 無溶媒で行う方法は、 容積効率や副生成物抑制の観点から 好ましい。 一方、 溶媒 3を用いる場合は、 化合物 (4) と反応せず、 かつ化合物 (4) と相溶性のあるもので、 生成物と反応しないものから選択するのが好まし い。
溶媒 3の具体例としては、 ペルフルォロトリアルキルァミンなどの不活性溶媒、 クロ口フルォロカーボン類等のなかでも高沸点であるクロ口トリフルォロェチレ ンオリゴマー (たとえば、 商品名:フロンループ) 等が好ましい。
また、 含フッ素エステル化合物を液相中で求核剤または求電子剤と反応させる 方法で、 エステル結合の分解反応を行う場合も、 無溶媒で行っても、 溶媒の存在 下に行ってもよい。 化合物 (4) において該反応を溶媒の存在下で行う場合には、 化合物 (2) の存在下で行うのが好ましい。 求核剤としては F—が好ましく、 特 にアル力リ金属のフッ化物由来の F—が好ましい。 アル力リ金属のフッ化物とし ては、 NaF、 NaHF2、 KF、 Cs Fがよく、 これらのうち経済性の面から N a Fが、 反応効率の点からは KFが特に好ましい。 化合物 (4) を求核剤 (たとえば F— ) と反応させる方法でエステル結合の分 解反応を行う場合には、 化合物 (4) のエステル結合中に存在する力ルポニル基 に F—が求核的に付加し、 RAFCFR1F0—が脱離するとともに化合物 (2) が 生成する。 RAFCFR1FO—からはさらに F_が脱離して化合物 (5) が生成す る。 ただし、 分解反応の条件によっては、 化合物 (4) がさらに分解して他の化 合物 (たとえば不飽和化合物) が生成することもある。 脱離した F—は別の化合 物 (4) と同様に反応する。 したがって、 反応の最初に用いる求核剤は触媒量で あってもよく、 過剰に用いてもよい。 すなわち F—等の求核剤の量は化合物 (4 ) に対して 1〜500モル%が好ましく、 1 0〜1 00モル%が特に好ましく、 とりわけ 5〜50モル%が好ましい。 反応温度は、 一 3 0°C〜溶媒または化合物
(4) の沸点までの間が好ましく、 一 20°C〜2 50°Cが特に好ましい。 この方 法も、 反応蒸留形式で実施するのが好ましい。
含フッ素エステル化合物が化合物 (4A) である場合には、 エステル分解反応 の反応生成物中には、 通常の条件では化合物 (5A) とともに、 化合物 (2) が 含まれる。 また、 化合物 (2) の存在下でエステル結合の分解反応を行った場合 には、 反応生成物中に化合物 (2) が含まれる。
該反応生成物中の化合物 (5A) と化合物 (2) は、 通常の分離方法で容易に 分離できるが、 化合物 (5A) が化合物 (2) と同一構造となるように原料化合 物を選択した場合、 すなわち化合物 (4A) において RAFと RBFとが同一構造 になるように基の構造を選択した場合、 には、 反応生成物である化合物 (5A) と化合物 (2) が同一化合物であるために、 反応生成物の分離の手間を省くこと ができる。
本発明方法における好ましい態様としては、 RAFと RBFとが同一構造になる ように基の構造を選択し、 化合物 (3A) を過剰量の化合物 (2) を必須とする 液相中でフッ素化し、 該フッ素化で生成する化合物 (4A) と化合物 (2) の混 合物を、 次のエステル結合の分解反応に導く方法が挙げられる。 該方法において は、 エステル結合の分解反応の生成物である化合物 (5A) と、 化合物 (2) と が同一化合物になり、 生成物を分離精製する工程を簡略化できる。 また、 各反応 に溶媒を用いる場合にも、 化合物 (2) のみを溶媒として採用することにより、 使用する溶媒の種類を減らすことができ、 後処理が省略できる。
また、 他の好ましい態様としては、 化合物 (1) を化合物 (2) とエステル化 反応させる際に、 過剰量の化合物 (2) の存在下に反応うことにより化合物 (3 ) と化合物 (2) の液状混合物を得て、 これをフッ素化反応に用いる方法が挙げ られる。 該方法によれば、 フッ素化反応前に化合物 (1) を除去する手間も省く ことができる。 さらに、 フッ素化反応で生成した化合物 (4) と化合物 (2) の 混合物においてエステル結合の分解する反応を行う方法が挙げられる。 これらの 一連の反応は、 同一の反応器内で行うこともできる。
さらに他の好ましい態様として、 エステル結合の分解反応生成物から得た化合 物 (5A) または化合物 (2) を、 化合物 (1) と反応させる化合物 (2) とし て再利用する方法が挙げられる。 該方法は連続して化合物 (5A) を製造できる 方法である。 すなわち、 該化合物 (4A) と化合物 (2) の液状混合物を用いて エステル結合の分解反応を行った反応生成物から化合物 (2) を得て、 該化合物 (2) の一部または全部を再び化合物 (1A) との反応に用いることにより、 化 合物 (5A) を連続製造することができる。 この方法は、 安価に入手が可能な原 料化合物 (1A) から所望の化合物 (5A) を連続製造できる方法である。
<実施例 >
以下に本発明を実施例を挙げて具体的に説明するが、 これらによって本発明は 限定されない。 なお、 以下において、 ガスクロマトグラフィを GCと、 ガスクロ マトグラフィ質量分析を GC—MSと、 ミリリットルを mLと記す。 NMRスぺ クトルデータは、 みかけの化学シフト範囲として示した。 13C— NMRにおけ る基準物質 CD C 13の基準値は、 76. 9ppmとした。 19F— NMRによる 定量では C 6 F 6を内部標準に用いた。
[例 1]
く例 1一 1>CF3CF2CF20CF (CF3) COOCH2CH (CH3) OC H2CH2CH3と CF3CF2CF2OCF (CF3) C O Fとの液状混合物の製造 例
CH3CH2CH2〇CH (CH3) CH2OH (620. 1 g) をフラスコに入 れ、 窒素ガスをバブリングさせながら撹拌した。 CF3CF2CF2OCF (CF 3) COF (3604 g) を内温を 25〜35 °Cに保ちながら 8時間かけて滴下 した。 滴下終了後、 CF3CF2CF2OCF (CF3) CO〇CH2CH (CH3 ) 〇CH2CH2CH3と CF3CF2CF2〇CF (CF3) COFとを含む反応生 成物に、 窒素ガスのパブリングを続けながら室温で 2時間撹拌することにより、 標記液状混合物を得た。 該液状混合物をそのまま例 1一 2の反応に用いた。
<例1— 2>CF3CF2CF2〇CF (CF3) C〇OCF2CF (CF3) O CF2CF2CF3の製造例
3 Lのニッケル製ォ一トクレーブに、 CF3CF2CF2OCF (CF3) CO F (2340 g) を加えて撹拌し、 25 °Cに保った。 オートクレープガス出口に は、 20°Cに保持した冷却器、 N a Fペレット充填層、 および一 10°Cに保持し た冷却器を直列に設置した。 なお、 一 10 に保持した冷却器からは凝集した液 をォ一トクレープに戻すための液体返送ラインを設置した。 窒素ガスを 1. 5時 間吹き込んだ後、 窒素ガスで 20 vo 1 %に希釈したフッ素ガス (以下、 20 % フッ素ガスと記す。 ) を、 流速 8. 9 lLZhで 3時間吹き込んだ。 つぎに、 20%フッ素ガスを同じ流速で吹き込みながら、 例 1一 1で得た液状 混合物 (106 g) を 45. 6時間かけて注入した。
