WO2002012687A1 - Filtre de céramique et procédé de fabrication - Google Patents

Filtre de céramique et procédé de fabrication Download PDF

Info

Publication number
WO2002012687A1
WO2002012687A1 PCT/JP2001/006362 JP0106362W WO0212687A1 WO 2002012687 A1 WO2002012687 A1 WO 2002012687A1 JP 0106362 W JP0106362 W JP 0106362W WO 0212687 A1 WO0212687 A1 WO 0212687A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
heat
filter
binder
resistant
Prior art date
Application number
PCT/JP2001/006362
Other languages
English (en)
French (fr)
Inventor
Naomi Noda
Kanji Yamada
Yoshiyuki Kasai
Original Assignee
Ngk Insulators,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators,Ltd. filed Critical Ngk Insulators,Ltd.
Priority to EP01950041A priority Critical patent/EP1308605B1/en
Priority to US10/089,795 priority patent/US6837911B2/en
Priority to AU2001271078A priority patent/AU2001271078A1/en
Priority to DE60128697T priority patent/DE60128697T2/de
Publication of WO2002012687A1 publication Critical patent/WO2002012687A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • B01J35/56
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/48Processes of making filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/05Methods of making filter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/10Residue burned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/30Exhaust treatment

Definitions

  • the present invention relates to a ceramic filter used for collecting particulates in exhaust gas discharged from a diesel engine and a method for producing the same.
  • Exhaust gas from diesel engines contains a large amount of particulates mainly composed of carbon. If these particulates are released into the atmosphere, they cause environmental pollution.Therefore, a particulate trap device including a filter to collect the particulates is installed in the exhaust system of the diesel engine, and the particulates in the exhaust gas are reduced. Techniques exist for removal prior to release to the atmosphere.
  • the filter is subjected to backwashing, combustion, etc., when particulates have accumulated to some extent or continuously using a filter. Regenerating fill function by removing particulates
  • the method of removing particulates by backwash has the problem that the entire system becomes complicated and large.
  • part of the particulates remains as ash after the regeneration of the filter, and is accumulated in the filter by repeated or long-term combustion regeneration.
  • the filter reacts with the filter constituent material at a high temperature during the use of the filter or at the high temperature during the combustion regeneration treatment, thereby causing the filter to melt at a temperature below the melting point of the filter constituent material.
  • P, S, Ca, Na, Zn, Cr, Fe, Ni, Cu, etc., derived from fuel, engine oil, piping parts, etc. are contained in the accumulated particulates.
  • compounds and / or composites containing these remain in the filter as ash even after particulate combustion, causing the above-mentioned erosion.
  • the film composed of an oxide-based ceramic material easily reacts with the ash, and the problem is serious.
  • Japanese Patent Application Laid-Open No. 10-33932 discloses a filter in which a ceramic particle layer is attached to the surface so as to be easily peeled off, and the ash ( Technology has been proposed to remove ash from the filter by removing the ceramic particles together with the pressure of the exhaust gas.
  • Japanese Patent Publication No. 6-5061338 discloses that a film is provided on the surface of the passage of the filter to prevent the substance to be filtered out from entering into the pores of the filter. Techniques for facilitating washing have been disclosed.
  • Japanese Patent Application Laid-Open No. 6-194848 discloses a method for producing an inorganic porous membrane in which a thin layer composed of inorganic fine particles is formed on a porous support. There is disclosed a technique for preventing the occurrence of pinholes and cracks by adjusting the maximum pore diameter and the thickness of a thin film.
  • Japanese Patent Publication No. 3-429336 discloses that vanadium oxide and a noble metal are dispersed and supported on a porous inorganic substrate supported on a refractory three-dimensional structure having a gas filling function.
  • the exhaust gas purifying catalyst that selectively reduces the particulate material quality of a diesel engine exhaust gas containing S_ ⁇ 2 is disclosed.
  • the ceramic particles are attached so as to be separated from the filter surface by a relatively weak force such as the pressure of exhaust gas, and ash is contained in the ceramic particles. Even if it does not adhere, it is peeled off by the exhaust gas flow Therefore, it is necessary to always supply ceramic particles. As a result, the ceramic particles accumulate very quickly in the filter, reducing the filtration area and increasing the pressure loss.Therefore, the ceramic particles must be removed frequently by backwashing and the like. The convenience in practical use will be significantly reduced, and a dog-based backwashing system / ceramic particle supply system will be required. No consideration has been given to the affinity between ceramic particles and ash.
  • Japanese Patent Application Publication No. 6-5061338 is based on the premise that a filter can be regenerated by backwashing the accumulated particulates.
  • the film formed at the point merely physically prevents the intrusion of particulates into the pores of the porous material constituting the film. Therefore, no consideration has been given to the problems caused by the accumulation of ash generated by the burning of particulates, and no consideration has been given to the affinity of the patikilet with the coating as well as the ash. .
  • the gas filter for ceramics described in Japanese Patent No. 29261887 also presupposes the removal of deposited particulates by backwashing operation, and the problem caused by the accumulation of ash generated by combustion of the deposited particulates.
  • this gas filter it is preferable to rub the filter layer material against the surface of the filter substrate and to form the filter layer so that a portion of the filter-substrate surface is exposed.
  • the level of the binder in the preparation of the porous thin film is disclosed to a certain level in the examples of the publication. Because exhaust gas applications are not assumed, no consideration is given to adjusting the adhesive strength of the thin layer to withstand exhaust heat and vibration, and in some cases, backwashing. Also, the problem of ash accumulation peculiar to diesel exhaust applications has not been considered, of course, and there is no disclosure of the affinity between ash and thin layers.
  • the exhaust gas purifying catalyst disclosed in Japanese Patent Publication No. 3-4 293 6 carries a catalytic substance for the purpose of burning and removing the particulates accumulated in the filter.
  • the substrate is suitably designed as a catalyst-carrying substrate, but no consideration is given to its affinity for the ash remaining after burning the paticle. ⁇
  • the present invention has been made in view of such a conventional situation, and an object of the present invention is to provide a ceramic filter that regenerates a filter function by burning and removing collected particulates.
  • An object of the present invention is to provide a filter that can easily suppress the erosion of the filter due to the ash remaining and accumulated after the particulate combustion without using a large-scale system or the like. Disclosure of the invention
  • a ceramic filter for collecting particulates in exhaust gas discharged from a diesel engine, which remains after burning the particulates collected by the filter.
  • a ceramic particle layer made of heat-resistant ceramic particles is coated on the surface of the filter so that a direct contact between the accumulated ash and the filter can be substantially avoided, and the BET specific surface area of the heat-resistant ceramic particles is 3
  • At least a heat-resistant ceramic particle having a BET specific surface area of 30 Om 2 Zg or less and a binder are provided on the surface of the filter material made of porous ceramic in a ratio satisfying the following formula.
  • FIG. 1 is a perspective view of a honeycomb small piece used in Examples. BEST MODE FOR CARRYING OUT THE INVENTION
  • a ceramic particle layer is provided on the surface of the filter, and the ash that remains and accumulates after burning the particulates collected in the filter by the ceramic particle layer.
  • the ash content and the heat-resistant ceramic particles be designed in such a manner that the affinity between the ash content and the heat-resistant ceramic particles is reduced. Therefore, in the present invention, the BET specific surface area of the heat-resistant ceramic particles constituting the ceramic particle layer is set to 300 m 2 Zg or less.
  • the heat-resistant ceramic particles are used. preferably the BET specific surface area is less 2 2 O m / g, and if included further 1 0 wt% or more, more preferably not more than 1 7 O m 2 / g. If the BET specific surface area of the heat-resistant ceramic particles is 10 Om 2 Zg or less, the affinity can be kept low irrespective of the ash composition.
  • the material is stable against prolonged exposure to exhaust heat. Specifically, heat-resistant ceramic particles are coated. It is preferable that the reduction rate of the BET specific surface area after heat treatment at 1000 ° C for 50 hours in the previous powder state is within 30%, and that it remains within 50% even after heat treatment at 1100 ° C for 50 hours.
  • the lower limit of the BET specific surface area of the heat-resistant ceramic particles is preferably 2 m 2 Zg or more. If the BET specific surface area is less than 2 m 2 Zg, the affinity with the filter body is poor, and the ceramic particle layer may peel off under the flow of exhaust gas. If the BET specific surface area is 5 m 2 Zg or more, it can withstand vibration and backwashing, which is more preferable.
  • the ceramic particle layer in the present invention uses the heat-resistant ceramic particles having low affinity for ash, the ash attached to the ceramic particle layer can be relatively easily separated from the particle layer. Unlike the prior art described in Japanese Patent Application Laid-Open No. 10-33923, it is not necessary to peel off the ash together with the ceramic particles from one surface of the filter in order to remove the ash.
