EP0880787A1 - Steuervorrichtung für eine brennkraftmaschine - Google Patents

Steuervorrichtung für eine brennkraftmaschine

Info

Publication number
EP0880787A1
EP0880787A1 EP96945993A EP96945993A EP0880787A1 EP 0880787 A1 EP0880787 A1 EP 0880787A1 EP 96945993 A EP96945993 A EP 96945993A EP 96945993 A EP96945993 A EP 96945993A EP 0880787 A1 EP0880787 A1 EP 0880787A1
Authority
EP
European Patent Office
Prior art keywords
coil
current
signal
value
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96945993A
Other languages
English (en)
French (fr)
Other versions
EP0880787B1 (de
Inventor
Christian Hoffmann
Richard Wimmer
Achim Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0880787A1 publication Critical patent/EP0880787A1/de
Application granted granted Critical
Publication of EP0880787B1 publication Critical patent/EP0880787B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits

Definitions

  • the invention relates to a control device for an internal combustion engine according to the preamble of claim 1.
  • a control device (EP 04 00 389 A) comprises an actuator with a coil, a core and an armature, an actuator and a control unit.
  • the coil In order to attract the armature to the core, the coil is acted upon by a pull-in current which has such a high amplitude that the magnetic flux provides the force required to accelerate and move the armature. If the armature lies against the core, the current through the coil is limited to a holding current, the amplitude of which is so low that at least one holding force required to hold the armature on the core is applied by the magnetic flux.
  • the current through the coil is tracked by a two-point controller to the respective target value of the pull-in current or the holding current, the pulse / pause ratio of the actuating signal being dependent on the reaching of an upper and a lower threshold value of the current.
  • the control unit detects the duration of the pulses of the control signal and uses it as an indirect measure of the inductance of the coil, which increases as the distance between the core and the armature decreases. Accordingly, the holding current is specified as the setpoint if the detected time period exceeds a limit value lies. It is very disadvantageous here that the time of impact of the anchor cannot be determined exactly. If the armature hits the core shortly before the current reaches its lower threshold value, the impact can only be detected after the following pulse of the control signal. Accordingly, there are high losses in the coil since the current is limited to the holding current too late. These can only be reduced if the starting current has a correspondingly low amount. However, this increases the time required for the armature to reach the core from a rest position to the stop. The actuator can therefore no longer be activated as quickly, which is particularly the case with injection or injection / Exhaust valves of an internal combustion engine is disadvantageous.
  • the invention is based on the knowledge that the inductance of the coil changes during the movement of an armature and, however, remains constant from when the armature strikes a core until the armature is released. By detecting a change in the inductance, a precise time of impact of the armature on the core can thus be determined.
  • the control device has a measuring device from which the inductance of the coil is detected and from which a first control signal is generated as a function of the inductance, by means of which the desired value is set to a holding value.
  • the measuring device comprises one Signal generator that generates a test signal that is applied to the coil.
  • the test signal advantageously has a low amplitude.
  • a narrow-band test signal is also advantageous, the frequency of which is significantly higher than that of the current through the coil.
  • the first control signal is preferably generated when the inductance changes by less than a lower threshold value in a predetermined time interval.
  • the time interval can be chosen so small that the time of impact is determined with sufficient accuracy. It is extremely advantageous that the point of impact can be determined independently of the effects of temperature and aging.
  • a second control signal is preferably generated if the inductance changes in the time interval by more than a predetermined upper threshold value. In this way, a time of detachment of the armature from the core can also be recorded precisely.
  • Figure 1 a control device according to the invention
  • Figure 2 the control device of Figure 1 with a
  • FIG. 3 a block diagram of a measuring device from FIG. 2,
  • Figure 4a-g waveforms in the control device according to
  • Figure 1 Figure 1a: the course of a coil current plotted over the
  • FIG. 4b the course of a control voltage plotted over time
  • FIG. 4c the course of the amplitude of an output current plotted over time
  • FIG. 4e the course of a first control signal plotted over time
  • Figure 4f the course of a second control signal plotted over time
  • Figure 4g the course of a pulse signal plotted over the
  • a control device comprises an actuator 1, an actuator 2, a control unit 3 and a measuring device 4.
  • the actuator 1 has a coil 10 which is wound around a core 11.
  • a spring 12 is arranged on the core 11 in such a way that it prestresses an armature 13 against the direction of force of a magnetic force which acts when the coil 10 is energized.
  • the actuator 2 has a spindle 21 and a cone 22. It is used in this design for an injection valve or an intake / exhaust valve of the engine.
  • the special design of the actuator 2 is not essential to the invention. Accordingly, the actuator can also be designed such that it can be used, for example, for a common rail system or an exhaust gas recirculation system.
  • the coil is connected to the control unit 3 as well as to the measuring device 4 via a first tap point 5 and a second tap point 6.
  • the coil 10 can be represented as a series connection of a resistor 100 and an inductor 101 (FIG. 2).
  • the structure of the control unit 3 is known per se and is not essential for the invention. Accordingly, it is not described further below. The operation of the control unit 3 is described with reference to Figures 4a, 4b.
  • the measuring device 4 has a signal generator which is designed as an oscillator 40 and of which a test signal (in hereinafter referred to as test voltage) is generated.
  • the oscillator 40 is connected to a first coupling device 41, which is connected to the coil 10 via the first tap point 5.
