WO2002001072A1 - Zahnradpumpe - Google Patents

Zahnradpumpe Download PDF

Info

Publication number
WO2002001072A1
WO2002001072A1 PCT/EP2001/006264 EP0106264W WO0201072A1 WO 2002001072 A1 WO2002001072 A1 WO 2002001072A1 EP 0106264 W EP0106264 W EP 0106264W WO 0201072 A1 WO0201072 A1 WO 0201072A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear pump
pump according
cooling
cooling channels
bearing
Prior art date
Application number
PCT/EP2001/006264
Other languages
English (en)
French (fr)
Inventor
Edgar R. Schlipf
Peter Heidemeyer
Rainer Herter
Original Assignee
Coperion Werner & Pfleiderer Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coperion Werner & Pfleiderer Gmbh & Co. Kg filed Critical Coperion Werner & Pfleiderer Gmbh & Co. Kg
Priority to KR1020027017757A priority Critical patent/KR100807155B1/ko
Priority to AU2001276356A priority patent/AU2001276356A1/en
Priority to DE50101412T priority patent/DE50101412D1/de
Priority to EP01953970A priority patent/EP1295036B1/de
Priority to US10/297,789 priority patent/US6761546B2/en
Priority to AT01953970T priority patent/ATE258652T1/de
Priority to JP2002506367A priority patent/JP5075315B2/ja
Publication of WO2002001072A1 publication Critical patent/WO2002001072A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0096Heating; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/02Arrangements of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/001Pumps for particular liquids
    • F04C13/002Pumps for particular liquids for homogeneous viscous liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0088Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings

