WO2001071174A1 - Verfahren und vorrichtung zur ansteuerung eines kraftstoffeinspritzventils - Google Patents

Verfahren und vorrichtung zur ansteuerung eines kraftstoffeinspritzventils Download PDF

Info

Publication number
WO2001071174A1
WO2001071174A1 PCT/DE2001/000499 DE0100499W WO0171174A1 WO 2001071174 A1 WO2001071174 A1 WO 2001071174A1 DE 0100499 W DE0100499 W DE 0100499W WO 0171174 A1 WO0171174 A1 WO 0171174A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
booster
current
solenoid
activated
Prior art date
Application number
PCT/DE2001/000499
Other languages
English (en)
French (fr)
Inventor
Rolf Reischl
Andreas Eichendorf
Ulf Pischke
Juergen Eckhardt
Klaus Mueller
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2001569133A priority Critical patent/JP4418616B2/ja
Priority to BR0105317-5A priority patent/BR0105317A/pt
Priority to EP01915007A priority patent/EP1185773B1/de
Priority to DE50107260T priority patent/DE50107260D1/de
Priority to US09/979,353 priority patent/US6785112B2/en
Publication of WO2001071174A1 publication Critical patent/WO2001071174A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2006Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost capacitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2013Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost voltage source

Definitions

  • the invention relates to a method and a device for actuating a solenoid valve, in particular for fuel injection into an internal combustion engine, the actuation phase of the solenoid valve being in a tightening phase during which a valve needle of the solenoid valve is opened by a first current flowing through a solenoid coil and in a holding phase is subdivided, during which the valve needle is held in the open state by a second, lower current flowing through the magnetic coil, and a booster phase is activated at least once at the beginning of the pull-in phase, in which a pulsed booster current from a booster capacitor charged to a high voltage is activated or another current source flows through the solenoid.
  • the current reaches a starting current level I A after the current maximum IB OOS T caused by a first booster phase Bi with a large booster voltage UBO O ⁇ T, through which the valve needle of the solenoid valve can attract.
  • the booster voltage UBOO ⁇ T. which is applied to the solenoid valve during the booster phase Bi is much larger than the battery voltage U_.
  • the pull-in current level I A is regulated by repeatedly switching the battery voltage UBATT to the solenoid.
  • the pull-in phase T A is first followed by a short free-running phase or a quick extinction, during which the current through the solenoid coil of the injection valve decreases very quickly, and reaches a holding current level IH, which is regulated to a desired level during the holding phase T H by repeated pulsing of the battery voltage UBATT , At the end, the holding phase T H is again followed by a free-running phase or quick-release, at the end of which the current through the magnetic coil is completely reduced.
  • FIG. 2 now shows the case in which the valve needle cannot tighten during the tightening phase T owing to an insufficient battery voltage ⁇ BATT_: (FIG. 2) ⁇ UBATT (FIG. 1).
  • ⁇ BATT_ battery voltage
  • ⁇ UBATT ⁇ UBATT
  • the level of the current through the injection valve should remain at a high level as much as possible during the entire opening movement of the valve needle in the tightening phase T A.
  • a theoretically conceivable long booster phase that can be produced at this high current level over the entire pull-in phase does not make sense because of the high energy consumption from the internal booster capacitor.
  • the booster phase serves to achieve a high current level as quickly as possible, with a large proportion of the booster energy being converted into eddy currents at the beginning of the pull-in phase T A.
  • the booster phase Bi is interrupted under certain operating conditions in the prior art, the valve current is driven out of the battery and drops. This means that during the actual flight phase, that is the phase during which the valve needle moves, the magnetic force has already dropped from its maximum value. This means poor dynamics of the solenoid valve.
  • this object is achieved in that several booster pulses are activated in succession during the actuation phase of the solenoid valve become. Basically, their timing within the control phase is freely selectable.
  • a further booster impulse can be activated before or during the flight phase of the valve needle.
  • a further booster pulse can be activated at the end or immediately after the valve needle's flight phase.
  • a further booster pulse or a plurality of further booster pulses can be activated during the holding phase of the solenoid valve if the voltage of the supply battery is below a certain threshold voltage in this holding phase.
  • the multiple boosters can reduce the energy or the maximum current of the individual booster pulses compared to a long individual booster with a very high current.
