WO2001055284A2 - Verfahren zur herstellung von tensidgranulaten - Google Patents

Verfahren zur herstellung von tensidgranulaten Download PDF

Info

Publication number
WO2001055284A2
WO2001055284A2 PCT/EP2001/000469 EP0100469W WO0155284A2 WO 2001055284 A2 WO2001055284 A2 WO 2001055284A2 EP 0100469 W EP0100469 W EP 0100469W WO 0155284 A2 WO0155284 A2 WO 0155284A2
Authority
WO
WIPO (PCT)
Prior art keywords
acid
alkyl
weight
alcohol
mixtures
Prior art date
Application number
PCT/EP2001/000469
Other languages
English (en)
French (fr)
Other versions
WO2001055284A3 (de
Inventor
Udo Steinberner
Bernhard Leeners
Bernd Fabry
Original Assignee
Cognis Deutschland Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland Gmbh & Co. Kg filed Critical Cognis Deutschland Gmbh & Co. Kg
Priority to US10/182,292 priority Critical patent/US6881359B2/en
Priority to EP01913756A priority patent/EP1250412B1/de
Priority to DE50103096T priority patent/DE50103096D1/de
Publication of WO2001055284A2 publication Critical patent/WO2001055284A2/de
Publication of WO2001055284A3 publication Critical patent/WO2001055284A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/02Preparation in the form of powder by spray drying
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets

