WO2001045746A2 - Methodes et compositions permettant de prolonger les demi-vies d'elimination de composes bioactifs - Google Patents

Methodes et compositions permettant de prolonger les demi-vies d'elimination de composes bioactifs Download PDF

Info

Publication number
WO2001045746A2
WO2001045746A2 PCT/US2000/035325 US0035325W WO0145746A2 WO 2001045746 A2 WO2001045746 A2 WO 2001045746A2 US 0035325 W US0035325 W US 0035325W WO 0145746 A2 WO0145746 A2 WO 0145746A2
Authority
WO
WIPO (PCT)
Prior art keywords
xaa
peptide
cys
leu
sequence
Prior art date
Application number
PCT/US2000/035325
Other languages
English (en)
Other versions
WO2001045746A3 (fr
Inventor
Warren L. Delano
Mark S. Dennis
Henry B. Lowman
Original Assignee
Genentech, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2390691A priority Critical patent/CA2390691C/fr
Priority to DK00988373T priority patent/DK1240337T3/da
Priority to JP2001546685A priority patent/JP2003518075A/ja
Priority to AU24587/01A priority patent/AU784285B2/en
Priority to DE60030323T priority patent/DE60030323T2/de
Priority to EP00988373A priority patent/EP1240337B1/fr
Priority to US10/149,835 priority patent/US7608681B2/en
Application filed by Genentech, Inc. filed Critical Genentech, Inc.
Publication of WO2001045746A2 publication Critical patent/WO2001045746A2/fr
Publication of WO2001045746A3 publication Critical patent/WO2001045746A3/fr
Priority to US11/367,100 priority patent/US20060228364A1/en
Priority to AU2006202341A priority patent/AU2006202341B2/en
Priority to US11/535,202 priority patent/US7635749B2/en
Priority to CY20061101596T priority patent/CY1106236T1/el
Priority to AU2009201933A priority patent/AU2009201933B2/en
Priority to US12/606,055 priority patent/US20100121039A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/04General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
    • C07K1/047Simultaneous synthesis of different peptide species; Peptide libraries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/643Albumins, e.g. HSA, BSA, ovalbumin or a Keyhole Limpet Hemocyanin [KHL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/65Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/001Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/461Igs containing Ig-regions, -domains or -residues form different species
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'