Definitions

  • the invention relates to a gear pump according to the preamble of claim 1.
  • the bearing temperature is of crucial importance for the maximum permissible speed and thus for the throughput of the pump. Since the plain bearings are usually lubricated using the pumped medium, high-viscous pumped media introduce a lot of energy into the bearing gap. Since the pumped medium generally has a maximum permissible maximum temperature, the speed and thus the throughput of the gear pump is limited. This is particularly important if the pumped medium is formed by a plastic melt. Their maximum permissible temperatures are usually 300 to 350 ° C.
  • a gear pump of the generic type is known from EP 0 715 078 A2, which has cooling channels formed in a meandering manner in the sliding bearing.
  • the invention is based on the finding that the heat accumulation in the sliding bearing is different over its circumference and over its extent in the direction of the central longitudinal axis.
  • the invention is therefore based on the object of designing a gear pump of the generic type in such a way that heat transfer in the plain bearing is optimized.
  • the greatest energy input usually takes place where the bearing gap, that is to say the gap between the bearing section of the shaft and the region of the bearing shell referred to as a sliding bearing, is smallest, since here the shear of the highly viscous delivery medium is greatest.
  • mechanical energy is converted into thermal energy to a particularly large extent.
  • the cooling should be particularly intensive in this area.
  • FIG. 2 shows a cross section through the gear pump according to section line II-II in FIG. 1, 3 is a plan view of a first embodiment of sliding
  • 5 is a plan view of a second embodiment of sliding
  • Fig. 6 shows a third embodiment of sliding bearings in one
  • Fig. 7 shows a fourth embodiment of sliding bearings in one
  • Fig. 8 shows a fifth embodiment of sliding bearings in one
  • Fig. 11 shows a cross section through the plain bearing corresponding to the
  • Section line XI-XI in Fig. 10 and Fig. 12 shows an eighth embodiment of a sliding bearing in a perspective view.
  • the gear pump shown in FIGS. 1 and 2 has a housing 1 in which two gear rotors 2, 3 are arranged.
  • Each rotor 2, 3 has a tooth section 4, 5 which mesh with one another.
  • Each rotor 2, 3 furthermore has a shaft 8, 9, which is arranged coaxially to the central longitudinal axis 6, 7 of the rotor 2 or 3 and is non-rotatably connected to the tooth section 4 or 5 and has one drive at one end -Pin 10 is provided.
  • Sliding bearings 11, 12, 13, 14 are arranged and supported in the housing 1 on both sides of the tooth sections 4, 5, in which the shafts 8, 9 are rotatably mounted with bearing sections 15, 16, 17, 18.
  • the housing 1 is closed on its end faces by means of two covers 19, 20, which are held releasably by means of screws 21, which are only indicated.
  • the shafts 8, 9 are guided out of the housing through openings 22 in the covers 19, 20.
  • a seal 23 is provided for sealing between the respective shaft 8, 9 and the opening 22.
  • FIG. 2 In the plane shown in FIG. 2, which runs perpendicular to the plane spanned by the two axes 6, 7, on one side of the rotors 2, 3 is the suction side 24 of the pump; on the opposite side is the pressure side 25.
  • the rotors 2, 3 are driven in opposite directions according to the direction of rotation arrows 26, 27; their teeth 28, 29 run with almost no play relative to the inner wall 30 of the housing 1. They convey the medium to be pumped from the suction side 24 to the pressure side 25 in accordance with the direction of delivery arrow 31.
  • the housing 1 has channels 33 for a temperature control medium.
  • the sliding bearings 11 to 14 are lubricated by the pumping medium, as a rule a higher-viscosity and possibly also structurally viscous pumping medium, such as a plastic melt.
  • conveying medium branch ducts 34 open out from the pressure side 25 of the pump and lead to the one or more sliding bearing gaps 35 running parallel to the respective axis 6 or 7, from where the conveying medium is in the usual way for lubrication between the respective bearing sections 15 to 18 the shaft 8 and 9 and the respective slide bearing 11 to 14 is used.
  • the pumped medium is returned to the suction side 24 from the slide bearings 11 to 14 through pumped medium return channels 36, some of which are formed in the respective cover 19, 20 and some in the housing 1.
  • the pumped medium flows through the sliding bearings 11 to 14 in accordance with the flow direction arrow 37 from the pressure side 25 to the suction side 24 of the pump.
  • the sliding bearings 11 to 14 are cooled.
  • a cooling medium supply channel 38 is formed in the cover 19 or 20, which is connected to one or more cooling channels 39 in the sliding bearing 13 or 14.
  • an overflow channel 40 is formed in each cover 19, 20, which in turn is connected to corresponding cooling channels 39 in the sliding bearing 11, 12.
  • the cooling medium emerges from the cooling channel 39 of the sliding bearings 11, 12 through a cooling medium discharge channel 41. The cooling medium therefore flows through the channels in the direction of flow 42.
  • the sliding bearings 12a, 14a have meandering continuous cooling channels 39a running parallel to the axes 6 and 7, the cross-section of which is identical in each case, but which is distributed differently over the circumference of the sliding Bearing 12a, 14a are arranged.
  • the sliding bearings have a region 43 of relative compression of the cooling channels 39a. In this area, the heat dissipation from the sliding bearing is considerably greater than from the other areas, in which adjacent cooling channels 39a are at a considerably greater distance from one another.
  • the heat-dissipating surface of the cooling channels 39a per circumferential expansion unit, that is to say per angular unit a, is therefore larger in region 43 than in the other circumferential regions.
  • the cooling channels 39b are also formed in a meandering manner, as is indicated in FIG. 4. However, they have differently sized heat-looking surfaces distributed over the circumference per circumferential expansion unit, that is to say per angular unit a.
  • the cooling channels 39b thus have different cross-sectional shapes. This can be a cooling duct 39b 'with a cylindrical cross-section or a cooling duct 39b "with an oval or kidney-shaped cross-section, a cooling duct 39b'" with the cross-section of a multi-spline or a cooling duct 39b "" with a square cross-section act.
  • These cooling channels 39b thus have heat-exchanging surfaces that differ from one another in terms of shape and / or size.
  • cooling channels 39a are formed in the sliding bearings 12c, 14c, the course of which is meandering as in the embodiment according to FIG. 4. Furthermore, in the area of relatively low energy input, cooling channels 39c are provided which have differently equipped surfaces, through which the heat transfer per unit area of the cooling channel 39c is influenced by the sliding bearing 12c or 14c to the cooling medium. This can be a matter of different surface roughness which influences the heat transfer coefficients. Different heat-conducting materials can also be used.
  • An insulating sleeve 44 which is a solid material sleeve, is used in a cooling duct 39c '. In the case of a cooling channel 39c ′′, an insulating bush 45 is inserted, between which and the material of the sliding bearing 14c an air gap 46 is also formed.
  • cooling channels 39a are formed in the sliding bearings 12d and 14d, the course of which, as in the example according to FIG. 4, is meandering.
  • individual cooling channels 39d on part of their circumference, on the side facing away from the axis 6 or 7, an insulator 47, so that good heat dissipation takes place from the area of the shaft 8, 9, while from the outer area of the
  • These cooling channels 39e' and 39e" are supplied with the cooling medium, and possibly different cooling medium with different heat capacity, separately. It flows through the cooling channels 39e ', 39e "in flow direction 42e 'and 42e ".
  • the cooling media which are guided separately from one another by the two cooling channels 39e' and 39e” can be regulated or controlled individually, specifically with regard to their temperature and / or with regard to their quantity per unit of time.
  • cooling channels 39f can not only be formed in series, that is to say connected in series, as in the previously described exemplary embodiments, but can also be flowed through in a parallel arrangement.
  • cooling channels 39f are formed in the sliding bearing 12f, through which flow flows in the same direction of flow 42f.
  • connecting channels 48 and 49 are formed in the area of the two ends of a sliding bearing 12f. From the connecting channel 49, in which the cooling medium is collected after flowing through the cooling channels 39f, a return flow channel 50 then leads back to the connection to the overflow channel 40 or the discharge channel 41.
  • the cooling channels 39f can have the shapes and arrangements as they were laid down in the exemplary embodiments according to FIGS. 3 to 8.
  • the sliding bearing 12g is constructed in two parts; it consists of an inner bearing sleeve 51 and an outer sleeve 52, between which an annular cylindrical cooling channel 39g is formed, which is divided by means of a partition wall 53 running parallel to the axis 6, so that the cooling medium is forced in the flow direction 42g through the cooling channel 39g conducted and discharged in the direction of flow 42 "".
  • the outer sleeve 52 is lined with an insulating jacket 54. Accordingly, disproportionate heat dissipation from the shaft 8 takes place.
  • the embodiment according to FIG. 12 is - as in the embodiment according to FIGS.
  • the sliding bearing 12h is made up of an outer bush 52 'and an inner bearing bush 51'.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

Eine Zahnradpumpe weist ein Gehäuse (1) und darin angeordnete Zahnrad-Rotoren (2, 3) auf. Letztere sind in Lager-Abschnitten (15 bis 18) von Gleit-Lagern (11 bis 14) gelagert, die mittels des Fördermediums schmierbar sind. Sie weisen mindestens einen Kühlkanal (39) auf, der so ausgestatet ist, dass über den Umfang und/oder in Längsrichtung und/oder in Radialrichtung des Gleit-Lagers (11 bis 14) eine unterschiedliche Kühlung erfolgt.