  • a reduced peak current brings a lower load on the bonding pads for integrated circuits, the hybrid assemblies and a smaller storage capacity of the booster capacitor.
  • the structure of the magnetic force can be varied freely in time by suitable selection of the times of the second and possibly third booster pulse. This leads to a reduction in eddy current formation, and de booster energy can be supplied depending on the time required for the solenoid valve. As a result, the tearing of the valve needle of the solenoid valve from the lower attachment point can be supported, the needle flight accelerated and the impact bouncer can be suppressed at the upper stop of the valve needle.
  • the multiple booster can nevertheless raise the current level and thus ensure safe operation of the high-pressure injection solenoid valve.
  • FIG. 1 shows, graphically in the form of a signal-time diagram, the usual course of the current and voltage through or on a solenoid coil of an injection valve in the case of a simple booster.
  • FIG. 2 graphically shows the case which has also already been described, when the battery voltage becomes too low in the known method with simple booster.
  • FIG. 3A shows, graphically in the form of a signal-time diagram, the current profile through a magnetic coil according to a first exemplary embodiment of the inventive method Double booster.
  • FIG. 3B graphically shows the deflection of a valve needle during the activation phase of a high-pressure injection solenoid valve
  • FIG. 3C graphically shows the current and voltage curve over the time of a second exemplary embodiment of the invention with triple booster.
  • FIG. 3A shows a first exemplary embodiment of the method according to the invention, in which a double booster takes place at a relatively low battery voltage U BATT . That is, After the first booster pulse B_ activated at the beginning of the tightening phase T A , a further booster pulse B 2 ⁇ is activated, which, as a comparison with FIG. 3B showing the deflection X of the valve needle immediately makes clear, takes place during the flight phase f of the valve needle. As a result, the drop in the current through the solenoid shown in dashed lines in FIG. 3A is avoided, so that the control range of the pull-in current control is achieved despite the low battery voltage UBATT and a reliable opening of the valve is ensured.
  • the double booster allows the current level to be kept high during the pull-in phase T A even with a low battery voltage U BA T T, and the valve can thereby be opened safely.
  • FIG. 3C shows a second exemplary embodiment of the control method according to the invention, in which a third booster pulse B22 is activated immediately after the flight phase after the second booster pulse B 2 , which suppresses the bouncing p of the valve needle at the upper stop.
  • a further booster pulse or a plurality of further booster pulses can be activated during the holding phase T H if, due to a high resistance in the circuit, the holding current I H can no longer be applied from the battery ,
  • the control method shown in the figure is preferably by a device for controlling a solenoid valve for fuel injection into an internal combustion engine, the control phase of the solenoid valve in a tightening phase, during which a valve needle of the solenoid valve is opened by a first current flowing through a solenoid of the same and divided into a holding phase, during which the valve needle is held in the open state by a second, lower current flowing through the magnetic coil, and which activates a booster phase at least once at the beginning of the pull-in phase and thereby a pulse-shaped booster current from a booster capacitor charged to a high voltage or can flow from another current source through the solenoid, which has means for activating several booster pulses at selectable times within the control phase of the solenoid valve.
  • This activation means may be connected with measuring means for measuring at least the suit current intensity X, the holding current I H, the battery voltage UBATT the supply battery, the booster voltage U B oos ⁇ and the booster current strength IBOOST-
  • the method according to the invention enables in addition to Securing the operation of a high-pressure injector with low battery voltage by activating several booster pulses and thereby increasing the current level, so that safe opening or keeping of the high-pressure injector is ensured, more economical and variable use of the booster energy by the eddy current generation through the multiple booster is reduced and booster energy is made available depending on the time required.
  • This supports the tearing of the valve needle from its lower stop point, accelerates the needle flight and suppresses the impact bouncer at the upper stop of the valve needle.
  • the multiple booster can reduce the energy or the maximum current of the individual booster pulse, as a comparison of FIGS. 1 and 2 illustrating the conventional single booster shows. This can reduce the peak load on the bonding islands for the integrated circuits and the hybrid assemblies and the storage capacity of the booster capacitor.

