EP2902629B1 - Vakuumpumpe mit schmiermittelkühlvorrichtung - Google Patents

Vakuumpumpe mit schmiermittelkühlvorrichtung Download PDF

Info

Publication number
EP2902629B1
EP2902629B1 EP14197103.6A EP14197103A EP2902629B1 EP 2902629 B1 EP2902629 B1 EP 2902629B1 EP 14197103 A EP14197103 A EP 14197103A EP 2902629 B1 EP2902629 B1 EP 2902629B1
Authority
EP
European Patent Office
Prior art keywords
lubricant
vacuum pump
hollow body
pump according
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14197103.6A
Other languages
English (en)
French (fr)
Other versions
EP2902629A1 (de
Inventor
Peter Huber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP2902629A1 publication Critical patent/EP2902629A1/de
Application granted granted Critical
Publication of EP2902629B1 publication Critical patent/EP2902629B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type

Definitions

  • the invention relates to a vacuum pump with the features of the preamble of claim 1.
  • Vacuum pumps which have a lubricant-lubricated rolling bearing to support waves rotatably.
  • the shafts are synchronized by a gear with synchronizing gears, so that pistons connected to the shafts roll over one another with a small gap without contact.
  • a centrifugal disk mounted on one of the shafts dips and lubricates lubricant and distributed in the space in which rolling bearings and / or synchronizing gears are arranged.
  • Vacuum pumps should have ever more compact pump housings high power density. Cooling of the pump housing in general and of the lubricant in particular via convection is a challenge because of the relatively small exterior surface of the housing and despite its ribbing. While housing components generally survive temperatures above 100 ° C. without damage, equipment at elevated temperatures reaches its limits , These resources age prematurely and wear components that depend on optimal lubricant properties. Components such as gear wheels, rolling bearings and also touching seals have a shortened service life. As a result, service intervals are getting shorter.
  • the prior art ( DE 10 2005 033 084 A1 ) includes an oil-injected compressor with oil temperature control means. According to this prior art, a simple cooling circuit is provided, which supplies the oil from an oil reservoir to a cooling device.
  • the technical problem underlying the invention is to provide a vacuum pump with which a better cooling of the lubricant is possible.
  • the vacuum pump according to the invention with a shaft, with a shaft axis, a space for receiving a lubricant filling, at least one arranged on the shaft gear with at least one rolling bearing for rotatably supporting the shaft, with a lubricant pump for transporting the lubricant in a lubricant circuit, wherein the lubricant circuit at least an outlet, wherein the outlet for wetting the at least a gear and / or the at least one rolling bearing is formed with the lubricant, or wherein the outlet is formed as a supply of the lubricant in the lubricant filling, characterized in that in the lubricant circuit at least one branch is provided and that the at least one branch with at least one cooling device for cooling the lubricant is connected and that the lubricant circuit, consisting of the lubricant pump and the lubricant line has a branch, which leads via a lubricant line to a cooling device.
  • the device according to the invention has the advantage that the lubricant passes through an additional lubricant circuit and / or an additional cooling device for cooling the lubricant and is thus cooled better than in the vacuum pumps belonging to the prior art.
  • the at least one branch is connected to at least one existing or at least one additional cooling device. It is possible to pass the lubricant through an additional cooling device to achieve a cooling of the lubricant. However, it is also possible to use already existing cooling devices, for example a fan, which cools the housing of the vacuum pump, for cooling the lubricant.
  • the cooling device is formed from a lubricant line with at least one arranged in the lubricant line direction-changing portion.
  • This section can, for example, at least one turn, at least one sheet and / or consist of at least one meandering section. Other embodiments are also possible.
  • This design of the cooling device increases the surface area of the lubricant line. By increasing the length of the cooling line and the cooling effective surface, the lubricant can be brought to the required temperature depending on the ambient conditions, that is to be cooled.
  • a further advantageous embodiment of the invention provides to form the cooling device as a hollow body.
  • the lubricant is advantageously injected into the hollow body. It is thus distributed to an inner wall of the hollow body and in this case gives off heat to the housing of the hollow body.
  • the hollow body can be additionally cooled from the outside by means of air or a liquid.
  • the hollow body may advantageously be spherical or cuboidal or cone-shaped or else formed in another geometrical spatial form.
  • the hollow body may be formed for example as a double cone or the like.
  • the hollow body is formed from at least two identical parts. As a result, an inexpensive production of the hollow body is ensured.
  • structures for retaining the lubricant in the hollow body may, for example, be arranged spirally in the hollow body. They are advantageously arranged on the inner wall of the hollow body, so that the lubricant, which is distributed on the inner wall of the hollow body, slows down on the inner wall of the hollow body due to gravity expires and thus remains in contact with the housing wall of the hollow body longer. As a result, an improved heat exchange between the lubricant and the housing of the hollow body is possible.
  • the structures in the hollow body may be formed, for example, as grooves or protrusions. It is also possible to provide other designs, for example in the form of noses.
  • the hollow body has an outlet which is arranged in the direction of gravity of the lubricant.
  • This embodiment has the advantage that the lubricant leaves the hollow body due to gravity, after it has been injected into the hollow body.
  • the lubricant is then either returned to the coolant circuit or it is passed directly to the at least one gear and / or the at least one rolling bearing or back into the lubricant reservoir.
  • the material of the hollow body is designed such that it has a high thermal conductivity, so that the effectiveness of the heat exchange is increased.
  • the oil is injected against the inner surface of the hollow body, cools there and flows back.
  • the hollow body is advantageously mounted at a location above the inlet to the housing of the vacuum pump. The hollow body does not have to be in the immediate vicinity of the lubricant pump.
  • the hollow body with a double wall and to allow an additional coolant to flow through between the walls.
  • the parts of the hollow body made of identical parts in order to reduce costs.
  • the structure in the interior of the hollow body on the one hand has the task of keeping the lubricant longer in the hollow body. At the same time, however, a filter effect also occurs, so that dirt particles present in the lubricant settle in the structures.
  • the hollow body is advantageously cleaned in this case from time to time.
  • the parts of the hollow body are made of identical parts, the parts can also be stacked as needed in several layers to be used as a heat exchanger with variable power.
  • the hollow body with a plurality of chambers.
  • the lubricant is arranged in the inner chamber.
  • cooling water or another cooling medium is performed. Due to the good heat connection, the equipment in the second chamber can be effectively cooled. Compared to the cooling of the entire pump, the power requirement is reduced.
  • the active cooling of the equipment can be retrofitted with minimal effort to meet changed operating parameters or to compensate for previously misjudged conditions of novel processes.
  • the cooling device is formed from at least one component with a heat exchanger function.
