EP3064775B1 - Vakuumpumpe sowie Verfahren zur Detektion eines Kontaktes zwischen wenigstens einem Rotor und einem Stator einer Vakuumpumpe - Google Patents

Vakuumpumpe sowie Verfahren zur Detektion eines Kontaktes zwischen wenigstens einem Rotor und einem Stator einer Vakuumpumpe Download PDF

Info

Publication number
EP3064775B1
EP3064775B1 EP15157105.6A EP15157105A EP3064775B1 EP 3064775 B1 EP3064775 B1 EP 3064775B1 EP 15157105 A EP15157105 A EP 15157105A EP 3064775 B1 EP3064775 B1 EP 3064775B1
Authority
EP
European Patent Office
Prior art keywords
contact
sensor
housing
vacuum pump
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15157105.6A
Other languages
English (en)
French (fr)
Other versions
EP3064775A1 (de
Inventor
Peter Huber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to EP15157105.6A priority Critical patent/EP3064775B1/de
Publication of EP3064775A1 publication Critical patent/EP3064775A1/de
Application granted granted Critical
Publication of EP3064775B1 publication Critical patent/EP3064775B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/602Gap; Clearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring

Definitions

  • the invention relates to a vacuum pump and a method for detecting a contact between at least one rotor and a stator of a vacuum pump.
  • twin-shaft vacuum pump is, for example, from DE 10 2008 060 540 A1 known.
  • Two-shaft vacuum pumps are, for example, Roots vacuum pumps or screw vacuum pumps.
  • US2012/025800A1 includes a device for monitoring the wear of pump liners.
  • This device has a wear sensor which is arranged in a housing of the pump.
  • a loop of an electrical conductor is arranged in the wear detector and the conductor is connected to a controller.
  • a controller monitors whether various circuit loops in the wear sensor are functioning.
  • This prior art device has the disadvantage of being relatively expensive and requiring separate circuitry.
  • a vacuum pump which has one or more temperature sensors which are arranged in the region of the rotor in order to be able to detect heating of the rotor.
  • a proximity sensor can also be provided.
  • a proximity sensor has the disadvantage that the gaps in the pump between the rotor and the stator must remain relatively large since a proximity sensor works with a relatively large tolerance.
  • Roots vacuum pumps and screw vacuum pumps are cooled via the surface of their housing. Heat is therefore released from the pump surface to the environment. In continuous operation and under constant conditions, an equilibrium is established for the input power and the waste heat. In this state, the various components, whose linear expansion depends on the temperature, have a constant gap size between the moving parts and the stationary parts.
  • the gaps between the piston or screw and the housing, in particular the end shield, largely determine the operational safety against so-called bumping as well as the level of the vacuum parameters such as pumping speed, compression capacity and ultimate pressure.
  • a first problem here is that due to the reduced thermal conductivity in the vacuum, rapid changes in the input variables lead to build-up between the rotor and the housing or the end shield.
  • a second problem is that the size of the gap between the pumping rotor and the stationary housing components (stator) is of particular importance for the operational reliability of these pumps. Deposits and contamination in the suction chamber make it difficult to measure the gap size directly.
  • the technical problem on which the invention is based is to specify a vacuum pump in which so-called starters can be detected at an early stage, and to specify a method for detecting a contact between at least one rotor and a stator of a vacuum pump, with which contact can also be detected at an early stage, so that the vacuum pump is protected as completely as possible from consequential damage caused by these so-called start-ups.
  • the vacuum pump according to the invention with a housing, two shafts arranged in the housing and rotatably driven via a drive and with a gear coupled to the shafts, in which between a piston arranged on the shaft or a screw arranged on the shaft and an inside of the housing or of a stator, at least one sensor and at least one stop element or at least one sensor and at least one abrasion element is arranged, is characterized in that at least one acceleration sensor or at least one vibration sensor is provided, which acts as a signal in the event of contact between the piston or the screw and the Stop element or the abrasion element is formed with an acceleration sensor or vibration sensor that detects a signal that is characteristic of the contact, and that the at least one stop element or the at least one abrasion element has a lower height than the gap height provided during normal operation between K piston or screw and inside of the housing or stator.
  • the shaft expands with the piston, or if the housing shrinks, the pistons or the screws hit the stop element, which in turn can be detected by a vibration sensor. If a sensor is arranged in the gap, the sensor will be damaged by the contact, which can be detected by an evaluation unit. If a contact is detected accordingly, the specified measures can be taken, for example additional cooling can be provided or the drive motor is braked or switched off.
  • the at least one stop element or at least an abrasion element has a lower height than the gap height provided during normal operation between the piston or screw and the inside of the housing or stator. This means that during normal operation the piston or the screw does not strike the stop element or the sensor or the wear element.
  • the vacuum pump is designed in such a way that at least one acceleration sensor or at least one vibration sensor is provided.
  • These sensors are used to detect contact between the piston or screw and the inside of the housing or stator.
  • the method according to the invention for detecting a contact between at least one rotor and a stator of a vacuum pump is characterized in that at least one acceleration sensor or at least one vibration sensor is provided which, when there is contact between the piston or the screw and the stop element or the wear element signal characteristic of the contact is detected.
  • a signal is detected by the at least one acceleration sensor and/or at least one vibration sensor. If this signal exceeds a threshold value at one or more fixed frequencies for the respective speed, this means that there is an imbalance or bearing damage or the like.
  • a further embodiment of the inventive method for detecting a contact between at least a rotor and a stator of a vacuum pump is characterized in that when the piston or the screw comes into contact with the at least one sensor, an evaluation unit detects the contact and/or the destruction of the sensor.
  • an evaluation unit which evaluates signals from the at least one acceleration sensor or from the at least one vibration sensor.
