WO2001046267A1 - Procede de production de latex a particules agrandies - Google Patents

Procede de production de latex a particules agrandies Download PDF

Info

Publication number
WO2001046267A1
WO2001046267A1 PCT/JP2000/008843 JP0008843W WO0146267A1 WO 2001046267 A1 WO2001046267 A1 WO 2001046267A1 JP 0008843 W JP0008843 W JP 0008843W WO 0146267 A1 WO0146267 A1 WO 0146267A1
Authority
WO
WIPO (PCT)
Prior art keywords
latex
acid
surfactant
enlarged
graft copolymer
Prior art date
Application number
PCT/JP2000/008843
Other languages
English (en)
French (fr)
Inventor
Hiroshi Sakabe
Original Assignee
Kureha Kagaku Kogyo K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Kagaku Kogyo K.K. filed Critical Kureha Kagaku Kogyo K.K.
Priority to EP00981707A priority Critical patent/EP1245584B1/en
Priority to US10/148,343 priority patent/US6723764B2/en
Priority to DE60033436T priority patent/DE60033436T2/de
Publication of WO2001046267A1 publication Critical patent/WO2001046267A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/02Chemical or physical treatment of rubber latex before or during concentration
    • C08C1/065Increasing the size of dispersed rubber particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/02Chemical or physical treatment of rubber latex before or during concentration
    • C08C1/065Increasing the size of dispersed rubber particles
    • C08C1/07Increasing the size of dispersed rubber particles characterised by the agglomerating agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/08Vinylidene chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/42Nitriles
    • C08F20/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/18Increasing the size of the dispersed particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • C08L9/04Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • C08L9/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/10Latex