  • the ceramic particles are rather firmly attached to the filter surface. By minimizing the separation of ceramic particles, the interval of accumulated ash removal can be made very long, which enhances practical convenience.
  • the technique described in Japanese Patent Application Laid-Open No. 10-33923 is weak so that the ceramic particle layer is easily peeled off from one surface of the filter, whereas the ceramic particle layer is filled in the present invention. It is firmly attached to the surface in the evening to minimize the exfoliation of heat-resistant ceramic particles from the filter surface.
  • a slurry containing at least a heat-resistant ceramic particle with a BET specific surface area of 300 m 2 Zg or less and a binder in a ratio satisfying the following formula is used for coating the ceramic particle layer on the surface of the filler material. I do.
  • the “binder solid content (calculated as oxide)” refers to the weight of the solid material in a normal oxide state remaining after the binder is heat-treated (dried and / or fired) in an air atmosphere.
  • alumina sol as a binder
  • silica sol is produced through the same heat treatment process It refers to the weight of the S i 0 2.
  • the average particle size of the heat-resistant ceramic particles is 2 from the viewpoint that it is difficult to peel off from the main body of the filler under actual use that is exposed to the exhaust gas flow for a long time.
  • the thickness is preferably 0 m or less, and more preferably 10 m or less, because an adhesion strength that can withstand backwashing can be obtained.
  • the average particle diameter of the heat-resistant ceramic particles is preferably 2 m or more.
  • the heat-resistant ceramic particles are preferably made of a material having a melting point higher than that of the filter material.
  • a material having a melting point higher than that of the filter material As an absolute value, considering the temperature to which the film can be exposed at the time of regeneration by burning and removing the deposited paticle, it has heat resistance of 100 ° C or more, and furthermore, 120 ° C or more. Is preferred.
  • Specific examples of the material include alumina, silica, zirconia, titania, and magnesia, and composite oxides thereof represented by spinel dimethyl light.
  • the Si content of the heat-resistant ceramic particles is preferably 10% by weight or less in terms of oxide calculation, and the heat-resistant ceramic substantially containing no Si is preferable.
  • Particles are more preferred. Accordingly, among the above specific examples, aluminum, zirconia, titania, magnesia, and their composite oxides are preferably used. Alumina and zirconia are particularly preferred because of their low affinity, and among aluminas, a-alumina is preferred because it has the lowest affinity. When Si is contained, high-silica zeolite, cristobalite, etc., which are crystallographically stable, are preferred.
  • the alkali metal content of the heat-resistant ceramic particles is preferably 1% by weight or less, more preferably 0.5% by weight or less, as calculated on an oxide basis.
  • the alkali metal content of the binder used in the coating slurry is 5% by weight or less, more preferably 2% by weight or less, based on the solid content of the binder calculated by oxide.
  • the heat-resistant ceramic particles may be used in combination of two or more kinds.
  • the shape of the filter is divided by thin partition walls from the viewpoint of strength, durability, heat resistance, etc.
  • DPF mono-particulate filter
  • the ceramic particle layer may be coated on both the cells opened on the inflow side and the cells opened on the discharge side.
  • coating only on the former is also preferable from the viewpoint of minimizing pressure loss rise due to coating.
  • the object of the present invention is achieved if the surface of the fill is substantially covered with the ceramic particle layer, but the thickness is usually 2 at the thinnest part in the center of the cell wall. It is preferably in the range of 100 to 100, and more preferably in the range of 5 to 50 ⁇ m. If the thickness of the ceramic particle layer is less than 2 m, the effect of suppressing direct contact between the ash and the filter is not sufficient, and if it exceeds 100 m, the pressure loss increases more than the allowable range, which is not preferable. .
  • the thickness of the partition partitioning the cell is preferably 50 to 500 m.
  • the thickness of the partition wall is less than 50, it is weak against erosion in terms of both strength and heat capacity. On the other hand, if it exceeds 500 ⁇ m, the pressure loss increases significantly, which is not preferable.
  • the amount of the heat-resistant ceramic particles constituting the ceramic particle layer is preferably 5 to 250 gZe e (per honeycomb volume), and more preferably 10 to 150 gZcc. If the amount of the heat-resistant ceramic particles is less than 5 g Zcc, the surface of the filter cannot be sufficiently covered, and if the amount exceeds 250 g Zcc, the cells may be clogged. However, the pressure loss increases beyond the allowable range, which is not preferable.
  • the ceramic particle layer is coated only on the former of the cells opened on the inflow side and the cells opened on the discharge side.
  • the appropriate loading range is 1/2 of the above.
  • the cell density of the honeycomb is preferably 500 cells / square inch (78 cells / cm 2 ) or less.
  • the value be 50 cells Z square inch (7.8 cells / cm 2 ) or more.
  • the filler of the present invention is mounted on the exhaust system of a diesel engine, it is preferable that the filler has high thermal shock resistance. Specifically, it is preferred filter material alone coefficient of thermal expansion is less than 2 X 1 0 _ 6 / ° C is preferable, 5 X 1 0 _ 6 / ° C or less after co one coating.
  • the effect of the present invention is exerted on various filter materials such as cordierite, silicon carbide, zirconyl phosphate, alumina, mullite, and spinel, and the material is not limited, but is particularly effective for cordierite having a relatively low melting point. It is a target.
  • An object of the present invention is to suppress the reaction of ash with a filter material at a high temperature and the erosion of the filter due to solid solution, and the risk of exposure to the high temperature is reduced even during use of the filter. It is also present during combustion removal, but is effective for heater and Z or catalytic combustion systems, including the latter mode where higher temperatures are assumed.
  • the catalyst component may be placed on the upstream side of the filter as a separate entity in some cases, but there are many cases where it is placed on the material of the filter.
  • the heat-resistant ceramic particles and the catalyst component may be mixed and coated on a filter material, or may be coated in layers.
  • a filter material or may be coated in layers.
  • the filler material with heat-resistant ceramic particles
  • a catalyst component thereon.
  • the catalyst metal may be used as it is, but for the purpose of high dispersion, it is usually supported on a heat-resistant inorganic oxide having a high specific surface area.
  • the filler according to the present invention is characterized in that at least the heat-resistant ceramic particles having a BET specific surface area of 30 Om 2 Zg or less and a binder are placed on the surface of a filler material made of porous ceramics. It can be manufactured by coating a ceramic particle layer using a slurry containing a ratio satisfying the formula. Binder solid content (oxide calculation) / ⁇ heat-resistant ceramic particle weight + binder-solid content (oxide calculation) ⁇ ⁇ 0.02 In the production method, the filler material, heat-resistant ceramic particles, binder, slurry, Suitable requirements for the ceramic particle layer and the like are as described above.
  • the heat treatment temperature after coating the slurry is preferably at least 200 ° C.
  • NGK cordierite DPF (Checkerboard thickness: 17 mi 1 (430 a), with cells sealed in a checkered pattern so that the inlet and outlet end faces of the 82 cam structure are alternated. Cell density: 100 cells / square inch (15.5 cells / cm 2 )). Honeycomb pieces 1 as shown in FIG.
  • alumina sol was added so that the A 1 2 ⁇ 3 minutes total 1 0 wt% or 1 wt% derived from the sol, to which water suitable Yichun addition A slurry for ceramic particle coating was obtained.
  • Each slurry obtained was coated onto the above-mentioned honeycomb pieces 1 (4 pieces of each slurry), and then baked at 600 ° C. for 1 hour. , "Coat honeycomb small pieces.”
  • the loading amount of the ceramic particle layer was controlled by the number of slurry-concentration posh coats and the like so that the thickness of the ceramic particle layer was 40 or 5 m on average at the center of the cell wall.
  • Ca which is one of the main components of the ash deposited in the DPF and is generally known to easily dissolve in the ceramic material, is simulated as deposited on the DPF.
  • a commercially available reagent, Ca ⁇ powder was uniformly deposited on the upper surface (test surface) 3 of the comparative honeycomb small piece to obtain a test piece. Deposit amount, 0. 0 3 g Z cm 2 (0 across the test surface. 1 8 g Z cm 2) and the.
  • Each specimen was aged for 1 hour in an electric furnace.
  • the aging temperature was set to four levels of 110 ° C., 1200 ° C., 130 ° C., and 140 ° C., and one test piece was used for each level.
  • the erosion level of the test piece was determined from the appearance. The judgment was ⁇ A '' if no reaction was observed between the coated honeycomb particles or the honeycomb particles for comparison and the deposited Ca 0 powder, and ⁇ A '' if some reaction was observed but was slight. "B”, "C” indicates that a reaction was observed and a small hole was generated on the test surface, and "D” indicates that a reaction was observed and the test surface was missing erosion. Table 1 shows the judgment results.
  • Example 1 In Example 1 and Comparative Example 1, after aging at 110 ° C., the test surface of each test piece was blown off with 2 kgfcm 2 air, and the weight before and after the test surface was measured. From the weight loss obtained from the measurement results and the appearance of the test piece, the state of peeling of the ceramic particle layer was estimated. The results are shown in Table 2.
  • the ash remaining and accumulated after burning and removing the patitilate for the regeneration of the filter does not cause significant erosion of the filter caused by the reaction with the filter constituent material. It can be easily controlled without using a system.