  • the cooling device is formed from at least one baffle, the at least one baffle is hollow and the at least one baffle is formed as a through-flow of the lubricant baffle.
  • the cooling device has at least one fan for cooling the at least one component or the at least one guide plate and at least one housing component and / or at least one motor of the vacuum pump.
  • the housing and / or the motor are cooled by vacuum pumps via cooling fins on the housing.
  • fans are usually provided, which circulate air, so that the air flows past the cooling fins.
  • baffles are often provided. According to the invention, these baffles are hollow and the lubricant is passed through the baffles. The baffles thus represent simultaneously a cooling device for the lubricant.
  • An embodiment of the invention provides that the at least one guide plate has a wavy surface.
  • the at least one guide plate is formed from identical parts.
  • the pump housing is cooled by forced convection.
  • Part of the baffles used is advantageously replaced by two flat equal parts with wavy surface and approximately constant wall thickness.
  • the oil flow is now promoted by the volume between the two parts.
  • the already generated airflow can be used in this way to cool both the housing exterior surface of the pump housing and the lubricant.
  • a high conductivity material supports the effect.
  • Parts made of aluminum can be produced by die casting or other methods. In this embodiment, a lower flow resistance occurs compared to a pipe of the same surface.
  • additional functionality is achieved through filter elements that are easy to clean or replace in operation without stopping.
  • the vacuum pump is advantageously designed as a backing pump. According to a particularly preferred embodiment, the vacuum pump is designed as a Roots piston pump.
  • Fig. 1 shows a vacuum pump 1, the housing having a plurality of sections, in particular a gear compartment section 10, a pump chamber section 12 and a distribution space section 14.
  • the housings of the individual sections 10, 12, 14 can be made separately. Alternatively, a plurality of sections can be arranged together in a housing part.
  • a suction opening 2 provided in the pump chamber section 12 allows the vacuum pump 1 to suck fluid in its pump chamber 2.
  • the fluid is ejected through an ejection opening 4 likewise provided in the pump chamber section 12.
  • feet 6 are provided.
  • the suction or discharge opening 2, 4 forming part of the housing for example, by appropriate design of the respective flange, be designed so that hereby the assembly of the vacuum pump takes place.
  • a shaft 30 is arranged, which is rotatably supported by a rolling bearing 32.
  • a piston 36 is mounted or made integral with her.
  • the piston 36 causes the pumping effect upon rotation of the shaft 30.
  • the shaft is rotated by a drive 38, for example an asynchronous motor, which is connected to the shaft 30 via a magnetic coupling 40.
  • a synchronizing gear 50 is provided in a space provided in the gear room section 10, which cooperates with a not visible in this illustration second synchronizing gear on a second wave also not visible such that both waves with the same frequency, but opposite direction of rotation move each other.
  • the synchronizing gear 50 and the rolling bearing 32 must be supplied with lubricant.
  • a lubricant filling quantity 72 is provided in the space 20.
  • a lubricant pump 60 delivers lubricant from an inlet 80 through a lubricant line 82.
  • the lubricant line 82 has an outlet 84. The lubricant can flow out of the outlet 84 directly on the synchronizing gear 50 and lubricate this.
  • An additional outlet may also be provided to lubricate the rolling bearing 32 in the same manner.
  • a return 54 is provided to supply lubricant from the roller bearing 32 back to the lubricant filling amount 72.
  • the return 54 has for this purpose an outlet 58.
  • a second space 22 is provided, in which a centrifugal wheel 70 dips into a drive-side lubricant filling 74.
  • lubricant is distributed in the second space and fed to the rolling bearing 34. From this it passes through a return 64, which opens into an outlet 68, back to the lubricant filling 74.
  • the lubricant circuit consisting of the lubricant pump 60 and the lubricant line 82 has a branch 86, which leads via a lubricant line 90 to a cooling device 88.
  • the cooling device 88 consists of a tube with several turns, whereby the cooling effective surface is increased.
  • air 92 can be supplied for cooling the cooling device 88.
  • the lubricant line 90 has an outlet 94, which supplies the lubricant again the lubricant charge 72.
  • the outlet 94 may also be arranged to supply the synchronizing gear 50 and / or the rolling bearing 32 with the cooled lubricant.
  • the lubricant circuits consisting of the lubricant pump 60, the lubricant lines 82, 90, the cooling device 88 and the branch 86 are shown only schematically.
  • Fig. 2 shows a modified embodiment with a vacuum pump 1. The same parts are provided with the same reference numerals.
  • Fig. 2 The lubricant circuit consisting of the lubricant pump 60 and the lubricant line 82 to the outlet 84 above the synchronizing gear 50.
  • a branch 86 is provided, which promotes the lubricant into a hollow body 100.
  • the hollow body 100 is spherical.
  • Lubricant is conveyed by the oil pump 60 into the hollow body 100.
  • the lubricant is distributed in the hollow body 100 on an inner wall 102.
  • An outlet 104 of the hollow body is arranged in the direction of gravity of the lubricant, so that under the action of gravity, the lubricant from the volume can get back into the space 20.
  • the additional surface of the hollow body 100 supports the release of heat to the environment.
  • a material of high thermal conductivity increases the effectiveness.
  • the lubricant is injected against the inner wall 102 of the hollow body 100, cools and flows back.
  • the hollow body 100 is mounted at a location above an inlet 106 of the housing 10 and need not be in the immediate vicinity of the lubricant pump 60.
  • a branch 86 is provided in the lubricant circuit, which leads to a hollow body 108.
  • the hollow body 108 is cube-shaped. It is also possible to design the hollow body 108 as a double cone, as a tetrahedron or as a pyramid.
  • the lubricant is injected into the hollow body 108 by the pressure built up by the lubricant pump 60. There it is distributed to the inner wall 110, as to Fig. 2 described.
  • the lubricant cooled in the hollow body 108 is returned to the lubricant line 82 and reaches the outlet 84.
  • the lubricant mixes with the relatively warm lubricant coming from the oil pump 60, so that cooling of the total lubricant is effected.
  • Fig. 4 shows the hollow body 108.
  • a spiral-shaped structure 112 is arranged on the inner wall 110 of the hollow body 108.
  • the structure 112 may also be groove-shaped.
  • the structure 112 increases the residence time of the lubricant in the hollow body 108 and can simultaneously have a filtering effect.
  • a modified embodiment of the hollow body 108 is shown.
  • the hollow body 108 again has the structure 112 on its inner wall 110.
  • a second housing 114 which surrounds the hollow body 108, is provided.
  • a coolant (not shown) is guided to additionally cool the hollow body 108.
  • Fig. 6 shows the vacuum pump 1 with the lubricant pump 60 and the schematically illustrated lubricant circuit having the lubricant line 82 and the outlet 84.
  • a branch 86 is arranged, which leads into an additional lubricant line 118.
  • the lubricant is fed to a hollow guide plate 120 or other component with the function of a heat exchanger.
  • a fan 122 which is also shown only schematically, is provided for cooling the housing 10. The fan simultaneously cools the guide plate 120 and thus the guided in the baffle 120 lubricant.
  • the lubricant is supplied to the lubricant line 82 where it mixes with the lubricant coming from the lubricant pump 60 and becomes the synchronizing gear via the outlet 84 50 or if necessary the rolling bearing 32 or directly supplied to the lubricant supply 72.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