  • the coupling device 41 is designed, for example, as a capacitor or as a bandpass filter, the bandwidth of which approximately corresponds to that of the test voltage.
  • the coil 10 is thus subjected to the test voltage, which in this embodiment is a sinusoidal voltage with a significantly higher frequency than the highest occurring frequency in a control voltage with which the control unit 3 applies the coil 10.
  • the test voltage which in this embodiment is a sinusoidal voltage with a significantly higher frequency than the highest occurring frequency in a control voltage with which the control unit 3 applies the coil 10.
  • This ensures that an output current I A can be coupled out via a second coupling device 42, which in turn consists of a capacitor or a bandpass filter and which is connected to the coil 10 via the second tap point 6.
  • the bandwidth of the bandpass filter is advantageously chosen so that it corresponds approximately to that of the test voltage.
  • the amplitude of the test voltage is predetermined so that it is significantly smaller than that of the control voltage U s .
  • a voltage meter 43 is arranged between the oscillator 40 and the first coupling device 41, from which the magnitude of the test voltage is detected and passed on to an evaluation device 44.
  • a measuring device which is designed as an ammeter 45, is connected to the second coupling device 42 and detects the magnitude of the output current I A and forwards it as a measuring signal to the evaluation device 44.
  • an inductance value L of the inductance 101 is determined by forming the ratio of the amount of the test voltage to the amount of the output current I A and taking into account the predetermined resistance 100. This process is carried out at predefined time intervals. If the inductance value L changes within a time interval by less than a predetermined lower one Threshold value, a first control signal S1 is generated. If, on the other hand, the inductance value L changes by more than a predetermined upper threshold value in a predetermined time interval, a second control signal S2 is generated. In the control unit 3, when the first control signal S1 is applied, a setpoint value for the coil current I s is reduced from a pull-in current 1 ⁇ to a holding current I H.
  • FIG. 4a shows the course of the coil current I s plotted over time t.
  • a pulse signal P (FIG. 4f) is generated at time t 0 .
  • a control voltage U s is then applied by the control unit 3 and drops across the resistor 100 and the inductance 101.
  • the amount of the control voltage U s corresponds to that of the pull-in voltage U A.
  • the coil current I s increases approximately exponentially until the time t x , at which it reaches the value of a maximum starting current I AMAX .
  • the magnitude of the control voltage U s is then reduced to a zero voltage U 0 (for example 0 volts).
  • the coil current I s then drops approximately exponentially until it has the magnitude of the minimum pull-in current I ft m H at time t 2 .
  • a control voltage U s with the amount of the starting voltage U A is applied to the coil 10 until the coil current I s again reaches the value of the maximum starting current I ⁇ M ⁇ X at time t 3 . This process continues until the first control signal S1 is generated at time t 4 .
  • the course of the amplitude of the output current I A has a kink over time.
  • a sudden flattening of the course of the inductance value to an approximately constant value at point t 4 can be seen in FIG. 4d.
  • the inductance value L changed less than a lower threshold value in the time interval from time t 3A to time t 4A .
  • the first control signal S x (see FIG. 4e) is generated at time t 4 .
  • the time intervals between two determinations of the inductance value L can be chosen to be as small as desired if the lower and the upper threshold value are adapted accordingly. As a result, the time of impact and the time of release can be determined as precisely as desired.
  • the coil current I s by suitable circuit means, such as. B. a free-wheeling diode, reduced as quickly as possible to a holding current I H.
  • the coil current I s reaches the value of the minimum holding current I HMIN - the control voltage U s is then set to a holding voltage U H.
  • the coil current I s then reaches the value of a maximum holding current I HMAX - thereupon the control voltage U s is reduced again to the zero voltage U 0 until the coil current I s reaches the value of the minimum holding current I HMIN . This process is repeated until the pulse signal P is withdrawn at time t 7 .
  • the control voltage U s is then set to the zero voltage U 0 and the current through the coil is reduced to a zero current (for example 0 amperes) by suitable switching means (for example a freewheeling diode).
  • FIG. 4d shows a sharp drop in the inductance value L at time t 8 . Accordingly, the second control signal S 2 (FIG. 4e) is generated at this time.
  • test signal has a very high frequency, the influence of the resistor 101 can be neglected.
  • temperature and age-dependent changes in the resistance 101 can be detected by means of suitable resistance measuring means.
  • pulse signal P is not present, a voltage can be impressed on the coil 10 by means of these resistance measuring means the stationary current through the coil 10 can be detected. The ratio of these two quantities then forms the value of the resistor 100.
  • the control device accordingly enables precise detection of the time of impact of the armature 13 on the core 11. This makes it possible to set the coil current I s in the vicinity of the saturation limit of the coil 10 up to the point of impact of the armature 13, so that the armature 13 is accelerated as much as possible.
  • the losses in the control device are kept very low by rapidly reducing the coil current I s from a value between the maximum starting current I ⁇ and the minimum starting current I HN to the minimum holding current I HMIN .
  • the measuring device 4 has a second ammeter which detects the magnitude of the coil current I s and forwards it to the evaluation device 44.
  • the measuring device 4 then has a map memory in which base values for the
  • Position of the armature 13 in dependence on the amount of the coil current I s and the inductance L are stored.
  • the position of the armature 13 can thus be determined in this embodiment of the invention.
  • the measuring device 4 has means for detecting the phase difference between the test signal and the output signal.
  • the inductance value L of the inductance 101 is determined from the phase difference, taking into account the predetermined resistance 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