  • This evaluation unit is advantageous for detecting contact according to the various possibilities and for initiating the necessary measures to avoid consequential damage.
  • the evaluation unit triggers measures to prevent damage when it detects the beginning of contact between the rotor and stator. These measures can be, for example, braking or switching off the drive motor, rotor cooling or the like.
  • acceleration and/or vibration sensors are used to determine whether a signal exceeds a threshold value at one or more fixed frequencies for the respective rotational speed.
  • the piston and/or the screws advantageously have one or more additional elements in the area between the largest diameter of the rotor (overspeed range wiper) or also the target contour of the piston or the screw and the inside of the housing or stator. These elements can be placed in the piston or in the screw as well as in the housing or in the stator. The elements create the narrowest gap between the rotor and the housing, which disappears when the temperature balance is disturbed and, on contact, generates a percussive signal at a multiple of the rotational frequency of the rotor.
  • Another embodiment provides that a vibration sensor on the side opposite the sensor measures a particularly strong signal that clearly stands out from the background noise of the same frequency.
  • the impact frequency can be shifted to a range that is more suitable for detection.
  • Complex frequency analyzes can be dispensed with here.
  • the invention advantageously relates to double-shaft pumps. This can be Roots pumps or screw pumps.
  • the vacuum pump has a housing and that the housing is designed symmetrically in the area where the two shafts are accommodated. This symmetrical design of the housing supports and simplifies the design.
  • the transmission has gear wheels and the gear wheels are designed as gear wheels with straight teeth. If the transmission gears are straight-toothed, no axial forces occur due to the toothing. This makes it possible to work with narrow axial gaps.
  • FIG. 1 shows a section through a vacuum pump 1, the housing 2 of which essentially has two housing parts 3 and 4, namely suction chambers 3 and a gear chamber 4 provided with a lubricant reservoir 5.
  • the vacuum pump shown is a Roots vacuum pump.
  • Two shafts 6 and 7 are mounted in the housing 2 so as to be horizontally rotatable via roller bearings 8 .
  • the shaft 6 is driven by a drive (not shown), for example an asynchronous motor.
  • the asynchronous motor acts on a clutch 9.
  • a gear 11 is arranged as part of a gear 10 in the gear chamber 4 the shaft 7 mounted second gear 12 is engaged.
  • the housing part 4 having the transmission 10 can be closed off from the environment via a transmission cover 13 which can be fixed to the rest of the housing 2 .
  • Pistons 14 and 15 are arranged on the parts of the shafts 6 and 7 that pass through the suction chambers 3, which cause the pumping effect when the shafts 6 and 7 rotate and suck fluid into the suction chambers 3 via at least one suction opening (not shown) and via at least one Discharge opening (not shown) discharge from the suction chambers 3 again.
  • the pistons 14, 15 are designed as double-arched rotors.
  • the cross-sectional shape of the pistons 14, 15 is approximately in the shape of the figure "8".
  • the pistons 14, 15 are arranged in a rotor chamber formed by the housing part 3 with a minimum distance between a peripheral surface of the housing part 3 and the pistons 14, 15. Furthermore, when the pistons 14, 15 are engaged with each other, they have formed a minimum distance between them to prevent them from directly engaging or interfering with each other.
  • the drive shaft 6 is rotated by the drive, for example an electric motor. Thereby, the output shaft 7 is rotated in the opposite direction to the drive shaft 6 by the meshing relationship between a drive gear 11 and a driven gear 12, and the drive rotor with pistons 15 and the driven rotor with pistons 14 are rotated accordingly.
  • both the gears 11 and 12 and the rolling bearings 8 must be supplied with a lubricant in order to cool them and to avoid increased wear.
  • the gear chamber 4 has a lubricant reservoir 5 filled with a lubricant.
  • a centrifugal disc 16 arranged on the shaft 6 dips into the lubricant reservoir 5 and distributes the lubricant throughout the entire gear chamber 4 and in particular feeds it to the roller bearings 8 and the gear wheels 11 and 12 .
  • FIG. 2 shows an abrasion element 31 which is arranged in a housing 2 on a housing inner side 32 .
  • the piston 14 also has a further wear element 33 .
  • the wear elements 31, 33 come into contact and generate an impact signal which is detected by a vibration sensor (not shown).
  • the abrasion element 31 in which, for example, a wire 34 can be arranged.
  • the abrasion element 31 consists of a base body 35, which consists for example of plastic or ceramic.
  • the wire 34 is embedded in the base body 35 . If the base body 35 is sheared off upon contact between the abrasion element 33 and the abrasion element 31, an electrical contact that was established by the wire 34 is interrupted. This interruption is detected by an evaluation unit (not shown) and suitable measures can be taken, for example a drive motor is slowed down or switched off.
  • FIG. 4 shows the piston 14, which is arranged on the shaft 6.
  • An abrasion element 31 is arranged in the housing 2 on the housing inner wall 32 .
  • a signal is detected with an acceleration and/or vibration sensor. If the signal exceeds a threshold at one or more fixed frequencies for that speed, this is an indication that contact is occurring. In this case, the drive motor can be switched off. This avoids a so-called collision between the piston 14 and the inner wall 32 of the housing, which would damage the vacuum pump.
  • FIG. 5 shows a modified embodiment in which the piston 14 carries a wear element 31.
  • FIG. In this case, the housing 2 with the housing inside 32 has no additional element.
  • abrasion element 31 As in 6 shown to form the abrasion element 31 as a sensor, such as in figure 5 shown.
  • an abrasion element 33 can be arranged on the pistons 14 .
  • the wear element can be cuboid, as in FIG 8 shown.
  • the abrasion element 33 can have rounded edges, as in FIG 9 shown.
  • the abrasion element 33 can also be cylindrical, as in 10 shown.
  • the housing 2 has an inlet 39 and an outlet 40 .
  • the 12 and 13 show the wear element 33, which is arranged, for example, on the piston 14.
  • the abrasion element 33 has a small contact surface 41 . Due to the fact that the possible contact surface 41 with the housing 2 is very small, this leads to minimal friction and low waste heat for contact detection in the event of contact. The main focus here is detection and not improved damage tolerance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