Description

明 細 書 セラミック製フィルター及びその製造方法 技術分野
本発明は、 ディーゼル機関から排出される排ガス中のパティキュレ一トを捕集 するために使用されるセラミック製フィルターとその製造方法に関する。 背景技術
ディーゼル機関の排ガス中には、 カーボンを主成分とする微粒子 (パティキュ レート) が多量に含まれている。 このパティキュレートが大気中に放出されると 環境汚染を引き起こすため、 ディーゼル機関の排気系にパティキュレートを捕集 するためのフィル夕一を含むパティキュレートトラップ装置を配し、 排ガス中の パティキュレートを大気に放出する以前に除去する技術が存在する。
このパティキユレ一トトラップ装置は、 その使用に伴って、 捕集されたパティ キユレ一トが次第にフィルタ一内に堆積して行くので、 同装置の実用に際しては 、 フィルター内のパティキユレ一ト堆積量が増加して排気抵抗が増大することに よる機関性能の低下を防ぐ目的で、 パティキュレートがある程度堆積した時点で 、 或いはフィルターを使用しながら連続的に、 フィルターに逆洗、 燃焼等の処理 を施してパティキュレ一トを除去することにより、 フィル夕一機能を再生させる しかしながら、 逆洗にてパティキュレートを除去する手法には、 システム全体 が複雑かつ大型になるという問題点がある。 一方、 燃焼にてパティキュレートを 除去する手法にも、 パティキュレートの一部がフィルタ一の燃焼再生後に灰分と して残留し、 幾度に及ぶ或いは長期にわたる燃焼再生処理によってフィルター内 に蓄積され、 その後の使用時或いは燃焼再生処理時の高温下でフィルター構成材 料と反応することにより、 フィルター構成材料の融点未満の温度にて、 フィル夕 一を溶損に至らしめるという問題点があった。 具体的には、 堆積パティキュレート中には燃料、 エンジンオイル、 配管部品等 に由来する P、 S、 C a、 N a、 Z n、 C r、 F e、 N i、 C u等が含まれ、 こ れらを含む化合物及び/又は複合物が、 パティキュレート燃焼後もフィルター内 に灰分として残留し、 上記の如き溶損を引き起こすことが問題となっていた。 特 に、 酸化物系セラミックス材料で構成されているフィル夕一は、 前記灰分と反応 し易く、 問題が深刻である。
このような状況に鑑み、 例えば特開平 1 0— 3 3 9 2 3号公報には、 フィルタ —表面にセラミック粒子層を容易に剥離するように付着させておき、 セラミック 粒子層に付着した灰分 (アッシュ) を、 排ガスの圧力等により、 セラミック粒子 ごとフィルタ一から引き剥がして除去する技術が提案されている。
また、 特表平 6— 5 0 6 1 3 8号公報には、 フィルターの通路表面に皮膜を設 けることにより、 濾し取る物質のフィルタ一孔内への侵入を抑止し、 フィル夕一 の逆洗を容易にする技術が開示されている。
更に、 特許第 2 9 2 6 1 8 7号公報には、 フィル夕一基体の少なくとも濾過側 表面にフィルタ一層を固着したセラミックス用ガスフィルタ一において、 フィル タ一基体とフィルタ一層の気孔径を調整することにより、 フィルタ一層の固着強 度を向上させたものが開示されている。
更にまた、 特開平 6— 1 9 8 1 4 8号公報には、 多孔質支持体に無機質微粒子 から成る薄層を形成した無機多孔質膜の製造方法において、 多孔質支持体の平均 細孔径ゃ最大気孔径、 薄膜の膜厚を調整することにより、 ピンホールやクラック の発生を防止する技術が開示されている。
また、 特公平 3— 4 2 9 3 6号公報には、 ガスフィル夕一機能を有する耐火性 3次元構造体上に担持された多孔性無機質基盤上に、 バナジゥム酸化物と貴金属 を分散担持させた、 S〇2を含有するディーゼルエンジン排ガス中の微粒子状物 質を選択的に低減する排ガス浄化用触媒が開示されている。
しかしながら、 特開平 1 0— 3 3 9 2 3号公報記載の技術は、 セラミック粒子 が排気ガスの圧力等の比較的弱い力によってフィルタ表面から剥がれるように付 着されており、 セラミック粒子に灰分が付着していなくても排ガス流で剥がれて しまうので、 セラミック粒子を常に供給し続ける必要がある。 その結果、 フィル ター内に非常に早くセラミック粒子が溜まって、 濾過面積が減少するとともに圧 力損失が上昇してしまうため、 逆洗するなどして頻繁にセラミック粒子を除去し なければならず、 実使用上の利便性が著しく低下する上、 犬がかりな逆洗システ ムゃセラミック粒子供給システムが必須となる。 また、 セラミック粒子と灰分と の親和性については、 何ら検討がなされていない。
また、 特表平 6— 5 0 6 1 3 8号公報に開示された技術は、 堆積したパティキ ュレートを逆洗することによってフィルターの再生を図ることが前提となってお り、 フィル夕一通路に形成された皮膜は、 単にフィル夕一を構成する多孔質材料 の孔内へのパティキュレートの侵入を物理的に回避しているのみである。 したが つて、 パティキュレートの燃焼により生ずる灰分の蓄積による問題点については 何ら検討されておらず、 また、 灰分は勿論のこと、 パティキユレ一トと皮膜との 親和性についても、 何ら検討されていない。
同様に特許第 2 9 2 6 1 8 7号公報記載のセラミックス用ガスフィルタ一も、 逆洗操作による堆積パティキュレートの除去を前提としており、 堆積パティキュ レートの燃焼により生ずる灰分の蓄積による問題点については何ら検討されてい ない。 例えば、 このガスフィル夕一においては、 フィルタ一層材をフィル夕一基 体の表面に擦り込み、 フィルタ一基体表面の一部が露出する程度の厚さとなるよ うにフィルタ一層を形成することが好ましいとされているが、 そのようなフィル 夕一層では、 蓄積物とフィル夕一基材との直接接触を防止することができないの で、 堆積パティキユレ一卜を燃焼することによって再生を図るフィルタ一として は不適切である。
また、 特開平 6— 1 9 8 1 4 8号公報に開示された技術については、 同公報の 実施例中に、 多孔質薄膜の調製の際のバインダー量が一水準開示されているが、 ディーゼル排気用途を前提としていないため、 排熱と振動、 場合によっては逆洗 に耐え得るように薄層の付着強度を調整することは考慮されていない。 また、 デ イーゼル排気用途特有の灰分蓄積による問題点についても、 当然検討されておら ず、 したがって灰分と薄層との親和性についても、 何ら開示されていない。 特公平 3— 4 2 9 3 6号公報に開示された排ガス浄化用触媒は、 フィルター内 に蓄積したパティキユレ一トを燃焼除去する目的で触媒物質を担持したものであ るため、 その多孔性無機質基盤は触媒担持基材として好適に設計されているが、 パティキユレ一ト燃焼後に残留する灰分との親和性については何ら考慮されてい ない。 . ·