Definitions

  • This invention relates to novel compounds tenned peptide ligands which bind a predetermined molecule such as a plasma protein.
  • the invention relates to compositions comprising a hybrid molecule comprising a peptide ligand domain and an active domain such as a biologically active molecule.
  • the active domain may comprise a molecule useful for diagnostic or therapeutic purposes.
  • the hybrid compositions comprising the peptide ligand domain and active domain have improved pharmacokinetic or phannacological properties.
  • the invention further provides for the research, diagnostic and therapeutic use of the peptide ligand and includes compositions such as pharmaceutical compositions comprising the peptide ligand molecules.
  • Phage-display provides a means for generating constrained and unconstrained peptide libraries (Devlin et al, (1990) Science 249:404-406; Cwirla et al, (1990) Proc. Natl. Acad. Sci. USA 87:6378-6382; Lowman (1997) Ann. Rev. Biophys. Biomol. Struct. 26:401-424). These libraries can be used to identify and select peptide ligands that can bind a predetermined target molecule (Lowman (1997), supra); Clackson and Wells (1994) Trends Biotechnol. 12:173-184; Devlin et al, (1990) supra).
  • IGFBPs insulin-like growth factor 1 binding proteins
  • affinity or specificity improved proteins include human growth hormone, zinc fingers, protease inhibitors, atrial natriuretic factor, and antibodies (Wells, J. and Lowman H. (1992), Curr. Opin. Struct. Biol. 2:597-604; Clackson, T. and Wells, J. (1994), Trends Biotechnol. 12:173-184; Lowman et al, (1991) Biochemistry 30(10):832-838; Lowman and Wells J. (1993), /. Mol. Biol. 234:564-578; Dennis M. and Lazarus R. (1994), J. Biol. Chem. 269(22): 137- 144).
  • the present invention provides novel compounds that bind to plasma proteins.
  • the compounds of the present invention are, for example, peptides or peptide derivatives such as peptide mimetics and peptide analogs.
  • the compounds are non-naturally occurring amino acid sequences that bind plasma proteins such as serum albumin or a portion of an immunoglobulin, as for example, IgG- Fc.
  • the peptide ligand is a non-naturally occurring amino acid sequence of between about 10 and 20 amino acid residues.
  • Such compounds preferably bind a desired plasma protein with an affinity characterized by a dissociation constant, K d , that is less than about 100 ⁇ M, preferably less than about 100 nM, and preferably do not substantially bind other plasma proteins.
  • K d dissociation constant
  • Specific examples of such compounds include linear or cyclic, especially cyclic peptides, preferably between about 10 and 20 amino acid residues in length, and combinations thereof, optionally modified at the N-terminus or C-terminus or both, as well as their salts and derivatives, functional analogues thereof and extended peptide chains carrying amino acids or polypeptides at the termini ofthe sequences.
  • Preferred peptide ligands bind IgG-Fc and include linear and cyclic peptides, preferably cyclic peptide compounds comprising the following core formula: Xaai-Cys-Xaa,-Cys-Xaa k (SEQ ID NO: 1), wherein Xaaj is absent or is a peptide of between 1 and 4 amino acids, preferably 4 amino acids; Xj is preferably 9 amino acids having a preferred sequence Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Leu-Val-Trp (SEQ ID NO: 10); or Xaa-Xaa-Xaa-Xa-
  • Xaa preferably is Ala, Ser, or Thr; Xaa 2 preferably is Trp or Tyr; Xaa 3 preferably is His, or Trp; Xaa 4 preferably is Leu or Met, and Xaa k is absent or between 1 and 5 amino acids, preferably 5 amino acids, so long as the cyclic peptide or analog thereof retains the qualitative biological activity of IgG-Fc binding.
  • Preferred among this group of compounds are compounds that bind IgG-Fc comprising the sequence: Xaa-Xaa-Xaa-Xaa-Cys-Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Leu-Val-Trp-Cys-Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Leu-Val-Trp-Cys-Xaa-Xaa-Xaa-Xa-Xa-Xa-
  • Preferred peptide ligands that bind serum albumin include linear and cyclic peptides, preferably cyclic peptide compounds comprising the following formulae: (Xaa) x -Xaa-Xaa-Cys-Xaa-Xaa-Xaa-Xaa-Xaa-Cys-Xaa-Xaa-(Xaa) z
  • the invention is directed to combinations of a peptide ligand with a bioactive compound to form a hybrid molecule that comprises a peptide ligand domain and an active domain.
  • the bioactive compounds of the invention include any compound useful as a therapeutic or diagnostic agent.
  • bioactive compounds include polypeptides such as enzymes, hormones, cytokines, antibodies or antibody fragments, as well as organic compounds such as analgesics, antipyretics, antiinflammatory agents, antibiotics, antiviral agents, anti-fungal drugs, cardiovascular drugs, drugs that affect renal function and electrolyte metabolism, drugs that act on the central nervous system and chemotherapeutic drugs, to name but a few.
  • polypeptides such as enzymes, hormones, cytokines, antibodies or antibody fragments
  • organic compounds such as analgesics, antipyretics, antiinflammatory agents, antibiotics, antiviral agents, anti-fungal drugs, cardiovascular drugs, drugs that affect renal function and electrolyte metabolism, drugs that act on the central nervous system and chemotherapeutic drugs, to name but a few.
  • the hybrid molecules comprising a peptide ligand domain and an active domain have improved pharmacokinetic or pharmacodynamic properties as compared to the same bioactive molecule comprising the active domain but lacking the peptide ligand domain.
  • the improved pharmacokinetic or pharmacodynamic properties of the hybrids thereby provide for low-dose pharmaceutical formulations and novel pharmaceutical compositions.
  • the invention provides for methods of using the novel compositions including the therapeutic or diagnostic use ofthe hybrid molecules.
  • the invention is directed to combinations of peptide ligands with bioactive compounds that have relatively short elimination half-times.
  • the combinations are prepared with various objectives in mind, including improving the therapeutic or diagnostic efficacy of the bioactive compound in aspects of the invention involving in vivo use of the bioactive compound, by for example, increasing the elimination half-time of the bioactive compound.
  • Fusing or linking i.e., "conjugating" the peptide ligand directed against a plasma protein such as serum albumin, an immunoglobulin, an apolipoprotein or transferrin to a bioactive compound provides compositions with increased elimination half-times.
  • Such combinations or fusions are conveniently made in recombmant host cells, or by the use of bifunctional crosslinking agents.
  • aspects of the invention include methods and compositions to purify antibodies using peptide ligands having binding affinity for immunoglobulins, such as, for example, the IgG- Fc peptide ligands disclosed herein.
  • the present invention further extends to therapeutic and diagnostic applications for the compositions described herein. Therefore, the invention includes pharmaceutical compositions comprising a pharmaceutically acceptable excipient and the hybrid molecules ofthe invention.
  • Phage competitive ELISA assay showing IgG binding of peptide-ligand tagged anti-VEGF Fab-phagemid particles.
  • Four different constructs are shown: pY0192-569 (large filled circles), pY0192-570 (large open circles), PY0317-569 (small filled circles), and pY0317-570 ("x'"s).
  • FIG. 2 BIAcoreTM analysis of IgG binding to peptide-ligand tagged anti-VEGF Fab Y0317-570 (tagged; top panel) Y0317 Fab (control; bottom panel).
  • a cartoon illustration at top shows a rnodel for the binding events observed in the tagged Fab experiment.
  • Fig. 4 The peptide sequences displayed by phage clones selected for binding to rabbit, human or rat albumin are shown in Figure 4. Also indicated is the ability of individual phage clones to bind the 3 species of immobilized albumin.
  • FIG. 5 A and 5B Sequences identified following soft randomization are shown in Figure 5 along with their species specificity as determined by phage ELISA.
  • Clones originating from the RB soft randomization library were found by ELISA to bind each of these species of albumin and were specific for albumin based upon their lack of binding to ovalbumin and casein.
  • FIG. 8A, 8B and 8C Sequences from libraries selected against rat, rabbit and human albumin are shown in Figures 8 A, 8B, and 8C respectively.
  • Fig. 9 Peptides corresponding to identified phage sequences were synthesized and their affinity for rat, rabbit or mouse albumin measured using the SA08b binding assay.
  • Fig. 10 A peptides corresponding to the SA06 identified phage sequence was synthesized and its affinity for rat, rabbit or mouse albumin measured using the SAO 8b binding assay. Fig. 11. The SA06 sequence was added to the carboxy terminus of either the light chain
  • D3H44-L or heavy chain (D3H44-Ls) of the Fab.
  • identical constructs were made with the intra-chain disulfide replaced by alanines (D3H44-Ls and D3H44-Hs, respectively) as depicted in Figure 11.
  • Fig. 12 Purified D3H44 fusions retained their ability to bind TF as measured using a FX activation assay.
  • both D3H44-L and D3H44-Ls are able to bind to albumin as measured in the SA08b binding assay.
  • Both D3H44 albumin-binding fusions are capable of binding TF and albumin simultaneously as judged by a biotin-TF binding assay.
  • peptide ligand within the context of the present invention is meant to refer to non-naturally occurring amino acid sequences that function to bind a particular target molecule.
  • Peptide ligands within the context of the present invention are generally constrained (that is, having some element of structure as, for example, the presence of amino acids which initiate a ⁇ turn or ⁇ pleated sheet, or for example, cyclized by the presence of disulfide-bonded Cys residues) or unconstrained (linear) amino acid sequences of less than about 50 amino acid residues, and preferably less than about 40 amino acids residues.
  • peptide ligands less than about 40 amino acid residues, preferred are the peptide ligands of between about 10 and about 30 amino acid residues and especially the peptide ligands of about 20 amino acid residues.
  • the skilled artisan will recognize that it is not the length of a particular peptide ligand but its ability to bind a particular target molecule that distinguishes the peptide ligand of the present invention. Therefore peptide ligands of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 and 25 amino acid residues, for example, are equally likely to be peptide ligands within the context ofthe present invention.
  • a peptide ligand of the present invention will bind a target molecule with sufficient affinity and specificity if the peptide ligand "homes" to, “binds” or “targets” a target molecule such as a specific cell type bearing the target molecule in vitro and preferably in vivo (see, for example, the use of the term “homes to,” “homing,” and “targets” in Pasqualini and Ruoslahti (1996)
  • the peptide ligand will bind a target molecule with an affinity characterized by a dissociation constant, K , of less than about 1 ⁇ M, preferably less than about 100 nM and more preferably less than about 10 nM.
  • K dissociation constant
  • peptide ligands having an affinity for a target molecule of less than about 1 nM and preferably between about 1 pM and 1 nM are equally likely to be peptide ligands within the context ofthe present invention.
  • a peptide ligand that binds a particular target molecule as described above can be isolated and identified by any of a number of art-standard techniques as described herein.
  • Peptides ligands are amino acid sequences as described above which may contain naturally as well as non-naturally occurring amino acid residues. Therefore, so-called “peptide mimetics” and “peptide analogs” which may include non-amino acid chemical structures that mimic the structure of a particular amino acid or peptide may be peptide ligands within the context of the invention.
  • Such mimetics or analogs are characterized generally as exhibiting similar physical characteristics such as size, charge or hydrophobicity present in the appropriate spacial orientation as found in their peptide counterparts.
  • a specific example of a peptide mimetic compound is a compound in which the amide bond between one or more of the amino acids is replaced by, for example, a carbon-carbon bond or other bond as is well known in the art (see, for example Sawyer, in Peptide Based Drug Design pp. 378-422 (ACS, Washington DC 1995)). Therefore, the term "amino acid" within the scope of the present invention is used in its broadest sense and is meant to include naturally occurring L ⁇ -amino acids or residues. The commonly used one and three letter abbreviations for naturally occurring amino acids are used herein (Lehninger, A.L., Biochemistry, 2d ed., pp. 71-92, (1975), Worth Publishers, New York).
  • D ala
  • C Cys
  • D Asp
  • E Glu
  • F Phe
  • G Gly
  • H His
  • I He
  • K Lys
  • L Leu
  • M Met
  • N Asn
  • P Pro
  • Q Gin
  • R Arg
  • S Ser
  • T Thr
  • V Val
  • W Trp
  • Y Tyr.
  • the term includes D-amino acids as well as chemically modified amino acids such as amino acid analogs, naturally occurring amino acids that are not usually incorporated into proteins such as norleucine, and chemically synthesized compounds having properties known in the art to be characteristic of an amino acid.
  • analogs or mimetics of phenylalanine or proline which allow the same conformational restriction of the peptide compounds as natural Phe or Pro are included within the definition of amino acid.