ついで、 20%フッ素ガスを同じ流速で吹き込みながら、 ベンゼン濃度が 0. 01 gZmLである CF3CF2CF2OCF (CF3) COF溶液を 25°Cから 4 Otにまで昇温しながら 18mL注入し、 オートクレープのベンゼン注入口を 閉め、 さらにオートクレープの出口バルブを閉め、 圧力が 0. 20MPaになつ たところでォートクレーブのフッ素ガス入口バルブを閉めて、 1時間撹捽を続け た。 つぎに圧力を常圧にし、 反応器内温度を 40でに保ちながら、 上記のベンゼ ン溶液を 6 mL注入し、 オートクレーブのベンゼン注入口を閉め、 さらにオート クレーブの出口バルブを閉め、 圧力が 0. 2 OMP aになったところでオートク レーブのフッ素ガス入口バルブを閉めて、 1時間撹拌を続けた。 さらに、 同様の 操作を 1回くり返した。
ベンゼンの注入総量は 0. 309 g、 CF3CF2CF2OCF (CF3) CO Fの注入総量は 3 OmLであった。 さらに、 窒素ガスを 2. 0時間吹き込んだ。 反応後、 蒸留精製して標記化合物 (85. 3 g) と CF3CF2CF2OCF (C F3) COFとを含む反応生成物を得た。 反応生成物中の標記化合物の分析結果 を、 以下に示す。
沸点: 46〜51°CZ5. 2kP a。
ハイレゾルーシヨンマススペクトル (C I法) 664. 9496 (M + H. 理 論値: C12HF2404=664. 9492) 。
19F— NMR (564. 6 MH z、 溶媒 CD C 13ZC 6 F 6、 基準: C F C 1 3) (5 (p pm) : -80. 6 (I F) , -80. 8 および 一 80. 9 (3 F) , 一 81. 6- 83. 1 (2 F) , —82. 6 (6 F) , 一 82. 8 (3 F) , -86. 7 (I F) , -87. 4 (I F) , 一 87. 5 (IF) , 一 13 0. 6 (4F) , -132. 2 (IF) , -145. 7 および 一 145. 9 (I F) 。
13C-NMR (150. 8 MHz, 溶媒 CDC 13ZC6F6、 基準: CDC 1 3) d (p pm) : 100. 26 および 100. 28, 102. 8, 106 8, 107. 0, 116. 0, 116. 2, 116. 5 および 116. 6, 117. 4, 117. 5, 117. 9, 117. 9, 152. 2 および 15 2. 3。
<例1— 3>CF3CF2CF2OCF (CF3) C OFの製造例
例 1— 2で得た CF3CF2CF2OCF (CF3) COOCF2CF (CF3) OCF2CF2CF3 (83. 0 g) を含む反応生成物を、 NaF粉末 (1. l g ) と共にフラスコに仕込み、 激しく撹拌を行いながらオイルバス中で 140°Cで 15時間加熱した。 フラスコ上部に 7 O :に温度調節した還流器を通して液状サ ンプル (81. 3 g) を回収した。 液状サンプルを蒸留精製して得た生成物を G C一 MSで分析することによって、 CF3CF2CF2OCF (CF3) COFの 生成を確認した。
<例 1— 4〉CF3CF2CF2OCF (CF3) COFの連続製造例
例l— 3の方法で得たCF3CF2CF2OCF (CF3) COF (81. 2 g ) と、 CH3CH2CH2OCH (CH3) CH2〇H (14. 0 g) とを用いて、 例 1一 1と同様に反応させることにより、 CF3CF2CF2OCF (CF3) C 〇OCH2CH (CH3) OCH2CH2CH3と CF3CF2CF2OCF (CF3 ) COFとを含む液状混合物 (94. 0 g) を得た。 該液状混合物おいて、 次に、 例 1一 2および例 1― 3と同様の反応を行うことにより標記化合物を得た。
[例 2] <例 2— 1〉CH2=CHCH (〇CH3) CH2OCOCF (CF3) OCF2C F2CF3の製造例
CH2 = CHCH (〇CH3) CH2OH (270 g) を NaF (334 g) と ともに 20°Cの冷媒を循環させた還流器をもつ 2 L耐圧反応器中に仕込み、 一 1 0°Cで撹拌した。 反応器中に窒素ガスをパブリングすることにより、 反応によつ て副生する HFを上部還流器より系外に排出しながら、 FCOCF (CF3) O CF2CF2CF3 (1055 g) を 1. 5時間かけて滴下した。 この際、 反応器 の内温が 0で以下になるように温度を調節した。 滴下終了後 30でで 18時間撹 拌し反応を終了した。
反応終了後の粗液中に含まれる NaFを濾別することにより粗生成物 (981 g) を得た (収率 86. 4%) 。 NMRによる分析の結果、 標記混合物を FCO CF (CF3) OCF2CF2CF3との液状混合物として得た。 標記化合物の分 析結果は以下のとおりである。
1H— NMR (300. 4MHz , 溶媒: CDC 13, 基準: TMS) δ (ρ pm) : 3. 29 (s , 3Η) ,. 3. 85〜 3. 90 (m, 1 Η) , 4. 24〜 4. 45 (m, 2Η) , 5. 34 (s, 1 Η) , 5. 39 (d, J = 8. 4Hz, 1Η) , 5. 59〜5. 71 (m, 1 Η) 。
19F-NMR (282. 7 MHz, 溶媒: CDC 13, 基準: CFC 13) δ ( m) : -81. 8 (3 F) , 一 82. 6 (3 F) , —79. 9〜― 87. 5 (2F) , — 130. 2 (2 F) , -132. 3 (1 F) 。 く例 2 - 2〉CH2C 1 CHC 1 CH (OCH3) CH2〇C〇CF (CF3) OCF2CF2CF3と FCOCF (CF3) O C F 2 C F 2 C F 3との液状混合物の 例 2— 1の方法で得た CH9 = CHCH (OCH3) CH2OCOCF (CF ) OCF2CF2CF3 (981 ) を含む液状混合物を、 0°Cに冷却したジム口 ートを取り付けた 2 Lの 3つ口フラスコ中に仕込み、 一10〜0°Cで撹拌を行い ながら塩素ガスを 0. 8 g/分の速度で導入し反応を行った。 170 gの塩素ガ スを導入した時点で反応を終了し粗液 1084 gを得た。
得られた粗液を 6〜7mmHgの減圧下に蒸留精製し 744 gの生成物を得た £ NMRおよびガスクロマトグラフによる分析の結果、 CH2C 1 CHC 1 CH ( OCH3) CH2〇C〇CF (CF3) OCF2CF2CF3と FCOCF (CF3) 〇CF2CF2CF3を GC純度 98 %含む液状混合物の生成を確認した。 CH2 C 1 CHC 1 CH (OCH3) CH2OCOCF (CF3) OCF2CF2CF3と FCOCF (CF3) OCF2CF2CF3の分析結果は以下のとおりである。