  • Die Erfindung betrifft eine Vakuumpumpe mit den Merkmalen des Oberbegriffes des Anspruches 1.
  • Aus dem Stand der Technik ( DE 10 2010 045 880 A1 ) sind Vakuumpumpen bekannt, die eine schmiermittelgeschmierte Wälzlagerung aufweisen, um Wellen drehbar zu unterstützen. Bei einer Mehrzahl von Wellen, beispielsweise bei Wälzkolbenpumpen, werden die Wellen durch ein Getriebe mit Synchronzahnrädern synchronisiert, so dass mit den Wellen verbundene Kolben berührungsfrei mit engem Spalt aufeinander abwälzen.
  • Zur ausreichenden Schmiermittelversorgung ist bekannt, ein Schmiermittelreservoir vorzusehen, in welches eine auf einer der Wellen befestigte Schleuderscheibe eintaucht und Schmiermittel aufwirbelt und in dem Raum verteilt, in dem Wälzlager und/oder Synchronzahnräder angeordnet sind.
  • Vakuumpumpen sollen immer kompaktere Pumpengehäuse hoher Leistungsdichte aufweisen. Hierbei stellt die Kühlung des Pumpengehäuses im Allgemeinen und des Schmiermittels im Besonderen über Konvektion wegen der relativ geringen Gehäuseaußenfläche und trotz deren Verrippung eine Herausforderung dar. Während Gehäusebauteile Temperaturen über 100 °C in der Regel ohne Schaden überstehen, stoßen Betriebsmittel bei erhöhten Temperaturen an ihre Grenzen. Diese Betriebsmittel altern vorzeitig und Bauteile, die von optimalen Schmiermitteleigenschaften abhängig sind, verschleißen. Bauteile wie Getriebezahnräder, Wälzlager und auch berührende Dichtungen weisen eine verkürzte Lebensdauer auf. Hierdurch werden Serviceintervalle immer kürzer.
  • Zum Stand der Technik ( DE 10 2005 033 084 A1 ) gehört ein öleingespritzter Verdichter mit Mitteln zur Öltemperaturregelung. Gemäß diesem Stand der Technik ist ein einfacher Kühlkreislauf vorgesehen, der das Öl aus einem Ölvorrat einer Kühlvorrichtung zuführt.
  • Weiterhin gehört zum Stand der Technik ( EP 0 290 663 A1 ) eine ein- oder mehrstufige Zweiwellenvakuumpumpe, die einen Kühlmittelkreislauf aufweist, bestehend aus einer Kühlmittelleitung, einem Wärmetauscher, einer Kühlmittelpumpe und mehreren Kühlleitungen, die in Hohlräume von Wellen führen. Das gesamte Kühlmittel wird durch den Wärmetauscher (81) geführt. Diese Ausführungsform weist den Nachteil auf, dass die Fließgeschwindigkeit des Kühlmittels in dem Kühlmittelkreislaufes deutlich verlangsamt ist, da das gesamte Kühlmittel den Wärmetauscher durchlaufen muss. Hierdurch kann sich das Kühlsystem bei sehr hohen Temperaturen trotz Wärmetauscher aufwärmen.
  • Das der Erfindung zugrunde liegende technische Problem besteht darin, eine Vakuumpumpe anzugeben, mit der eine bessere Kühlung des Schmiermittels möglich ist.
  • Dieses technische Problem wird durch eine Vakuumpumpe mit den Merkmalen gemäß Anspruch 1 gelöst.
  • Die erfindungsgemäße Vakuumpumpe mit einer Welle, mit einer Wellenachse, einem Raum zur Aufnahme einer Schmiermittelfüllmenge, wenigstens einem auf der Welle angeordneten Zahnrad mit wenigstens einem Wälzlager zur drehbaren Unterstützung der Welle, mit einer Schmiermittelpumpe zum Transport des Schmiermittels in einem Schmiermittelkreislauf, wobei der Schmiermittelkreislauf wenigstens einen Auslass aufweist, wobei der Auslass zur Benetzung des wenigstens einen Zahnrades und/oder des wenigstens einen Wälzlagers mit dem Schmiermittel ausgebildet ist, oder wobei der Auslass als Zuführung des Schmiermittels in die Schmiermittelfüllmenge ausgebildet ist, zeichnet sich dadurch aus, dass in dem Schmiermittelkreislauf wenigstens ein Abzweig vorgesehen ist und dass der wenigstens eine Abzweig mit wenigstens einer Kühlvorrichtung zur Kühlung des Schmiermittels verbunden ist und dass der Schmiermittelkreislauf, bestehend aus der Schmiermittelpumpe und der Schmiermittelleitung einen Abzweig aufweist, der über eine Schmiermittelleitung zu einer Kühlvorrichtung führt.
  • Die erfindungsgemäße Vorrichtung weist den Vorteil auf, dass das Schmiermittel einen zusätzlichen Schmiermittelkreislauf und/oder eine zusätzliche Kühlvorrichtung zur Kühlung des Schmiermittels durchläuft und so besser als bei den zum Stand der Technik gehörenden Vakuumpumpen gekühlt wird.
  • Vorteilhaft wird der wenigstens eine Abzweig mit wenigstens einer vorhandenen oder wenigstens einer zusätzlichen Kühlvorrichtung verbunden. Es besteht die Möglichkeit, das Schmiermittel durch eine zusätzliche Kühlvorrichtung zu leiten, um eine Abkühlung des Schmiermittels zu erreichen. Es besteht jedoch auch die Möglichkeit, schon vorhandene Kühlvorrichtungen, beispielsweise einen Lüfter, der das Gehäuse der Vakuumpumpe kühlt, zur Kühlung des Schmiermittels mitzuverwenden.
  • Gemäß einer vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass die Kühlvorrichtung aus einer Schmiermittelleitung mit wenigstens einem in der Schmiermittelleitung angeordneten richtungsändernden Teilstück gebildet ist. Dieses Teilstück kann beispielsweise aus wenigstens einer Windung, wenigstens einem Bogen und/oder wenigstens einem mäanderförmigen Teilstück bestehen. Andere Ausgestaltungen sind ebenfalls möglich.
  • Durch diese Ausbildung der Kühlvorrichtung wird die Oberfläche der Schmiermittelleitung vergrößert. Durch die Vergrößerung der Länge der Kühlleitung und der kühlwirksamen Oberfläche kann das Schmiermittel in Abhängigkeit von den Umgebungsbedingungen auf die erforderliche Temperatur gebracht, das heißt gekühlt werden.