Definitions

  • the invention is in the field of surface-active agents and relates to a new spray crystallization process for the production of surfactant granules with a restricted grain size spectrum.
  • Surfactants such as, for example, alkylbenzenesulfonates or alkylsulfates, are usually packaged in solid form by spraying the raw materials in the form of aqueous solutions or pastes in a tower via nozzles, with the droplets of hot air which form being directed toward them. In their free fall, the fatty substances dry in countercurrent to the hot air and are usually continuously drawn off as a finished product on the lower part of the cone of the spray tower. The drying air contaminated with organic matter is passed over cyclones to separate the entrained fine particles.
  • a fan conveys the main volume flow in a circuit via the cooler back into the spray tower.
  • a partial flow is usually routed to the boiler house via the exhaust air system, while the required fresh air flow is drawn in from the surroundings.
  • the object of the present invention was therefore to provide a new process for the production of surfactant granules which is free from the disadvantages described.
  • the invention relates to a process for the production of surfactant granules, in which a stream of an aqueous surfactant preparation is dripped by vibration with the aid of a pouring plate and the drops are directed towards a gaseous drying agent which evaporates the water components and thereby dries the granules.
  • the goal set can be achieved by changing the drop generation.
  • the surfactants are introduced into the spray tower in the form of aqueous solutions or pastes via a vibrating perforated plate.
  • a frequency is impressed on the liquid
  • the liquid thread is interrupted again and again, and spheres are formed due to the interfacial tension, which subsequently enter the actual spray tower and are then dried during free fall, for example by a hot gas counterflow.
  • a defined grain spectrum can be set without dust.
  • the surfactant granules show an improved dissolution rate and this effect is also transferred to the final preparations produced with them, which are preferably solid detergents and especially detergent tablets.
  • Anionic, nonionic, cationic, amphoteric and / or zwitterionic surfactants are suitable for the purposes of the process according to the invention, but anionic surfactants or combinations of anionic and nonionic surfactants are preferably used.
  • anionic surfactants are soaps, alkyl benzene sulfonates, alkane sulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, hydroxymischly ether ether sulfates, mono amide sulfate ethersulfates, mono amide sulfate ethersulfates, mono amide sulfate ethersulfates, mono amide sulfate ethersulfates, mono amide sulfate ethersulfates, mono amide sulfate ethersulfates, mono amide ether sulfates, and dialkyl sulfosuccinate
  • anionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Alkyl benzene sulfonates, alkyl sulfates, alkyl ether sulfates, alkane sulfonates, olefin sulfonates, methyl ester sulfonates, monoglyceride (ether) sulfates and alkali soaps and mixtures thereof are preferably used.
  • Preferred alkylbenzenesulfonates preferably follow the formula (I)
  • R 1 is a branched but preferably linear alkyl radical having 10 to 18 carbon atoms
  • Ph is a phenyl radical
  • X is an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • dodecylbenzenesulfonates, tetradecylbenzenesulfonates, hexadecylbenzenesulfonates and their technical mixtures in the form of the sodium salts are particularly suitable.
  • Alkyl and / or alkenyl (ether) sulfates which depending on the raw material base are also referred to as fatty alcohol (ether) or oxo alcohol (ether) sulfates, are to be understood as meaning the sulfation products of primary and / or secondary alcohols or of alkylene oxide adducts with these alcohols which preferably follow the formula (II),
  • R 2 is a linear or branched, aliphatic alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms
  • R 3 is hydrogen or a methyl group
  • a is 0 or numbers from 1 to 0, preferably 2 to 10
  • X represents an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • alkyl sulfates which can be used in the context of the invention are the sulfation products of capron alcohol, caprylic alcohol, capric alcohol, 2-ethylhexyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, arachselyl alcohol, elaidyl alcohol, elaidyl alcohol alcohol, gadoleyl alcohol, behenyl alcohol and erucyl alcohol and their technical mixtures, which are obtained by high pressure hydrogenation of technical methyl ester fractions or aldehydes from Roelen's oxosynthesis.
  • alkyl ether sulfates are the sulfation products of addition products with an average of 1 to 20 and preferably 2 to 10 moles of ethylene and / or propylene oxide onto the abovementioned alcohols.
  • the sulfation products - ie both the sulfated alcohols and the sulfated alcohol polyglycol ethers - can preferably be in the form of their Alkali salts and in particular their sodium salts are used.
  • Alkyl (ether) sulfates based on Ci6 / ies tallow fatty alcohols or vegetable fatty alcohols of comparable carbon chain distribution in the form of their sodium salts are particularly preferred.
  • oxo alcohols are obtainable, for example, by converting carbon monoxide and hydrogen to alpha-permanent olefins using the shop process.
  • Such alcohol mixtures are commercially available under the trade names Dobanol® or Neodol®.
  • Suitable alcohol mixtures are Dobanol 91®, 23®, 25®, 45®.
  • Another possibility are oxo alcohols, such as those obtained after the classic Enichema or Condea oxo process by adding carbon monoxide and hydrogen to olefins.
  • These alcohol mixtures are a mixture of strongly branched alcohols.
  • Such alcohol mixtures are commercially available under the trade name Lial®.
  • Suitable alcohol mixtures are Lial 91®, 111®, 123®, 125®, 145®.
  • Monoglyceride sulfates and monoglyceride ether sulfates are known anionic surfactants which can be obtained by the relevant methods of preparative organic chemistry.
  • the usual starting point for their production is triglycerides, which, if appropriate after transesterification to the monoglycerides, are subsequently sulfated and neutralized. It is also possible to react the partial glycerides with suitable sulfating agents, preferably gaseous sulfur trioxide or chlorosulfonic acid. If desired, the neutralized substances can be subjected to ultrafiltration in order to reduce the electrolyte content to a desired level.
  • the monoglyceride (ether) sulfates to be used in accordance with the invention preferably follow the formula (III)
  • R 4 CO represents a linear or branched acyl radical having 6 to 22 carbon atoms
  • R 5 represents hydrogen or a methyl group
  • R 6 represents hydrogen or R 4 CO, b1, b2 and b3 in total for 0 or for numbers from 1 to 30 , preferably 2 to 10
  • X represents an alkali or alkaline earth metal.
  • Typical examples of monoglyceride (ether) sulfates which are suitable for the purposes of the invention are the reaction products of lauric acid monoglyceride, coconut fatty acid monoglyceride, palmitic acid monoglyceride, stearic acid monoglyceride, oleic acid monoglyceride and tallow fatty acid monoglyceride as well as their ethylene oxide adduct or their formulated with sulfur sulfonate in sodium sulfonate formulated with sulfuric acid trioxide or their sulfuric acid trioxide in sodium sulfonate formulated with sulfuric acid trioxide.
  • Monoglyceride sulfates of the formula (III) are preferably used in which R 4 CO is a linear acyl radical having 8 to 18 carbon atoms and R 6 is R 4 CO.
  • alkali soaps are to be understood as meaning fatty acid salts of the formula (IV)
  • R CO is a linear or branched, saturated or unsaturated acyl radical having 6 to 22 and preferably 12 to 18 carbon atoms and again X is alkali and / or alkaline earth metal, ammonium, alkylammonium or alkanolammonium.
  • Typical examples are the sodium, potassium, magnesium, ammonium and triethanolammonium salts of caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, elaidic acid, elaidic acid, Linoleic acid, linolenic acid, elaleostearic acid, arachic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures.
  • coconut or palm kernel fatty acid is preferably used in the form of its sodium or potassium salts.
  • nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, alk (en) yl oligoglycosides, fatty acid-N-alkylhydroglyl fatty acids, in particular vegetable-based polyglycol amides, protein-based glyceryl fatty acid products , Sugar esters, sorbitan esters, polysorbates and amine oxides.
  • nonionic surfactants contain polyglycol ether chains, these can have a conventional, but preferably a narrow, homolog distribution.
  • Fatty alcohol polyglycol ethers, alkoxylated fatty acids or lower alkyl esters, alkyl oligoglucosides and / or fatty acid N-alkyl polyhydroxyalkylamides are preferably used.
  • R 8 represents a linear or branched alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms
  • R 9 represents hydrogen or methyl
  • n1 represents numbers from 1 to 20.
  • Typical examples are the addition products of an average of 1 to 20 and preferably 5 to 10 moles of ethylene and / or propylene oxide with capron alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostyl alcohol , Elaidyl alcohol, petroselinyl alcohol, linolyl alcohol, linolenyl alcohol, elaeostearyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures. Addition products of 3, 5 or 7 moles of
  • R 10 CO stands for a linear or branched, saturated and / or unsaturated acyl radical with 6 to 22 carbon atoms
  • R 11 for hydrogen or methyl
  • R 12 for linear or branched alkyl radicals with 1 to 4 carbon atoms
  • n2 for numbers from 1 to 20 stands.
  • Typical examples are the formal insert products of an average of 1 to 20 and preferably 5 to 10 moles of ethylene and / or propylene oxide in the methyl, ethyl, propyl, isopropyl, butyl and tert-butyl esters of caproic acid, Ca.
  • the products are usually prepared by inserting the alkylene oxides into the carbonyl ester bond in the presence of special catalysts, such as, for example, caicinated hydrotalcite. Conversion products of an average of 5 to 10 moles of ethylene oxide into the ester linkage of technical coconut fatty acid methyl esters are particularly preferred.
  • Alkyl and alkenyl oligoglycosides which are also preferred nonionic surfactants, usually follow the formula (VII),
  • R 13 represents an alkyl and / or alkenyl radical having 4 to 22 carbon atoms
  • G represents a sugar radical having 5 or 6 carbon atoms
  • p represents numbers from 1 to 10. They can be obtained according to the relevant procedures in preparative organic chemistry.
  • the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
  • alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and in particular between 1.2 and 1.4.
  • the alkyl or alkenyl radical R 13 can be derived from primary alcohols with 4 to 11, preferably derive 8 to 10 carbon atoms. Typical examples are butanol, capronalcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, such as are obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the course of the hydrogenation of aldehydes from Roelen's oxosynthesis.
  • the alkyl or alkenyl radical R 13 can also be derived from primary alcohols having 12 to 22, preferably 12 to 14, carbon atoms.
  • Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol and the technical mixtures described above.
  • Alkyl oligoglucosides based on hydrogenated Ci2 / i4 coconut alcohol with a DP of 1 to 3 are preferred.
  • cationic surfactants are, in particular, tetraalkylammonium compounds, such as, for example, dimethyldistearylammonium chloride or hydroxyethyl hydroxycetyldimmonium chloride (Dehyquart E) or esterquats. These are, for example, quaternized fatty acid triethanolamine ester salts of the formula (VIII),
  • R 1 CO for an acyl radical with 6 to 22 carbon atoms
  • R 15 and R 16 independently of one another for hydrogen or R 14 CO
  • m1, m2 and m3 in total for 0 or numbers from 1 to 12
  • m4 for numbers from 1 to 12 and Y for halide, alkyl sulfate or alkyl phosphate.
  • ester quats which can be used in the context of the invention are products based on caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, isostearic acid, stearic acid, oleic acid, elaidic acid, arachic acid, behenic acid and erucic acid and their technical mixtures , as they occur, for example, in the pressure splitting of natural fats and oils.
  • Technical Ci2 / i ⁇ coconut fatty acids and in particular partially hardened Ci ⁇ / i ⁇ tallow or palm fatty acids as well as high elaidic acid Ci6 / 18 fatty acid cuts are preferably used.
  • the fatty acids and the triethanolamine can be used in a molar ratio of 1.1: 1 to 3: 1 to produce the quaternized esters.
  • an application ratio of 1.2: 1 to 2.2: 1, preferably 1.5: 1 to 1.9: 1 has proven to be particularly advantageous.
  • the preferred ester quats are technical mixtures of mono-, di- and triesters with an average are degree of esterification from 1.5 to 1.9 and are derived from technical C16 / 18 tallow or palm fatty acid (iodine number 0 to 40).
  • quaternized fatty acid triethanolamine ester salts of the formula (VIII) have proven to be particularly advantageous in which R 14 CO is an acyl radical having 16 to 18 carbon atoms, R 15 is R 15 CO, R 16 is hydrogen, R 17 is a methyl group , m1, m2 and m3 for 0 and Y for methyl sulfate.
  • quaternized ester salts of fatty acids with diethanolalkylamines of the formula (IX) may also be used as ester quats.
  • R 18 CO for an acyl radical with 6 to 22 carbon atoms
  • R 19 for hydrogen or R 18 CO
  • R 20 and R 21 independently of one another for alkyl radicals with 1 to 4 carbon atoms
  • m5 and m6 in total for 0 or numbers from 1 to 12
  • Y again represents halide, alkyl sulfate or alkyl phosphate.
  • ester quats are the quaternized ester salts of fatty acids with 1,2-dihydroxypropyl dialkylamines of the formula (X)
  • R 22 CO for an acyl radical with 6 to 22 carbon atoms
  • R 23 for hydrogen or R 22 CO
  • R 24 , R 25 and R 26 independently of one another for alkyl radicals with 1 to 4 carbon atoms, m7 and m8 in total for 0 or numbers from 1 to 12
  • X again represents halide, alkyl sulfate or alkyl phosphate.
  • ester quats are substances in which the ester bond is replaced by an amide bond and which preferably follow the formula (XI) based on diethylenetriamine, I
  • R 27 CO represents an acyl radical with 6 to 22 carbon atoms
  • R 29 and R 30 independently of one another for alkyl radicals with 1 to 4 carbon atoms
  • amide ester quats are available on the market, for example, under the Incroquat® (Croda) brand.
  • amphoteric or zwitterionic surfactants are alkylbetaines, alkylamido betaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines.
  • alkyl betaines are the carboxyalkylation products of secondary and in particular tertiary amines which follow the formula (XII)
  • R 31 for alkyl and / or alkenyl radicals with 6 to 22 carbon atoms
  • R 32 for hydrogen or alkyl radicals with 1 to 4 carbon atoms
  • R 33 for alkyl radicals with 1 to 4 carbon atoms
  • q1 for numbers from 1 to 6 and Z for a Alkali and / or alkaline earth metal or ammonium.
  • Typical examples are the carboxymethylation products of hexylmethylamine, hexyldimethylamine, octyldimethylamine, Removal cyldimethylamin, dodecylmethylamine, dodecyldimethylamine, Dodecylethylmethylamin, Ci2 / i4-Kokosal- kyldimethylamin, myristyldimethylamine, cetyldimethylamine, stearyldimethylamine, Stearylethylmethyl- amine, oleyl dimethyl amine, Ci6 / 18 tallow alkyl dimethyl amine, and their technical mixtures.
  • R 34 CO for an aliphatic acyl radical with 6 to 22 carbon atoms and 0 or 1 to 3 double bonds
  • R 35 for hydrogen or alkyl radicals with 1 to 4 carbon atoms
  • R 36 for alkyl radicals with 1 to 4 carbon atoms
  • q2 for numbers from 1 to 6
  • q3 for numbers from 1 to 3 and Z again represents an alkali and / or alkaline earth metal or ammonium.
  • Typical examples are reaction products of fatty acids with 6 to 22 carbon atoms, namely caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, gynolic acid, arachenic acid, arachinic acid and erucic acid and their technical mixtures, with N, N-dimethylaminoethylamine, N, N-dimethylaminopropylamine, N, N-diethyiaminoethylamine and N, N-diethylaminopropylamine, which are condensed with sodium chloroacetate. It is preferred to use a condensation product of C8 / i8 coconut fatty acid N, N-dimethylaminopropyl
  • Imidazolinium betaines are also suitable. These substances are also known substances which can be obtained, for example, by cyclizing condensation of 1 or 2 moles of fatty acid with polyhydric amines such as, for example, aminoethylethanolamine (AEEA) or diethylene triamine. The corresponding carboxyalkylation products are mixtures of different open-chain betaines. Typical examples are condensation products of the above-mentioned fatty acids with AEEA, preferably imidazolines based on lauric acid or again which are then betainized with sodium chloroacetate.
  • liquid crystalline or gel phases i.e. on the pumpability of the surfactants
  • these are usually used in the form of aqueous solutions or pastes which have a solids content in the range from 1 to 80, preferably 25 to 60 and in particular 30 to 50% by weight.
  • perforated disks For the purposes of the method according to the invention, preference is given to casting plates which are shaped as perforated disks, through whose openings the drops then drip into the spray tower
  • the performance of such perforated disks can preferably be in the range from 100 to 800 kg / h and is in particular about 500 kg / h, the diameter of the bores is between 0.5 (diameter of the granules on average 0.8 mm) and 1, 4 mm (average diameter of the granules 2.5 mm).
  • the frequency which is imposed on the aqueous surfactant preparations is typically in the range from 100 to 1000 and preferably 500 to 800 Hz.
  • Another advantage over the conventional methods is that only low overpressure (typically: 10 to 100 mbar) is used can.
  • Drying within the spray tower can be carried out with hot air or hot combustion gases at temperatures, for example in the range from 100 to 150 ° C., in countercurrent, as is adequately described in the prior art.
  • the granules are approximately spherical and then have an average diameter in the range from 1 to 2.5 mm, depending on the openings in the perforated plate and the frequency.
  • the proportion of dust, ie particles with particle sizes smaller than 0.5 mm, is practically zero.
  • the surfactant granules obtainable by the process according to the invention can be mixed with other typical detergent ingredients, such as e.g. Builders, co-builders, oil and fat dissolving substances, bleaching agents, bleach activators, graying inhibitors, enzymes, enzyme stabilizers, optical brighteners, polymers, defoamers, disintegrants, fragrances, inorganic salts and the like are mixed and then made up to the corresponding end products. Therefore, further additives and packaging processes are explained below.
  • typical detergent ingredients such as e.g. Builders, co-builders, oil and fat dissolving substances, bleaching agents, bleach activators, graying inhibitors, enzymes, enzyme stabilizers, optical brighteners, polymers, defoamers, disintegrants, fragrances, inorganic salts and the like are mixed and then made up to the corresponding end products. Therefore, further additives and packaging processes are explained below.
  • the washing, rinsing, cleaning and finishing agents according to the invention can furthermore contain additional inorganic and organic builder substances, for example in amounts of 10 to 50 and preferably 15 to 35% by weight, based on the agent, zeolites being the main inorganic builder substances crystalline layered silicates, amorphous silicates and - where permissible - also phosphates, such as Tripolyphosphate are used.
  • additional inorganic and organic builder substances for example in amounts of 10 to 50 and preferably 15 to 35% by weight, based on the agent, zeolites being the main inorganic builder substances crystalline layered silicates, amorphous silicates and - where permissible - also phosphates, such as Tripolyphosphate are used.
  • the amount of co-builder is to be counted against the preferred amounts of phosphates.
  • the fine crystalline, synthetic and bound water-containing zeolite which is frequently used as a detergent builder is preferably zeolite A and / or P.
  • zeolite P for example, zeolite MAP ( R ) (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P and Y are also suitable.
  • a cocrystallized sodium / potassium aluminum silicate composed of zeolite A and zeolite X, which as VEGOBOND AX® (commercial product of the company Condea Augusta S.pA) is commercially available.
  • the zeolite can be stabilized as a spray-dried powder or as an undried, still moist from its manufacture Suspension are used.
  • the zeolite can contain small additions of nonionic surfactants as stabilizers, for example 1 to 3% by weight, based on zeolite, of ethoxylated C 2 -C 8 fatty alcohols with 2 to 5 ethylene oxide groups, Ci2-Ci4 fatty alcohols with 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • Suitable substitutes or partial substitutes for phosphates and zeolites are crystalline, layered sodium silicates of the general formula where M is sodium or hydrogen, x is a number from 1, 9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European patent application EP 0164514 A1.
  • Preferred crystalline phyllosilicates of the formula given are those in which M is sodium and x is 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicate Na 2 Si 2 0s , yH 2 0 are preferred, with ⁇ -sodium disilicate being able to be obtained, for example, by the process described in international patent application WO 91/08171.
  • Further suitable layered silicates are known, for example, from patent applications DE 2334899 A1, EP 0026529 A1 and DE 3526405 A1. Their usability is not limited to a special composition or structural formula. However, smectites, in particular bentonites, are preferred here.
  • Suitable sheet silicates, which belong to the group of water-swellable smectites, are, for example, those of the general formulas
  • the layered silicates can contain hydrogen, alkali, alkaline earth ions, in particular Na + and Ca 2+ .
  • the amount of water of hydration is usually in the range of 8 to 20% by weight and depends on the swelling condition or the type of processing.
  • Useful layer silicates are known, for example, from US 3,966,629, US 4,062,647, EP 0026529 A1 and EP 0028432 A1.
  • Layer silicates are preferably used which are largely free of calcium ions and strongly coloring iron ions due to an alkali treatment.
  • the preferred builder substances also include amorphous sodium silicates with a modulus Na 2 0: Si0 2 from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2, 6, which before delayed release and have secondary washing properties.
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
  • the term “amorphous” is also understood to mean “X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles deliver washed-out or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE 4400024 A1. Compressed / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates are particularly preferred.
  • phosphates As builders, provided that such use should not be avoided for ecological reasons.
  • the sodium salts of orthophosphates, pyrophosphates and in particular tripolyphosphates are particularly suitable. Their content is generally not more than 25% by weight, preferably not more than 20% by weight, in each case based on the finished composition. In some cases, it has been shown that tripolyphosphates in particular, even in small amounts up to a maximum of 10% by weight, based on the finished agent, in combination with other builder substances lead to a synergistic improvement in the secondary washing ability.
  • Usable organic builders that come into question as co-builders are, for example, the polycarboxylic acids that can be used in the form of their sodium salts, such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), provided that such use is used for ecological reasons is not objectionable, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these. The acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to establish a low lower and milder pH value of detergents or cleaning agents.
  • Citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any mixtures thereof can be mentioned in particular.
  • Suitable organic builder substances are dextrins, for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary processes, for example acid-catalyzed or enzyme-catalyzed. They are preferably hydrolysis products with average molar masses in the range from 400 to 500,000.
  • DE dextrose equivalent
  • Both maltodextrins with a DE between 3 and 20 and dry glucose syrups with a DE between 20 and 37 as well as so-called yellow dextrins and white dextrins with higher molar masses in the range from 2,000 to 30,000 can be used.
  • a preferred dextrin is described in British patent application GB 9419091 A1 ,
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and processes for their preparation are known, for example, from European patent applications EP 0232202 A1, EP 0427349 A1, EP 0472042 A1 and EP 0542496 A1 as well as from international patent applications WO 92/18542, WO 93/08251, WO 93/16110, WO 94 / 28030, WO 95/07303, WO 95/12619 and WO 95/20608 are known.
  • An oxidized oligosaccharide according to German patent application DE 19600018 AI is also suitable.
  • a product oxidized to C ⁇ of the saccharide ring can be particularly advantageous.
  • Suitable cobuilders are oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate.
  • glycerol disuccinates and glycerol trisuccinates are also particularly preferred, as are described, for example, in US Pat. Nos. 4,524,009, 4,639,325, European Patent Application EP 0150930 A1 and Japanese Patent Application JP 93/339896.
  • Suitable amounts for use in formulations containing zeolite and / or silicate are 3 to 15% by weight.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may also be in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Such cobuilders are described, for example, in international patent application WO 95/20029.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 800 to 150,000 (on Acid sourced and measured against polystyrene sulfonic acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • the relative molecular weight, based on free acids, is generally 5,000 to 200,000, preferably 10,000 to 120,000 and in particular 50,000 to 100,000 (measured in each case against polystyrene sulfonic acid).
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution, with 20 to 55% by weight aqueous solutions being preferred.
  • Granular polymers are usually subsequently mixed into one or more basic granules.
  • biodegradable polymers composed of more than two different monomer units, for example those which, according to DE 4300772 A1, as salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives or as DE 4221381 C2 as monomer salts of acrylic acid and the 2-alkylallylsulfonic acid and sugar derivatives.
  • Further preferred copolymers are those which are described in German patent applications DE 4303320 A1 and DE 4417734 A1 and which preferably contain acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
  • polymeric aminodicarboxylic acids their salts or their precursor substances. Polyaspartic acids or their salts and derivatives are particularly preferred.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application EP 0280223 A1.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • the agents can also contain components which have a positive influence on the oil and fat washability from textiles.
  • the preferred oil and fat-dissolving components include, for example, nonionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with a proportion of methoxyl groups of 15 to 30% by weight and of hydroxypropoxyl groups of 1 to 15% by weight, in each case based on the nonionic Cellulose ethers, as well as the polymers of phthalic acid and / or terephthalic acid or their derivatives known from the prior art, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives of these. Of these, the sulfonated derivatives of phthalic acid and terephthalic acid polymers are particularly preferred.
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Other useful bleaching agents are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 0 2 -supplying peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • the bleaching agent content of the agents is preferably 5 to 35% by weight and in particular up to 30% by weight, advantageously using boron monohydrate or percarbonate.
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid. Substances which carry 0- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups are suitable.
  • hydrophilically substituted acylacetals known from German patent application DE 19616769 A1 and those described in German patent application DE 196 16 770 and the international nale patent application WO 95/14075 described acyllactams are also preferably used.
  • the combinations of conventional bleach activators known from German patent application DE 4443177 A1 can also be used. Bleach activators of this type are present in the customary quantitative range, preferably in amounts of 1% by weight to 10% by weight, in particular 2% by weight to 8% by weight, based on the total agent.
  • the sulfonimines and / or bleach-enhancing transition metal salts or transition metal complexes known from European patents EP 0446982 B1 and EP 0453 003 B1 can also be present as so-called bleaching catalysts.
  • the transition metal compounds in question include in particular the manganese, iron, cobalt, ruthenium or molybdenum-salt complexes known from German patent application DE 19529905 A1 and their N-analog compounds known from German patent application DE 19620267 A1, which are known from German Patent application DE 19536082 A1 known manganese, iron, cobalt, ruthenium or molybdenum carbonyl complexes, the manganese, iron, cobalt, ruthenium, molybdenum, titanium, vanadium, described in German patent application DE 19605688 A1 and copper complexes with nitrogen-containing tripod ligands, the cobalt, iron, copper and ruthenium amine complexes known from German patent application DE 19620411 A1, the manganese, copper and cobalt complexes described in German patent application DE 4416438 A1 , the cobalt complexes described in European patent application EP 0272030 A1, the Mang.
  • European patent application EP 0693550 A1 an complexes, the manganese, iron, cobalt and copper complexes known from European patent EP 0392592 A1 and / or those described in European patent EP 0443651 B1 or European patent applications EP 0458397 A1, EP 0458398 A1, EP 0549271 A1, EP 0549272 A1, EP 0544490 A1 and EP 0544519 A1 described manganese complexes.
  • Combinations of bleach activators and transition metal bleach catalysts are known, for example, from German patent application DE 19613103 A1 and international patent application WO 95/27775.
  • Bleach-enhancing transition metal complexes in particular with the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, are used in customary amounts, preferably in an amount of up to 1% by weight, in particular 0.0025% by weight. % to 0.25% by weight and particularly preferably from 0.01% by weight to 0.1% by weight, in each case based on the total agent.
  • Particularly suitable enzymes are those from the class of hydrolases, such as proteases, esterases, lipases or lipolytically active enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases contribute to the removal of stains, such as stains containing protein, fat or starch, and graying in the laundry. Cellulases and other glycosyl hydrolases can be removed by removing pilling and microfibrils help to maintain color and increase the softness of the textile. Oxidoreductases can also be used to bleach or inhibit color transfer.
  • hydrolases such as proteases, esterases, lipases or lipolytically active enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases contribute to the removal of stains, such as stains containing protein, fat or starch, and graying in the laundry. Cellulases and other glycos
  • Enzymes obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus and Humicola insolens are particularly suitable.
  • Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used.
  • Enzyme mixtures are, for example, from protease and amylase or protease and lipase or lipolytically active enzymes or protease and cellulase or from cellulase and lipase or lipolytically active enzymes or from protease, amylase and lipase or lipolytically active enzymes or protease, lipase or lipolytically active enzymes and cellulase, in particular, however, mixtures containing protease and / or lipase or mixtures with lipolytically active enzymes of particular interest.
  • Known cutinases are examples of such lipolytically active enzymes.
  • Peroxidases or oxidases have also proven to be suitable in some cases.
  • Suitable amylases include in particular ⁇ -amylases, iso-amylases, pululanases and pectinases.
  • Cellobiohydrolases, endoglucanases and ⁇ -glucosidases, which are also called cellobiases, or mixtures thereof, are preferably used as cellulases. Since the different cellulase types differ in their CMCase and avicelase activities, the desired activities can be set by targeted mixtures of the cellulases.
  • the enzymes can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature decomposition.
  • the proportion of the enzymes, enzyme mixtures or enzyme granules can be, for example, about 0.1 to 5% by weight, preferably 0.1 to about 2% by weight.
  • the agents can contain further enzyme stabilizers.
  • enzyme stabilizers For example, 0.5 to 1% by weight sodium formate can be used. It is also possible to use proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
  • calcium salts magnesium salts also serve as stabilizers.
  • boron compounds for example boric acid, boron oxide, borax and other alkali metal borates, such as the salts of orthoboric acid (H3BO3), metaboric acid (HBO2) and pyroboric acid (tetraboric acid H2B4O7), is particularly advantageous.
  • Graying inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being re-absorbed.
  • Water-soluble colloids of mostly organic nature are suitable for this, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • Water-soluble polyamides containing acidic groups are also suitable for this purpose. Soluble starch preparations and starch products other than those mentioned above can also be used, for example degraded starch, aldehyde starches, etc. Polyvinylpyrrolidone can also be used.
  • cellulose ethers such as carboxymethyl cellulose (sodium salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers, such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof, and polyvinylpyrrolidone, for example in amounts of 0.1 to 5% by weight, are preferred on the means.
  • the agents can contain derivatives of diaminostilbenedisulfonic acid or its alkali metal salts. Suitable are, for example, salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or compounds of similar structure which instead of the morpho- linino group carry a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • Brighteners of the substituted diphenylstyrene type may also be present, for example the alkali salts of 4,4'-bis (2-sulfostyryl) diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl , or 4- (4-chlorostyryl) -4 '- (2-sulfostyryl) diphenyl. Mixtures of the aforementioned brighteners can also be used.
  • Uniformly white granules are obtained if, in addition to the usual brighteners, the agents are present in customary amounts, for example between 0.1 and 0.5% by weight, preferably between 0.1 and 0.3% by weight, and also in small amounts, for example Contain 10- 6 to 10- 3 wt .-%, preferably by 10- 5 wt .-%, of a blue dye.
  • a particularly preferred dye is Tinolux® (commercial product from Ciba-Geigy).
  • Soil repellants are substances which preferably contain ethylene terephthalate and / or polyethylene glycol terephthalate groups, the molar ratio of ethylene terephthalate to polyethylene glycol terephthalate being in the range from 50:50 to 90:10.
  • the molecular weight of the linking polyethylene glycol units is in particular in the range from 750 to 5000, ie the degree of ethoxylation of the polymers containing polyethylene glycol groups can be approximately 15 to 100.
  • the polymers are distinguished by an average molecular weight of approximately 5000 to 200,000 and can have a block, but preferably a random structure
  • Preferred polymers are those with molar ratios of ethylene terephthalate / polyethylene glycol terephthalate of from about 65:35 to about 90:10, preferably from about 70:30 to 80:20.
  • those polymers which combine linking polyethylene glycol units with a have a molecular weight of from 750 to 5000, preferably from 1000 to about 3000 and a molecular weight of the polymer from about 10,000 to about 50,000.
  • Examples of commercially available polymers are the products Milease® T (ICI) or Repelotex® SRP 3 (Rhône-Poulenc).
  • Wax-like compounds can be used as defoamers.
  • Compounds which have a melting point at atmospheric pressure above 25 ° C. (room temperature), preferably above 50 ° C. and in particular above 70 ° C. are understood as “waxy”.
  • the waxy defoamer substances are practically insoluble in water, ie at 20 ° C. they have a solubility of less than 0.1% by weight in 100 g of water.
  • all wax-like defoamer substances known from the prior art can be present.
  • Suitable wax-like compounds are, for example, bisamides, fatty alcohols, fatty acids, carboxylic acid esters of mono- and polyhydric alcohols as well as paraffin waxes or mixtures thereof.