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Ansteuerung eines Magnetventils zur Kraftstoffeinspritzung in eine $Brennkraftmaschine, wobei die Ansteuersphase des Magnetventils in eine Anszugphase (TA), während der eine Ventilnadel des Magnetiventils durch eine erste durch eine Magnetspule desselben fließende Stromstärke (IA) zum Öffnen gebracht wird und in eine Haltephase (TH) unterteilt ist, während der die Ventilnadel im geöffneten Zustand durch eine zweite, geringere durch die Magnetspule fließende Stromstärke (IH) gehalten wird und wobei wenigstens einmal zu Beginn der Anzugsphase (TA) eine Boosterphase (B1) aktiviert wird, bei der ein impulsförmiger Boosterstrom (IBOOST) aus einem auf eine hohe Spannung (UBOOST) aufgeladenen Boosterkondensator durch die Magnetspule fließt, und ist dadurch gekennzeichnet, dass während der Ansteuersphase des Magnetventils mehrere Boosterimpulse (B1, B21, B22) nacheinander aktiviert werden, deren zeitliche Lage innerhalb der Ansteuersphase frei wählbar ist (Figur 3A-3C).

Description

VERFAHREN UND VORRICHTUNG ZUR ANSTEUERUNG EINES KRAFTSTOFFEINSPRITZVENTILS
Stand der Technik
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Ansteuerung eines Magnetventils, insbesondere zur Kraftstoffeinspritzung in eine Brennkraftmaschine, wobei die Ansteuerphase des Magnetventils in eine Anzugsphase, während der eine Ventilnadel des Magnetventils durch eine erste durch eine Magnetspule desselben fließende Stromstärke zum Öffnen gebracht wird und in eine Haltephase unterteilt ist, während der die Ventilnadel im geöffneten Zustand durch eine zweite, geringere durch die Magnetspule fließende Stromstärke gehalten wird und wobei wenigstens einmal zu Beginn der Anzugsphase eine Boosterphase aktiviert wird, bei der ein impulsförmiger Boosterstrom aus einem auf eine hohe Spannung aufgeladenen Boosterkondensator bzw. einer sonstigen Stromquelle durch die Magnetspule fließt.
Ein derartiges Verfahren und eine derartige Vorrichtung ist aus der DE 197 46 980 AI der Robert Bosch GmbH bekannt.
Die beiliegenden Figuren 1 und 2 zeigen in Form von Signaldiagrammen den Verlauf der Spannung und des Stroms an einer bzw. durch eine Magnetspule eines Einspritzventils während einer Ansteuerphase, die sich aus einer Anzugsphase TA und einer Haltephase TH zusammensetzt und zwar Figur 1 für den Fall, dass die Versorgungsbatterie normales Spannungsniveau, z. B. UBaττ = 14 V hat, und Figur 2 für den Fall, dass die Versorgungsbatterie ein zu niedriges Spannungsniveau kleiner als z. B. 14 V aufweist.
Gemäß Figur 1 erreicht der Strom nach dem anfänglichen durch eine erste Boosterphase Bi mit großer Boosterspannung UBOOΞT bewirkten Strommaximum IBOOST ein Anzugsstromniveau IA, durch das d e Ventilnadel des Magnetventils anziehen kann. Es ist deutlich, dass die Boosterspannung UBOOΞT. die wahrend der Boosterphase Bi dem Magnetventil aufgeschaltet wird, viel großer ist als die Batteriespannung U_ . Wahrend der Anzugsphase TA wird das Anzugsstromniveau IA durch mehrmaliges Aufschalten der Batteriespannung UBATT auf die Magnetspule geregelt. Der Anzugsphase TA folgt zunächst eine kurze Freilaufphase oder eine Schnellloschung, wahrend der der Strom durch die Magnetspule des Emspritzventils sehr schnell abnimmt, und ein Haltestromniveau IH erreicht, welches wahrend der Haltephase TH durch wiederholtes lmpulsformiges Aufschalten der Batteriespannung UBATT auf ein Sollniveau geregelt wird. Am Ende folgt der Haltephase TH wieder eine Freilaufphase oder Schnellloschung, an deren Ende der Strom durch die Magnetspule komplett abgebaut wird.
Figur 2 zeigt nun den Fall, dass die Ventilnadel wahrend der Anzugsphase T wegen einer zu geringen Batteriespannung ÖBATT_: (Fig. 2) < UBATT (Figur 1) nicht anziehen kann. Somit kann insbesondere bei niedriger Batteriespannung bei gegebenem Ohmschem Widerstand im Stromkreis kein ausreichender Anzugsstrom f r das Emspritzmagnetventil aufgebaut werden. D. h., (I < IA) Figur 2 zeigt, dass der Strom I durcn die Magnetspule sehr schnell abfallt und der Regelbereich der Anzugsstromregelung nicht erreicht wird und damit eine sichere Öffnung des Magnetventils nicht mehr gewährleistet ist.