  • Eine weitere vorteilhafte Ausführungsform der Erfindung sieht vor, die Kühlvorrichtung als Hohlkörper auszubilden. Das Schmiermittel wird vorteilhaft in den Hohlkörper eingespritzt. Es verteilt sich somit an einer Innenwand des Hohlkörpers und gibt hierbei Wärme an das Gehäuse des Hohlkörpers ab. Der Hohlkörper kann zusätzlich von außen mittels Luft oder einer Flüssigkeit gekühlt werden.
  • Der Hohlkörper kann vorteilhaft kugelförmig oder quaderförmig oder kegelförmig oder auch in einer anderen geometrischen Raumkörperform ausgebildet sein.
  • Der Hohlkörper kann beispielsweise als Doppelkegel oder dergleichen ausgebildet sein.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist der Hohlkörper aus wenigstens zwei Gleichteilen gebildet. Hierdurch ist eine preiswerte Herstellung des Hohlkörpers gewährleistet.
  • Gemäß einer besonders bevorzugten Ausführungsform der Erfindung ist vorgesehen, in dem Hohlkörper Strukturen zum Rückhalten des Schmiermittels anzuordnen. Diese Strukturen können beispielsweise spiralförmig in dem Hohlkörper angeordnet sein. Sie sind vorteilhaft an der Innenwand des Hohlkörpers angeordnet, so dass das Schmiermittel, welches sich an der Innenwand des Hohlkörpers verteilt, verlangsamt an der Innenwand des Hohlkörpers aufgrund der Schwerkraft abläuft und somit länger in Kontakt mit der Gehäusewand des Hohlkörpers bleibt. Hierdurch ist ein verbesserter Wärmeaustausch zwischen Schmiermittel und Gehäuse des Hohlkörpers möglich.
  • Die Strukturen in dem Hohlkörper können beispielsweise als Rillen oder Vorsprünge ausgebildet sein. Es ist auch möglich, andere Gestaltungsformen, beispielsweise in Form von Nasen vorzusehen.
  • Gemäß einer weiteren vorteilhaften Ausführungsform weist der Hohlkörper einen Auslass auf, der in Schwerkraftrichtung des Schmiermittels angeordnet ist.
  • Diese Ausführungsform hat den Vorteil, dass das Schmiermittel aufgrund der Schwerkraft den Hohlkörper verlässt, nachdem es in den Hohlkörper eingespritzt worden ist.
  • Das Schmiermittel wird anschließend entweder wieder dem Kühlmittelkreislauf zugeführt oder es wird unmittelbar auf das wenigstens eine Zahnrad und/oder das wenigstens eine Wälzlager oder zurück in den Schmiermittelvorrat geleitet.
  • Vorteilhaft ist das Material des Hohlkörpers derart ausgebildet, dass es eine hohe Wärmeleitfähigkeit aufweist, so dass die Effektivität des Wärmeaustausches erhöht wird. Das Öl wird gegen die Innenfläche des Hohlkörpers gespritzt, kühlt dort ab und fließt zurück. Der Hohlkörper wird vorteilhaft an einer Stelle oberhalb des Einlasses am Gehäuse der Vakuumpumpe angebracht. Der Hohlkörper muss nicht in direkter Nähe der Schmiermittelpumpe liegen.
  • Es besteht auch die Möglichkeit, den Hohlkörper mit einer doppelten Wand auszubilden und zwischen den Wänden ein zusätzliches Kühlmittel durchströmen zu lassen. Besonders vorteilhaft bestehen die Teile des Hohlkörpers aus Gleichteilen, um die Kosten zu senken.
  • Die Struktur im Inneren des Hohlkörpers hat zum einen die Aufgabe, das Schmiermittel länger in dem Hohlkörper zu halten. Gleichzeitig tritt jedoch auch eine Filterwirkung ein, so dass sich in dem Schmiermittel vorhandene Schmutzpartikel in den Strukturen absetzen. Der Hohlkörper wird in diesem Fall vorteilhaft von Zeit zu Zeit gereinigt.
  • Werden die Teile des Hohlkörpers aus Gleichteilen hergestellt, können die Teile nach Bedarf auch in mehreren Lagen gestapelt werden, um als Wärmetauscher mit variabler Leistung genutzt zu werden.
  • Es besteht auch die Möglichkeit, den Hohlkörper mit mehreren Kammern auszubilden. In der inneren Kammer wird das Schmiermittel angeordnet. Durch das zweite eingeschlossene Volumen wird Kühlwasser oder ein anderes Kühlmedium geführt. Durch die gute Wärmeanbindung kann das Betriebsmittel in der zweiten Kammer effektiv gekühlt werden. Gegenüber der Kühlung der gesamten Pumpe ist der Leistungsbedarf verringert. Die aktive Kühlung des Betriebsmittels kann mit minimalem Aufwand nachgerüstet werden, um veränderten Betriebsparametern gerecht zu werden oder vorab falsch eingeschätzte Bedingungen neuartiger Prozesse zu kompensieren.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist die Kühlvorrichtung aus wenigstens einem Bauteil mit einer Wärmetauscherfunktion gebildet.
  • Gemäß einer besonders bevorzugten Ausführungsform der Erfindung ist die Kühlvorrichtung aus wenigstens einem Leitblech gebildet, das wenigstens eine Leitblech ist hohl ausgebildet und das wenigstens eine Leitblech ist als ein von dem Schmiermittel durchströmbares Leitblech ausgebildet.
  • Vorteilhaft weist die Kühlvorrichtung wenigstens einen Lüfter zur Kühlung des wenigstens einen Bauteiles oder des wenigstens einen Leitbleches und wenigstens eines Gehäusebauteiles und/oder wenigstens eines Motors der Vakuumpumpe auf.
  • Häufig werden Gehäuse und/oder der Motor von Vakuumpumpen über Kühlrippen an dem Gehäuse gekühlt. Hierzu sind in der Regel Lüfter vorgesehen, die Luft zirkulieren lassen, damit die Luft an den Kühlrippen vorbeiströmt. Zur effektiven Zuleitung der Luft von dem Lüfter zu den Kühlrippen sind häufig Leitbleche vorgesehen. Gemäß der Erfindung sind diese Leitbleche hohl ausgebildet und das Schmiermittel wird durch die Leitbleche durchgeleitet. Die Leitbleche stellen somit gleichzeitig eine Kühlvorrichtung für das Schmiermittel dar.
  • Eine Ausführungsform der Erfindung sieht vor, dass das wenigstens eine Leitblech eine wellige Oberfläche aufweist. Vorteilhaft ist das wenigstens eine Leitblech aus Gleichteilen gebildet.