  • Such analogs and mimetics are referred to herein as "functional equivalents" of an amino acid.
  • Other examples of amino acids are listed by Roberts and Vellaccio The Peptides: Analysis, Synthesis, Biology, Gross and Meiehofer, eds., Vol. 5 p. 341, Academic Press, Inc., N.Y. 1983, which is incorporated herein by reference.
  • Peptide ligands synthesized by, for example, standard solid phase synthesis techniques are not limited to amino acids encoded by genes.
  • Commonly encountered amino acids which are not encoded by the genetic code include, for example, those described in International Publication No. WO 90/01940 such as, for example, 2-amino adipic acid (Aad) for Glu and Asp; 2-aminopimelic acid (Apm) for Glu and Asp; 2-aminobutyric (Abu) acid for Met, Leu, and other aliphatic amino acids; 2-aminoheptanoic acid (Alie) for Met, Leu and other aliphatic amino acids; 2- aminoisobutyric acid (Aib) for Gly; cyclohexylalanine (Cha) for Val, and Leu and He; homoarginine (Har) for Arg and Lys; 2,3-diaminopropionic acid (Dpr) for Lys, Arg and His; N- ethyl
  • Peptide ligands within the context of the present invention may be "engineered", i.e., they are non-native or non-naturally occurring peptide ligands.
  • non-native or “non-naturally occurring” is meant that the amino acid sequence of the particular peptide ligand is not found in nature. That is to say, amino acid sequences of non-native or non-naturally occurring peptide ligands do not correspond to an amino acid sequence of a naturally occurring protein or polypeptide.
  • Peptide ligands of this variety may be produced or selected using a variety of techniques well known to the skilled artisan. For example, constrained or unconstrained peptide libraries may be randomly generated and displayed on phage utilizing art standard techniques, for example, Lowman et al, (1998) Biochemistry 37:8870-8878.
  • Peptide ligands when used within the context of the present invention, may be "conjugated” to a therapeutic or diagnostic substance.
  • the term “conjugated” is used in its broadest sense to encompass all methods of attachment or joining that are known in the art.
  • the therapeutic or diagnostic substance is a protein (referred to herein as a "protein therapeutic")
  • the peptide ligand will be an amino acid extension of the C- or N-terminus of the protein therapeutic.
  • a short amino acid linker sequence may lie between the protein therapeutic and the peptide ligand.
  • the peptide ligand, optional linker and protein therapeutic will be coded for by a nucleic acid comprising a sequence encoding protein therapeutic operably linked to (in the sense that the DNA sequences are contiguous and in reading frame) an optional linker sequence encoding a short polypeptide as described below, and a sequence encoding the peptide ligand.
  • the peptide ligand is considered to be "conjugated" to the protein therapeutic optionally via a linker sequence.
  • the peptide ligand amino acid sequence may interrupt or replace a section of the protein therapeutic amino acid sequence, provided, of course, that the insertion of the peptide ligand amino acid sequence does not interfere with the function of the protein therapeutic.
  • the "conjugate” may be coded for by a nucleic acid comprising a sequence encoding protein therapeutic interrupted by and operably linked to a sequence encoding the peptide ligand.
  • the peptide will be linked, e.g., by chemical conjugation to the protein therapeutic or other therapeutic optionally via a linker sequence.
  • the peptide ligand will be linked to the protein therapeutic via a side chain of an amino acid somewhere in the middle of the protein therapeutic that doesn't interfere with the therapeutic 's activity.
  • the peptide is considered to be "conjugated" to the therapeutic.
  • target molecule includes, proteins, peptides, glycoproteins, glycopeptides, glycolipids, polysaccharides, oligosaccharides, nucleic acids, and the like.
  • Target molecules include, for example, extracellular molecules such as various serum factors including but not limited to plasma proteins such as serum albumin, immunoglobulins, apolipoproteins or transferrin, or proteins found on the surface of erythrocytes or lymphocytes, provided, of course, that binding of the peptide ligand to the cell surface protein does not substantially interfere with the normal function ofthe cell.
  • Antibodies and “immunoglobulins” are usually heterotetrameric glycoproteins of about 150,000 Daltons, composed of two identical light (L) chains and two identical heavy (H) chains.
  • Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments or regions, each with a single antigen-binding site, and a residual "Fc” fragment or region.
  • Fab antigen-binding fragments or regions
  • Fc residual fragment or region.
  • the boundaries of the Fc region of an immunoglobulin heavy chain might vary, the human IgG heavy chain Fc region is usually defined to stretch from an amino acid residue at position Cys226, or from Pro230, to the carboxyl-terminus thereof.
  • Pepsin treatment yields an F(ab')2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen.
  • the Fab' fragment contains the constant domain of the light chain and the first constant domain (CHI) ofthe heavy chain.
  • Treatment refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with the disorder as well as those in which the disorder is to be prevented.
  • mammal for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. Preferably, the mammal is human.
  • a “disorder” is any condition that would benefit from treatment with the compositions comprising the peptide ligands of the invention. This includes chronic and acute disorders or diseases including those pathological conditions which predispose the mammal to the disorder in question.
  • “Elimination half-time” is used in its ordinary sense, as is described in Goodman and Gillman's The Pharmaceutical Basis of Therapeutics 21-25 (Alfred Goodman Gilman, Louis S. Goodman, and Alfred Gilman, eds., 6th ed. 1980). Briefly, the term is meant to encompass a quantitative measure of the time course of drug elimination.
  • the elimination of most drugs is exponential (i.e., follows first-order kinetics), since drug concentrations usually do not approach those required for saturation ofthe elimination process.
  • the rate of an exponential process may be expressed by its rate constant, k, which expresses the fractional change per unit of time, or by its half-time, ty 2 , the time required for 50% completion of the process. The units of these two constants are time"!
  • Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaP04 precipitation and electroporation.
  • Transfection means introducing DNA into an organism so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells.
  • pulmonary administration refers to administration of a formulation ofthe invention through the lungs by inhalation.
  • inhalation refers to intake of air to the alveoli. In specific examples, intake can occur by self-administration of a formulation of the invention while inhaling, or by administration via a respirator, e.g. , to an patient on a respirator.
  • respirator e.g. , to an patient on a respirator.
  • inhalation used with respect to a formulation ofthe invention is synonymous with "pulmonary administration.”
  • parenteral refers to introduction of a compound ofthe invention into the body by other than the intestines, and in particular, intravenous (i.v.), intraarterial (i.a.), intraperitoneal (i.p.), intramuscular (i.m.), intraventricular, and subcutaneous (s.c.) routes.
  • an aerosol formulation is a formulation comprising a compound of the present invention that is suitable for aerosolization, i.e., particlization and suspension in the air, for inhalation or pulmonary administration.
  • Peptide ligands within the context of the present invention bind a target, preferably a serum protein such as serum albumin or an immunoglobulin, and can be identified in a direct binding assay, or by their ability to compete for target binding with a known ligand for the target.
  • Preferred peptide ligands that bind serum albumin include linear and cyclic peptides, preferably cyclic peptide compounds comprising the following formulae or are peptides that compete for binding serum albumin of a particular mammalian species with peptides ofthe following formulae:
  • peptide ligands that bind a serum albumin are identified as described herein in the context of the following general formulae (Xaa) x -Trp-Cys-Asp-Xaa-Xaa-Leu-Xaa- Ala-Xaa-Asp-Leu-Cys-(Xaa) z and (Xaa) x - Asp-Leu- Val-Xaa-Leu-Gly-Leu-Glu-Cys-Trp-(Xaa) z wherein Xaa is an amino acid and x and z are a whole number greater or equal to zero, generally less than 100, preferably less than 10 and more preferably 0, 1, 2, 3, 4 or 5 and more preferably 4 or 5.
  • Figures 5A and 5B, 8A, 8B and 8C and Figure 9 for exemplary peptides and appropriate amino acids for selecting peptides ligands that bind a mammalian serum albumin.
  • Figure 9 for selecting peptide ligands that bind accross several species of serum albumin.
  • Preferred compounds according to this aspect ofthe invention include: Asp-Leu-Cys-Leu-Arg-Asp-Trp-Gly-Cys-Leu-Trp (SEQ ID NO: zl)
  • peptide ligands of the present invention bind IgG-Fc and can be identified by their ability to compete for binding of IgG-Fc in an in vitro assay with a peptide ligand having the general formula:
  • Xaai-Cys-Xaaj-Cys-Xaak (SEQ ID NO: 1), wherein Xaaj is absent or is a peptide of between 1 and 4 amino acids, preferably 4 amino acids; Xi is preferably 9 amino acids having a preferred sequence Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Leu-Val-Trp (SEQ ID NO: 10); or Xaa-Xaa-Xaa- Xaa-Gly-Glu-Leu-Val-T ⁇ (SEQ HO NO: 11); or Xaa ⁇ -Xaa 2 -Xaa 3 -Xaa4-Gly-Glu-LeuNal-T ⁇ (SEQ ID NO: 12), wherein Xaaj is Ala, Ser, or Thr; Xaa 2 is T ⁇ or Tyr; Xaa 3 is His, or T ⁇ ; Xaa4 is Leu or Met, and Xa
  • Preferred among this group of compounds are compounds comprising the sequence: Xaa-Xaa-Xaa-Xaa-Cys-Xaa-Xaa-Xaa-Xaa-Xaa-Leu-Val-T ⁇ -Cys-Xaa-Xaa-Xaa- Xaa-Xaa (SEQ ID NO: 13); Xaa-Xaa-Xaa-Xaa-Cys-Xaa-Xaa-Xa-Xaa-Xaa-Gly-Glu-Leu-Val-T ⁇ -Cys-Xaa-Xaa-Xaa-Xaa-Xa-Xa-Xa-Xa-Xa-SEQ ID NO: 13); Xaa-Xaa-Xa-Xa-Cys-Xaa-Xaa-Xa-Xa-Xa-Gly-Glu-Leu-Val-T ⁇ -Cys-Xaa-Xaa-Xaa
  • Xaa ⁇ o-X a ll-X a ai2-X aa 13 (SEQ ID NO: 16) wherein Xaa4 is Ser, Arg, or Asp; Xaa5 is Ala, Ser, or Thr; Xaag is T ⁇ , Tyr; Xaay is His, or T ⁇ ; Xaag is Leu or Met; and Xaao is Glu, Ser, Thr or Val.
  • the IgG-Fc binding peptide ligands of the present invention will compete with any of the peptide ligands represented in SEQ ID NO: 3 - SEQ ED NO: 4, SEQ ID NO: 9; and SEQ ID NO: 13 - SEQ ID NO: 111 described herein and preferably will compete with SEQ ID NO: 9 for binding IgG-Fc.
  • peptide ligands of the present invention bind human serum albumin and can be identified by their ability to compete for binding of human serum albumin in an in vitro assay with peptide ligands having the general formulae: (Xaa) x - Asp-Xaa-Cys-Leu-Pro-Xaa-T ⁇ -Gly-Cys-Leu-T ⁇ -(Xaa) z (Xaa) x -Phe-Cys-Xaa-Asp-T ⁇ -Pro-Xaa-Xaa-Xaa-Ser-Cys-(Xaa) z
  • Xaa x -Cys-Tyr-Xaa ⁇ -Pro-Gly-Xaa-Cys-(Xaa) z
  • Xaa is an amino acid
  • x and z are preferably 4 or 5
  • Xaai is selected from the group consisting of He, Phe, Tyr and Val.
  • the human serum albumin binding peptide ligands of the present invention will compete with any ofthe peptide ligands represented in SEQ ID NO: z2 - zl4 described herein above and preferably will compete with SEQ ID NO: z4 for binding human serum albumin.
  • the term "compete” and “ability to compete” are relative terms.
  • the terms when used to describe the peptide ligands of the present invention, refer to peptide ligands that produce a 50% inhibition of binding of, for example SEQ ED NO: 9 or SEQ ID NO: z4, when present at 50 ⁇ M, preferably when present at 1 ⁇ M, more preferably 100 nM, and preferably when present at 1 nM or less in a standard competition assay as described herein.
  • Such peptide ligands generally will bind IgG-Fc with an affinity of less than 1 ⁇ M, preferably less than about 100 nM and more preferably less than about 10 nM as determined by a standard competition assay such as the one described in the Example sections.
  • peptide ligands having an affinity for a serum protein such as serum albumin or IgG-Fc of less than about 1 nM and preferably between about 1 pM and 1 nM are equally likely to be peptide ligands within the context ofthe present invention.
  • a peptide or other compound may determine whether a peptide or other compound has the ability to compete with a peptide ligand for binding to an IgG-Fc (or other target such as a plasma protein) employing procedures which mclude but are not limited to competitive assay systems using techniques such as radioimmunoassays (RIA), enzyme immunoassays (EIA), preferably the enzyme linked immunosorbent assay (ELISA), "sandwich” immunoassays, immunoradiometric assays, fluorescent immunoassays, and immunoelectrophoresis assays, to name but a few.
  • RIA radioimmunoassays
  • EIA enzyme immunoassays
  • ELISA enzyme linked immunosorbent assay
  • "sandwich” immunoassays immunoradiometric assays
  • fluorescent immunoassays or immunoelectrophoresis assays
  • the selected peptide ligand will be labeled with a detectable moiety (the detectably labeled peptide ligand hereafter called the "tracer") and used in a competition assay with a candidate compound for binding IgG-Fc domain or other target.
  • detectable labels are available which can be preferably grouped into the following categories: (a) Radioisotopes, such as 35s, ⁇ C, 125 . 3JJ, and 131l.