  • Die Erfindung betrifft eine Vakuumpumpe sowie ein Verfahren zur Detektion eines Kontaktes zwischen wenigstens einem Rotor und einem Stator einer Vakuumpumpe.
  • Die Entwicklung der Vakuumpumpen geht hin zu Vakuumpumpen mit einer hoher Leistungsdichte und einem kompakten Pumpengehäuse. Überschreitet die Leistungsdichte ein gewisses Maß, kann durch freie Konvektion keine gleichmäßige Temperaturverteilung über die verschiedenen Bauteile mehr gewährleistet werden. Bei einer Wärmedehnung und/oder ungleichmäßigen Temperaturverteilung kommt es bei den relativ engen Spalten, die üblicherweise zwischen einem hundertstel Millimeter bis einem Millimeter liegen, zwischen den relativ zueinander bewegten Bauteilen zu einem Anlaufen der Teile untereinander, das heißt zu einem Kontakt zwischen den Teilen mit möglichen Folgeschäden für das gesamte System.
  • Die Erfindung bezieht sich auf zweiwellige Vakuumpumpen. Eine zweiwellige Vakuumpumpe ist beispielsweise aus der DE 10 2008 060 540 A1 bekannt. Zweiwellige Vakuumpumpen sind beispielsweise Wälzkolbenvakuumpumpen oder Schraubenvakuumpumpen.
  • Zum Stand der Technik ( US 2012/025800 A1 ) gehört eine Vorrichtung zur Überwachung der Abnutzung von Pumpenauskleidungen. Diese Vorrichtung weist einen Verschleißsensor auf, der in einem Gehäuse der Pumpe angeordnet ist. In dem Verschleißdetektor ist eine Schleife eines elektrischen Leiters angeordnet und der Leiter ist mit einer Steuerung verbunden. Ein Controller überwacht, ob verschiedene Schaltkreisschleifen in dem Verschleißsensor funktionieren.
  • Diese zum Stand der Technik gehörende Vorrichtung weist den Nachteil auf, dass sie relativ aufwendig ist und ein gesonderter Schaltkreis erforderlich ist.
  • Weiterhin gehört zum Stand der Technik ( FR 2 812 041 A1 ) eine Vakuumpumpe, welche einen oder mehrere Temperatursensoren aufweist, die im Bereich des Rotors angeordnet sind, um eine Erwärmung des Rotors erfassen zu können. Gemäß diesem Stand der Technik kann auch ein Näherungssensor vorgesehen sein.
  • Das Vorsehen eines Näherungssensors weist den Nachteil auf, dass die Spalte in der Pumpe zwischen Rotor und Stator relativ groß bleiben müssen, da ein Näherungssensor mit einer relativ großen Toleranz arbeitet.
  • Die Gehäuse von Wälzkolbenvakuumpumpen und Schraubenvakuumpumpen werden über die Oberfläche ihrer Gehäuse gekühlt. Wärme wird also von der Pumpenoberfläche an die Umgebung abgegeben. Im kontinuierlichen Betrieb und für konstante Bedingungen stellt sich ein Gleichgewicht für die eingebrachte Leistung und die Abwärme ein. Die verschiedenen.Komponenten, deren Längenausdehnung von der Temperatur abhängt, weisen in diesem Zustand eine gleichbleibende Spaltgröße zwischen den beweglichen Teilen und den stehenden Teilen auf. Die Spalte zwischen Kolben oder Schraube und Gehäuse, insbesondere Lagerschild, bestimmen dabei maßgeblich die Betriebssicherheit gegen so genannte Anläufer als auch die Höhe der Vakuumkennwerte wie Saugvermögen, Kompressionsvermögen und Enddruck.
  • Ein erstes Problem ist hierbei, dass wegen der verringerten Wärmeleitfähigkeit im Vakuum schnelle Änderungen der Eingangsgrößen zu Anläufern zwischen Rotor und Gehäuse beziehungsweise Lagerschild führen.
  • Ein zweites Problem ist, dass die Spaltgröße zwischen pumpwirksamem Rotor und unbewegten Gehäusebauteilen (Stator) von besonderer Bedeutung für die Betriebssicherheit dieser Pumpen ist. Ablagerungen und Verunreinigungen im Schöpfraum erschweren die direkte Messung der Spaltgröße.
  • Das der Erfindung zugrunde liegende technische Problem besteht darin, eine Vakuumpumpe anzugeben, bei der frühzeitig sogenannte Anläufer detektierbar sind, sowie ein Verfahren zur Detektion eines Kontaktes zwischen wenigstens einem Rotor und einem Stator einer Vakuumpumpe anzugeben, mit dem ebenfalls frühzeitig ein Kontakt detektiert werden kann, damit die Vakuumpumpe möglichst vollständig vor Folgeschäden dieser sogenannten Anläufer geschützt wird.
  • Dieses technische Problem wird durch eine Vakuumpumpe mit den Merkmalen gemäß Anspruch 1 sowie durch ein Verfahren mit den Merkmalen gemäß Anspruch 2 gelöst.
  • Die erfindungsgemäße Vakuumpumpe mit einem Gehäuse, zwei in dem Gehäuse angeordneten, über einen Antrieb drehbar angetriebenen Wellen sowie mit einem mit den Wellen gekoppelten Getriebe, bei der zwischen einem auf der Welle angeordneten Kolben oder einer auf der Welle angeordneten Schraube und einer Innenseite des Gehäuses oder eines Stators wenigstens ein Sensor und wenigstens ein Anschlagelement oder wenigstens ein Sensor und wenigstens ein Abriebselement angeordnet ist, zeichnet sich dadurch aus, dass wenigstens ein Beschleunigungssensor oder wenigstens ein Schwingungssensor vorgesehen ist, der als ein bei einem Kontakt zwischen dem Kolben oder der Schraube und dem Anschlagelement oder dem Abriebselement ein für den Kontakt charakteristisches Signal erfassender Beschleunigungssensor oder Schwingungssensor ausgebildet ist, und dass das wenigstens eine Anschlagelement oder das wenigstens eine Abriebselement eine geringere Höhe als die bei Normalbetrieb vorgesehene Spalthöhe zwischen Kolben oder Schraube und Innenseite des Gehäuses oder Stators aufweist.