  • Das Pumpengehäuse wird über eine erzwungene Konvektion gekühlt. Ein Teil der verwendeten Leitbleche wird vorteilhaft durch je zwei flächige Gleichteile mit welliger Oberfläche und annähernd konstanter Wandstärke ersetzt. Der Ölstrom wird nun durch das Volumen zwischen den beiden Teilen gefördert. Der ohnehin erzeugte Luftstrom kann so genutzt werden, um sowohl die Gehäuseaußenfläche des Pumpengehäuses als auch das Schmiermittel zu kühlen. Ein Material hoher Leitfähigkeit unterstützt die Wirkung. Teile aus Aluminium können über Druckguss oder auch andere Verfahren hergestellt werden. Bei dieser Ausführungsform tritt ein geringerer Strömungswiderstand im Vergleich zu einem Rohr gleicher Oberfläche auf. Darüber hinaus erreicht man eine zusätzliche Funktionalität durch Filterelemente, die leicht im Betrieb ohne Stillstand zu reinigen oder auszutauschen sind.
  • Die Vakuumpumpe ist vorteilhaft als Vorvakuumpumpe ausgebildet. Gemäß einer besonders bevorzugten Ausführungsform ist die Vakuumpumpe als Wälzkolbenpumpe ausgebildet.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich anhand der zugehörigen Zeichnung, in der mehrere Ausführungsbeispiele einer erfindungsgemäßen Vakuumpumpe nur beispielhaft dargestellt sind. In der Zeichnung zeigen:
  • Fig. 1
    einen schematischen Längsschnitt durch eine Vakuumpumpe mit einer ersten Schmiermittelkühlung;
    Fig. 2
    einen schematischen Längsschnitt durch eine Vakuumpumpe mit einer zweiten Schmiermittelkühlung;
    Fig. 3
    einen schematischen Längsschnitt durch eine Vakuumpumpe mit einer dritten Schmiermittelkühlung;
    Fig. 4
    eine Einzelheit der Fig. 3;
    Fig. 5
    eine geänderte Einzelheit der Fig. 3;
    Fig. 6
    einen schematischen Längsschnitt durch eine Vakuumpumpe mit einer vierten Schmiermittelkühlung.
  • Fig. 1 zeigt eine Vakuumpumpe 1, deren Gehäuse mehrere Abschnitte aufweist, insbesondere einen Getrieberaumabschnitt 10, einen Schöpfraumabschnitt 12 und einen Verteilungsraumabschnitt 14. Die Gehäuse der einzelnen Abschnitte 10, 12, 14 können getrennt ausgeführt sein. Alternativ können mehrere Abschnitte in einem Gehäuseteil zusammen angeordnet werden. Eine im Schöpfraumabschnitt 12 vorgesehene Ansaugöffnung 2 erlaubt der Vakuumpumpe 1 Fluid in ihrem Schöpfraum 2 anzusaugen. Ausgestoßen wird das Fluid durch eine ebenfalls im Schöpfraumabschnitt 12 vorgesehene Ausstoßöffnung 4. Als Montagemittel sind Füße 6 vorgesehen. Alternativ oder zusätzlich kann der die Ansaug- oder Ausstoßöffnung 2, 4 bildende Teil des Gehäuses, beispielsweise durch geeignete Gestaltung des jeweiligen Flansches, so gestaltet sein, dass hierüber die Montage der Vakuumpumpe erfolgt.
  • Innerhalb der Vakuumpumpe 1 ist eine Welle 30 angeordnet, die von einem Wälzlager 32 drehbar unterstützt wird. Auf dem den Schöpfraum 12 durchsetzenden Teil der Welle 30 ist ein Kolben 36 angebracht oder einteilig mit ihr ausgeführt. Der Kolben 36 bewirkt bei Drehung der Welle 30 den Pumpeffekt. Die Drehung der Welle erfolgt durch einen Antrieb 38, beispielsweise einen Asynchronmotor, der über eine Magnetkupplung 40 mit der Welle 30 verbunden ist. Eine solche Anordnung erlaubt die hermetisch dichte Trennung von Umgebung und Pumpeninnenraum, insbesondere der Schmiermittel beinhaltenden Gehäuseabschnitte. An einem dem Antrieb abgewandten Ende der Welle 30 ist in einem im Getrieberaumabschnitt 10 vorgesehenen Raum 20 ein Synchronzahnrad 50 vorgesehen, welches mit einem in dieser Darstellung nicht sichtbaren zweiten Synchronzahnrad auf einer ebenfalls nicht sichtbaren zweiten Welle derart zusammenwirkt, dass sich beide Wellen mit gleicher Frequenz, aber entgegengesetztem Drehsinn zueinander bewegen.
  • Das Synchronzahnrad 50 und das Wälzlager 32 müssen mit Schmiermittel versorgt werden. Hierzu ist im Raum 20 eine Schmiermittelfüllmenge 72 vorgesehen. Eine Schmiermittelpumpe 60 fördert Schmiermittel von einem Einlass 80 durch eine Schmiermittelleitung 82. Die Schmiermittelleitung 82 weist einen Auslass 84 auf. Das Schmiermittel kann aus dem Auslass 84 unmittelbar auf das Synchronzahnrad 50 ausströmen und dieses schmieren.
  • Es kann auch ein zusätzlicher Auslass (nicht dargestellt) vorgesehen sein, um das Wälzlager 32 in der gleichen Art und Weise zu schmieren. Hierfür ist ein Rücklauf 54 vorgesehen, um Schmiermittel von dem Wälzlager 32 wieder der Schmiermittelfüllmenge 72 zuzuführen. Der Rücklauf 54 weist hierzu einen Auslauf 58 auf.
  • Zwischen Antrieb und antriebsseitigem Wälzlager ist ein zweiter Raum 22 vorgesehen, in welchem ein Schleuderrad 70 in eine antriebsseitige Schmiermittelfüllmenge 74 eintaucht. Hierdurch wird Schmiermittel im zweiten Raum verteilt und dem Wälzlager 34 zugeführt. Von diesem gelangt es durch einen Rücklauf 64, der in einem Auslauf 68 mündet, zur Schmiermittelfüllmenge 74 zurück.
  • Grundsätzlich besteht die Möglichkeit, auch in dem Raum 20 ein Schleuderrad anzuordnen. Gleichfalls ist es möglich, im antriebsseitigen Raum 22 eine Schmiermittelpumpe und einen Schmiermittelkreislauf vorzusehen.
  • Um ein Überhitzen des Schmiermittels 72 zu vermeiden, weist der Schmiermittelkreislauf, bestehend aus der Schmiermittelpumpe 60 und der Schmiermittelleitung 82 einen Abzweig 86 auf, der über eine Schmiermittelleitung 90 zu einer Kühlvorrichtung 88 führt.
  • Die Kühlvorrichtung 88 besteht aus einem Rohr mit mehreren Windungen, wodurch die kühlwirksame Oberfläche erhöht wird. Es kann zusätzlich Luft 92 zur Kühlung der Kühlvorrichtung 88 zugeführt werden.