Description

Zahnradpumpe
Die Erfindung betrifft eine Zahnradpumpe nach dem Oberbegriff des Anspruches 1.
Bei derartigen Zahnradpumpen ist die Lagertemperatur von entscheidender Bedeutung für die maximal zulässige Drehzahl und damit für den Durchsatz der Pumpe. Da die Gleit-Lager üblicherweise mittels des Fördermediums geschmiert werden, erfolgt bei hochviskosen Fördermedien eine hohe Energieeinleitung im Lagerspalt. Da das Fördermedium in der Regel eine maximal zulässige Höchsttemperatur aufweist, ist die Drehzahl und damit der Durchsatz der Zahnradpumpe begrenzt. Besonders bedeutsam ist dies, wenn das Fördermedium durch eine Kunststoffschmelze gebildet wird. Deren maximal zulässige Temperaturen liegen in der Regel bei 300 bis 350° C.
Aus der EP 0 715 078 A2 ist eine Zahnradpumpe der gattungsgemäßen Art bekannt geworden, die mäanderförmig im Gleit-Lager ausgebildete Kühlkanäle aufweist.
Aus der EP 0 607 999 Bl ist es bekannt, die Wellen der Zahnrad-Rotoren mit Kühlkanälen zu versehen.
Der Erfindung liegt die Erkenntnis zugrunde, daß der Wärmeanfall im Gleit-Lager über dessen Umfang und über dessen Erstreckung in Richtung der Mittel-Längs-Achse unterschiedlich ist. Der Erfindung liegt daher die Aufgabe zugrunde, eine Zahnradpumpe der gattungsgemäßen Art so auszugestalten, daß die Wäraieabfuhr im Gleit- Lager optimiert wird.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale im Kennzeichnungsteil des Anspruches 1 gelöst.
Die größte Energieeinleitung erfolgt üblicherweise dort, wo der Lagerspalt, das heißt der Spalt zwischen dem Lagerabschnitt der Welle und dem als Gleit-Lager bezeichneten Bereich der Lagerschale am kleinsten ist, da hier die Scherung des hochviskosen Fördermediums am größten ist. Hier wird in besonders großem Maße mechanische Energie in Wärmeenergie umgewandelt. In diesem Bereich sollte die Kühlung besonders intensiv sein.
Die Unteransprüche geben zahlreiche vorteilhafte und zum Teil erfinderische Ausgestaltungen wieder.
Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnung. Es zeigen
Fig. 1 eine Zahnradpumpe in einem Querschnitt gemäß der Schnittlinie I-I in Fig. 2,
Fig. 2 einen Querschnitt durch die Zahnradpumpe gemäß der Schnittlinie II-II in Fig. 1, Fig. 3 eine Draufsicht auf ein erstes Ausführungsbeispiel von Gleit-
Lagern gemäß dem Sichtpfeil III in Fig. 2,
Fig. 4 einen Längsschnitt durch das Gleit-Lager gemäß der Schnittli- nie lV-IV in Fig. 3,
Fig. 5 eine Draufsicht auf ein zweites Ausführungsbeispiel von Gleit-
Lagern in einer Darstellung entsprechend Fig. 3,
Fig. 6 ein drittes Ausführungsbeispiel von Gleit-Lagern in einer
Draufsicht entsprechend Fig. 3,
Fig. 7 ein viertes Ausführungsbeispiel von Gleit-Lagern in einer
Draufsicht entsprechend Fig. 3,
Fig. 8 ein fünftes Ausführungsbeispiel von Gleit-Lagern in einer
Draufsicht entsprechend Fig. 3,
Fig. 9 ein sechstes Ausführungsbeispiel von Gleit-Lagern in einer perspektivischen Ansicht,
Fig. 10 ein siebtes Ausführungsbeispiel von Gleit-Lagern in einer perspektivischen Ansicht,
Fig. 11 einen Querschnitt durch das Gleitlager entsprechend der
Schnittlinie XI-XI in Fig. 10 und Fig. 12 ein achtes Ausführungsbeispiel eines Gleit-Lagers in einer perspektivischen Darstellung.
Die in den Fig. 1 und 2 dargestellte Zahnradpumpe weist ein Gehäuse 1 auf, in dem zwei Zahnrad-Rotoren 2, 3 angeordnet sind. Jeder Rotor 2, 3 weist einen Zahn-Abschnitt 4, 5 auf, die miteinander kämmen. Jeder Rotor 2, 3 weist weiterhin eine koaxial zur Mittel-Längs-Achse 6, 7 des Rotors 2 bzw. 3 angeordnete, drehfest mit dem Zahn-Abschnitt 4 bzw. 5 verbundene Welle 8, 9 auf, die an einem Ende mit einem Antriebs-Zapfen 10 versehen ist.
Beiderseits der Zahn- Abschnitte 4, 5 sind im Gehäuse 1 Gleit-Lager 11, 12, 13, 14 angeordnet und abgestützt, in denen die Wellen 8, 9 mit Lager- Abschnitten 15, 16, 17, 18 drehbar gelagert sind. Das Gehäuse 1 ist an sei- nen Stirnseiten mittels zweier Deckel 19, 20 verschlossen, die durch nur angedeutete Schrauben 21 lösbar gehalten sind. Die Wellen 8, 9 sind durch Öffnungen 22 in den Deckeln 19, 20 aus dem Gehäuse heraus geführt. Zur Abdichtung zwischen der jeweiligen Welle 8, 9 und der Öffnung 22 ist eine Dichtung 23 vorgesehen.