  • the peptide compound can be labeled with the radioisotope using the techniques described in Coligen et al, eds., Current Protocols in Immunology, Volumes 1 and 2 (1991), Wiley-Interscience, New York, N.Y., for example and radioactivity can be measured using scintillation counting.
  • Fluorescent labels such as rare earth chelates (europium chelates) or fluorescein and its derivatives, rhodamine and its derivatives, dansyl, lissamine, phycoerythrin and Texas Red are available.
  • the fluorescent labels can be conjugated to the peptide compounds using the techniques disclosed in Current Protocols in Immunology, supra, for example. Fluorescence can be quantified using a fluorimeter.
  • the enzyme preferably catalyzes a chemical alteration of the chromogenic substrate which can be measured using various techniques.
  • the enzyme may catalyze a color change in a substrate, which can be measured spectrophotometrically.
  • the enzyme may alter the fluorescence or chemiluminescence of the substrate. Techniques for quantifying a change in fluorescence are described above.
  • the chemiluminescent substrate becomes electronically excited by a chemical reaction and may then emitlight which can be measured (using a chemiluminometer, for example) or donates energy to a fluorescent acceptor.
  • enzymatic labels include luciferases (e.g., firefly luciferase and bacterial luciferase; U.S. Patent No. 4,737,456), luciferin, 2,3-dihydrophthalazinediones, malate dehydrogenase, urease, peroxidase such as horseradish peroxidase (HRP), alkaline phosphatase, ⁇ -galactosidase, glucoamylase, lysozyme, saccharide oxidases (e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase), heterocyclic oxidases (such as uricase and xanthine oxidase), lactoperoxidase, microperoxidase, and the like.
  • luciferases e.g., firefly luciferase and bacterial luciferas
  • enzyme-substrate combinations include, for example:
  • HRP Horseradish peroxidase
  • a dye precursor e.g. ABTS, orthophenylene diamine (OPD) or 3,3',5,5'-tetramethyl benzidine hydrochloride (TMB)
  • OPD orthophenylene diamine
  • TMB 3,3',5,5'-tetramethyl benzidine hydrochloride
  • ⁇ -D-galactosidase ( ⁇ -D-Gal) with a chromogenic substrate (e.g. p-nitrophenyl- ⁇ -D- galactosidase) or f ⁇ uorogenic substrate 4-methylumbelliferyl- ⁇ -D-galactosidase.
  • a chromogenic substrate e.g. p-nitrophenyl- ⁇ -D- galactosidase
  • f ⁇ uorogenic substrate 4-methylumbelliferyl- ⁇ -D-galactosidase 4-methylumbelliferyl- ⁇ -D-galactosidase.
  • the tracer is incubated with immobilized target in the presence of varying concentrations of unlabeled candidate compound. Increasing concentrations of successful candidate compound effectively compete with binding of the tracer to immobilized target.
  • the concentration of unlabeled candidate compound at which 50% of the maximally-bound tracer is displaced is referred to as the "IC50" and reflects the IgG binding
  • binding affinity of a mutated (“mut") sequence was directly compared of a control ("con") peptide using methods described in B.C. Cunningham, D.G. Lowe, B. Li, B.D. Bennett, and J.A. Wells, EMBO J. 13:2508 (1994) and characterized by the parameter EC50. Assays were performed under conditions where EC5o(con)/EC5o(mut) will approximate Kd(con)/Kd(mut).
  • the invention provides compounds "having the ability to compete" for target molecules such as IgG or human serum albumin binding in an in vitro assay as described.
  • the compound has an IC50 for the target such as IgG or human serum albumin of less than 1 ⁇ M.
  • Preferred among these compound are compounds having an IC50 of less than about
  • the compounds display an IC50 for the target molecule such as IgG or human serum albumin of less than about 100 pM and more preferably less than about 10 pM.
  • a preferred in vitro assay for the determination of a candidate compound's ability to compete with a peptide ligand described herein is as follows and is described more fully in the Examples.
  • the candidate compound is a peptide.
  • the ability of a candidate compound to compete with a labeled peptide ligand tracer for binding to IgG or human serum albumin is monitored using an ELISA. Dilutions of a candidate compound in buffer are added to microtiter plates coated with IgG or human serum albumin (as described in the Example Sections) along with tracer for 1 hr. The microtiter plate is washed with wash buffer and the amount of tracer bound to IgG or human serum albumin measured. B.
  • the peptide ligand is optionally linked to a bioactive compound to form a hybrid molecule that comprises a peptide ligand domain and an active domain.
  • the bioactive compounds of the invention include any compound useful as a therapeutic or diagnostic agent.
  • bioactive compounds include polypeptides such as enzymes, hormones, cytokines, antibodies or antibody fragments, as well as organic compounds such as analgesics, antipyretics, antiinflammatory agents, antibiotics, antiviral agents, anti-fungal drugs, cardiovascular drugs, drugs that affect renal function and electrolyte metabolism, drugs that act on the central nervous system, chemotherapeutic drugs, etc.
  • the peptide ligand domain is joined to an active domain, optionally via a flexible linker domain.
  • the hybrid molecules of the present invention are constructed by combining a peptide ligand domain with a suitable active domain.
  • the peptide ligand domain may be joined via its N- or C-terminus to the N- or C- terminus of the active domain.
  • nucleic acid encoding a peptide ligand will be operably linked to nucleic acid encoding the active domain sequence, optionally via a linker domain.
  • the construct encodes a fusion protein wherein the C-terminus of the peptide ligand is joined to the N-terminus of the active domain.
  • fusions where, for example, the N-terminus of the peptide ligand is joined to the N- or C-terminus of the active domain also are possible.
  • the peptide ligand domain may be inserted within the active domain molecule rather than being joined to the active domain at its N-or C-terminus. This configuration may be used to practice the invention so long as the functions of the peptide ligand domain and the active domain are preserved.
  • a peptide ligand may be inserted into a non-binding light chain CDR of an immunoglobulin without interfering with the ability of the immunoglobulin to bind to its target.
  • Regions of active domain molecules that can accommodate peptide ligand domain insertions may be identified empirically (i.e., by selecting an insertion site, randomly, and assaying the resulting conjugate for the function of the active domain), or by sequence comparisons amongst a family of related active domain molecules (e.g., for active domains that are proteins) to locate regions of low sequence homology. Low sequence homology regions are more likely to tolerate insertions of peptide ligands domains than are regions that are well-conserved.
  • the three-dimensional structure may provide guidance as to peptide ligand insertion sites. For example, loops or regions with high mobility (i.e., large temperature or "B" factors) are more likely to accommodate peptide ligand domain insertions than are highly ordered regions of the structure, or regions involved in ligand binding or catalysis.
  • the peptide ligand domain is optionally linked to the active domain via a linker.
  • the linker component ofthe hybrid molecule ofthe invention does not necessarily participate in but may contribute to the function of the hybrid molecule. Therefore, according to the present invention, the linker domain, is any group of molecules that provides a spatial bridge between the active domain and the peptide ligand domain.
  • the linker domain can be of variable length and makeup, however, according to the present invention, it is the length of the linker domain and not its structure that is important.
  • the linker domain preferably allows for the peptide ligand domain of the hybrid molecule to bind, substantially free of steric and/or conformational restrictions to the target molecule. Therefore, the length of the linker domain is dependent upon the character ofthe two "functional" domains of the hybrid molecule, i.e., the peptide ligand domain and the active domain.
  • the linker domain may be a polypeptide of variable length.
  • the amino acid composition of the polypeptide determines the character and length of the linker.
  • the linker molecule comprises a flexible, hydrophilic polypeptide chain.
  • Exemplary, linker domains comprises one or more Gly and or Ser residues, such as those described in the Example sections herein.
  • the present invention encompasses a composition of matter comprising an isolated nucleic acid, preferably DNA, encoding a peptide ligand or a hybrid molecule comprising a peptide ligand domain and a polypeptide active domain as described herein.
  • DNAs encoding the peptides of the invention can be prepared by a variety of methods known in the art. These methods include, but are not limited to, chemical synthesis by any of the methods described in Engels et al. (1989), Agnew. Chem. Int. Ed. Engl. 28:716-734, the entire disclosure of which is inco ⁇ orated herein by reference, such as the triester, phosphite, phosphoramidite and H-phosphonate methods.
  • codons preferred by the expression host cell are used in the design of the encoding DNA.
  • DNA encoding the peptides of the invention can be altered to encode one or more variants by using recombinant DNA techniques, such as site specific mutagenesis (Kunkel et al. (1991), Methods Enzymol, 204:125-139; Carter et al (1986), Nucl Acids Res. 13:4331; Zoller et al (1982), Nucl. Acids Res. 10:6487), cassette mutagenesis (Wells et al. (1985), Gene 34:315), restriction selection mutagenesis (Carter, Directed Mutagenesis: A Practical Approach (M.J. McPherson, ed.) IRL Press, Oxford, 1991), and the like.
  • the nucleic acid encodes a peptide ligand capable of binding a target molecule.
  • Target molecules include, for example, extracellular molecules such as various serum factors including but not limited to plasma proteins such as serum albumin, immunoglobulins, apolipoproteins or transferrin, or proteins found on the surface of erythrocytes or lymphocytes, provided, of course, that binding of the peptide ligand to the cell surface protein does not substantially interfere with the normal function ofthe cell.
  • the nucleic acid encodes a hybrid molecule comprising a peptide ligand domain sequence and an active domain.
  • the active domain may comprise any polypeptide compound useful as a therapeutic or diagnostic agent, e.g., enzymes, hormones, cytokines, antibodies or antibody fragments.
  • the nucleic acid molecule according to this aspect of the present invention encodes a hybrid molecule and the nucleic acid encoding the peptide ligand domain sequence is operably linked to (in the sense that the DNA sequences are contiguous and in reading frame) the nucleic acid encoding the biologically active agent.
  • these DNA sequences may be linked through a nucleic acid sequence encoding a linker domain amino acid sequence.
  • the invention further comprises an expression control sequence operably linked to the DNA molecule encoding a peptide of the invention, an expression vector, such as a plasmid, comprising the DNA molecule, wherein the control sequence is recognized by a host cell transformed with the vector, and a host cell transformed with the vector.
  • plasmid vectors contain replication and control sequences which are derived from species compatible with the host cell.
  • the vector ordinarily carries a replication site, as well as sequences which encode proteins that are capable of providing phenotypic selection in transformed cells.
  • suitable vectors include pBR322 (ATCC No. 37,017), phGH107 (ATCC No.
  • Prokaryotic host cells containing the expression vectors of the present invention include E. coli K12 strain 294 (ATCC NO. 31,446), E. coli strain JMIOI (Messing et ⁇ /.(1981), Nucl. Acid Res. 9:309), E. coli strain B, E. coli strain _1776 (ATCC No. 31537), E.
  • E. coli c600 E. coli W3110 (F-, gamma-, prototrophic, ATCC No. 27,325), E. coli strain 27C7 (W3110, tonA, phoA E15, (argF-lac)169, ptr3, degP41, ompT, kan r ) (U.S. Patent No. 5,288,931, ATCC No. 55,244), Bacillus subtilis, Salmonella typhimurium, Serratia marcesans, and Pseudomonas species.
  • eukaryotic organisms such as yeasts, or cells derived from multicellular organisms can be used as host cells.
  • suitable vectors include episomally- replicating vectors based on the 2-micron plasmid, integration vectors, and yeast artificial chromosome (YAC) vectors.
  • yeast host cells such as common baker's yeast or Saccharomyces cerevisiae
  • suitable vectors include episomally- replicating vectors based on the 2-micron plasmid, integration vectors, and yeast artificial chromosome (YAC) vectors.
  • yeast host cells such as common baker's yeast or Saccharomyces cerevisiae
  • suitable vectors include episomally- replicating vectors based on the 2-micron plasmid, integration vectors, and yeast artificial chromosome (YAC) vectors.
  • yeast artificial chromosome e.g., baculoviral vectors.
  • suitable expression vectors include vectors derived from the Ti plasmid of
  • Examples of useful mammalian host cells include monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al. (1977), J. Gen Virol. 36:59); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin (1980), Proc. Natl. Acad. Sci. USA 77:4216); mouse sertoli cells (TM4, Mather (1980), Biol. Reprod.
  • COS-7 monkey kidney CV1 line transformed by SV40