  • Die Schmiermittelleitung 90 weist einen Auslass 94 auf, der das Schmiermittel wieder der Schmiermittelfüllmenge 72 zuführt. Der Auslass 94 kann auch derart angeordnet sein, dass er das Synchronzahnrad 50 und/oder das Wälzlager 32 mit dem gekühlten Schmiermittel versorgt.
  • Die Schmiermittelkreisläufe, bestehend aus der Schmiermittelpumpe 60, den Schmiermittelleitungen 82, 90, der Kühlvorrichtung 88 und dem Abzweig 86 sind lediglich schematisch dargestellt.
  • Fig. 2 zeigt ein geändertes Ausführungsbeispiel mit einer Vakuumpumpe 1. Gleiche Teile sind mit gleichen Bezugszahlen versehen.
  • Gemäß Fig. 2 führt der Schmiermittelkreislauf bestehend aus der Schmiermittelpumpe 60 und der Schmiermittelleitung 82 zu dem Auslass 84 oberhalb des Synchronzahnrades 50. In der Schmiermittelleitung 82 ist ein Abzweig 86 vorgesehen, der das Schmiermittel in einen Hohlkörper 100 fördert. Der Hohlkörper 100 ist kugelförmig ausgebildet. Schmiermittel wird von der Ölpumpe 60 in den Hohlkörper 100 gefördert. Das Schmiermittel verteilt sich in dem Hohlkörper 100 an einer Innenwand 102. Ein Auslass 104 des Hohlkörpers ist in Schwerkraftrichtung des Schmiermittels angeordnet, so dass unter der Wirkung der Schwerkraft das Schmiermittel aus dem Volumen zurück in den Raum 20 gelangen kann. Die zusätzliche Oberfläche des Hohlkörpers 100 unterstützt die Abgabe von Wärme an die Umgebung. Ein Material hoher Wärmeleitfähigkeit erhöht die Effektivität. Das Schmiermittel wird gegen die Innenwand 102 des Hohlkörpers 100 gespritzt, kühlt ab und fließt zurück.
  • Der Hohlkörper 100 wird an einer Stelle oberhalb eines Einlasses 106 des Gehäuses 10 angebracht und muss nicht in direkter Nähe der Schmiermittelpumpe 60 liegen.
  • Wie in Fig. 3 dargestellt, ist in dem Schmiermittelkreislauf ein Abzweig 86 vorgesehen, der zu einem Hohlkörper 108 führt. Der Hohlkörper 108 ist würfelförmig ausgebildet. Es ist auch möglich, den Hohlkörper 108 als doppelten Kegel, als Tetraeder oder als Pyramide auszugestalten. Das Schmiermittel wird durch den von der Schmiermittelpumpe 60 aufgebauten Druck in den Hohlkörper 108 gespritzt. Dort verteilt es sich an der Innenwand 110, wie zur Fig. 2 beschrieben.
  • Gemäß Fig. 3 wird das in dem Hohlkörper 108 gekühlte Schmiermittel wieder der Schmiermittelleitung 82 zugeführt und gelangt zu dem Auslass 84.
  • Im Bereich des Abzweiges 86 vermischt sich das Schmiermittel mit dem von der Ölpumpe 60 kommenden relativ warmen Schmiermittel, so dass eine Kühlung des Gesamtschmiermittels bewirkt wird.
  • Fig. 4 zeigt den Hohlkörper 108. An der Innenwand 110 des Hohlkörpers 108 ist eine spiralförmige Struktur 112 angeordnet. Die Struktur 112 kann auch rillenförmig ausgebildet sein.
  • Die Struktur 112 erhöht die Verweildauer des Schmiermittels in dem Hohlkörper 108 und kann gleichzeitig eine filternde Wirkung haben.
  • Gemäß Fig. 5 ist ein geändertes Ausführungsbeispiel des Hohlkörpers 108 dargestellt. Der Hohlkörper 108 weist an seiner Innenwand 110 wiederum die Struktur 112 auf. Um eine zusätzliche Kühlung zu erreichen, ist ein zweites Gehäuse 114, welches den Hohlkörper 108 umschließt, vorgesehen. In einem Zwischenraum 116 wird ein Kühlmittel (nicht dargestellt) geführt, um den Hohlkörper 108 zusätzlich zu kühlen.
  • Fig. 6 zeigt die Vakuumpumpe 1 mit der Schmiermittelpumpe 60 und dem schematisch dargestellten Schmiermittelkreislauf, der die Schmiermittelleitung 82 und den Auslass 84 aufweist. In der Schmiermittelleitung 82 ist ein Abzweig 86 angeordnet, der in eine zusätzliche Schmiermittelleitung 118 führt. Über die Schmiermittelleitung 118 wird das Schmiermittel einem hohl ausgebildeten Leitblech 120 oder einem sonstigen Bauteil mit der Funktion eines Wärmetauschers zugeführt. Ein Lüfter 122, der ebenfalls lediglich schematisch dargestellt ist, ist zur Kühlung des Gehäuses 10 vorgesehen. Der Lüfter kühlt gleichzeitig das Leitblech 120 und damit das in dem Leitblech 120 geführte Schmiermittel. Über eine Schmiermittelleitung 124 wird das Schmiermittel der Schmiermittelleitung 82 zugeführt und vermischt sich dort mit dem von der Schmiermittelpumpe 60 kommenden Schmiermittel und wird über den Auslass 84 dem Synchronzahnrad 50 oder bei Bedarf dem Wälzlager 32 oder unmittelbar dem Schmiermittelvorrat 72 zugeführt.
  • Bezugszahlen
  • 1
    Vakuumpumpe
    2
    Ansaugöffnung
    4
    Ausstoßöffnung
    6
    Füße
    10
    Getrieberaumabschnitt
    12
    Schöpfraumabschnitt
    14
    Verteilungsraumabschnitt
    20
    Raum
    22
    Raum
    30
    Welle
    32
    Wälzlager
    34
    Wälzlager
    36
    Kolben
    38
    Antrieb
    40
    Magnetkupplung
    50
    Synchronzahnrad
    54
    Rücklauf
    58
    Auslauf
    60
    Schmiermittelpumpe
    64
    Rücklauf
    68
    Auslauf
    70
    Schleuderrad oder Schleuderscheibe
    72
    Schmiermittelfüllmenge
    74
    Schmiermittelfüllmenge
    80
    Einlass
    82
    Schmiermittelleitung
    84
    Auslass der Schmiermittelleitung 82
    86
    Abzweig
    88
    Kühlvorrichtung
    90
    Leitung
    92
    Lüfter / Luftstrom
    94
    Auslass
    100
    Hohlkörper
    102
    Innenwand
    104
    Auslass Hohlkörper
    106
    Einlass
    108
    Hohlkörper
    110
    Innenwand
    112
    Struktur
    114
    Gehäuse
    116
    Raum
    118
    Schmiermittelleitung
    120
    Leitblech
    122
    Lüfter
    124
    Schmiermittelleitung