Definitions

  • the present invention relates to a method for producing a latex having a large particle size by coagulating and expanding latex, and more particularly, it is economical, highly productive and capable of increasing the stability while maintaining the stability of latetus.
  • the present invention relates to a method for producing a large enlarged latex.
  • the present invention also relates to a method for producing a graft copolymer using such an enlarged latex, a resin composition containing the graft copolymer and a thermoplastic resin, and the like.
  • Latex is an emulsion in which polymers such as rubber and plastic are dispersed in water in a colloidal form by an emulsifier.
  • the synthetic latex include rubber latex such as styrene butadiene rubber latex, acrylonitrile butadiene rubber latex, and polychloroprene rubber latex; vinyl acetate (co) polymer latex, styrene (co) polymer latex, and acrylic Resin latex such as acid ester (co) polymer latex; etc. are produced by emulsion polymerization.
  • Latex is used in a wide range of fields, including the synthetic resin field, paint field, paper and textile processing agents, and civil engineering fields such as concrete and asphalt.
  • Latex is generally an emulsion in which a polymer having a fine particle diameter is dispersed. Depending on the purpose of use, there are many uses that require a latex having a large particle diameter. Further, a graft polymer obtained by polymerizing a butyl monomer in the presence of rubber latex is used as an impact modifier for a thermoplastic resin. There are various combinations depending on the purpose of use. The particle size is selected and used. In order to obtain a graft copolymer having a large particle diameter, it is preferable to use a latex having a large particle diameter.
  • latex is produced by an emulsion polymerization method.
  • a latex having a large particle diameter is to be obtained by a seed polymerization method, a long polymerization time is required, and productivity is reduced.
  • a monomer mixture containing a gen-based monomer and a gen-based monomer and a vinyl-based monomer is polymerized by a seed polymerization method to obtain a latex having a large particle size, a very large Requires a long polymerization time.
  • Japanese Patent Application Laid-Open No. Hei 9-71603 discloses that a gen-based polymer rubber latetus obtained by emulsion polymerization is moderately sheared so as not to generate rubber lumps to promote mixing of a flocculant.
  • a method of performing enlargement by agglomeration mainly using brown agglomeration Brown agglomeration means that latex particles collide and agglomerate by performing browning motion.
  • the agitation speed is reduced and the agglomeration mainly by Brownian motion is performed to suppress the formation of the agglomerates and the latex agglomeration enlargement.
  • an acid is used as a coagulant, and a coagulant is added so that the pH of the system is 5 or less.
  • the enlarged latex obtained by the above method has a high salt concentration in the system, even if an attempt is made to stabilize the latex by increasing the pH of the system by adding a basic substance. Is not Will be enough. For this reason, when attempting to polymerize the bull-based monomer in the presence of the latex, there is a problem that a precipitate is easily formed, but Japanese Patent Publication No. 442-2229 discloses that butadiene. Formaldehyde sulfoxylate and peroxide are added to an aqueous dispersion containing fine particles of a polymer, and the particles are enlarged in parallel with the progress of the graft polymerization by adding the monomer. A method has been proposed. However, in this method, it is difficult to enlarge the particles to sufficiently large particles.
  • Japanese Patent Publication No. 56-44992 discloses that acrylate esters of PH 4 or higher obtained by polymerizing a synthetic rubber latex adjusted to pH 7 or higher in the presence of an anionic surfactant.
  • the butyl monomer is subjected to graft polymerization in the presence of the synthetic rubber latex enlarged by adding such an acrylate-unsaturated acid copolymer latex, the stability of the latex becomes poor. There was a problem that aggregates were easily formed due to damage. Disclosure of the invention
  • An object of the present invention is to provide a method for producing an enlarged latetus which is economical, has high productivity, and can be enlarged while maintaining the stability of the latex.
  • Another object of the present invention is to provide an enlarged latex having such excellent properties, and a graph for polymerizing a polymerizable monomer in the presence of the enlarged latex.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, in the latex, an anionic surfactant, a cationic surfactant and / or an amphoteric surfactant were present, and there was As a coagulation thickening agent, an acid or a substance capable of generating an acid is added, and the acid is acted on to increase the particle diameter.
  • the pH of the latex is reduced by a combination of two or more substances that react to generate an acid, such as a combination of hydrogen peroxide and sulfoxylate / formaldehyde.
  • the particle size distribution is narrow and the particle size is large by performing agglomeration enlargement by brown agglomeration without agitation during coagulation enlargement. Enlarged latex can be generated stably.
  • the graft copolymer obtained by subjecting the polymerizable monomer to the polymerized latex obtained by the method of the present invention by the graft polymerization can be used alone for various purposes. It shows excellent properties as an impact modifier. The present invention has been completed based on these findings.
  • latex is used as a coagulant
  • a method for producing an enlarged latetus is provided.
  • an enlarged latex obtained by the production method there is provided an enlarged latex obtained by the production method.
  • a method for producing a graft copolymer which comprises polymerizing a polymerizable monomer in the presence of the enlarged latex, and a graft copolymer obtained by this method And thermoplastic And a resin composition containing the resin.
  • the composition contains an anionic surfactant and at least one surfactant selected from the group consisting of a cationic surfactant and an amphoteric surfactant, and has a volume average particle diameter (D v ) And the number average particle diameter (Dn) (Dv / Dn) are 1.2 to 1.8.
  • the latex used in the present invention may be prepared by any method.
  • the components constituting the c latex, which is synthesized by emulsion polymerization are not particularly limited.
  • butadiene (Co) polymers of gen-based monomers such as styrene, isoprene, and chloroprene; styrene, acrylonitrile, atalinoleate, methacrylate, ethylene, vinyl chloride, vinylidene chloride, and acetic acid (Co) polymers of vinyl monomers such as butyl and vinylidene fluoride; copolymers of gen monomers and vinyl monomers; silicone resins such as polyorganosiloxanes; polyesters , An epoxy resin, a melamine resin, a polyamide, a polyurethane, and the like. These polymers can be used alone or in combination of two or more.
  • the latex may have a structure such as a core Z-shell structure, or may be an organic / in
  • Latex obtained by copolymerizing with a monomer may be used.
  • the monomer having a functional group include atalylic acid, methacrylic acid, itaconic acid, fumaric acid, acrylamide, Examples include methacrylamide, hydroxyshetyl metha- relate, hydroxeshetyl atalylate, and glycidyl methatalylate.
  • crosslinkable monomer such as divinyl / millzene, ethylene glycol methacrylate, trimethylolpropane trimethacrylate, or 1,3-butanediol diatalylate can be used in combination.
  • a radical polymerization initiator In the polymerization of the latex, a radical polymerization initiator, a thermal decomposition type polymerization initiator, a redox-based initiator, and the like can be used. In addition, light, X-ray, or the like may be used.
  • a chain transfer agent such as t-dodecinoleme / recaptan, n-octinolemenorecaptan, and ⁇ -methylstyrene dimer can be used, if necessary.
  • a surfactant is used at the time of polymerization, which will be described later.
  • latexes may be used alone or as a mixture of two or more types of latetus.
  • a (co) polymer latex of a gen monomer a (co) polymer latex of a bull monomer, and a copolymer latex of a gen monomer and a vinyl monomer is preferred.
  • the method of the present invention is applied to a diene (co) polymer latex containing a diene monomer such as butadiene, the effect is large and particularly preferable results are obtained.
  • Gen-based (co) polymer latexes include (co) polymer latexes of gen-based monomers such as butadiene, isoprene, and chloroprene; or gen-based and vinyl-based monomers. Copolymer lattetas.
  • the vinyl monomer to be copolymerized with the diene monomer include aromatic butyl monomers such as styrene and -methylstyrene; and (meth) acrylates such as methyl methacrylate and ⁇ -butyl acrylate.
  • examples of the (co) polymer latex of the gen monomer include polybutadiene latex.
  • a copolymer rubber of a gen monomer such as butadiene and a butyl monomer such as styrene can be used.
  • the copolymerization ratio of the gen-based monomer and the bull-based monomer is not particularly limited. For example, 50 to 9.9% by weight of a gen-based monomer and 1 to 50% by weight of a bull-based monomer are used.
  • the particle diameter (volume average particle diameter) of the latex is not particularly limited, it is preferably 2 OOnm or less, more preferably 15 Onm or less. This is because the method of the present invention can effectively enlarge a latex having a particle diameter of 15 O nm or less, and even a fine particle diameter of 100 nm or less. It is.
  • the latex contains (a) an anionic surfactant and (b) at least one surfactant selected from the group consisting of a cationic surfactant and an amphoteric surfactant.
  • a method for allowing these surfactants to be present in the latex for example, emulsion polymerization is carried out using an anion surfactant during the production of the latex, and thereafter, a cationic surfactant and / or an amphoteric surfactant are added to the latex. The method of adding is mentioned.
  • a cationic surfactant and Z or an amphoteric surfactant are added to a latex containing an anionic surfactant, a precipitate may be formed, and in such a case, a precipitate is required at the time of latex production. It is preferable to add a cationic surfactant and / or an amphoteric surfactant together with an anionic surfactant.
  • polymerization was carried out using an anionic surfactant, and a cationic surfactant and / or an amphoteric surfactant were mixed with an excessive amount of anionic surfactant during or after the polymerization. The above addition method can also be adopted.
  • anionic surfactant examples include carboxylate, sulfonate, sulfate, and phosphate, which are generally used in emulsion polymerization. Can be mentioned. Among these, for example, sodium oleate, potassium oleate, sodium stearate, potassium stearate, sodium myristate, potassium myristate, sodium palmitate , Potassium palmitate, potassium laurate, potassium perdecanoate, sodium linoleate, potassium linoleate, potassium porinate, potassium nonanoate, potassium porinate Alkali metal salts of higher fatty acids such as potassium; phenolic metal salts of rosin acids such as disproportionated rosin acid potassium; Alkali metal salts of alkyl sarcosine acids; alkali metal salts of alkenyl succinic acid And a carboxylate type anionic surfactant such as These anionic surfactants can be used alone or in combination of two or more. When a carboxylate type anionic surfact
  • the cationic surfactant examples include quaternary ammonium salts having an alkyl group, primary to tertiary amine salts having an alkyl group, alkyl phosphonium salts, and alkyl sulfoium salts. it can. More specifically, for example, benzalkonium chloride, alkyltrimethylammonium chloride, alkylamine acetate, alkylamine hydrochloride, dialkyldimethylammonium chloride, alkylisoquinoline chloride, alkylisoquinoline bromide and the like are exemplified. be able to.