In der in Fig. 2 dargestellten Ebene, die senkrecht zu der durch die beiden Achsen 6, 7 aufgespannten Ebene verläuft, ist auf einer Seite der Rotoren 2, 3 die Saugseite 24 der Pumpe; auf der gegenüberliegenden Seite ist die Druckseite 25. Die Rotoren 2, 3 werden entsprechend den Drehrichtungs- pfeilen 26, 27 gegensinnig angetrieben; ihre Verzahnungen 28, 29 laufen gegenüber der Innenwand 30 des Gehäuses 1 nahezu spielfrei um. Sie fördern das zu fördernde Medium von der Saugseite 24 zur Druckseite 25 entsprechend dem Förderrichtungspfeil 31. Das Gehäuse 1 weist Kanäle 33 für ein Temperiermedium auf. Die Gleit- Lager 11 bis 14 werden von dem Fördermedium, in der Regel einem höherviskosen gegebenenfalls auch strukturviskosen Fördermedium, wie bei- spielsweise einer Kunststoffschmelze, geschmiert. Hierzu münden Fördermedium-Abzweigkanäle 34 aus der Druckseite 25 der Pumpe aus und führen zu dem oder den, parallel zur jeweiligen Achse 6 bzw. 7 verlaufenden Gleitlagerspalten 35, von wo das Fördermedium in üblicher Weise zur Schmierung zwischen dem jeweiligen Lager- Abschnitt 15 bis 18 der Welle 8 bzw. 9 und dem jeweiligen Gleit-Lager 11 bis 14 dient. Das Fördermedium wird aus den Gleit-Lagern 11 bis 14 durch Fördermedium-Rückführ- kanäle 36, die zum Teil im jeweiligen Deckel 19, 20 und zum Teil im Gehäuse 1 ausgebildet sind, zur Saugseite 24 zurück geführt. Das Fördermedium durchströmt die Gleit-Lager 11 bis 14 also entsprechend dem Strö- mungsrichtungspfeil 37 von der Druckseite 25 zur Saugseite 24 der Pumpe.
Die Gleit-Lager 11 bis 14 sind gekühlt. Hierzu ist jeweils im Deckel 19 bzw. 20 ein Kühlmedium-Zuführkanal 38 ausgebildet, der an ein oder mehrere Kühlkanäle 39 im Gleit-Lager 13 bzw. 14 angeschlossen ist. Zwischen den Wellen 9, 8 ist in jedem Deckel 19, 20 ein Überströmkanal 40 ausgebildet, der wiederum an entsprechende Kühlkanäle 39 im Gleit-Lager 11, 12 angeschlossen ist. Aus dem Kühlkanal 39 der Gleit-Lager 11, 12 tritt das Kühlmedium durch einen Kühlmedium- Abführkanal 41 aus. Das Kühlmedium durchströmt die Kanäle also in Strömungsrichtung 42.
Nachfolgend werden verschiedene Ausgestaltungen der Kühlkanäle 39 beschrieben. Da die Ausgestaltung in den einzelnen Gleit-Lagern 11 bis 14 jeweils identisch bzw. spiegelsymmetrisch ist, wird die Ausgestaltung und Anordnung grundsätzlich nur für ein Gleit-Lager 12 beschrieben.
Bei der Ausgestaltung nach den Fig. 3 und 4 weisen die Gleit-Lager 12a, 14a mäanderförmig und parallel zur Achse 6 bzw. 7 verlaufende durchgehende Kühlkanäle 39a auf, deren Querschnitt jeweils identisch ist, die aber in unterschiedlicher Verteilung über den Umfang des Gleit-Lagers 12a, 14a angeordnet sind. Wie Fig. 3 entnehmbar ist, weisen die Gleit-Lager einen Bereich 43 relativer Verdichtung der Kühlkanäle 39a auf. In diesem Be- reich ist die Wärmeabfuhr aus dem Gleit-Lager also erheblich größer als aus den übrigen Bereichen, in denen benachbarte Kühlkanäle 39a erheblich größeren Abstand voneinander aufweisen. Die wärmeabführende Oberfläche der Kühlkanäle 39a pro Umfangsausdehnungseinheit, also pro Winkeleinheit a ist im Bereich 43 also größer als in den übrigen Umfangsberei- chen.
Bei einer weiteren Ausgestaltung nach Fig. 5 sind die Kühlkanäle 39b e- benfalls mäanderförmig ausgebildet, wie es in Fig. 4 angedeutet ist. Sie haben aber über den Umfang verteilt unterschiedlich große wärmetau- sehende Oberflächen pro Umfangsausdehnungseinheit, das heißt pro Winkeleinheit a. Die Kühlkanäle 39b haben also unterschiedliche Querschnittsformen. Es kann sich hierbei um einen Kühlkanal 39b' mit zylindrischem Querschnitt oder um einen Kühlkanal 39b" mit einem ovalen oder nieren- förmigen Querschnitt, um einen Kühlkanal 39b'" mit dem Querschnitt ei- nes Vielkeils oder um einen Kühlkanal 39b" " mit quadratischem Querschnitt handeln. Diese Kühlkanäle 39b haben also voneinander durch Form und/oder Größe abweichende wärmeaustauschende Oberflächen. Bei dem Ausführungsbeispiel nach Fig. 6 sind in den Gleit-Lagern 12c, 14c Kühlkanäle 39a ausgebildet, deren Verlauf mäanderförmig wie in der Ausgestaltung nach Fig. 4 ist. Weiterhin sind im Bereich relativ geringer Energieeinleitung Kühlkanäle 39c vorgesehen, die unterschiedlich ausgestattete Oberflächen aufweisen, durch die der Wärmeübergang pro Flächeneinheit des Kühlkanals 39c vom Gleit-Lager 12c bzw. 14c an das Kühlmedium beeinflußt wird. Hierbei kann es sich um unterschiedliche Oberflächenrau- igkeit handeln, die die Wärmeübergangszahlen beeinflußt. Es können auch unterschiedlich wärmeleitende Materialien eingesetzt werden. Bei einem Kühlkanal 39c' ist eine Isolierbüchse 44 eingesetzt, bei der es sich um eine Voll-Materialbüchse handelt. Bei einem Kühlkanal 39c" ist eine Isolierbüchse 45 eingesetzt, zwischen der und dem Material des Gleit-Lagers 14c noch ein Luftspalt 46 ausgebildet ist.