  • the silicone compounds known for this purpose can of course also be used.
  • Suitable paraffin waxes generally represent a complex mixture of substances without a sharp melting point. For characterization, one usually determines its melting range by differential thermal analysis (DTA), as described in "The Analyst” 87 (1962), 420, and / or its freezing point. This is the temperature at which the paraffin changes from the liquid to the solid state by slow cooling. Paraffins which are completely liquid at room temperature, that is to say those having a solidification point below 25 ° C., cannot be used according to the invention.
  • the soft waxes which have a melting point in the range from 35 to 50 ° C., preferably include the group of petrolates and their hydrogenation products.
  • solid hydrocarbons with melting points between 63 and 79 ° C, which are separated from the highly viscous, paraffin-containing lubricating oil distillates during the dewaxing.
  • These petrolates are mixtures of microcrystalline waxes and high-melting n-paraffins.
  • the parafs known from EP 0309931 A1 can be used.
  • this liquid fraction is as low as possible and is preferably absent entirely.
  • Particularly preferred paraffin wax mixtures at 30 ° C have a liquid fraction of less than 10% by weight, in particular from 2% by weight to 5% by weight, at 40 ° C a liquid fraction of less than 30% by weight, preferably of 5 % By weight to 25% by weight and in particular from 5% by weight to 15% by weight, at 60 ° C. a liquid fraction of 30% by weight to 60% by weight, in particular 40% by weight % to 55% by weight, at 80 ° C a liquid content of 80% by weight to 100% by weight, and at 90 ° C a liquid content of 100% by weight.
  • the temperature at which a liquid content of 100% by weight of the paraffin wax is reached is still below 85 ° C., in particular at 75 ° C. to 82 ° C., in particularly preferred paraffin wax mixtures.
  • the paraffin waxes can be petrolatum, microcrystalline waxes or hydrogenated or partially hydrogenated paraffin waxes.
  • Suitable bisamides as defoamers are those which are derived from saturated fatty acids with 12 to 22, preferably 14 to 18 C atoms and from alkylenediamines with 2 to 7 C atoms.
  • Suitable fatty acids are lauric acid, myristic acid, stearic acid, arachic acid and behenic acid and mixtures thereof, as can be obtained from natural fats or hydrogenated oils, such as tallow or hydrogenated palm oil.
  • Suitable diamines are, for example, ethylene diamine, 1,3-propylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, p-phenylene diamine and tolylene diamine.
  • Preferred diamines are ethylenediamine and hexamethylenediamine.
  • Particularly preferred bisamides are bismyristoylethylene diamine, bispalmitoylethylene diamine, bisstearoylethylene diamine and mixtures thereof and the corresponding derivatives of hexamethylene diamine.
  • Suitable carboxylic acid esters as defoamers are derived from carboxylic acids with 12 to 28 carbon atoms.
  • these are esters of behenic acid, stearic acid, hydroxystearic acid, oleic acid, palmitic acid, myristic acid and / or lauric acid.
  • the alcohol part of the carboxylic acid ester contains a mono- or polyhydric alcohol with 1 to 28 carbon atoms in the hydrocarbon chain.
  • suitable alcohols are behenyl alcohol, arachidyl alcohol, coconut alcohol, 12-hydroxystearyl alcohol, oleyl alcohol and lauryl alcohol as well as ethylene glycol, glycerin, polyvinyl alcohol, sucrose, erythritol, pentaerythritol, sorbitan and / or sorbitol.
  • Preferred esters are those of ethylene glycol, glycerol and sorbitan, the acid part of the ester being selected in particular from behenic acid, stearic acid, oleic acid, palmitic acid or myristic acid.
  • esters of polyhydric alcohols are, for example, xylitol monopalmitate, pentarythritol monostearate, glycerol monostearate, ethylene glycol monostearate and sorbitan monostearate, sorbitan palmitate, sorbitan monolearate, sorbitan dilaurate, sorbitan distearate, sorbitan dibehenate, sorbitan dioleate and mixed tallow alkyl sorbitan mono- and diesters.
  • Glycerol esters which can be used are the mono-, di- or triesters of glycerol and the carboxylic acids mentioned, the mono- or diesters being preferred.
  • Glycerol monostearate, glycerol monooleate, glycerol monopalmitate, glycerol monobehenate and glycerol distearate are examples of this.
  • suitable natural esters as defoamers are beeswax, which mainly consists of the esters CH 3 (CH 2 ) 2 4COO (CH 2 ) 27 CH3 and CH 3 (CH 2 ) 2 6COO (CH 2 ) 25 CH3, and camamauba wax , which is a mixture of carnauba acid alkyl esters, often in combination with small amounts of free carnauba acid, other long-chain acids, high-molecular alcohols and hydrocarbons.
  • Suitable carboxylic acids as a further defoamer compound are, in particular, behenic acid, stearic acid, oleic acid, palmitic acid, myristic acid and lauric acid, and mixtures thereof, as are obtainable from natural fats or optionally hardened oils, such as tallow or hydrogenated palm oil.
  • Saturated fatty acids with 12 to 22, in particular 18 to 22, carbon atoms are preferred.
  • the corresponding fatty alcohols of the same C chain length can be used in the same way.
  • Dialkyl ethers may also be present as defoamers.
  • the ethers can be asymmetrical or symmetrical, i.e. contain two identical or different alkyl chains, preferably with 8 to 18 carbon atoms.
  • Typical examples are di-n-octyl ether, di-i-octyl ether and di-n-stearyl ether; dialkyl ethers which have a melting point above 25 ° C., in particular above 40 ° C., are particularly suitable.
  • Suitable defoamer compounds are fatty ketones, which can be obtained by the relevant methods of preparative organic chemistry. For their preparation, one starts from, for example, carboxylic acid magnesium salts which are pyrolyzed at temperatures above 300 ° C. with the elimination of carbon dioxide and water, for example according to the German laid-open specification DE 2553900 OS.
  • Suitable fat ketones are those which are prepared by pyrolysis of the magnesium salts of lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, elaidic acid, petroselinic acid, arachic acid, gadoleic acid, behenic acid or erucic acid.
  • Suitable defoamers are fatty acid polyethylene glycol esters, which are preferably obtained by base-homogeneously catalyzed addition of ethylene oxide to fatty acids.
  • the addition of ethylene oxide to the fatty acids takes place in the presence of alkanolamines as catalysts.
  • alkanolamines especially triethanolamine, leads to an extremely selective ethoxylation of the fatty acids, especially when it comes to producing low-ethoxylated compounds len.
  • the paraffin waxes described are particularly preferably used alone as wax-like defoamers or in a mixture with one of the other wax-like defoamers, the proportion of paraffin waxes in the mixture preferably making up more than 50% by weight, based on the wax-like defoamer mixture.
  • the paraffin waxes can be applied to carriers if necessary. All known inorganic and / or organic carrier materials are suitable as carrier materials. Examples of typical inorganic carrier materials are alkali carbonates, aluminosilicates, water-soluble layer silicates, alkali silicates, alkali sulfates, for example sodium sulfate, and alkali phosphates.
  • the alkali silicates are preferably a compound with a molar ratio of alkali oxide to SiO 2 of 1: 1.5 to 1: 3.5.
  • the use of such silicates results in particularly good grain properties, in particular high abrasion stability and nevertheless high dissolution rate in water.
  • the aluminosilicates referred to as carrier material include in particular the zeolites, for example zeolite NaA and NaX.
  • the compounds referred to as water-soluble layered silicates include, for example, amorphous or crystalline water glass. Silicates which are commercially available under the name Aerosil® or Sipernat® can also be used.
  • suitable organic carrier materials are film-forming polymers, for example polyvinyl alcohols, polyvinyl pyrrolidones, poly (meth) acrylates, polycarboxylates, cellulose derivatives and starch.
  • Usable cellulose ethers are, in particular, alkali carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose and so-called cellulose mixed ethers, such as, for example, methyl hydroxyethyl cellulose and methyl hydroxypropyl cellulose, and mixtures thereof.
  • Particularly suitable mixtures are composed of sodium carboxymethyl cellulose and methyl cellulose, the carboxymethyl cellulose usually having a degree of substitution of 0.5 to 0.8 carboxymethyl groups per anhydroglucose unit and the methyl cellulose having a degree of substitution of 1.2 to 2 methyl groups per anhydroglucose unit.
  • the mixtures preferably contain alkali carboxymethyl cellulose and nonionic cellulose ethers in weight ratios from 80:20 to 40:60, in particular from 75:25 to 50:50.
  • native starch which is composed of amylose and amylopectin. Starch is referred to as native starch as it is available as an extract from natural sources, for example from rice, potatoes, corn and wheat.
  • Carrier materials which can be used individually or more than one of the abovementioned compounds, in particular selected from the group of alkali metal carbonates, alkali metal sulfates, alkali metal phosphates, zeolites, water-soluble sheet silicates, alkali metal silicates, polycarboxylates, cellulose ethers, polyacrylate / polymethacrylate and starch.
  • alkali carbonates in particular sodium carbonate, alkali silicates, in particular sodium silicate, alkali sulfates, in particular sodium sulfate and zeolites are particularly suitable.
  • Suitable silicones are conventional organopolysiloxanes, which can have a content of finely divided silica, which in turn can also be silanized. Such organopolysiloxanes are described, for example, in European patent application EP 0496510 A1. Polydiorganosiloxanes and in particular polydimethylsiloxanes, which are known from the prior art, are particularly preferred. Suitable polydiorganosiloxanes have an almost linear chain and have a degree of oligomerization of 40 to 1500. Examples of suitable substituents are methyl, ethyl, propyl, isobutyl, tert. Butyl and phenyl.
  • silicones in general and the polydiorganosiloxanes in particular contain finely divided silica, which can also be silanated.
  • Silicic acid-containing dimethylpolysiloxanes are particularly suitable for the purposes of the present invention.
  • the polydiorganosiloxanes advantageously have a Brookfield viscosity at 25 ° C.
  • silicones in the range from 5000 mPas to 30,000 mPas, in particular from 15,000 to 25,000 mPas.
  • the silicones are preferably used in the form of their aqueous emulsions. As a rule, the silicone is added to the water initially introduced with stirring. If desired, thickeners such as are known from the prior art can be added to increase the viscosity of the aqueous silicone emulsions.
  • nonionic cellulose ethers such as methyl cellulose, ethyl cellulose and mixed ethers such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl hydroxybutyl cellulose and anionic carboxyl cellulose types such as the carboxymethyl cellulose sodium salt (abbreviation CMC) are particularly preferred.
  • Particularly suitable thickeners are mixtures of CMC to nonionic cellulose ethers in a weight ratio of 80:20 to 40:60, in particular 75:25 to 60:40.
  • aqueous silicone solutions are given starch which is accessible from natural sources, for example from rice, potatoes, corn and wheat.
  • the starch is advantageously present in amounts of 0.1 to 50% by weight, based on the silicone emulsion, and in particular in a mixture with the already described thickener mixtures of sodium carboxymethyl cellulose and a nonionic cellulose ether in the amounts already mentioned.
  • the procedure is expediently such that the thickening agents which may be present pre-swell medium in water before adding the silicones.
  • the silicones are expediently incorporated with the aid of effective stirring and mixing devices.
  • the solid preparations can further contain disintegrants or disintegrants.
  • Disintegration aids are, for example, carbonate / citric acid systems, although other organic acids can also be used
  • Disintegration aids are, for example, synthetic polymers such as optionally crosslinked polyvinylpyrrolidone (PVP) or natural polymers or modified natural substances such as cellulose and starch and their derivatives, alginates or casein derivatives, and preferred disintegrants used in the context of the present invention are cellulose-based disintegrants
  • PVP polyvinylpyrrolidone
  • preferred disintegrants used in the context of the present invention are cellulose-based disintegrants
  • Cellulose has the shape ale gross composition (C6H ⁇ 0 ⁇ 5) n and formally considered a ß-1, 4-polyacetal of cellobiose, which in turn is made up of two molecules of glucose.
  • Suitable celluloses consist of approximately 500 to 5000 glucose units and consequently have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrants which can be used in the context of the present invention are also cellulose derivatives which can be obtained from cellulose by polymer-analogous reactions.
  • Such chemically modified celluloses include, for example, products from esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • celluloses in which the hydroxyl groups have been replaced by functional groups which are not bound via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali celluloses, carboxymethyl cellulose (CMC), cellulose esters and ethers and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used alone as a cellulose-based disintegrant, but are used in a mixture with cellulose.
  • the content of cellulose derivatives in these mixtures is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrant.
  • Pure cellulose which is free of cellulose derivatives is particularly preferably used as the cellulose-based disintegrant.
  • Microcrystalline cellulose can be used as a further cellulose-based disintegrant or as a component of this component. This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions that only affect the amorphous areas (approx. Attack and completely dissolve 30% of the total cellulose mass) of the celluloses, but leave the crystalline areas (approx. 70%) undamaged.
  • a subsequent disaggregation of the microfine celluloses produced by the hydrolysis provides the microcrystalline celluloses, which have primary particle sizes of approximately 5 ⁇ m and can be compacted, for example, into granules with an average particle size of 200 ⁇ m.
  • the disintegrants can be macroscopically homogeneously distributed in the shaped body, but microscopically they form zones of increased concentration due to the manufacturing process.
  • Disintegrants which may be present in the context of the invention, such as, for example, collidone, alginic acid and its alkali metal salts, amorphous or also partially crystalline sheet silicates (bentonites), polyacrylates, polyethylene glycols are, for example, the publications WO 98/40462 (Rettenmaier), WO 98/55583 and WO 98/55590 (Unilever) and WO 98/40463, DE 19709991 and DE 19710254 (Henkel) can be found. Reference is expressly made to the teaching of these writings.
  • the moldings can contain the disintegrants in amounts of 0.1 to 25, preferably 1 to 20 and in particular 5 to 15% by weight, based on the moldings.
  • fragrance compounds e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type are used.
  • Fragrance compounds of the ester type are e.g. Benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalylbenzoate, benzyl formate, ethylmethylphenylglycinate, allylcyclohexylpropionate, styrallylpropionate and benzylsapionate and benzylsapionate.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes e.g. the linear alkanals with 8-18 C atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones e.g.
  • perfume oils can also contain natural fragrance mixtures as are available from plant sources, e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • muscatel sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil and labdanum oil as well as orange blossom oil, neroliol, orange peel oil and sandalwood oil.
  • the fragrances can be incorporated directly into the agents according to the invention, but it can also be advantageous to apply the fragrances to carriers which prevent the perfume from adhering to the laundry. see intensify and ensure a long-lasting fragrance of the textiles through a slower fragrance release.
  • Cyclodextrins for example, have proven useful as such carrier materials, and the cyclodextrin-perfume complexes can additionally be coated with further auxiliaries.
  • Suitable ingredients of the agents are water-soluble inorganic salts such as bicarbonates, carbonates, amorphous silicates, normal water glasses, which have no outstanding builder properties, or mixtures of these; in particular, alkali carbonate and / or amorphous alkali silicate, especially sodium silicate with a molar ratio Na 2 O: Si0 2 of 1: 1 to 1: 4.5, preferably of 1: 2 to 1: 3.5, are used.
  • the content of sodium carbonate in the final preparations is preferably up to 40% by weight, advantageously between 2 and 35% by weight.
  • the content of sodium silicate in the agents (without special builder properties) is generally up to 10% by weight and preferably between 1 and 8% by weight.
  • Sodium sulfate for example, may also be present as a filler or leveling agent in amounts of 0 to 10, in particular 1 to 5% by weight, based on the preparation, of the detergents
  • the detergents obtainable using the additives according to the invention can be produced or used in the form of powders, extrudates, granules or agglomerates. These can be both universal and delicates or color detergents, optionally in the form of compact or super-compact.
  • the corresponding methods known from the prior art are suitable for producing such agents.
  • the agents are preferably prepared by mixing different particulate components which contain detergent ingredients.
  • the particulate components can be produced by spray drying, simple mixing or complex granulation processes, for example fluidized bed granulation. It is particularly preferred that at least one surfactant-containing component is produced by fluidized bed granulation. It can furthermore be particularly preferred if aqueous preparations of the alkali silicate and the alkali carbonate are sprayed together with other detergent ingredients in a drying device, wherein granulation can take place simultaneously with the drying. Spray drying
  • the drying device into which the aqueous preparation is sprayed can be any drying apparatus.
  • the drying is carried out as spray drying in a drying tower.
  • the aqueous preparations are exposed to a drying gas stream in finely divided form in a known manner.
  • Patent publications by Henkel describe an embodiment of spray drying with superheated steam. The working principle disclosed there is hereby expressly made the subject of the present disclosure of the invention.
  • a particularly preferred way of producing the agents is to subject the preliminary products to fluidized bed granulation (“SKET” granulation).
  • SKET fluidized bed granulation
  • the fluidized bed apparatus used preferably has base plates with dimensions of 0.4 to 5 m.
  • the granulation is preferably carried out at fluidized air speeds in the range from 1 to 8 m / s.
  • the granules are discharged from the fluidized bed
  • the classification can be carried out, for example, by means of a sieving device or by means of an opposed air flow (classifying air) which is regulated in such a way that only particles of a certain particle size are removed from the fluidized bed and smaller particles violets are retained in the fluidized bed.
  • the inflowing air is usually composed of the heated or unheated classifier air and the heated bottom air.
  • the soil air temperature is between 80 and 400, preferably 90 and 350 ° C.
  • a starting mass for example a granulate from an earlier test batch, is presented at the beginning of the granulation. Press agglomeration
  • the mixtures are then subjected to a compacting step, further ingredients being added to the agents only after the compacting step.
  • the ingredients are compacted in a press agglomeration process.
  • the press agglomeration process to which the solid premix (dried basic detergent) is subjected can be carried out in various apparatuses. Different press agglomeration processes are distinguished depending on the type of agglomerator used.
  • the four most common press agglomeration processes preferred in the context of the present invention are extrusion, roll pressing or compacting, hole pressing (pelletizing) and tableting, so that preferred press agglomeration processes in the context of the present invention are extrusion, roll compacting, pelletizing - or tableting processes.
  • binders can be used as an aid to compaction.
  • a binder is used which is already completely present as a melt at temperatures of up to 130 ° C., preferably up to 100 ° C. and in particular up to 90 ° C.
  • the binder must therefore be selected depending on the process and process conditions, or the process conditions, in particular the process temperature, must - if a particular binder is desired - be adapted to the binder.
  • the actual compression process preferably takes place at processing temperatures which, at least in the compression step, correspond at least to the temperature of the softening point, if not even the temperature of the melting point of the binder.
  • the process temperature is significantly above the melting point or above the temperature at which the binder is in the form of a melt.
  • the process temperature in the compression step is not more than 20 ° C. above the melting point temperature or the upper limit of the melting range of the binder. It is technically possible to set even higher temperatures; However, it has been shown that a temperature difference of 20 ° C. from the melting temperature or softening temperature of the binder is generally sufficient and even higher temperatures do not bring any additional advantages.
  • thermoly sensitive raw materials for example peroxy bleaching agents such as perborate and / or percarbonate, but also enzymes, can increasingly be processed without serious loss of active substance.
  • peroxy bleaching agents such as perborate and / or percarbonate, but also enzymes.
  • the possibility of precise temperature control of the binder in particular in the decisive step of compaction, i.e. between the mixing / homogenization of the premix and the shaping, permits an energetically very economical and extremely gentle process control for the temperature-sensitive components of the premix, since the premix only lasts for a short time exposed to higher temperatures.
  • the work tools of the press agglomerator (the screw (s) of the extruder, the roller (s) of the roller compactor and the press roller (s) of the pellet press) have a temperature of at most 150 ° C., preferably at most 100 ° C. and in particular to a maximum of 75 ° C and the process temperature is 30 ° C and in particular a maximum of 20 ° C above the melting temperature or the upper temperature limit of the melting range of the binder.
  • the duration of the temperature effect in the compression range of the press agglomerators is preferably a maximum of 2 minutes and is in particular in a range between 30 seconds and 1 minute.
  • Preferred binders which can be used alone or in a mixture with other binders are polyethylene glycols, 1,2-polypropylene glycols and modified polyethylene glycols and polypropylene glycols.
  • the modified polyalkylene glycols include in particular the sulfates and / or the disulfates of polyethylene glycols or polypropylene glycols with a relative molecular weight between 600 and 12,000 and in particular between 1,000 and 4,000.
  • Another group consists of mono- and / or disuccinates of the polyalkylene glycols, which again have relative molecular weights between 600 and 6,000, preferably between 1,000 and 4,000.
  • polyethylene glycols include those polymers which, in addition to ethylene glycol, also employ C3-Cs glycols and glycerol and mixtures thereof as starting molecules. Ethoxylated derivatives such as trimethylolpropane with 5 to 30 EO are also included.
  • the polyethylene glycols preferably used can have a linear or branched structure, linear polyethylene glycols being particularly preferred.
  • the particularly preferred polyethylene glycols include those with relative molecular weights between 2,000 and 12,000, advantageously around 4,000, with polyethylene glycols relative molecular weights below 3,500 and above 5,000, in particular in combination with polyethylene glycols with a relative molecular weight of around 4,000, and such combinations advantageously to more than 50% by weight, based on the total amount of polyethylene glycols, polyethylene glycols with a relative molecular weight have between 3 500 and 5 000.
  • polyethylene glycols can also be used as binders, which are per se in liquid state at room temperature and a pressure of 1 bar; this is primarily about polyethylene glycol with a relative molecular weight of 200, 400 and 600.
  • these per se liquid polyethylene glycols should only be used in a mixture with at least one other binder, this mixture again having to meet the requirements of the invention, must have a melting point or softening point of at least above 45 ° C.
  • suitable as binders are low molecular weight polyvinylpyrrolidones and derivatives thereof with relative molecular weights of up to a maximum of 30,000. Relative molecular weight ranges between 3,000 and 30,000, for example around 10,000 are preferred.
  • Polyvinylpyrrolidones are preferably not used as sole binders but in combination with other used in particular in combination with polyethylene glycols.
  • the compressed material preferably has temperatures not above 90 ° C., temperatures between 35 and 85 ° C. being particularly preferred. It has been found that exit temperatures - especially in the extrusion process - from 40 to 80 ° C, for example up to 70 ° C, are particularly advantageous.
  • the detergent according to the invention is produced by means of an extrusion, as described, for example, in European patent EP 0486592 B1 or international patent applications WO 93/02176 and WO 94/09111 or WO 98/12299.
  • a solid premix is pressed in the form of a strand under pressure, and the strand is cut to the predeterminable size of the granulate after it has emerged from the hole shape by means of a cutting device.
  • the homogeneous and solid premix contains a plasticizer and / or lubricant, which causes the premix to become plastically softened and extrudable under the pressure or under the entry of specific work.
  • Preferred plasticizers and / or lubricants are surfactants and / or polymers.
  • the premix is preferably fed to a planetary roller extruder or a 2-shaft extruder or 2-screw extruder with co-rotating or counter-rotating screw guidance, the housing and the extruder pelletizing head of which can be heated to the predetermined extrusion temperature.
  • the premix is compressed, plasticized, extruded in the form of fine strands through the perforated die plate in the extruder head and finally the extrudate under pressure, which is preferably at least 25 bar, but can also be lower at extremely high throughputs depending on the apparatus used preferably reduced to approximately spherical to cylindrical granules by means of a rotating cutting knife.
  • the hole diameter of the perforated nozzle plate and the strand cut length are matched to the selected granulate dimension. In this way, the production of granules of an essentially uniformly predeterminable particle size succeeds, and in particular the absolute particle sizes can be adapted to the intended use. In general, particle diameters up to at most 0.8 cm are preferred.
  • Important embodiments provide for the production of uniform granules in the millimeter range, for example in the range from 0.5 to 5 mm and in particular in the range from approximately 0.8 to 3 mm.
  • the length / diameter ratio of the chopped-off primary granules is preferably in the range from about 1: 1 to about 3: 1. It is also preferred to feed the still plastic primary granules to a further shaping processing step; edges present on the crude extrudate are rounded off so that ultimately spherical to approximately spherical extrudate grains can be obtained.
  • small amounts of dry powder for example zeolite powder such as zeolite NaA powder, can also be used in this step. This shape can be done in standard rounding machines.
  • extrusions / pressings can also be carried out in low-pressure extruders, in the Kahl press (from Amandus Kahl) or in the Bepex extruder.
  • the temperature control in the transition region of the screw, the pre-distributor and the nozzle plate is preferably designed such that the melting temperature of the binder or the upper limit of the melting range of the binder is at least reached, but preferably exceeded.
  • the duration of the temperature influence in the compression range of the extrusion is preferably less than 2 minutes and in particular in a range between 30 seconds and 1 minute. roller compacting
  • the detergents according to the invention can also be produced by means of roller compaction.
  • the premix is metered in between two smooth rollers or with recesses of a defined shape and rolled out under pressure between the two rollers to form a sheet-like compact, the so-called Schülpe.
  • the rollers exert a high line pressure on the premix and can be additionally heated or cooled as required.
  • smooth rollers you get smooth, unstructured sash bands, while by the Using structured rollers, correspondingly structured slugs can be produced, in which, for example, certain shapes of the later detergent particles can be specified.
  • the sliver belt is subsequently broken up into smaller pieces by a knocking-off and crushing process and can be processed into granules in this way, which can be refined by further known surface treatment processes, in particular in an approximately spherical shape.
  • the temperature of the pressing tools that is to say of the rollers, is preferably at most 150 ° C., preferably at most 100 ° C. and in particular at a maximum of 75 ° C.
  • Particularly preferred production processes work in roller compacting with process temperatures which are 10 ° C., in particular a maximum of 5 ° C. above the melting temperature or the upper temperature limit of the melting range of the binder.
  • the duration of the temperature effect in the compression area of the smooth rollers or with depressions of a defined shape is a maximum of 2 minutes and is in particular in a range between 30 seconds and 1 minute.
  • the detergent according to the invention can also be produced by pelleting.
  • the premix is applied to a perforated surface and pressed through the holes by means of a pressure-producing body with plasticization.
  • the premix is compressed under pressure, plasticized, pressed through a perforated surface by means of a rotating roller in the form of fine strands and finally comminuted into granules using a knock-off device.
  • the most varied configurations of the pressure roller and perforated die are conceivable here. For example, flat perforated plates are used as well as concave or convex ring matrices through which the material is pressed using one or more pressure rollers.
  • the press rolls can also be conical in the plate devices, in the ring-shaped devices dies and press roll (s) can have the same or opposite direction of rotation.
  • An apparatus suitable for carrying out the method is described, for example, in German laid-open specification DE 3816842 A1.
  • the ring die press disclosed in this document consists of a rotating ring die interspersed with press channels and at least one press roller which is operatively connected to its inner surface and which presses the material supplied to the die space through the press channels into a material discharge.
  • the ring die and the press roller can be driven in the same direction, which means that a reduced shear stress and thus a lower temperature increase in the premix can be achieved.
  • the temperature of the pressing tools is preferably at a maximum of 150 ° C., preferably at a maximum of 100 ° C. especially at a maximum of 75 ° C.
  • Particularly preferred production processes work in roller compacting with process temperatures which are 10 ° C., in particular a maximum of 5 ° C. above the melting temperature or the upper temperature limit of the melting range of the binder.
  • Shaped bodies are generally produced by tableting or press agglomeration.
  • the particulate press agglomerates obtained can either be used directly as detergents or aftertreated and / or prepared beforehand by customary methods.
  • the usual aftertreatments include, for example, powdering with finely divided ingredients from detergents or cleaning agents, which generally further increases the bulk density.
  • a preferred aftertreatment is also the procedure according to German patent applications DE 19524287 A1 and DE 19547457 A1, in which dusty or at least finely divided ingredients (the so-called fine fractions) are adhered to the particulate end products of the process, which serve as the core, and thus give rise to agents , which have these so-called fines as an outer shell.
  • the solid detergents are in tablet form, these tablets preferably having rounded corners and edges, in particular for storage and transport reasons.
  • the base of these tablets can be circular or rectangular, for example.
  • Multi-layer tablets, in particular tablets with 2 or 3 layers, which can also have different colors, are particularly preferred. Blue-white or green-white or blue-green-white tablets are particularly preferred.
  • the tablets can also contain pressed and unpressed parts.
  • Shaped articles with a particularly advantageous dissolution rate are obtained if the granular constituents, prior to pressing, have a proportion of particles which have a diameter outside the range from 0.02 to 6 mm of less than 20, preferably less than 10,% by weight.
  • a particle size distribution in the range from 0.05 to 2.0 and particularly preferably from 0.2 to 1.0 mm is preferred. Examples
  • Example H In a conventional spray tower, a 55% by weight aqueous dodecylbenzenesulfonate sodium salt paste (Maranil® A55, Cognis Deutschland GmbH) was placed over a pouring plate (“drip plate”) with a diameter of 480 mm, bores of 0.5 mm , an oscillation frequency of 800 Hz and an operating pressure of 40 mbar. Drying was carried out with hot air (150 ° C.) in countercurrent. The spray material was drawn off continuously at the cone of the tower. The proportion of spray material with a diameter of less than 0.5 mm was now 0.4% by weight, while 68.5% by weight had a diameter in the range from 0.8 to 1.25 mm.
  • Example H2 Example 1 was repeated using a 30% by weight lauryl sulfate sodium salt paste (Sulfopon® T30, Cognis Deutschland GmbH). The proportion of spray material with a diameter of less than 0.5 mm was now 0.3% by weight, while 70.5% by weight had a diameter in the range from 0.8 to 1.25 mm.
  • Example H3 Example 1 was repeated using a 30% by weight coconut monoglyceride sodium salt paste (Plantapon® CMGS, Cognis Deutschland GmbH). The proportion of spray material with a diameter of less than 0.5 mm was now still 0.25% by weight, while 67.3% by weight had a diameter in the range from 0.8 to 1.25 mm.
  • Example H4 Example 1 was repeated using a 30% by weight coconut alkyl glucoside paste (Glucopon® 600 CS UP, Cognis Deutschland GmbH); drying took place at 105 ° C. The proportion of spray material with a diameter of less than 0.5 mm was now 0.3% by weight, while 71.8% by weight had a diameter in the range from 0.8 to 1.25 mm.
  • Glucopon® 600 CS UP coconut alkyl glucoside paste
  • Example 1 was repeated using a 30% by weight coconut alkyl glucoside / coconut alcohol + 2EO sulfate sodium salt paste (Plantacare® PS 10, Cognis Deutschland GmbH); drying took place at 108 ° C.
  • the proportion of spray material with a diameter of less than 0.5 mm was now 0.35% by weight, while 74.2% by weight had a diameter in the range from 0.8 to 1.25 mm.
  • Example H6 Example 1 was repeated using a 30% by weight lauric acid N-methylglucamide paste; drying took place at 105 ° C. The proportion of spray material with a diameter of less than 0.5 mm was now 0.3% by weight, while 71.8% by weight had a diameter in the range from 0.8 to 1.25 mm.
  • Example H7 Example 1 was repeated using a 45% by weight cocamidopropyl betaine paste (Dehyton® PK, Cognis Germany GmbH). The proportion of spray material with a diameter of less than 0.5 mm was now 0.5% by weight, while 71.0% by weight had a diameter in the range from 0.8 to 1.25 mm.
  • the detergent formulations were compressed into tablets (weight 40 g, constant breaking hardness) with the addition of 7 g of microcrystalline compacted cellulose, packed airtight and then stored at 40 ° C. for 2 weeks.
  • the tablets were placed on a wire frame which was in water (0 ° d, 25 ° C). The tablets were completely surrounded by water. The disintegration time from immersion to complete dissolution was measured. The disintegration times are also shown in Table 1.
  • compositions and results on the dissolution rate (quantities as% by weight)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Vorgeschlagen wird ein Verfahren zur Herstellung von Tensidgranulaten, bei dem man einen Strom einer wässrigen Tensidzubereitung mit Hilfe einer Giesserplatte durch Vibration vertropft und den Tropfen ein gasförmiges Trockenmittel entgegenleitet, welches die Wasseranteile verdampft und die Granulate dabei trocknet.