  • Dehnt sich die Welle mit dem Kolben aus, oder schrumpft das Gehäuse, schlagen die Kolben oder die Schrauben an dem Anschlagelement an, was wiederum von einem Schwingungssensor detektierbar ist. Ist ein Sensor in dem Spalt angeordnet, wird der Sensor durch den Kontakt beschädigt, was von einer Auswerteeinheit erfasst werden kann. Wird ein Kontakt entsprechend detektiert, können die vorgegebenen Maßnahmen ergriffen werden, beispielsweise kann eine zusätzliche Kühlung vorgesehen sein oder der Antriebsmotor wird abgebremst oder ausgeschaltet.
  • Ist ein Sensor vorgesehen, der zerstört oder beschädigt wird, wird der Sensor ausgetauscht. Auch hierbei handelt es sich um ein Verschleißteil, welches jedoch wesentlich günstiger ist, als wenn ein Schaden bei einem sogenannten Anläufer in der Pumpe auftritt.
  • Gemäß der Erfindung ist vorgesehen, dass das wenigstens eine Anschlagelement oder wenigstens eine Abriebselement eine geringere Höhe als die bei Normalbetrieb vorgesehene Spalthöhe zwischen Kolben oder Schraube und Innenseite des Gehäuses oder Stators aufweist. Das bedeutet, dass im Normalbetrieb ein Anschlag des Kolbens oder der Schraube an dem Anschlagelement oder dem Sensor oder dem Abriebselement nicht erfolgt.
  • Gemäß der Erfindung ist die Vakuumpumpe derart ausgebildet, dass wenigstens ein Beschleunigungssensor oder wenigstens ein Schwingungssensor vorgesehen ist.
  • Diese Sensoren dienen dazu, einen Kontakt zwischen Kolben oder Schraube und Innenseite des Gehäuses oder Stator zu detektieren.
  • Das erfindungsgemäße Verfahren zur Detektion eines Kontaktes zwischen wenigstens einem Rotor und einem Stator einer Vakuumpumpe zeichnet sich dadurch aus, dass wenigstens ein Beschleunigungs- oder wenigstens ein Schwingungssensor vorgesehen ist, der bei einem Kontakt zwischen dem Kolben oder der Schraube und dem Anschlagelement oder dem Abriebselement ein für den Kontakt charakteristisches Signal erfasst.
  • Bei einem Kontakt wird von dem wenigstens einen Beschleunigungs- und/oder wenigstens einen Schwingungssensor ein Signal erfasst. Übersteigt dieses Signal einen Schwellwert bei einer oder mehreren festen Frequenzen für die jeweilige Drehzahl, bedeutet dies, dass eine Unwucht oder ein Lagerschaden oder dergleichen vorliegt.
  • Eine weitere Ausführungsform des erfindungsgemäßen Verfahrens zur Detektion eines Kontaktes zwischen wenigstens einem Rotor und einem Stator einer Vakuumpumpe zeichnet sich dadurch aus, dass bei einem Kontakt des Kolbens oder der Schraube mit dem wenigstens einen Sensor eine Auswerteeinheit den Kontakt und/oder das Zerstören des Sensors detektiert.
  • Dehnt sich der Kolben und/oder die Schraube entsprechend aus, wird ein Kontakt mit dem Sensor hergestellt, wobei dieser beispielsweise abgeschert wird. Eine Auswerteeinheit erfasst das Zerstören des Sensors und kann die schon beschriebenen erforderlichen Maßnahmen veranlassen.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist eine Auswerteeinheit vorgesehen, die Signale des wenigstens einen Beschleunigungssensors oder des wenigstens einen Schwingungssensors auswertet. Diese Auswerteeinheit ist vorteilhaft, um einen Kontakt entsprechend den verschiedenen Möglichkeiten zu detektieren und die erforderlichen Maßnahmen zur Vermeidung von Folgeschäden einzuleiten.
  • Gemäß einer besonders bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass die Auswerteeinheit bei Feststellen eines beginnenden Kontaktes zwischen Rotor und Stator Maßnahmen zur Vermeidung von Schäden auslöst. Diese Maßnahmen können beispielsweise sein das Abbremsen oder Ausschalten des Antriebsmotors, eine Rotorkühlung oder dergleichen.
  • Gemäß einer vorteilhaften Ausführungsform der Erfindung wird bei der Detektion eines Kontaktes über Beschleunigungs- und/oder Schwingungssensoren ermittelt, ob ein Signal einen Schwellwert bei einer oder mehreren festen Frequenzen für die jeweilige Drehzahl übersteigt. Hierbei weist der Kolben und/oder die Schrauben vorteilhaft im Bereich zwischen dem größten Durchmesser des Rotors (Überdrehbereichsabstreifer) oder auch Sollkontur des Kolbens oder der Schraube und der Innenseite des Gehäuses oder Stators ein oder mehrere zusätzliche Elemente auf. Diese Elemente können sowohl in den Kolben oder in die Schraube als auch in das Gehäuse oder in den Stator eingebracht werden. Die Elemente erzeugen den engsten Spalt zwischen Rotor und Gehäuse, der bei Störungen des Temperaturgleichgewichtes schwindet und bei Kontakt ein schlagendes Signal mit einem Vielfachen der Drehfrequenz des Rotors erzeugt.