  • amphoteric surfactants examples include N-octyl betaine, N-decinolebetaine, N-pandesinobetaine, N-dodecinobetaine, N-tetradecylbetaine, N-hexadecylbetaine, octylbetaine, Betaines such as decyl betaine and dodecyl betaine; carboxylic acid-type amphoteric surfactants containing betaines such as sulfobetaine and sulfate betaine; and ester sulfates such as hydroxysethylimidazoline sulfate.
  • Amphoteric surfactants sulfonic acid type amphoteric surfactants such as imidazoline sulfonic acid Surfactant; and the like.
  • the surfactants selected from the group consisting of cationic surfactants and amphoteric surfactants can be used alone or in combination of two or more.
  • the ratio of (a) anionic surfactant to (b) cationic surfactant and Z or amphoteric surfactant is not particularly limited, but the stability of latex, the control of coagulation and enlargement, and the enlargement of latex From the viewpoint of the stability of (a), the cationic surfactant and / or the amphoteric surfactant are preferably used in an amount of 0.01 to 100 mol, more preferably 100 to 100 mol of the anionic surfactant. Is preferably present in a proportion of 0.1 to 80 mol, more preferably 1 to 50 mol.
  • the surfactant is usually used in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the (co) polymer component or the monomer forming the (co) polymer component in the latex. Used in proportions.
  • an inorganic acid (i) an organic acid, (iii) a substance that generates an acid in water, and (iv) two or more substances react to generate an acid as the coagulation thickening agent.
  • a combination of substances and (V) at least one selected from the group consisting of substances that generate an acid upon irradiation with actinic rays are used.
  • Examples of the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid, carbonic acid, and phosphoric acid.
  • Examples of the organic acid include acetic acid, formic acid, tartaric acid, malic acid, and butyric acid.
  • Examples of the substance that generates an acid in water include: acid anhydrides such as acetic anhydride and maleic anhydride; esters such as sulfate esters and phosphate esters; And the like.
  • a combination of substances that generate an acid by reaction of two or more kinds of substances a combination of substances that generate an acid by a redox reaction is preferable.
  • Specific examples include peroxide Z formaldehyde and peroxide. / Sulfoxylate, hydrogen peroxide Z-sulfoxylate and formaldehyde Can be mentioned. Among them, a combination of hydrogen peroxide / sulfoxylate and formaldehyde (for example, sodium formaldehyde sulfoxylate) is preferable.
  • the substance that generates an acid upon irradiation with an actinic ray is not particularly limited as long as it is a substance that generates a Brenstead acid or a Lewis acid upon irradiation with an actinic ray.
  • Specific examples thereof include an oxalate salt, a halogenated organic compound, Quinone diazide compound, a, a bis (sulfonyl) diazomethane compound, a—force carbonyl compound / sulfone compound, organic acid ester compound, organic acid amide Compounds and organic acid imide compounds are exemplified.
  • the actinic rays include ultraviolet rays, far ultraviolet rays, electron beams, and laser beams.
  • These acids or acid-generating substances are usually added to the latex as aqueous solutions. Since the acidity varies depending on the type of the acid or the substance that generates the acid, the amount of the latex added must be confirmed in advance by experiments in a range that does not cause latex agglomeration and that is likely to cause latex enlargement. It is desirable to do. Preferred experimental examples in this regard are specifically shown in each example.
  • a coagulant and a salt can be used together.
  • the salts may be contained in the latex in advance or may be added before the coagulation enlargement treatment.
  • Salts having no pH buffering action include, for example, sodium chloride, potassium chloride, calcium chloride and the like.
  • Salts having a pH buffering action include, for example, sodium pyrophosphate, sodium carbonate, ammonium sulfate and the like.
  • the particle diameter of the latex is enlarged by the action of an acid originating from the coagulation thickening agent.
  • anionic surfactant, cationic surfactant and Z or amphoteric surfactant are contained in the latex.
  • an acid or a substance that generates an acid is added to the latex as an aggregating thickening agent to cause the acid originating from the aggregating thickening agent to act.
  • Aggregating and enlarging agent is an inorganic acid, in the case of a substance which produces organic acids, and acid in water, c aggregating and enlarging agent immediately acid in latex performs aggregating and enlarging action, two or more kinds of substances
  • a chemical reaction of these substances occurs in the latex to generate an acid, and the acid performs an agglomeration and enlargement action.
  • the coagulation enlargement agent is a substance that generates an acid upon irradiation with actinic rays
  • the latex is irradiated with actinic rays to generate an acid, and the generated acid performs a coagulation enlargement action.
  • the treatment temperature of the coagulation enlargement is not particularly limited, but is generally preferably 20 to 90 ° C, which is a temperature that can be easily controlled, and more preferably the glass transition temperature of the polymer component constituting the latex or higher.
  • the coagulation enlargement treatment can be performed while stirring the latex.
  • the coagulation enlargement agent can be added, and the mixture can be gently stirred and mixed so as to be uniformly dispersed, and then the stirring can be stopped. If the latex is not agitated, enlargement occurs due to brown aggregation of latex particles.
  • the coagulation enlargement agent is a combination of substances that generate an acid by the reaction of two or more kinds of substances or a substance that generates an acid by irradiation with actinic rays
  • the step of applying an acid The method of enlarging by browning without agitation of latex is described by the ratio (Dv / Dn) between the volume average particle diameter (Dv) and the number average particle diameter (Dn). This is preferred for obtaining an enlarged latex having a narrow particle size distribution.
  • Latexes with a narrow particle size distribution and uniformly enlarged are suitable for use in various fields. Therefore, high quality and high performance can be exhibited.
  • the acid is usually neutralized by adding a basic substance such as sodium hydroxide, potassium hydroxide, sodium carbonate, or potassium carbonate to the latex.
  • a basic substance such as sodium hydroxide, potassium hydroxide, sodium carbonate, or potassium carbonate.
  • the particle diameter of the enlarged latex is not particularly limited, it is usually 150 nm or more, preferably about 200 to 100 n in volume average particle diameter (DV).
  • the method of the present invention can increase the volume average particle diameter to preferably 200 nm or more, more preferably 250 nm or more, even when applied to a latex having a fine particle diameter. It can be enlarged to more than 30 O nm or even more than 350 nm. In particular, the effect of the present invention is remarkable when the volume average particle diameter is enlarged to 300 nm or more.
  • the particle size distribution (DV / Dn) of the enlarged latex is not particularly limited, but is preferably 1.2 to 1.8, more preferably 1.2 to 1.6 according to the method of the present invention. More preferably, it is possible to obtain an enlarged latex having a particle diameter of 1.2 to 1.5.
  • a graft copolymer By performing the graft polymerization on the enlarged latex obtained by the above method, a graft copolymer can be obtained.
  • the graft polymerization can be performed by polymerizing a polymerizable monomer in the presence of enlarged latex.
  • the graft polymerization method is not particularly limited, but an emulsion polymerization method and a suspension polymerization method are preferred.
  • surfactants such as anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants; and suspending agents such as organic and inorganic suspending agents are appropriately added. This can make the system more stable.
  • the polymerizable monomer used for the graft polymerization is not particularly limited, but a butyl monomer is preferable.
  • the weight ratio between the enlarged latex and the polymerizable monomer is not particularly limited, either. It is preferable to polymerize the vinyl monomer at a ratio of 95 to 5% by weight to a solid content of 5 to 95% by weight.
  • vinyl monomers examples include aromatic vinyl monomers such as styrene and ⁇ -methylstyrene; aromatic polycyclic vinyl monomers such as 4-vinylinobiene and 2-vinylnaphthalene; Unsaturated nitrile monomers such as lonitolyl and methacrylonitrile; alkyl (meth) acrylate monomers such as methyl methacrylate and butyl acrylate; acrylic acid and methacrylic acid Examples thereof include unsaturated carboxylic acid monomers such as lylic acid, maleic acid, and maleic anhydride; and maleimide monomers such as maleimide and ⁇ -phenylmaleimide. These butyl monomers can be used alone or in combination of two or more.
  • polyfunctional vinyl monomers such as dibibenzene, aryl methacrylate, ethylene glycol dimethacrylate / ethylene glycol, and 1,3-butylene methacrylate as appropriate. can do.
  • a chain transfer agent such as t-decyl mercaptan and n-octyl mercaptan can be used.
  • the bullet-based monomer to be graft-polymerized to the enlarged latex may be added to the reaction system at a time, may be added in several portions, or may be added continuously. Alternatively, these may be combined. When performing the graft polymerization in two or more stages, the monomer composition in each stage may be the same or different.
  • a latex copolymer latex containing an anionic surfactant and a cationic surfactant and Z or an amphoteric surfactant can be used. You get a slurry.
  • the ratio (DvZDn) between the volume average particle diameter (Dv) and the number average particle diameter (Dn) of the graft copolymer of the present invention is preferably 1.2 to 1.8, more preferably. Is from 1.2 to 1.6, more preferably from 1.2 to: L. 5 and the particle size is uniform.
  • the particle size distribution of the grafted portion often does not correspond to the particle size distribution of the graft copolymer.
  • D v / D n means the ratio between the volume average particle diameter and the number average particle diameter of the portion to be grafted.
  • the narrow particle size distribution of the Dalaf copolymer reduces the number of coarse particles and can prevent a decrease in transparency due to light scattering by the coarse particles. it can.
  • the particle size distribution of the graft copolymer is narrow, the number of particles having a particle size effective for improving the strength increases, and the strength increases.
  • the type and combination of the vinyl monomer to be graft-polymerized should be selected so that the refractive index of the grafted polymer (enlarged latex particles) and that of the graft copolymer match. Preferably.
  • the enlarged latex is butadiene rubber latex or styrene butadiene rubber latex, styrene, methacrylic acid, butyl acrylate, and the like are appropriately combined as vinyl monomers to be graft-polymerized.
  • the refractive index of the graft polymer and that of the graft copolymer can be matched.
  • the difference in the refractive index between the grafted polymer and the graft copolymer is preferably set to 0.02 or less.
  • the volume average particle diameter of the graft copolymer is usually 150 nm or more, preferably about 200 to 100 nm, and the present invention is applied particularly when it is 300 nm or more. The effect is remarkable.