Um eine gute Dynamik des Ventils zu erreichen, sollte das Niveau des Stroms durch das Einspritzventil möglichst wahrend der gesamten Offnungsbewegung der Ventilnadel m der Anzugsphase TA auf hohem Niveau verharren. Eine theoretisch vorstellbare, dieses hohe Stromniveau herstellbare lange Boosterphase über die gesamte Anzugsphase ist wegen der hohen Energieentnahme aus dem internen Boosterkondensator nicht sinnvoll. Bei realistischen Anwendungen dient die Boosterphase dazu, möglichst rasch e n hohes Stromniveau zu erreichen, wobei ein großer Anteil der Boosterenergie zu Anfang der Anzugsphase TA in Wirbelstromen umgesetzt wird. Noch bevor die Ventilnadel vollständig geöffnet ist, wird im Stand der Technik unter bestimmten Betriebsbedingungen die Boosterphase Bi abgebrochen, der Ventilstrom wird aus der Batterie getrieben und sinkt ab. D. h., dass wahrend der eigentlichen Flugphase, das ist die Phase, während der sich die Ventilnadel bewegt, die Magnetkraft schon wieder von ihrem Maximalwert abgesunken ist. Dies bedeutet eine schlechte Dynamik des Magnetventils .
Aufgabe und Vorteile der Erfindung
Angesichts der oben geschilderten Nachteile des Standes der Technik ist es allgemein Aufgabe der Erfindung, die Boosterenergie ökonomisch zu nutzen und außerdem das Einschaltverhalten des Ventils auch bei kleiner Batteriespannung zu verbessern.
Gemäß einem wesentlichen Aspekt der Erfindung wird diese Aufgabe dadurch gelost, dass wahrend der Ansteuerphase des Magnetventils mehrere Boosterimpulse nacheinander aktiviert werden. Grundsätzlich ist deren zeitliche Lage innerhalb der Ansteuerphase frei wählbar.
Somit kann bei einem ersten Ausfϋhrungsbeispiel der Erfindung nach dem ersten zu Beginn der Anzugsphase aktivierten Boosterimpuis ein weiterer Boosterimpuls noch vor oder während der Flugphase der Ventilnadel aktiviert werden.
Gemäß einem zweiten Ausführungsbeispiel kann nach dem zu Beginn der Anzugsphase aktivierten ersten Boosterimpuis ein weiterer Boosterimpuls am Ende oder unmittelbar nach der Flugphase der Ventilnadel aktiviert werden.
Schließlich kann bzw. können gemäß einem dritten Ausführungsbeispiel ein weiterer Boosterimpuls oder mehrere weitere Boosterimpulse während der Haltephase des Magnetventils aktiviert werden, wenn in dieser Haltephase die Spannung der Versorgungsbatterie unter einer bestimmten Schwellenspannung liegt.
Die oben geschilderten Ausführungsbeispiele der Erfindung können auch miteinander kombiniert werden.
Durch die mehrfache Boosterung kann die Energie bzw. der maximale Strom der einzelnen Boosterimpulse im Vergleich zu einer langen Einzelboosterung mit sehr hoher Stromstärke verringert werden. Eine verringerte Spitzenstromstärke bringt eine geringere Belastung der Bondierungsinseln für integrierte Schaltkreise, der Hybridbaugruppen und eine kleinere Speicherkapazität des Boosterkondensators.
Durch geeignete Wahl der Zeitpunkte des zweiten und gegebenenfalls dritten Boosterimpulses kann der Aufbau der Magnetkraft zeitlich frei variiert werden. Dies führt zu einer Verringerung der Wirbelstro bildung, und d e Boosterenergie kann j e nach zeitlichem Bedarf des Magnetventils zugeführt werden. Dadurch können das Losreißen der Ventilnadel des Magnetventils vom unteren Anschlagpunkt unterstutzt, der Nadelflug beschleunigt und Anschlagpreller am oberen Anschlag der Ventilnadel unterdruckt werden.
Ferner lasst sich bei einer zu geringen Batteπespannung, die nicht ausreicht, um einen genügend hohen Strom durch das Hochdruckemspritzventil zu treiben, dennoch durcn die Mehrfachboosterung das Stromniveau anheben und damit ein sicherer Betrieb des Hochdruckemspritzmagnetventils gewahrleisten.
Zeichnung
Nachstehend werden Ausfuhrungsbeispiele der Erfindung anhand der Zeichnung naher erläutert.
Figur 1 zeigt graphisch m Form eines Signal-Zeit- diagramms den bereits beschriebenen gewöhnl chen Verlauf des Stroms und der Spannung durch eine bzw. an einer Magnetspule eines Emspritzventils bei Emfachboosterung.
Figur 2 zeigt graphisch den ebenfalls bereits beschriebenen Fall, wenn beim bekannten Verfahren mit Emfachboosterung die Batteriespannung zu klein wird.
Figur 3A zeigt graphisch in Form eines Signal-Zeit- diagramms den Stromverlauf durch eine Magnet spule gemäß einem ersten Ausführungsbeispiel des erfmdungsgemaßen ^erfanrens mit Zweifachboosterung .