本発明は、 このような従来の事情に鑑みてなされたものであり、 その目的とす るところは、 捕集されたパティキュレートを燃焼除去することによってフィルタ —機能を再生するセラミック製フィル夕一であって、 パティキュレート燃焼後に 残存し蓄積する灰分によるフィルタ一の溶損を、 大掛かりなシステム等を使用す ることなく、 容易に抑制できるものを提供することにある。 発明の開示
本発明によれば、 ディ一ゼル機関から排出される排ガス中のパティキュレート を捕集するためのセラミック製フィル夕一であって、 当該フィルターに捕集され たパティキュレートを燃焼させた後に残存し蓄積する灰分と前記フィルターとの 直接接触を実質的に回避できるように、 前記フィルターの表面に耐熱性セラミツ ク粒子からなるセラミック粒子層がコーテイングされ、 前記耐熱性セラミック粒 子の B E T比表面積が 3 0 0 m2/ g以下であることを特徴とするセラミック製 フィル夕一、 が提供される。
また、 本発明によれば、 多孔質のセラミックスからなるフィルター材の表面に 、 少なくとも B E T比表面積が 3 0 O m2Z g以下の耐熱性セラミック粒子とバ インダ一とを下式を満たす割合で含むスラリーを使用して、 セラミック粒子層を コ一ティングすることを特徴とするセラミック製フィル夕一の製造方法、 が提供 される。
バインダー固形分量 (酸化物計算) / {耐熱性セラミック粒子重量 +バインダ一 固形分量 (酸化物計算) } ≥0 . 0 2 図面の簡単な説明 図 1は、 実施例において使用したハニカム小片の斜視図である。 発明を実施するための最良の形態
本発明のセラミック製フィル夕一においては、 フィルターの表面にセラミック 粒子層を設け、 当該セラミック粒子層によって、 フィル夕一に捕集されたパティ キユレ一卜を燃焼させた後に残存し蓄積する灰分とフィル夕一との直接接触を実 質的に回避することにより、 高温での灰分とフィルタ一材との反応及び Z又は固 溶に起因するフィル夕一の溶損を抑制する。
灰分は、 セラミック粒子層の表面に付着しても、 同粒子層の介在故に、 直接フ ィルター表面に付着した楊合程の圧力損失増大には到らずそのまま付着させてお くことも可能であるが、 より灰分とフィルターとを接触しにくくし安全率を高め る、 必要に応じて灰分をフィル夕一外へ除去できるようにする、 圧力損失増大を 極力抑える等の目的で、 セラミック粒子層から剥がれ易くなるように、 灰分と耐 熱性セラミック粒子との親和性が低くなる方向に設計することが好ましい。 そこで、 本発明では、 セラミック粒子層を構成する耐熱性セラミック粒子の B E T比表面積を 3 0 0 m2Z g以下とした。 このような耐熱性セラミック粒子を 用いてセラミック粒子層を構成することにより、 灰分に対する耐熱性セラミック 粒子の親和性が低く抑えられて、 強い付着力を持つ灰分でも逆洗等により比較的 容易にセラミック $立子表面から除去することが可能となる。
なお、 一般にセラミック材料と固溶しやすいと言われるアルカリ金属及び Z又 はアル力リ土類金属が、 灰分中に酸化物計算で合計で 5重量%以上含まれる場合 には、 耐熱性セラミック粒子の B E T比表面積が 2 2 O m / g以下であること が好ましく、 更に 1 0重量%以上含まれる場合には、 1 7 O m2/g以下である ことがより好ましい。 また、 耐熱性セラミック粒子の B E T比表面積が 1 0 O m 2Z g以下であれば、 特に灰分の組成に依らず、 親和性を低く抑えることができ る。
更に、 ディーゼル機関排ガス処理用途の場合には、 長時間の排熱被曝に対して 安定であることが好ましく、 具体的には、 耐熱性セラミック粒子をコ一ティング 前の粉末状態で 1000°Cにて 50時間熱処理した後の BET比表面積の減少率 が 30%以内、 1100°Cにて 50時間熱処理した後でも 50%以内に留まるこ とが好ましい。
他方、 耐熱性セラミック粒子の BET比表面積の下限については、 2m2Zg 以上であることが好ましい。 BET比表面積が 2m2Zg未満では、 フィルター 本体との馴染みが悪く、 排ガス流下でセラミック粒子層が剥離する恐れがある。 BET比表面積が 5m2Zg以上であれば、 振動や逆洗にも耐えられ、 より好ま しい。
前述のとおり、 本発明におけるセラミック粒子層は、 灰分との親和性が低い耐 熱性セラミック粒子を用いているので、 セラミック粒子層に付着した灰分を当該 粒子層から比較的容易に剥離させることができ、 特開平 10— 33923号公報 記載の従来技術のように、 灰分除去ために、 灰分をセラミック粒子ごとフィルタ 一表面から引き剥がす必要はない。
また、 当該従来技術のように、 灰分をセラミック粒子ごと引き剥がすことを目 論むと無駄に蓄積物が増えるので、 セラミック粒子はむしろ強固にフィルター表 面に付着させておくことが好ましい。 セラミック粒子の剥離を最小限に抑えるこ とにより、 蓄積灰分除去のインターバルを非常に長くすることができ、 実使用上 の利便性が高まる。
そこで、 前記特開平 10— 33923号公報記載の技術が、 セラミック粒子層 をフィルタ一表面から容易に剥離するように弱く.付着させているのに対し、 本発 明においては、 セラミック粒子層をフィル夕一表面に強固に付着させ、 耐熱性セ ラミック粒子のフィルター表面からの剥離を極力抑えるようにしている。 具体的 には、 フィル夕一材の表面へのセラミック粒子層のコ一ティングに、 少なくとも BET比表面積が 300m2Zg以下の耐熱性セラミック粒子とバインダーとを 下式を満たす割合で含むスラリーを使用する。 バインダー固形分量 (酸化物計算) / {耐熱性セラミック粒子重量 +パインダ一 固形分量 (酸化物計算) } ≥0. 02 ここで、 「バインダー固形分量 (酸化物計算) 」 とは、 バインダーを大気雰囲 気で熱処理 (乾燥及び/又は焼成) した後に残留する、 通常酸化物状態の固形物 の重量を指す。 例えば、 バインダーとしてアルミナゾルを使用する場合には、 ァ ルミナゾルが熱処理工程を経て生成する A 1 203の重量を意味し、 シリカゾルを 使用する場合には、 シリカゾルが同様に熱処理工程を経て生成する S i 02の重 量を意味する。