Description

Verfahren zur Herstellung von Tensidgranulaten
Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der oberflächenaktiven Mittel und betrifft ein neues Sprüh- kristallisationsverfahren zur Herstellung von Tensidgranulaten mit eingeschränktem Korngrößenspektrum.
Stand der Technik
Tenside, wie beispielsweise Alkylbenzolsulfonate oder Alkylsulfate, werden üblicherweise in fester Form konfektioniert, indem man die Rohstoffe in Form von wäßrigen Lösungen oder Pasten in einem Turm über Düsen versprüht, wobei man den sich bildenden Tropfen Heißluft entgegenleitet. Die Fettstoffe trocknen in ihrem freien Fall im Gegenstrom der Heißluft und werden üblicherweise am Konus-Unterteil des Sprühturms als Fertigprodukt kontinuierlich abgezogen. Die mit organischen Anteil belastete Trocknungsluft wird zur Abscheidung der mitgerissenen Feinpartikel über Zyklone geleitet. Ein Ventilator fördert den Hauptvolumenstrom im Kreis über den Kühler zurück in den Sprühturm. Ein Teilstrom wird dabei in der Regel über das Abluftsystem zum Kesselhaus geleitet, während der erforderliche Frischluftstrom aus der Umgebung angesaugt wird.
Üblicherweise sind im Kopf der Sprühtürme mehrere Einstoff-Druckdüsen, z.B. Vollkegeldüsen installiert, über die das Produkt in den Sprühturm zerstäubt wird. Dabei reißt der mit hoher Turbulenz aus der Düse austretende Strahl schon nach kurzer Entfernung von der Düsenmündung auf und bildet Tropfen, wobei das Aufreißen durch den Drall des Strahls noch zusätzlich verstärkt wird. Das auf diese Art und Weise hergestellte Pulver zeigt ein breites Korngrößenspektrum auf. Aufgrund des hierbei anfallenden Feinstaubanteils und der Gefahr einer Staubexplosion, unterliegen derartige Sprühanlagen den erweiterten Pflichten eines Störfallbetriebes, was nicht unerhebliche Anforderungen an die Arbeitssicherung beinhaltet und zu einer ökonomischen Belastung des Herstellverfahrens führt.
Bei Tensidherstellern besteht daher ein lebhaftes Interesse an einem Verfahren, welches die Herstellung von Tensidgranulaten mit einem eingeengten Korngrößenspektrum, insbesondere mit einem vernachlässigbarem Feinstkorn- bzw. Staubanteil (< 0,5 mm) von unter 1 Gew.-%. Gleichzeitig sollten sich die Tensidgranulate durch eine verbesserte Auflösegeschwindigkeit auszeichnen. Die Aufgabe der vorliegenden Erfindung hat daher darin bestanden, ein neues Verfahren zur Herstellung von Tensidgranulaten zur Verfügung zu stellen, welches frei von den geschilderten Nachteilen ist.
Beschreibung der Erfindung
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Tensidgranulaten, bei dem man einen Strom einer wäßrigen Tensidzubereitung mit Hilfe einer Gießerplatte durch Vibration vertropft und den Tropfen ein gasförmiges Trockenmittel entgegenleitet, welches die Wasseranteile verdampft und die Granulate dabei trocknet.
Überraschenderweise wurde gefunden, daß das gesteckte Ziel durch eine geänderte Tropfenerzeugung zu erreichen ist. Hierbei werden die Tenside in Form von wäßrigen Lösungen oder Pasten über einen vibrierenden Lochteller in den Sprühturm eingebracht. Infolge der auf die Flüssigkeit wirkenden Vibration wird der Flüssigkeit eine Frequenz aufgeprägt, der Flüssigkeitsfaden immer wieder unterbrochen und es bilden sich aufgrund der Grenzflächenspannung Kügelchen, die anschließend in den eigentlichen Sprühturm gelangen und dann während des freien Falls beispielsweise durch einen Heiß- gasgegenstrom getrocknet werden. In Abhängigkeit von Lochdurchmesser und Schwingfrequenz kann ein definiertes Kornspektrum ohne Staubanteil eingestellt werden. Eine derartige Anlage unterliegt damit nicht mehr den erweiterten Pflichten eines Störfallbetriebes, was zu einer drastischen Verminderung des technischen Aufwandes und der damit verbundenen Kosten führt. Ein weiterer unerwarteter Vorteil besteht darin, daß die Tensidgranulate eine verbesserte Auflösegeschwindigkeit zeigen und sich dieser Effekt auch auf die damit hergestellten Endzubereitungen überträgt, bei denen es sich vorzugsweise um feste Waschmittel und speziell Waschmitteltabletten handelt.
Tenside
Im Sinne des erfindungsgemäßen Verfahrens eignen sich anionische, nichtionische, kationische, am- photere und/oder zwitterionische Tenside, vorzugsweise werden jedoch anionische Tenside bzw. Kombinationen von anionischen und nichtionischen Tensiden eingesetzt. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glyce- rinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glyce- rinethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N- Acylaminosäuren wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, AI- kyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyg lycoletherkθtten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Vorzugsweise werden Alkylbenzolsulfonate, Alkylsulfate, Alkylethersulfate, Alkansulfonate, Olefinsulfo- nate, Methylestersulfonate, Monoglycerid(ether)sulfate und Alkaliseifen sowie deren Gemische eingesetzt.
Bevorzugte Alkylbenzolsulfonate folgen vorzugsweise der Formel (I),
R^Ph-SOaX (I)
in der R1 für einen verzweigten, vorzugsweise jedoch linearen Alkylrest mit 10 bis 18 Kohlenstoffatomen, Ph für einen Phenylrest und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylam- monium, Alkanolammonium oder Glucammonium steht. Insbesondere von diesen geeignet sind Dode- cylbenzolsulfonate, Tetradecylbenzolsulfonate, Hexadecylbenzolsulfonate sowie deren technische Gemische in Form der Natriumsalze.
Unter Alkyl- und/oder Alkenyl(ether)sulfaten, die je nach Rohstoffbasis auch als Fettalkohol(ether)- oder Oxoalkohol(ether)sulfate bezeichnet werden, sind die Sulfatierungsprodukte primärer und/oder sekundärer Alkohole bzw. von Alkylenoxidaddukten an diese Alkohole zu verstehen, die vorzugsweise der Formel (II) folgen,
R20(CH2CHR30)a-SO3X (II)
in der R2 für einen linearen oder verzweigten, aliphatischen Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen, R3 für Wasserstoff oder eine Methylgruppe, a für 0 oder Zahlen von 1 bis 0, vorzugsweise 2 bis 10 und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Al- kylammonium, Alkanolammonium oder Glucammonium steht. Typische Beispiele für Alkylsulfate, die im Sinne der Erfindung Anwendung finden können, sind die Sulfatierungsprodukte von Capronalkohol, Caprylalkohol, Caprinalkohol, 2-Ethylhexylalkohol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmo- leylalkohol, Stearylalkohol, Isostearylalkohoi, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachyl- alkohol, Gadoleylalkohol, Behenylalkohol und Erucylalkohol sowie deren technischen Gemischen, die durch Hochdruckhydriemng technischer Methylesterfraktionen oder Aldehyden aus der Roelenschen Oxosynthese erhalten werden. Typische Beispiele für Alkylethersulfate sind die Sulfatierungsprodukte von Anlagerungsprodukten von durchschnittlich 1 bis 20 und vorzugsweise 2 bis 10 Mol Ethylen- und/oder Propylenoxid an die vorgenannten Alkohole. Die Sulfatierungsprodukte - d.h. sowohl die sul- fatierten Alkohole wie auch die sulfatierten Alkoholpolygylcolether - können vorzugsweise in Form ihrer Alkalisalze und insbesondere ihrer Natriumsalze eingesetzt werden. Besonders bevorzugt sind Al- kyl(ether)sulfate auf Basis von Ci6/ιs-Talg-Fettalkoholen bzw. pflanzliche Fettalkohole vergleichbarer C- Kettenverteilung in Form ihrer Natriumsalze. Im Falle von verzweigten primären Alkoholen handelt es sich um Oxoalkohole, wie sie z.B. durch Umsetzung von Kohlenmonoxid und Wasserstoff an alphaständige Olefine nach dem Shop-Verfahren zugänglich sind. Solche Alkoholmischungen sind im Handel unter dem Handelsnamen Dobanol® oder Neodol® erhältlich. Geeignete Alkoholmischungen sind Dobanol 91®, 23®, 25®, 45®. Eine weitere Möglichkeit sind Oxoalkohole, wie sie nach dem klassischen Oxoprozeß der Enichema bzw. der Condea durch Anlagerung von Kohlenmonoxid und Wasserstoff an Olefine erhalten werden. Bei diesen Alkoholmischungen handelt es sich um eine Mischung aus stark verzweigten Alkoholen. Solche Alkoholmischungen sind im Handel unter dem Handelsnamen Lial® erhältlich. Geeignete Alkoholmischungen sind Lial 91®, 111®, 123®, 125®, 145®.
Monoglyceridsulfate und Monoglyceridethersulfate stellen bekannte anionische Tenside dar, die nach den einschlägigen Methoden der präparativen organischen Chemie erhalten werden können. Üblicherweise geht man zu ihrer Herstellung von Triglyceriden aus, die gegebenenfalls nach Ethoxylie- rung zu den Monoglyceriden umgeestert und nachfolgend sulfatiert und neutralisiert werden. Gleichfalls ist es möglich, die Partialglyceride mit geeigneten Sulfatierungsmitteln, vorzugsweise gasförmiges Schwefeltrioxid oder Chlorsulfonsaure umzusetzen. Die neutralisierten Stoffe können - falls gewünscht - einer Ultrafiltration unterworfen werden, um den Elektrolytgehalt auf ein gewünschtes Maß zu vermindern. Die im Sinne der Erfindung einzusetzenden Monoglycerid(ether)sulfate folgen vorzugsweise der Formel (III)
CH20(CH2CR50)bi-COR4
I
CH-0(CH2CR50) 2R6 (III)
I CH20(CH2CR50) 3-SO3X
in der R4CO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R5 für Wasserstoff oder eine Methylgruppe, R6 für Wasserstoff oder R4CO, b1 , b2 und b3 in Summe für 0 oder für Zahlen von 1 bis 30, vorzugsweise 2 bis 10, und X für ein Alkali- oder Erdalkalimetall steht. Typische Beispiele für im Sinne der Erfindung geeignete Monoglycerid(ether)sulfate sind die Umsetzungsprodukte von Laurinsäuremonoglycerid, Kokosfettsäuremonoglycerid, Palmitinsäuremonoglycerid, Stearin- säuremonoglycerid, Ölsäuremonoglycerid und Talgfettsäuremonoglycerid sowie deren Ethylenoxidad- dukte mit Schwefeltrioxid oder Chlorsulfonsaure in Form ihrer Natriumsalze. Vorzugsweise werden Monoglyceridsulfate der Formel (III) eingesetzt, in der R4CO für einen linearen Acylrest mit 8 bis 18 Kohlenstoffatomen und R6 für R4CO steht. Unter Alkaliseifen sind schließlich Fettsäuresalze der Formel (IV) zu verstehen,
R7CO-OX (IV)
in der R CO für einen linearen oder verzweigten, gesättigten oder ungesättigten Acylrest mit 6 bis 22 und vorzugsweise 12 bis 18 Kohlenstoffatomen und wiederum X für Alkali- und/oder Erdalkali, Ammonium, Alkylammonium oder Alkanolammonium steht. Typische Beispiele sind die Natrium-, Kalium-, Magnesium-, Ammonium- und Triethanolammoniumsalze der Capronsäure, Caprylsäure, 2-Ethyl- hexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeo- stearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vorzugsweise werden Kokos- oder Palmkernfettsäure in Form ihrer Natrium- oder Kaliumsalze eingesetzt.
Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolygly- colether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, Alk(en)yloligoglykoside, Fettsäure-N-alkylglucamide, Pro- teinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherket- ten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Vorzugsweise werden Fettalkoholpolyglycolether, alkoxylierte Fettsäu ren ied rig al- kylester, Alkyloligoglucoside und/oder Fettsäure-N-alkylpolyhydroxyalkylamide eingesetzt.
Die bevorzugten Fettalkoholpolyglycolether folgen der Formel (V),
R80(CH2CHR90)niH (V)
in der R8 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen, R9 für Wasserstoff oder Methyl und n1 für Zahlen von 1 bis 20 steht. Typische Beispiele sind die Anlagerungsprodukte von durchschnittlich 1 bis 20 und vorzugsweise 5 bis 10 Mol Ethylen- und/oder Propylenoxid an Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalko- hol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylal- kohol sowie deren technische Mischungen. Besonders bevorzugt sind Anlagerungsprodukte von 3, 5 oder 7 Mol Ethylenoxid an technische Kokosfettalkohole. Als alkoxylierte Fettsäureniedrigalkylester kommen Tenside der Formel (VI) in Betracht,
Riocθ-(OCH2CHR1 )n2OR1 (VI)
in der R10CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R11 für Wasserstoff oder Methyl, R12 für lineare oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen und n2 für Zahlen von 1 bis 20 steht. Typische Beispiele sind die formalen Einschubprodukte von durchschnittlich 1 bis 20 und vorzugsweise 5 bis 10 Mol Ethylen- und/oder Pro- pylenoxid in die Methyl-, Ethyl-, Propyl-, Isopropyl-, Butyl- und tert.-Butylester von Capronsäure, Ca- prylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäu- re, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Üblicherweise erfolgt die Herstellung der Produkte durch Insertion der Alkylenoxide in die Carbonylesterbindung in Gegenwart spezieller Katalysatoren, wie z.B. caicinierter Hydrotalcit. Besonders bevorzugt sind Umsetzungsprodukte von durchschnittlich 5 bis 10 Mol Ethylen- oxid in die Esterbindung von technischen Kokosfettsäuremethylestern.
Alkyl- und Alkenyloligoglykoside, die ebenfalls bevorzugte nichtionische Tenside darstellen, folgen üblicherweise der Formel (VII),
R«0-[G]p (VII)
in der R13 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Schriften EP 0301298 A1 und WO 90/03977 verwiesen. Die Alkyl- und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (VII) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligo- glykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1 ,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1 ,7 ist und insbesondere zwischen 1 ,2 und 1 ,4 liegt. Der Alkyl- bzw. Alkenylrest R13 kann sich von primären Alkoholen mit 4 bis 11 , vor- zugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Ca- prylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloli- goglucoside der Kettenlänge Cs-Cio (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem Cβ-Cis-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12- Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer Cg/n-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R13 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, My- ristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylal- kohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylal- kohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem Ci2/i4-Kokosalkohol mit einem DP von 1 bis 3.
Typische Beispiele für kationische Tenside sind insbesondere Tetraalkylammoniumverbindungen, wie beispielsweise Dimethyldistearylammoniumchlorid oder Hydroxyethyl Hydroxycetyl Dimmonium Chloride (Dehyquart E) oder aber Esterquats. Hierbei handelt es sich beispielsweise um quatemierte Fettsäuretriethanolaminestersalze der Formel (VIII),
ie I
[Ri4CO-(OCH2CH2)miOCH2CH2-N+-CH2CH2θ-(CH2CH20)m2R15] Y- (VIII)
I CH2CH20(CH2CH20)m3R17
in der R1 CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R15 und R16 unabhängig voneinander für Wasserstoff oder R14CO, R15 für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder eine (CH2CH20)m4H-Gruppe, m1 , m2 und m3 in Summe für 0 oder Zahlen von 1 bis 12, m4 für Zahlen von 1 bis 12 und Y für Halogenid, Alkylsulfat oder Alkylphosphat steht. Typische Beispiele für Esterquats, die im Sinne der Erfindung Verwendung finden können, sind Produkte auf Basis von Capronsäure, Capryl- säure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Isostearinsäure, Stearinsäure, Ölsäure, Elaidinsäure, Arachinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, wie sie beispielsweise bei der Druckspaltung natürlicher Fette und Öle anfallen. Vorzugsweise werden technische Ci2/iδ-Kokosfettsäuren und insbesondere teilgehärtete Ciβ/iβ-Talg- bzw. Palmfettsäuren sowie elaidinsäurereiche Ci6/18-Fettsäureschnitte eingesetzt. Zur Herstellung der quaternierten Ester können die Fettsäuren und das Triethanolamin im molaren Verhältnis von 1 ,1 : 1 bis 3 : 1 eingesetzt werden. Im Hinblick auf die anwendungstechnischen Eigenschaften der Esterquats hat sich ein Einsatzverhältnis von 1 ,2 : 1 bis 2,2 : 1 , vorzugsweise 1 ,5 : 1 bis 1 ,9 : 1 als besonders vorteilhaft erwiesen. Die bevorzugten Esterquats stellen technische Mischungen von Mono-, Di- und Triestem mit einem durchschnitt- liehen Veresterungsgrad von 1 ,5 bis 1 ,9 dar und leiten sich von technischer C16/18- Talg- bzw. Palmfettsäure (lodzahl 0 bis 40) ab. Aus anwendungstechnischer Sicht haben sich quaternierte Fettsäuretriet- hanolaminestersalze der Formel (VIII) als besonders vorteilhaft erwiesen, in der R14CO für einen Acylrest mit 16 bis 18 Kohlenstoffatomen, R15 für R15CO, R16 für Wasserstoff, R17 für eine Methylgruppe, m1, m2 und m3 für 0 und Y für Methylsulfat steht.
Neben den quaternierten Fettsäuretriethanolaminestersalzen kommen als Esterquats ferner auch quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen der Formel (IX) in Betracht,
Figure imgf000009_0001
I
[Ri8CO.(OCH2CH2)m5OCH2CH2-N+-CH2CH20-(CH2CH2O)m 6R19] Y" (IX) i
R21
in der R18CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R19 für Wasserstoff oder R18CO, R20 und R21 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m5 und m6 in Summe für 0 oder Zahlen von 1 bis 12 und Y wieder für Halogenid, Alkylsulfat oder Alkylphosphat steht.
Als weitere Gruppe geeigneter Esterquats sind schließlich die quaternierten Estersalze von Fettsäuren mit 1 ,2-Dihydroxypropyldialkylaminen der Formel (X) zu nennen,
R25 0-(CH2CH20)m8OCR 2
I I
[R2 -N+-CH2CHCH2O-(CH2CH20)m7R23] X" (X)
in der R22CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R23 für Wasserstoff oder R22CO, R24, R25 und R26 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m7 und m8 in Summe für 0 oder Zahlen von 1 bis 12 und X wieder für Halogenid, Alkylsulfat oder Alkylphosphat steht.
Schließlich kommen als Esterquats noch Stoffe in Frage, bei denen die Ester- durch eine Amidbindung ersetzt ist und die vorzugsweise basierend auf Diethylentriamin der Formel (XI) folgen, I
[R27CO-NH-CH2CH2-N+-CH2CH2-NH-R28] Y- (XI)
I
R30
in der R27CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R28 für Wasserstoff oder R27CO, R29 und R30 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen und Y wieder für Halogenid, Alkylsulfat oder Alkylphosphat steht. Derartige Amidesterquats sind beispielsweise unter der Marke Incroquat® (Croda) im Markt erhältlich.
Beispiele für geeignete amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamido- betaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Beispiele für geeignete Alkylbetaine stellen die Carboxyalkylierungsprodukte von sekundären und insbesondere tertiären Aminen dar, die der Formel (XII) folgen,
R32
I R3i-N-(CH2)qιCOOZ (XII)
I
R33
in der R31 für Alkyl- und/oder Alkenylreste mit 6 bis 22 Kohlenstoffatomen, R32 für Wasserstoff oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, R33 für Alkylreste mit 1 bis 4 Kohlenstoffatomen, q1 für Zahlen von 1 bis 6 und Z für ein Alkali- und/oder Erdalkalimetall oder Ammonium steht. Typische Beispiele sind die Carboxymethylierungsprodukte von Hexylmethylamin, Hexyldimethylamin, Octyldimethylamin, De- cyldimethylamin, Dodecylmethylamin, Dodecyldimethylamin, Dodecylethylmethylamin, Ci2/i4-Kokosal- kyldimethylamin, Myristyldimethylamin, Cetyldimethylamin, Stearyldimethylamin, Stearylethylmethyl- amin, Oleyldimethylamin, Ci6/18-Talgalkyldimethylamin sowie deren technische Gemische.
Weiterhin kommen auch Carboxyalkylierungsprodukte von Amidoaminen in Betracht, die der Formel (XIII) folgen,
R36
I
R34CO-NH-(CH2)q3-N-(CH2)q2COOZ (XIII)
Figure imgf000010_0001
in der R34CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 oder 1 bis 3 Doppelbindungen, R35 für Wasserstoff oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, R36 für Alkylreste mit 1 bis 4 Kohlenstoffatomen, q2 für Zahlen von 1 bis 6, q3 für Zahlen von 1 bis 3 und Z wieder für ein Alkali- und/oder Erdalkalimetall oder Ammonium steht. Typische Beispiele sind Umsetzungsprodukte von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, namentlich Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadolein- säure, Behensäure und Erucasäure sowie deren technische Gemische, mit N,N-Dimethylami- noethylamin, N,N-Dimethylaminopropylamin, N,N-Diethyiaminoethylamin und N,N-Diethyl-ami- nopropylamin, die mit Natriumchloracetat kondensiert werden. Bevorzugt ist der Einsatz eines Kondensationsproduktes von C8/i8-Kokosfettsäure-N,N-dime-thylaminopropylamid mit Natriumchloracetat.
Weiterhin kommen auch Imidazoliniumbetaine in Betracht. Auch bei diesen Substanzen handelt es sich um bekannte Stoffe, die beispielsweise durch cyclisierende Kondensation von 1 oder 2 Mol Fettsäure mit mehrwertigen Aminen wie beispielsweise Aminoethylethanolamin (AEEA) oder Diethylentria- min erhalten werden können. Die entsprechenden Carboxyalkylierungsprodukte stellen Gemische unterschiedlicher offenkettiger Betaine dar. Typische Beispiele sind Kondensationsprodukte der oben genannten Fettsäuren mit AEEA, vorzugsweise Imidazoline auf Basis von Laurinsäure oder wiederum
Figure imgf000011_0001
die anschließend mit Natriumchloracetat betainisiert werden.
In Abhängigkeit der Bildung von flüssigkristallinen oder gelförmigen Phasen, d.h. von der Pumpbarkeit der Tenside, werden diese üblicherweise in Form von wäßrigen Lösungen oder Pasten eingesetzt, welche einen Feststoffgehalt im Bereich von 1 bis 80, vorzugsweise 25 bis 60 und insbesondere 30 bis 50 Gew.-% aufweisen.
Vertropfunqsanlage
Die im Sinne des erfindungsgemäßen Verfahrens durchgeführte Vertropfung mit Hilfe einer vibrierenden Gießerplatte ist bereits für die Verarbeitung von synthetischen Wachsen, Harzen sowie niedrigviskosen Polyestem bekannt. Entsprechende Bauteile werden beispielsweise von der Firma Rieter- Automatik unter Bezeichnung „Droppo Line" für den Einsatz in der Textiltechnik vertrieben. Im Sinne des erfindungsgemäßen Verfahrens sind solche Gießerplatten bevorzugt, welche als Lochscheiben geformt sind, durch deren Öffnungen die Tropfen dann in den Sprühturm tropfen können. Die Leistung solcher Lochscheiben kann vorzugsweise im Bereich von 100 bis 800 kg/h liegen und beträgt insbesondere etwa 500 kg/h, der Durchmesser der Bohrungen liegt zwischen 0,5 (Durchmesser der Granulate im Mittel 0,8 mm) und 1 ,4 mm (Durchmesser der Granulate im Mittel 2,5 mm). Die Schwingungs- frequenz, die den wäßrigen Tensidzubereitungen aufgeprägt wird, liegt typischerweise im Bereich von 100 bis 1000 und vorzugsweise 500 bis 800 Hz. Ein weiterer Vorteil gegenüber den herkömmlichen Verfahren besteht femer darin, daß mit nur geringem Überdruck (typisch : 10 bis 100 mbar) gearbeitet werden kann. Die Trocknung innerhalb des Sprühturms kann mit Heißluft bzw. heißen Verbrennungsgasen bei Temperaturen beispielsweise im Bereich von 100 bis 150 °C im Gegenstrom erfolgen, wie dies im Stand der Technik hinreichend beschrieben wird. Die Granulate sind annähernd kugelförmig und weisen danach in Abhängigkeit der Öffnungen in der Lochplatte und der Frequenz durchschnittliche Durchmesser im Bereich von 1 bis 2,5 mm auf. Der Staubanteil, d.h. Partikel mit Teilchengrößen kleiner 0,5 mm ist dabei praktisch Null.
Gewerbliche Anwendbarkeit
Die nach erfindungsgemäßen Verfahren erhältlichen Tensidgranulate können mit weiteren typischen Waschmittelbestandteilen, wie z.B. Builder, Co-Builder, öl- und fettlösende Stoffe, Bleichmittel, Bleichaktivatoren, Vergrauungsinhibitoren, Enzyme, Enzymstabilisatoren, Optische Aufheller, Polymere, Entschäumer, Sprengmittel, Duftstoffe, anorganische Salze und dergleichen abgemischt und dann zu den entsprechenden Endprodukten konfektioniert werden. Im folgenden werden daher weitere Zusatzstoffe und Konfektionierungsverfahren erläutert.
Builder
Die erfindungsgemäßen Wasch-, Spül-, Reinigungs- und Avivagemittel können des weiteren zusätzliche anorganische und organische Buildersubstanzen beispielsweise in Mengen von 10 bis 50 und vorzugsweise 15 bis 35 Gew.-% - bezogen auf die Mittel - enthalten, wobei als anorganische Buildersubstanzen hauptsächlich Zeolithe kristalline Schichtsilicate, amorphe Silicate und - soweit zulässig - auch Phosphate, wie z.B. Tripolyphosphat zum Einsatz kommen. Die Menge an Co-Builder ist dabei auf die bevorzugten Mengen an Phosphaten anzurechnen.
Der als Waschmittelbuilder häufig eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird beispielsweise Zeolith MAP(R) (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P wie auch Y. Von besonderem Interesse ist auch ein cokristal- lisiertes Natrium/Kalium-Aluminiumsilicat aus Zeolith A und Zeolith X, welches als VEGOBOND AX® (Handelsprodukt der Firma Condea Augusta S.pA) im Handel erhältlich ist. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten Cι2-Ci8-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, Ci2-Ci4-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Geeignete Substitute bzw. Teilsubstitute für Phosphate und Zeolithe sind kristalline, schichtförmige Natriumsilicate der allgemeinen Formel
Figure imgf000013_0001
wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilicate werden beispielsweise in der europäischen Patentanmeldung EP 0164514 A1 beschrieben. Bevorzugte kristalline Schichtsilicate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilicate Na2Si20s,yH20 bevorzugt, wobei ß-Natriumdisilicat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrieben ist. Weitere geeignete Schichtsilicate sind beispielsweise aus den Patentanmeldungen DE 2334899 A1, EP 0026529 A1 und DE 3526405 A1 bekannt. Ihre Verwendbarkeit ist nicht auf eine spezielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbesondere Bentonite. Geeignete Schichtsilicate, die zur Gruppe der mit Wasser quellfähigen Smectite zählen, sind z.B. solche der allgemeinen Formeln
(OH)4Si8-yAly(MgχAl4-x)02o Montmorrilonit (OH)4Si8-yAly(Mg6-zLiz)02o Hectorit (OH)4Si8-yAly(Mg6-z Alz)02o Saponit
mit x = 0 bis 4, y = 0 bis 2, z = 0 bis 6. Zusätzlich kann in das Kristallgitter der Schichtsilicate gemäß den vorstehenden Formeln geringe Mengen an Eisen eingebaut sein. Ferner können die Schichtsilicate aufgrund ihrer ionenaustauschenden Eigenschaften Wasserstoff-, Alkali-, Erdalkaliionen, insbesondere Na+ und Ca2+ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew.-% und ist vom Quellzustand bzw. von der Art der Bearbeitung abhängig. Brauchbare Schichtsilicate sind beispielsweise aus US 3,966,629, US 4,062,647, EP 0026529 A1 und EP 0028432 A1 bekannt. Vorzugsweise werden Schichtsilicate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Cal- ciumionen und stark färbenden Eisenionen sind.
Zu den bevorzugten Buildersubstanzen gehören auch amorphe Natriumsilicate mit einem Modul Na20 : Si02 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, wel- ehe löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilicaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "rönt- genamorph" verstanden. Dies heißt, daß die Silicate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Builder- eigenschaften führen, wenn die Silicatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silicate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE 4400024 A1 beschrieben. Insbesondere bevorzugt sind ver- dichtete/kompaktierte amorphe Silicate, compoundierte amorphe Silicate und übertrocknete röntgenamorphe Silicate.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate. Ihr Gehalt beträgt im allgemeinen nicht mehr als 25 Gew.-%, vorzugsweise nicht mehr als 20 Gew.-%, jeweils bezogen auf das fertige Mittel. In einigen Fällen hat es sich gezeigt, daß insbesondere Tripolyphosphate schon in geringen Mengen bis maximal 10 Gew.-%, bezogen auf das fertige Mittel, in Kombination mit anderen Buildersubstanzen zu einer synergistischen Verbesserung des Sekundärwaschvermögens führen.
Co-Builder