Beim Ausführungsbeispiel nach Fig. 7 sind in den Gleit-Lagern 12d und 14d Kühlkanäle 39a ausgebildet, deren Verlauf wie bei dem Beispiel nach Fig. 4 mäanderförmig ist. Darüber hinaus weisen einzelne Kühlkanäle 39d' auf einem Teil ihres Umfanges, und zwar auf der der Achse 6 bzw. 7 abgewandten Seite einen Isolator 47 auf, so daß aus dem Bereich der Welle 8, 9 eine gute Wärmeabfuhr erfolgt, während aus dem Außenbereich des
Gleit-Lagers - also vom Gehäuse 1 her - nur eine reduzierte Wärmeabfuhr oder Wärmezufuhr erfolgt.
Bei dem Ausführungsbeispiel nach Fig. 8 sind zwei mäanderförmige Kühl- kanäle 39e' und 39e" im Gleit-Lager 12e, 14e vorgesehen. Diesen Kühlkanälen 39e' und 39e" wird das Kühlmedium, und zwar gegebenenfalls unterschiedliches Kühlmedium mit unterschiedlicher Wärmekapazität, getrennt zugeführt. Es durchströmt die Kühlkanäle 39e', 39e" in Strömungs- richtung 42e' bzw. 42e". Die durch die beiden Kühlkanäle 39e' und 39e" getrennt voneinander geführten Kühlmedien können einzeln geregelt oder gesteuert werden, und zwar hinsichtlich ihrer Temperatur und/oder hinsichtlich ihrer Menge pro Zeiteinheit.
Gemäß Fig. 9 können Kühlkanäle 39f nicht nur - wie bei den zuvor beschriebenen Ausführungsbeispielen - seriell, das heißt hintereinander geschaltet, ausgebildet sein, sondern auch in Parallelanordnung durchströmt werden. Hierbei sind im Gleit-Lager 12f Kühlkanäle 39f ausgebildet, die in gleicher Strömungsrichtung 42f durchströmt werden. Im Bereich der beiden Enden eines Gleit-Lagers 12f sind jeweils Verbindungs-Kanäle 48 bzw. 49 ausgebildet. Vom Verbindungs-Kanal 49, in dem das Kühlmedium nach Durchströmen der Kühlkanäle 39f gesammelt wird, führt dann ein Rückströmkanal 50 zum Anschluß an den Überströmkanal 40 oder den Abführ- kanal 41 zurück. Selbstverständlich können auch hier die Kühlkanäle 39f die Formen und Anordnungen haben, wie sie in den Ausführungsbeispielen nach den Fig. 3 bis 8 niedergelegt worden sind.
Bei der Ausführungsform nach den Fig. 10 und 11 ist das Gleit-Lager 12g zweiteilig aufgebaut; es besteht aus einer inneren Lager-Büchse 51 und einer Außen-Büchse 52, zwischen denen ein ringzylindrischer Kühlkanal 39g ausgebildet ist, der mittels einer parallel zur Achse 6 verlaufenden Trennwand 53 unterteilt ist, so daß das Kühlmedium zwangsweise in Strömungsrichtung 42g durch den Kühlkanal 39g geleitet und in Strömungs- richtung 42" " abgeführt wird. Um die Wärmezufuhr, das heißt die Energieeinleitung, vom Gehäuse 1 her zu reduzieren, ist die Außen-Büchse 52 mit einem Isoliermantel 54 ausgekleidet. Dementsprechend findet eine ü- berproportionale Wärmeabfuhr von der Welle 8 her statt. Auch bei dem Ausführungsbeispiel nach Fig. 12 handelt es sich - wie bei dem Ausführungsbeispiel nach den Fig. 10 und 11 - um eine sogenannte nasse Lager-Büchse. Hierbei ist das Gleit-Lager 12h aus einer Außen- Büchse 52' und einer inneren Lager-Büchse 51 ' aufgebaut. In der Außen- Büchse 52' sind schraubenlinienförmige Kühlkanäle 39h' und 39h" ausgebildet, die jeweils unterschiedliche Kühlkreise bilden. Ihnen werden hinsichtlich der Temperatur und/oder hinsichtlich der Menge pro Zeiteinheit unter-schiedliche Kühlmedien zugeführt, und zwar in Strömungsrichtung 42h' und 42h".
Obwohl in den zuvor geschilderten Ausführungsbeispielen überwiegend Ausgestaltungen von Gleit-Lagern geschildert wurden, bei denen jeweils die Kühlkanäle 39 der beiden auf einer Seite der Rotoren 2, 3 angeordneten Gleit-Lager 11, 13 bzw. 12, 14 hintereinander geschaltet sind, ist selbstverständlich auch eine separate bzw. parallele Anströmung der einzelnen Kühlkanäle mit Kühlmedium möglich. In diesem Fall wird beispielsweise der Überströmkanal 40 jeweils durch eine Abführung bzw. Zuführung für Kühlmedium ersetzt.