— NMR (300. 4 MHz, 溶媒: CDC 13, 基準: TMS) δ (ρ pm) : 3. 45 (d, J = l. 5Hz) and 3. 47 (s) nd
3. 55 (d J = 0. 6Hz) t o t a l 3H, 3. 56〜3. 80 (m, 2H) , 3. 82〜4. 12 (m, 2 H) , 4. 43〜4. 57 (m, 1 H) ,
4. 65 (dd, J = 6. 3Hz, 11. 4Hz) and 4. 89 (d d d, J =42. 4Hz, 12. 0Hz, 3. 0Hz) and 5. 49 (q, J = 5. 1Hz) t o t a l 1H。
19 F—NMR (376. 0MHz, 溶媒: CD C 13、 基準: C F C 13) <5 (ppm) : - 79. 93〜一 80. 65 (I F) , — 81. 72〜一 81. 8 0 (3 F) , -82. 47〜一 82. 56 (3 F) , — 86. 46〜― 87. 2
2 (I F) , - 130. 07〜一 130. 19 (2 F) , - 132. 26〜一 1
32. 47 (1 F) 。 く例 2— 3>CF2C 1 CFC 1 CF (OCF3) CF2OCOCF (CF3) O CF2CF2CF。の製造例 3 Lのニッケル製ォ一トクレーブに、 CF3CF2CF2OCF (CF3) CO F (3523 g) を加えて撹拌し、 5°Cに保った。 オートクレープガス出口には 一 10°Cに保持した冷却器を設置した。 窒素ガスを 3. 5時間吹き込んだ後、 2 0%フッ素ガスを、 流速 26. 52 L/hで 1時間吹き込んだ。
つぎに該流速で 20 %フッ素ガスの吹き込みを続けながら、 例 2— 1と例 2— 2の方法で得た CH2C 1 CHC 1 CH (OCH3) CH2OCOCF (CF3) OCF2CF2CF3 (415 g) を含む液状混合物を 22. 5時間かけて注入し た後、 反応粗液 (261 g) を抜き出した (操作 1) 。 同様に下表に示す操作 2 〜3を行った。 つぎに、 オートクレ一ブ内の温度を 25でにして、 22時間保つ た後に、 フッ素ガスの吹き込みを止めて、 窒素ガスを 3. 0時間吹き込み、 反応 粗液 (3530 g) を抜き出した。
反応粗液をあわせて GC— MSで分析した結果、 CF3CF2CF2〇CF (C F3) CO Fと標記化合物を主成分とする混合物であり、 標記化合物 (1A) の 収率は 71 %であった。
[表 1]
Figure imgf000035_0001
[例 3]
く例 3— 1> (CH3) 2CH〇COCF (CF3) OCF2CF (CF3) OCF 2CF2CF3と FCOCF (CF3) OCF2CF (CF3) OCF2CF2CF3 の液状混合物の製造例
(CH3) 2CH〇H (7. 0 kg) を反応器に入れ、 窒素ガスをバブリング させながら撹拌した。 FCOCF (CF3) 〇CF2CF (CF3) 〇CF2CF2 CF3 (61. 0 kg) を反応器内温を 25〜30 に保ちながら 25時間かけ て添加した。 添加終了後、 反応器内温を 30°Cに保ちながら 24時間撹拌し、 標 記液状混合物を粗液として 65. 1 kg得た。 GCによる (CH3) 2CHOC OCF (CF3) OCF2CF (CF3) 〇 C F 2 C F 2 C F 3の純度は 98 %であ つ 7こ。 く例 3— 2 > (CF3) 2CF〇COCF (CF3) OCF2CF (CF3) OCF 2CF2CF3の製造例
4 Lのニッケル製ォ一トクレープに、 CF3CF2CF2OCF (CF3) CF2 OCF (CF3) COF (4992 g) を加えて撹拌し、 20でに保った。 ォー トクレープガス出口には 0°Cに保持した冷却器を設置した。 窒素ガスを 2. 0時 間吹き込んだ後、 窒素ガスで 50%に希釈したフッ素ガス (以下、 50%フッ素 ガスと記す。 ) を、 流速 50. l OLZhで 2. 0時間吹き込んだ。
つぎにオートクレープ内温を 25°Cにして、 該流速で 50%フッ素ガスの吹き 込みを続けながら、 例 3— 1で得た (CH3) 2CHOCOCF (CF3) OCF 2CF (CF3) OCF2CF2CF3 (208 g) 含む液状混合物を 3. 5時間か けて注入した後、 反応粗液 (262 g) を抜き出した (操作 1) 。 同様に下表に 示す操作 2〜 8を行った。
[表 2]
Figure imgf000037_0001
操作 8が終了した反応器内部には 4950 gの反応粗液が残っていた。 操作 1 〜 8で抜き出した反応粗液をあわせて G C _ M Sにより分析した結果、 C F 3 C F2CF2OCF (CF3) CF2OCF (CF3) C O Fと標記化合物とを主成分 とする混合物であった。 各操作において抜き出した反応粗液中に含まれる標記化 合物の GC収率を表に示す。
[例 4] CF3CF2CF2OCF (CF3) CF2OCOCF (CF3) OCF2C F2CF3の製造例
4 Lのニッケル製オートクレープ反応器に、 CF3CF2CF2〇CF (CF3 ) COF (51 13 g) を加えて撹拌し、 20°Cに保った。 オートクレープガス 出口には O :に保持した冷却器を設置した。 窒素ガスを 1. 5時間吹き込んだ後、 50%フッ素ガスを、 流速 100. 37 L/hで 1. 5時間吹き込んだ。
つぎに、 オートクレープ内温を 25 にして、 該流速で 50%フッ素ガスの吹 き込みを続けながら、 例 1一 1と同様の反応で得た CH3CH2CH2OCH (C H3) CH2OC〇CF (CF3) OCF2CF2CF3 (190 g) を含む液状混 合物を 8時間かけて注入した後、 反応粗液 (262 g) を抜き出した (操作 1) 同様に下表に示す操作 2〜 7を行った。
[表 3]
Figure imgf000038_0001
操作 7が終了した反応器内部には 4720 gの反応粗液が残っていた。 操作 1 〜 7で抜き出した反応粗液を GC—MSで分析した結果、 CF3CF2CF2OC F (CF3) CO Fと標記化合物が主成分とする混合物であった。 各操作におい て抜き出した反応粗液中に含まれる標記化合物の GC収率を表に示す。
[例 5]
<例 5— l>CH2 = CHCH2OCH2CH2CH2OC〇CF (CF3) OCF2 CF (CF3) OCF2CF2CF3と CF3CF2CF2OCF (CF3) CF20 CF (CF3) CO Fとの液状混合物の製造例
CH2 = CHCH2〇CH2CH2CH2OH (11. 6 kg) と CF3CF2CF 2OCF (CF3) CF2OCF (CF3) COF (50. 8 k ) を用いて例 1 _1と同様の反応を行い、 標記の液状混合物を得た。 CH2 = CHCH2〇CH2 CH2CH2OCOCF (CF3) OCF2CF (CF3) OCF2CF2CF3の G C純度は 98%であった。 く例 5_2〉CF3CF2CF2OCF2CF2CF2OC〇CF (CF3) 〇CF2 CF (CF3) 〇CF2CF2CF3の製造例