Eine Steuervorrichtung umfasst einen magnetischen Aktor (1), ein Stellglied (2), eine Regeleinheit (3) und eine Messvorrichtung (4). Der magnetische Aktor (1) weist eine Spule (10), einen Kern (11), eine Feder (12) und einen Anker (13) auf. Der Aktor (1) ist mit dem Stellglied (2) verbunden. Die Messvorrichtung (4) erfasst einen Induktivitätswert (L) der Spule (10) und erzeugt in Abhängigkeit von dem Induktivitätswert (L) ein erstes Steuersignal, durch das ein Sollwert für den Strom durch die Spule (10) auf einen Haltewert eingestellt wird. Durch die Regeleinheit (3) wird der Strom durch die Spule (10) bei einem vorhandenen Pulssignal (P) auf den Sollwert geregelt.

Description

Beschreibung
Steuervorrichtung für eine Brennkraftmaschine
Die Erfindung betrifft eine Steuervorrichtung für eine Brenn¬ kraftmaschine gemäß Oberbegriff von Patentanspruch 1.
Eine Steuervorrichtung (EP 04 00 389 A) umfaßt einen Aktor mit einer Spule, einem Kern und einem Anker, ein Stellglied und eine Regeleinheit. Die Spule wird zum Anziehen des Ankers an den Kern mit einem Anzugsstrom beaufschlagt, der eine der¬ art hohe Amplitude aufweist, daß durch den magnetischen Fluß die erforderliche Kraft zum Beschleunigen und Bewegen des An¬ kers zur Verfügung steht. Liegt der Anker an dem Kern an, so wird der Strom durch die Spule auf einen Haltestrom begrenzt, dessen Amplitude so niedrig ist, daß durch den magnetischen Fluß zumindest eine erforderliche Haltekraft zum Halten des Ankers am Kern aufgebracht wird.
Der Strom durch die Spule wird durch einen Zweipunktregler dem jeweiligen Sollwert des Anzugsstroms oder des Haltestroms nachgeführt, wobei das Puls-/Pausenverhältnis des Stellsi¬ gnals von dem Erreichen eines oberen und eines unteren Schwellwertes des Stroms abhängt.
Das Erkennen eines AuftreffZeitpunktes des Ankers auf den Kern kommt eine außerordentlich große Bedeutung zu, da bei einem verspäteten Umschalten auf den Haltestrom sehr hohe Verluste in der Spule auftreten, die sogar zu deren thermischen Zerstörung führen können.
In der oben genannten Steuervorrichtung wird von der Regel- einheit die Zeitdauer der Pulse des Stellsignals erfaßt und als indirektes Maß für die Induktivität der Spule verwendet, die mit geringer werdendem Abstand zwischen dem Kern und dem Anker zunimmt . Demnach wird der Haltestrom als Sollwert vor¬ gegeben, wenn die erfaßte Zeitdauer über einem Grenzwert liegt. Sehr nachteilig ist hierbei, daß der AuftreffZeitpunkt des Ankers nicht genau erfaßt werden kann. Trifft der Anker auf den Kern, kurz bevor der Strom seinen unteren Schwellwert erreicht, so kann das Auftreffen erst nach dem folgenden Puls des Stellsignals detektiert werden. Demnach entstehen hohe Verluste in der Spule, da der Strom zu spät auf den Halte¬ strom begrenzt wird. Diese können nur verringert werden, wenn der Anzugsstrom einen entsprechend niedrigen Betrag aufweist. Dadurch wird aber die Zeit erhöht, die der Anker benötigt, um von einer Ruhestellung bis zum Anschlag an den Kern zu gelan¬ gen. Das Stellglied kann somit nicht mehr so schnell ange¬ steuert werden, was insbesondere bei Einspritz- oder bei Ein- /Auslaußventilen einer Brennkraftmaschine nachteilig ist.
Demnach ist es die Aufgabe der Erfindung, eine Steuervor¬ richtung derart auszubilden, daß ihre Ansprechzeit und ihre Verluste noch weiter reduziert werden.
Die Aufgabe wird erfindungsgemäß durch die Merkmale des Pa- tentanspruch 1 gelöst.