  • the volume average particle diameter means the volume average particle diameter of the portion to be grafted.
  • the graft copolymer is obtained as a latex, a slurry, or powders separated and recovered from these.
  • the method of separating and recovering the graft copolymer from the latex or slurry as a granular material is not particularly limited. Examples include a method of coagulating by adding an ID coagulant and dehydrating and drying the resulting slurry, and a method of spraying and drying the latex in hot air. In any case, before or after coagulation and drying, additives such as antioxidants, UV absorbers, antiblocking agents, pigments, fillers, lubricants, antistatic agents, and antibacterial agents can be added as appropriate. .
  • the graft copolymer can be used alone as a thermoplastic resin.
  • the dried powder can be used as it is for molding, or it can be pelletized before molding. It can also be used for processing.
  • the molding method is not particularly limited. For example, a processing method performed on a normal thermoplastic resin, such as calendaring, extrusion, blow molding, or injection molding, can be employed.
  • the graft copolymer of the present invention can be blended with a thermoplastic resin to form a resin composition.
  • a thermoplastic resin Both blending ratio (solids basis) may be suitably determined depending on the use purpose and desired physical properties, usually graph preparative co polymer from 0.1 to 9 9.9 wt ° / 0 and a thermoplastic
  • the resin can be appropriately selected within the range of 99.9 to 0.1% by weight. In many cases, good results can be obtained with 1 to 99% by weight of the graft copolymer and 99 to 1% by weight of the thermoplastic resin.
  • thermoplastic resin such as a butyl chloride resin
  • 1 to 50% by weight of the graft copolymer and 99 to 50% by weight of the thermoplastic resin are used. Often blended in proportions.
  • thermoplastic resin examples include, but are not limited to, polystyrene, high impact polystyrene (HI polystyrene resin), acrylic resin, methyl methacrylate-styrene resin (MS resin), vinyl chloride resin, Examples thereof include chlorinated vinyl chloride resin, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin (ABS resin), thermoplastic polyester resin, and polycarbonate resin. These thermoplastic resins can be used alone or in combination of two or more.
  • additives such as an antioxidant, an ultraviolet absorber, an antiblocking agent, a pigment, a boiler, a lubricant, an antistatic agent, and an antibacterial agent can be appropriately added.
  • the blending method is not particularly limited. If necessary, mixing may be performed using a ribbon blender @ Henschel mixer.
  • This resin composition can be used for molding as it is, or can be pelletized before being subjected to molding.
  • the molding method is not particularly limited, and a processing method performed on a normal thermoplastic resin such as calendering, extrusion, blow molding, or injection molding can be employed.
  • the difference between the refractive index of the grafted polymer and the graft copolymer is reduced, and It is desirable to adjust the respective compositions so as to reduce the difference in the refractive index between the copolymer and the thermoplastic resin.
  • the difference between the refractive indices be 0.02 or less.
  • the volume average particle diameter (D v; also simply referred to as the average particle diameter) is calculated using an electron microscope photograph obtained using a transmission electron microscope and an image analyzer (Asahi Kasei, IP It was measured by image analysis using 1 500 PC).
  • the particle size distribution (DV / O n) is calculated by calculating the ratio of the volume average particle size (D v) to the number average particle size (D n) obtained by image analysis in the same manner as described above. is there.
  • a cast film was prepared using the enlarged latex, and the obtained cast film was immersed in methyl alcohol and vacuum-dried at room temperature for 24 hours to prepare a sample film.
  • the refractive index of this sample film was measured at 23 ° C using Abbe's refractive index meter.
  • a graft copolymer or thermoplastic resin was hot-pressed at 200 ° C to prepare a sample film, and the refractive index of this sample film was measured at 23 using Abbe's refractometer. .
  • the graft copolymer or the thermoplastic resin composition is pelletized using an extruder and a pelletizer, and then each pellet obtained is heat-pressed at 200 ° C to prepare a 3 mm thick sample plate.
  • the sample plate was measured for parallel light transmittance and haze at 23 ° C. using a haze meter.
  • Example 2 4.2 Part 2 Hydrogen peroxide (5% aqueous solution) 2.3 Except for adding 2 parts, coagulation and enlargement were performed in the same manner as in Example 1 to obtain an enlarged latex (B-2).
  • Example 1 during the polymerization of the latex, the amount of benzalkonium chloride (cationic surfactant) was increased from 0.02 part to 0.05 part, and butadiene was used instead of 75 parts of butadiene and 25 parts of styrene. Except that 100 parts were used, polymerization was carried out in the same manner as in Example 1 to obtain a latex (A-3) having a conversion of 98% and a volume average particle diameter of 98 nm.
  • Example 2 3.5 parts Hydrogen peroxide (5% aqueous solution) Except for adding 1.9 parts, coagulation and enlargement were performed in the same manner as in Example 1 to obtain an enlarged latex (B-3).
  • Example 1 an attempt was made to obtain an enlarged latex in the same manner as in Example 1 except that benzalcoyum chloride (cationic surfactant) was not added in the polymerization of the latex. After stopping and holding for 1 hour, a 500 nm enlarged latex was formed, but after adding sodium hydroxide for neutralization, stirring was started and the solid content solidified. Precipitated, and a stable enlarged latex could not be obtained.
  • benzalcoyum chloride cationic surfactant
  • the latex (A-1) with a volume-average particle size of 98 nm obtained in Example 1 was used as seed particles to produce latettus with a large particle size by seed polymerization. Tried.
  • the latex (a-3) obtained above was used for 60. While maintaining at C, 0.2 parts of sodium dodecyl phenyl ether disulfonate was added, and the stirring speed was reduced. 1.2 parts of phosphoric acid (5% aqueous solution) was added to increase coagulation and enlargement. I tried, but the latex solidified. Discussion>
  • Example 1 is an example in which the present invention is applied to a butadiene-styrene copolymer latex
  • Examples 2 and 3 are examples in which the present invention is applied to a butadiene polymer latex.In each case, a stable enlarged latex is obtained in a short time. Has been obtained.
  • Comparative Example 1 the butadiene-styrene copolymer latex This is an example in which a cationic surfactant was not used at the time of production of the metal. Even in the case of Comparative Example 1, although the coagulation hypertrophy progresses, the re-stabilizing effect of the cationic surfactant at the time of decreasing the pH is not exhibited. For this reason, when attempting to increase the pH of the system by adding sodium hydroxide and stabilizing the system, a solid content is precipitated due to shearing force due to stirring, and a stable enlarged latex cannot be obtained.
  • Comparative Example 2 is an example in which a latex having a particle size equivalent to that of Example 1 was obtained by seed polymerization, but a very long polymerization time was required, resulting in poor productivity and economical efficiency. Not a way.
  • Comparative Example 3 is an example (A-2) in which an enlarged particle diameter of 260 nm described in JP-A-9-171603 was obtained without using a cationic surfactant. In this example, the number of phosphoric acid additions was increased so that a larger particle size could be obtained, but the entire latex was solidified and an enlarged latetus was not obtained.
  • Enlarged latex (B4) (as solid content) 75 parts potassium oleate 0.3 parts tetrasodium pyrophosphate 0.05 parts were added, the temperature was lowered to 60 ° C, and the atmosphere was replaced with nitrogen. Later
  • a graft copolymer latex (C-5) was obtained in the same manner as in Example 4, and the graft copolymer was obtained. (D-5) was recovered.
  • the graft copolymer latex (C-5) had a volume average particle diameter of 205 nm and Dv / Dn of 1.37.
  • the refractive index of the graft copolymer (B-5) of the graft copolymer (D-5) was 1.539, and the refractive index of the graft copolymer (D-5) was 1. 5 3 9
  • Bloated latex (b-4) The volume average particle size was 200 nm, ⁇ / ⁇ n was 1.90, and was mechanically stable. The total of the precipitates and the deposits on the polymerization vessel was 0.10% of the charged monomer.
  • the graft polymerization was carried out in the same manner as in Example 4, and the graph average weight was 205 nm and ⁇ v / ⁇ n was 1.85.
  • a coalesced latex (c-4) was obtained, and a powdery graft copolymer (d-4) was obtained in the same manner as in Example 4.
  • the refractive index of the graft copolymer (b-4) of the graft copolymer (d-4) is 1.539, and the refractive index of the graft copolymer (d-4) is 1.5 3 9
  • a resin composition with a thermoplastic resin was prepared according to the following formulation, and the physical properties were measured.
  • the refractive index of the MS resin used was 1.540.
  • thermoplastic resin composition (MS resin)
  • the weight of the graft with the particle diameter increased according to the present invention The resin composition blended with the coalesced (Example 4) has a slightly higher transparency than the resin composition blended with the graft copolymer (Comparative Example 4) prepared using the usual coagulation enlargement technology.
  • a great improvement in impact resistance has been achieved by the reduction of The resin composition using the graft copolymer of the present invention (Example 5) having the same particle diameter and a narrow particle size distribution as that of Comparative Example 4 is the same as the resin composition using the graft copolymer of Comparative Example 4. Compared to, the balance between impact strength and transparency is improved.
  • Enlarged latex (B-3) (as solid content) ⁇ 75 parts Potassium oleate 0.3 parts 0.005 parts of tetrasodium pyrophosphate salt Add 60 parts of 60 ° C. After replacing with nitrogen,
  • Methyl methacrylate 12.5 parts butyl acrylate 2.5 parts t-butyl peroxide 0.2 parts sodium formaldehyde sulfoxylate 0.2 parts was added over 1 hour, and then 3 parts After holding for a while,
  • Example 6 Using the enlarged latex (b-5), a graft polymerization was performed in the same manner as in Example 6, and a graph having a volume average particle diameter of 225 nm and a Dv / Dn of 1.85 was obtained. A foot copolymer latex (c-5) was obtained, and then a powdery graft copolymer (d-5) was obtained in the same manner as in Example 4.
  • a resin composition with a thermoplastic resin (vinyl chloride resin) was prepared according to the following formulation, and the physical properties were determined. It was measured. Specifically, the following components were prepared, put into a shell mixer, and heated to 115 ° C. with stirring to obtain a uniformly mixed resin composition.
  • thermoplastic resin composition PVC
  • Example 6 the resin composition containing the graft copolymer of the present invention
  • Example 5 the resin composition containing the graft copolymer of the present invention
  • a method for producing an enlarged latex which is economical, has high productivity, and can be enlarged while maintaining the stability of the latex.
  • the stability of the latex is not impaired even if the polymerizable monomer is subjected to graft polymerization in the presence of the enlarged latetus.