  • human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al. (1977), J. Gen Virol. 36:59
  • baby hamster kidney cells BHK, ATCC CCL 10
  • Chinese hamster ovary cells/-DHFR CHO, Urlaub and Chasin (1980), Proc. Natl.
  • monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3 A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al. (1982), Annals NY. Acad. Sci. 383:44-68); MRC 5 cells; FS4 cells; and a human hepatoma cell line (Hep G2).
  • useful vectors include vectors derived from SV40, vectors derived from cytomegalovirus such as the pRK vectors, including pRK5 and pRK7 (Suva et al. (1987), Science 237:893-896; EP 307,247 (3/15/89), EP 278,776 (8/17/88)) vectors derived from vaccinia viruses or other pox viruses, and retroviral vectors such as vectors derived from Moloney's murme leukemia virus (MoMLV).
  • pRK vectors including pRK5 and pRK7 (Suva et al. (1987), Science 237:893-896; EP 307,247 (3/15/89), EP 278,776 (8/17/88) vectors derived from vaccinia viruses or other pox viruses
  • retroviral vectors such as vectors derived from Moloney's murme leukemia virus (MoMLV).
  • the DNA encoding the peptide of interest is operably linked to a secretory leader sequence resulting in secretion of the expression product by the host cell into the culture medium.
  • secretory leader sequences include STII, ecotin, lamB, he ⁇ es GD, lpp, alkaline phosphatase, invertase, and alpha factor.
  • secretory leader sequences include STII, ecotin, lamB, he ⁇ es GD, lpp, alkaline phosphatase, invertase, and alpha factor.
  • secretory leader sequences include STII, ecotin, lamB, he ⁇ es GD, lpp, alkaline phosphatase, invertase, and alpha factor.
  • 36 amino acid leader sequence of protein A Abrahmsen et al. (1985), EMBO J. 4:3901).
  • Host cells are transfected and preferably transformed with the above-described expression or cloning vectors of this invention and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
  • Prokaryotic host cells used to produce the present peptides can be cultured as described generally in Sambrook et al, supra.
  • the mammalian host cells used to produce peptides of the invention can be cultured in a variety of media.
  • Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells.
  • any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleosides (such as adenosine and thymidine), antibiotics (such as GentamycinTM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art.
  • the culture conditions such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
  • the host cells referred to in this disclosure encompass cells in in vitro culture as well as cells that are within a host animal.
  • Peptide ligands of the invention can be prepared conveniently using solid-phase peptide synthesis. Merrifield (1964), J. Am. Chem. Soc. 85:2149; Houghten (1985), Proc. Natl. Acad. Sci. USA 82:5132. Solid-phase peptide synthesis also can " be used to prepare the hybrid molecule compositions ofthe invention if the active domain is or comprises a polypeptide. Solid-phase synthesis begins at the carboxy terminus of the nascent peptide by coupling a protected amino acid to an inert solid support.
  • the inert solid support can be any macromolecule capable of serving as an anchor for the C-terminus of the initial amino acid.
  • the macromolecular support is a cross-linked polymeric resin (e.g., a polyamide or polystyrene resin) as shown in Figures 1-1 and 1-2, on pages 2 and 4 of Stewart and Young, supra.
  • the C-terminal amino acid is coupled to a polystyrene resin to form a benzyl ester.
  • a macromolecular support is selected such that the peptide anchor link is stable under the conditions used to deprotect the ⁇ -amino group of the blocked amino acids in peptide synthesis. If a base- labile ⁇ -protecting group is used, then it is desirable to use an acid-labile link between the peptide and the solid support.
  • an acid-labile ether resin is effective for base-labile Fmoc- amino acid peptide synthesis as described on page 16 of Stewart and Young, supra.
  • a peptide anchor link and ⁇ -protecting group that are differentially labile toacidolysis can be used.
  • an aminomethyl resin such as the phenylacetamidomethyl (Pam) resin works well in conjunction with Boc-amino acid peptide synthesis as described on pages 11-12 of Stewart and Young, supra.
  • the ⁇ -amino protecting group of the initial amino acid is removed with, for example, trifluoroacetic acid (TFA) in methylene chloride and neutralized in, for example, triethylamine (TEA).
  • TFA trifluoroacetic acid
  • TAA triethylamine
  • ⁇ -amino and, if necessary, side chain protected amino acids are then coupled sequentially in the desired order by condensation to obtain an intermediate compound connected to the solid support.
  • some amino acids may be coupled to one another to form a fragment of the desired peptide followed by addition of the peptide fragment to the growing solid phase peptide chain.
  • the condensation reaction between two amino acids, or an amino acid and a peptide, or a peptide and a peptide can be carried out according to the usual condensation methods such as the axide method, mixed acid anhydride method, DCC (N,N'-dicyclohexylcarbodiimide) or DIC (N,N'-diisopropylcarbodiimide) methods, active ester method, p-nitrophenyl ester method, BOP (benzotriazole-1-yl-oxy-tris [dimethylamino] phosphonium hexafluorophosphate) method, N- hydroxysuccinic acid imido ester method, etc., and Woodward reagent K method.
  • the axide method mixed acid anhydride method
  • DCC N,N'-dicyclohexylcarbodiimide
  • DIC N,N'-diisopropylcarbodiimide
  • active ester method p-nitrophenyl
  • benzyloxycarbonyl (abbreviated Z), isonicotinyloxycarbonyl (iNOC), o-chlorobenzyloxycarbonyl [Z(2C1)], p-nitrobenzyloxycarbonyl [Z(N ⁇ 2)], p-methoxybenzyloxycarbonyl [Z(OMe)], t-butoxycarbonyl (Boc), t-amyloxycarbonyl (Aoc), isobornyloxycarbonyl, adamantyloxycarbonyl, 2-(4-biphenyl)-2-propyloxycarbonyl (Bpoc),
  • guanidino group of arginine may be protected with nitro, p-toluenesulfonyl, benzyloxycarbonyl, adamantyloxycarbonyl, p-methoxybenzesulfonyl, 4- methoxy-2,6-dimethylbenzenesulfonyl (Nds), 1,3,5-trimethylphenysulfonyl (Mts), and the like.
  • the thiol group of cysteine can be protected with p-methoxybenzyl, trityl, and the like.
  • the peptide is cleaved away from the solid phase by acidolysis with liquid hydrofluoric acid (HF), which also removes any remaining side chain protective groups.
  • HF liquid hydrofluoric acid
  • the acidolysis reaction mixture contains thio-cresol and cresol scavengers.
  • the resin is washed with ether, and the free peptide is extracted from the solid phase with sequential washes of acetic acid solutions. The combined washes are lyophilized, and the peptide is purified.
  • the hybrid molecules may comprise active domains that are organic compounds having diagnostic or therapeutic utility, or alternatively, fusions between a peptide ligand domain and a polypeptide active domain in configurations that cannot be encoded in a single nucleic acid.
  • active domains that are organic compounds having diagnostic or therapeutic utility, or alternatively, fusions between a peptide ligand domain and a polypeptide active domain in configurations that cannot be encoded in a single nucleic acid. Examples of the latter embodiment include fusions between the amino terminus of a peptide ligand and the amino terminus of the active domain, or fusions between the carboxy-terminus of a peptide ligand and the carboxy- terminus ofthe active domain.
  • Chemical conjugation may be employed to prepare these embodiments of the hybrid molecule, using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2- pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCl), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis- diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as toluene, 2,6-diisocyanate), and bis-active fluorine compounds (such as l,5-difluoro-2,4- dinitrobenzene).
  • SPDP N-succin
  • some embodiments of the invention include cyclized peptide ligands.
  • Peptide ligands may be cyclized by formation of a disulfide bond between cysteine residues.
  • Such peptides can be made by chemical synthesis as described above and then cyclized by any convenient method used in the formation of disulfide linkages.
  • peptides can be recovered from solid phase synthesis with sulfhydryls in reduced form, dissolved in a dilute solution wherein the intramolecular cysteine concentration exceeds the intermolecular cysteine concentration in order to optimize intramolecular disulfide bond formation, such as a peptide concentration of 25 mM to 1 ⁇ M, and preferably 500 ⁇ M to 1 ⁇ M, and more preferably 25 ⁇ M to 1 ⁇ M, and then oxidized by exposing the free sulfhydryl groups to a mild oxidizing agent that is sufficient to generate intramolecular disulfide bonds, e.g., molecular oxygen with or without catalysts such as metal cations, potassium ferricyanide, sodium tetrathionate, etc.
  • the peptides can be cyclized as described in Pelton et al. (1986), J. Med. Chem. 29:2370-2375.
  • Cyclization can be achieved by the formation, for example, of a disulfide bond or alactam bond between a first Cys and a second Cys.
  • Residues capable of forming a disulfide bond include, for example, Cys, Pen, Mpr, and Mpp and its 2-amino group-containing equivalents.
  • Residues capable of forming a lactam bridge include, for example, Asp Glu, Lys, Orn, ⁇ -diaminobutyric acid, diaminoacetic acid, aminobenzoic acid and mercaptobenzoic acid.
  • the compounds herein can be cyclized for example via a lactam bond which can utilize the side chain group of a non- adjacent residue to form a covalent attachment to the N-terminus amino group of Cys or other amino acid.
  • Alternative bridge structures also can be used to cyclize the compounds of the invention, including for example, peptides and peptidomimetics, which can cyclize via S-S, CH2- S, CH2-0-CH2, lactam ester or other linkages.
  • compositions which comprise the hybrid molecules of the invention may be administered in any suitable mamier, including parental, topical, oral, or local (such as aerosol or transdermal) or any combination thereof.
  • suitable compositions of the present invention comprise any of the above-noted compositions with a pharmaceutically acceptable carrier, the nature ofthe carrier differing with the mode of administration, for example, in oral administration, usually using a solid carrier and ini.v. administration, a liquid salt solution carrier.
  • compositions of the present invention include pharmaceutically acceptable components that are compatible with the subject and the protein of the invention. These generally include suspensions, solutions and elixirs, and most especially biological buffers, such as phosphate buffered saline, saline, Dulbecco's Media, and the like. Aerosols may also be used, or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents, and the like (in the case of oral solid preparations, such as powders, capsules, and tablets).
  • biological buffers such as phosphate buffered saline, saline, Dulbecco's Media, and the like.
  • Aerosols may also be used, or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents, and the like (in the case of oral solid preparations, such as powders
  • the term "pharmaceutically acceptable” generally means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
  • the formulation of choice can be accomplished using a variety of the aforementioned buffers, or even excipients including, for -example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin cellulose, magnesium carbonate, and the like.
  • "PEGylation" of the compositions may be achieved using techniques known to the art (see for example International Patent Publication No. W092/16555, U.S. Patent No. 5,122,614 to Enzon, and International Patent Publication No. WO92/00748).
  • a preferred route of administration of the present invention is in the aerosol or inhaled form.
  • the compounds of the present invention, combined with a dispersing agent, or dispersant can be administered in an aerosol formulation as a dry powder or in a solution or suspension with a diluent.
  • the term "dispersant” refers to a agent that assists aerosolization of the compound or abso ⁇ tion of the protein in lung tissue, or both.
  • the dispersant is pharmaceutically acceptable.
  • Suitable dispersing agents are well known in the art, and include but are not limited to surfactants and the like.
  • surfactants that are generally used in the art to reduce surface induced aggregation of a compound, especially a peptide compound, caused by atomization of the solution forming the liquid aerosol, may be used.
  • Nonlimiting examples of such surfactants are surfactants such as polyoxyethylene fatty acid esters and alcohols, and polyoxyethylene sorbitan fatty acid esters.
  • Amounts of surfactants used will vary, being generally within the range of from about 0.001% to about 4% by weight of the formulation.
  • the surfactant is polyoxyethylene sorbitan monooleate or sorbitan trioleate.
  • Suitable surfactants are well known in the art, and can be selected on the basis of desired properties, depending on the specific formulation, concentration of the compound, diluent (in a liquid formulation) or form of powder (in a dry powder formulation), etc.
  • the liquid or dry formulations can comprise additional components, as discussed further below.
  • the liquid aerosol formulations generally contain the peptide ligand active domain hybrid and a dispersing agent in a physiologically acceptable diluent.