セラミック粒子層のコ一ティングに、 少なくとも耐熱性セラミック粒子とバイ ンダ一とを上記の式を満たす割合で含むコーティング用スラリーを用いると、 長 時間、 排ガス流に曝される実使用下で、 耐熱性セラミック粒子の剥離を抑えるの に必要な付着強度が得られる。 更に、 セラミック粒子層のコーティングに、 少な くとも B E T比表面積が 3 0 O m2/ g以下の耐熱性セラミック粒子とバインダ —とを下式を満たす割合で含むコーティング用スラリーを使用すると、 セラミツ ク粒子層のフィルター本体に対する付着強度がより向上し、 機関の振動や灰分の 逆洗にも耐えるようになり好ましい。 バインダー固形分量 (酸化物計算) / {耐熱性セラミック粒子重量 +バインダー 固形分量 (酸化物計算) } ≥ 0 . 0 5 ただし、 耐熱性セラミック粒子とバインダー固形分量 (酸化物計算) との合計 量に対するバインダー固形分量 (酸化物計算) が 2 5重量%を超えると、 セラミ ック粒子層自体が過剰に緻密化し、 著しく圧力損失が増加するため、 この点を考 慮すると、 セラミック粒子層のコ一ティングに、 少なくとも B E T比表面積が 3 0 0 m2Z g以下の耐熱性セラミック粒子とバインダーとを下式を満たす割合で 含むコーティング用スラリーを使用することが、 より一層好ましい。 なお、 実際 のスラリー調製にあたっては、 コート性等の都合により、 耐熱性セラミック粒子 、 バインダーの他、 必要に応じて、 酸、 水分等を添加してもよい。
0 . 2 5≥バインダー固形分量 (酸化物計算) / {耐熱性セラミック粒子重量 + バインダー固形分量 (酸化物計算) } ≥0 . 0 5 耐熱性セラミック粒子の平均粒子径は、 長時間、 排ガス流に曝される実使用下 でフィル夕一本体から剥がれ難くするという観点から、 2 0 m以下とすること が好ましく、 更に 1 0 m以下とすると、 逆洗にも耐える付着強度が得られてよ り好ましい。 逆に、 灰分との親和性低減の観点からは、 耐熱性セラミック粒子の 平均粒子径が 2 m以上であることが好ましい。
フィルタ一の耐熱性を向上させるため、 耐熱性セラミック粒子は、 フィルター 材以上の融点を有する材料からなることが好ましい。 絶対値としては、 フィル夕 一が堆積パティキユレ一トの燃焼除去による再生時に曝され得る温度を考慮し、 1 0 0 0 °C以上、 更には 1 2 0 0 °C以上での耐熱性を有することが好ましい。 材 料の具体例としては、 アルミナ、 シリカ、 ジルコニァ、 チタニア、 マグネシアの 他、 スピネルゃムライ卜に代表されるそれらの複合酸化物などが挙げられる。 また、 灰分に対して親和性を低くするため、 耐熱性セラミック粒子の S i含有 量は酸化物計算で 1 0重量%以下であることが好ましく、 実質的に S iを含まな い耐熱性セラミック粒子が更に好ましい。 したがって、 上記具体例の中でも、 ァ ルミナ、 ジルコニァ、 チタニア、 マグネシア、 それらの複合酸化物などが、 好適 に用いられる。 アルミナ、 ジルコニァは特に親和性が低くて好ましく、 更にアル ミナの中では、 a-アルミナが最も親和性が低く好ましい。 S iを含有する場合 には、 結晶構造的に安定な、 高シリカゼォライトやクリストバライト等が好適で ある。
更にまた、 灰分との親和性を低減するため、 耐熱性セラミック粒子のアルカリ 金属含有量は、 酸化物計算で 1重量%以下、 更には、 0 . 5重量%以下であるこ とが好ましい。 同様に、 コーティング用のスラリーに使用されるパインダ一のァ ルカリ金属含有量は、 バインダーの酸化物計算による固形分量に対して、 酸化物 計算で 5重量%以下、 更には、 2重量%以下であることが好ましい。 なお、 耐熱 性セラミック粒子は、 2種以上のものを適宜に組み合わせて用いてもよい。 フィルターの形態は、 強度、 耐久性、 耐熱性等の観点から、 薄い隔壁で仕切ら れた多数の貫通孔 (セル) で構成される Λ二カム構造を有し、 その流入側端面と 排出側端面とで互い違いになるように、 市松模様状にセルを目封じしたものが、 ディ一ゼルパティキュレートフィルター (D P F) として最も好適に用いられる が、 本発明はフォームやファイバー形態のものにも好適に応用できる。
前記のような市松模様状にセルを目封じしたハニカム構造のフィルターの場合 、 流入側に開口したセルと排出側に開口したセルの両方にセラミック粒子層がコ —ティングされていても構わないが、 灰分は前者に蓄積されるため、 前者のみに コ一ティングすることも、 コ一ティングによる圧力損失上昇を最小限に抑える観 点からは好ましいことである。
セラミック粒子層のコーティングについては、 実質的にフィル夕一表面がセラ ミック粒子層で覆われていれば本発明の目的を果たすが、 その厚さは、 セル壁中 央の通常最も薄い所で 2〜 1 0 0 の範囲であることが好ましく、 5〜5 0 ^ mの範囲であると更に好ましい。 セラミック粒子層の厚さが 2 m未満では、 灰 分とフィルターとの直接接触を抑止する効果が十分ではなく、 また、 l O O m を超えると、 圧力損失が許容範囲以上に増大して好ましくない。
セルを仕切っている隔壁の厚さは、 5 0〜5 0 0 mであることが好ましい。 隔壁の厚さが 5 0 未満では、 強度の点からも、 熱容量の点からも、 溶損に対 して弱い。 一方、 5 0 0 ^ mを超えると、 圧力損失が著しく増大して好ましくな い。
セラミック粒子層を構成する耐熱性セラミック粒子の担持量は、 5〜2 5 0 g Z e e (ハニカム体積当たり) であることが好ましく、 1 0〜1 5 0 g Z c cで あると更に好ましい。 耐熱性セラミック粒子の担持量が 5 g Z c c未満では、 フ ィル夕一表面を十分に被覆することができず、 逆に、 2 5 0 g Z c cを超えると 、 セルが目詰まりする可能性が大きくなるとともに、 圧力損失が許容範囲以上に 増大して好ましくない。
なお、 フィル夕一の形態が市松模様状にセルを目封じしたハニカム構造である 場合において、 流入側に開口したセルと排出側に開口したセルの内、 前者のみに セラミック粒子層をコ一ティングするときには、 適切なる担持量の範囲は、 各々 前述の 1 / 2となる。
適切な量の耐熱性セラミック粒子を均質にコ一ティングするためには、 ハニカ ムのセル密度は、 5 0 0セル/平方インチ (7 8セル/ c m2) 以下であること が好ましい。 一方、 フィル夕一効率の観点からは、 5 0セル Z平方インチ (7 . 8セル/ c m2) 以上であることが好ましい。
本発明のフィル夕一は、 ディーゼル機関の排気系に装着されることから、 耐熱 衝撃性が高いことが好ましい。 具体的には、 フィルター材単独では熱膨張係数が 2 X 1 0 _6/°C以下であることが好ましく、 コ一ティング後にも 5 X 1 0 _6/°C 以下であることが好ましい。