Claims

Patentansprüche
1. Zahnradpumpe
- mit einem Gehäuse (1), ~ das eine Saugseite (24) und eine Druckseite (25) aufweist,
- mit zwei im Gehäuse (1) angeordneten, miteinander kämmenden Zahnrad- Rotoren (2, 3), die
~ ein Fördermedium von der Saugseite (24) zur Druckseite (25) fördern und — an ihren Enden Lager- Abschnitte (15 bis 18) aufweisen,
- mit Gleit-Lagern (11 bis 14), die
- je einen Lager- Abschnitt (15 bis 18) aufnehmen, ~ mittels des Fördermediums schmierbar sind und ~ mindestens einen Kühlkanal (39) aufweisen, dadurch gekennzeichnet, daß der mindestens eine Kühlkanal (39) so ausgestaltet ist, daß über den Umfang und/oder in Längsrichtung und/oder in Radialrichtung des Gleit- Lagers (11 bis 14) eine unterschiedliche Kühlung erfolgt.
2. Zahnradpumpe nach Anspruch 1, dadurch gekennzeichnet, daß Kühlkanäle (39a) in einem Bereich (43) relativer Verdichtung in größerer Zahl pro Umfangseinheit (a) angeordnet sind, als in anderen Um- fangsbereichen der Gleit-Lager (12a, 14a).
3. Zahnradpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Kühlkanäle (39b', 39b", 39b'", 39b"" ) unterschiedlich große Oberflächen aufweisen.
4. Zahnradpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Kühlkanäle (39b', 39b", 39b'", 39b"" ) unterschiedliche Querschnitte aufweisen.
5. Zahnradpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß einzelne Kühlkanäle (39c', 39c", 39d') zumindest teilweise Oberflächen mit reduzierter Wärmeleitfähigkeit aufweisen.
6. Zahnradpumpe nach Anspruch 5, dadurch gekennzeichnet, daß in einen Kühlkanal (39c', 39c") eine Isolierbüchse (44, 45) eingesetzt ist.
7. Zahnradpumpe nach Anspruch 6, dadurch gekennzeichnet, daß zwischen der Isolierbüchse (45) und dem Gleit-Lager (14c) ein Luftspalt (46) vorgesehen ist.
8. Zahnradpumpe nach Anspruch 5, dadurch gekennzeichnet, daß mindestens ein Kühlkanal (39d) auf seiner radial zur Mittel-Längs- Achse (6, 7) außen liegenden Seite mittels eines Isolators (47) teilisoliert ist.
9. Zahnradpumpe nach einem der Ansprüche 1 bis 8, dadurch gekenn- zeichnet, daß zu mindestens zwei voneinander getrennten Kühlkreisläufen zusammengefaßte Kühlkanäle (39e', 39e") vorgesehen sind.
10. Zahnradpumpe nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Kühlkanäle (39a, 39b, 39c, 39d, 39e) in Reihe hintereinander geschaltet sind.
11. Zahnradpumpe nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Kühlkanäle (39f) in einem Gleit-Lager (12f) parallel zueinander geschaltet sind.
12. Zahnradpumpe nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Kühlkanäle (39a, 39b, 39c, 39d, 39e, 39f) langgestreckt ausgebildet sind.
13. Zahnradpumpe nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der mindestens eine Kühlkanal (39g) ringzylindrisch ausgebildet ist.
14. Zahnradpumpe nach Anspruch 13, dadurch gekennzeichnet, daß der mindestens eine Kühlkanal (39g) auf seiner Außenseite mit einem Isoliermantel (54) versehen ist.
15. Zahnradpumpe nach einem der Ansprüche 1 bis 11, dadurch gekenn- zeichnet, daß der mindestens eine Kühlkanal (39h', 39h") schraubenlinienformig ausgebildet ist.
PCT/EP2001/006264 2000-06-28 2001-06-01 Zahnradpumpe WO2002001072A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020027017757A KR100807155B1 (ko) 2000-06-28 2001-06-01 기어 펌프
AU2001276356A AU2001276356A1 (en) 2000-06-28 2001-06-01 Gear pump
DE50101412T DE50101412D1 (de) 2000-06-28 2001-06-01 Zahnradpumpe
EP01953970A EP1295036B1 (de) 2000-06-28 2001-06-01 Zahnradpumpe
US10/297,789 US6761546B2 (en) 2000-06-28 2001-06-01 Gear pump having bearings with cooling ducts
AT01953970T ATE258652T1 (de) 2000-06-28 2001-06-01 Zahnradpumpe
JP2002506367A JP5075315B2 (ja) 2000-06-28 2001-06-01 歯車ポンプ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10031470A DE10031470A1 (de) 2000-06-28 2000-06-28 Zahnradpumpe
DE10031470.8 2000-06-28