Die Erfindung beruht auf der Erkenntnis, daß während der Be¬ wegung eines Ankers sich die Induktivität der Spule ändert und ab dem Auftreffen des Ankers auf einen Kern bis zum Lö- sen des Ankers jedoch konstant bleibt. Durch das Erfassen einer Änderung der Induktivität kann demnach ein genauer Auf¬ treffZeitpunkt des Ankers auf den Kern bestimmt werden. Dazu weist die Steuervorrichtung eine Meßvorrichtung auf, von der die Induktivität der Spule erfaßt wird und von der in Ab- hängigkeit von der Induktivität ein erstes Steuersignal er¬ zeugt wird, durch das der Sollwert auf einen Haltewert ein¬ gestellt wird.Die Meßvorrichtung umfaßt einen Signalgene¬ rator, der ein Prüfsignal erzeugt, mit dem die Spule beauf¬ schlagt wird. Das Prüfsignal hat vorteilhafterweise eine ge- ringe Amplitude. Des weiteren ist ein schmalbandiges Prüfsi¬ gnal vorteilhaft, dessen Frequenz wesentlich höher ist als die des Stroms durch die Spule. Vorzugsweise wird das erste Steuersignal erzeugt, wenn sich die Induktivität in einem vorgegebenen Zeitintervall um we¬ niger als einen unteren Schwellwert ändert. Das Zeitintervall kann so klein gewählt werden, daß der AuftreffZeitpunkt aus- reichend genau bestimmt wird. Es ist äußerst vorteilhaft, daß der AuftreffZeitpunkt unabhängig von Temperatur- und Alte¬ rungseinflüssen ermittelt werden kann.
Vorzugsweise wird ein zweites Steuersignal erzeugt, wenn sich die Induktivität in dem Zeitintervall um mehr als einen vor¬ gegebenen oberen Schwellwert ändert . Dadurch kann auch ein Ablösezeitpunkt des Ankers vom Kern genau erfaßt werden.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
Die Erfindung und ihre Weiterbildungen werden anhand eines Ausführungsbeispiels in der Zeichnung näher erläutert . Es zeigen:
Figur 1: eine erfindungsgemäße Steuervorrichtung, Figur 2 : die Steuervorrichtung aus Figur 1 mit einer
Ersatzschaltbilddarstellung eines Aktors, Figur3 : ein Blockschaltbild einer Meßvorrichtung aus Figur 2,
Figur 4a-g: Signalverläufe in der Steuervorrichtung gemäß
Figur 1, Figur 4a: den Verlauf eines Spulenstroms aufgetragen über die
Zeit, Figur 4b: den Verlauf einer Steuerspannung aufgetragen über die Zeit, Figur 4c: den Verlauf der Amplitude eines Ausgangsstroms aufgetragen über die Zeit,
Figur 4e: den Verlauf eines ersten Steuersignals aufgetragen über die Zeit, Figur 4f : den Verlauf eines zweiten Steuersignals aufgetragen über die Zeit, Figur 4g: den Verlauf eines Pulssignals aufgetragen über die
Zeit.
Gleiche Elemente werden figurenübergreifend mit den gleichen Bezugszeichen gekennzeichnet.
Eine Steuervorrichtung umfaßt einen Aktor 1, ein Stellglied 2, eine Regeleinheit 3 und eine Meßvorrichtung 4. Der Aktor 1 weist eine Spule 10 auf, die um einen Kern 11 gewickelt ist. eine Feder 12 ist derart an dem Kern 11 angeordnet, daß sie einen Anker 13 entgegen der Kraftrichtung einer magnetischen Kraft vorspannt, die im bestromten Zustand der Spule 10 wirkt.
Das Stellglied 2 weist eine Spindel 21 und einen Kegel 22 auf . Es wird in dieser Ausbildung für ein Einspritzventil oder ein Ein-/ Auslaßventil des Motors verwendet. Die spezielle Ausbildung des Stellgliedes 2 ist nicht erfindungs¬ wesentlich. Demnach kann das Stellglied auch derart ausge¬ bildet sein, daß es beispielsweise für ein Common-Rail System oder ein Abgasrückführsystem verwendet werden kann.
Die Spule ist über einen ersten Abgriffspunkt 5 und einen zweiten Abgriffspunkt 6 sowohl mit der Regeleinheit 3, als auch mit der Meßvorrichtung 4 verbunden.
In erster Näherung kann die Spule 10 als Serienschaltung eines Widerstandes 100 und einer Induktivität 101 dargestellt werden (Figur 2) . Der Aufbau der Regeleinheit 3 an sich ist bekannt und für die Erfindung nicht wesentlich. Demnach wird er im folgenden nicht weiter beschrieben. Die Funktionsweise der Regeleinheit 3 wird anhand der Figur 4a, 4b beschrieben.