  • Eine andere Ausführungsform sieht vor, dass ein Schwingungssensor auf der dem Sensor gegenüberliegenden Seite ein besonders starkes Signal misst, das sich deutlich vom Hintergrundrauschen gleicher Frequenz abhebt.
  • Ist eine angepasste Anzahl der schlagenden Elemente auf Seite des Rotors oder auch des Gehäuses vorgesehen, kann die Schlagfrequenz in einen für die Detektion besser geeigneten Bereich verschoben werden. Hierbei kann auf aufwendige Frequenzanalysen verzichtet werden.
  • Die Erfindung bezieht sich vorteilhaft auf zweiwellige Pumpen. Es kann sich hierbei um Wälzkolbenpumpen oder Schraubenpumpen handeln.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass die Vakuumpumpe ein Gehäuse aufweist, und dass das Gehäuse im Bereich der Aufnahme der zwei Wellen symmetrisch ausgebildet ist. Diese symmetrische Ausbildung des Gehäuses unterstützt und vereinfacht die Auslegung.
  • Vorteilhaft weist das Getriebe Getriebezahnräder auf und die Getriebezahnräder sind als Zahnräder mit einer Geradverzahnung ausgebildet. Bei einer Geradverzahnung der Getriebezahnräder treten keine axialen Kräfte durch die Verzahnung auf. Hierdurch ist es möglich, mit engen axialen Spalten zu arbeiten.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich anhand der zugehörigen Zeichnungen, in denen verschiedene Ausführungsformen einer erfindungsgemäßen Vakuumpumpe nur beispielhaft dargestellt sind, ohne die Erfindung auf diese Ausführungsbeispiele zu beschränken. In den Zeichnungen zeigen:
  • Fig. 1
    einen schematischen Längsschnitt durch eine Vakuumpumpe mit zwei Wellen;
    Fig. 2
    einen Querschnitt durch einen Kolben mit einem Abriebselement;
    Fig. 3
    einen Querschnitt durch einen zum Stand der Technik gehörenden Sensor;
    Fig. 4
    einen Teilquerschnitt durch einen Rotor einer Wälzkolbenpumpe mit einem am Gehäuse angeordneten Abriebselement;
    Fig. 5
    ein geändertes Ausführungsbeispiel;
    Fig. 6
    ein geändertes Ausführungsbeispiel;
    Fig. 7
    ein geändertes Ausführungsbeispiel;
    Fig. 8
    ein Abriebselement in perspektivischer Ansicht;
    Fig. 9
    ein Abriebselement in perspektivischer Ansicht;
    Fig. 10
    ein Abriebselement in perspektivischer Ansicht;
    Fig. 11
    einen Querschnitt durch einen Schöpfraum einer Wälzkolbenvakuumpumpe;
    Fig. 12
    ein geändertes Ausführungsbeispiel eines Abriebselementes in Draufsicht;
    Fig. 13
    das Abriebselement gemäß Fig. 12 im Querschnitt.
  • Fig. 1 zeigt im Schnitt eine Vakuumpumpe 1, deren Gehäuse 2 im Wesentlichen zwei Gehäuseteile 3 und 4 aufweist, nämlich Schöpfräume 3 und einen mit einem Schmiermittelspeicher 5 versehenen Getrieberaum 4.
  • Die in Fig. 1 dargestellte Vakuumpumpe ist eine Wälzkolbenvakuumpumpe.
  • Im Gehäuse 2 sind zwei Wellen 6 und 7 über Wälzlager 8 horizontal drehbar gelagert angeordnet. Die Welle 6 wird über einen Antrieb (nicht dargestellt), beispielsweise einen Asynchronmotor, angetrieben. Der nicht dargestellte Asynchronmotor wirkt auf eine Kupplung 9. Auf der vom nicht dargestellten Antrieb über die Kupplung 9 angetriebenen Welle 6 ist als Bestandteil eines Getriebes 10 im Getrieberaum 4 ein Zahnrad 11 angeordnet, das bei der dargestellten Ausführungsform einer Zweiwellen-Vakuumpumpe 1 mit einem auf der Welle 7 gelagerten zweiten Zahnrad 12 in Eingriff steht.
  • Wie weiterhin aus Fig. 1 ersichtlich, ist der das Getriebe 10 aufweisende Gehäuseteil 4 über einen am übrigen Gehäuse 2 festlegbaren Getriebedeckel 13 gegenüber der Umgebung verschließbar.
  • Auf den die Schöpfräume 3 durchsetzenden Teilen der Wellen 6 und 7 sind Kolben 14 und 15 angeordnet, die bei der Drehung der Wellen 6 und 7 den Pumpeffekt bewirken und über mindestens eine Ansaugöffnung (nicht dargestellt) Fluid in die Schöpfräume 3 ansaugen und über mindestens eine Ausstoßöffnung (nicht dargestellt) wieder aus den Schöpfräumen 3 austragen.
  • Die Kolben 14, 15 sind als zweibogige Rotoren ausgebildet.
  • Die Querschnittsform der Kolben 14, 15 hat annähernd die Form der Ziffer "8".
  • Die Kolben 14, 15 sind in einer durch das Gehäuseteil 3 gebildeten Rotorkammer angeordnet mit einem minimalen Abstand zwischen einer Umfangsfläche des Gehäuseteiles 3 und den Kolben 14, 15. Darüber hinaus haben die Kolben 14, 15, wenn sie miteinander eingreifen, einen minimalen Abstand zwischen sich ausgebildet, um zu verhindern, dass sie direkt miteinander eingreifen, beziehungsweise sich behindern. Bei dem Betrieb der Wälzkolbenvakuumpumpe 1 wird die Antriebswelle 6 durch den Antrieb, beispielsweise einen Elektromotor, gedreht. Hierdurch wird die Abtriebswelle 7 in Gegenrichtung zu der Antriebswelle 6 durch die Eingreifbeziehung zwischen einem Antriebszahnrad 11 und einem Abtriebszahnrad 12 gedreht und der Antriebsrotor mit Kolben 15 und der Abtriebsrotor mit Kolben 14 werden demzufolge gedreht.