Brauchbare organische Gerüstsubstanzen, die als Co-Builder in Frage kommen, sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen. Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedri- geren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bemsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500 000. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2 000 bis 30 000. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung GB 9419091 A1 beschrieben. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP 0232202 A1, EP 0427349 A1, EP 0472042 A1 und EP 0542496 A1 sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE 19600018 AI Ein an Cβ des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Weitere geeignete Cobuilder sind Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat. Besonders bevorzugt sind in diesem Zusammenhang auch Glyce- rindisuccinate und Glycerintrisuccinate, wie sie beispielsweise in den US-amerikanischen Patentschriften US 4,524,009, US 4,639,325, in der europäischen Patentanmeldung EP 0150930 A1 und der japanischen Patentanmeldung JP 93/339896 beschrieben werden. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%. Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsaure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150 000 (auf Säure bezogen und jeweils gemessen gegen Polystyrolsulfonsäure). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5 000 bis 200 000, vorzugsweise 10 000 bis 120 000 und insbesondere 50 000 bis 100 000 (jeweils gemessen gegen Polystyrolsulfonsäure). Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden, wobei 20 bis 55 Gew.-%ige wäßrige Lösungen bevorzugt sind. Granuläre Polymere werden zumeist nachträglich zu einem oder mehreren Basisgranulaten zugemischt. Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die gemäß der DE 4300772 A1 als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder gemäß der DE 4221381 C2 als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten. Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE 4303320 A1 und DE 4417734 A1 beschrieben werden und als Monomere vorzugsweise Acrolein und Acryl- säure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen. Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP 0280223 A1 beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalalde- hyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäu- re erhalten.
Öl- und fettlösende Stoffe
Zusätzlich können die Mittel auch Komponenten enthalten, welche die Öl- und Fett-Auswaschbarkeit aus Textilien positiv beeinflussen. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
Bleichmittel und Bleichaktivatoren
Unter den als Bleichmittel dienenden, in Wasser H202 liefernden Verbindungen haben das Natrium- perborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H202 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleichmitteln beträgt vorzugsweise 5 bis 35 Gew.-% und insbesondere bis 30 Gew.-%, wobei vorteilhafterweise Per- boratmonohydrat oder Percarbonat eingesetzt wird.
Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Per- oxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die 0- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoyl- gruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylen- diamin (TAED), acylierte Triazinderivate, insbesondere 1 ,5-Diacetyl-2,4-dioxohexahydro-1 ,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyl- oxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethy leng I y kold i acetat, 2,5-Diacetoxy-2,5- dihydrofuran und die aus den deutschen Patentanmeldungen DE 19616693 A1 und DE 19616767 A1 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren in der europäischen Patentanmeldung EP 0525239 A1 beschriebene Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaa- cetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N- acylierte Lactame, beispielsweise N-Benzoylcaprolactam, die aus den internationalen Patentanmeldungen WO 94/27970, WO 94/28102, WO 94/28103, WO 95/00626, WO 95/14759 und WO 95/17498 bekannt sind. Die aus der deutschen Patentanmeldung DE 19616769 A1 bekannten hydrophil substituierten Acylacetale und die in der deutschen Patentanmeldung DE 196 16 770 sowie der internatio- nalen Patentanmeldung WO 95/14075 beschriebenen Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch die aus der deutschen Patentanmeldung DE 4443177 A1 bekannten Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Derartige Bleichaktivatoren sind im üblichen Mengenbereich, vorzugsweise in Mengen von 1 Gew.-% bis 10 Gew.-%, insbesondere 2 Gew.-% bis 8 Gew.-%, bezogen auf gesamtes Mittel, enthalten. Zusätzlich zu den oben aufgeführten konventionellen Bleichaktivatoren oder an deren Stelle können auch die aus den europäischen Patentschriften EP 0446982 B1 und EP 0453 003 B1 bekannten Sulfonimine und/oder bleichverstärkende Übergangsmetallsalze beziehungsweise Übergangsmetallkomplexe als sogenannte Bleichkatalysatoren enthalten sein. Zu den in Frage kommenden Übergangsmetallverbindungen gehören insbesondere die aus der deutschen Patentanmeldung DE 19529905 A1 bekannten Mangan-, Eisen-, Kobalt-, Ruthenium- oder Molybdän-Salenkomplexe und deren aus der deutschen Patentanmeldung DE 19620267 A1 bekannte N-Analogverbindungen, die aus der deutschen Patentanmeldung DE 19536082 A1 bekannten Mangan-, Eisen-, Kobalt-, Ruthenium- oder Molybdän-Carbonylkomplexe, die in der deutschen Patentanmeldung DE 19605688 A1 beschriebenen Mangan-, Eisen-, Kobalt-, Ruthenium-, Molybdän-, Titan-, Vanadium- und Kupfer-Komplexe mit stickstoffhaltigen Tripod-Liganden, die aus der deutschen Patentanmeldung DE 19620411 A1 bekannten Kobalt-, Eisen-, Kupfer- und Ruthenium-Aminkomplexe, die in der deutschen Patentanmeldung DE 4416438 A1 beschriebenen Mangan-, Kupfer- und Kobalt- Komplexe, die in der europäischen Patentanmeldung EP 0272030 A1 beschriebenen Kobalt- Komplexe, die aus der europäischen Patentanmeldung EP 0693550 A1 bekannten Mangan-Komplexe, die aus der europäischen Patentschrift EP 0392592 A1 bekannten Mangan-, Eisen-, Kobalt- und Kupfer-Komplexe und/oder die in der europäischen Patentschrift EP 0443651 B1 oder den europäischen Patentanmeldungen EP 0458397 A1, EP 0458398 A1, EP 0549271 A1, EP 0549272 A1, EP 0544490 A1 und EP 0544519 A1 beschriebenen Mangan-Komplexe. Kombinationen aus Bleichaktivatoren und Übergangsmetall-Bleichkatalysatoren sind beispielsweise aus der deutschen Patentanmeldung DE 19613103 A1 und der internationalen Patentanmeldung WO 95/27775 bekannt. Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 1 Gew.-%, insbesondere von 0,0025 Gew.-% bis 0,25 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,1 Gew.-%, jeweils bezogen auf gesamtes Mittel, eingesetzt.
Enzyme und Enzymstabilisatoren
Als Enzyme kommen insbesondere solche aus der Klasse der Hydrolasen, wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkenden Enzyme, Amylasen, Cellulasen bzw. andere Glyko- sylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen, wie protein-, fett- oder stärkehaltigen Verfleckungen, und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Pro- tease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease- und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere α-Amylasen, Iso-Amylasen, Pul- lulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und ß-Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich die verschiedenen Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Zusätzlich zu den mono- und polyfunktionellen Alkoholen können die Mittel weitere Enzymstabilisatoren enthalten. Beispielsweise können 0,5 bis 1 Gew.-% Natriumformiat eingesetzt werden. Möglich ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vorzugsweise etwa 1 ,2 Gew.-%, bezogen auf das Enzym, stabilisiert sind. Außer Calciumsalzen dienen auch Magnesiumsalze als Stabilisatoren. Besonders vorteilhaft ist jedoch der Einsatz von Borverbindungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Or- thoborsäure (H3BO3), der Metaborsäure (HBO2) und der Pyroborsäure (Tetraborsäure H2B4O7).
Verqrauun sinhibitoren
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw.. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkyl- cellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarb- oxymethylcellulose und deren Gemische, sowie Polyvinylpyrrolidon beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
Optische Aufheller
Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6- amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpho- lino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2- Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylsty- ryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfo- styryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden. Einheitlich weiße Granulate werden erhalten, wenn die Mittel außer den üblichen Aufhellern in üblichen Mengen, beispielsweise zwischen 0,1 und 0,5 Gew.-%, vorzugsweise zwischen 0,1 und 0,3 Gew.-%, auch geringe Mengen, beispielsweise 10-6 bis 10-3 Gew.-%, vorzugsweise um 10-5 Gew.-%, eines blauen Farbstoffs enthalten. Ein besonders bevorzugter Farbstoff ist Tinolux® (Handelsprodukt der Ciba-Geigy).
Polymere
Als schmutzabweisende Polymere („soil repellants") kommen solche Stoffe in Frage, die vorzugsweise Ethylenterephthalat- und/oder Polyethylenglycolterephthalatgruppen enthalten, wobei das Molverhältnis Ethylenterephthalat zu Polyethylenglycolterephthalat im Bereich von 50 : 50 bis 90 : 10 liegen kann. Das Molekulargewicht der verknüpfenden Polyethylenglycoleinheiten liegt insbesondere im Bereich von 750 bis 5000, d.h., der Ethoxylierungsgrad der Polyethylenglycolgruppenhaltigen Polymere kann ca. 15 bis 100 betragen. Die Polymeren zeichnen sich durch ein durchschnittliches Molekulargewicht von etwa 5000 bis 200.000 aus und können eine Block-, vorzugsweise aber eine Random-Struktur aufweisen. Bevorzugte Polymere sind solche mit Molverhältnissen Ethylenterephthalat/Polyethylen- glycolterephthalat von etwa 65 : 35 bis etwa 90 : 10, vorzugsweise von etwa 70 : 30 bis 80 : 20. Weiterhin bevorzugt sind solche Polymeren, die verknüpfende Polyethylenglycoleinheiten mit einem Mole- kulargewicht von 750 bis 5000, vorzugsweise von 1000 bis etwa 3000 und ein Molekulargewicht des Polymeren von etwa 10.000 bis etwa 50.000 aufweisen. Beispiele für handelsübliche Polymere sind die Produkte Milease® T (ICI) oder Repelotex® SRP 3 (Rhöne-Poulenc).
Entschäumer
Als Entschäumer können wachsartige Verbindungen eingesetzt werden. Als „wachsartig" werden solche Verbindungen verstanden, die einen Schmelzpunkt bei Atmosphärendruck über 25 °C (Raumtemperatur), vorzugsweise über 50 °C und insbesondere über 70 °C aufweisen. Die wachsartigen Entschäumersubstanzen sind in Wasser praktisch nicht löslich, d.h. bei 20 °C weisen sie in 100 g Wasser eine Löslichkeit unter 0,1 Gew.-% auf. Prinzipiell können alle aus dem Stand der Technik bekannten wachsartigen Entschäumersubstanzen enthalten sein. Geeignete wachsartige Verbindungen sind beispielsweise Bisamide, Fettalkohole, Fettsäuren, Carbonsäureester von ein- und mehrwertigen Alkoholen sowie Paraffinwachse oder Mischungen derselben. Alternativ können natürlich auch die für diesen Zweck bekannten Silikonverbindungen eingesetzt werden.
Geeignete Paraffinwachse stellen im allgemeinen ein komplexes Stoffgemisch ohne scharfen Schmelzpunkt dar. Zur Charakterisierung bestimmt man üblicherweise seinen Schmelzbereich durch Differen- tial-Thermo-Analyse (DTA), wie in "The Analyst" 87 (1962), 420, beschrieben, und/oder seinen Erstarrungspunkt. Darunter versteht man die Temperatur, bei der das Paraffin durch langsames Abkühlen aus dem flüssigen in den festen Zustand übergeht. Dabei sind bei Raumtemperatur vollständig flüssige Paraffine, das heißt solche mit einem Erstarrungspunkt unter 25 °C, erfindungsgemäß nicht brauchbar. Zu den Weichwachsen, die einen Schmelzpunkt im Bereich von 35 bis 50 °C aufweisen, zählen vorzugsweise der Gruppe der Petrolate und deren Hydrierprodukte. Sie setzen sich aus mikrokristallinen Paraffinen und bis zu 70 Gew.-% Öl zusammen, besitzen eine salbenartige bis plastisch feste Konsistenz und stellen bitumenfreie Rückstände aus der Erdölverarbeitung dar. Besonders bevorzugt sind Destillationsrückstände (Petrolatumstock) bestimmter paraffinbasischer und gemischtbasischer Rohöle, die zu Vaseline weiterverarbeitet werden. Vorzugsweise handelt es sich weiterhin um aus Destillationsrückständen paraffin- und gemischtbasyischer Rohöle und Zylinderöldestillate mittels Lösungsmittel abgeschiedene bitumenfreie, ölartige bis feste Kohlenwasserstoffe. Sie sind von halbfester, zügiger, klebriger bis plastisch-fester Konsistenz und besitzen Schmelzpunkte zwischen 50 und 70 °C. Diese Petrolate stellen die wichtigste Ausgangsbasis für die Herstellung von Mikrowachsen dar. Weiterhin geeignet sind die aus hochviskosen, paraffinhaltigen Schmieröldestillaten bei der Entparaffinierung abgeschiedenen festen Kohlenwasserstoffen mit Schmelzpunkten zwischen 63 und 79 °C. Bei diesen Petrolaten handelt es sich um Gemische aus mikrokristallinen Wachsen und hochschmelzenden n- Paraffinen. Eingesetzt werden können beispielsweise die aus EP 0309931 A1 bekannten Paraf- finwaehsgemische aus beispielsweise 26 Gew.-% bis 49 Gew.-% mikrokristallinem Paraffinwachs mit einem Erstarrungspunkt von 62 °C bis 90 °C, 20 Gew.-% bis 49 Gew.-% Hartparaffin mit einem Erstarrungspunkt von 42 °C bis 56 °C und 2 Gew.-% bis 25 Gew.-% Weichparaffin mit einem Erstarrungspunkt von 35 °C bis 40 °C. Vorzugsweise werden Paraffine bzw. Paraffingemische verwendet, die im Bereich von 30 °C bis 90 °C erstarren. Dabei ist zu beachten, daß auch bei Raumtemperatur fest erscheinende Paraffinwachsgemische unterschiedliche Anteile an flüssigem Paraffin enthalten können. Bei den erfindungsgemäß brauchbaren Paraffinwachsen liegt dieser Flüssiganteil so niedrig wie möglich und fehlt vorzugsweise ganz. So weisen besonders bevorzugte Paraffinwachsgemische bei 30 °C einen Flüssiganteil von unter 10 Gew.-%, insbesondere von 2 Gew.-% bis 5 Gew.-%, bei 40 °C einen Flüssiganteil von unter 30 Gew.-%, vorzugsweise von 5 Gew.-% bis 25 Gew.-% und insbesondere von 5 Gew.-% bis 15 Gew.-%, bei 60 °C einen Flüssiganteil von 30 Gew.-% bis 60 Gew.-%, insbesondere von 40 Gew.-% bis 55 Gew.-%, bei 80 °C einen Flüssiganteil von 80 Gew.-% bis 100 Gew.-%, und bei 90 °C einen Flüssiganteil von 100 Gew.-% auf. Die Temperatur, bei der ein Flüssiganteil von 100 Gew.- % des Paraffinwachses erreicht wird, liegt bei besonders bevorzugten Paraffin wachsgemischen noch unter 85 °C, insbesondere bei 75 °C bis 82 °C. Bei den Paraffinwachsen kann es sich um Petrolatum, mikrokristalline Wachse bzw. hydrierte oder partiell hydrierte Paraffinwachse handeln.
Geeignete Bisamide als Entschäumer sind solche, die sich von gesättigten Fettsäuren mit 12 bis 22, vorzugsweise 14 bis 18 C-Atomen sowie von Alkylendiaminen mit 2 bis 7 C-Atomen ableiten. Geeignete Fettsäuren sind Laurin-, Myristin-, Stearin-, Arachin- und Behensäure sowie deren Gemische, wie sie aus natürlichen Fetten beziehungsweise gehärteten Ölen, wie Talg oder hydriertem Palmöl, erhältlich sind. Geeignete Diamine sind beispielsweise Ethylendiamin, 1 ,3-Propylendiamin, Tetramethy- lendiamin, Pentamethylendiamin, Hexamethylendiamin, p-Phenylendiamin und Toluylendiamin. Bevorzugte Diamine sind Ethylendiamin und Hexamethylendiamin. Besonders bevorzugte Bisamide sind Bismyristoylethylendiamin, Bispalmitoylethylendiamin, Bisstearoylethylendiamin und deren Gemische sowie die entsprechenden Derivate des Hexamethylendiamins.
Geeignete Carbonsäureester als Entschäumer leiten sich von Carbonsäuren mit 12 bis 28 Kohlenstoffatomen ab. Insbesondere handelt es sich um Ester von Behensäure, Stearinsäure, Hydroxystea- rinsäure, Ölsäure, Palmitinsäure, Myristinsäure und/oder Laurinsäure. Der Alkoholteil des Carbonsäureesters enthält einen ein- oder mehrwertigen Alkohol mit 1 bis 28 Kohlenstoffatomen in der Kohlenwasserstoffkette. Beispiele von geeigneten Alkoholen sind Behenylalkohol, Arachidylalkohol, Kokosalkohol, 12-Hydroxystearylalkohol, Oleylalkohol und Laurylalkohol sowie Ethylenglykol, Glycerin, Polyvinylalko- hol, Saccharose, Erythrit, Pentaerythrit, Sorbitan und/oder Sorbit. Bevorzugte Ester sind solche von Ethylenglykol, Glycerin und Sorbitan, wobei der Säureteil des Esters insbesondere aus Behensäure, Stearinsäure, Ölsäure, Palmitinsäure oder Myristinsäure ausgewählt wird. In Frage kommende Ester mehrwertiger Alkohole sind beispielsweise Xylitmonopalmitat, Pentarythritmonostearat, Glycerin- monostearat, Ethylenglykolmonostearat und Sorbitanmonostearat, Sorbitanpalmitat, Sorbitanmonolau- rat, Sorbitandilaurat, Sorbitandistearat, Sorbitandibehenat, Sorbitandioleat sowie gemischte Talgalkyl- sorbitanmono- und -diester. Brauchbare Glycerinester sind die Mono-, Di- oder Triester von Glycerin und genannten Carbonsäuren, wobei die Mono- oder Dieester bevorzugt sind. Glycerinmonostearat, Glycerinmonooleat, Glycerinmonopalmitat, Glycerinmonobehenat und Glycerindistearat sind Beispiele hierfür. Beispiele für geeignete natürliche Ester als Entschäumer sind Bienenwachs, das hauptsächlich aus den Estern CH3(CH2)24COO(CH2)27CH3 und CH3(CH2)26COO(CH2)25CH3 besteht, und Camauba- wachs, das ein Gemisch von Carnaubasäurealkylestern, oft in Kombination mit geringen Anteilen freier Carnaubasäure, weiteren langkettigen Säuren, hochmolekularen Alkoholen und Kohlenwasserstoffen, ist.
Geeignete Carbonsäuren als weitere Entschäumerverbindung sind insbesondere Behensäure, Stearinsäure, Ölsäure, Palmitinsäure, Myristinsäure und Laurinsäure sowie deren Gemische, wie sie aus natürlichen Fetten bzw. gegebenenfalls gehärteten Ölen, wie Talg oder hydriertem Palmöl, erhältlich sind. Bevorzugt sind gesättigte Fettsäuren mit 12 bis 22, insbesondere 18 bis 22 C-Atomen. In gleicher Weise können die entsprechenden Fettalkohole gleicher C-Kettenlänge eingesetzt werden.
Weiterhin können zusätzlich Dialkylether als Entschäumer enthalten sein. Die Ether können asymmetrisch oder aber symmetrisch aufgebaut sein, d.h. zwei gleiche oder verschiedene Alkylketten, vorzugsweise mit 8 bis 18 Kohlenstoffatomen enthalten. Typische Beispiele sind Di-n-octylether, Di-i- octylether und Di-n-stearylether, insbesondere geeignet sind Dialkylether, die einen Schmelzpunkt über 25 °C, insbesondere über 40 °C aufweisen.
Weitere geeignete Entschäumerverbindungen sind Fettketone, die nach den einschlägigen Methoden der präparativen organischen Chemie erhalten werden können. Zu ihrer Herstellung geht man beispielsweise von Carbonsäuremagnesiumsalzen aus, die bei Temperaturen oberhalb von 300 °C unter Abspaltung von Kohlendioxid und Wasser pyrolysiert werden, beispielsweise gemäß der deutschen Offenlegungsschrift DE 2553900 OS. Geeignete Fettketone sind solche, die durch Pyrolyse der Magnesiumsalze von Laurinsäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Arachinsäure, Gadoleinsäure, Behensäure oder Erucasäure hergestellt werden.
Weitere geeignete Entschäumer sind Fettsäurepolyethylenglykolester, die vorzugsweise durch basisch homogen katalysierte Anlagerung von Ethylenoxid an Fettsäuren erhalten werden. Insbesondere erfolgt die Anlagerung von Ethylenoxid an die Fettsäuren in Gegenwart von Alkanolaminen als Katalysatoren. Der Einsatz von Alkanolaminen, speziell Triethanolamin, führt zu einer äußerst selektiven Ethoxylierung der Fettsäuren, insbesondere dann, wenn es darum geht, niedrig ethoxylierte Verbindungen herzustel- len. Innerhalb der Gruppe der Fettsäurepolyethylenglykolester werden solche bevorzugt, die einen Schmelzpunkt über 25 °C, insbesondere über 40 °C aufweisen .
Innerhalb der Gruppe der wachsartigen Entschäumer werden besonders bevorzugt die beschriebenen Paraffinwachse alleine als wachsartige Entschäumer eingesetzt oder in Mischung mit einem der anderen wachsartigen Entschäumer, wobei der Anteil der Paraffinwachse in der Mischung vorzugsweise über 50 Gew.-% - bezogen auf wachsartige Entschäumermischung - ausmacht. Die Paraffinwachse können bei Bedarf auf Träger aufgebracht sein. Als Trägermaterial sind alle bekannten anorganischen und/oder organischen Trägermaterialien geeignet. Beispiele für typische anorganische Trägermaterialien sind Alkalicarbonate, Alumosilicate, wasserlösliche Schichtsilicate, Alkalisilicate, Alkalisulfate, beispielsweise Natriumsulfat, und Alkaliphosphate. Bei den Alkalisilicaten handelt es sich vorzugsweise um eine Verbindung mit einem Molverhältnis Alkalioxid zu Si02 von 1 : 1 ,5 bis 1 : 3,5. Die Verwendung derartiger Silicate resultiert in besonders guten Korneigenschaften, insbesondere hoher Abriebsstabilität und dennoch hoher Auflösungsgeschwindigkeit in Wasser. Zu den als Trägermaterial bezeichneten Alumosilicaten gehören insbesondere die Zeolithe, beispielsweise Zeolith NaA und NaX. Zu den als wasserlöslichen Schichtsilicaten bezeichneten Verbindungen gehören beispielsweise amorphes oder kristallines Wasserglas. Weiterhin können Silicate Verwendung finden, welche unter der Bezeichnung Aerosil® oder Sipernat® im Handel sind. Als organische Trägermaterialien kommen zum Beispiel filmbildende Polymere, beispielsweise Polyvinylalkohole, Polyvinylpyrrolidone, Poly- (meth)acrylate, Polycarboxylate, Cellulosederivate und Stärke in Frage. Brauchbare Celluloseether sind insbesondere Alkalicarboxymethylcellulose, Methylcellulose, Ethylcellulose, Hydroxyethylcellulose und sogenannte Cellulosemischether, wie zum Beispiel Methylhydroxyethylcellulose und Methylhydroxy- propylcellulose, sowie deren Mischungen. Besonders geeignete Mischungen sind aus Natrium-Carb- oxymethylcellulose und Methylcellulose zusammengesetzt, wobei die Carboxymethylcellulose üblicherweise einen Substitutionsgrad von 0,5 bis 0,8 Carboxymethylgruppen pro Anhydroglukoseeinheit und die Methylcellulose einen Substitutionsgrad von 1 ,2 bis 2 Methylgruppen pro Anhydroglukoseeinheit aufweist. Die Gemische enthalten vorzugsweise Alkalicarboxymethylcellulose und nichtionischen Celluloseether in Gewichtsverhältnissen von 80 : 20 bis 40 : 60, insbesondere von 75 : 25 bis 50 : 50. Als Träger ist auch native Stärke geeignet, die aus Amylose und Amylopectin aufgebaut ist. Als native Stärke wird Stärke bezeichnet, wie sie als Extrakt aus natürlichen Quellen zugänglich ist, beispielsweise aus Reis, Kartoffeln, Mais und Weizen. Native Stärke ist ein handelsübliches Produkt und damit leicht zugänglich. Als Trägermaterialien können einzeln oder mehrere der vorstehend genannten Verbindungen eingesetzt werden, insbesondere ausgewählt aus der Gruppe der Alkalicarbonate, Alkalisulfate, Alkaliphosphate, Zeolithe, wasserlösliche Schichtsilicate, Alkalisilicate, Polycarboxylate, Celluloseether, Polyacrylat/Polymethacrylat und Stärke. Besonders geeignet sind Mischungen von Alkali- carbonaten, insbesondere Natriumcarbonat, Alkalisilicaten, insbesondere Natriumsilicat, Alkalisulfaten, insbesondere Natriumsulfat und Zeolithen. Geeignete Silicone sind übliche Organopolysiloxane, die einen Gehalt an feinteiliger Kieselsäure, die wiederum auch silaniert sein kann, aufweisen können. Derartige Organopolysiloxane sind beispielsweise in der Europäischen Patentanmeldung EP 0496510 A1 beschrieben. Besonders bevorzugt sind Polydiorganosiloxane und insbesondere Polydimethylsiloxane, die aus dem Stand der Technik bekannt sind. Geeignete Polydiorganosiloxane weisen eine nahezu lineare Kette auf und weisen einen Oligomerisierungsgrad von 40 bis 1500 auf. Beispiele für geeignete Substituenten sind Methyl, Ethyl, Propyl, Isobutyl, tert. Butyl und Phenyl. Weiterhin geeignet sind amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan- Einheiten und hydrierten Silicaten handelt. In der Regel enthalten die Silicone im allgemeinen und die Polydiorganosiloxane im besonderen feinteilige Kieselsäure, die auch silaniert sein kann. Insbesondere geeignet sind im Sinne der vorliegenden Erfindung kieselsäurehaltige Dimethylpolysiloxane. Vorteilhafterweise haben die Polydiorganosiloxane eine Viskosität nach Brookfield bei 25 °C (Spindel 1 , 10 Upm) im Bereich von 5000 mPas bis 30 000 mPas, insbesondere von 15 000 bis 25 000 mPas. Vorzugsweise werden die Silicone in Form ihrer wäßrigen Emulsionen eingesetzt. In der Regel gibt man das Silicon zu vorgelegtem Wasser unter Rühren. Falls gewünscht kann man zur Erhöhung der Viskosität der wäßrigen Siliconemulsionen Verdickungsmittel, wie sie aus dem Stand der Technik bekannt sind, zugeben. Diese können anorganischer und/oder organischer Natur sein, besonders bevorzugt werden nichtionische Celluloseether wie Methylcellulose, Ethylcellulose und Mischether wie Methylhy- doxyethylcellulose, Methylhydroxypropylcellulose, Methylhydroxybutylcellulose sowie anionische Car- boxycellulose-Typen wie das Carboxymethylcellulose-Natriumsalz (Abkürzung CMC). Insbsonders geeignete Verdicker sind Mischungen von CMC zu nicht-ionischen Celluloseethern im Gewichtsverhältnis 80 : 20 bis 40 : 60, insbesondere 75 : 25 bis 60 : 40. In der Regel und besonders bei Zugabe der beschriebenen Verdickermischungen empfehlen sich Einsatzkonzentrationen von cirka 0,5 bis 10, insbesondere von 2,0 bis 6 Gew.-% - berechnet als Verdickermischung und bezogen auf wäßrige Siliconemulsion. Die Gehalt an Siliconen der beschriebenen Art in den wäßrigen Emulsionen liegt vorteilhafterweise im Bereich von 5 bis 50 Gew.-%, insbesondere von 20 bis 40 Gew.-% - berechnet als Silicone und bezogen auf wäßrige Siliconemulsion. Nach einer weiteren vorteilhaften Ausgestaltung erhalten die wäßrigen Siliconlösungen als Verdicker Stärke, die aus natürlichen Quellen zugänglich ist, beispielsweise aus Reis, Kartoffeln, Mais und Weizen. Die Stärke ist vorteilhafterweise in Mengen von 0,1 bis zu 50 Gew.-% - bezogen auf Silicon-Emulsion - enthalten und insbesondere in Mischung mit den schon beschriebenen Verdickermischungen aus Natrium-Carboxymethylcellulose und einem nichtionischen Celluloseether in den schon genannten Mengen. Zur Herstellung der wäßrigen Siliconemulsionen geht man zweckmäßigerweise so vor, daß man die gegebenenfalls vorhandenen Verdickungs- mittel in Wasser vorquellen läßt, bevor die Zugabe der Silicone erfolgt. Das Einarbeiten der Silicone erfolgt zweckmäßigerweise mit Hilfe wirksamer Rühr- und Mischungsvorrichtungen.
Sprenqmittel
Die festen Zubereitungen können des weiteren Spreng- oder Desintegrationsmittel enthalten. Hierunter sind Stoffe zu verstehen, die den Formkörpern zugegeben werden, um deren Zerfall beim Inkontakt- bringen mit Wasser zu beschleunigen. Übersichten hierzu finden sich z.B. in J.Pharm.Sci. 61 (1972), Römpp Chemilexikon, 9. Auflage, Band 6, S. 4440 sowie und Voigt „Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184). Diese Stoffe vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie gegebenenfalls quervernetztes Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Al- ginate oder Casein-Derivate. Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt. Reine Cellulose weist die formale Bruttozusammensetzung (C6Hι0θ5)n auf und stellt formal betrachtet ein ß-1 ,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxylgruppen gegen funktioneile Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulosederivate einsetzen. In die Gruppe der Cellulosederivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Sprengmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist. Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 μm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 μm kompaktierbar sind. Die Sprengmittel können im Formkörper makroskopisch betrachtet homogen verteilt vorliegen, mikroskopisch gesehen bilden sie jedoch herstellungsbedingt Zonen erhöhter Konzentration. Sprengmittel, die im Sinne der Erfindung zugegen sein können, wie z.B. Kollidon, Alginsäure und deren Alkalisalze, amorphe oder auch teilweise kristalline Schichtsilicate (Bentonite), Polyacrylate, Polyethylenglycole sind beispielsweise den Druckschriften WO 98/40462 (Rettenmaier), WO 98/55583 und WO 98/55590 (Unilever) und WO 98/40463, DE 19709991 und DE 19710254 (Henkel) zu entnehmen. Auf die Lehre dieser Schriften wird ausdrücklich Bezug genommen. Die Formkörper können die Sprengmittel in Mengen von 0,1 bis 25, vorzugsweise 1 bis 20 und insbesondere 5 bis 15 Gew.-% - bezogen auf die Formkörper enthalten.