Die Meßvorrichtung 4 weist einen Signalgenerator auf, der als Oszillator 40 ausgebildet ist und von dem ein Prüfsignal (im folgenden als PrüfSpannung bezeichnet) erzeugt wird. Der Os¬ zillator 40 ist mit einer ersten Koppelvorrichtung 41 ver¬ bunden, die über den ersten Abgriffspunkt 5 mit der Spule 10 verbunden ist. Die Koppelvorrichtung 41 ist beispielsweise als Kondensator oder als Bandpaß ausgebildet, dessen Band¬ breite in etwa der der PrüfSpannung entspricht.
Die Spule 10 wird somit mit der PrüfSpannung beaufschlagt, die in dieser Ausführungsform eine sinusförmige Spannung mit einer deutlich höheren Frequenz als die höchste vorkommende Frequenz in einer SteuerSpannung ist, mit der die Spule 10 von der Regeleinheit 3 beaufschlagt wird. Dadurch ist gewähr¬ leistet, daß ein Ausgangsstrom IA über eine zweite Koppel- Vorrichtung 42 ausgekoppelt werden kann, die wiederum aus einem Kondensator oder einem Bandpaß besteht und die über den zweiten Abgriffspunkt 6 mit der Spule 10 verbunden ist. Die Bandbreite des Bandpasses ist vorteilhaft so gewählt, daß sie in etwa der der PrüfSpannung entspricht .
Die Amplitude der Prüfspannung ist so vorgegeben, daß sie deutlich kleiner ist als die der Steuerspannung Us . Zwischen dem Oszillator 40 und der ersten KoppelVorrichtung 41 ist ein Spannungsmesser 43 angeordnet, von dem der Betrag der Prüf- spannung erfaßt wird und an eine Auswertevorrichtung 44 wei- tergeleitet wird.
Eine Meßeinrichtung, die als Strommesser 45 ausgebildet ist, ist mit der zweiten Koppelvorrichtung 42 verbunden und erfaßt den Betrag des AusgangsStroms IA und leitet ihn als Meßsignal an die Auswertevorrichtung 44 weiter. In der Auswertevor¬ richtung 44 wird durch das Bilden des Verhältnisses von dem Betrag der Prüfspannung zu dem Betrag des Ausgangsstroms IA und unter Berücksichtigung des vorgegebenen Widerstands 100 ein Induktivitätswert L der Induktivität 101 bestimmt. Dieser Vorgang wird in fest vorgegebenen Zeitintervallen durchge¬ führt . Ändert sich der Induktivitätswert L innerhalb eines Zeitintervalls um weniger als einen vorgegebenen unteren Schwellwert, so wird ein erstes Steuersignal Sl erzeugt. Ändert sich hingegen der Induktivitätwert L in einem vor¬ gegebenen Zeitintervall um mehr als einen vorgegebenen oberen Schwellwert, so wird ein zweites Steuersignal S2 erzeugt. In der Regeleinheit 3 wird bei dem Anliegen des ersten Steuer¬ signals Sl ein Sollwert für den Spulenstrom Is von einem An¬ zugsstrom 1^ auf einen Haltestrom IH reduziert .
Die Figur 4a zeigt den Verlauf des Spulenstroms Is aufge- tragen über die Zeit t. Zum Zeitpunkt t0 wird ein Pulssignal P (Figur 4f) erzeugt. Daraufhin wird von der Regeleinheit 3 eine Steuerspannung Us angelegt, die über dem Widerstand 100 und der Induktivität 101 abfällt.
Der Betrag der SteuerSpannung Us entspricht dem der Anzugs- Spannung UA. Der Spulenstrom Is steigt annähernd exponentiell bis zum Zeitpunkt tx an, zu dem er den Wert eines maximalen Anzugsstroms IAMAX erreicht. Daraufhin wird der Betrag der Steuerspannung Us auf eine Nullspannung U0 (z.B. 0 Volt) ver- ringert. Der Spulenstrom ls fällt dann annähernd exponentiell ab, bis er im Zeitpunkt t2 den Betrag des minimalen Anzugs- Stroms IftmH aufweist. Dann wird wieder eine Steuerspannung Us mit dem Betrag der AnzugsSpannung UA an der Spule 10 ange¬ legt, bis der Spulenstrom Is zum Zeitpunkt t3 wieder den Wert des maximalen Anzugsstroms IΛMΛX erreicht. Dieser Vorgang wird solange fortgesetzt, bis zum Zeitpunkt t4 das erste Steuer¬ signal Sl erzeugt wird.