4 Lのニッケル製オートクレーブ反応器に、 CF3CF2CF2OCF (CF3 ) CF2OCF (CF3) COF (5003 g) を加えて撹拌し、 25でに保つ た。 オートクレープガス出口には一 10でに保持した冷却器を設置した。 窒素ガ スを 2. 0時間吹き込んだ後、 50 %フッ素ガスを、 流速 65. 33 LZhで 1. 0時間吹き込んだ。
つぎに、 該流速で 50 %フッ素ガスの吹き込みを続けながら、 例 5— 1の方法 で得た CH2 = CHCH2OCH2CH2CH2〇COCF (CF3) 〇CF2CF ( CF3) OCF2CF2CF3 (214 g) を含む液状混合物を 8時間かけて注入 した後、 反応粗液 (264 g) を抜き出した (操作 1) 。 同様に下表に示す操作 2〜10を行った。 ただし、 操作 3以降の操作においては、 50%フッ素ガスの 流速を 98. O OLZhに変更した。
[表 4]
操作 注入量 (g) 注入時間 (時間) 反応粗液 収率 (%)
1 214 8. 0 264 80
2 331 12. 0 261 75
3 258 8. 0 263 84
4 136 4. 0 262 77
5 147 4. 0 260 75
6 374 8. 0 263 77
7 168 4. 0 265 77
8 166 4. 0 266 78
9 140 4. 0 270 79
10 705 16. 0 268 78 操作 1 0が終了した反応器内部には 47 7 0 gの反応粗液が残った。 操作 1〜 1 0で抜き出した反応粗液をあわせて GC— MSにより分析した結果、 CF3C F2CF2OCF (CF3) CF2OCF (CF3) C O Fと標記化合物が主成分と して混合物であった。 各操作において抜き出した反応粗液中に含まれる標記化合 物の GC収率を表に示す。
[例 6]
<例 6— 1>CH2 = CHCH2CH (CH3) OCOCF (CF3) OCF2CF 2CF3の製造例
CH2 = CHCH2CH (CH3) OH (1 3. 0 8 k g) を反応器に入れ、 窒 素ガスをバブリングさせながら撹拌した。 FCOCF (CF3) OCF2CF2C F3 (54. 2 9 k g) を内温を 2 5〜3 0 に保ちながら 5時間かけて仕込ん だ。 仕込み終了後、 窒素ガスをパブリングさせながら、 内温 3 0~50 で 7 0 時間攪拌した。
得られた粗液 (58. 3 2 k g) を精製することなく次工程で使用した。 GC による純度は 96. 6%であった。 NMRスペクトルデータは以下のとおりであ つた。
^-NMR (300. 4MHz、 溶媒: CDC 1 3、 基準: TMS) 6 (p pm) : 1. 32 (d, J = 6. OHz, 3 H) , 2. 3 0-2. 50 (m, 2 H) , 5. 07〜 5. 2 1 (m, 3 H) , 5. 6 1〜 5. 7 6 (m, 1 H) 。
19F— NMR (282. 7 MHz, 溶媒 CDC 13、 基準: CFC 1 3) δ ( p pm) : -7 9. 6 (I F) , - 8 1. 3 (3 F) , - 8 2. 0 (3 F) , 一 86. 3 (I F) , - 1 2 9. 4 (2 F) , 一 1 3 1. 5 (1 F) 。
<例 6— 2〉CF CF9CF?〇CF (CFJ COOCH (CH J CH,CH C 1 CH2C 1の製造例
20°Cの還流器を備えた 5 Lのフラスコ内に、 例 6— 1で得た CF3CF2C F2OCF (CF3) COOCH (CH3) CH2CH=CH2 (5000 g) を含 む粗液を仕込み、 反応器を一 30°Cに冷却した。 次に C 12を連続的に供給して 反応液にバブリングさせ、 反応熱による温度上昇が 10で以下となるように C 1 2の供給速度を制御した。 反応が進行して発熱が見られなくなったところで、 反 応を終了した。 反応終了後、 反応器の温度を室温にして、 窒素ガスを反応液に 2 4時間パブリングさせて過剰の C 12をパージ除去し、 FCOCF (CF3) O CF2CF2CF3と標記化合物とを含む粗液 (5900 g) を得た。 GC分析の 結果、 CF3CF2CF2〇CF (CF3) COOCH (CH3) CH2CHC 1 C H2C 1の収率は 95%であった。 く例 6— 3>CF2C 1 CFC 1 CF2CF (CF3) OCOCF (CF3) OC F2CF2CF3の製造例
4 Lのニッケル製ォートクレーブ反応器に、 溶媒としての C F 3 C F 2 C F 2〇 CF (CF3) COF (4732 g) を加えて撹拌し、 25 に保った。 オート クレープガス出口には— 10でに保持した冷却器を設置した。 窒素ガスを 2. 0 時間吹き込んだ後、 20 %フッ素ガスを、 流速 144. 30 L Z hで 1. 0時間 吹き込んだ。
つぎに、 流速 144. 30 L/hで 20 %フッ素ガスの吹き込みを続けながら、 例6— 2の方法で得た ?3 20 20 (CF3) COOCH (CH3) C H2CHC 1 CH2C 1 (740 g) を含む粗液を 22時間かけて注入した後、 反応粗液 (820 g) を抜き出した (操作 1) 。 反応粗液中に含まれる標記化合 物 GCの純度 (溶媒は除く) は 28%であった。 同様に下表に示す操作 2〜 7を 行った。 操作 7を終了した反応器内部には 3731 gの反応粗液が残っていた。 [表 5]
Figure imgf000042_0001
[例 7]
<例 7— 1>CHC 1 =CC 1 O (CH2) 5OHの製造
50 OmLの 4つ口フラスコにテトラヒドロフラン (THF、 16 OmL) 、 水素化ナトリウム (60%、 24 g) を仕込み撹拌し、 氷冷下、 HO (CH2) 5OH (260 g) を滴下した。 滴下終了後、 室温で 1時間撹拌した。 次に、 C HC 1 =CC 12 (66 g) を 5分間かけて滴下した。 滴下終了後、 浴温 70 で 2. 5時間撹拌した。 放冷後、 氷冷下、 水 (40 OmL) 、 塩化メチレン (4 0 OmL) を加え、 分液し、 塩化メチレン層を有機層として得た。 さらに有機層 を水 (40 OmL) で洗浄し、 乾燥して、 標記化合物を分離した。 標記化合物の 分析結果は以下のとおり。
1H— NMR (300. 4MHz、 溶媒: CDC 13、 基準: TMS) δ (ρ pm) : 1. 37〜: L. 79 (m, 6H) 、 3. 64 (t, J = 6. 3Hz, 2 H) 、 4. 00 (t, J = 6. 5Hz, 2H) 、 5. 47 (s, 1H) 。 く例 7— 2>CHC 1 =CC 1 O (CH2) 5〇COCF (CF3) OCF2CF (CF3) CF2OCF2CF2CF3の製造例