  • Sowohl die Zahnräder 11 und 12 als auch die Wälzlager 8 müssen mit einem Schmiermittel versorgt werden, um diese zu kühlen und einen erhöhten Verschleiß zu vermeiden. Zu diesem Zweck weist der Getrieberaum 4 einen mit einem Schmiermittel befüllten Schmiermittelspeicher 5 auf. In den Schmiermittelspeicher 5 taucht eine auf der Welle 6 angeordnete Schleuderscheibe 16 ein, die das Schmiermittel in dem gesamten Getrieberaum 4 verteilt und insbesondere den Wälzlagern 8 und den Zahnrädern 11 und 12 zuführt.
  • Fig. 2 zeigt ein Abriebselement 31, welches in einem Gehäuse 2 an einer Gehäuseinnenseite 32 angeordnet ist. Der Kolben 14 weist zusätzlich ein weiteres Abriebselement 33 auf. Dehnt sich der Kolben 14 in radialer Richtung aus, gelangen die Abriebselemente 31, 33 in Kontakt und erzeugen ein Schlagsignal, welches von einem Schwingungssensor (nicht dargestellt) erfasst wird.
  • Fig. 3 zeigt das Abriebselement 31, in dem beispielsweise ein Draht 34 angeordnet sein kann. Das Abriebselement 31 besteht aus einem Grundkörper 35, der beispielsweise aus Kunststoff oder Keramik besteht. Der Draht 34 ist in dem Grundkörper 35 eingebettet. Wird bei Kontakt zwischen dem Abriebselement 33 und dem Abriebselement 31 der Grundkörper 35 abgeschert, wird ein elektrischer Kontakt, der durch den Draht 34 hergestellt wurde, unterbrochen. Diese Unterbrechung wird von einer Auswerteeinheit (nicht dargestellt) erfasst und es können geeignete Maßnahmen ergriffen werden, beispielsweise wird ein Antriebsmotor verlangsamt oder abgestellt.
  • Fig. 4 zeigt den Kolben 14, der auf der Welle 6 angeordnet ist. In dem Gehäuse 2 ist an der Gehäuseinnenwand 32 ein Abriebselement 31 angeordnet.
  • Bei Kontakt des Kolbens 14 mit dem Abriebselement 31 wird ein Signal mit einem Beschleunigungs- und/oder Schwingungssensor detektiert. Übersteigt das Signal einen Schwellwert bei einer oder mehreren festen Frequenzen für die jeweilige Drehzahl, ist dies ein Zeichen dafür, dass ein Kontakt auftritt. Der Antriebsmotor kann in diesem Fall abgestellt werden. Damit wird vermieden, dass es zu einem sogenannten Anläufer zwischen Kolben 14 und Gehäuseinnenwand 32 kommt und die Vakuumpumpe Schaden nimmt.
  • Fig. 5 zeigt ein geändertes Ausführungsbeispiel, bei dem der Kolben 14 ein Abriebselement 31 trägt. In diesem Fall weist das Gehäuse 2 mit der Gehäuseinnenseite 32 kein zusätzliches Element auf.
  • Es besteht auch die Möglichkeit, wie in Fig. 6 dargestellt, das Abriebselement 31 als Sensor auszubilden, wie beispielsweise in Fig. 5 dargestellt. Zusätzlich kann ein Abriebselement 33 an den Kolben 14 angeordnet sein. Es besteht auch die Möglichkeit, das Abriebselement 31 als einfaches Abriebselement ohne Ausbildung als Sensor auszugestalten.
  • Fig. 7 zeigt den Kolben 14 mit dem Abriebselement 33. Das Abriebselement kann quaderförmig ausgebildet sein, wie in Fig. 8 dargestellt. Das Abriebselement 33 kann abgerundete Kanten aufweisen, wie in Fig. 9 dargestellt. Das Abriebselement 33 kann auch zylinderförmig ausgebildet sein, wie in Fig. 10 dargestellt.
  • Fig. 11 zeigt zwei Kolben 14, 15, die auf Wellen 6, 7 gelagert sind und in dem Gehäuse 2 angeordnet sind. An einer Gehäuseinnenwand 32 sind mehrere Abriebselemente 31 angeordnet. Mit einer angepassten Anzahl der Abriebselemente 31 auf der Seite des Gehäuses 2, wie in Fig. 11 dargestellt, kann die Schlagfrequenz in einen für die Detektion guten Bereich verschoben werden. Hierbei kann auch auf aufwendige Frequenzanalysen verzichtet werden. Das Gehäuse 2 weist einen Einlass 39 und einen Auslass 40 auf.
  • Die Fig. 12 und 13 zeigen das Abriebselement 33, welches beispielsweise an dem Kolben 14 angeordnet ist. Das Abriebselement 33 weist eine kleine Kontaktfläche 41 auf. Dadurch, dass die mögliche Kontaktfläche 41 mit dem Gehäuse 2 sehr klein ist, führt dies bei einem Kontakt zu einer minimalen Reibleistung und einer geringen Abwärme für die Kontaktdetektion. Besonderer Schwerpunkt ist hier also die Detektion und nicht die verbesserte Schadenstoleranz.
  • Bezugszahlen
  • 1
    Vakuumpumpe
    2
    Gehäuse
    3
    Gehäuseteil des Schöpfraumes
    4
    Gehäuseteil des Getrieberaumes
    5
    Schmiermittelspeicher
    6
    Welle
    7
    Welle
    8
    Wälzlager
    9
    Kupplung
    10
    Getriebe
    11
    Zahnrad
    12
    Zahnrad
    13
    Getriebedeckel
    14
    Kolben
    15
    Kolben
    16
    Schleuderscheibe
    17
    Kühlrippe
    18
    Lüfter
    19
    Kühlrippe
    20
    Teilbereich
    31
    Antriebselement/Abriebselement
    32
    Gehäuseinnenwand
    33
    Antriebselement/Abriebselement
    34
    Draht
    35
    Grundkörper
    38
    Sensor
    39
    Einlass
    40
    Auslass
    41
    Kontaktfläche eines Abriebselementes