Publications (1)

Publication Number Publication Date
WO2002001072A1 true WO2002001072A1 (de) 2002-01-03

Family

ID=7647083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/006264 WO2002001072A1 (de) 2000-06-28 2001-06-01 Zahnradpumpe

Country Status (10)

Country Link
US (1) US6761546B2 (de)
EP (1) EP1295036B1 (de)
JP (1) JP5075315B2 (de)
KR (1) KR100807155B1 (de)
AT (1) ATE258652T1 (de)
AU (1) AU2001276356A1 (de)
DE (2) DE10031470A1 (de)
ES (1) ES2213706T3 (de)
RU (1) RU2263822C2 (de)
WO (1) WO2002001072A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017218882B3 (de) * 2017-10-23 2019-01-24 Technische Universität Dresden Außenverzahnte Zahnradpumpe und Drehantrieb mit einer Zahnradpumpe
EP3955789A4 (de) * 2019-04-16 2023-03-01 Pitco Frialator, Inc. Wartungsfähige fluidpumpe

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2575554A1 (en) * 2004-07-30 2006-02-09 Pulsafeeder, Inc. Non-metallic gear pump with magnetic coupling assembly
JP2006152914A (ja) * 2004-11-29 2006-06-15 Hitachi Ltd オイルポンプ
WO2006087208A1 (de) * 2005-02-19 2006-08-24 Saurer Gmbh & Co. Kg Zahnradpumpe
DE102007050681A1 (de) 2007-10-22 2009-04-23 Coperion Werner & Pfleiderer Gmbh & Co. Kg Verfahren und Vorrichtung zur Herstellung eines Polymergranulats
EP2588756B1 (de) * 2010-07-02 2018-05-02 Oerlikon Textile GmbH & Co. KG Zahnradpumpe
WO2015146569A1 (ja) * 2014-03-22 2015-10-01 Ntn株式会社 軸受装置の冷却構造
DE102014214957A1 (de) * 2014-07-30 2016-02-04 Schaeffler Technologies AG & Co. KG Lagerring und Verfahren zur Herstellung eines Lagerrings
DE102014216313A1 (de) * 2014-08-18 2016-02-18 Schaeffler Technologies AG & Co. KG Lagerring und Verfahren zur Herstellung eines Lagerrings
CZ305742B6 (cs) * 2015-02-13 2016-02-24 Jihostroj A.S. Zubové čerpadlo s pohonem
GB201614327D0 (en) 2016-08-22 2016-10-05 Rolls-Royce Controls And Data Services Ltd Gear pump bearing
GB201614326D0 (en) 2016-08-22 2016-10-05 Rolls-Royce Controls And Data Services Ltd Gear pump bearing
DE102016225883A1 (de) * 2016-12-21 2018-06-21 Robert Bosch Gmbh Zahnradpumpe für ein Abwärmerückgewinnungssystem
CN108150410A (zh) * 2017-12-27 2018-06-12 郑州沃华机械有限公司 一种专门用于橡胶生产装置的熔体齿轮泵
US11466768B2 (en) 2018-12-31 2022-10-11 Abb Schweiz Ag Methods and systems for cooling transmissions
US11287025B2 (en) 2018-12-31 2022-03-29 Abb Schweiz Ag Cooling units for transmissions
CN111843605B (zh) * 2020-07-20 2022-04-29 湖南中大创远数控装备有限公司 一种主轴冷却机构以及机床
US11898559B2 (en) 2021-10-21 2024-02-13 Hamilton Sundstrand Corporation Gear pump with cooled journal bearings