Figur 3B zeigt graphisch die Auslenkung einer Ventilnadel wahrend der Ansteuerphase eines Hochdruckeinspritzmagnetventils, und
Figur 3C zeigt graphisch den Strom- und Spannungsverlauf über der Zeit eines zweiten Ausfuhrungsbeispiels der Erfindung mit Dreifachboosterung.
Ausführungsbeispiele
Die graphische Darstellung der Figur 3A zeigt ein erstes Ausführungsbeispiel des erfmdungsgemaßen Verfahrens, bei dem bei relativ niedriger Batteriespannung UBATT eine Zweifachboosterung stattfindet. D. h . , nach dem ersten zu Beginn der Anzugsphase TA aktivierten Boosterimpuls B_ wird ein weiterer Boosterimpuis B2ι aktiviert, der, wie ein Vergleich mit der die Auslenkung X der Ventilnadel darstellenden Figur 3B unmittelbar deutlich macht, wahrend der Flugphase f der Ventilnadel erfolgt. Dadurch wird das m Figur 3A gestrichelt eingezeichnete Absinken des Stroms durch die Magnetspule vermieden, so dass der Regelbereich der Anzugstromregelung trotz der niedrigen Batteriespannung UBATT erreicht wird und eine sichere Öffnung des Ventils gewährleistet ist. So kann durch die zweifache Boosterung auch bei niedriger Batteπespannung UBATT das Stromniveau wahrend der Anzugsphase TA hochgehalten und dadurch das Ventil sicher geöffnet werden.
Figur 3C zeigt ein zweites Ausfunrungsbeispiel des erfmdungsgemaßen Ansteuerverfahrens, bei dem unmittelbar nach der Flugphase nacn dem zweiten Boosterimpuls B2ι ein dritter Boosterimpuis B22 aktiviert wird, der das Prellen p der Ventilnadel am oberen Anschlag unterdruckt. Gemäß einem weiteren m der Figur nicht dargestellten Ausführungsbeispiel kann bzw. können ein weiterer Boosterimpuls oder mehrere weitere Boosterimpulse wahrend der Haltephase TH aktiviert werden, falls aufgrund eines hohen oh schen Widerstands im Stromkreis selbst der Haltestrom IH nicht mehr aus der Batterie aufgebracht werden kann.
Das in der Figur dargestellte Ansteuerverfahren wird bevorzugt durch eine Vorrichtung zur Ansteuerung eines Magnetventils zur Kraftstoffeinspritzung in eine Brennkraf maschine, die die Ansteuerungsphase des Magnetventils in eine Anzugsphase, wahrend der eine Ventilnadel des Magnetventils durch eine erste durch eine Magnetspule desselben fließende Stromstärke zum Öffnen gebracht wird und in eine Haltephase unterteilt, wahrend der die Ventilnadel im geöffneten Zustand durch eine zweite, geringere durch die Magnetspule fließende Stromstarke gehalten wird, und die wenigstens einmal zu Beginn der Anzugsphase eine Boosterphase aktiviert und dabei einen mpulsformigen Boosterstrom aus einem auf eine hohe Spannung aufgeladenen Boosterkondensator oder aus einer sonstigen Stromquelle durch die Magnetspule fließen lässt, durchgeführt, die Mittel zur Aktivierung mehrerer Boosterimpulse zu wahlbaren Zeitpunkten innerhalb der Ansteuerphase des Magnetventils aufweist.
Diese Aktivierungsmittel können mit Messmitteln verbunden sein zur Messung wenigstens der Anzugsstromstarke X , der Haltestromstärke IH, der Batteriespannung UBATT der Versorgungsbatterie, der Boosterspannung UBoosτ und der Boosterstromstarke IBOOST-
Somit ermöglicht das erfindungsgemaße Verfahren außer der Sicherung des Betriebs eines Hochdruckeinspritzventils bei geringer Batteriespannung durch die Aktivierung mehrerer Boosterimpulse und dadurch die Anhebung des Stro niveaus , so dass ein sicheres Offnen bzw. Geoffnethalten des Hoch- druckemspritzventils gewahrleistet ist, eine ökonomischere und variable Nutzung der Boosterenergie, indem durch die Mehrfachboosterung die Wirbelstrombildung verringert und Boosterenergie je nach zeitlichem Bedarf zur Verfügung gestellt wird. Dadurch lässt sich das Losreißen der Ventilnadel von ihrem unteren Anschlagpunkt unterstutzen, der Nadelflug beschleunigen und Anschlagpreller am oberen Anschlag der Ventilnadel unterdrucken.
Durch die mehrfache Boosterung kann die Energie bzw. der maximale Strom des einzelnen Boosterimpulses, wie ein Vergleich der die herkömmliche Einzelboosterung veranschaulichenden Figuren 1 und 2 zeigt, verringert werden. Dadurch lasst sich die Spitzenbelastung der Bondierungs- inseln für die integrierten Schaltungen und der Hybridbaugruppen und die Speicherkapazität des Boosterkondensators verringern.