例 7— 1と同様の方法で得た CHC 1 =CC 1 O (CH2) 5〇H (1. 3 k g) とトリエチルァミン (2. 5 kg) を反応器に入れ、 氷浴下撹拌した。 CF 3CF2CF2OCF (CF3) CF2〇CF (CF3) COF (3. 4k ) を内 温を 1 0°C以下に保ちながら 10時間かけて滴下した。 滴下終了後、 室温で 2時 間撹拌し、 水 301^を内温1 5で以下で加えた。
得られた粗液を分液し、 下層を水 50Lで 2回洗浄、 分液をし、 モレキュラー シープで脱水した後、 ろ過し、 標記液状混合物を得た。 標記化合物の GC純度は 92 %であった。
CUC 1 =CC 1 O (CH2) 5OCOCF (CF3) OCF2CF (CF3) C F2OCF2CF2CF3の分析結果は以下のとおりである。
1H— NMR (300. 4MHz、 溶媒: CDC 13、 基準: TMS) δ (p m) : 1. 41〜: L. 83 (m, 6 H) , 4. 00 (t, J = 6. ΟΗζ, 2 Η) , 4. 29〜4. 45 (m, 2Η) , 5. 48 (s, 1Η) 。
19F-NMR (282. 7 MHz, 溶媒: CDC 13、 基準: CFC 13) δ (ppm) : -79. 9 (I F) , 一 81. 4 (3 F) , -82. 2 (3 F) , 一 86. 5 (I F) , -129. 5 (2 F) , 一 131. 5 (I F;) 。 く例 7— 3〉CF2C 1 CFC 1 O (CF2) 5OCOCF (CF3) OCF2CF (CF3) CF2CF2CF3の製造例
3 Lのニッケル製オートクレーブに、 CF3CF2CF2〇CF (CF3) CF2 OCF (CF3) COF (3807 g) を加えて撹拌し、 20 に保った。 ォー 卜クレープガス出口には— 10°Cに保持した冷却器を設置した。 窒素ガスを 1. 5時間吹き込んだ後、 20%フッ素ガスを、 流速 205. 23 LZhで 1. 5時 間吹き込んだ。
つぎに、 オートクレープ内温を 25 にして、 該流速で 20 %フッ素ガスの吹 き込みを続けながら、 例 7— 2で得た CHC 1 =CC 10 (CH2) 5OCOC F (CF3) 〇CF2CF (CF3) CF2CF2CF3 (169 g) を 5時間かけ て注入した後、 反応粗液 (262 g) を抜き出した (操作 1) 。 同様に下表に示 す操作 2〜 6を行った。
[表 6]
Figure imgf000044_0001
操作 6が終了した反応器内部には 3386 gの反応粗液が残っていた。 操作 1 ~ 6で抜き出した反応粗液をあわせて G C— M Sにより分析した結果、 C F 3 C F2CF2OCF (CF3) CF2OCF (CF3) C O Fと標記化合物を主成分と する混合物であった。 各操作において抜き出した反応粗液中に含まれる標記化合 物の GC収率を表に示す。
[例 8] CF2C l CFC l CF2CF2OCOCF2CFC l CF2C lの製造例 4 Lのニッケル製オートクレープ反応器に、 溶媒としての CF2C 1 CFC 1 CF2COF (3600 g) を加えて撹拌し、 25°Cに保った。 オートクレープ ガス出口には一 10でに保持した冷却器を設置した。 窒素ガスを 2. 0時間吹き 込んだ後、 50%フッ素ガスを、 流速 201. 42 /11で1. 0時間吹き込ん だ。 つぎに、 20%フッ素ガスを流速 20 1. 42 LZhで吹き込みながら、 反 応器内温を 5 に変更し、 CH2C 1 CHC 1 CH2CH2〇COCF2CFC 1 CF2C 1 (590 g) を含む CF2C 1 CFC 1 CF2COFとの液状混合物を 18時間かけて注入した後、 反応粗液 (534 g) を抜き出した (操作 1) 。 該 反応粗液中に含まれる標記化合物の GC純度 (ただし、 溶媒を除く) は 1 1%で あった。 同様に下表に示す操作 2〜 6を行った。
[表 7]
Figure imgf000045_0001
つぎに、 反応器内温を 25 に保ちながら、 窒素ガスで 20%に希釈したフッ 素ガスを流速 240. 57 LZhで 24時間吹き込み、 さらに窒素ガスで 50% に希釈したフッ素ガスを流速 95. 84LZhで 8時間吹き込んだ。 つぎに反応 粗液 270 gを抜き出した。 反応粗液中に含まれる標記化合物の純度は 70% ( ただし、 溶媒は除く) であった。
つぎに、 窒素ガスで 50%に希釈したフッ素ガスを流速 126. 26 L/h 吹き込み、 反応器内温を 25 °Cに保ちながら、 CH2C 1 CHC 1 CH2CH2〇 COCF2CFC 1 CF2C 1 (249 g) を含む C F 2 C 1 C F C 1 C F 2 C O Fとの液状混合物を 10時間かけて注入した。 反応粗液を 275 g抜き出した。 反応器内部には 2634 gの反応粗液が残った。 反応粗液中に含まれる標記化合 の純度は 8 6 % (ただし、 溶媒は除く) であった。
<産業上の利用の可能性 >
本発明の方法によれば、 エステル化合物の溶解性に優れ、 フッ素化反応の液相 としても作用しうるァシルフルオリド基を有する化合物の存在下でエステル化合 物のフッ素化反応を行うことにより、 高収率で含フッ素エステル化合物を製造で きる。
フッ素化反応に用いるエステル化合物とァシルフルオリド基を有する化合物の 液状混合物は、 過剰量のァシルフルオリド基を有する化合物と、 水酸基を有する 化合物とのエステル化反応で入手できる。 該エステル化反応は、 反応生成物中の 水酸基含有化合物化合物の残存量を少なくできる点でも好都合である。 また、 ェ ステル化反応後の精製工程工程を簡略化できる利点がある。
また、 フッ素化反応生成物中は、 含フッ素エステル化合物とともにァシルフル オリド基を有する化合物との混合物となりうる。 含フッ素エステル化合物がエス テル結合が分解されうる化合物 (4 ) 等である場合に、 該分解反応をのフッ素化 反応の生成物をそのまま用いて実施する方法は、 効率的な方法である。
さらに、 本発明の方法において、 RAFと RB Fとが同一になるように基を選択 したときには、 エステル結合の分解反応で生成する含フッ素エステル化合物 (5 A) と化合物 (2 ) とが同一の化合物となるため、 生成物の分離精製が簡略化で さる。
また、 化合物 (4 ) のエステル結合の分解反応生成物から得た化合物 (2 ) を 化合物 (1 ) と反応させる化合物 (2 ) として用いる方法は、 所望の化合物 (4 ) および化合物 (5 ) を効率良く連続製造できる方法として有利な方法である。 また、 本発明の方法は、 各反応ごとに溶媒を準備する必要なしに実施できる方 法である。 また次の工程を行う場合に、 該工程前に溶媒を分離しなくても実施で きる方法である。 さらに、 R— 1 1 3などの環境上好ましくない溶媒を使用しな くても実施できる有利な方法である。