Duftstoffe
Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.- Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsa- licylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitro- nellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-lsomethylionon und Methylcedrylke- ton, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpi- neol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, welche die Haftung des Parfüms auf der Wä- sehe verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclo- dextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Anorganische Salze
Weitere geeignete Inhaltsstoffe der Mittel sind wasserlösliche anorganische Salze wie Bicarbonate, Carbonate, amorphe Silicate, normale Wassergläser, welche keine herausragenden Buildereigen- schaften aufweisen, oder Mischungen aus diesen; insbesondere werden Alkalicarbonat und/oder amorphes Alkalisilicat, vor allem Natriumsilicat mit einem molaren Verhältnis Na2O : Si02 von 1 : 1 bis 1 : 4,5, vorzugsweise von 1 : 2 bis 1 : 3,5, eingesetzt. Der Gehalt an Natriumcarbonat in den endzube- reitungen beträgt dabei vorzugsweise bis zu 40 Gew.-%, vorteilhafterweise zwischen 2 und 35 Gew.- %. Der Gehalt der Mittel an Natriumsilicat (ohne besondere Buildereigenschaften) beträgt im allgemeinen bis zu 10 Gew.-% und vorzugsweise zwischen 1 und 8 Gew.-%. Als Füll- bzw. Stellmittel kann ferner beispielsweise Natriumsulfat in Mengen von 0 bis 10, insbesondere 1 bis 5 Gew.-% - bezogen auf Mittel - enthalten sein Herstellung der Waschmittel
Die unter Einsatz der erfindungsgemäßen Zusatzstoffe erhältlichen Waschmittel können in Form von Pulvern, Extrudaten, Granulaten oder Agglomeraten hergestellt bzw. eingesetzt werden. Es kann sich dabei sowohl um Universal- als auch Fein- bzw. Colorwaschmittel, gegebenenfalls in Form von Kom- paktaten oder Superkompaktaten handeln. Zur Herstellung solcher Mittel sind die entsprechenden, aus dem Stand der Technik bekannten Verfahren, geeignet. Bevorzugt werden die Mittel dadurch hergestellt, daß verschiedene teilchenförmige Komponenten, die Waschmittelinhaltsstoffe enthalten, miteinander vermischt werden. Die teilchenförmigen Komponenten können durch Sprühtrocknung, einfaches Mischen oder komplexe Granulationsverfahren, beispielsweise Wirbelschichtgranulation, hergestellt werden. Bevorzugt ist dabei insbesondere, daß mindestens eine tensidhaltige Komponente durch Wirbelschichtgranulation hergestellt wird. Weiter kann es insbesondere bevorzugt sein, wenn wäßrige Zubereitungen des Alkalisilicats und des Alkalicarbonats gemeinsam mit anderen Waschmittelinhaltsstoffen in einer Trockeneinrichtung versprüht werden, wobei gleichzeitig mit der Trocknung eine Granulation stattfinden kann. Sprühtrocknung
Bei der Trockeneinrichtung, in die die wäßrige Zubereitung versprüht wird, kann es sich um beliebige Trockenapparaturen handeln. In einer bevorzugten Verfahrensführung wird die Trocknung als Sprühtrocknung in einem Trockenturm durchgeführt. Dabei werden die wäßrigen Zubereitungen in bekannter Weise einem Trocknungsgasstrom in feinverteilter Form ausgesetzt. In Patentveröffentlichungen der Firma Henkel wird eine Ausführungsform der Sprühtrocknung mit überhitztem Wasserdampf beschrieben. Das dort offenbarte Arbeitsprinzip wird hiermit ausdrücklich auch zum Gegenstand der vorliegenden Erfindungsoffenbarung gemacht. Verwiesen wird hier insbesondere auf die nachfolgenden Druckschriften: DE 4030688 A1 sowie die weiterführenden Veröffentlichungen gemäß DE 4204035 A1; DE 4204090 A1; DE 4206050 A1; DE 4206521 A1; DE 4206495 A1; DE 4208773 A1; DE 4209432 A1 und DE 4234376 A Dieses Verfahren wurde schon im Zusammenhang mit der Herstellung des Entschäumerkorn vorgestellt.
Wirbelschichtgranulierung
Eine besonders bevorzugte Möglichkeit zur Herstellung der Mittel besteht darin, die Vorprodukte einer Wirbelschichtgranulierung (,,SKET"-Granulierung) zu unterwerfen. Hierunter ist eine Granulierung unter gleichzeitiger Trocknung zu verstehen, die vorzugsweise batchweise oder kontinuierlich erfolgt. Dabei können die Vorprodukte sowohl in getrocknetem Zustand als auch als wäßrige Zubereitung eingesetzt werden. Bevorzugt eingesetzte Wirbelschicht-Apparate besitzen Bodenplatten mit Abmessungen von 0,4 bis 5 m. Vorzugsweise wird die Granulierung bei Wirbelluftgeschwindigkeiten im Bereich von 1 bis 8 m/s durchgeführt. Der Austrag der Granulate aus der Wirbelschicht erfolgt vorzugsweise über eine Größenklassierung der Granulate. Die Klassierung kann beispielsweise mittels einer Siebvorrichtung oder durch einen entgegengeführten Luftstrom (Sichterluft) erfolgen, der so reguliert wird, daß erst Teilchen ab einer bestimmten Teilchengröße aus der Wirbelschicht entfernt und kleinere Teilchen in der Wirbelschicht zurückgehalten werden. Üblicherweise setzt sich die einströmende Luft aus der beheizten oder unbeheizten Sichterluft und der beheizten Bodenluft zusammen. Die Bodenlufttemperatur liegt dabei zwischen 80 und 400, vorzugsweise 90 und 350 °C. Vorteilhafterweise wird zu Beginn der Granulierung eine Startmasse, beispielsweise ein Ggranulat aus einem früheren Versuchsansatz, vorgelegt. Pressagglomeration
In einer anderen, insbesondere wenn Mittel hoher Schüttdichte erhalten werden sollen, bevorzugten Variante werden die Gemische anschließend einem Kompaktierungsschritt unterworfen, wobei weitere Inhaltsstoffe den Mitteln erst nach dem Kompaktierungsschritt zugemischt werden. Die Kompaktierung der Inhaltsstoffe findet in einer bevorzugten Ausführungsform der Erfindung in einem Preßagglomerati- onsverfahren statt. Der Preßagglomerationsvorgang, dem das feste Vorgemisch (getrocknetes Basiswaschmittel) unterworfen wird, kann dabei in verschiedenen Apparaten realisiert werden. Je nach dem Typ des verwendeten Agglomerators werden unterschiedliche Preßagglomerationsverfahren unterschieden. Die vier häufigsten und im Rahmen der vorliegenden Erfindung bevorzugten Preßagglomerationsverfahren sind dabei die Extrusion, das Walzenpressen bzw. -kompaktieren, das Lochpressen (Pelletieren) und das Tablettieren, so daß im Rahmen der vorliegenden Erfindung bevorzugte Preßag- glomerationsvorgänge Extrusions-, Walzenkompaktierungs-, Pelletierungs- oder Tablettierungsvorgänge sind.
Allen Verfahren ist gemeinsam, daß das Vorgemisch unter Druck verdichtet und plastifiziert wird und die einzelnen Partikel unter Verringerung der Porosität aneinandergedruckt werden und aneinander haften. Bei allen Verfahren (bei der Tablettierung mit Einschränkungen) lassen sich die Werkzeuge dabei auf höhere Temperaturen aufheizen oder zur Abführung der durch Scherkräfte entstehenden Wärme kühlen.
In allen Verfahren kann als Hilfsmittel zur Verdichtung ein oder mehrere Bindemittel eingesetzt werden. Dabei soll jedoch klargestellt sein, daß an sich immer auch der Einsatz von mehreren, verschiedenen Bindemitteln und Mischungen aus verschiedenen Bindemitteln möglich ist. In einer bevorzugten Ausführungsform der Erfindung wird ein Bindemittel eingesetzt, daß bei Temperaturen bis maximal 130 °C, vorzugsweise bis maximal 100 °C und insbesondere bis 90 °C bereits vollständig als Schmelze vorliegt. Das Bindemittel muß also je nach Verfahren und Verfahrensbedingungen ausgewählt werden oder die Verfahrensbedingungen, insbesondere die Verfahrenstemperatur, müssen - falls ein bestimmtes Bindemittel gewünscht wird - an das Bindemittel angepaßt werden.
Der eigentliche Verdichtungsprozeß erfolgt dabei vorzugsweise bei Verarbeitungstemperaturen, die zumindest im Verdichtungsschritt mindestens der Temperatur des Erweichungspunkts, wenn nicht sogar der Temperatur des Schmelzpunkts des Bindemittels entsprechen. In einer bevorzugten Ausführungsform der Erfindung liegt die Verfahrenstemperatur signifikant über dem Schmelzpunkt bzw. oberhalb der Temperatur, bei der das Bindemittel als Schmelze vorliegt. Insbesondere ist es aber bevorzugt, daß die Verfahrenstemperatur im Verdichtungsschritt nicht mehr als 20 °C über der Schmelz- temperatur bzw. der oberen Grenze des Schmelzbereichs des Bindemittels liegt. Zwar ist es technisch durchaus möglich, auch noch höhere Temperaturen einzustellen; es hat sich aber gezeigt, daß eine Temperaturdifferenz zur Schmelztemperatur bzw. zur Erweichungstemperatur des Bindemittels von 20 °C im allgemeinen durchaus ausreichend ist und noch höhere Temperaturen keine zusätzlichen Vorteile bewirken. Deshalb ist es - insbesondere auch aus energetischen Gründen - besonders bevorzugt, zwar oberhalb, jedoch so nah wie möglich am Schmelzpunkt bzw. an der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels zu arbeiten. Eine derartige Temperaturführung besitzt den weiteren Vorteil, daß auch thermisch empfindliche Rohstoffe, beispielsweise Peroxybleichmittel wie Perborat und/oder Percarbonat, aber auch Enzyme, zunehmend ohne gravierende Aktivsubstanzverluste verarbeitet werden können. Die Möglichkeit der genauen Temperatursteuerung des Binders insbesondere im entscheidenden Schritt der Verdichtung, also zwischen der Vermischung/Homogenisierung des Vorgemisches und der Formgebung, erlaubt eine energetisch sehr günstige und für die temperaturempfindlichen Bestandteile des Vorgemisches extrem schonende Verfahrensführung, da das Vorgemisch nur für kurze Zeit den höheren Temperaturen ausgesetzt ist. In bevorzugten Preßagglomerati- onsverfahren weisen die Arbeitswerkzeuge des Preßagglomerators (die Schnecke(n) des Extruders, die Walze(n) des Walzenkompaktors sowie die Preßwalze(n) der Pelletpresse) eine Temperatur von maximal 150 °C, vorzugsweise maximal 100 °C und insbesondere maximal 75 °C auf und die Verfahrenstemperatur liegt bei 30 °C und insbesondere maximal 20 °C oberhalb der Schmelztemperatur bzw. der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels. Vorzugsweise beträgt die Dauer der Temperatureinwirkung im Kompressionsbereich der Preßagglomeratoren maximal 2 Minuten und liegt insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute.
Bevorzugte Bindemittel, die allein oder in Mischung mit anderen Bindemitteln eingesetzt werden können, sind Polyethylenglykole, 1 ,2-Polypropylenglykole sowie modifizierte Polyethylenglykole und Poly- propylenglykole. Zu den modifizierten Polyalkylenglykolen zählen insbesondere die Sulfate und/oder die Disulfate von Polyethylenglykolen oder Polypropylenglykolen mit einer relativen Molekülmasse zwischen 600 und 12 000 und insbesondere zwischen 1 000 und 4 000. Eine weitere Gruppe besteht aus Mono- und/oder Disuccinaten der Polyalkylenglykole, welche wiederum relative Molekülmassen zwischen 600 und 6 000, vorzugsweise zwischen 1 000 und 4 000 aufweisen. Für eine genauere Beschreibung der modifizierten Polyalkylenglykolether wird auf die Offenbarung der internationalen Patentanmeldung WO 93/02176 verwiesen. Im Rahmen dieser Erfindung zählen zu Polyethylenglykolen solche Polymere, bei deren Herstellung neben Ethylenglykol ebenso C3-Cs-Glykole sowie Glycerin und Mischungen aus diesen als Startmoleküle eingesetzt werden. Ferner werden auch ethoxylierte Derivate wie Trimethylolpropan mit 5 bis 30 EO umfaßt. Die vorzugsweise eingesetzten Polyethylenglykole können eine lineare oder verzweigte Struktur aufweisen, wobei insbesondere lineare Polyethylenglykole bevorzugt sind. Zu den insbesondere bevorzugten Polyethylenglykolen gehören solche mit relativen Molekülmassen zwischen 2 000 und 12 000, vorteilhafterweise um 4 000, wobei Polyethylenglykole mit relativen Molekülmassen unterhalb 3 500 und oberhalb 5 000 insbesondere in Kombination mit Polyethylenglykolen mit einer relativen Molekülmasse um 4 000 eingesetzt werden können und derartige Kombinationen vorteilhafterweise zu mehr als 50 Gew.-%, bezogen auf die gesamte Menge der Polyethylenglykole, Polyethylenglykole mit einer relativen Molekülmasse zwischen 3 500 und 5 000 aufweisen. Als Bindemittel können jedoch auch Polyethylenglykole eingesetzt werden, welche an sich bei Raumtemperatur und einem Druck von 1 bar in flüssigem Stand vorliegen; hier ist vor allem von Poly- ethylenglykol mit einer relativen Molekülmasse von 200, 400 und 600 die Rede, Allerdings sollten diese an sich flüssigen Polyethylenglykole nur in einer Mischung mit mindestens einem weiteren Bindemittel eingesetzt werden, wobei diese Mischung wieder den erfindungsgemäßen Anforderungen genügen muß, also einen Schmelzpunkt bzw. Erweichungspunkt von mindestens oberhalb 45 °C aufweisen muß. Ebenso eignen sich als Bindemittel niedermolekulare Polyvinylpyrrolidone und Derivate von diesen mit relativen Molekülmassen bis maximal 30 000. Bevorzugt sind hierbei relative Molekülmassenbereiche zwischen 3 000 und 30 000, beispielsweise um 10 000. Polyvinylpyrrolidone werden vorzugsweise nicht als alleinige Bindemittel, sondern in Kombination mit anderen, insbesondere in Kombination mit Polyethylenglykolen, eingesetzt.
Das verdichtete Gut weist direkt nach dem Austritt aus dem Herstellungsapparat vorzugsweise Temperaturen nicht oberhalb von 90 °C auf, wobei Temperaturen zwischen 35 und 85 °C besonders bevorzugt sind. Es hat sich herausgestellt, daß Austrittstemperaturen - vor allem im Extrusionsverfahren - von 40 bis 80 °C, beispielsweise bis 70 °C, besonders vorteilhaft sind.
Extrusion
In einer bevorzugten Ausführungsform wird das erfindungsgemäße Waschmittel mittels einer Extrusion hergestellt, wie sie beispielsweise in dem europäischen Patent EP 0486592 B1 oder den internationalen Patentanmeldungen WO 93/02176 und WO 94/09111 bzw. WO 98/12299 beschrieben werden. Dabei wird ein festes Vorgemisch unter Druck strangformig verpreßt und der Strang nach Austritt aus der Lochform mittels einer Schneidevorrichtung auf die vorbestimmbare Granulatdimension zugeschnitten. Das homogene und feste Vorgemisch enthält ein Plastifizier- und/oder Gleitmittel, welches bewirkt, daß das Vorgemisch unter dem Druck bzw. unter dem Eintrag spezifischer Arbeit plastisch erweicht und extrudierbar wird. Bevorzugte Plastifizier- und/oder Gleitmittel sind Tenside und/oder Polymere. Zur Erläuterung des eigentlichen Extrusionsverfahrens wird hiermit ausdrücklich auf die obengenannten Patente und Patentanmeldungen verwiesen. Vorzugsweise wird dabei das Vorgemisch vorzugsweise einem Planetwalzenextruder oder einem 2-Wellen-Extruder bzw. 2-Schnecken-Extruder mit gleichlaufender oder gegenlaufender Schneckenführung zugeführt, dessen Gehäuse und dessen Extruder-Granulierkopf auf die vorbestimmte Extrudiertemperatur aufgeheizt sein können. Unter der Schereinwirkung der Extruderschnecken wird das Vorgemisch unter Druck, der vorzugsweise mindestens 25 bar beträgt, bei extrem hohen Durchsätzen in Abhängigkeit von dem eingesetzten Apparat aber auch darunter liegen kann, verdichtet, plastifiziert, in Form feiner Stränge durch die Lochdüsenplatte im Extruderkopf extrudiert und schließlich das Extrudat mittels eines rotierenden Abschlagmessers vorzugsweise zu etwa kugelförmigen bis zylindrischen Granulatkörnern verkleinert. Der Lochdurchmesser der Lochdüsenplatte und die Strangschnittlänge werden dabei auf die gewählte Granulatdimension abgestimmt. So gelingt die Herstellung von Granulaten einer im wesentlichen gleichmäßig vorherbestimmbaren Teilchengröße, wobei im einzelnen die absoluten Teilchengrößen dem beabsichtigten Einsatzzweck angepaßt sein können. Im allgemeinen werden Teilchendurchmesser bis höchstens 0,8 cm bevorzugt. Wichtige Ausführungsformen sehen hier die Herstellung von einheitlichen Granulaten im Millimeterbereich, beispielsweise im Bereich von 0,5 bis 5 mm und insbesondere im Bereich von etwa 0,8 bis 3 mm vor. Das Länge/Durchmesser-Verhältnis der abgeschlagenen primären Granulate liegt dabei vorzugsweise im Bereich von etwa 1 : 1 bis etwa 3 : 1. Weiterhin ist es bevorzugt, das noch plastische Primärgranulat einem weiteren formgebenden Verarbeitungsschritt zuzuführen; dabei werden am Rohextrudat vorliegende Kanten abgerundet, so daß letztlich kugelförmig bis annähernd kugelförmige Extrudatkörner erhalten werden können. Falls gewünscht können in dieser Stufe geringe Mengen an Trockenpulver, beispielsweise Zeolithpulver wie Zeolith NaA-Pulver, mitverwendet werden. Diese Formgebung kann in marktgängigen Rondiergeräten erfolgen. Dabei ist darauf zu achten, daß in dieser Stufe nur geringe Mengen an Feinkornanteil entstehen. Eine Trocknung, welche in den obengenannten Dokumenten des Standes der Technik als bevorzugte Ausführungsform beschrieben wird, ist anschließend möglich, aber nicht zwingend erforderlich. Es kann gerade bevorzugt sein, nach dem Kompaktierungsschritt keine Trocknung mehr durchzuführen. Alternativ können Extrusio- nen/Verpressungen auch in Niedrigdruckextrudern, in der Kahl-Presse (Fa. Amandus Kahl) oder im Bextruder der Fa. Bepex durchgeführt werden. Bevorzugt ist die Temperaturführung im Übergangsbereich der Schnecke, des Vorverteilers und der Düsenplatte derart gestaltet, daß die Schmelztemperatur des Bindemittels bzw. die obere Grenze des Schmelzbereichs des Bindemittels zumindest erreicht, vorzugsweise aber überschritten wird. Dabei liegt die Dauer der Temperatureinwirkung im Kompressionsbereich der Extrusion vorzugsweise unterhalb von 2 Minuten und insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute. Walzenkompaktierung
Die erfindungsgemäßen Waschmittel können auch mittels einer Walzenkompaktierung hergestellt werden. Hierbei wird das Vorgemisch gezielt zwischen zwei glatte oder mit Vertiefungen von definierter Form versehene Walzen eindosiert und zwischen den beiden Walzen unter Druck zu einem blattförmigen Kompaktat, der sogenannten Schülpe, ausgewalzt. Die Walzen üben auf das Vorgemisch einen hohen Liniendruck aus und können je nach Bedarf zusätzlich geheizt bzw. gekühlt werden. Bei der Verwendung von Glattwalzen erhält man glatte, unstrukturierte Schülpenbänder, während durch die Verwendung strukturierter Walzen entsprechend strukturierte Schülpen erzeugt werden können, in denen beispielsweise bestimmte Formen der späteren Waschmittelteilchen vorgegeben werden können. Das Schülpenband wird nachfolgend durch einen Abschlag- und Zerkleinerungsvorgang in kleinere Stücke gebrochen und kann auf diese Weise zu Granulatkörnern verarbeitet werden, die durch weitere an sich bekannte Oberflächenbehandlungsverfahren veredelt, insbesondere in annähernd kugelförmige Gestalt gebracht werden können. Auch bei der Walzenkompaktierung liegt die Temperatur der pressenden Werkzeuge, also der Walzen, bevorzugt bei maximal 150 °C, vorzugsweise bei maximal 100 °C und insbesondere bei maximal 75 °C. Besonders bevorzugte Herstellungsverfahren arbeiten bei der Walzenkompaktierung mit Verfahrenstemperaturen, die 10 °C, insbesondere maximal 5 °C oberhalb der Schmelztemperatur bzw. der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels liegen. Hierbei ist es weiter bevorzugt, daß die Dauer der Temperatureinwirkung im Kompressionsbereich der glatten oder mit Vertiefungen von definierter Form versehenen Walzen maximal 2 Minuten beträgt und insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute liegt.
Pelletierung
Das erfindungsgemäße Waschmittel kann auch mittels einer Pelletierung hergestellt werden. Hierbei wird das Vorgemisch auf eine perforierte Fläche aufgebracht und mittels eines druckgebenden Körpers unter Plastifizierung durch die Löcher gedrückt. Bei üblichen Ausführungsformen von Pelletpressen wird das Vorgemisch unter Druck verdichtet, plastifiziert, mittels einer rotierenden Walze in Form feiner Stränge durch eine perforierte Fläche gedrückt und schließlich mit einer Abschlagvorrichtung zu Granulatkörnern zerkleinert. Hierbei sind die unterschiedlichsten Ausgestaltungen von Druckwalze und perforierter Matrize denkbar. So finden beispielsweise flache perforierte Teller ebenso Anwendung wie konkave oder konvexe Ringmatrizen, durch die das Material mittels einer oder mehrerer Druckwalzen hindurchgepreßt wird. Die Preßrollen können bei den Tellergeräten auch konisch geformt sein, in den ringförmigen Geräten können Matrizen und Preßrolle(n) gleichläufigen oder gegenläufigen Drehsinn besitzen. Ein zur Durchführung des Verfahrens geeigneter Apparat wird beispielsweise in der deutschen Offenlegungsschrift DE 3816842 A1 beschrieben. Die in dieser Schrift offenbarte Ringmatrizenpresse besteht aus einer rotierenden, von Preßkanälen durchsetzten Ringmatrize und wenigstens einer mit deren Innenfläche in Wirkverbindung stehenden Preßrolle, die das dem Matrizenraum zugeführte Material durch die Preßkanäle in einen Materialaustrag preßt. Hierbei sind Ringmatrize und Preßrolle gleichsinnig antreibbar, wodurch eine verringerte Scherbelastung und damit geringere Temperaturerhöhung des Vorgemischs realisierbar ist. Selbstverständlich kann aber auch bei der Pelletierung mit heiz- oder kühlbaren Walzen gearbeitet werden, um eine gewünschte Temperatur des Vorgemischs einzustellen. Auch bei der Pelletierung liegt die Temperatur der pressenden Werkzeuge, also der Druckwalzen oder Preßrollen, bevorzugt bei maximal 150 °C, vorzugsweise bei maximal 100 °C und insbesondere bei maximal 75 °C. Besonders bevorzugte Herstellungsverfahren arbeiten bei der Walzenkompaktierung mit Verfahrenstemperaturen, die 10 °C, insbesondere maximal 5 °C oberhalb der Schmelztemperatur bzw. der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels liegen.
Tablettierung
Die Herstellung von Formkörpern, vorzugsweise solchen in Tablettenform, erfolgt in der Regel durch Tablettierung bzw. Preßagglomerierung. Die erhaltenen teilchenförmigen Preßagglomerate können entweder direkt als Waschmittel eingesetzt oder zuvor nach üblichen Methoden nachbehandelt und/oder aufbereitet werden. Zu den üblichen Nachbehandlungen zählen beispielsweise Abpuderun- gen mit feinteiligen Inhaltsstoffen von Wasch- oder Reinigungsmitteln, wodurch das Schüttgewicht im allgemeinen weiter erhöht wird. Eine bevorzugte Nachbehandlung stellt jedoch auch die Verfahrensweise gemäß den deutschen Patentanmeldungen DE 19524287 A1 und DE 19547457 A1 dar, wobei staubförmige oder zumindest feinteilige Inhaltsstoffe (die sogenannten Feinanteile) an die erfindungsgemäß hergestellten teilchenförmigen Verfahrensendprodukte, welche als Kern dienen, angeklebt werden und somit Mittel entstehen, welche diese sogenannten Feinanteile als Außenhülle aufweisen. Vorteilhafterweise geschieht dies wiederum durch eine Schmelzagglomeration. Zur Schmelzagglomerie- rung der Feinanteile an wird ausdrücklich auf die Offenbarung in den deutschen Patentanmeldungen DE 19524287 A1 und DE 19547457 A1 verwiesen. In der bevorzugten Ausführungsform der Erfindung liegen die festen Waschmittel in Tablettenform vor, wobei diese Tabletten insbesondere aus lager- und transporttechnischen Gründen vorzugsweise abgerundete Ecken und Kanten aufweisen. Die Grundfläche dieser Tabletten kann beispielsweise kreisförmig oder rechteckig sein. Mehrschichtentabletten, insbesondere Tabletten mit 2 oder 3 Schichten, welche auch farblich verschieden sein können, sind vor allem bevorzugt. Blau-weiße oder grün-weiße oder blau-grün-weiße Tabletten sind dabei besonders bevorzugt. Die Tabletten können dabei auch gepreßte und ungepreßte Anteile enthalten. Formkörper mit besonders vorteilhafter Auflösegeschwindigkeit werden erhalten, wenn die granulären Bestandteile vor dem Verpressen einen Anteil an Teilchen, die einen Durchmesser außerhalb des Bereiches von 0,02 bis 6 mm besitzen, von weniger als 20, vorzugsweise weniger als 10 Gew.-% aufweisen. Bevorzugt ist eine Teilchengrößenverteilung im Bereich von 0,05 bis 2,0 und besonders bevorzugt von 0,2 bis 1,0 mm. Beispiele
Beispiel H1. In einem konventionellen Sprühturm wurde eine 55 Gew.-%ige wäßrige Dodecylbenzol- sulfonat-Natriumsalz-Paste (Maranil® A55, Cognis Deutschland GmbH) über eine Gießerplatte („Tropfteller") mit einem Durchmesser von 480 mm, Bohrungen von 0,5 mm, einer Schwingungsfrequenz von 800 Hz und einem Betriebsüberdruck von 40 mbar vertropft. Die Trocknung erfolgte mit Heißluft (150 °C) im Gegenstrom. Das Sprühgut wurde am Konus des Turms kontinuierlich abgezogen. Der Anteil an Sprühgut mit einem Durchmesser kleiner 0,5 mm betrug nunmehr noch 0,4 Gew.-%, während 68,5 Gew.-% einen Durchmesser im Bereich von 0,8 bis 1,25 mm aufwiesen.
Beispiel H2. Beispiel 1 wurde unter Einsatz einer 30 Gew.-%igen Laurylsulfat-Natriumsalz-Paste (Sulfopon® T30, Cognis Deutschland GmbH) wiederholt. Der Anteil an Sprühgut mit einem Durchmesser kleiner 0,5 mm betrug nunmehr noch 0,3 Gew.-%, während 70,5 Gew.-% einen Durchmesser im Bereich von 0,8 bis 1 ,25 mm aufwiesen.
Beispiel H3. Beispiel 1 wurde unter Einsatz einer 30 Gew,-%igen Kokosmonoglycerid-Natriumsalz- Paste (Plantapon® CMGS, Cognis Deutschland GmbH) wiederholt. Der Anteil an Sprühgut mit einem Durchmesser kleiner 0,5 mm betrug nunmehr noch 0,25 Gew.-%, während 67,3 Gew.-% einen Durchmesser im Bereich von 0,8 bis 1,25 mm aufwiesen.
Beispiel H4. Beispiel 1 wurde unter Einsatz einer 30 Gew.-%igen Kokosalkylglucosid-Paste (Gluco- pon® 600 CS UP, Cognis Deutschland GmbH) wiederholt; die Trocknung erfolgte bei 105 °C. Der Anteil an Sprühgut mit einem Durchmesser kleiner 0,5 mm betrug nunmehr noch 0,3 Gew.-%, während 71,8 Gew.-% einen Durchmesser im Bereich von 0,8 bis 1 ,25 mm aufwiesen.
Beispiel H5. Beispiel 1 wurde unter Einsatz einer 30 Gew.-%igen Kokosalkylglucosid/Kokosalko- hol+2EO-sulfat-Natriumsalz-Paste (Plantacare® PS 10, Cognis Deutschland GmbH) wiederholt; die Trocknung erfolgte bei 108 °C. Der Anteil an Sprühgut mit einem Durchmesser kleiner 0,5 mm betrug nunmehr noch 0,35 Gew.-%, während 74,2 Gew.-% einen Durchmesser im Bereich von 0,8 bis 1 ,25 mm aufwiesen.
Beispiel H6. Beispiel 1 wurde unter Einsatz einer 30 Gew.-%igen Laurinsäure-N-methylglucamid-Paste wiederholt; die Trocknung erfolgte bei 105 °C. Der Anteil an Sprühgut mit einem Durchmesser kleiner 0,5 mm betrug nunmehr noch 0,3 Gew.-%, während 71 ,8 Gew.-% einen Durchmesser im Bereich von 0,8 bis 1,25 mm aufwiesen. Beispiel H7. Beispiel 1 wurde unter Einsatz einer 45 Gew.-%igen Cocamidopropylbetain-Paste (De- hyton® PK, Cognis Deutschland GmbH) wiederholt. Der Anteil an Sprühgut mit einem Durchmesser kleiner 0,5 mm betrug nunmehr noch 0,5 Gew.-%, während 71,0 Gew.-% einen Durchmesser im Bereich von 0,8 bis 1,25 mm aufwiesen.
Anwendungstechnische Untersuchungen. Die erfindungsgemäßen Tensidgranulate H1 und H2 sowie zwei handelsübliche Vergleichsgranulate wurden in Waschmittelformulierungen eingesetzt. Zur Bestimmung der Löslichkeit wurden jeweils 20 g Waschpulver unter ständigem Umrühren in 1 1 Wasser von 15°C gegeben. Die Lösung wurde nach 60 s (T1), 120 s (T2) und 300 s (T3) durch ein Sieb (Maschenweite: 0,1mm) filtriert. Der Filterrückstand wurde eine Stunde an der Luft getrocknet und gewogen. Die Ergebnisse sind in Tabelle 1 zusammengefaßt.
In gleicher Weise wurden die Waschmittelformulierungen unter Zugabe von 7 g mikrokristalliner kom- paktierter Cellulose zu Tabletten (Gewicht 40 g, konstante Bruchhärte) verpreßt, luftdicht verpackt und anschließend für 2 Wochen bei 40 °C gelagert. Zur Beurteilung des Auflöseverhaltens wurden die Tabletten auf ein Drahtgestell gelegt, welches in Wasser (0 °d, 25 °C) stand. Die Tabletten waren dabei vollständig von Wasser umgeben. Gemessen wurde die Zerfallszeit vom Eintauchen bis zur vollständigen Auflösung. Die Zerfallszeiten sind ebenfalls aus Tabelle 1 zu entnehmen.
Tabelle 1
Zusammensetzungen und Ergebnisse zur Auflösegeschwindigkeit (Mengenangaben als Gew.-%)
Figure imgf000038_0001
*) handelsübliche Tensidgranulate