  • an enlarged latex having such excellent properties a method of producing a darafto copolymer by polymerizing a polymerizable monomer in the presence of the enlarged latex, A resin composition containing a copolymer and a thermoplastic resin, and a graft copolymer having a large particle size and a uniform particle size distribution are provided.
  • the resin composition of the present invention is economically improved in physical properties (particularly, impact resistance). Therefore, the present invention can be applied to various fields of industry that require a latex having a large particle diameter and a graft copolymer having a large particle diameter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明細書 肥大化ラテックスの製造方法 技術分野
本発明は、 ラテックスを凝集肥大化させて粒子径の大きな肥大化ラテ ックスを製造する方法に関し、 さらに詳しくは、 経済的で生産性が高く ラテツタスの安定性を維持しながら肥大化することが可能な肥大化ラテ ックスの製造方法に関する。 また、 本発明は、 このような肥大化ラテツ クスを用いたグラフ ト共重合体の製造方法、 該グラフ ト共重合体と熱可 塑性樹脂とを含有する樹脂組成物などに関する。 背景技術
ラテックスは、 ゴムやプラスチックなどの高分子が乳化剤により コロ イ ド状に水中に分散した乳濁液である。 合成ラテックスとしては、 例え ば、 スチレンブタジエンゴムラテックス、 アク リ ロニ トリルブタジエン ゴムラテックス、 ポリ クロロプレンゴムラテックスなどのゴムラテック ス ;酢酸ビュル (共) 重合体ラテックス、 スチレン (共) 重合体ラテツ タス、 アク リル酸エステル (共) 重合体ラテックスなどの樹脂ラテック ス ; などが乳化重合により製造されている。 ラテックスは、 合成樹脂分 野、 塗料分野、 紙や織物の処理剤分野、 コンク リートやアスファルト等 の土木分野など、 広範な分野で使用されている。
ラテックスは、 一般に微細な粒子径の高分子が分散した乳濁液である 力 、 使用目的によっては、 大きな粒子径のラテックスが必要となる用途 も多い。 また、 ゴムラテックスの存在下にビュル系単量体を重合してな るグラフ ト重合体は、 熱可塑性樹脂の耐衝撃性改質剤などとして用いら れているが、 このようなグラフト共重合体も、 使用目的によって様々な ム 粒子径のものが選択使用されている。 粒子径の大きなグラフ ト共重合体 を得るには、 粒子径の大きなラテツクスを使用することが好ましい。
一般に、 ラテックスは、 乳化重合法によって製造されているが、 粒子 径の大きいラテックスをシード重合法によって得よう とすると、 長い重 合時間が必要であり、 生産性が低下する。 特に、 ジェン系単量体ゃジェ ン系単量体とビニル系単量体とを含む単量体混合物をシード重合法によ つて重合し、 粒子径の大きいラテックスを得ようとすると、 非常に長い 重合時間を必要とする。 従来から、 短時間で粒子径の大きいラテックス を得る方法と して、 粒子径の小さいラテックスに、 無機酸、 有機酸、 塩、 高分子凝集剤、 肥大化用ラテックスなどを添加して、 凝集肥大化させる 方法が提案されている。
例えば、 特開平 9 - 7 1 6 0 3号公報には、 乳化重合によって得られ たジェン系重合体ゴムラテツタスに、 ゴム塊を発生しない程度の緩やか な剪断を加えて、 凝集剤の混合を促進しつつ、 ブラウン凝集を主体とす る凝集により肥大化を行う方法が提案されている。 ブラウン凝集とは、 ラテックス粒子がブラゥン運動を行うことにより衝突し凝集することを 意味している。 具体的には、 凝集剤を用いたラテックスの凝集肥大化中、 攪拌回転数を低下させて、 ブラウン運動を主体とする凝集を行うことに より、 凝集塊の生成を抑制してラテックスの凝集肥大化を行う方法であ る。 この方法は、 攪拌翼による剪断凝集とブラウン凝集とを併用するも のである。 この方法によれば、 ある程度の大きさにまでラテックス粒子 を肥大化させることができるものの、 実施例を見ても、 十分に大きな粒 子にまで肥大化させることができていない。 しかも、 この方法では、 凝 集剤として酸を使用し、 かつ、 凝集剤を系の p Hが 5以下となるように 添加している。 ところが、 該方法により得られた肥大化ラテックスは、 塩基性物質を添加して系の p Hを上げることによりラテツクスを安定化 させようとしても、 系内の塩濃度が高いため、 ラテックスの安定性が不 十分となる。 そのため、 該ラテックスの存在下にビュル系単量体をダラ フ ト重合させよう とすると、 析出物が生成しやすいという問題があった, 特公昭 4 4 - 2 2 2 9号公報には、 ブタジエン系重合体の微小な粒子 を含有する水性分散液に、 ホルムアルデヒ ドスルホキシル酸塩及び過酸 化物を添加し、 単量体を添加してグラフ ト重合を進行させるのと並行し て該粒子を肥大化させる方法が提案されている。 しかし、 この方法では. 該粒子を十分に大きな粒子にまで肥大化させることが困難である。
特公昭 5 6— 4 5 9 2 1号公報には、 p H 7以上に調整した合成ゴム ラテックスに、 ァニオン界面活性剤の存在下に重合して得られた P H 4 以上のアタ リル酸エステル一不飽和酸共重合体ラテツクスを添加するこ とにより、 合成ゴムラテツタスの粒子径を肥大化させる方法が提案され ている。 しかし、 この方法では、 肥大化用ラテックスを別途調製する必 要があり、 操作が煩雑で、 経済的にも好ましい方法ではない。 しかも、 このよ うなァクリル酸エステル一不飽和酸共重合体ラテックスを添加し て肥大化した合成ゴムラテックスの存在下に、 ビュル系単量体をグラフ ト重合させよう とすると、 ラテックスの安定性が損なわれて、 凝集塊が 生成しやすいという問題があった。 発明の開示
本発明の目的は、 経済的で生産性が高く、 ラテックスの安定性を維持 しながら肥大化することが可能な肥大化ラテツダスの製造方法を提供す ることにある。
また、 本発明の目的は、 肥大化したラテックスの存在下に重合性単量 体をグラフ ト重合させても、 ラテックスの安定性が損なわれない肥大化 ラテツタスの製造方法を提供することにある。
本発明の他の目的は、 このよ うな優れた諸特性を有する肥大化ラテツ クス、 該肥大化ラテツクスの存在下に重合性単量体を重合させるグラフ ト共重合体の製造方法、 該グラフ ト共重合体と熱可塑性樹脂とを含有す る樹脂組成物、 及び粒子径が大きく、 粒子径分布が揃ったグラフ ト共重 合体 (ラテックス、 スラ リー、 または粉粒体) を提供することにある。 本発明者らは、 前記目的を達成するために鋭意研究を行った結果、 ラ テックス中に、 ァニオン界面活性剤と、 カチオン界面活性剤及びノまた は両性界面活性剤とを存在させ、 そこに、 凝集肥大化剤として、 酸また は酸を生成可能な物質を添加して、 酸を作用させることにより粒子径を 肥大化させる方法に想到した。
ァニオン界面活性剤によつて安定化されているラテツタスの P Hを酸 により低下させると、 ラテックスの一次粒子が凝集肥大化するが、 p H が低下するにしたがって、 ァニオン界面活性剤による安定化作用が弱ま り、 ラテックスの安定性が損なわれやすくなる。 これに対して、 ラテツ タス中に、 ァニオン界面活性剤と、 カチオン界面活性剤及び / /または両 性界面活性剤とを存在させると、 (1) p Hが高い時には、 ァニオン界面 活性剤の安定化作用で系が安定であり、 (2) 酸により p Hが低下すると、 ァニオン界面活性剤の安定化作用が弱まり、 ラテックス粒子の凝集肥大 化が起こり、 (3) p Hがさらに低下すると、 カチオン界面活性剤及ぴ Z または両性界面活性剤の安定化作用で、 系が再び安定化する。 その結果、 安定化した肥大化ラテツタスを得ることができる。 安定化した肥大化ラ テックスをグラフ ト重合反応に供しても、 系の安定性が損なわれること がない。
また、 この方法において、 ラテックスの p Hの低下を、 例えば、 過酸 化水素とスルホキシル酸塩 · ホルムアルデヒ ドとの組み合わせのような、 2種類以上の物質が反応して酸を生成する物質の組み合わせを用いて生 じさせ、 さらには、 凝集肥大化中に攪拌を行わずに、 ブラウン凝集によ る凝集肥大化を行うことによ り、 粒子径分布が狭く、 かつ、 粒子径が大 きな肥大化ラテツクスを安定的に生成させることができる。 本発明の方法によって得られた肥大化ラテックスに重合性単量体をグ ラフ ト重合させることによって得られるグラフト共重合体は、 それ単独 で各種用途に使用することができるが、 熱可塑性樹脂の耐衝撃性改質剤 などとしても優れた特性を示すものである。 本発明は、 これらの知見に 基づいて完成するに至ったものである。
本発明によれば、 ラテックスを凝集肥大化させて粒子径の大きな肥大 化ラテックスを製造する方法において、
( 1 ) ラテックス中に、
(a) ァニオン界面活性剤、 並びに
(b) カチオン界面活性剤及び両性界面活性剤からなる群より選ばれる少 なく とも一種の界面活性剤
を存在させ、
( 2 ) これらの界面活性剤の存在下、 ラテックスに、 凝集肥大化剤とし て、
(i )無機酸、
( i i )有機酸、
(i i i )水中で酸を生成する物質、
( i v) 2種類以上の物質が反応して酸を生成する物質の組み合わせ、 及び (V)活性光線の照射により酸を生成する物質
からなる群より選ばれる少なく とも一種を添加し、 そして、
( 3 ) 凝集肥大化剤に起因する酸を作用させることにより、 ラテックス の粒子径を肥大化させる
ことを特徴とする肥大化ラテツタスの製造方法が提供される。
また、 本発明によれば、 前記製造方法により得られた肥大化ラテック スが提供される。 さらに、 本発明によれば、 前記肥大化ラテックスの存 在下、 重合性単量体を重合させることを特徴とするグラフト共重合体の 製造方法、 及びこの製造方法により得られたグラフ ト共重合体と熱可塑 性樹脂とを含有する樹脂組成物が提供される。
さらにまた、 本発明によれば、 ァニオン界面活性剤と、 カチオン界面 活性剤及び両性界面活性剤からなる群より選ばれる少なく とも一種の界 面活性剤とを含有し、 体積平均粒子径 (D v ) と数平均粒子径 (D n ) との比 (D v / D n ) が 1 . 2〜 1 . 8であるグラフ ト共重合体が提供 される。 発明を実施するための最良の形態
1. ラテックス
本発明に用いられるラテックスは、 如何なる方法により調製されたも のでもよいが、 通常は、 乳化重合によって合成されたものが用いられる c ラテックスを構成する成分は、 特に制限されないが、 例えば、 ブタジェ ン、 イソプレン、 クロ口プレンなどのジェン系単量体の (共) 重合体 ; スチ ン、 アク リ ロニ ト リル、 アタ リノレ酸エステル、 メ タク リル酸エス テル、 エチレン、 塩化ビュル、 塩化ビニリデン、 酢酸ビュル、 フッ化ビ 二リデンなどのビニル系単量体の (共) 重合体 ; ジェン系単量体と ビニ ル系単量体との共重合体 ; ポリオルガノシロキサンなどのシリ コーン樹 脂 ; ポリエステル、 エポキシ樹脂、 メラミン樹脂、 ポリアミ ド、 ポリ ウ レタン等を例示することができる。 これらの高分子は、 それぞれ単独で、 あるいは 2種以上を組み合わせて用いることができる。 ラテックスは、 コア Zシェル構造などの構造をもっているものでもよく、 また、 有機 , 無機複合ラテツタスであってもよい。
ラテックスの表面電荷を調整して、 凝集肥大化をコントロールするた めに、 前記の如きジェン系単量体及び Zまたはビュル系単量体と、 ァニ オン性及び またはカチオン性の官能基を有する単量体とを共重合させ たラテックスであってもよい。 官能基を有する単量体と しては、 例えば、 アタ リル酸、 メタタ リル酸、 ィタコン酸、 フマール酸、 アク リルアミ ド、 メ タク リルアミ ド、 ヒ ドロキシェチルメ タタ リ レー ト、 ヒ ドロキシェチ ルアタ リ レート、 グリシジルメタタ リ レー トなどが挙げられる。 さらに ジビ二/レベンゼン、 エチレングリ コーノレジメタクリ レート、 ト リメチロ ールプロパント リメタタ リ レート、 1, 3 —ブタンジオールジアタリ レ ートなどの架橋性単量体を併用することができる。
ラテックスの重合に際しては、 ラジカル重合開始剤、 熱分解型重合開 始剤、 レドックス系開始剤などを使用することができるが、 その他、 光 やエックス線等を用いてもよい。 重合時に、 必要に応じて、 t — ドデシ ノレメ /レカプタン、 n—ォクチノレメノレカブタン、 α—メチルスチレンダイ マーなどの連鎖移動剤を使用することができる。 また、 重合時に界面活 性剤を使用するが、 この点については、 後述する。
これらのラテックスは、 それぞれ単独であっても、 2種類以上のラテ ッタスの混合物でもよい。 これらの中でも、 ジェン系単量体の (共) 重 合体ラテックス、 ビュル系単量体の (共) 重合体ラテックス、 及ぴジェ ン系単量体とビニル系単量体との共重合体ラテックスが好ましい。 重合 時間の短縮という点からは、 ブタジエンなどのジェン系単量体を含むジ ェン系 (共) 重合体ラテックスに本発明の方法を適用すると、 効果が大 きく 、 特に好ましい結果が得られる。
ジェン系 (共) 重合体ラテックスと しては、 ブタジエン、 イソプレン、 クロ口プレンなどのジェン系単量体の (共) 重合体ラテックス ; あるい はジェン系単量体とビニル系単量体との共重合体ラテッタスが挙げられ る。 ジェン系単量体と共重合させるビニル系単量体と しては、 スチレン や ーメチルスチレンなどの芳香族ビュル系単量体 ; メチルメタク リ レ ート、 η —ブチルアタ リ レー トなどの (メタ) アク リル酸アルキルエス テル系単量体 ; アタ リ ロニ ト リルなどの不飽和二 ト リル系単量体などが 挙げられる。 ジェン系単量体の (共) 重合体ラテックスと しては、 例え ば、 ポリブタジエンラテックスが挙げられる。 また、 ジェン共重合体と しては、 例えば、 ブタジエンなどのジェン系単量体と、 スチレンなどの ビュル系単量体との共重合ゴムが挙げられる。 ジェン系単量体とビュル 系単量体との共重合割合は、 特に限定されないが、 例えば、 ジェン系単 量体 5 0〜 9 9重量%とビュル系単量体 1〜 5 0重量%との共重合体が 挙げられる。
ラテックスの粒子径 (体積平均粒子径) は、 特に制限されないが、 2 O O n m以下であることが好ましく、 1 5 O n m以下であることがより 好ましい。 なぜならば、 本発明の方法は、 粒子径が 1 5 O n m以下、 さ らには 1 0 0 n m以下の微小な粒子径のラテックスであっても、 効果的 に肥大化を行うことができるからである。
2. 界面活性剤
本発明では、 ラテックス中に、 (a) ァニオン界面活性剤、 並びに(b) カチオン界面活性剤及び両性界面活性剤からなる群よ り選ばれる少なく とも一種の界面活性剤を存在させる。 これらの界面活性剤をラテックス 中に存在させる方法としては、 例えば、 ラテックス製造時にァニオン界 面活性剤を用いて乳化重合を行い、 しかる後、 ラテックスにカチオン界 面活性剤及び または両性界面活性剤を添加する方法が挙げられる。 し かし、 ァニオン界面活性剤を含有するラテツクスにカチオン界面活性剤 及び Zまたは両性界面活性剤を添加すると、 析出物が生成する場合があ り、 そのよ うな場合には、 ラテックス製造時に、 予めァニオン界面活性 剤とともにカチオン界面活性剤及び または両性界面活性剤を添加して おく方法が好ましい。 また、 析出物の生成を防ぐため、 ァニオン界面活 性剤を用いて重合を行い、 重合中または重合後に、 カチオン界面活性剤 及び/または両性界面活性剤を過剰量のァニオン界面活性剤と混合した 上で添加する方法も採用することができる。
ァニオン界面活性剤と しては、 例えば、 カルボン酸塩、 スルホン酸塩、 硫酸エステル塩、 りん酸エステル塩などの一般に乳化重合で使用されて いるものを挙げることができる。 これらの中でも、 例えば、 ォレイ ン酸 ナト リ ウム、 ォレイン酸カリ ウム、 ステアリン酸ナト リ ウム、 ステアリ ン酸カ リ ウム、 ミ リスチン酸ナト リ ウム、 ミ リスチン酸カリ ウム、 パル ミチン酸ナト リ ウム、 パルミチン酸カリ ウム、 ラウリ ン酸カリ ウム、 ゥ ンデカン酸カリ ウム、 リ ノール酸ナ ト リ ウム、 リ ノール酸カリ ウム、 力 プリル酸カリ ウム、 ノナン酸カリ ウム、 力プリ ン酸カ リ ウムなどの高級 脂肪酸のアル力リ金属塩 ; 不均化ロジン酸力リ ウムなどのロジン酸のァ ノレ力リ金属塩 ; アルキルザルコシン酸のアル力リ金属塩 ; アルケニルコ ハク酸のアルカリ金属塩 ; などのカルボン酸塩型ァニオン界面活性剤が 好ましい。 これらのァニオン界面活性剤は、 それぞれ単独で、 あるいは 2種以上を組み合わせて使用することができる。 カルボン酸塩型ァニォ ン界面活性剤を使用する場合、 スルホン酸塩型ァニオン界面活性剤ゃノ 二オン界面活性剤を補助的に併用することができる。
カチオン界面活性剤と しては、 例えば、 アルキル基のある第 4級アン モユウム塩、 アルキル基のある第 1 〜 3級ァミン塩、 アルキルホスホニ ゥム塩、 アルキルスルホユウム塩等を挙げることができる。 より具体的 には、 例えば、 塩化ベンザルコニゥム、 塩化アルキルト リメチルアンモ 二ゥム、 アルキルアミン酢酸塩、 アルキルアミン塩酸塩、 塩化ジアルキ ルジメチルアンモニム、 塩化アルキルイソキノ リニゥム、 臭化アルキル イソキノ リニゥムなどを例示することができる。
両性界面活性剤としては、 例えば、 N—ォクチルべタイン、 N—デシ ノレべタイン、 N—ゥンデシノレべタイン、 N— ドデシノレべタイン、 N—テ トラデシルべタイン、 N —へキサデシルべタイン、 ォクチルベタイン、 デシルべタイン、 ドデシルべタインなどのべタイン類 ; スルフォべタイ ン、 サルフェー トべタインなどのべタイン類を含むカルボン酸型両性界 面活性剤 ; ヒ ドロキシェチルイ ミダゾリ ン硫酸エステルなどの硫酸エス テル型両性界面活性剤 ; ィ ミダゾリ ンスルホン酸などのスルホン酸型両 性界面活性剤 ; などを挙げることができる。
カチオン界面活性剤と両性界面活性剤からなる群より選ばれる养面活 性剤は、 それぞれ単独で、 あるいは 2種以上を組み合わせて用いること ができる。 (a) ァニオン界面活性剤と、 (b) カチオン界面活性剤及び Z または両性界面活性剤との使用比率は、 特に制限されないが、 ラテック スの安定性、 凝集肥大化のコン トロール、 肥大化ラテックスの安定性の 観点から、 (a) ァニオン界面活性剤 1 0 0モルに対して、 (b) カチオン 界面活性剤及び または両性界面活性剤を好ましくは 0 . 0 1〜 1 0 0 モル、 より好ましくは 0 . 1〜 8 0モル、 さらに好ましくは 1〜 5 0モ ルの割合で存在させるのが望ましい。 界面活性剤は、 ラテックス中の (共)重合体成分または該(共)重合体成分を形成する単量体 1 0 0重量部 に対して、 合計量で、 通常 0 . 1〜 5重量部の割合で使用される。
3. 凝集肥大化剤
本発明では、 凝集肥大化剤として、 (i)無機酸、 (i i)有機酸、 (i i i)水 中で酸を生成する物質、 (iv) 2種類以上の物質が反応して酸を生成する 物質の組み合わせ、 及ぴ(V)活性光線の照射により酸を生成する物質か らなる群より選ばれる少なく とも一種を使用する。
無機酸としては、 例えば、 塩酸、 硫酸、 硝酸、 炭酸、 りん酸を挙げる ことができる。 有機酸としては、 例えば、 酢酸、 ぎ酸、 酒石酸、 リンゴ 酸、 酪酸を挙げることができる。 水中で酸を生成する物質 (すなわち、 ラテックスに添加後に酸を生成する物質) として.は、 例えば、 無水酢酸、 無水マレイン酸などの酸無水物 ;硫酸エステル、 りん酸エステル等のェ ステル類; などを挙げることができる。
2種類以上の物質が反応して酸を生成する物質の組み合わせとしては、 酸化還元反応によって酸を生成する物質の組み合わせが好ましく、 具体 例と しては、 過酸化物 Zホルムアルデヒ ド、 過酸化物/スルホキシル酸 塩、 過酸化水素 Zスルホキシル酸塩 · ホルムアルデヒ ドの組み合わせを 挙げることができる。 これらの中でも、 過酸化水素/スルホキシル酸 塩 ' ホルムアルデヒ ド (例えば、 ナ ト リ ウムホルムアルデヒ ドスルホキ シレー ト) の組み合わせが好ましい。
活性光線の照射により酸を生成する物質としては、 活性光線の照射に よりブレンステツ ド酸またはルイス酸を生成する物質であれば特に制限 はなく、 具体例としては、 ォユウム塩、 ハロゲン化有機化合物、 キノ ン ジアジド化合物、 a, a ビス (スルホニル) ジァゾメタン系化合物、 a —力ノレボニル一ひ 一ス/レホニノレ一ジァゾメタン系ィ匕合物、 スノレホン酸ィ匕 合物、 有機酸エステル化合物、 有機酸アミ ド化合物、 有機酸イミ ド化合 物などが挙げられる。 活性光線としては、 紫外線、 遠紫外線、 電子線、 レーザ光などが挙げられる。
これらの酸または酸を生成する物質は、 通常、 水溶液と してラテック スに添加される。 その添加量は、 酸または酸を生成する物質の種類によ つて酸性度が異なるため、 ラテックスの凝集塊が生じない範囲内で、 か つ、 ラテックスの肥大化が生じやすい量を予め実験で確認することが望 ましい。 この点での好ましい実験例は、 各実施例に具体的に示されてい る。
肥大化ラテツタスの粒子径調整のために、 凝集肥大化剤と塩類とを併 用することができる。 塩類は、 ラテックスに予め含有させてもよく、 凝 集肥大化処理前に添加してもよい。 p H緩衝作用のない塩類としては、 例えば、 塩化ナトリ ウム、 塩化カリ ウム、 塩化カルシウムなどが挙げら れる。 p H緩衝作用のある塩類としては、 例えば、 ピロりん酸ナトリ ウ ム、 炭酸ナトリウム、 硫酸アンモニゥムなどが挙げられる。
4. 肥大化処理
本発明では、 凝集肥大化剤に起因する酸を作用させることにより、 ラ テックスの粒子径を肥大化させる。 具体的には、 ラテックス中にァニォ ン界面活性剤とカチオン界面活性剤及び Zまたは両性界面活性剤とを存 在させ、 これらの界面活性剤の存在下、 ラテックスに、 凝集肥大化剤と して酸または酸を生成する物質を添加して、 凝集肥大化剤に起因する酸 を作用させる。 凝集肥大化剤が、 無機酸、 有機酸、 及び水中で酸を生成 する物質の場合には、 ラテックス中で直ちに酸が凝集肥大化作用を行う c 凝集肥大化剤が、 2種類以上の物質が反応して酸を生成する物質の組 み合わせである場合は、 ラテックス中でこれらの物質の化学反応が起こ つて酸を生成し、 その酸により凝集肥大化作用を行う。 また、 凝集肥大 化剤が、 活性光線の照射により酸を生成する物質である場合には、 ラテ ックスに活性光線を照射して酸を生成させ、 生成した酸により凝集肥大 化作用を行う。
凝集肥大化処理時に、 肥大化効果を高めるため、 超音波振動を与える ことができる。 凝集肥大化の処理温度は、 特に制限されないが、 一般に 制御しやすい温度である 2 0〜 9 0 °Cが好ましく、 ラテックスを構成す る高分子成分のガラス転移温度以上であることがより好ましい。
凝集肥大化処理は、 ラテックスを攪拌しながら行うことができるが、 凝集肥大化剤を添加して、 均一に分散するように軽く攪拌混合した後、 攪拌を停止することもできる。 ラテックスの攪拌を行わない場合には、 ラテックス粒子のブラウン凝集により肥大化が起こる。 特に、 凝集肥大 化剤が、 2種類以上の物質が反応して酸を生成する物質の組み合わせで ある場合や、 活性光線の照射により酸を生成する物質である場合には、 酸を作用させる工程において、 ラテックスの攪拌を行うことなく、 ブラ ゥン凝集により肥大化させる方法が、 体積平均粒子径 (D v ) と数平均 粒子径 (D n ) との比 (D v / D n ) で表される粒子径分布の狭い肥大 化ラテックスを得る上で好ましい。 これらの場合、 系内での酸の生成と 酸の作用によるブラウン凝集とがバランスよく進行し、 その結果、 粒径 分布が狭く、 均一に肥大化したラテックスが生成するものと推定される。 粒径分布が狭く、 均一に肥大化したラテックスは、 各分野での使用にお 丄 いて、 高品質かつ高性能を発揮することができる。
ラテックスの肥大化処理の後、 通常、 ラテックスに水酸化ナトリウム, 水酸化カリ ウム、 炭酸ナトリウム、 炭酸カリウムなどの塩基性物質を添 加して酸を中和させる。 これらの塩基性物質は、 通常、 水溶液としてラ テックスに添加する。
肥大化ラテックスの粒子径は、 特に制限されないが、 体積平均粒子径 (D V ) で、 通常 1 5 0 n m以上、 好ましくは 2 0 0〜1 0 0 0 n 程 度である。 本発明の方法は、 微細な粒子径のラテックスに適用した場合 でも、 体積平均粒子径が好ましくは 2 0 0 nm以上、 より好ましくは 2 5 0 n m以上に肥大化させることが可能であり、 必要に じて 3 0 O n m以上、 さらには 3 5 0 nm以上に肥大化させることも可能である。 特 に、 体積平均粒子径を 3 0 0 nm以上に肥大化させる場合に、 本発明の 効果が顕著である。 また、 肥大化ラテックスの粒子径分布(D Vノ D n) は、 特に限定されないが、 本発明の方法によれば、 好ましくは 1. 2〜 1. 8、 より好ましくは 1. 2〜 1. 6、 さらに好ましくは 1. 2〜 1. 5の粒子径が揃った肥大化ラテツクスを得ることが可能である。
5. グラフ ト重合とグラフ ト共重合体
上述の方法によつて得られた肥大化ラテックスにグラフ ト重合を行う ことにより、 グラフ ト共重合体を得ることができる。 グラフ ト重合は、 肥大化ラテツタスの存在下、 重合性単量体を重合させることにより行う ことができる。 グラフ ト重合法は、 特に制限されないが、 乳化重合法及 び懸濁重合法が好ましい。 グラフ ト重合に際して、 ァニオン界面活性剤、 カチオン界面活性剤、 両性界面活性剤、 ノニオン界面活性剤等の界面活 性剤;有機懸濁剤、 無機懸濁剤等の懸濁剤 ; などを適宜添加して、 系を より安定にすることもできる。 グラフ ト重合に用いられる重合性単量体 は、 特に限定されないが、 ビュル系単量体が好ましい。 肥大化ラテック スと重合性単量体との重量比も特に限定されないが、 肥大化ラテツクス の固形分 5〜 9 5重量%にビニル系単量体 9 5〜 5重量%の割合でダラ フ ト重合させるのが好ましい。