Zum Zeitpunkt t4 weist der Verlauf der Amplitude des Aus- gangsstroms IA (vgl. Figur 4c) über der Zeit einen Knick auf. In Figur 4d ist ein plötzliches Abflachen des Verlaufs des Induktivitätswertes auf einen in etwa konstanten Wert im Punkt t4 zu erkennen. In dem Zeitpunkt t4A hat sich der In¬ duktivitätswert L in dem Zeitintervall von dem Zeitpunkt t3A bis zum Zeitpunkt t4A weniger als ein unterer Schwellwert verändert. Demnach wird zum Zeitpunkt t4 das erste Steuer¬ signal Sx (vgl. Figur 4e) erzeugt. Die Zeitintervalle zwischen zwei Ermittlungen des Induktivi¬ tätswertes L können beliebig klein gewählt werden, wenn der untere und der obere Schwellwert entsprechend angepaßt werden. Dadurch läßt sich der AuftreffZeitpunkt und der Ablö¬ sezeitpunkt beliebig genau bestimmen.
Zum Zeitpunkt t4A wird der Spulenstrom Is durch geeignete Schaltungsmittel, wie z. B. eine Freilaufdiode, möglichst schnell auf einen Haltestrom IH reduziert. Zum Zeitpunkt t5 erreicht der Spulenstrom Is den Wert des minimalen Halte¬ stroms IHMIN- Daraufhin wird die Steuerspannung Us auf eine Haltespannung UH eingestellt . Zum Zeitpunkt t6 erreicht dann der Spulenstrom Is den Wert eines maximalen Haltestroms IHMAX- Daraufhin wird die Steuerspannung Us wieder auf die Null- spannung U0 zurückgenommen bis der Spulenstrom ls den Wert des minimalen Haltestroms IHMIN erreicht . Dieser Vorgang wiederholt sich bis zum Zeitpunkt t7 das Pulssignal P zurück¬ genommen wird. Daraufhin wird die Steuerspannung Us auf die Nullspannung U0 eingestellt und der Strom durch die Spule durch geeignete Schaltmittel (z.B. Freilaufdiode) bis zu einem Nullstrom (z.B. 0 Ampere) verringert.
Das Lösen des Ankers 13 vom Kern 11 erfolgt aber erst zum Zeitpunkt t8, bei dem durch den Spulenstrom ls nicht mehr die benötigte Haltekraft aufgebracht werden kann. In Figur 4d ist zum Zeitpunkt t8 ein starker Abfall des Induktivitätswertes L zu erkennen. Demnach wird zu diesem Zeitpunkt das zweite Steuersignal S2 (Figur 4e) erzeugt.
Weist das Prüfsignal eine sehr hohe Frequenz auf, so kann der Einfluß des Widerstandes 101 vernachlässigt werden. Bei der Wahl einer niedrigeren Frequenz des PrüfSignals können tempe¬ ratur- und alterungsabhängige Veränderungen des Widerstands 101 durch geeignete Widerstandsmeßmittel erfaßt werden. Bei nicht anliegenden Pulssignal P kann durch diese Widerstands¬ meßmittel der Spule 10 eine Spannung aufgeprägt werden und der stationäre Strom durch die Spule 10 erfaßt werden. Das Verhältnis aus diesen beiden Größen bildet dann den Wert des Widerstands 100.
Die Steuervorrichtung ermöglicht demnach das präzise Erfassen des AuftreffZeitpunkts des Ankers 13 auf den Kern ll. Dadurch ist es möglich den Spulenstrom Is in der Nähe der Sättigungs- grenze der Spule 10 bis zu dem AuftreffZeitpunkt des Ankers 13 einzustellen, so daß der Anker 13 so stark wie möglich beschleunigt wird. Die Verluste in der Steuervorrichtung werden durch ein schnelles Verringern des Spulenstroms Is von einem Wert zwischen dem maximalen Anzugsstrom 1^^ und dem minimalen Anzugsstrom I HN auf den minimalen Haltestrom IHMIN sehr gering gehalten.
In einer weiteren Ausführungsform der Erfindung weist die Meßvorrichtung 4 einen zweiten Strommesser auf, der den Betrag des Spulenstroms Is erfaßt und an die Auswertevor¬ richtung 44 weiterleitet. Die Meßvorrichtung 4 verfügt dann über einen Kennfeldspeicher, in dem Stützwerte für die
Position des Ankers 13 in Abhängigkeit von dem Betrag des Spulenstroms Is und der Induktivität L abgelegt sind. Somit kann bei dieser Ausführungsform der Erfindung die Position des Ankers 13 ermittelt werden.
In einer weiteren Ausführungsform der Erfindung weist die Meßvorrichtung 4 Mittel zum Erfassen der Phasendifferenz zwischen dem Prüfsignal und dem Ausgangssignal. In der Aus¬ wertevorrichtung 44 wird aus der Phasendifferenz unter Be- rücksichtigung des vorgegebenen Widerstands 100 der Induk¬ tivitätswert L der Induktivität 101 bestimmt.