  • the dry powder aerosol formulations of the present invention consist of a finely divided solid form of the peptide ligand/active domain hybrid and a dispersing agent. With either the liquid or dry powder aerosol formulation, the formulation must be aerosolized. That is, it must be broken down into liquid or solid particles in order to ensure that the aerosolized dose actually reaches the alveoli.
  • the mass median dynamic diameter will be 5 micrometers or less in order to ensure that the drug particles reach the lung alveoli (Wearley, L.L. (1991), Crit. Rev. in Ther. Drug Carrier Systems 8:333).
  • aerosol particle is used herein to describe the liquid or solid particle suitable for pulmonary administration, i.e., that will reach the alveoli.
  • Other considerations such as construction of the delivery device, additional components in the formulation and particle characteristics are important.
  • any form of aerosolization known in the art including but not limited to nebulization, atomization or pump aerosolization of a liquid formulation, and aerosolization of a dry powder formulation, can be used in the practice of the invention.
  • a delivery device that is uniquely designed for administration of solid formulations is envisioned.
  • the aerosolization of a liquid or a dry powder formulation will require a propellant.
  • the propellant may be any propellant generally used in the art.
  • Such useful propellants are a chloroflourocarbon, a hydrofluorocarbon, a hydochlorofluorocarbon, or a hydrocarbon, including triflouromethane, dichlorodiflouromethane, dichlorotetrafuoroethanol, and 1,1,1,2-tetraflouroethane, or combinations thereof.
  • the device for aerosolization is a metered dose inhaler.
  • a metered dose inhaler provides a specific dosage when administered, rather than a variable dose depending on administration.
  • Such a metered dose inhaler can be used with either a liquid or a dry powder aerosol formulation.
  • Metered dose inhalers are well known in the art.
  • a number of formulation-dependent factors affect the drug abso ⁇ tion. It will be appreciated that in treating a disease or disorder that requires circulatory levels of the compound, such factors as aerosol particle size, aerosol particle shape, the presence or absence of infection, lung disease or emboli may affect the abso ⁇ tion of the compounds.
  • certain lubricators, abso ⁇ tion enhancers, protein stabilizers or suspending agents may be appropriate. The choice of these additional agents will vary depending on the goal. It will be appreciated that in instances where local delivery of the compounds is desired or sought, such variables as abso ⁇ tion enhancement will be less critical.
  • the liquid aerosol formulations of the present invention will typically be used with a nebulizer.
  • the nebulizer can be either compressed air driven or ultrasonic. Any nebulizer known in the art can be used in conjunction with the present invention such as but not limited to:
  • the formulation may include a carrier.
  • the carrier is a macromolecule which is soluble in the circulatory system and which is physiologically acceptable where physiological acceptance means that those of skill in the art would accept injection of said carrier into a patient as part of a therapeutic regime.
  • the carrier preferably is relatively stable in the circulatory system with an acceptable elimination half-time.
  • macromolecules include but are not limited to soya lecithin, oleic acid and sorbetan trioleate, with sorbitan trioleate preferred.
  • the formulations of the present embodiment may also include other agents useful for protein stabilization or for the regulation of osmotic pressure.
  • agents include but are not limited to salts, such as sodium chloride, or potassium chloride, and carbohydrates, such as glucose, galactose or mannose, and the like.
  • the present pharmaceutical formulation will be used as a dry powder inhaler formulation comprising a finely divided powder form of the peptide ligand and a dispersant.
  • the form ofthe compound will generally be a lyophilized powder. Lyophilized forms of peptide ligand/active domain hybrid compounds can be obtained through standard techniques.
  • the dry powder formulation will comprise a finely divided dry powder containing one or more compounds of the present invention, a dispersing agent and also a bulking agent. Bulking agents useful in conjunction with the present formulation include such agents as lactose, sorbitol, sucrose, or mannitol, in amounts that facilitate the dispersal of the powder from the device.
  • the peptide ligands or the hybrid molecules of the invention are non-covalently adsorbed or covalently bound to a macromolecule, such as a solid support. It will be appreciated that the invention encompasses macromolecules complexed with the peptide ligands or hybrid molecules.
  • the peptide ligands of the invention are directed against an immunoglobulin, such as, e.g., the IgG-Fc peptide ligands disclosed infra. Such peptide ligands may ,be used as affinity purification agents.
  • the peptide ligands are immobilized on a solid phase support such as a Sephadex resin or filter paper, using methods well known in the art.
  • the immobilized peptide ligand is contacted with a sample containing the immunoglobulin protein (or fragment thereof) to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the immunoglobulin protein, which is bound to the immobilized peptide ligand. Finally, the support is washed with another suitable solvent, such as glycine buffer, pH 5.0, that will release the immunoglobulin protein from the peptide ligand.
  • a suitable solvent such as glycine buffer, pH 5.0
  • the solid support is an inert matrix, such as a polymeric gel, comprising a three- dimensional structure, lattice or network of a material.
  • a polymeric gel comprising a three- dimensional structure, lattice or network of a material.
  • any macromolecule, synthetic or natural can form a gel in a suitable liquid when suitably cross-linked with a bifunctional reagent.
  • the macromolecule selected is convenient for use in affinity chromatography.
  • Most chromatographic matrices used for affinity chromatography are xerogels. Such gels shrink on drying to a compact solid comprising only the gel matrix. When the dried xerogel is resuspended in the liquid, the gel matrix imbibes liquid, swells and returns to the gel state.
  • Xerogels suitable for use herein include polymeric gels, such as cellulose, cross-linked dextrans (e.g. Sepharose), agarose, cross-linked agarose, polyacrylamide gels, and poly
  • aerogels can be used for affinity chromatography. These gels do not shrink on drying but merely allow penetration of the surrounding air. When the dry gel is exposed to liquid, the latter displaces the air in the gel. Aerogels suitable for use herein include porous glass and ceramic gels.
  • peptide ligands or hybrid molecules of the invention coupled to derivatized gels wherein the derivative moieties facilitate the coupling of the hybrid molecules to the gel matrix and avoid steric hindrance of the peptide ligand-target molecule interaction in affinity chromatography.
  • spacer arms can be inte ⁇ osed between the gel matrix and the hybrid molecules for similar benefits.
  • the gene encoding a peptide ligand is associated, in a vector, with a gene encoding another protein or a fragment of another protein. This results in the peptide ligand being produced by the host cell as a fusion with another protein or peptide.
  • the "other" protein or peptide is often a protein or peptide which can be secreted by the cell, making it possible to isolate and purify the other protein from the culture medium and eliminating the necessity of destroying the host cells which arises when the other protein remains inside the cell.
  • the fusion protein can be expressed mtracellularly. It is useful to use fusion proteins that are highly expressed.
  • peptide ligands which bind serum albumin are use as "affinity handles" for the purification of fused proteins on a solid serum albumin support.
  • a DNA sequence encoding the desired peptide ligand can be fused by site directed mutagenesis to the gene for protein. After expression and secretion, the fusion protein can be purified on amatix of serum albumin to which the peptide ligand will bind.
  • the peptide ligand can be enzymatically or chemically cleaved to yield free protein or left intact to aid in increasing the elimination half life of the fused protein.
  • Fusion proteins can be cleaved using chemicals, such as cyanogen bromide, which cleaves at a methionine, or hy ⁇ oxylamine, which cleaves between an Asn and Gly residue.
  • the nucleotide base pairs encoding these amino acids may be inserted just prior to the 5' end of the gene encoding the desired peptide.
  • one can employ proteolytic cleavage of fusion protein. Carter, in Protein Purification: From Molecular Mechanisms to Large-Scale Processes, Ladisch et al., eds. (American Chemical Society Symposium Series No. 427, 1990), Ch 13, pages 181-193.
  • IgG-Fc Peptide Ligands An in vitro selection designed to identify peptide ligands which bind the IgG-Fc surface without the constraint that the peptides function in vivo was performed. The selection was accomplished using a combination of polyvalent and monovalent phage display which has recently been applied to generate peptides that bind a variety of cellular hormones and receptors. N. C. Wrighton, et al (1996), Science 273:458, O. Livnah, et al. (1996), Science 273:464. A single
  • This library was expressed on the surface of Ml 3 bacteriophage as an N-terminal fusion to the gene VIII protein with a short linker consisting of glycine and serine residues.
  • peptides could be selected that bind to potentially any region of the IgG-Fc due to the unbiased nature of this library.
  • Fc-I Glu-Thr-Gln-Arg-Cys-Thr-T ⁇ -His-Met-Gly-Glu-
  • Fc-II (Lys-Glu-Ala-Ser-Cys-Ser-Tyr-T ⁇ -Leu-Gly-Glu-Leu-Val-T ⁇ -Cys-Val-Ala-Gly-Val-Glu) (SEQ ID NO: 4).
  • the Fc-II peptide shared the cysteine spacing and the internal Gly-Glu-Leu-Val-T ⁇ (SEQ ID NO: 134) sequence seen in Fc-I.
  • these two peptides bound IgG-Fc with an affinity high enough to be selected over any of the other IgG-Fc binding peptides present in the starting pool.
  • Both peptides were synthesized on solid phase using standard 9- fluorenylmethoxycarbonyl protocols and purified by reversed-phase HPLC. Masses were confirmed by electrospray mass spectrometry, and purified peptides were quantified by UV absorbance at 280 nm.
  • the DNA sequence of the Fc-II peptide was moved to a monovalent phage display format by cassette mutagenesis to give a construct with the STII signal sequence, the Fc-II peptide Lys- Glu-Ala-Ser-Cys-Ser-Tyr-T ⁇ -Leu-Gly-Glu-Leu-Val-T ⁇ -Cys-Val-Ala-Gly-Val-Glu (SEQ ID NO: 4), a Gly-Gly-Gly-Pro-Gly-Gly-Gly linker (SEQ ID NO: 5), and the M13 gene III protein starting at residue 253.
  • the Fc-II sequence was affinity-matured by monovalent phage display. Five residue blocks were randomly mutated in six separate libraries to exhaustively cover the non- cysteine positions in the peptide sequence and then screened against IgG-Fc.
  • a series of second generation monovalent phage display libraries were constructed based on the Fc-II sequence Lys-Glu-Ala-Ser-Cys-Ser-Tyr-T ⁇ -Leu-Gly-Glu-Leu-Val-T ⁇ -Cys-Val-Ala- Gly-Val-Glu (SEQ ID NO: 4) in which five sequential residues were randomized using NNS codons in each library starting at positions 1, 4, 7,10, 12, and 16, excluding the two cysteines. o Each library had a diversity of approximately 1x10 . These libraries were independently screened for binding to IgG-Fc for six rounds and then sequenced.
  • Preferred residues from this selection were then recombined using three additional libraries that spanned the entire peptide sequence.
  • the three additional libraries were constructed using the degeneracy of the genetic code to recombine the preferred amino acids at each position into one peptide.
  • the DNA sequences for these libraries contained the following mixtures of bases (IUPAC codes): DRG GWA GMA RRC TGC KCT TRS CAC MTG GGC GAG CTG GTC TGG TGC RVC RVM BKC GAS KDW (SEQ ED NO: 6), DRS VWG SVG RRC TGC KCC TRS YRS MTG GGC GAG CTG GTC TGG TGC RNC WS NBS GWS KDM (SEQ ED NO: 7), and DNS NNS NNS VNS TGC BVG TDS HRS MDS GGC GAG STC KKG WRG TGC RNM NNS NNS NNS NNM (SEQ ED NO: 8). These libraries also were sorted against IgG-Fc for six rounds and then sequenced.
  • Fahnestock et al. in Bacterial Hnmunoglobulin-Binding Proteins (Academic Press, Inc. 1990) Vol. 1, chap. 11. R. Karlsson, L. Jendeberg,' B. Nilsson, J. Nilsson, P. Nygren (1995), J. Immuno. Methods 183:43.
  • Table I lists the amino acid sequences and IgG-Fc binding affinities of exemplary IgG-Fc peptide ligands that were identified using the procedures described above.
  • KEASCSYWLGELVWCVAGVE SEQ ID NO: 4 5000 nM (Kj) ETQRCTWHMGELVWCEREHN SEQ HD NO: 3 5000 nM (Kj) DLADCSWHMGELVWCSRVEG SEQ ID NO: 17 50 nM (K ) WEADCAWHLGELVWCTPMEF SEQ ID NO: 18 30 nM (IC 50 ) DCAWHLGELVWCT SEQ ED NO: 9 100 nM (IC 50 )
  • N/A Not individually assayed. Since they were selected for binding, EC50 likely to be ⁇ 1 uM or better.
  • KEASCSYWLGELVWCDTLTE SEQ ED NO: 19 N/A KEASCSYWLGELVWCSPGVE SEQ ED NO: 20 734 nM KEASCSYWLGELVWCSGVEG SEQ ro NO: 21 N/A KEASCSYWLGELVWCSAGVE SEQ ID NO: 22 N/A Sequence Sequence DD NO Binding Affinity
  • AVSKCSFHMGELVWCSDVMN SEQ ID NO: 54 N/A
  • DLADCSWHLGELVWCSRVEG SEQ ID NO: 62 9 nM
  • DLADCSWHLGELVWCVGLDE SEQ ID NO: 63 28 nM
  • WVEDCSWHLGELVWCVGLDF SEQ ID NO: 64 31 nM
  • EQADCAWHLGELVWCTPMVF SEQ ID NO: 81 8 nM
  • GEQDCSYHMGELVWCTTVDG SEQ ID NO: 84 210 nM
  • IgG-Fc peptide ligands may be combined with a bioactive compound to form a hybrid molecule that comprises a peptide ligand domain and an active domain.