Claims (5)

  1. Vakuumpumpe mit einem Gehäuse, zwei in dem Gehäuse angeordneten, über einen Antrieb drehbar angetriebenen Wellen sowie mit einem mit den Wellen gekoppelten Getriebe, bei der zwischen einem auf der Welle (6, 7) angeordneten Kolben (14, 15) oder einer auf der Welle angeordneten Schraube und einer Innenseite (32) des Gehäuses (2) oder eines Stators
    - wenigstens ein Sensor (38) und wenigstens ein Anschlagelement (31, 33) oder
    - wenigstens ein Sensor (38) und ein Abriebselement (31, 33)
    angeordnet ist,
    dadurch gekennzeichnet, dass wenigstens ein Beschleunigungssensor oder wenigstens ein Schwingungssensor vorgesehen ist, der als ein bei einem Kontakt zwischen dem Kolben oder der Schraube und dem Anschlagelement (31, 33) oder dem Abriebselement (31, 33) ein für den Kontakt charakteristisches Signal erfassender Beschleunigungssensor oder Schwingungssensor ausgebildet ist, und dass das wenigstens eine Anschlagelement (31, 33) oder das wenigstens eine Abriebselement (31, 33) eine geringere Höhe als die bei Normalbetrieb vorgesehene Spalthöhe zwischen . Kolben (14) oder Schraube und Innenseite (32) des Gehäuses (2) oder Stators aufweist.
  2. Verfahren zur Detektion eines Kontaktes zwischen wenigstens einem Rotor und einem Stator einer Vakuumpumpe mit den Merkmalen gemäß Anspruch 1, dadurch gekennzeichnet, dass wenigstens ein Beschleunigungssensor oder wenigstens ein Schwingungssensor vorgesehen ist, der bei einem Kontakt zwischen dem Kolben (14, 15) oder der Schraube und dem Anschlagelement (31, 33) oder dem wenigstens einen Abriebselement (31, 33) ein für den Kontakt charakteristisches Signal erfasst.
  3. Verfahren nach Anspruch 2 zur Detektion eines Kontaktes zwischen dem wenigstens einem Rotor und einem Stator einer Vakuumpumpe , dadurch gekennzeichnet, dass bei einem Kontakt des Kolbens (14, 15) oder der Schraube mit dem wenigstens einen Sensor (38) eine Auswerteeinheit den Kontakt detektiert.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass eine Auswerteeinheit vorgesehen ist, die Signale des wenigstens einen Sensors auswertet.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Auswerteeinheit bei Feststellen eines beginnenden Kontaktes zwischen Rotor und Stator Maßnahmen zur Vermeidung von Schäden auslöst.
EP15157105.6A 2015-03-02 2015-03-02 Vakuumpumpe sowie Verfahren zur Detektion eines Kontaktes zwischen wenigstens einem Rotor und einem Stator einer Vakuumpumpe Active EP3064775B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15157105.6A EP3064775B1 (de) 2015-03-02 2015-03-02 Vakuumpumpe sowie Verfahren zur Detektion eines Kontaktes zwischen wenigstens einem Rotor und einem Stator einer Vakuumpumpe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15157105.6A EP3064775B1 (de) 2015-03-02 2015-03-02 Vakuumpumpe sowie Verfahren zur Detektion eines Kontaktes zwischen wenigstens einem Rotor und einem Stator einer Vakuumpumpe