Claims

Patentansprüche
1. Steuervorrichtung für eine Brennkraftmaschine
- mit einem magnetischen Aktor (1) , der eine Spule (10) und einen Anker (13) aufweist,
- mit einem Stellglied (2) , das mit dem Aktor (1) verbunden ist, und
- mit einer Regeleinheit (3) , von der der Strom durch die Spule bei einem vorhandenen Pulssignal (P) so geregelt wird, daß er einem Sollwert folgt, dadurch gekennzeichnet,
- daß sie eine Meßvorrichtung (4) aufweist, die einen Signalgenerator umfaßt, der ein Prüfsignal erzeugt, mit dem die Spule (10) beaufschlagt wird, die eine Meßeinrichtung aufweist, die ein Ausgangssignal erfaßt, das von der Spule (10) in Abhängigkeit von dem Prüfsignal erzeugt wird, die eine Auswertevorrichtung (44) umfaßt, die in Abhängigkeit von dem Prüfsignal und dem Ausgangssignal einen Induktivitätswert (L) der Spule (10) ermittelt und in Abhängigkeit von dem Induktivitätswert (L) ein erstes
Steuersignal (Sl) erzeugt, durch das der Sollwert auf einen Haltewert eingestellt wird.
2. Steuervorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das erste Steuersignal (Sl) erzeugt wird, wenn sich der
Induktivitätswert (L) in einem vorgegebenen Zeitintervall um weniger als einen vorgegebenen unteren Schwellwert ändert.
3. Steuervorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß ein zweites Steuersignal (S2) erzeugt wird, wenn der Induktivitätswert (L) in einem vorgegebenen Zeitintervall um mehr als einen vorgegebenen oberen Schwellwert abnimmt .
4. Steuervorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß in der Meßvorrichtung (4) der Betrag des Stroms durch die Spule (10) erfaßt wird, und daß die Position des Ankers (13) aus einem Kennfeld in Abhängigkeit von dem Betrag des Stroms durch die Spule (10) und dem Induktivitätswert (L) ausgelesen wird.
EP96945993A 1996-02-13 1996-11-18 Steuervorrichtung für eine brennkraftmaschine Expired - Lifetime EP0880787B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19605244 1996-02-13
DE19605244 1996-02-13
PCT/DE1996/002187 WO1997030462A1 (de) 1996-02-13 1996-11-18 Steuervorrichtung für eine brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP0880787A1 true EP0880787A1 (de) 1998-12-02
EP0880787B1 EP0880787B1 (de) 2002-03-27

Family

ID=7785267

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96945993A Expired - Lifetime EP0880787B1 (de) 1996-02-13 1996-11-18 Steuervorrichtung für eine brennkraftmaschine

Country Status (4)

Country Link
US (1) US6191929B1 (de)
EP (1) EP0880787B1 (de)
DE (1) DE59608979D1 (de)
WO (1) WO1997030462A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249418B1 (en) * 1999-01-27 2001-06-19 Gary Bergstrom System for control of an electromagnetic actuator
US6612322B2 (en) 2000-08-09 2003-09-02 Siemens Vdo Automotive Corporation Method of detecting valve timing
US6559654B2 (en) * 2001-03-29 2003-05-06 General Electric Company Method and system for automatic determination of inductance
DE102011076113B4 (de) * 2011-05-19 2016-04-14 Continental Automotive Gmbh Bestimmung des Bewegungsverhaltens eines Kraftstoffinjektors basierend auf dem zeitlichen Abstand zwischen den ersten beiden Spannungspulsen in einer Haltephase
EP3125258B1 (de) 2015-07-31 2021-08-25 Goodrich Actuation Systems Limited Überwachung der elektromagnetkolbenposition