  • IgG-Fc peptide ligands are combined with a Fab fragment that recognizes human VEGF.
  • a neutralizing antibody to human VEGF has been previously identified from murine hybridoma, humanized, and optimized by phage display. See Muller et al (1998), Structure 6:1153-1167; Chen et al (1999), J. Mol. Biol 293:865-881; and International Patent Publication No. WO 98/45331.
  • Two humanized Fab forms of this antibody were chosen to test whether binding affinity to an irrelevant IgG could be added to the Fabs without disrupting their antigen-binding affinity.
  • An IgG-Fc peptide ligand, DCAWHLGELVWCT (SEQ ED NO: 9), identified and optimized by the peptide- phage display method described in Example 1 was used, along with a short peptide linker (Gly- Gly-Gly) to provide flexibility between the peptide and the Fab.
  • the light chain of the Fab was chosen for fusions because in the case of this antibody, the light chain is known to have little contribution to antigen binding (Mulleret al, 1998, supra).
  • the peptide ligand domain could function to introduce IgG-binding whether introduced at the N-terminus, C-terminus, or inserted within the original Fab sequence. Described here are N-terminal fusions DCAWHLGELVWCTGGG-(light chain) (SEQ ED NO: 112) as well as C-terminal fusions (light chain)-GGGWEADCAWHLGELVWCT (SEQ ID NO: 113).
  • HL-569 An oligodeoxynucleotide, HL-569, was designed and synthesized for mutation of anti- VEGF plasmids to create fusions of the IgG-Fc peptide ligand at the N-terminus of the antibody light chain.
  • the sequence of HL-569 (with added peptide sequence underlined) is: 5'-ACA AAC GCG TAC GCT GAC TGC GCT TGG CAC CTG GGC GAG CTG GTC TGG TGC ACC GGA GGA GGA GAT ATC CAG TTG ACC-3' (SEQ ID NO: 114).
  • the GAC codon follows the STII secretion-signal sequence at the N-terminus of the light chain, and the GAT codon corresponds to the first residue ofthe mature (wild-type) light chain.
  • HL-570 Another oligodeoxynucleotide, HL-570, was designed and synthesized for construction of peptide ligand fusions to the C-terminus of the antibody light chain.
  • the sequence of HL-570 (with added peptide sequence underlined) is: 5'-AAC AGG GGA GAG TGT GGA GGA GGA TGG GAA GCA GAC TGC GCT TGG CAC CTG GGC GAG CTG GTC TGG TGC ACC TAA GCT GAT CCT CTA C-3' (SEQ ID NO: 115).
  • the TGT codon preceding the underscored GGA codon corresponds to residue Cys-214 ofthe light chain, and the TAA "stop codon" marks the end ofthe translated peptide sequence.
  • Phagemids pY0192 and pY0317 (described Mulleret al, 1998, supra; Chen et al, 1999; and International Patent Publication No. WO 98/45331, encoding low- affinity and high-affinity forms of a humanized anti-VEGF antibody, respectively, were mutated with each of the two IgG-peptide oligos to yield constructs pYO 192-569, pYO 192-570, pY0317-569, and pY0317-570.
  • Displacement curves showed IC50 values of about 100-300 nM for each of the constructs, pY0192-569, pY0192-570, pY0317-569, and pY0317-570.
  • EXAMPLE 4 BIAcoreTM Analysis of IgG Binding to Anti-VEGF Fab Tagged with an IgG-Fc Peptide Ligand
  • a surface plasmon resonance instrument (BIAcore, Inc., Piscataway, NJ.) was used to measure binding of an irrelevant IgG, 4D5-IgG, also known as Herceptin®, to Fab that previously had been bound to an immobilized VEGF biosensor chip.
  • Fab variants encoded by pY0317 and pY0317-570 were expressed in E. coli and purified by protein-G (Pharmacia) affinity chromatography. Recombinant human VEGF was immobilized onto BIAcoreTM CM-5 biosensor chips (BIAcore, Inc.) as described (Muller et al, 1998, supra).
  • the chip was blocked with ethanolamine, and the peptide-ligand tagged Y0317-570 Fab, or Y0317 control, was injected in PBS buffer containing 0.05% Tween-20 and 0.01% sodium azide. Following Fab injection, Herceptin® was injected, and the dissociation off-rate (k 0 ff) following injection was observed.
  • Fig. 2 show that Herceptin® bound to the tagged but not to the control Y0317 Fab.
  • a k 0 ff of 2.8 x 10 ⁇ 3, sec -1 , and a corresponding dissociation half-life (t ⁇ /2) of 8.5 min were calculated for Y0317-570. Limitations of material prevented reliable on-rate determinations.
  • the blood clearance rates and tissue distribution of the IgG-Fc peptide ligand-tagged anti- VEGF Fab are compared to those of the untagged control anti-VEGF Fab
  • test article present in the plasma samples is determined using any method known in the art, such as, e.g., ELISA, or RIA.
  • Pharmacokinetic analysis is performed using the test article plasma concentrations.
  • Group mean plasma data for each test article conforms to a multi-exponential profile when plotted against the time post-dosing.
  • the data are fit by a standard two-compartment model with bolus input and first-order rate constants for distribution and elimination phases.
  • the ⁇ -phase is the initial phase of the clearance and reflects distribution of the protein into all extracellular fluid of the animal, whereas the second or ⁇ -phase portion of the decay curve represents true plasma clearance.
  • Serial blood samples (0.5 mL) were collected just prior to dosing and at 10, 20 40 min, 1, 2, 3, 4, 6, 8, 24 and 48 hr after dose administration. Blood was collected in serum separator tubes, allowed to clot ( ⁇ 30 min) at room temperature, and centrifuged. Serum was harvested and immediately stored at -70C until analyzed.
  • ELISA plates were coated with 0.5 microg/ml VEGF in 50 mM carbonate buffer, pH 9.6, at 4"C overnight and blocked with 0.5% bovine serum albumin, 10 ppm Proclin 300 (Supelco,
  • Bound antibody was detected using peroxidase labeled goat F(ab')2 anti-human IgG F(ab')2 (Jackson ImmunoResearch, West Grove, PA), followed by 3,3',5,5'-tetramethyl benzidine (Kirkegaard & Perry Laboratories) as the substrate. Plates were washed between steps. Absorbance was read at 450 nm on a Titerek stacker reader (ICN, Costa Mesa, CA). The standard curve was fitted using a four-parameter regression curve- fitting program (Kaleidagraph, Synergy Software, Reading, PA). Data points which fell in the range ofthe standard curve were used for calculating the Fab concentrations in samples.
  • the initial volume of distribution (VI) for both agents was approximately equal to serum volume.
  • the estimated steady state volume, of distribution (Vss) for Fab-Y0317-570 (225 mL/kg) was approximately 2 fold higher than estimated for the control Fab (112 mL/kg) suggesting a significant amount of binding to endogenous IgG.
  • the overall exposure (AUC) of Fab-Y0317-570 was -16 times higher than for Fab-Y0317.
  • Fab-Y0317 was undetectable in the serum 24 h after dosing but serum concentrations of Fab- Y0317-570 were still above 1 ⁇ g/mL 48 h after dosing. Both the distribution (alpha) half- life (1.15 h) and the elimination (beta) half-life (37.6 h) were significantly longer than the control Fab. These results suggest that addition of a 13 amino acid that binds to endogenous IgG to
  • Fab-Y0317 can significantly slow Fab clearance, increase half-life and enhance overall exposure.
  • Phage-displayed peptide libraries were selected against rabbit, rat and human albumin. Phage libraries expressing random peptide sequences fused to gene 8 (Lowman et al., Biochem.
  • Each ofthe 10 libraries has in excess of 108 clones.
  • the phage library pools were suspended in binding buffer (PBS, 1% ovalbumin, 0.005% Tween 20) and sorted against rabbit, rat or human albumin immobilized directly on maxiso ⁇ plates (10 ⁇ g/ml in PBS, overnight at 4° C; plates were blocked with Blocker Casein (Pierce Chemical, Rockford, IL)). After 2 hours, unbound phage were removed by repetitive washing (PBS, 0.05% Tween 20) and bound phage were eluted with 500 mM KC1, 10 mM HCl, pH 2. Eluted phage were propagated in XLl-Blue cells with VCSM13 helper phage (Stratagene, La Jolla, CA). Enrichment was monitored by titering the number of phage that bound to an albumin coated well compared to a well coated with ovalbumin or casein.
  • Phage ELISA Phage clones (-10 phage) were added to plates coated with rat, rabbit or human albumin. The microtiter plate was washed with wash buffer and bound phage were detected with HRP/Anti-M13 Conjugate. The amount of HRP bound was measured using ABTS/H 2 0 2 substrate and monitoring the change at 405 nm.
  • phage clones selected for binding to rabbit, human or rat albumin are shown in Figure 4. Also indicated is the ability of individual phage clones to bind the 3 species of immobilized albumin. This was tested using a phage ELISA. Note that clone RB, selected for binding to rat albumin is also capable of binding human and rabbit albumin. Sequence Maturation on Monovalent Phage — Partially randomized libraries were designed using oligonucleotides coding for each of the selected clones in Figure 4, but synthesized with a 70-10-10-10 mixture of bases as described (Dennis et al., Nature 404, 465 (2000)).
  • each 'soft randomized' library maintains a bias towards the selected sequence in Figure 4.
  • Each library was again selected for binding to rat, rabbit or human albumin regardless of its origin.
  • the library resulting from soft randomization of clone RB was selected against rat, rabbit or human albumin even though it was originally identified for binding to rat albumin.
  • Sequences identified following soft randomization are shown in Figure 5 along with their species specificity as determined by phage ELISA. Most clones appear to be specific for the species of albumin for which they were selected, however, clones from the RB soft randomization library bind to all three species.
  • Phage clones were also tested for binding to rhesus, mouse and bovine albumin. Clones originating from the RB soft randomization library were found to bind each of these species of albumin as, well and were specific for albumin based upon their lack of binding to ovalbumin and casein ( Figure 6). Clones that bind to multiple species of albumin (multi-species binders) are listed in Figure 7.
  • Hard randomization Sequences from soft randomization ofthe RB sequence were further matured using a hard randomization strategy. A new library was designed that kept highly selected residues (underlined) constant X5DXCLPXWGCLWX4, while fully randomizing the remaining positions. A second library, one residue shorter at both the N and C terminus was also constructed. Sequences from these libraries selected against rat, rabbit and human albumin are shown in Figures 8A, 8B, and 8C respectively.
  • Peptide Synthesis Peptides were synthesized by either manual or automated (Milligen 9050) Fmoc-based solid (phase synthesis on a 0.25 mmol scale using a PEG-polystyrene resin (Bodanszky M., (1984) Principles of Peptide Synthesis, Springer, Berlin). Side chain protecting groups were removed and the peptides were cleaved from the resin with 95% trifluoroacetic acid (TFA) and 5% triisopropylsilane. A saturated iodine solution in acetic acid was added for oxidation of disulfide bonds. Peptides were purified by reversed phase HPLC using a water/acetonitrile gradient containing 0.1% TFA. Peptides were >95% pure by analytical HPLC and its identity verified by mass spectrometry.
  • the carboxy terminal lysine of peptide SA08 was derivatized with NHS-LC-biotin (Pierce Chemical, Rockford, IL) and purified by HPLC as above yielding SA08b ( Ac-
  • the microtiter plate was washed with PBS, 0.05 % Tween 20 and the SA08b bound to albumin was detected with Streptavidin/HRP.
  • the amount of HRP bound was measured using ABTS/H2O2 substrate and monitoring the change at 405 ⁇ m.
  • Peptides corresponding to identified phage sequences were synthesized and their affinity for rat, rabbit or mouse albumin measured using the SA08b binding assay ( Figure 9 and 10).
  • the fusions were expressed under control of the alkaline phosphatase promoter and secreted from E. coli using the stll secretion signal.
  • Fab fusions were recovered from theperiplasm by suspending cells in 1 mM EDTA, 10 mM Tris-HCl, pH8, for 1 hr at 4°C. Cell debris was removed by centrifugation and the anti-TF Fab was selectively purified using a Hi-Trap (Amersham Pharmacia Biotech, Piscataway, NJ) TF affinity column.
  • D3H44-L or D3H44-Ls was further purified using a rabbit albumin affinity column (rabbit albumin coupled to CNBr-activated Sepharose 4B, Amersham Pharmacia Biotech, Piscataway, NJ). Both columns were washed with PBS and eluted with 50 mM HCl. Eluted fractions were neutralized with 1 M Tris pH 8. Endotoxin was further removed following extraction with triton XI 14 (Aida andPabst, J. Immunol. Methods 132, 191 (1990)).
  • D3H44 albumin-binding fusions were given as a 0.5 mg/kg bolus in rabbit. Each group consisted of 3 rabbits (5 in the F(ab')2 group). Serum samples taken at the indicated time points were serially diluted and the concentration of D3H44 determined using a TF binding ELISA.
  • Pharmacokinetic analysis is performed using the test article plasma concentrations.
  • Group mean plasma data for each test article conforms to a multi-exponential profile when plotted against the time post-dosing.
  • the data are fit by a standard two-compartment model with bolus input and first-order rate constants for distribution and elimination phases.
  • the ⁇ -phase is the initial phase of the clearance and reflects distribution of the protein into all extracellular fluid of the animal, whereas the second or ⁇ -phase portion of the decay curve represents true plasma clearance.
  • D3H44-L has a 70-fold increase in half-life (K10- HL) relative to wild-type Fab and a comparable half-life to D3H44 Fabs derivatized with 20K or 40K polyethylene glycol (PEG).