ビニル系単量体としては、 スチレン、 α—メチルスチレン等の芳香族 ビュル系単量体 ; 4 —ビニノレビフエ二/レ、 2 —ビニルナフタ レン等の芳 香族多環ビュル系単量体 ; アク リ ロニ ト リル、 メタタ リ ロニ トリル等の 不飽和二 ト リル系単量体 ; メタク リル酸メチル、 アタ リル酸ブチル等の (メ タ) アク リル酸アルキルエステル系単量体 ; アク リル酸、 メタク リ ル酸、 マレイン酸、 無水マレイン酸等の不飽和カルボン酸系単量体 ; マ レイ ミ ド、 Ν—フエニルマレイ ミ ド等のマレイ ミ ド系単量体 ; などを例 示することができる。 これらのビュル系単量体は、 それぞれ単独で、 あ るいは 2種以上を組み合わせて使用することができる。
ビニル系単量体の重合には、 適宜、 ジビエルベンゼン、 メタク リル酸 ァリル、 ジメタク リ /レ酸エチレングリ コール、 1, 3—ブチレンジメタ タ リ レートなどの多官能性ビニル系単量体を併用することができる。 ま た、 tー ドデシルメルカプタン、 n—ォクチルメルカプタンなどの連鎖 移動剤を使用することができる。
肥大化ラテツタスにグラフ ト重合させるビュル系単量体は、 反応系に —度に添加してもよいし、 数回に分割して添加してもよいし、 連続的に 添加してもよく、 あるいは、 これらを組み合わせてもよい。 二段階以上 でグラフ ト重合するときには、 各段の単量体組成が同一であっても、 異 なっていてもよい。
肥大化ラテックスを用いて、 グラフ ト重合を乳化重合または懸濁重合 により行う と、 ァニオン界面活性剤と、 カチオン界面活性剤及び Zまた は両性界面活性剤とを含有するダラフ ト共重合体ラテックスまたはスラ リーが得られる。 本発明のグラフ ト共重合体の体積平均粒子径 (D v ) . と数平均粒子径 (D n ) との比 (D v Z D n ) は、 好ましくは 1 . 2〜 1 . 8、 より好ましくは 1 . 2〜 1 . 6、 さらに好ましくは 1 . 2〜: L . 5であり、 粒子径が揃っている。 ただし、 グラフ ト重合を懸濁重合で行 つて得たグラフ ト共重合体では、 被グラフ ト部分の粒径分布とグラフ ト 共重合体の粒径分布が対応しないことが多いので、 粒子径分布 (D v / D n ) は、 被グラフ ト部分の体積平均粒子径と数平均粒子径との比を意 味するものとする。
ダラフ ト共重合体の粒子径分布が狭いことにより、 粗大粒子の数が減 り、 粗大粒子による光線の散乱に起因する透明性の低下を防ぐことがで きるので、 透明性を向上させることができる。 また、 グラフ ト共重合体 の粒子径分布が狭いことによ り、 強度向上に有効な粒子径を持つ粒子が 多く なることで、 強度も高まる。 特に、 透明性の点では、 被グラフ ト重 合体 (肥大化ラテックス粒子) とグラフ ト共重合体の屈折率が一致する ように、 グラフ ト重合するビニル系単量体の種類と組み合わせを選択す ることが好ましい。 例えば、 肥大化ラテックスがブタジエンゴムラテツ タスやスチレンブタジエンゴムラテックスの場合、 グラフ ト重合するビ 二ル系単量体と して、 スチレン、 メタク リル酸、 アク リル酸ブチルなど を適宜組み合わせて、 被グラフ ト重合体とグラフ ト共重合体の屈折率を 一致させることができる。 被グラフ ト重合体とグラフ ト共重合体との屈 折率の差を 0 . 0 2以下とすることが好ましい。
グラフ ト共重合体の体積平均粒子径は、 通常 1 5 0 n m以上、 好まし くは 2 0 0〜 1 0 0 0 n m程度であり、 特に 3 0 0 n m以上のときに本 発明を適用する効果が顕著である。 ただし、 上述のよ うに、 懸濁重合に より グラフ ト重合して得られたグラフ ト共重合体については、 体積平均 粒子径は、 被グラフ ト部分の体積平均粒子径を意味するものとする。
グラフ ト重合後、 グラフ ト共重合体は、 ラテックス、 スラリー、 また はこれらから分離 · 回収された粉粒体と して得られる。 ラテックスまた はスラリーからグラフ ト共重合体を粉粒体と して分離 · 回収する方法は、 特に制限されないが、 例えば、 ラテックスに塩酸、 塩化カルシウム等の ID 凝固剤を添加して凝析させ、 生成したスラ リーを脱水乾燥する方法、 ラ テックスを熱風中に噴霧して乾燥する方法などを挙げることができる。 いずれの場合でも、 凝析ゃ乾燥の前または後に、 酸化防止剤、 紫外線吸 収剤、 ブロッキング防止剤、 顔料、 フィラー、 滑剤、 静電気防止剤、 抗 菌剤等の添加剤を適宜加えることができる。 グラフ ト共重合体は、 それ 単独で熱可塑性樹脂として使用することが可能であり、 その場合は、 乾 燥した粉体をそのまま成形加工に供することもできるし、 ペレッ ト化と してから成形加工に供することもできる。 成形方法は、 特に制限されず- 例えば、 カ レンダー加工、 押出加工、 ブロー成形、 射出成形等の通常の 熱可塑性樹脂に対して行われる加工方法を採用することができる。
6. 樹脂組成物
本発明のグラフ ト共重合体は、 熱可塑性樹脂とプレンドして樹脂組成 物とすることができる。 両者のブレンド比率 (固形分基準) は、 使用目 的や所望の物性などに応じて適宜定めることができ、 通常、 グラフ ト共 重合体 0 . 1〜 9 9 . 9重量 °/0と熱可塑性樹脂 9 9 . 9〜0 . 1重量% の範囲内で適宜選択することができる。 多くの場合、 グラフ ト共重合体 1〜 9 9重量%と熱可塑性樹脂 9 9〜 1重量%の割合で良好な結果を得 ることができる。 グラフ ト共重合体を耐衝撃性改質剤として塩化ビュル 樹脂などの熱可塑性樹脂にプレンドする場合には、 グラフ ト共重合体 1 〜 5 0重量%と熱可塑性樹脂 9 9〜 5 0重量%の割合でブレンドするこ とが多い。
熱可塑性樹脂としては、 特に制限されないが、 例えば、 ポリ スチレン、 高衝撃性ポリ スチレン (H I ポリ スチレン樹脂)、 アク リル系樹脂、 メ タク リル酸メチルースチレン樹脂 (M S樹脂)、 塩化ビニル樹脂、 塩素 化塩化ビュル樹脂、 アク リ ロニ ト リル—スチレン樹脂 (A S樹脂)、 ァ ク リ ロニ ト リル一ブタジエン一スチレン樹脂 (A B S樹脂)、 熱可塑性 ポリエステル樹脂、 ポリカーボネート樹脂等を例示することができる。 これらの熱可塑性樹脂は、 それぞれ単独で、 あるいは 2種以上を組み合 わせて使用することができる。
樹脂組成物の製造に際しては、 例えば、 酸化防止剤、 紫外線吸収剤、 ブロッキング防止剤、 顔料、 ブイラ一、 滑剤、 静電気防止剤、 抗菌剤等 の添加剤を適宜加えることができる。 ブレンド方法は、 特に限定されず. 必要に応じて、 リボンプレンダーゃヘンシェルミキサ一等を用いて混合 することもできる。 この樹脂組成物は、 そのまま成形加工に供すること もできるし、 ペレッ ト化してから成形加工に供することもできる。 成形 方法は、 特に制限されず、 カレンダー加工、 押出加工、 ブロー成形、 射 出成形等の通常の熱可塑性樹脂に対して行われる加工方法を採用するこ とができる。
グラフ ト共重合体と熱可塑性樹脂との樹脂組成物を透明な成形体とし て用いる場合には、 被グラフ ト重合体とグラフ ト共重合体の屈折率差を 小さくすることに加えて、 グラフ ト共重合体と熱可塑性樹脂との屈折率 差を小さくするように、 それぞれの組成を調整することが望ましい。 透 明性を重要視する場合には、 これらの屈折率差を 0 . 0 2以下とするこ とが好ましい。 実施例
以下に実施例及び比較例を挙げて、 本発明をより具体的に説明するが、 本発明は、 これらの実施例によって何ら制限されるものではない。 なお、 以下の実施例及ぴ比較例において、 「部」 及び 「%」 は、 特に断りのな い限り、 「重量部」 及び 「重量%」 を表す。 各物性の測定法は、 以下の 通りである。
( 1 ) 平均粒子径と粒子径分布
体積平均粒子径 (D v ; 単に平均粒子径ともいう) は、 透過型電子顕 微鏡を用いて得られた電子顕微鏡写真を画像解析装置 (旭化成製、 I P 一 5 0 0 P C) により画像解析して測定した。 また、 粒子径分布 (D V /O n ) は、 体積平均粒子径 (D v ) と、 前記と同様に画像解析して得 られた数平均粒子径 (D n ) との比を算出したものである。
( 2 ) 肥大化ラテックス構成成分の屈折率
肥大化ラテックスを用いてキャス トフイルムを作成し、 得られたキヤ ス トフィルムをメチルアルコールに浸漬し、 室温で 2 4時間真空乾燥し て、 試料フィルムを作成した。 この試料フィルムについて、 アッベの屈 折率計を使用して、 2 3 °Cにおいて屈折率を測定した。
( 3 ) グラフ ト共重合体と熱可塑性樹脂の屈折率
グラフ ト共重合体または熱可塑性樹脂を 2 0 0 °Cで熱プレスして試料 フィルムを作成し、 この試料フィルムについて、 アッベの屈折率計を使 用して、 2 3 において屈折率を測定した。
( 4 ) 成形体の耐衝撃強度
東芝機械製射出成型機 I S— 8 0を用いて、 3 mmまたは 6 mm厚の 試料片を作成し、 これらの試料片について、 J I S K— 7 1 1 0に準 じて、 耐衝撃強度を 2 3 °Cまたは一 1 0 °Cで測定した。
( 5 ) 成形体の透明性
グラフ ト共重合体または熱可塑性樹脂組成物を押出機とペレタイザを 用いてペレッ ト化とし、 次いで、 得られた各ペレツ トを 2 0 0°Cで熱プ レスして 3 mm厚の試料板を作成し、 この試料板について、 ヘーズメー ターを使用して、 2 3 °Cにおいて平行光線透過率と曇価を測定した。
[実施例 1 ]
1. ラテツタスの重合
撹拌機付耐圧容器に、
塩化ナトリウム 0. 0 7 5部 硫酸第一鉄 · 0. 0 0 5部 エチレンジアミンテ トラ酢酸ジナトリ ウム塩 0. 0 0 8部 ナ ト リ ウムホルムアルデヒ ドスルホキシレー ト 0. 05 部 塩化ベンザルコニゥム (カチオン界面活性剤) ···· 0. 0 2 部 ォレイン酸カリ ウム (ァニオン界面活性剤) 0. 3 7 部 蒸留水 200 部 を仕込み、 窒素置換した後、
ジイ ソプロピルベンゼンハイ ド口パーオキサイ ド ·· 0. 1部 ブタジェン 75 部 スチレン 25 部 を添加し、 次いで、 6 0 °Cで 1 5時間保持して重合させて、 転化率 9 8 %で、 体積平均粒子径 9 8 n mのラテックス(A-1) を得た。
2. 凝集肥大化
上記で得られたラテックス(A - 1) を 70°Cに保持しながら、
ナ ト リ ゥムホルムアルデヒ ドスルホキシレー ト ( 5 %水溶液)
3. 8 部 過酸化水素 (5 %水溶液) 2. 0 8部 を添加し、 攪拌混合した後、 攪拌を停止して 1時間保持した。 次に、 水 酸化ナト リ ウム ( 1 %水溶液) 5部を添加し、 攪拌混合して、 肥大化ラ テックス(B- 1) を得た。 肥大化ラテックス(B- 1) は、 体積平均粒子径= 4 6 0 n m, D v /D n = 1. 3 8であり、 機械的に安定であった。 な お、 析出物と重合缶への付着物との合計は、 仕込みモノマーの 0. 0 5 %であった。
[実施例 2]
1 · ラテツタスの重合
実施例 1のラテックスの重合において、 ブタジエン 7 5部とスチレン 2 5部の代わりにブタジェン 1 00部を使用したこと以外は、 実施例 1 と同様に重合し、 転化率 9 8 %で、 体積平均粒子径 9 2 n mのラテック ス (A- 2) を得た。 2. 凝集肥大化
上記で得られたラテックス(A- 2) に、
ナ ト リ ゥムホルムアルデヒ ドスルホキシレー ト (5 %水溶液)
4. 2 部 過酸化水素 ( 5 %水溶液) 2. 3 2部 を添加した以外は、 実施例 1 と同様に凝集肥大化して、 肥大化ラテック ス(B- 2) を得た。 肥大化ラテックス(B- 2) は、 体積平均粒子径 = 5 0 0 nm、 D vZD n = l . 3 5であり、 機械的に安定であった。 なお、 析 出物と重合缶への付着物との合計は、 仕込みモノマーの 0. 0 7 %であ つた。
[実施例 3]
1. ラテツタスの重合
実施例 1 において、 ラテックスの重合の際、 塩化ベンザルコニゥム (カチオン界面活性剤) を 0. 0 2部から 0. 0 5部に増量し、 かつ、 ブタジェン 7 5部とスチレン 2 5部の代わりにブタジェン 1 0 0部を使 用したこと以外は、 実施例 1 と同様に重合し、 転化率 9 8 %、 体積平均 粒子径 9 8 n mのラテックス(A- 3) を得た。
2. 凝集肥大化
上記で得られたラテックス(A- 3) に、
ナ ト リ ウムホルムアルデヒ ドスルホキシレー ト ( 5 %水溶液)
3. 5部 過酸化水素 ( 5 %水溶液) 1. 9部 を添加した以外は、 実施例 1 と同様に凝集肥大化して、 肥大化ラテック ス(B- 3) を得た。 肥大化ラテックス(B- 3) は、 体積平均粒子径 = 2 5 0 nm、 D ν /Ό n = 1. 4 0であり、 機械的に安定であった。 なお、 析 出物と重合缶への付着物との合計は、 仕込みモノマーの 0. 04 %であ つた。 丄
[比較例 1 ]
実施例 1 において、 ラテックスの重合において塩化ベンザルコユウム (カチオン界面活性剤) を添加しなかったこと以外は、 実施例 1 と同様 にして肥大化ラテックスを得よう と したが、 凝集肥大化工程で、 攪拌を 停止して 1時間保持した後 5 0 0 nmの肥大化ラテックスが生成したも のの、 中和のための水酸化ナトリ ゥム添加後、 攪拌を開始すると ともに, 固形分が固まり となって析出し、 安定な肥大化ラテックスを得ることが できなかった。
[比較例 2 ]
凝集肥大化をするかわりに、 実施例 1で得られた体積平均粒子径 9 8 n mのラテックス(A- 1)を種粒子と して、 シード重合法によ り粒子径の 大きなラテツタスの製造を試みた。
塩化ナト リ ウム 0. 0 7' 5部 硫酸第一鉄 0. 0 0 5部 エチレンジアミンテ トラ酢酸ジナト リ ウム塩 ···· 0. 0 0 S部 ナト リ ウムホルムアルデヒ ドスルホキシレート .·· 0. 0 5 部 ォレイン酸カリ ウム 0. 3 7 部 ラテックス(A-1) (固形分と して) ····· 1 部 蒸留水 2 0 0 部 を仕込み、 窒素置換した後 6 0 に保持し、 次いで、
ブタジェン · 74. 2 5部 スチレン 24 , 7 5部 ジイソプロピルベンゼンハイ ド口パーオキサイ ド · 1 部 ナト リ ウムホルムアルデヒ ドスルホキシレート ··· 0. 5 部 を 6 0時間にわたって添加した。 その後、 3 0時間、 6 0°Cで保持した ところ、 体積平均粒子径は 4 3 0 n mとなったが、 転化率は 9 5 %に達 しなかった。 [比較例 3]
1. ラテックスの重合
撹拌機付耐圧容器に,
ピロ リ ン酸四ナト リ ウム塩 0. 1 部 硫酸第一鉄 0. 0 0 5部 エチレンジアミンテ トラ酢酸ジナトリ ウム塩 0. 0 0 8部 ナト リ ウムホノレムアルデヒ ドスルホキシレート ... 0. 0 5 部 ォレイン酸カリ ウム 0. 3 7 部 蒸留水 2 0 0 部 を仕込み、 窒素置換した後、
ジイ ソプロピノレベンゼンハイ ド口パーオキサイ ド . 0. 1 部 ブタジエン 7 5 部 スチレン 2 5 部 を添加し、 6 0°Cで 1 5時間保持して、 転化率 9 8 %で、 体積平均粒子 径 9 7 n mのラテックス(a- 3) を得た。
2. 凝集肥大化
上記で得られたラテックス(a- 3) を 6 0。Cに保持しながら、 ドデシル フェニルエーテルジスルホン酸ジナトリ ウム塩 0. 2部を添加した後、 攪拌回転数を落と し、 りん酸 ( 5 %水溶液) 1. 2部を添加して凝集肥 大化を行おう と したが、 ラテックスが固化してしまった。 ぐ考察 >
実施例 1は、 ブタジエン一スチレン共重合体ラテックスに、 実施例 2 及び 3は、 ブタジエン重合体ラテックスに、 それぞれ本発明を適用した 例であり、 いずれの場合も短い時間で安定な肥大化ラテックスが得られ ている。
これに対して、 比較例 1 は、 ブタジエン一スチレン共重合体ラテック スの製造時にカチオン界面活性剤を用いなかった例である。 比較例 1の 場合でも凝集肥大化は進行するものの、 P H低下時のカチオン界面活性 剤による再安定化効果が発現しない。 そのために、 水酸化ナトリ ウム添 加によって系の p Hを高めて安定化しよう と したときに、 攪拌による剪 断力によって固形分が析出してしまい、 安定な肥大化ラテックスが得ら れない。
比較例 2は、 シード重合によ り、 実施例 1 と同等な粒子径のラテック スを得よう と した例だが、 非常に長い重合時間を必要と しており、 生産 性が悪く、 経済的な方法ではない。 比較例 3は、 カチオン界面活性剤を 用いずに、 特開平 9一 7 1 6 0 3号公報に記載の 2 6 0 n mの肥大化粒 子径が得られている実施例 (A— 2 ) を模して、 さらに大粒子径が得ら れるよ うにりん酸の添加部数を増やした例であるが、 ラテツクス全体が 固化してしまって、 肥大化ラテツタスが得られなかった。
[実施例 4]
1. グラフ ト重合
攪拌機付耐圧容器に、
肥大化ラテックス(B4) (固形分と して) 7 5 部 ォレイン酸カリ ウム 0. 3 部 ピロリ ン酸四ナト リ ウム塩 0. 0 0 5部 を入れ 6 0°Cと し、 窒素置換した後、
スチレン 1 2. 5 部 メタク リル酸メチル 1 2. 5 部 ジイソプロピルベンゼンハイ ド口パーオキサイ ド · 0. 1 部 ナ ト リ ウムホルムアルデヒ ドスルホキシレー ト ··· 0. 0 5 部 を 1時間にわたって添加し、 その後 5時間保持した。 その結果、 体積平 均粒子径 = 4 8 0 nm、 D v /D n = 1. 3 5のグラフ ト共重合体ラテ ックス(C - 4) を得た。 このグラフ ト共重合体ラテツクス (C - 4) にブチル化ヒ ドロキシトルェ ン (B HT) 0. 5部を添加した後、 0. 5 %塩酸水で凝析を行い、 水 洗、 脱水、 乾燥して粉体状のグラフ ト共重合体(D-4) を得た。 このダラ フ ト共重合体(D- 4) の被グラフ ト重合体(B-1) の屈折率は 1. 5 3 9で あり、 グラフ ト共重合体(D- 4) の屈折率は 1. 5 3 9であった。
[実施例 5]
実施例 4のグラフ ト共重合体を得る際に用いたラテックス(A-1) の凝 集肥大化に際して、
ナ トリ ゥムホルムアルデヒ ドスルホキシレー ト ( 5 %水溶液)
3. 3部 過酸化水素 ( 5 %水溶液) 1. 8部 を用いたこと以外は、 実施例 4 と同様にしてグラフ ト共重合体ラテック ス(C-5) を得、 グラフ ト共重合体(D- 5) を回収した。 グラフ ト共重合体 ラテックス(C- 5) は、 体積平均粒子径 = 2 0 5 n m、 D v /D n = 1. 3 7であった。 このグラフ ト共重合体(D- 5) の被グラフ ト重合体(B- 5) の屈折率は 1. 5 3 9であり、 グラフ ト共重合体(D- 5) の屈折率は 1. 5 3 9であった。
[比較例 4]
1. 凝集肥大化
比較例 3のラテックス(a- 3) を 6 0°Cに保持しながら、
ドデシルフ工ニルエーテルジスルホン酸ジナトリ ゥム塩
0. 0 5部 を添加した後、
塩酸水 (0. 1 5 %水溶液) 5 6 部 を添加して凝集肥大化を行い、 次いで、
水酸化ナトリ ウム ( 1 %水溶液) 1 0 部 を添加し、 肥大化ラテックス(b - 4) を得た。 肥大化ラテックス(b- 4) は、 体積平均粒子径 = 2 0 0 n m、 Ό ν /Ό n = 1. 9 0であり、 機械的に 安定であった。 なお、 析出物と重合缶への付着物との合計は、 仕込みモ ノマーの 0. 1 0 %であった。
2. グラフ ト重合
肥大化ラテックス(b_4) を用いて、 実施例 4 と同様にして、 グラフ ト 重合を行い、 体積平均粒子径 = 2 0 5 n m、 Ό v / Ό n = 1. 8 5のグ ラフ ト共重合体ラテックス(c - 4) を得、 実施例 4 と同様にして粉体状の グラフ ト共重合体(d- 4) を得た。 グラフ ト共重合体(d- 4) の被グラフ ト 重合体(b- 4) の屈折率は 1. 5 3 9であり、 グラフ ト共重合体(d- 4) の 屈折率は 1. 5 3 9であった。
<樹脂組成物の物性 >
実施例 4及び 5 と、 比較例 4で得られた各グラフ ト共重合体を用いて 下記の配合処方により熱可塑性樹脂 (MS樹脂) との樹脂組成物を調製 し、 その物性を測定した。 使用した MS樹脂の屈折率は 1. 5 4 0であ つた。
グラフ ト共重合体 ··· 3 0部
MS樹脂 (電気化学工業製、 デンカ TX— 1 0 0) ···· 7 0部 樹脂組成物を東洋精機製の φ 2 0 mmの 2軸コニカル押出機を用いて ペレッ トと し、 このペレッ トを東芝機械製射出成型機 I S— 8 0で 6 m m厚の衝撃試験用試験片を作成した。 衝撃試験は 2 3 °Cで行った。 結果 を表 1に示す。
表 1 熱可塑性樹脂組成物 (MS樹脂系) の物性
Figure imgf000027_0001
に示した通り、 本発明によって粒子径を大きく したグラフ ト共重 合体 (実施例 4 ) を配合した樹脂組成物では、 通常の凝集肥大化技術を 用いて調製したグラフ ト共重合体 (比較例 4 ) を配合した樹脂組成物と 比較して、 わずかな透明性の低下で多大な耐衝撃強度の改良を達成して いる。 比較例 4 と同じ粒子径で狭い粒子径分布を持つ本発明のグラフ ト 共重合体 (実施例 5 ) を用いた樹脂組成物は、 比較例 4のグラフ ト共重 合体を用いた樹脂組成物と比較して、 耐衝撃強度と透明性のバランスが 改良されている。
[実施例 6 ]
1 - グラフ ト重合
攪拌機付耐圧容器に
肥大化ラテックス(B - 3) (固形分と して) · 7 5 部 ォレイン酸カリ ウム 0. 3 部 ピロ リ ン酸四ナトリ ウム塩 0. 0 0 5部 を入れ 6 0°Cと し、 窒素置換した後、
メタク リル酸メチル 1 2. 5 部 アタ リル酸ブチル 2. 5 部 t 一ブチルハイ ド口パーオキサイ ド 0. 2 部 ナ ト リ ウムホルムアルデヒ ドスルホキシレー ト .· 0. 2 部 を 1時間にわたって添加し、 その後 3時間保持した後、
スチレン 1 0 部 t- ブチルハイ ドロパーォキサイ ド 0. 1 部 ナトリ ウムホルムァ 7レデヒ ドスノレホキシレー ト .. 0. 1 部 を 1時間にわたって添加し、 その後 5時間保持して、 体積平均粒子径= 2 6 5 n m、 D ν /Ό n = 1 . 3 7のグラフ ト共重合体ラテックス(C - 6) を得た。 このグラフ ト共重合体ラテックス(C - 6) から、 実施例 4 と 同様にして、 粉体状のグラフ ト共重合体(D-6) を得た。
[比較例 5 ] 1. ラテックスの重合
撹拌機付耐圧容器に
ピロ リ ン酸四ナトリ ウム塩 0. 1 部 硫酸第一鉄 0. 0 0 5部 エチレンジアミンテ トラ酢酸ジナトリ ウム塩 ···· 0. 0 0 8部 ナト リ ウムホノレムアルデヒ ドスルホキシレート ·· 0. 0 5 部 ドデシルフェニルエーテルジスルホン酸ジナト リ ゥム塩
0. 0 2 部 ォレイ ン酸カリ ウム 0. 3 7 部 蒸留水 2 0 0 部 を仕込み、 窒素置換した後で
ジイソプロピルベンゼンハイ ド口パーオキサイ ド ·· 0. 1 部 ブタジェン 1 0 0 部 を添加し、 7 0°Cで 1 5時間保持し、 転化率 9 8 %、 体積平均粒子径 9 5 n mのラテックス(a- 5) を得た。
2. 凝集肥大化
上記で得られたラテックス(a - 5) を 6 0°Cに保持しながら、
塩酸水 ( 0. 1 5。/。水溶液) 6 0 部 を添加して、 凝集肥大化を行い、 次いで、
水酸化ナト リ ウム ( 1 %水溶液) 1 0. 7部 を添加し、 肥大化ラテックス(b- 5) を得た。 肥大化ラテックス(b - 5) は 体積平均粒子径= 2 2 0 n m, D ν /Ό n = 1. 8 7であり、 機械的に 安定であった。 なお、 析出物と重合缶への付着物との合計は、 仕込みモ ノマーの 0. 1 2 %であった。
3. グラフ ト重合
肥大化ラテックス(b- 5) を用いて、 実施例 6 と同様にしてグラフ ト重 合を行い、 体積平均粒子径 = 2 2 5 n m、 D v /D n = 1. 8 5のグラ フ ト共重合体ラテックス(c- 5) を得、 次いで、 実施例 4 と同様にして粉 体状のグラフ ト共重合体(d- 5) を得た。
ぐ樹脂組成物の物性 >
実施例 6及ぴ比較例 5で得られた各グラフ ト共重合体を用いて、 下記 の配合処方によ り熱可塑性樹脂 (塩化ビニル樹脂) との樹脂組成物を調 製し、 その物性を測定した。 具体的には、 下記の配合成分を用意し、 へ ンシェルミキサーに投入して、 攪拌しながら 1 1 5 °Cまで昇温して、 均 一に混合された樹脂組成物を得た。
グラフ ト共重合体 9 部 塩化ビニル樹脂 (呉羽化学工業.製、 S 9 0 0 8 ) . · 9 1 部 加工助剤 (呉羽化学工業製 「K130P 」) 1 . 0部 ォクチル錫メルカプチド (共同薬品製 「KS2000A J ) · 8部 ステアリ ン酸カルシウム (日東化成工業製 「Ca- St 」) 0 5部 エステル系滑剤 (理研ビタ ミ ン製 「SL- 02 」) 0 6部 酸化チタン (レジノカラー工業製 「DP- 3T- 55」) · · · 0 1部 得られた樹脂組成物を東洋精機製の φ 2 O m mの 2軸コニカル押出機 を用いてペレッ トと し、 このペレッ トを東芝機械製射出成型機 I S _ 8 0で射出成形し、 3 m m厚の衝撃試験用試験片を作成した。 衝撃試験は. 2 3 °Cと— 1 0 °Cにおいて行った。 結果を表 2に示す。 表 2 熱可塑性樹脂組成物 (PVC系) の物性
Figure imgf000030_0001
表 2に示した通り、 本発明のグラフ ト共重合体 (実施例 6 ) を配合し た樹脂組成物は、 通常の凝集肥大化技術を用いて調製したグラフ ト共重 合体 (比較例 5 ) を配合した樹脂組成物と比較して、 2 3 °Cでは同等な 耐衝撃性を示すが、 低温において多大な耐衝撃強度の改良を達成してい る。 産業上の利用可能性
本発明によれば、 経済的で生産性が高く、 ラテックスの安定性を維持 しながら肥大化することが可能な肥大化ラテックスの製造方法が提供さ れる。 本発明の肥大化ラテックスの製造方法によれば、 肥大化したラテ ッタスの存在下に重合性単量体をグラフ ト重合させても、 ラテックスの 安定性が損なわれることがない。
また、 本発明によれば、 このよ うな優れた諸特性を有する肥大化ラテ ックス、 該肥大化ラテツタスの存在下に重合性単量体を重合させるダラ フ ト共重合体の製造方法、 該グラフ ト共重合体と熱可塑性樹脂とを含有 する樹脂組成物、 及び粒子径が大きく、 粒子径分布が揃ったグラフ ト共 重合体が提供される。 本発明の樹脂組成物は、 経済的に物性 (特に耐衝 撃性) を改良したものである。 したがって、 本発明は、 大きい粒子径の ラテックス、 大きい粒子径のグラフ ト共重合体を必要とする産業の様々 な分野に応用することができる。