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2041659A (en) * 1979-02-09 1980-09-10 Lucas Industries Ltd Sensing position of armature in an electromagnetic device
DE3150814A1 (de) * 1981-12-22 1983-06-30 Herion-Werke Kg, 7012 Fellbach Vorrichtung zur beruehrungslosen bestimmung der schaltstellung des ankers eines elektromagneten
JPS62225742A (ja) 1986-03-28 1987-10-03 Hitachi Ltd エンジン制御装置
US4970622A (en) * 1986-12-03 1990-11-13 Buechl Josef Method and apparatus for controlling the operation of an electromagnet
DE3741734C2 (de) * 1987-12-09 1996-09-26 Herion Werke Kg Vorrichtung zur Messung der Induktivität einer Spule, insbesondere zur Messung der Ankerstellung eines Spulen/Anker-Magnetsystems
US5293551A (en) * 1988-03-18 1994-03-08 Otis Engineering Corporation Monitor and control circuit for electric surface controlled subsurface valve system
US4851959A (en) * 1988-07-25 1989-07-25 Eastman Kodak Company Solenoid engagement sensing circuit
US5053911A (en) 1989-06-02 1991-10-01 Motorola, Inc. Solenoid closure detection
US5172298A (en) * 1990-01-09 1992-12-15 Honda Giken Kogyo Kabushiki Kaisha Electromagnetic actuator
JP2800442B2 (ja) 1991-03-18 1998-09-21 国産電機株式会社 電磁式燃料噴射弁の駆動方法及び駆動装置
US5196983A (en) * 1991-10-07 1993-03-23 Eastman Kodak Company Solenoid engagement sensing circuit
US5204633A (en) * 1992-02-25 1993-04-20 International Business Machines Corporation Electromagnetic contactor with closure fault indicator
US5347419A (en) 1992-12-22 1994-09-13 Eaton Corporation Current limiting solenoid driver
US5539608A (en) * 1993-02-25 1996-07-23 Eaton Corporation Electronic interlock for electromagnetic contactor
US5774323A (en) * 1995-10-31 1998-06-30 Eaton Corporation Detection of contact position from coil current in electromagnetic switches having AC or DC operated coils
US5668693A (en) * 1996-06-25 1997-09-16 Eaton Corporation Method of monitoring a contactor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9730462A1 *

Also Published As

Publication number Publication date
WO1997030462A1 (de) 1997-08-21
DE59608979D1 (de) 2002-05-02
US6191929B1 (en) 2001-02-20
EP0880787B1 (de) 2002-03-27

Similar Documents

Publication Publication Date Title
EP0205807B1 (de) Verfahren und Vorrichtung zum Betreiben eines elektromagnetischen Gaswechselventils
DE3843138C2 (de)
EP2707587B1 (de) Verfahren und vorrichtung zum erkennen eines schliesszeitpunktes eines einen spulenantrieb aufweisenden ventils
EP1185773B1 (de) Verfahren und vorrichtung zur ansteuerung eines kraftstoffeinspritzventils
DE3543055C1 (de) Schaltungsanordnung zum Ansteuern eines Elektromagneten
EP1001142B1 (de) Verfahren zum Betreiben eines elektromagnetischen Aktuators zur Betätigung eines Gaswechselventils
WO2009007185A1 (de) Verfahren zum ermitteln einer position eines ankers in einem magnetventil und vorrichtung zum betreiben eines magnetventils mit einem anker
EP0764238B1 (de) Verfahren und vorrichtung zur ansteuerung eines elektromagnetischen verbrauchers
WO1989002648A1 (en) Process and device for detecting the switching times of electrovalves
DE19742037B4 (de) Verfahren zur Abfallerkennung einer magnetbetriebenen Vorrichtung
DE4322199C2 (de) Verfahren und Einrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
DE19742038A1 (de) Verfahren zur Zustandserkennung bei einem Magnetventil
DE2805876C2 (de)
DE102011076113B4 (de) Bestimmung des Bewegungsverhaltens eines Kraftstoffinjektors basierend auf dem zeitlichen Abstand zwischen den ersten beiden Spannungspulsen in einer Haltephase
DE10020896A1 (de) Verfahren zur Bestimmung der Position eines Ankers/ eines Ventils
DE102010043306B4 (de) Verfahren zum Betreiben eines magnetischen Schaltgliedes, elektrische Schaltung zum Betreiben des magnetischen Schaltgliedes sowie eine Steuer- und/oder Regeleinrichtung
EP1044323B1 (de) Elektromagnetisches einspritzventil
DE3611220A1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
EP0880787A1 (de) Steuervorrichtung für eine brennkraftmaschine
WO2008090047A1 (de) Vorrichtung und verfahren zur steuerung eines elektromagnetischen ventils
DE19733138A1 (de) Verfahren zur Erkennung der Ankeranlage an einem elektromagnetischen Aktuator
WO1989002523A1 (en) Process and device for driving electromagnets, in particular in injection valves
EP0889223B1 (de) Verfahren und Vorrichtung zur Erfassung eines Schaltzeitpunktes eines Magnetventils
WO1996003758A1 (de) Verfahren und vorrichtung zur ansteuerung eines elektromagnetischen verbrauchers
DE102016219375B3 (de) Betreiben eines Kraftstoffinjektors mit hydraulischem Anschlag bei reduziertem Kraftstoffdruck

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980805

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19990812

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59608979

Country of ref document: DE

Date of ref document: 20020502

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020702

ET Fr: translation filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed

Effective date: 20021230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081121

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081113

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081117

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091118

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091118