Claims

請求の範囲
1. 水酸基を有する化合物とァシルフルオリド基を有する化合物とのエステルで あってフッ素化されうる構造を有するエステル化合物を、 液相中でフッ素化して 含フッ素エステル化合物を製造する際に、 エステル化合物と前記ァシルフルオリ ド基を有する化合物との液状混合物においてフッ素化を行うことを特徴とする含 フッ素エステル化合物の製造方法。
2. エステル化合物が、 水酸基を有する化合物にァシルフルオリド基を有する化 合物をエステル化反応をさせて製造される化合物である請求項 1に記載の製造方 法。
3. 該水酸基を有する化合物の水酸基の全てをエステル化するために必要な化学 量論量より多い量であり、 かつ、 反応生成物中に未反応のァシルフルオリド基を 有する化合物が残る程度の量であるァシルフルオリド基を有する化合物を用いて エステル化反応させることによりエステル化合物とァシルフルオリド基を有する 化合物との液状混合物を得る請求項 2に記載の製造方法。
4. エステル化合物が下記化合物 (3) であり、 ァシルフルオリド基を有する化 合物が下記化合物 (2) であり、 含フッ素エステル化合物が下記化合物 (4) で ある請求項 1または 2に記載の製造方法。
FC〇RBF (2)
RACHRxOCORBF (3)
RAF C F R IFO C O RBF (4)
ただし、 ぉょび ^は、 それぞれ同一でも異なっていてもよい 1価有機基 であり、 RAと RAFとが異なる場合の RAFは RAがフッ素化された 1価有機基で ある。 RBFは、 ペルフルォロ 1価飽和有機基である。 R1は水素原子または 1価 有機基である。 R1Fは、 R1が水素原子である場合にはフッ素原子、 R1が 1価 有機基である場合の R1と R1Fは、 それぞれ同一でも異なっていてもよい 1価有 機基であり、 R1と R1Fとが異なる場合の R1Fは、 R1がフッ素化された 1価有 機基である。
5. 化合物 (3) と化合物 (2) との液状混合物が、 下記化合物 (1) と該化合 物 (1) に対して過剰量の化合物 (2) を反応させて得た反応生成物である請求 項 4に記載の製造方法。
RACHR1OH (1)
ただし、 RAおよび R1は上記と同じ意味を示す。
6. 請求項 4または 5の製造方法で得た化合物 (4) において、 エステル結合の 分解反応を行うことを特徴とする下記化合物 (5) および Zまたは下記化合物 ( 2) の製造方法。
RAFCOR1F (5)
RBFCOF (2)
ただし、 RAFおよび R1Fは、 上記と同じ意味を示す。
7. エステル結合の分解反応を、 化合物 (3) と化合物 (2) との液状混合物の フッ素化反応により得た化合物 (4) と化合物 (2) との液状混合物において行 う請求項 6に記載の製造方法。
8. 化合物 (4) と化合物 (2) との液状混合物に、 化合物 (2) 以外に溶媒を 添加することなくエステル結合の分解反応を行う請求項 7に記載の製造方法。
9. 請求項 6〜 8のいずれかに記載の製造方法で得た化合物 (2) の一部または 全部、 または R1Fがフッ素原子である場合には化合物 (5) および/または化 合物 (2) の一部または全部を、 化合物 (1) と反応させる化合物 (2) として 用いる請求項 5に記載の製造方法。
10. RAFと RBFとが同一構造の基である請求項 4〜 9のいずれかに記載の製造方 法。
11.液相中でのフッ素化を、 液相中でフッ素と反応させることにより行う請求項 1〜 10のいずれかに記載め製造方法。
12.液相中でのフッ素化を、 化合物 (2) 以外の溶媒を存在させることなく行う 請求項 4〜11のいずれかに記載の製造方法。
PCT/JP2001/008433 2000-09-27 2001-09-27 Procede de production d'un compose ester fluore WO2002026688A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2001292268A AU2001292268A1 (en) 2000-09-27 2001-09-27 Process for producing fluorinated ester compound
EP01972529A EP1323703B1 (en) 2000-09-27 2001-09-27 Process for producing fluorinated ester compound
DE60130670T DE60130670T2 (de) 2000-09-27 2001-09-27 Verfahren zur herstellung einer fluorierten esterverbindung
JP2002531075A JP4934940B2 (ja) 2000-09-27 2001-09-27 含フッ素エステル化合物の製造方法
CA2423910A CA2423910C (en) 2000-09-27 2001-09-27 Method for producing a fluorinated ester compound
KR1020037004379A KR100768026B1 (ko) 2000-09-27 2001-09-27 불소함유 에스테르 화합물의 제조방법
US10/397,521 US7034179B2 (en) 2000-09-27 2003-03-27 Method for producing a fluorinated ester compound
HK03105731A HK1053459A1 (en) 2000-09-27 2003-08-11 Process for producing fluorinated ester compound
US11/105,518 US7161025B2 (en) 2000-09-27 2005-04-14 Method for producing a fluorinated ester compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-295141 2000-09-27
JP2000295141 2000-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/397,521 Continuation US7034179B2 (en) 2000-09-27 2003-03-27 Method for producing a fluorinated ester compound