Claims

Ansprüche
1. Verfahren zur Ansteuerung eines Magnetventils, insbesondere zur Kraftstoffeinspritzung eine Brenn— kraftraaschme, wobei die Ansteuerphase des Magnetventils m eine Anzugsphase (TA) , wahrend der eine Ventilnadel des Magnetventils durch eine erste durch eine Magnetspule desselben fließende Stromstarke (IA) zum Offnen gebracht wird und in eine Haltephase (TH) unterteilt ist, wahrend der die Ventilnadel im geöffneten Zustand durch eine zweite, geringere durch die Magnetspule fließende Stromstarke (IH) gehalten wird und wobei wenigstens einmal zu Beginn der Anzugsphase (T__) eine Boosterphase (Bi) aktiviert wird, bei der em impulsförmiger Boosterstrom (IBOOΞT) aus einem auf eine hohe Spannung (UBOOΞT) aufgeladenen Boosterkondensator oder aus einer sonstigen Stromquelle durch die Magnetspule fließt, dadurch gekennzeichnet, dass wahrend der Ansteuerphase des Magnetventils mehrere Boosterimpulse (Bi, B2χ, B22) nacheinander aktiviert werden, deren zeitliche Lage innerhalb der Ansteuerphase frei wahlbar ist.
2. Ansteuerverfahren nach Anspruch 1, dadurch gekennzeichnet, dass nach dem ersten, zu Beginn der Anzugsphase (T?) aktivierten Boosterimpuis (Bi) ein weiterer Boosterimpuis (B?ι) noch vor Beginn oder wahrend der Flugphase der Ventilnadel aktiviert wird.
3. Ansteuerverfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass nach dem zu Beginn der Anzugsphase (TA) aktivierten ersten Boosterimpuls (Bi) ein weiterer
Boosterimpuis (B22) am Ende oder unmittelbar nach der Flugphase der Ventilnadel aktiviert wird.
4. Ansteuerverfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein weiterer Boosterimpuls oder mehrere Boosterimpulse wahrend der Haltephasε (TH) des Magnetventils aktiviert wird bzw. werden, wenn in dieser Phase die Spannung (UB?ττ) der Ver- sorgungsbatteπe unter einer bestimmten Schwellenspannung liegt .
5. Vorrichtung zur Ansteuerung eines Magnetventils, insbesondere zur Kraftstoffeinspritzung eine Brenn- kraftmasch e, die die Ansteuerungsphase des Magnetventils m eine Anzugsphase (TA) , wahrend der eine Ventilnadel des Magnetventils durch eine erste durch eine Magnetspule desselben fließende Stromstarke (IA) zum Offnen gebracht wird und m eine Haltephase (TH) unterteilt, wahrend der d e Ventilnadel im geöffneten Zustand durch eine zweite, geringere durch die Magnetspule fließende Stromstarke (IH) gehalten wird, und die wenigstens einmal zu Beginn der Anzugsphase (Ta) eine Boosterphase (Bi) aktiviert und dabei einen impulsforangen Boosterstrom (IBOOST) aus einem auf" e ne hohe Spannung (UBOOST) aufgeladenen Boosterkondensator oder aus einer sonstigen Stromquelle durcn die Magnetspule fließen lasst, dadurch gekennzeichnet, dass die Vorrichtung Mittel zur Aktivierung mehrerer Boosterimpulse (Bi, B2_, B2?) zu wahlbaren Zeitpunkten innerhalb der Ansteuerphase des Magnetventils aufweist.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Aktivierungsmittel mit Messmitteln wenigstens zur Messung der Anzugsstromstarke (IA), der Haltestromstarke (IH), der Batteriespannung (UBATT) einer Versorgungsbatterie, der Boosterspannung (UBOOST) und der Boosterstromstarke (IBOOST) verbunden sind.
7. Verwendung des Verfahrens nach einem der Ansprüche 1-4 für ein Hochdrucke spritzmagnetventil bei der Benzindirekteinspritzung.
PCT/DE2001/000499 2000-03-22 2001-02-09 Verfahren und vorrichtung zur ansteuerung eines kraftstoffeinspritzventils WO2001071174A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001569133A JP4418616B2 (ja) 2000-03-22 2001-02-09 燃料噴射弁の制御のための方法及び装置
BR0105317-5A BR0105317A (pt) 2000-03-22 2001-02-09 Processo e dispositivo para excitar uma válvula de injeção de combustìvel
EP01915007A EP1185773B1 (de) 2000-03-22 2001-02-09 Verfahren und vorrichtung zur ansteuerung eines kraftstoffeinspritzventils
DE50107260T DE50107260D1 (de) 2000-03-22 2001-02-09 Verfahren und vorrichtung zur ansteuerung eines kraftstoffeinspritzventils
US09/979,353 US6785112B2 (en) 2000-03-22 2001-09-02 Method and device for triggering a fuel injector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10014228.1 2000-03-22
DE10014228A DE10014228A1 (de) 2000-03-22 2000-03-22 Verfahren und Vorrichtung zur Ansteuerung eines Kraftstoffeinspritzventils

Publications (1)

Publication Number Publication Date
WO2001071174A1 true WO2001071174A1 (de) 2001-09-27

Family

ID=7635912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/000499 WO2001071174A1 (de) 2000-03-22 2001-02-09 Verfahren und vorrichtung zur ansteuerung eines kraftstoffeinspritzventils

Country Status (8)

Country Link
US (1) US6785112B2 (de)
EP (1) EP1185773B1 (de)
JP (1) JP4418616B2 (de)
KR (1) KR100757565B1 (de)
BR (1) BR0105317A (de)
DE (2) DE10014228A1 (de)
ES (1) ES2245352T3 (de)
WO (1) WO2001071174A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131467A3 (de) * 2010-04-20 2012-01-12 Robert Bosch Gmbh Verfahren zum betreiben einer brennkraftmaschine, bei dem ein magnetventil zum einspritzen von kraftstoff betätigt wird
WO2015124304A1 (de) * 2014-02-20 2015-08-27 Man Diesel & Turbo Se Steuergerät einer brennkraftmaschine
DE102015211402B3 (de) * 2015-06-22 2016-08-04 Continental Automotive Gmbh Verfahren zum Erzeugen eines Ansteuersignals für eine Endansteuervorrichtung für Einspritzventile