本発明の効果は、 コージエライト、 炭化珪素、 リン酸ジルコニル、 アルミナ、 ムライト、 スピネル等各種フィルター材に対して発現され、 その材質を制限され ないが、 中でも融点が比較的低いコージエライトに対し、 特に効果的である。 本発明は、 高温での灰分とフィルター材との反応及び 又は固溶に起因するフ ィルターの溶損を抑制することを目的としており、 該高温被曝のリスクはフィル ターの使用中にもパティキュレート燃焼除去時にも存在するが、 より高い温度が 想定される後者のモードを含む、 ヒータ一及び Z又は触媒燃焼方式のシステムに 対して効果的である。 中でも、 パティキユレ一トがある程度堆積した時点でヒー ター加熱等により一時に燃焼させる機能を有するシステムに対して一層効果的で ある。 フィル夕一に捕集され堆積したパティキュレートを燃焼せず逆洗方式で除 去するシステムの場合には、 灰分が堆積し難く、 燃焼熱も発生しないため、 効果 はあまり顕著ではない。 ただし、 ヒーター及び/又は触媒燃焼方式の場合にも、 パティキユレ一トの燃焼後に残留し蓄積した灰分については、 逆洗除去すること も好ましい使用形態のひとつである。
システムが、 触媒燃焼方式の場合、 触媒成分は、 別個体としてフィル夕一の上 流側に IS置されるケースもあるが、 フィル夕一材上に配置されるケ一スも多くあ る。
後者の場合には、 耐熱性セラミック粒子と触媒成分を混合してフィルター材に コ一ティングしてもよく、 互いに層状に重ねてコーティングしてもよい。 例えば 、 フィル夕一材に先ず耐熱性セラミック粒子をコーティングし、 その上に触媒成 分を重ねてコーティングすることも、 好ましい実施態様のひとつである。 触媒成 分は、 触媒金属をそのまま用いてもよいが、 高分散化の目的にて、 通常は、 高比 表面積の耐熱性無機酸化物に担持して用いられる。
前述のとおり、 本発明のフィル夕一は、 多孔質のセラミックスからなるフィル 夕ー材の表面に、 少なくとも B E T比表面積が 3 0 O m2Z g以下の耐熱性セラ ミック粒子とバインダーとを下式を満たす割合で含むスラリ一を使用して、 セラ ミック粒子層をコーティングすることにより製造することができる。 バインダー固形分量 (酸化物計算) / {耐熱性セラミック粒子重量 +バインダ一 固形分量 (酸化物計算) } ≥ 0 . 0 2 当該製造方法において、 フィル夕一材、 耐熱性セラミック粒子、 バインダー、 スラリー、 セラミック粒子層等の好適な要件は前述のとおりである。 また、 スラ リ—をコーティングした後の熱処理温度は、 十分な耐熱性セラミック粒子の付着 強度を得るため、 2 0 0 °C以上とすることが好ましい。 ただし、 7 0 0 °Cを超え ると、 熱的負荷が大きくなるため、 それ以下とすることが好ましい。 以下、 本発明を実施例に基づいて更に詳細に説明するが、 本発明はこれらの実 施例に限定されるものではない。
(実施例 1〜8、 比較例 1及び 2 )
八二カム構造の流入側端面と排出側端面とで互い違いになるように、 市松模様 状にセルを目封じした日本ガイシ製コージエライト D P F (隔壁厚さ: 1 7 m i 1 ( 4 3 0 a ) , セル密度: 1 0 0セル/平方インチ(1 5 . 5セル/ c m2) ) の両端を除く部分から図 1に示すようなハニカム小片 1を切り出した。
表 1に示すような各種セラミック粒子に、 アルミナゾルを当該ゾルに由来する A 1 23分が全体の 1 0重量%又は 1重量%となるように添加し、 これに水を適 宜加えて、 セラミック粒子コーティング用スラリーを得た。 得られた各スラリー を、 前記のハニカム小片 1 (各スラリーにっき 4つずつ) にゥォッシュコ一卜し 、 その後 6 0 0 °Cで 1時間焼成することによって、 セラミック粒子層が表面に付 着した八二カム小片 (以下、 「コートハニカム小片」 と呼ぶ。 ) を得た。 セラミ ック粒子層の担持量は、 セラミック粒子層の厚さがセル壁中央で平均 4 0 又 は 5 mとなるように、 スラリ一濃度ゃゥォッシュコート回数などにより制御し た。 また、 一部のコートハニカム小片については、 P d、 ァ- A 1 203及び C e 02で構成される触媒層を、 セラミック粒子層上に重ねて形成した。 また、 比較 用にセラミック粒子をコートしないハニカム小片も用意した (比較例 2 ) 。
D P F内に堆積する灰分の主成分のひとつであり、 一般にセラミツク材料と固 溶しやすいことが知られている C aが、 D P Fに堆積した状態を模擬して、 前記 の各コートハニカム小片及び ji較用のハニカム小片の上表面 (試験面) 3に、 市 販試薬の C a〇粉末を均一に堆積させ、 試験片とした。 堆積量は、 0 . 0 3 g Z c m2 (試験面全体で 0 . 1 8 g Z c m2) とした。
各試験片を電気炉にて各 1時間エージングした。 エージング温度は、 1 1 0 0 °C、 1 2 0 0 °C, 1 3 0 0 °C及び 1 4 0 0 °Cの 4水準とし、 1水準につき試験片 1個を用いた。 エージング終了後、 試験片の溶損レベルを外観より判定した。 判 定は、 コートハニカム小片又は比較用のハニカム小片と堆積させた C a 0粉末と の間に反応が認められなかったものを 「A」 、 一部反応が認められるが軽微であ るものを 「B」 、 反応が認められ試験面に小穴が発生したものを 「C」 、 反応が 認められ試験面が溶損欠落したものを 「D」 とした。 その判定結果を表 1に示す
表 1
CO
Figure imgf000015_0001
*1:麵 に残る A 1203分で
*2:酸化物計算
*3:交綱中離置で測定
また、 実施例 1と比較例 1については、 1 1 0 o °cでエージングした後、 それ ぞれの試験片の試験面を 2 k g f c m2のエアーで吹き払い、 その前後の重量 を測定した。 この測定結果から得られた重量減少と試験片の外観より、 セラミツ ク粒子層の剥離状況を推察した。 その結果を表 2に示す。
表 2
Figure imgf000016_0001
*1: ί に残る A 1203分で
*2:吹き払レ前龌—吹き払レ極量
産業上の利用可能性
以上説明したように、 本発明によれば、 フィルタ一再生のためのパティキユレ ート燃焼除去後に残存し蓄積する灰分が、 フィルター構成材料と反応することに より生じるフィルタ一の溶損を、 大掛かりなシステム等を使用することなく、 容 易に抑制できる。