Publications (1)

Publication Number Publication Date
WO2002026688A1 true WO2002026688A1 (fr) 2002-04-04

Family

ID=18777613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008433 WO2002026688A1 (fr) 2000-09-27 2001-09-27 Procede de production d'un compose ester fluore

Country Status (14)

Country Link
US (2) US7034179B2 (ja)
EP (1) EP1323703B1 (ja)
JP (1) JP4934940B2 (ja)
KR (1) KR100768026B1 (ja)
CN (1) CN1242979C (ja)
AT (1) ATE374173T1 (ja)
AU (1) AU2001292268A1 (ja)
CA (1) CA2423910C (ja)
DE (1) DE60130670T2 (ja)
ES (1) ES2294032T3 (ja)
HK (1) HK1053459A1 (ja)
RU (1) RU2268875C2 (ja)
WO (1) WO2002026688A1 (ja)
ZA (1) ZA200302352B (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586626B2 (en) 1999-03-23 2003-07-01 Asahi Glass Company, Limited Process for producing a fluorine-containing compound by liquid phase fluorination
US6747174B2 (en) 2000-07-28 2004-06-08 Asahi Glass Company, Limited Processes for the preparation of fluorinated acyl fluorides and fluorinated vinyl ethers
US6894187B2 (en) 2000-07-11 2005-05-17 Asahi Glass Company, Limited Method for producing a fluorine-containing compound
JPWO2004052832A1 (ja) * 2002-12-11 2006-04-13 旭硝子株式会社 フッ素化されたアダマンタン誘導体
US7071272B2 (en) 2000-06-02 2006-07-04 Asahi Glass Company, Limited Method for preparing unsaturated compound by pyrolysis reaction
JP2006348004A (ja) * 2005-06-20 2006-12-28 Fujifilm Holdings Corp 高選択的な1,2−ジクロリド化合物の製造方法
JP2011527308A (ja) * 2008-07-08 2011-10-27 ソルヴェイ・ソレクシス・エッセ・ピ・ア フルオロ界面活性剤の製造方法
JP2014502263A (ja) * 2010-11-22 2014-01-30 ソルヴェイ・スペシャルティ・ポリマーズ・イタリー・エッセ・ピ・ア パーフルオロ有機化合物の製造方法
WO2024111488A1 (ja) * 2022-11-21 2024-05-30 Agc株式会社 含フッ素エステル化合物の製造方法及び組成物

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1323704B1 (en) * 2000-09-27 2011-08-17 Asahi Glass Company Ltd. Process for producing fluorinated polyvalent carbonyl compound
KR100768026B1 (ko) 2000-09-27 2007-10-18 아사히 가라스 가부시키가이샤 불소함유 에스테르 화합물의 제조방법
WO2002055471A1 (fr) 2001-01-16 2002-07-18 Asahi Glass Company, Limited Procedes de production d'un ester fluore, de fluorure d'acyle fluore et d'ether vinylique fluore
TWI322709B (en) 2001-12-04 2010-04-01 Bp Chem Int Ltd Oxidation process in fluidised bed reactor
CN100338012C (zh) * 2005-11-07 2007-09-19 上海泰卓科技有限公司 一种含氟酰氟类化合物的处理方法
US8563115B2 (en) * 2008-08-12 2013-10-22 Xerox Corporation Protective coatings for solid inkjet applications
US8191992B2 (en) * 2008-12-15 2012-06-05 Xerox Corporation Protective coatings for solid inkjet applications
US20150261914A1 (en) * 2014-03-13 2015-09-17 Genestack Limited Apparatus and methods for analysing biochemical data
CN104876823A (zh) * 2015-05-05 2015-09-02 湖南晟通纳米新材料有限公司 可聚合全氟聚醚单体合成方法
US9459536B1 (en) * 2015-06-30 2016-10-04 Taiwan Semiconductor Manufacturing Company, Ltd. Negative tone developer composition for extreme ultraviolet lithography
CN105646177A (zh) * 2015-12-31 2016-06-08 天津市长芦化工新材料有限公司 一种制备全氟聚醚羧酸的方法
CN111116347A (zh) * 2019-12-30 2020-05-08 天津市长芦化工新材料有限公司 低hf含量的全氟聚醚羧酸及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025082A1 (en) * 1994-03-15 1995-09-21 Minnesota Mining And Manufacturing Company Process for converting perfluorinated esters to perfluorinated acyl fluorides and/or ketones
WO2000056694A1 (fr) * 1999-03-23 2000-09-28 Asahi Glass Company, Limited Procede de production d'un compose de fluor au moyen d'une fluoration en phase liquide