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50107464D1 (de) * 2000-02-16 2006-02-02 Bosch Gmbh Robert Verfahren und schaltungsanordnung zum betrieb eines magnetventils
JP2002237410A (ja) * 2001-02-08 2002-08-23 Denso Corp 電磁弁駆動回路
FR2826200B1 (fr) * 2001-06-15 2004-09-17 Sagem Procede d'alimentation d'un equipement electrique
JP2004129376A (ja) * 2002-10-02 2004-04-22 Tokyo Weld Co Ltd 電磁駆動機構の動作制御方法
WO2005093239A1 (en) * 2004-03-29 2005-10-06 Mitron Oy Method and device for controlling the fuel supply in a motor
DE102004063079A1 (de) 2004-12-28 2006-07-06 Robert Bosch Gmbh Verfahren zum Betrieb einer Brennkraftmaschine
US7013876B1 (en) 2005-03-31 2006-03-21 Caterpillar Inc. Fuel injector control system
DE102006016892A1 (de) * 2006-04-11 2007-10-25 Robert Bosch Gmbh Verfahren zur Steuerung wenigstens eines Magnetventils
EP1903201B1 (de) * 2006-09-20 2017-04-12 Delphi International Operations Luxembourg S.à r.l. Strategie und Steuerung zur Ventilsteuerung
DE102007023898A1 (de) * 2007-05-23 2008-11-27 Robert Bosch Gmbh Verfahren zum Ansteuern eines Einspritzventils
GB2450523A (en) * 2007-06-28 2008-12-31 Woodward Governor Co Method and means of controlling a solenoid operated valve
JP4359855B2 (ja) * 2007-07-09 2009-11-11 Smc株式会社 電磁弁駆動回路及び電磁弁
DE102007045513B4 (de) * 2007-09-24 2015-03-19 Continental Automotive Gmbh Verfahren und Vorrichtung zum Zumessen eines Fluids
JP5053868B2 (ja) * 2008-01-07 2012-10-24 日立オートモティブシステムズ株式会社 燃料噴射制御装置
JP4815502B2 (ja) * 2009-03-26 2011-11-16 日立オートモティブシステムズ株式会社 内燃機関の制御装置
JP5198496B2 (ja) * 2010-03-09 2013-05-15 日立オートモティブシステムズ株式会社 内燃機関のエンジンコントロールユニット
JP5698938B2 (ja) * 2010-08-31 2015-04-08 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置及び燃料噴射システム
JP5880296B2 (ja) * 2012-06-06 2016-03-08 株式会社デンソー 燃料噴射弁の駆動装置
DE102013201410B4 (de) * 2013-01-29 2018-10-11 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine sowie entsprechende Brennkraftmaschine
JP5975899B2 (ja) * 2013-02-08 2016-08-23 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置
DE102015217945A1 (de) * 2014-10-21 2016-04-21 Robert Bosch Gmbh Vorrichtung zur Steuerung von wenigstens einem schaltbaren Ventil
GB2534172A (en) * 2015-01-15 2016-07-20 Gm Global Tech Operations Llc Method of energizing a solenoidal fuel injector for an internal combustion engine
DE102016219375B3 (de) * 2016-10-06 2017-10-05 Continental Automotive Gmbh Betreiben eines Kraftstoffinjektors mit hydraulischem Anschlag bei reduziertem Kraftstoffdruck
DE102016219888B3 (de) 2016-10-12 2017-11-23 Continental Automotive Gmbh Betreiben eines Kraftstoffinjektors mit hydraulischem Anschlag
DE102016219881B3 (de) 2016-10-12 2017-11-23 Continental Automotive Gmbh Betreiben eines Kraftstoffinjektors mit hydraulischem Anschlag
JP6717176B2 (ja) * 2016-12-07 2020-07-01 株式会社デンソー 噴射制御装置
DE102016224682A1 (de) * 2016-12-12 2018-06-14 Robert Bosch Gmbh Verfahren zur Erwärmung eines Gasventils, insbesondere eines Kraftstoffinjektors
JP7006204B2 (ja) 2017-12-05 2022-01-24 株式会社デンソー 噴射制御装置
CN108979874B (zh) * 2018-07-24 2020-09-29 潍柴动力股份有限公司 一种电磁阀的控制方法、控制装置及燃气发动机
CN111263599A (zh) 2018-10-03 2020-06-09 株式会社歌思福 饰物用紧固件
KR102068137B1 (ko) * 2019-06-28 2020-01-21 대한민국(국방부 해군참모총장) 해군 함정용 mtu 엔진의 이동식 인젝터 검사기
DE102020200682A1 (de) * 2020-01-22 2021-07-22 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines elektromagnetisch ansteuerbaren Tankventils, Computerprogramm und Steuergerät
DE102020200679A1 (de) * 2020-01-22 2021-07-22 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Öffnen einer Ventilanordnung für einen Treibstofftank

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19746980A1 (de) 1997-10-24 1999-04-29 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung wenigstens eines elektromagnetischen Verbrauchers
FR2775825A1 (fr) * 1998-03-03 1999-09-03 Bosch Gmbh Robert Procede et dispositif pour commander un appareil utilisateur
DE19833830A1 (de) * 1998-07-28 2000-02-03 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung wenigstens eines Magnetventils
US6031707A (en) * 1998-02-23 2000-02-29 Cummins Engine Company, Inc. Method and apparatus for control of current rise time during multiple fuel injection events