Claims

請 求 の 範 囲
1 . ディーゼル機関から排出される排ガス中のパティキュレートを捕集するた めのセラミック製フィル夕一であって、 当該フィルターに捕集されたパティキュ レートを燃焼させた後に残存し蓄積する灰分と前記フィル夕一との直接接触を実 質的に回避できるように、 前記フィルターの表面に耐熱性セラミック粒子からな るセラミック粒子層がコ一ティングされ、 前記耐熱性セラミック粒子の B E T比 表面積が 3 0 0 m2/ g以下であることを特徴とするセラミック製フィル夕一。
2 . 前記耐熱性セラミック粒子の B E T比表面積が、 5 ~ 1 0 0 m2/ gであ る請求項 1記載のセラミック製フィルタ一。
3 . 前記耐熱性セラミック粒子の平均粒子径が、 2〜2 0 mである請求項 1 記載のセラミック製フィルター。
4. 前記耐熱性セラミック粒子が、 アルミナ、 シリカ、 ジルコニァ、 チタニア 、 マグネシア及びそれらの複合酸化物よりなる群から選ばれた少なくとも一種の セラミック材料からなる請求項 1記載のセラミック製フィルター。
5 . 前記耐熱性セラミック粒子の S i含有量が、 酸化物計算で 1 0重量%以下 である請求項 1記載のセラミック製フィルタ一。
6 . 前記耐熱性セラミック粒子のアルカリ金属含有量が、 酸化物計算で 1重量 %以下である請求項 1記載のセラミック製フィルター。
7 . ハニカム構造を有し、 その流入側端面と排出側端面とで互い違いになるよ うに、 市松模様状にセルが目封じされた請求項 1記載のセラミック製フィル夕一
8 . 前記セラミック粒子層の厚さが、 2〜1 0 0 mである請求項 1記載のセ ラミック製フィル夕一。
9 . セルを仕切っている隔壁の厚さが、 5 0〜5 0 0 ^ mである請求項 7記載 のセラミック製フィルター。
1 0 . 前記セラミック粒子層を構成する耐熱性セラミック粒子の担持量が、 5 〜2 5 0 g / c c (八二カム体積当たり) である請求項 7記載のセラミック製フ イリレ夕一。
1 1. ハニカムのセル密度が、 50〜500セル /平方インチ (7. 8〜78 セル/ cm2) である請求項 7記載のセラミック製フィルター。
12. フィルター材がコ一ジェライトである請求項 1記載のセラミック製フィ ルター。
13. 前記セラミック粒子層に触媒成分が混合された請求項 1記載のセラミツ ク製フィルター。
14. 前記セラミック粒子層上に触媒成分を重ねてコ一ティングした請求項 1 記載のセラミック製フィルター。
15. フィルターに捕集されたパティキユレ一トを、 ヒーター加熱又は触媒反 応により燃焼除去する方式のシステムに使用される請求項 1記載のセラミック製
16. 多孔質のセラミックスからなるフィルタ一材の表面に、 少なくとも BE T比表面積が 30 Om2/g以下の耐熱性セラミック粒子とバインダーとを下式 を満たす割合で含むスラリーを使用して、 セラミック粒子層をコーティングする ことを特徴とするセラミック製フィルタ一の製造方法。
バインダー固形分量 (酸化物計算) / (耐熱性セラミック粒子重量 +バインダー 固形分量 (酸化物計算) } ≥ 0. 02
17. 前記スラリーが、 少なくとも BET比表面積が 30 Om2/g以下の耐 熱性セラミック粒子とバインダ一とを下式を満たす割合で含む請求項 16記載の セラミック製フィルターの製造方法。
0. 25≥バインダー固形分量 (酸化物計算) Z {耐熱性セラミック粒子重量 + バインダー固形分量 (酸化物計算) } ≥0. 05
18. 前記バインダ一のアル力リ金属含有量が、 前記バインダ一の酸化物計算 による固形分量に対して、 酸化物計算で 5重量%以下である請求項 16記載のセ ラミック製フィルターの製造方法。
PCT/JP2001/006362 2000-08-08 2001-07-24 Filtre de céramique et procédé de fabrication WO2002012687A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01950041A EP1308605B1 (en) 2000-08-08 2001-07-24 Ceramic filter and method for manufacture thereof
US10/089,795 US6837911B2 (en) 2000-08-08 2001-07-24 Ceramic-made filter and process for production thereof
AU2001271078A AU2001271078A1 (en) 2000-08-08 2001-07-24 Ceramic filter and method for manufacture thereof
DE60128697T DE60128697T2 (de) 2000-08-08 2001-07-24 Keramischer filter und verfahren zu seiner herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000240456A JP2002054422A (ja) 2000-08-08 2000-08-08 セラミック製フィルター及びその製造方法
JP2000-240456 2000-08-08

Publications (1)

Publication Number Publication Date
WO2002012687A1 true WO2002012687A1 (fr) 2002-02-14

Family

ID=18731809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006362 WO2002012687A1 (fr) 2000-08-08 2001-07-24 Filtre de céramique et procédé de fabrication

Country Status (7)

Country Link
US (1) US6837911B2 (ja)
EP (1) EP1308605B1 (ja)
JP (1) JP2002054422A (ja)
AU (1) AU2001271078A1 (ja)
DE (1) DE60128697T2 (ja)
WO (1) WO2002012687A1 (ja)
ZA (1) ZA200202734B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074847A1 (fr) * 2002-03-01 2003-09-12 Ngk Insulators, Ltd. Systeme de controle des gaz d'echappement, procede permettant de calculer la perte de pression d'un filtre et procede de fabrication dudit filtre