Claims

Patentansprüche
1. Verfahren zur Herstellung von Tensidgranulaten, bei dem man einen Strom einer wäßrigen Tensidzubereitung mit Hilfe einer Gießerplatte durch Vibration vertropft und den Tropfen ein gasförmiges Trockenmittel entgegenleitet, welches die Wasseranteile verdampft und die Granulate dabei trocknet.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man wäßrige Zubereitungen von anionischen, nichtionischen, kationischen und/oder amphoteren bzw. zwitterionischen Tensiden vertropft.
3. Verfahren nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, daß man anionische Tenside einsetzt, die ausgewählt sind aus der Gruppe, die gebildet wird von Alkylbenzolsulfona- ten, Alkylsulfaten, Alkylethersulfaten, Alkansulfonaten, Olefinsulfonaten, Methylestersulfonaten, Monoglycerid(ether)sulfaten und Alkaliseifen.
4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man nichtionische Tenside einsetzt, die ausgewählt sind aus der Gruppe, die gebildet wird von Fettal- koholpolyglycolethern, alkoxylierten Fettsäureniedrigalkylestem, Alkyloligoglucosiden und Fettsäu- re-N-alkylpolyhydroxyalkylamiden.
5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man kationische Tenside einsetzt, die ausgewählt sind aus der Gruppe, die gebildet wird von Tetraal- kyl-ammoniumverbindungen und Esterquats.
6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man amphotere bzw. zwitterionische Tenside einsetzt, die ausgewählt sind aus der Gruppe, die gebildet wird von Alkylbetainen, Fettsäureamidoaminbetainen und Imidazoliniumbetainen.
7. Verfahren nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man die Tenside als wäßrige Lösungen bzw. Pasten mit Feststoffkonzentrationen von 1 bis 70 Gew.-% einsetzt.
8. Verfahren nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Gießerplatte eine Lochplatte darstellt.
9. Verfahren nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Lochplatte Bohrungen von im Mittel 0,5 bis 1 ,4 mm aufweist.
10. Verfahren nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die wäßrige Tensidzubereitung mit einer Frequenz von 100 bis 1000 Hz schwingt.
PCT/EP2001/000469 2000-01-26 2001-01-17 Verfahren zur herstellung von tensidgranulaten WO2001055284A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/182,292 US6881359B2 (en) 2000-01-26 2001-01-17 Processes for the preparation of low dust, limited particle size distribution, surfactant granules
EP01913756A EP1250412B1 (de) 2000-01-26 2001-01-17 Verfahren zur herstellung von tensidgranulaten
DE50103096T DE50103096D1 (de) 2000-01-26 2001-01-17 Verfahren zur herstellung von tensidgranulaten