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE349786C (de) * 1919-04-23 1922-03-09 Viktor Bauer Gekuehltes Gleitlager
GB264105A (en) * 1926-10-02 1927-01-13 Krupp Fried Grusonwerk Ag Improvements in or relating to bearings for the journals of shafts and rollers
GB1124147A (en) * 1966-08-04 1968-08-21 Sp Kb Skbars Device for removal of heat from spindle bearings
GB2121118A (en) * 1982-05-12 1983-12-14 Glyco Metall Werke Cooled plain bearing
EP0669465A2 (de) * 1995-05-24 1995-08-30 Maag Pump Systems AG Lageranordnung für eine Pumpenwelle einer Pumpe für das Fördern von Medien mit unterschiedlicher Viskosität
EP0607999B1 (de) 1994-02-17 1996-04-17 Maag Pump Systems AG Verfahren zur Kühlung der Welle eines Zahnradpumpen-Rotors
EP0715078A2 (de) 1996-02-09 1996-06-05 Maag Pump Systems AG Zahnradpumpe
US6210042B1 (en) * 1997-06-19 2001-04-03 Qian Wang Isothermal journal bearing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3134336A (en) * 1963-10-21 1964-05-26 Huffman Herman Martin Method and apparatus for pressure counterbalance in fluid machines
DE2421599A1 (de) * 1974-05-04 1975-11-13 Bosch Gmbh Robert Zahnradpumpe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE349786C (de) * 1919-04-23 1922-03-09 Viktor Bauer Gekuehltes Gleitlager
GB264105A (en) * 1926-10-02 1927-01-13 Krupp Fried Grusonwerk Ag Improvements in or relating to bearings for the journals of shafts and rollers
GB1124147A (en) * 1966-08-04 1968-08-21 Sp Kb Skbars Device for removal of heat from spindle bearings
GB2121118A (en) * 1982-05-12 1983-12-14 Glyco Metall Werke Cooled plain bearing
EP0607999B1 (de) 1994-02-17 1996-04-17 Maag Pump Systems AG Verfahren zur Kühlung der Welle eines Zahnradpumpen-Rotors
EP0669465A2 (de) * 1995-05-24 1995-08-30 Maag Pump Systems AG Lageranordnung für eine Pumpenwelle einer Pumpe für das Fördern von Medien mit unterschiedlicher Viskosität
EP0715078A2 (de) 1996-02-09 1996-06-05 Maag Pump Systems AG Zahnradpumpe
US6210042B1 (en) * 1997-06-19 2001-04-03 Qian Wang Isothermal journal bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017218882B3 (de) * 2017-10-23 2019-01-24 Technische Universität Dresden Außenverzahnte Zahnradpumpe und Drehantrieb mit einer Zahnradpumpe
EP3955789A4 (de) * 2019-04-16 2023-03-01 Pitco Frialator, Inc. Wartungsfähige fluidpumpe
AU2020257169B2 (en) * 2019-04-16 2023-06-01 Pitco Frialator, Inc. Serviceable fluid pump
US11746781B2 (en) 2019-04-16 2023-09-05 Pitco Frialator, Inc. Serviceable fluid pump

Also Published As

Publication number Publication date
US6761546B2 (en) 2004-07-13
KR20030026254A (ko) 2003-03-31
EP1295036A1 (de) 2003-03-26
ES2213706T3 (es) 2004-09-01
KR100807155B1 (ko) 2008-02-27
JP2004502080A (ja) 2004-01-22
JP5075315B2 (ja) 2012-11-21
DE10031470A1 (de) 2002-01-10
US20030147765A1 (en) 2003-08-07
EP1295036B1 (de) 2004-01-28
RU2263822C2 (ru) 2005-11-10
AU2001276356A1 (en) 2002-01-08
DE50101412D1 (de) 2004-03-04
ATE258652T1 (de) 2004-02-15

Similar Documents

Publication Publication Date Title
WO2002001072A1 (de) Zahnradpumpe
EP0875356B1 (de) Mehrwellen-Schneckenmaschine, insbesondere Zwei-Wellen-Extruder
EP2852485B1 (de) Mehrwellenextruder mit selbstreinigenden förderwellen
WO1999019631A1 (de) Schraubenvakuumpumpe mit rotoren
EP0290663B1 (de) Ein- oder mehrstufige Zweiwellenvakuumpumpe
EP1855009B1 (de) Drehkolbenmaschine
DE1806149A1 (de) Dichtung an Zahnradpumpen
DE202020103939U1 (de) Gegengewicht für einen Verdichter, Motor für einen Verdichter und Verdichter
DE102009019418B4 (de) Umlaufverdrängerpumpe mit verbesserter Lagerschmierung
EP0233372B1 (de) Kühlsystem einer Rotationskolbenbrennkraftmaschine
DE579079C (de) Umlaufende Pumpe mit auf dem Laeufer angeordneten, ineinandergreifenden, schraubengangfoermigen Vorspruengen und Aussparungen
DE102005012040A1 (de) Rotor und Schraubenvakuumpumpe
EP2902629B1 (de) Vakuumpumpe mit schmiermittelkühlvorrichtung
DE10107264A1 (de) Ausgleichsgetriebe mit einer Schmiervorrichtung
DE102018112492B3 (de) Schraubenspindelpumpe
AT207033B (de) Schraubenradmaschine, insbesondere Schraubenradkompressor
DE2857227A1 (de) Fluessigkeitsringpumpe
DE3614626C2 (de)
DE9421528U1 (de) Fluidpumpe
DE868329C (de) Gehaeuse, insbesondere fuer Verdichter mit Schraubenraedern
EP0220383A1 (de) Drehkolbenmaschine
AT280796B (de) Mehrstufige Kreiselpumpe
AT207495B (de) Schraubenradmaschine, insbesondere Schraubenradkompressor
AT203615B (de) Schraubenradmaschine, insbesondere Schraubenradkompressor
AT126466B (de) Radialdrucklager.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001953970

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10297789

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/1532/KOL

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2002 506367

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020027017757

Country of ref document: KR

ENP Entry into the national phase

Ref country code: RU

Ref document number: RU A

Ref document number: 2002133440

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2001953970

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027017757

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001953970

Country of ref document: EP