Claims (15)

  1. Vakuumpumpe mit einer Welle (30) mit einer Wellenachse, einem Raum (20) zur Aufnahme einer Schmiermittelfüllmenge (72), wenigstens einem auf der Welle angeordneten Zahnrad (50), mit wenigstens einem Wälzlager (32) zur drehbaren Unterstützung der Welle, mit einer Schmiermittelpumpe (60) zum Transport des Schmiermittels in einem Schmiermittelkreislauf (60, 82), wobei der Schmiermittelkreislauf wenigstens einen Auslass (84) aufweist, wobei der Auslass zur Benetzung des wenigstens einen Zahnrades und/oder des wenigstens einen Wälzlagers mit dem Schmiermittel ausgebildet ist, oder wobei der Auslass als Zuführung
    des Schmiermittels in die Schmiermittelfüllmenge (72) ausgebildet ist,
    dadurch gekennzeichnet, dass in dem Schmiermittelkreislauf (60, 82), bestehend aus der Schmiermittelpumpe (60) und der Schmiermittelleitung (82), wenigstens ein Abzweig (86) vorgesehen ist, und dass der wenigstens eine Abzweig (86) mit wenigstens einer Kühlvorrichtung (88, 100, 108, 120) zur Kühlung
    des Schmiermittels verbunden ist, und dass der wenigstens eine Abzweig (86) über eine Schmiermittelleitung (90, 118) zu der Kühlvorrichtung (88, 100, 108, 120) führt.
  2. Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet,
    dass der wenigstens eine Abzweig (86) mit wenigstens einer vorhandenen oder wenigstens einer zusätzlichen Kühlvorrichtung (88, 100, 108, 120, 122) verbunden ist.
  3. Vakuumpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kühlvorrichtung (88) aus einer Schmiermittelleitung (90) mit wenigstens einem in der Schmiermittelleitung angeordneten richtungsändernden Teilstück gebildet ist.
  4. Vakuumpumpe nach Anspruch 3, dadurch gekennzeichnet, dass die Kühlvorrichtung (88) aus einer Schmiermittelleitung (90) mit wenigstens einer Windung, wenigstens einem Bogen und/oder wenigstens einem mäanderförmigen Teilstück gebildet ist.
  5. Vakuumpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, das die Kühlvorrichtung als Hohlkörper (100, 108) ausgebildet ist.
  6. Vakuumpumpe nach Anspruch 5, dadurch gekennzeichnet, dass der Hohlkörper (100, 108, 120) aus wenigstens zwei Gleichteilen gebildet ist.
  7. Vakuumpumpe nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass in dem Hohlkörper (100, 108) Strukturen (112) zum Rückhalten des Schmiermittels angeordnet sind.
  8. Vakuumpumpe nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass der Hohlkörper (100, 108) einen Auslass aufweist, der in Schwerkraftrichtung des Schmiermittels angeordnet ist.
  9. Vakuumpumpe nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Kühlvorrichtung aus wenigstens einem Bauteil mit Wärmetauscherfunktion gebildet ist.
  10. Vakuumpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kühlvorrichtung aus wenigstens einem Leitblech (120) gebildet ist, dass das wenigstens eine Leitblech (120) hohl ausgebildet ist, und dass das wenigstens eine Leitblech (120) als ein von dem Schmiermittel durchströmbares Leitblech (120) ausgebildet ist.
  11. Vakuumpumpe nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Kühlvorrichtung wenigstens einen Lüfter (122) zur Kühlung des wenigstens einen Bauteiles oder des wenigstens einen Leitbleches (120) und wenigstens eines Gehäusebauteiles (10) und/oder wenigstens eines Motors der Vakuumpumpe (1) aufweist.
  12. Vakuumpumpe nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass das wenigstens eine Leitblech (120) eine wellige Oberfläche aufweist.
  13. Vakuumpumpe nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass das wenigstens eine Leitblech (120) aus Gleichteilen gebildet ist.
  14. Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vakuumpumpe (1) als Vorvakuumpumpe ausgebildet ist.
  15. Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vakuumpumpe (1) als Wälzkolbenpumpe ausgebildet ist.
EP14197103.6A 2014-01-30 2014-12-10 Vakuumpumpe mit schmiermittelkühlvorrichtung Active EP2902629B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014101113.9A DE102014101113A1 (de) 2014-01-30 2014-01-30 Vakuumpumpe