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE401117T1 (de) * 2002-03-15 2008-08-15 Ibiden Co Ltd Keramikfilter zur abgasreinigung
EP1759754B1 (en) * 2004-06-25 2012-12-19 Ibiden Co., Ltd. Method for producing a filter for exhaust purification system
EP1652831A4 (en) * 2004-06-25 2009-07-01 Ibiden Co Ltd PROCESS FOR PRODUCING POROUS BODIES, POROUS BODIES, AND ALVEOLAR STRUCTURAL BODY
JP2007021409A (ja) * 2005-07-19 2007-02-01 Chokoon Zairyo Kenkyusho:Kk ディーゼルパティキュレートフィルターの製造方法
DE102006026769A1 (de) * 2006-06-09 2007-12-13 Robert Bosch Gmbh Filter zur Entfernung von Partikeln aus einem Gasstrom sowie Verfahren zu seiner Herstellung
DE102006034119A1 (de) * 2006-07-24 2008-01-31 Robert Bosch Gmbh Filter zur Entfernung von Partikeln aus einem Gasstrom sowie Verfahren zu seiner Herstellung
WO2010120623A1 (en) 2009-04-16 2010-10-21 Massachusetts Institute Of Technology Method for reducing pressure drop through filters, and filter exhibiting reduced pressure drop
ES2663770T3 (es) 2012-08-17 2018-04-17 Pall Corporation Módulo de filtro catalítico y sistema de filtro catalítico que comprende el mismo
WO2014081218A1 (ko) * 2012-11-21 2014-05-30 한국생산기술연구원 세라믹 필터의 제조방법
US9796632B2 (en) 2012-11-21 2017-10-24 Korea Institute Of Industrial Technology Method for manufacturing ceramic filter
US10328372B2 (en) * 2014-06-19 2019-06-25 Corning Incorporated Anti-microbial air filter
JP2017029916A (ja) * 2015-07-31 2017-02-09 株式会社デンソー 排ガス浄化フィルタ
JP2019150737A (ja) * 2018-02-28 2019-09-12 日本碍子株式会社 ハニカム構造体
CN110146548B (zh) * 2019-05-29 2024-04-30 武汉深投朗弘科技有限公司 一种氧化锆传感器的防护颗粒装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601907U (ja) * 1983-06-20 1985-01-09 日産自動車株式会社 内燃機関の排気微粒子捕集装置
JPH0884911A (ja) * 1994-09-14 1996-04-02 I C T:Kk 窒素酸化物分解用触媒およびこれを用いたディーゼルエンジン排ガスの浄化方法
JPH09220423A (ja) * 1996-02-15 1997-08-26 Nippon Soken Inc ディーゼル排ガス浄化フィルタおよびその製造方法
JPH1045412A (ja) * 1996-07-31 1998-02-17 Sumitomo Chem Co Ltd 耐熱性遷移アルミナ及びその製造方法
JP2000136716A (ja) * 1998-11-02 2000-05-16 Fujitsubo Giken Kogyo Kk エンジン用排気浄化装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601907A (ja) 1983-06-16 1985-01-08 Rohm Co Ltd 出力回路
US5071457A (en) * 1985-11-25 1991-12-10 Industrial Filter & Pump Mfg. Co. Composite for filtering hot gas and method of its manufacture
JPH04313325A (ja) * 1991-04-11 1992-11-05 Riken Corp 排ガス浄化方法
GB2257696B (en) 1991-06-28 1995-05-31 Riken Kk Method and apparatus for cleaning exhaust gas
CA2077101C (en) * 1991-09-05 2003-05-20 Makoto Horiuchi Catalyst for purifying exhaust gases of diesel engine
WO1993010886A1 (en) 1991-11-26 1993-06-10 Engelhard Corporation Ceria-alumina oxidation catalyst and method of use
JP3750178B2 (ja) * 1995-04-05 2006-03-01 株式会社デンソー 排ガス浄化用フィルタ及びその製造方法
JPH1119521A (ja) * 1997-07-02 1999-01-26 Matsushita Electric Ind Co Ltd 排気ガス浄化用触媒の製造方法、及び排気ガス浄化用触媒を用いた排気ガスフィルター及び排気ガス浄化装置並びに排気ガス浄化システム
DE19741498B4 (de) * 1997-09-20 2008-07-03 Evonik Degussa Gmbh Herstellung eines Keramik-Edelstahlgewebe-Verbundes
EP0922478A3 (en) * 1997-11-18 1999-08-04 Ngk Insulators, Ltd. Porous ceramic filter and method for producing same
US6214078B1 (en) * 1997-11-25 2001-04-10 Ferro Corporation High temperature ceramic filter
JP2957552B2 (ja) * 1998-04-28 1999-10-04 バブコック日立株式会社 ウォッシュコートスラリ用組成物
DE19846353A1 (de) 1998-10-08 2000-04-20 Alcatel Sa Verfahren und Schaltvorrichtung zum datenverlustfreien Umschalten zwischen zwei Datenströmen
US6262322B1 (en) * 1998-11-20 2001-07-17 Toray Industries, Inc. Adsorbent for aromatic isomers and production of aromatic isomers
JP2001327818A (ja) * 2000-03-13 2001-11-27 Ngk Insulators Ltd セラミックフィルター及びフィルター装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601907U (ja) * 1983-06-20 1985-01-09 日産自動車株式会社 内燃機関の排気微粒子捕集装置
JPH0884911A (ja) * 1994-09-14 1996-04-02 I C T:Kk 窒素酸化物分解用触媒およびこれを用いたディーゼルエンジン排ガスの浄化方法
JPH09220423A (ja) * 1996-02-15 1997-08-26 Nippon Soken Inc ディーゼル排ガス浄化フィルタおよびその製造方法
JPH1045412A (ja) * 1996-07-31 1998-02-17 Sumitomo Chem Co Ltd 耐熱性遷移アルミナ及びその製造方法
JP2000136716A (ja) * 1998-11-02 2000-05-16 Fujitsubo Giken Kogyo Kk エンジン用排気浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1308605A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074847A1 (fr) * 2002-03-01 2003-09-12 Ngk Insulators, Ltd. Systeme de controle des gaz d'echappement, procede permettant de calculer la perte de pression d'un filtre et procede de fabrication dudit filtre
US7073327B2 (en) 2002-03-01 2006-07-11 Ngk Insulators, Ltd. Exhaust emission control system, method of calculating pressure loss of filter, and method of manufacturing filter

Also Published As

Publication number Publication date
EP1308605A1 (en) 2003-05-07
AU2001271078A1 (en) 2002-02-18
US20030029142A1 (en) 2003-02-13
EP1308605A4 (en) 2004-05-06
EP1308605B1 (en) 2007-05-30
DE60128697T2 (de) 2008-03-06
ZA200202734B (en) 2003-04-08
JP2002054422A (ja) 2002-02-20
US6837911B2 (en) 2005-01-04
DE60128697D1 (de) 2007-07-12

Similar Documents

Publication Publication Date Title
US20070140928A1 (en) Low pressure drop coated diesel exhaust filter
JP3874270B2 (ja) 排ガス浄化フィルタ触媒及びその製造方法
JP4355506B2 (ja) 触媒担持フィルタ及びこれを用いた排ガス浄化システム
JP3971215B2 (ja) 排ガス浄化用フィルター
WO2008066167A1 (fr) Filtre céramique en nid d'abeilles et son procédé de fabrication
WO2002012687A1 (fr) Filtre de céramique et procédé de fabrication
JP5140004B2 (ja) ハニカム構造体
WO2004111398A1 (ja) ハニカム構造体
WO2006041174A1 (ja) セラミックハニカム構造体
JP2001327818A (ja) セラミックフィルター及びフィルター装置
EP1723998B1 (en) Filter catalyst
JP5096978B2 (ja) ハニカム触媒体
JP2010115634A (ja) ハニカム構造体
JP5714568B2 (ja) ハニカムフィルタ
JP4577752B2 (ja) セラミックハニカムフィルタ
JPH09276708A (ja) ディーゼル排ガス浄化触媒
JP4470554B2 (ja) 排ガス浄化用触媒の製造方法
JP2006231116A (ja) 排ガス浄化フィルタ触媒
WO2007083779A1 (en) Exhaust gas-purifying catalyst
JP4218559B2 (ja) ディーゼル排ガス浄化装置
JP3879988B2 (ja) 排ガス浄化用触媒とその製造方法
JP2002159859A (ja) 排気ガス浄化用触媒
JP2012200612A (ja) ハニカムフィルタの製造方法
JP2009247995A (ja) 排ガス浄化用触媒及びその製造方法
JP5281967B2 (ja) ハニカム構造体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2002/02734

Country of ref document: ZA

Ref document number: 200202734

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2001950041

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10089795

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001950041

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001950041

Country of ref document: EP