Publications (2)

Publication Number Publication Date
EP3064775A1 EP3064775A1 (de) 2016-09-07
EP3064775B1 true EP3064775B1 (de) 2022-01-26

Family

ID=52595175

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15157105.6A Active EP3064775B1 (de) 2015-03-02 2015-03-02 Vakuumpumpe sowie Verfahren zur Detektion eines Kontaktes zwischen wenigstens einem Rotor und einem Stator einer Vakuumpumpe

Country Status (1)

Country Link
EP (1) EP3064775B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201621618D0 (en) * 2016-12-19 2017-02-01 Edwards Ltd Pump sealing
GB2588890A (en) * 2019-10-24 2021-05-19 Edwards Ltd Sensor assembly

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225949A (en) * 1975-08-23 1977-02-26 Shimadzu Corp Brake-loaded oil pressure motor
US4787831A (en) * 1983-09-20 1988-11-29 Air Products And Chemicals, Inc. Dual seal system for roots blower
JPS61104187A (ja) * 1984-10-29 1986-05-22 Hitachi Ltd 真空ポンプ用軸封装置
FR2812041A1 (fr) * 2000-07-20 2002-01-25 Cit Alcatel Principe de refroidissement de pompe a vide
WO2010046976A1 (ja) * 2008-10-22 2010-04-29 株式会社前川製作所 給油式スクリュー圧縮機
DE102008060540A1 (de) 2008-12-04 2010-06-10 Pfeiffer Vacuum Gmbh Wälzkolbenvakuumpumpe
US8564449B2 (en) * 2010-01-12 2013-10-22 Siemens Energy, Inc. Open circuit wear sensor for use with a conductive wear counterface
MX347025B (es) * 2011-04-07 2017-04-07 Imo Ind Inc Sistema y metodo para monitorear el desgaste del revestimiento de una bomba.

Also Published As

Publication number Publication date
EP3064775A1 (de) 2016-09-07

Similar Documents

Publication Publication Date Title
EP2545280B1 (de) Schmiervorrichtung für einen schraubenverdichter
DE202014105449U1 (de) Rotationswärmetauschereinrichtung
EP3545196B1 (de) Elektrische kfz-kühlmittelpumpe
DE202015003927U1 (de) Steuerungselektronik für eine Vakuumpumpe sowie Vakuumpumpe
EP3765748B1 (de) Kreiselpumpenaggregat sowie verfahren zum bewegen eines ventilelementes in einem derartigen kreiselpumpenaggregat
DE102018125969A1 (de) Gleitringdichtungsvorrichtung mit Mikrosystem, Pumpenvorrichtung hiermit und Verfahren zu deren Betrieb
EP3064775B1 (de) Vakuumpumpe sowie Verfahren zur Detektion eines Kontaktes zwischen wenigstens einem Rotor und einem Stator einer Vakuumpumpe
EP3114756A1 (de) Elektrische maschine mit von kühlfluid durchströmter hohlwelle
EP2566015A1 (de) Elektromotor
EP2297460A2 (de) Schaltschrank für eine windturbine
EP2867533B1 (de) Verfahren und pumpenanordnung zum evakuieren einer kammer
EP3467314B1 (de) Schraubenpumpe
DE69819293T2 (de) Hydraulikdichtung
DE102012102405A1 (de) Kältemittelverdichter
EP2431568B1 (de) Vakuumpumpe mit einer Schmiermittelschleuderstruktur
DE102014114837A1 (de) Kältemittelverdichter
EP3080458B1 (de) Verdichter
DE102016011394A1 (de) Schraubenkompressor für ein Nutzfahrzeug
EP3394449B1 (de) Kältemittelverdichteranlage
DE102019218035B4 (de) Scrollverdichter
WO2010025989A1 (de) Pumpe
EP3499040B1 (de) Schraubenvakuumpumpe
EP3536966B1 (de) Vakuumgerät
EP2902629B1 (de) Vakuumpumpe mit schmiermittelkühlvorrichtung
DE102015216192A1 (de) Baugruppe mit Gleitringdichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170301

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200203

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210929

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1465484

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015015594

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220526

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220426

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015015594

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

26N No opposition filed

Effective date: 20221027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220302

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220302

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220326

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1465484

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240109

Year of fee payment: 10

Ref country code: CZ

Payment date: 20240209

Year of fee payment: 10

Ref country code: GB

Payment date: 20240207

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240125

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126