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2828678A1 (de) * 1978-06-30 1980-04-17 Bosch Gmbh Robert Verfahren und einrichtung zum betrieb eines elektromagnetischen verbrauchers, insbesondere eines einspritzventils in brennkraftmaschinen
US4327693A (en) * 1980-02-01 1982-05-04 The Bendix Corporation Solenoid driver using single boost circuit
US4486703A (en) * 1982-09-27 1984-12-04 The Bendix Corporation Boost voltage generator
US4479161A (en) * 1982-09-27 1984-10-23 The Bendix Corporation Switching type driver circuit for fuel injector
US4604675A (en) * 1985-07-16 1986-08-05 Caterpillar Tractor Co. Fuel injection solenoid driver circuit
US4729056A (en) * 1986-10-02 1988-03-01 Motorola, Inc. Solenoid driver control circuit with initial boost voltage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19746980A1 (de) 1997-10-24 1999-04-29 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung wenigstens eines elektromagnetischen Verbrauchers
US6031707A (en) * 1998-02-23 2000-02-29 Cummins Engine Company, Inc. Method and apparatus for control of current rise time during multiple fuel injection events
FR2775825A1 (fr) * 1998-03-03 1999-09-03 Bosch Gmbh Robert Procede et dispositif pour commander un appareil utilisateur
DE19833830A1 (de) * 1998-07-28 2000-02-03 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung wenigstens eines Magnetventils

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131467A3 (de) * 2010-04-20 2012-01-12 Robert Bosch Gmbh Verfahren zum betreiben einer brennkraftmaschine, bei dem ein magnetventil zum einspritzen von kraftstoff betätigt wird
WO2015124304A1 (de) * 2014-02-20 2015-08-27 Man Diesel & Turbo Se Steuergerät einer brennkraftmaschine
US10167807B2 (en) 2014-02-20 2019-01-01 Man Energy Solutions Se Control unit of an internal combustion engine
DE102015211402B3 (de) * 2015-06-22 2016-08-04 Continental Automotive Gmbh Verfahren zum Erzeugen eines Ansteuersignals für eine Endansteuervorrichtung für Einspritzventile

Also Published As

Publication number Publication date
DE10014228A1 (de) 2001-09-27
JP4418616B2 (ja) 2010-02-17
KR20020005047A (ko) 2002-01-16
US6785112B2 (en) 2004-08-31
JP2003528251A (ja) 2003-09-24
US20030010325A1 (en) 2003-01-16
DE50107260D1 (de) 2005-10-06
ES2245352T3 (es) 2006-01-01
EP1185773B1 (de) 2005-08-31
KR100757565B1 (ko) 2007-09-10
EP1185773A1 (de) 2002-03-13
BR0105317A (pt) 2002-02-19

Similar Documents

Publication Publication Date Title
EP1185773A1 (de) Verfahren und vorrichtung zur ansteuerung eines kraftstoffeinspritzventils
EP0704097B1 (de) Vorrichtung und ein verfahren zur ansteuerung eines elektromagnetischen verbrauchers
DE60011038T2 (de) Zeit und Fall-kontrolliertes Aktivierungssystem für die Aufladung und die Entladung von piezoelektrischen Elementen
DE60020889T2 (de) Steuerungsgerät für einen elektromagnetischen Verbraucher mit variabler Antriebsstartenergievorsorgung
DE19539071A1 (de) Vorrichtung zur Ansteuerung wenigstens eines elektromagnetischen Verbrauchers
DE3135123A1 (de) Spritzduesen-steuerschaltung
DE4322199C2 (de) Verfahren und Einrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
WO1996027198A1 (de) Vorrichtung zur ansteuerung wenigstens eines elektromagnetischen verbrauchers
DE19742037B4 (de) Verfahren zur Abfallerkennung einer magnetbetriebenen Vorrichtung
DE102010027806B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine, bei dem eine Größe ermittelt wird
EP1099260B1 (de) Verfahren und vorrichtung zum ansteuern wenigstens eines kapazitiven stellgliedes
DE19810525C2 (de) Verfahren und Vorrichtung zum Ansteuern kapazitiver Stellglieder
DE102010000898A1 (de) Verfahren zur Prellervermeidung bei einem Magnetventil
DE4018320C2 (de) Ansteuerschaltung für einen elektromagnetischen Verbraucher
WO2008090047A1 (de) Vorrichtung und verfahren zur steuerung eines elektromagnetischen ventils
DE4332995C1 (de) Verfahren zur Ansteuerung von parallel angeordneten Relais
EP0945610A2 (de) Verfahren und Vorrichtung zum Schalten einer Induktivität
DE19826704C1 (de) Vorrichtung zum Zünden eines Zündelements eines Kraftfahrzeug-Insassenschutzmittels
EP0854281B1 (de) Verfahren und Vorrichtung zur Ansteuerung wenigstens eines elektromagnetischen Verbrauchers
DE19521676A1 (de) Regelung des Anzuges eines Ankers eines Schaltmagneten und Schaltanordnung zur Durchführung des Verfahrens
DE102014220929B4 (de) Verfahren zur Ansteuerung eines induktiven Aktors
EP0155273B1 (de) Einrichtung zur kraftstoffzummessung bei einer brennkraftmaschine
DE10140093A1 (de) Verfahren und Vorrichtung zum Ansteuern eines Magnetventils
DE10058959B4 (de) Verfahren zur Überwachung einer Steuerschaltung
EP0880787A1 (de) Steuervorrichtung für eine brennkraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR IN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001915007

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2001 569133

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/1619/CHE

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020017014836

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001915007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09979353

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001915007

Country of ref document: EP