Claims

請求の範囲
1. ラテックスを凝集肥大化させて粒子径の大きな肥大化ラテツク スを製造する方法において、
( 1 ) ラテックス中に、
(a) ァニオン界面活性剤、 並びに
(b) カチオン界面活性剤及び両性界面活性剤からなる群より選ばれる少 なく とも一種の界面活性剤
を存在させ、
( 2 ) これらの界面活性剤の存在下、 ラテックスに、 凝集肥大化剤とし て、
(i)無機酸、
(ii)有機酸、
(iii)水中で酸を生成する物質、
(iv) 2種類以上の物質が反応して酸を生成する物質の組み合わせ、 及び (V)活性光線の照射により酸を生成する物質
からなる群より選ばれる少なく とも一種を添加し、 そして、
( 3 ) 凝集肥大化剤に起因する酸を作用させることにより、 ラテックス の粒子径を肥大化させる
ことを特徴とする肥大化ラテツタスの製造方法。
2. ラテックスが、 ジェン系単量体の(共)重合体ラテックス、 ビニ ル系単量体の(共)重合体ラテツタス、 またはジェン系単量体とビュル系 単量体との共重合体ラテツタスである請求項 1記載の製造方法。
3. 工程 ( 1 ) において、 界面活性剤として、 (a) ァニオン界面活 性剤、 並びに(b) カチオン界面活性剤及び両性界面活性剤からなる群よ *3丄 り選ばれる少なく とも一種の界面活性剤を用いて単量体を乳化重合する ことによ り、 ラテックス中にこれらの界面活性剤(a)及び(b)を存在させ る請求項 1記載の製造方法。
4 . ァニオン界面活性剤が、 カルボン酸塩型ァユオン界面活性剤で ある請求項 1記載の製造方法。
5 . カチオン界面活性剤が、 アルキル基のある第 4級アンモニゥム 塩、 アルキル基のある第 1〜 3級ァミン塩、 アルキルホスホニゥム塩、 またはアルキルスルホニゥム塩である請求項 1記載の製造方法。
6 . 両性界面活性剤が、 ベタイン類、 ベタイン類を含むカルボン酸 型両面活性剤、 硫酸エステル型両性界面活性剤、 またはスルホン酸型両 性界面活性剤である請求項 1記載の製造方法。
7 . 工程 ( 1 ) において、 ラテックス中に、 (a) ァニオン界面活性 剤 1 0 0モルに対して、 (b) カチオン界面活性剤及び両性界面活性剤か らなる群より選ばれる少なく とも一種の界面活性剤 0 . 0 1〜 1 0 0モ ルの割合で、 これらの界面活性剤を存在させる請求項 1記載の製造方法。
8 . 工程 ( 1 ) において、 ラテックス中の(共)重合体成分または該 (共)重合体成分を形成する単量体 1 0 0重量部に対して、 界面活性剤 (a)及ぴ(b)を合計量で 0 . 1〜 5重量部の割合で存在させる請求項 1記 載の製造方法。
9 . 工程 ( 2 ) において、 (iv) 2種類以上の物質が反応して酸を生 成する物質の組み合わせと して、 2種類の物質が酸化還元反応を起こし て酸を生成する物質の組み合わせを使用する請求項 1記載の製造方法。
1 0. 2種類の物質が酸化還元反応を起こして酸を生成する物質の 組み合わせが、 過酸化水素とスルホキシル酸塩 · ホルムアルデヒ ドとの 組み合わせである請求項 9記載の製造方法。
1 1. 工程 ( 3 ) において、 ラテツタスの攪拌を行うことなく、 ブ ラウン凝集によりラテックスを肥大化させる請求項 1記載の製造方法。
1 2. 凝集肥大化により体積平均粒子径が 1 5 0 n m以上の肥大化 ラテックスを得る請求項 1記載の製造方法。
1 3. 体積平均粒子径 (Dv) と数平均粒子径 (Dn) との比 (Dv ZDn) で表わされる粒径分布が 1. 2〜 1. 8の肥大化ラテックスを 得る請求項 1記載の製造方法。
1 4. 請求項 1ないし 1 3のいずれか 1項に記載の製造方法により 得られた肥大化ラテツクス。
1 5. 肥大化ラテックスの存在下に重合性単量体を重合させるダラ フト共重合体の製造方法において、 肥大化ラテックスが、
( 1 ) ラテックス中に、
(a) ァニオン界面活性剤、 並びに
(b) カチオン界面活性剤及び両性界面活性剤からなる群より選ばれる少 なく とも一種の界面活性剤
を存在させ、
(2) これらの界面活性剤の存在下、 ラテックスに、 凝集肥大化剤と し て、
(i)無機酸、
(ii)有機酸、
(iii)水中で酸を生成する物質、
(iv) 2種類以上の物質が反応して酸を生成する物質の組み合わせ、 及び (V)活性光線の照射により酸を生成する物質
からなる群より選ばれる少なく とも一種を添加し、 そして、
(3 ) 凝集肥大化剤に起因する酸を作用させることにより、 ラテックス の粒子径を肥大化させる
方法により得られたものであることを特徴とするグラフ ト共重合体の製 造方法。
1 6 . 重合性単量体が、 ビニル系単量体である請求項 1 5記載の製 造方法。
1 7 . 肥大化ラテックスの固形分 5〜 9 5重量0 /0に、 ビュル系単量 体 9 5〜 5重量%を重合させる請求項 1 5記載の製造方法。
1 8 . 体積平均粒子径 (Dv ) と数平均粒子径 (Dn ) との比 (Dv /On ) で表わされる粒径分布が 1 . 2〜 1 . 8のグラフ ト共重合体を 得る請求項 1 5記載の製造方法。
1 9 . 肥大化ラテックス粒子と生成グラフト共重合体との屈折率の 差を 0 . 0 2以下とする請求項 1 5記載の製造方法。
2 0. 体積平均粒子径が 1 5 0 n m以上のダラフ ト共重合体を得る 請求項 1 5記載の製造方法。
2 1. 請求項 1 5ないし 2 0のいずれか 1項に記載の製造方法によ り得られたグラフト共重合体。
2 2. 請求項 2 1記載のグラフ ト共重合体と熱可塑性樹脂とを含有 する樹脂組成物。
2 3. グラフ ト共重合体 0. 1〜 9 9. 9重量%と熱可塑性樹脂 9 9. 9〜0. 1重量%とを含有する請求項 22記載の樹脂組成物。
24. 熱可塑性樹脂が、 ポリ スチレン、 高衝撃性ポリ スチレン、 了 ク リル系樹脂、 メ タク リル酸メチルースチレン樹脂、 塩化ビニル樹脂、 塩素化塩化ビュル樹脂、 アク リ ロニ ト リル一スチレン樹脂、 アタ リ ロニ ト リル一ブタジエン一スチレン樹脂、 熱可塑性ポリエステル樹脂、 ポリ カーボネート樹脂、 またはこれらの混合物である請求項 2 2記載の樹脂 組成物。
2 5. ァニオン界面活性剤と、 カチオン界面活性剤及ぴ両性界面活 性剤からなる群より選ばれる少なく とも一種の界面活性剤とを含有し、 体積平均粒子径 (D v) と数平均粒子径 (D n) との比 (D vZD n) 力 1. 2〜 1. 8であるグラフ ト共重合体。
2 6. 体積平均粒子径 (D V ) が 1 5 0 nm以上である請求項 2 5 記載のグラフ ト共重合体。
2 7. 請求項 2 5記載のグラフ ト共重合体と熱可塑性樹脂とを含有 する樹脂組成物。
PCT/JP2000/008843 1999-12-20 2000-12-14 Procede de production de latex a particules agrandies WO2001046267A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00981707A EP1245584B1 (en) 1999-12-20 2000-12-14 Process for producing enlarged latex
US10/148,343 US6723764B2 (en) 1999-12-20 2000-12-14 Preparation process of enlarged latex
DE60033436T DE60033436T2 (de) 1999-12-20 2000-12-14 Verfahren zur herstellung von vergrössertem latex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP36071099A JP4817403B2 (ja) 1999-12-20 1999-12-20 肥大化ラテックスの製造方法
JP11/360710 1999-12-20