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900372A (en) * 1974-09-16 1975-08-19 Phillips Petroleum Co Recycle of acyl fluoride and electrochemical fluorination of esters
JPS5210221A (en) 1975-07-15 1977-01-26 Teijin Ltd Process for preparation of perfluoroalkylethers containing fluorosulfo nyl group
JPS57164991A (en) 1981-04-02 1982-10-09 Asahi Chem Ind Co Ltd Production of (omega-fluorosulfonyl)haloaliphatic carboxylic acid fluoride
US4526948A (en) 1983-12-27 1985-07-02 E. I. Du Pont De Nemours And Company Fluorinated vinyl ethers, copolymers thereof, and precursors thereto
US5093432A (en) 1988-09-28 1992-03-03 Exfluor Research Corporation Liquid phase fluorination
JP2701454B2 (ja) 1989-05-24 1998-01-21 旭硝子株式会社 新規含フッ素化合物,その製造方法及び用途
JP2000007593A (ja) 1998-06-24 2000-01-11 Asahi Glass Co Ltd ペルフルオロ(n−ペンタン)の製造方法
JP2001139509A (ja) * 1999-08-31 2001-05-22 Asahi Glass Co Ltd 熱分解反応による不飽和化合物の製造方法
JP4626118B2 (ja) * 1999-08-31 2011-02-02 旭硝子株式会社 vic−ジクロロ酸フルオリド化合物の製造方法
AU2398601A (en) * 1999-12-20 2001-07-03 Asahi Glass Company Limited Process for producing a fluoride compound
US6255536B1 (en) 1999-12-22 2001-07-03 Dyneon Llc Fluorine containing vinyl ethers
AU2001276705A1 (en) 2000-07-31 2002-02-13 Asahi Glass Company, Limited Process for the preparation of perfluoroacyl fluorides
AU2001282558A1 (en) 2000-08-30 2002-03-13 Asahi Glass Company, Limited Process for preparation of fluorinated ketones
KR100768026B1 (ko) 2000-09-27 2007-10-18 아사히 가라스 가부시키가이샤 불소함유 에스테르 화합물의 제조방법
AU2002218492A1 (en) 2000-11-28 2002-06-11 Asahi Glass Company, Limited Process for producing fluorosulfonyl fluoride compound
WO2002055471A1 (fr) 2001-01-16 2002-07-18 Asahi Glass Company, Limited Procedes de production d'un ester fluore, de fluorure d'acyle fluore et d'ether vinylique fluore

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025082A1 (en) * 1994-03-15 1995-09-21 Minnesota Mining And Manufacturing Company Process for converting perfluorinated esters to perfluorinated acyl fluorides and/or ketones
WO2000056694A1 (fr) * 1999-03-23 2000-09-28 Asahi Glass Company, Limited Procede de production d'un compose de fluor au moyen d'une fluoration en phase liquide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOICHI MURATA ET AL.: "The thermal decomposition of perfluoroesters", J. AM. CHEM. SOC., vol. 120, 1998, pages 7117 - 7118, XP002929013 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083705B2 (en) 1999-03-23 2006-08-01 Asahi Glass Company, Limited Process for producing a fluorine-containing compound by liquid phase fluorination
US6951957B2 (en) 1999-03-23 2005-10-04 Asahi Glass Company, Limited Process for producing a fluorine-containing compound by liquid phase fluorination
US6586626B2 (en) 1999-03-23 2003-07-01 Asahi Glass Company, Limited Process for producing a fluorine-containing compound by liquid phase fluorination
US7071272B2 (en) 2000-06-02 2006-07-04 Asahi Glass Company, Limited Method for preparing unsaturated compound by pyrolysis reaction
US6894187B2 (en) 2000-07-11 2005-05-17 Asahi Glass Company, Limited Method for producing a fluorine-containing compound
US6956138B2 (en) 2000-07-11 2005-10-18 Asahi Glass Company, Limited Method for producing a fluorine-containing compound
US6747174B2 (en) 2000-07-28 2004-06-08 Asahi Glass Company, Limited Processes for the preparation of fluorinated acyl fluorides and fluorinated vinyl ethers
US6919480B2 (en) 2000-07-28 2005-07-19 Asahi Glass Company, Limited Processes for the preparation of fluorinated acyl fluorides and fluorinated vinyl ethers
JPWO2004052832A1 (ja) * 2002-12-11 2006-04-13 旭硝子株式会社 フッ素化されたアダマンタン誘導体
JP4534765B2 (ja) * 2002-12-11 2010-09-01 旭硝子株式会社 フッ素化されたアダマンタン誘導体およびその製造方法
JP2006348004A (ja) * 2005-06-20 2006-12-28 Fujifilm Holdings Corp 高選択的な1,2−ジクロリド化合物の製造方法
JP2011527308A (ja) * 2008-07-08 2011-10-27 ソルヴェイ・ソレクシス・エッセ・ピ・ア フルオロ界面活性剤の製造方法
JP2014502263A (ja) * 2010-11-22 2014-01-30 ソルヴェイ・スペシャルティ・ポリマーズ・イタリー・エッセ・ピ・ア パーフルオロ有機化合物の製造方法
WO2024111488A1 (ja) * 2022-11-21 2024-05-30 Agc株式会社 含フッ素エステル化合物の製造方法及び組成物

Also Published As

Publication number Publication date
RU2268875C2 (ru) 2006-01-27
JPWO2002026688A1 (ja) 2004-02-05
DE60130670T2 (de) 2008-07-17
ES2294032T3 (es) 2008-04-01
EP1323703A1 (en) 2003-07-02
JP4934940B2 (ja) 2012-05-23
ATE374173T1 (de) 2007-10-15
KR100768026B1 (ko) 2007-10-18
CA2423910A1 (en) 2003-03-26
KR20030043973A (ko) 2003-06-02
ZA200302352B (en) 2004-03-26
US20030216595A1 (en) 2003-11-20
CN1466563A (zh) 2004-01-07
US7034179B2 (en) 2006-04-25
US7161025B2 (en) 2007-01-09
CN1242979C (zh) 2006-02-22
CA2423910C (en) 2010-07-27
EP1323703A4 (en) 2005-11-23
AU2001292268A1 (en) 2002-04-08
DE60130670D1 (de) 2007-11-08
HK1053459A1 (en) 2003-10-24
EP1323703B1 (en) 2007-09-26
US20050192456A1 (en) 2005-09-01

Similar Documents

Publication Publication Date Title
US7083705B2 (en) Process for producing a fluorine-containing compound by liquid phase fluorination
WO2002026688A1 (fr) Procede de production d&#39;un compose ester fluore
JP4934939B2 (ja) 含フッ素ケトンの製造方法
JP5076269B2 (ja) 含フッ素化合物の製造方法
JP4019940B2 (ja) 含フッ素スルホニルフルオリド化合物の製造方法
KR100758163B1 (ko) 불소 함유 아실플루오라이드의 제조방법 및 불소 함유비닐에테르의 제조방법
EP1602639A1 (en) Process for production of perfluorodiacyl fluorides
JPWO2002026689A1 (ja) 含フッ素多価カルボニル化合物の製造方法
WO2002026682A1 (fr) Processus de production d&#39;ethers vinyliques fluores
JPWO2002026679A1 (ja) フッ素化アルコールの製造方法
JPWO2002026687A1 (ja) ペルフルオロ化合物およびその誘導体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 018162967

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001972529

Country of ref document: EP

Ref document number: 2003/02352

Country of ref document: ZA

Ref document number: 200302352

Country of ref document: ZA

Ref document number: 1020037004379

Country of ref document: KR

Ref document number: 2423910

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10397521

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2003112231

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1020037004379

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001972529

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001972529

Country of ref document: EP