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10003124A DE10003124A1 (de) 2000-01-26 2000-01-26 Verfahren zur Herstellung von Tensidgranulaten
DE10003124.2 2000-01-26

Publications (2)

Publication Number Publication Date
WO2001055284A2 true WO2001055284A2 (de) 2001-08-02
WO2001055284A3 WO2001055284A3 (de) 2001-12-13

Family

ID=7628672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/000469 WO2001055284A2 (de) 2000-01-26 2001-01-17 Verfahren zur herstellung von tensidgranulaten

Country Status (5)

Country Link
US (1) US6881359B2 (de)
EP (1) EP1250412B1 (de)
DE (2) DE10003124A1 (de)
ES (1) ES2225497T3 (de)
WO (1) WO2001055284A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836187A (zh) * 2021-02-02 2022-08-02 中国石油天然气股份有限公司 复合驱油体系及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030048459A (ko) * 2000-11-08 2003-06-19 아지노모토 가부시키가이샤 입상 계면활성제 및 이의 제조방법
DE10105801B4 (de) * 2001-02-07 2004-07-08 Henkel Kgaa Wasch- und Reinigungsmittel umfassend feine Mikropartikel mit Reinigungsmittelbestandteilen
WO2004069976A2 (de) * 2003-02-10 2004-08-19 Henkel Kommanditgesellschaft Auf Aktien Verwendung von cellulosederivaten als schaumregulatoren
DE10351325A1 (de) * 2003-02-10 2004-08-26 Henkel Kgaa Wasch- oder Reinigungsmittel mit wasserlöslichem Buildersystem und schmutzablösevermögendem Cellulosederivat
DE10351321A1 (de) * 2003-02-10 2004-08-26 Henkel Kgaa Verstärkung der Reinigungsleistung von Waschmitteln durch eine Kombination von Cellulosderivaten
JP4578465B2 (ja) * 2003-02-10 2010-11-10 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 繊維製品の水吸収力の増大
WO2004069973A1 (de) * 2003-02-10 2004-08-19 Henkel Kommanditgesellschaft Auf Aktien Verstärkung der reinigungsleistung von waschmitteln durch cellulosederivat und hygroskopisches polymer
WO2004069978A1 (de) * 2003-02-10 2004-08-19 Henkel Kommanditgesellschaft Auf Aktien Bleichmittelhaltige wasch- oder reinigungsmittel mit wasserlöslichem buildersystem und schmutzablösevermögendem cellulosederivat
ES2275207T5 (es) * 2003-02-10 2011-12-09 HENKEL AG &amp; CO. KGAA Agente de lavado, que contiene agentes de blanqueo, con derivado de la celulosa con capacidad para el desprendimiento de la suciedad, con actividad sobre el algodón.
ES2274142T3 (es) * 2003-06-24 2007-05-16 Cognis Ip Management Gmbh Preparacion acuosas de brillo perlado.
ES2915324T3 (es) * 2015-07-31 2022-06-21 Steerlife India Private Ltd Proceso y aparato para granulación continua de material en polvo
US10385291B2 (en) 2016-12-22 2019-08-20 Henkel Ag & Co. Kgaa Liquid surfactant compositions and associated methods
US10047321B2 (en) * 2016-12-22 2018-08-14 Henkel Ag & Co. Kgaa Liquid surfactant compositions having a modified oxo-alcohol derivative
EP3623458A1 (de) 2018-09-11 2020-03-18 The Procter & Gamble Company Dosierungsartikel für wasserlösliche einheit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4227210A1 (de) * 1992-08-17 1994-02-24 Huels Chemische Werke Ag Verfahren zur Herstellung von Alkylsulfat-Pulvern mit hohem Schüttgewicht
DE19750424A1 (de) * 1997-11-14 1999-05-20 Henkel Kgaa Verbessertes Verfahren zum Herstellen von Tensidgranulaten mit einem hohen Schüttgewicht
EP0939287A1 (de) * 1998-02-27 1999-09-01 The Chemithon Corporation Vorrichtung und Verfahren zur Entfernung von flüchtigen Bestandteilen aus einer Zusammensetzung

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US567560A (en) * 1896-09-08 bagnall
US2968833A (en) * 1957-05-17 1961-01-24 Phillips Petroleum Co Method and apparatus for prilling ammonium nitrate
GB949487A (en) * 1961-08-14 1964-02-12 Ici Ltd Sprinklers
US3373232A (en) * 1964-10-02 1968-03-12 Gen Dynamics Corp Sonic method of producing particles from a liquid
US3463842A (en) * 1967-06-13 1969-08-26 Grace W R & Co Microsphere process
ZA734721B (en) 1972-07-14 1974-03-27 Procter & Gamble Detergent compositions
GB1455873A (en) 1973-08-24 1976-11-17 Procter & Gamble Textile-softening detergent compositions
DE2553900A1 (de) 1975-12-01 1977-06-08 Konrad Ruckstuhl Verfahren und vorrichtungen zur aufbereitung von gepressten zuckerrohrbagasse-ballen
DE2635147C3 (de) * 1976-08-05 1979-02-08 Sandvik Conveyor Gmbh, 7012 Fellbach Vorrichtung zur Herstellung von festen Teilchen
EP0026529B2 (de) 1979-09-29 1992-08-19 THE PROCTER &amp; GAMBLE COMPANY Reinigungsmittelzusammensetzungen
EP0028432B1 (de) 1979-11-03 1984-01-18 THE PROCTER &amp; GAMBLE COMPANY Granulare Waschmittelzusammensetzungen
US4524009A (en) 1984-01-31 1985-06-18 A. E. Staley Manufacturing Company Detergent builder
CA1238917A (en) 1984-01-31 1988-07-05 Vivian B. Valenty Detergent builder
DE3413571A1 (de) 1984-04-11 1985-10-24 Hoechst Ag, 6230 Frankfurt Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung
US4639325A (en) 1984-10-24 1987-01-27 A. E. Staley Manufacturing Company Detergent builder
DE3526405A1 (de) 1985-07-24 1987-02-05 Henkel Kgaa Schichtsilikate mit beschraenktem quellvermoegen, verfahren zu ihrer herstellung und ihre verwendung in wasch- und reinigungsmitteln
FR2597473B1 (fr) 1986-01-30 1988-08-12 Roquette Freres Procede d'oxydation de di-, tri-, oligo- et polysaccharides en acides polyhydroxycarboxyliques, catalyseur mis en oeuvre et produits ainsi obtenus.
GB8629837D0 (en) 1986-12-13 1987-01-21 Interox Chemicals Ltd Bleach activation
DE3706036A1 (de) 1987-02-25 1988-09-08 Basf Ag Polyacetale, verfahren zu deren herstellung aus dialdehyden und polyolcarbonsaeuren und verwendung der polyacetale
DE3723826A1 (de) 1987-07-18 1989-01-26 Henkel Kgaa Verfahren zur herstellung von alkylglykosiden
DE3732947A1 (de) 1987-09-30 1989-04-13 Henkel Kgaa Zur verwendung in wasch- und reinigungsmitteln geeignetes schaumregulierungsmittel
DE3816842A1 (de) 1988-05-18 1989-11-23 Schlueter Gmbh U Co Kg H Ringmatrizenpresse
US5576425A (en) 1988-10-05 1996-11-19 Henkel Kommanditgesellschaft Auf Aktien Process for the direct production of alkyl glycosides
US4963226A (en) * 1989-01-23 1990-10-16 The Procter & Gamble Company Process for spray-drying detergent compositions
GB8908416D0 (en) 1989-04-13 1989-06-01 Unilever Plc Bleach activation
DK0486592T3 (da) 1989-08-09 1994-07-18 Henkel Kgaa Fremstilling af kompakterede granulater til vaskemidler
DE4010533A1 (de) 1990-04-02 1991-10-10 Henkel Kgaa Tablettierte wasch- und/oder reinigungsmittel fuer haushalt und gewerbe und verfahren zu ihrer herstellung
DE69020861T2 (de) 1989-11-10 1995-11-30 Tno Verfahren zur Herstellung von Polydicarboxysacchariden.
WO1992009526A1 (de) 1990-12-01 1992-06-11 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur hydrothermalen herstellung von kristallinem natriumdisilikat
GB9003741D0 (en) 1990-02-19 1990-04-18 Unilever Plc Bleach activation
US5041232A (en) 1990-03-16 1991-08-20 Lever Brothers Company, Division Of Conopco, Inc. Sulfonimines as bleach catalysts
US5047163A (en) 1990-03-16 1991-09-10 Lever Brothers Company, Division Of Conopco, Inc. Activation of bleach precursors with sulfonimines
DE69125310T2 (de) 1990-05-21 1997-07-03 Unilever Nv Bleichmittelaktivierung
IT1249883B (it) 1990-08-13 1995-03-30 Ferruzzi Ricerca & Tec Agenti sequestranti del calcio a base di carboidrati ossidati e loro impiego come builder per detergenti
DE4030688A1 (de) 1990-09-28 1992-04-02 Henkel Kgaa Verfahren zur spruehtrocknung von wertstoffen und wertstoffgemischen unter verwendung von ueberhitztem wasserdampf
GB9101606D0 (en) 1991-01-24 1991-03-06 Dow Corning Sa Detergent foam control agents
ATE155165T1 (de) 1991-07-31 1997-07-15 Ausimont Spa Verfahren zur erhöhung der bleichwirksamkeit eines inorganischen persalzes
DE4134914A1 (de) 1991-10-23 1993-04-29 Henkel Kgaa Wasch- und reinigungsmittel mit ausgewaehlten builder-systemen
ATE166362T1 (de) 1991-11-14 1998-06-15 Procter & Gamble C6/c2-c3 oxidierte stärke als waschmittelbestandteil
US5194416A (en) 1991-11-26 1993-03-16 Lever Brothers Company, Division Of Conopco, Inc. Manganese catalyst for activating hydrogen peroxide bleaching
CA2083661A1 (en) 1991-11-26 1993-05-27 Rudolf J. Martens Detergent bleach compositions
GB9127060D0 (en) 1991-12-20 1992-02-19 Unilever Plc Bleach activation
CA2085642A1 (en) 1991-12-20 1993-06-21 Ronald Hage Bleach activation
DE4221381C1 (de) 1992-07-02 1994-02-10 Stockhausen Chem Fab Gmbh Pfropf-Copolymerisate von ungesättigten Monomeren und Zuckern, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4203923A1 (de) 1992-02-11 1993-08-12 Henkel Kgaa Verfahren zur herstellung von polycarboxylaten auf polysaccharid-basis
US5637560A (en) 1992-02-12 1997-06-10 Henkel Kommanditgesellschaft Auf Aktien Process for the production of surface-active anionic surfactant salts using superheated steam
DE4206495A1 (de) 1992-03-02 1993-09-09 Cognis Bio Umwelt Verfahren zum herstellen von granulaten, die als netz-, wasch und/oder reinigungsmittel geeignet sind
DE4234376A1 (de) 1992-10-12 1994-04-14 Henkel Kgaa Wertstoffe und Wertstoffgemische für Netz-, Wasch- und/oder Reinigungsmittel in neuer Zubereitungsform
DE4204090A1 (de) 1992-02-12 1993-08-19 Cognis Bio Umwelt Vereinfachtes trocknungsverfahren fuer wertstoffe und wertstoffgemische aus dem bereich der wasch- und reinigungsmittel mit ueberhitztem wasserdampf
DE4206050A1 (de) 1992-02-27 1993-09-02 Cognis Bio Umwelt Neuartige staubarme aniontensidkonzentrate in pulver- beziehungsweise granulatform mit verbessertem aufloesevermoegen in waessrigen medien
DE4209432A1 (de) 1992-03-24 1993-09-30 Henkel Kgaa Verfahren zur verbesserten Brüdenentsorgung bei der Heißdampftrocknung
DE4204035A1 (de) 1992-02-12 1993-08-19 Cognis Bio Umwelt Verbessertes verfahren zur trocknung von wertstoffen fuer wasch- und reinigungsmittel mit ueberhitztem wasserdampf
WO1993016165A1 (de) 1992-02-12 1993-08-19 Henkel Kommanditgesellschaft Auf Aktien Staubarme aniontensidkonzentrate in pulver- beziehungsweise granulatform mit verbessertem auflösevermögen
DE4206521A1 (de) 1992-03-02 1993-09-09 Cognis Bio Umwelt Verfahren zur herstellung von granulaten, die als netz-, wasch- und/oder reinigungsmittel geeignet sind
DE4208773A1 (de) 1992-03-19 1993-09-23 Cognis Bio Umwelt Verfahren zur trocknung von wertstoffen oder deren gemischen, die als netz-, wasch- und/oder reinigungsmittel geeignet sind
DE4300772C2 (de) 1993-01-14 1997-03-27 Stockhausen Chem Fab Gmbh Wasserlösliche, biologisch abbaubare Copolymere auf Basis von ungesättigten Mono- und Dicarbonsäuren, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4303320C2 (de) 1993-02-05 1995-12-21 Degussa Waschmittelzusammensetzung mit verbessertem Schmutztragevermögen, Verfahren zu dessen Herstellung und Verwendung eines geeigneten Polycarboxylats hierfür
DE4317519A1 (de) 1993-05-26 1994-12-01 Henkel Kgaa Herstellung von Polycarboxylaten auf Polysaccharid-Basis
DE4338212C2 (de) * 1993-11-10 1996-01-18 Nukem Gmbh Verfahren und Vorrichtung zur Herstellung von aus Kunststoff bestehenden Partikeln
DE4400024A1 (de) 1994-01-03 1995-07-06 Henkel Kgaa Silikatische Builder und ihre Verwendung in Wasch- und Reinigungsmitteln sowie Mehrstoffgemische für den Einsatz auf diesem Sachgebiet
DE4402851A1 (de) 1994-01-31 1995-08-03 Henkel Kgaa Wirbelschicht-Oxidationsverfahren zur Herstellung von Polycarboxylaten auf Polysaccharid-Basis
DE4416438A1 (de) 1994-05-10 1995-11-16 Basf Ag Ein- oder mehrkernige Metall-Komplexe und ihre Verwendung als Bleich- und Oxidationskatalysatoren
DE4417734A1 (de) 1994-05-20 1995-11-23 Degussa Polycarboxylate
DE69533149T2 (de) 1994-07-21 2005-08-25 Ciba Specialty Chemicals Holding Inc. Bleichmittelzusammensetzung für Gewebe
DE4425968A1 (de) * 1994-07-25 1996-02-01 Henkel Kgaa Verfahren zur Herstellung von Tensidgranulaten
GB9419091D0 (en) 1994-09-22 1994-11-09 Cerestar Holding Bv Process for decreasing the build up of inorganic incrustations on textiles and detergent composition used in such process
DE4443177A1 (de) 1994-12-05 1996-06-13 Henkel Kgaa Aktivatormischungen für anorganische Perverbindungen
DE19524287A1 (de) 1995-07-06 1997-01-09 Henkel Kgaa Von Staub- und Feinanteilen freie granulare Wasch- und Reinigungsmittel hoher Schüttdichte
DE19547457A1 (de) 1995-12-19 1997-06-26 Henkel Kgaa Von Staub- und Feinanteilen freie granulare Wasch- und Reinigungsmittel hoher Schüttdichte
DE19529905A1 (de) 1995-08-15 1997-02-20 Henkel Kgaa Aktivatorkomplexe für Persauerstoffverbindungen
DE19536082A1 (de) 1995-09-28 1997-04-03 Henkel Kgaa Aktivatorkomplexe für Persauerstoffverbindungen
DE19600018A1 (de) 1996-01-03 1997-07-10 Henkel Kgaa Waschmittel mit bestimmten oxidierten Oligosacchariden
DE19605688A1 (de) 1996-02-16 1997-08-21 Henkel Kgaa Übergangsmetallkomplexe als Aktivatoren für Persauerstoffverbindungen
DE19613103A1 (de) 1996-04-01 1997-10-02 Henkel Kgaa Übergangsmetallkomplex-haltige Systeme als Aktivatoren für Persauerstoffverbindungen
DE19620411A1 (de) 1996-04-01 1997-10-02 Henkel Kgaa Übergangsmetallamminkomplexe als Aktivatoren für Persauerstoffverbindungen
DE19616770A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Acyllactame als Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19616769A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Acylacetale als Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19616693A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Enolester als Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19616767A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19620267A1 (de) 1996-05-20 1997-11-27 Henkel Kgaa Katalytisch wirksame Aktivatorkomplexe mit N¶4¶-Liganden für Persauerstoffverbindungen
DE19709991C2 (de) 1997-03-11 1999-12-23 Rettenmaier & Soehne Gmbh & Co Waschmittelpreßling und Verfahren zu seiner Herstellung
DE19710152C2 (de) * 1997-03-12 1999-04-22 Henkel Kgaa Verfahren zur Herstellung von Aniontensidgranulaten
DE19710254A1 (de) 1997-03-13 1998-09-17 Henkel Kgaa Wasch- oder reinigungsaktive Formkörper für den Gebrauch im Haushalt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4227210A1 (de) * 1992-08-17 1994-02-24 Huels Chemische Werke Ag Verfahren zur Herstellung von Alkylsulfat-Pulvern mit hohem Schüttgewicht
DE19750424A1 (de) * 1997-11-14 1999-05-20 Henkel Kgaa Verbessertes Verfahren zum Herstellen von Tensidgranulaten mit einem hohen Schüttgewicht
EP0939287A1 (de) * 1998-02-27 1999-09-01 The Chemithon Corporation Vorrichtung und Verfahren zur Entfernung von flüchtigen Bestandteilen aus einer Zusammensetzung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836187A (zh) * 2021-02-02 2022-08-02 中国石油天然气股份有限公司 复合驱油体系及其制备方法

Also Published As

Publication number Publication date
US20030102584A1 (en) 2003-06-05
WO2001055284A3 (de) 2001-12-13
DE10003124A1 (de) 2001-08-09
EP1250412A2 (de) 2002-10-23
DE50103096D1 (de) 2004-09-09
ES2225497T3 (es) 2005-03-16
US6881359B2 (en) 2005-04-19
EP1250412B1 (de) 2004-08-04

Similar Documents

Publication Publication Date Title
EP1240290B1 (de) Tensidgranulate mit verbesserter auflösegeschwindigkeit
EP1240287B1 (de) Waschmitteltabletten
EP1235897B1 (de) Waschmitteltabletten
EP1106675B1 (de) Verwendung von Partialglyceridpolyglycolethern
EP1240289A1 (de) Feste waschmittel
EP1232242A1 (de) Tensidgranulate mit verbesserter auflösegeschwindigkeit
WO2001034747A1 (de) Feste wasch-, spül- und reinigungsmittel
EP1250412B1 (de) Verfahren zur herstellung von tensidgranulaten
WO2001034761A1 (de) Tensidgranulate mit verbesserter auflösegeschwindigkeit
EP1081219B1 (de) Detergentien in fester Form
WO2001079401A1 (de) Wasch- und reinigungsmittel
WO2001018164A1 (de) Waschmittel
WO2001034756A1 (de) Waschmitteltabletten
WO2001000763A1 (de) Schaumkontrollierte feste waschmittel
EP1205536A2 (de) Verwendung von Tensidgemischen
EP1090979A1 (de) Entschäumergranulate
WO2004000984A1 (de) Waschmittel mit polymeren
EP1207193A1 (de) Verwendung von Tensidgemischen zur Herstellung von Wasch- und Reinigungsmitteln
WO2001053447A1 (de) Tensidgranulate
EP1090978A1 (de) Feste Wasch-, Spül- und Reinigungsmittel enthaltend Entschäumergranulate
EP1405899A1 (de) Feste Waschmittel
WO2001000761A1 (de) Schaumkontrollierte feste waschmittel
WO2001000762A1 (de) Schaumkontrollierte feste waschmittel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001913756

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001913756

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10182292

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001913756

Country of ref document: EP