Publications (1)

Publication Number Publication Date
WO2001046267A1 true WO2001046267A1 (fr) 2001-06-28

Family

ID=18470587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008843 WO2001046267A1 (fr) 1999-12-20 2000-12-14 Procede de production de latex a particules agrandies

Country Status (10)

Country Link
US (1) US6723764B2 (ja)
EP (1) EP1245584B1 (ja)
JP (1) JP4817403B2 (ja)
KR (1) KR100477162B1 (ja)
CN (1) CN1196715C (ja)
AT (1) ATE353922T1 (ja)
DE (1) DE60033436T2 (ja)
MY (1) MY120866A (ja)
TW (1) TWI228133B (ja)
WO (1) WO2001046267A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPO069996A0 (en) * 1996-06-27 1996-07-18 Australian National University, The Manipulation of plant cellulose
JP5185480B2 (ja) * 2001-05-23 2013-04-17 ユーエムジー・エービーエス株式会社 成形外観に優れた熱可塑性樹脂組成物及びその製造方法
JP4553610B2 (ja) * 2004-03-12 2010-09-29 住友ゴム工業株式会社 ゴムラテックスの濃縮法
US20060122327A1 (en) * 2004-10-13 2006-06-08 Christopher Lester Process for preparing enlarged latex particles
EP1943279A4 (en) 2005-10-31 2011-08-03 Lg Chemical Ltd METHOD FOR PRODUCING RESIN ON VINYL CHLORIDE BASE FOR MAKING LOW VISCOSITY OF PLASTISOL, VINYL CHLORIDE BASE RESIN PRODUCED BY THE METHOD AND METHOD FOR PRODUCING PLASTISOL ON VINYL CHLORIDE BASE AND PLATISOL PRODUCED ON VINYL CHLORIDE BASE
KR100789249B1 (ko) * 2005-10-31 2008-01-02 주식회사 엘지화학 낮은 점도를 갖는 플라스티졸을 제공할 수 있는 염화비닐계수지의 제조 방법 및 그로부터 제조된 염화비닐계 수지
JP4985922B2 (ja) * 2006-07-25 2012-07-25 日本ゼオン株式会社 高飽和ニトリルゴム、その製造方法およびゴム架橋物
EP2336235B1 (en) * 2009-12-18 2012-10-03 Actega Artistica S.A. Water-based dispersion of thermoplastic polymer and non-thermoplastic elastomer
CN101870778B (zh) * 2010-07-09 2012-08-29 中国热带农业科学院农产品加工研究所 一种预硫化天然胶乳/壳聚糖共混膜材料及其制备方法
JP5909880B2 (ja) * 2011-05-31 2016-04-27 三菱レイヨン株式会社 水性エマルションの製造方法
WO2013049894A1 (en) * 2011-10-06 2013-04-11 Pmb Technologies Pty Ltd Surface stabiliser and uses thereof
CN103044580A (zh) * 2011-10-17 2013-04-17 中国石油天然气股份有限公司 一种附聚胶乳的制备方法
CN103897095B (zh) * 2012-12-27 2016-03-09 中国石油天然气股份有限公司 一种含醋酸的丙烯酸酯胶乳的制备方法
EP2945994B1 (en) 2013-01-18 2018-07-11 Basf Se Acrylic dispersion-based coating compositions
KR101494545B1 (ko) * 2013-03-28 2015-02-23 주식회사 엘지화학 수지 조성물 및 이를 포함하는 역파장 분산성을 갖는 광학필름
CN103194129A (zh) * 2013-04-29 2013-07-10 十堰恐龙化工有限公司 负离子乳胶漆及其制备方法
KR101630015B1 (ko) * 2013-08-01 2016-06-13 주식회사 엘지화학 대구경 폴리머 입자의 제조방법
CN105601768B (zh) * 2016-03-14 2017-12-29 黄润燕 一种天然橡胶加工系统及其加工方法
CN106280077A (zh) * 2016-08-05 2017-01-04 安徽蓝通科技股份有限公司 一种防开裂的pvc管材及其制备方法
CN110662780B (zh) * 2018-02-02 2022-03-11 株式会社Lg化学 接枝共聚物的制备方法、接枝共聚物和热塑性树脂模制品
KR102111120B1 (ko) * 2018-02-02 2020-06-08 주식회사 엘지화학 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 열가소성 수지 성형품
KR102212039B1 (ko) * 2018-05-16 2021-02-05 주식회사 엘지화학 공액 디엔계 중합체의 제조방법 및 이를 포함하는 그라프트 공중합체의 제조방법
US11286314B2 (en) 2018-05-16 2022-03-29 Lg Chem, Ltd. Method for preparing conjugated diene-based polymer and method for preparing graft copolymer including the same
KR20200077384A (ko) 2018-12-20 2020-06-30 주식회사 엘지화학 디엔계 고무 라텍스, 이의 제조방법 및 이를 포함하는 코어-쉘 구조의 그라프트 공중합체
JPWO2020196919A1 (ja) * 2019-03-28 2020-10-01
KR102489409B1 (ko) * 2019-08-16 2023-01-17 주식회사 엘지화학 비닐시안 화합물-공액디엔 화합물-방향족 비닐 화합물 그라프트 공중합체의 제조방법 및 이 그라프트 공중합체를 포함하는 열가소성 수지 조성물
US20220340701A1 (en) * 2020-05-21 2022-10-27 Lg Chem, Ltd. Thermoplastic Resin Composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373243A (en) * 1976-12-13 1978-06-29 Toyo Soda Mfg Co Ltd Manufacture of powdered rubber
US4194999A (en) * 1976-12-13 1980-03-25 Toyo Soda Manufacturing Company, Ltd. Process for producing powdery rubber
EP0779302A1 (en) * 1995-07-04 1997-06-18 Mitsubishi Rayon Co., Ltd. Process for flocculating diene polymer rubber latex to increase polymer particle size, graft polymer, and thermoplastic resin composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153587A (ja) 1974-11-06 1976-05-12 Toyo Soda Mfg Co Ltd
JPS5645921A (en) 1979-09-21 1981-04-25 Toray Ind Inc Production of aromatic polyester
JPS5973243A (ja) 1982-10-20 1984-04-25 Sanyo Electric Co Ltd ピンカシメ装置
EP0271684A3 (en) 1986-11-04 1988-08-10 Ube Cycon, Ltd. Process for agglomerating a polymer latex
EP0624600A1 (en) 1993-05-11 1994-11-17 General Electric Company Agglomeration of latices by organic acid - anhydride mixtures
JP3313026B2 (ja) 1995-07-04 2002-08-12 三菱レイヨン株式会社 ジエン系重合体ゴムラテックスの凝集肥大化方法、グラフト重合体および熱可塑性樹脂組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373243A (en) * 1976-12-13 1978-06-29 Toyo Soda Mfg Co Ltd Manufacture of powdered rubber
US4194999A (en) * 1976-12-13 1980-03-25 Toyo Soda Manufacturing Company, Ltd. Process for producing powdery rubber
EP0779302A1 (en) * 1995-07-04 1997-06-18 Mitsubishi Rayon Co., Ltd. Process for flocculating diene polymer rubber latex to increase polymer particle size, graft polymer, and thermoplastic resin composition

Also Published As

Publication number Publication date
ATE353922T1 (de) 2007-03-15
KR100477162B1 (ko) 2005-03-18
CN1409727A (zh) 2003-04-09
JP2001172303A (ja) 2001-06-26
US20030040555A1 (en) 2003-02-27
EP1245584A4 (en) 2003-07-09
CN1196715C (zh) 2005-04-13
MY120866A (en) 2005-11-30
EP1245584A1 (en) 2002-10-02
EP1245584B1 (en) 2007-02-14
TWI228133B (en) 2005-02-21
KR20020058058A (ko) 2002-07-12
DE60033436T2 (de) 2007-10-31
DE60033436D1 (de) 2007-03-29
JP4817403B2 (ja) 2011-11-16
US6723764B2 (en) 2004-04-20

Similar Documents

Publication Publication Date Title
WO2001046267A1 (fr) Procede de production de latex a particules agrandies
CN110914319B (zh) Abs接枝共聚物的制备方法和热塑性树脂组合物的制备方法
WO2018135481A1 (ja) ゴム質重合体、グラフト共重合体および熱可塑性樹脂組成物
US5541256A (en) Process for preparing synthetic resin powder having improved blocking resistance
US20060122327A1 (en) Process for preparing enlarged latex particles
JP2006524718A (ja) ゴムラテックス及びこれの製造方法
JP2002053729A (ja) 耐ブロッキング性の改良された耐衝撃性改良剤
JP2005509702A (ja) 熱可塑性樹脂及びその製造方法
JP2005509702A6 (ja) 熱可塑性樹脂及びその製造方法
JP4731948B2 (ja) 複合ゴム粒子、複合ゴム強化ビニル系樹脂及び熱可塑性樹脂組成物
JPH08259777A (ja) 肥大化ゴムラテックスおよびそれを用いたabs系樹脂組成物
US6441062B1 (en) Method for precipitating microsuspension polymers
KR100998368B1 (ko) 아크릴로니트릴-부타디엔-스티렌계 공중합 라텍스의 제조방법
JPH0354983B2 (ja)
WO1994007923A1 (en) Latex of diene polymer particles, process for producing the latex, and process for producing rubber-containing thermoplastic resin from said polymer particles
JP2888937B2 (ja) 熱可塑性ポリマーの粉末状混合物の製造方法
KR20000014168A (ko) 대구경 고무 라텍스 제조 방법
EP4095174A1 (en) Method for preparing vinyl cyanide compound-conjugated diene rubber-aromatic vinyl compound graft copolymer, and method for preparing thermoplastic resin composition comprising same
KR102538844B1 (ko) 방향족 비닐 화합물-비닐시안 화합물 공중합체의 제조방법 및 이를 포함하는 열가소성 수지 조성물의 제조방법
JP2007297536A (ja) アクリルゴムラテックス、その製造法、複合ゴムグラフト共重合体及び熱可塑性樹脂組成物
JPH07206912A (ja) 複合架橋ポリマー粒子およびその製造法
JP6866222B2 (ja) 熱可塑性樹脂組成物およびその成形品
JP4649637B6 (ja) 熱可塑性樹脂及びその製造方法
CN115427469A (zh) 制备接枝共聚物的方法、接枝共聚物和包含该接枝共聚物的树脂组合物
JPH1030047A (ja) ゴム変性スチレン系樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020027006917

Country of ref document: KR

Ref document number: 10148343

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000981707

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008170959

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027006917

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000981707

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027006917

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2000981707

Country of ref document: EP