Publications (2)

Publication Number Publication Date
EP2902629A1 EP2902629A1 (de) 2015-08-05
EP2902629B1 true EP2902629B1 (de) 2019-08-21

Family

ID=52023284

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14197103.6A Active EP2902629B1 (de) 2014-01-30 2014-12-10 Vakuumpumpe mit schmiermittelkühlvorrichtung

Country Status (2)

Country Link
EP (1) EP2902629B1 (de)
DE (1) DE102014101113A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2597820A (en) * 2020-04-06 2022-02-09 Edwards Korea Ltd Pipe arrangement

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2178425A (en) * 1937-02-18 1939-10-31 Gen Electric Refrigerating machine
DE1021530B (de) * 1955-01-17 1957-12-27 Leybolds Nachfolger E Drehkolbengeblaese
DE2948992A1 (de) * 1979-12-05 1981-06-11 Karl Prof.Dr.-Ing. 3000 Hannover Bammert Rotorverdichter, insbesondere schraubenrotorverdichter, mit schmiermittelzufuhr zu und schmiermitteldrainage von den lagern
DE3216990A1 (de) * 1982-05-06 1983-11-10 Sihi Gmbh & Co Kg, 2210 Itzehoe Waelzkolbenpumpe
DE3786917D1 (de) * 1987-05-15 1993-09-09 Leybold Ag Ein- oder mehrstufige zweiwellenvakuumpumpe.
EP0758054B1 (de) * 1995-08-09 2001-03-07 SULZER-ESCHER WYSS GmbH Schmiersystem für Schraubenverdichtern
US6318959B1 (en) * 1998-12-22 2001-11-20 Unozawa-Gumi Iron Works, Ltd. Multi-stage rotary vacuum pump used for high temperature gas
JP2002115690A (ja) * 2000-10-12 2002-04-19 Toyota Industries Corp 真空ポンプにおける冷却構造
DE102005033084B4 (de) * 2005-07-15 2007-10-11 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Öleingespritzter Verdichter mit Mitteln zur Öltemperaturregelung
DE102010045880A1 (de) 2010-09-17 2012-03-22 Pfeiffer Vacuum Gmbh Vakuumpumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2597820A (en) * 2020-04-06 2022-02-09 Edwards Korea Ltd Pipe arrangement

Also Published As

Publication number Publication date
EP2902629A1 (de) 2015-08-05
DE102014101113A1 (de) 2015-07-30

Similar Documents

Publication Publication Date Title
DE3730966C2 (de) Hermetisch geschlossener Rotationskolbenkompressor mit horizontaler Antriebswelle
DE69727514T2 (de) Verdrängungsvakuumpumpe
DE102014113412B3 (de) Strömungsgekühlte Kühlmittelpumpe mit Nassläufer
WO1999019630A1 (de) Gekühlte schraubenvakuumpumpe
EP3482106B1 (de) Getriebe und verwendung eines ringkühlers
WO1999019631A1 (de) Schraubenvakuumpumpe mit rotoren
EP0290663B1 (de) Ein- oder mehrstufige Zweiwellenvakuumpumpe
EP1295036A1 (de) Zahnradpumpe
EP2952678B1 (de) Vakuumpumpe mit kühlrippen
WO2017055134A1 (de) Antriebseinheit und aggregat mit kühlung
EP2902629B1 (de) Vakuumpumpe mit schmiermittelkühlvorrichtung
EP1855009B1 (de) Drehkolbenmaschine
DE102017128551A1 (de) Rotor mit Kühlung
DE20302989U1 (de) Drehkolbenpumpe
EP2052158A1 (de) Rotorkühlung für trocken laufende zweiwellen-vakuumpumpen bzw. -verdichter
EP3638906A1 (de) Mehrstufige wälzkolbenpumpe
DE2331917A1 (de) Pumpaggregat
EP2957772B1 (de) Vakuumpumpe
WO2006097478A1 (de) Rotor und schraubenvakuumpumpe mit kühlnutkörper
EP3064775B1 (de) Vakuumpumpe sowie Verfahren zur Detektion eines Kontaktes zwischen wenigstens einem Rotor und einem Stator einer Vakuumpumpe
EP3623630B1 (de) Vakuumpumpe
EP3499039B1 (de) Schraubenvakuumpumpe
DE60318841T2 (de) Flüssigkeitsringverdichter
DE102014008293A1 (de) Leistungsanpassung bei einem Spindelkompressor
DE102012011822A1 (de) Spindelverdichter-Antrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160127

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180807

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190328

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014012443

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1170071

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191121

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191121

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191122

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014012443

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191210

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1170071

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141210

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231109

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231026

Year of fee payment: 10

Ref country code: FR

Payment date: 20231220

Year of fee payment: 10

Ref country code: DE

Payment date: 20231102

Year of fee payment: 10

Ref country code: CZ

Payment date: 20231030

Year of fee payment: 10