Abstract

L'invention concerne des ligands peptidiques présentant une affinité pour l'IgG ou pour l'albumine sérique. L'invention concerne également des molécules hybrides comprenant un domaine de ligand peptidique et un domaine actif. Le domaine actif peut comprendre toute molécule pouvant servir d'agent thérapeutique ou diagnostique. Les molécules hybrides de l'invention peuvent être préparées à l'aide d'un certain nombre de techniques, y compris la production et la purification à partir d'organismes de recombinaison transformés ou transfectés avec un acide nucléique isolé codant pour la molécule hybride, ou par synthèse chimique de l'hybride. Les molécules hybrides servent d'agents destinés à modifier les demi-vies d'élimination des molécules à domaine actif. La demi-vie d'élimination est modifiée par la génération d'une molécule hybride de la présente invention dans laquelle le ligand peptidique posséde une affinité de liaison pour une protéine plasmatique. Dans un mode de réalisation préféré, une molécule bioactive possédant une courte demi-vie d'élimination est incorporée comme ou dans un domaine actif des molécules hybrides de l'invention, et l'affinité de liaison du domaine de ligand peptidique prolonge la demi-vie d'élimination de l'hybride en comparaison avec celle de la molécule bioactive.
PCT/US2000/035325 1999-12-24 2000-12-22 Methodes et compositions permettant de prolonger les demi-vies d'elimination de composes bioactifs WO2001045746A2 (fr)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CA2390691A CA2390691C (fr) 1999-12-24 2000-12-22 Methodes et compositions permettant de prolonger les demi-vies d'elimination de composes bioactifs
DK00988373T DK1240337T3 (da) 1999-12-24 2000-12-22 Fremgangsmåder og præparater til forlængelse af elimeneringshalveringstider af bioaktive forbindelser
JP2001546685A JP2003518075A (ja) 1999-12-24 2000-12-22 生理活性化合物の消失半減期延長のための方法及び組成物
AU24587/01A AU784285B2 (en) 1999-12-24 2000-12-22 Methods and compositions for prolonging elimination half-times of bioactive compounds
DE60030323T DE60030323T2 (de) 1999-12-24 2000-12-22 Verfahren und verbindungen zur verlängerung der halbwertzeiten bei der ausscheidung von biowirksamen verbindungen
EP00988373A EP1240337B1 (fr) 1999-12-24 2000-12-22 Methodes et compositions permettant de prolonger les demi-vies d'elimination de composes bioactifs
US10/149,835 US7608681B2 (en) 1999-12-24 2000-12-22 Methods and compositions for prolonging elimination half-times of bioactive compounds
US11/367,100 US20060228364A1 (en) 1999-12-24 2006-03-02 Serum albumin binding peptides for tumor targeting
AU2006202341A AU2006202341B2 (en) 1999-12-24 2006-06-01 Methods and compositions for prolonging elimination half-times of bioactive compounds
US11/535,202 US7635749B2 (en) 1999-12-24 2006-09-26 Methods and compositions for prolonging elimination half-times of bioactive compounds
CY20061101596T CY1106236T1 (el) 1999-12-24 2006-11-07 Μεθοδοι και συνθεσεις για παραταση ημιπepιοδων αποβολης βιοδραστικων ενωσεων
AU2009201933A AU2009201933B2 (en) 1999-12-24 2009-05-15 Methods and compositions for prolonging elimination half-times of bioactive compounds
US12/606,055 US20100121039A1 (en) 1999-12-24 2009-10-26 Methods and compositions for prolonging elimination half-times of bioactive compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17304899P 1999-12-24 1999-12-24
US60/173,048 1999-12-24

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US10149835 A-371-Of-International 2000-12-22
US11/367,100 Continuation-In-Part US20060228364A1 (en) 1999-12-24 2006-03-02 Serum albumin binding peptides for tumor targeting
US11/535,202 Continuation US7635749B2 (en) 1999-12-24 2006-09-26 Methods and compositions for prolonging elimination half-times of bioactive compounds
US12/606,055 Division US20100121039A1 (en) 1999-12-24 2009-10-26 Methods and compositions for prolonging elimination half-times of bioactive compounds

Publications (2)

Publication Number Publication Date
WO2001045746A2 true WO2001045746A2 (fr) 2001-06-28
WO2001045746A3 WO2001045746A3 (fr) 2001-10-11

Family

ID=22630310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/035325 WO2001045746A2 (fr) 1999-12-24 2000-12-22 Methodes et compositions permettant de prolonger les demi-vies d'elimination de composes bioactifs

Country Status (12)

Country Link
US (3) US7608681B2 (fr)
EP (2) EP1240337B1 (fr)
JP (3) JP2003518075A (fr)
AT (2) ATE422369T1 (fr)
AU (3) AU784285B2 (fr)
CA (2) CA2921260A1 (fr)
CY (1) CY1106236T1 (fr)
DE (2) DE60041564D1 (fr)
DK (1) DK1240337T3 (fr)
ES (1) ES2270893T3 (fr)
PT (1) PT1240337E (fr)
WO (1) WO2001045746A2 (fr)

Cited By (222)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038592A2 (fr) * 2000-11-08 2002-05-16 Affina Immuntechnik Gmbh Peptides, leur fabrication et leur utilisation pour la liaison des immunoglobulines
WO2003091395A2 (fr) * 2002-04-24 2003-11-06 Zolaris Biosciences, Llc Inhibition de la formation du complexe immun
WO2004041865A2 (fr) 2002-11-08 2004-05-21 Ablynx N.V. Anticorps a domaine unique stabilises
US6818611B1 (en) 1998-10-13 2004-11-16 University Of Georgia Research Foundation, Inc. Stabilized bioactive peptides and methods of identification, synthesis and use
EP1532173A1 (fr) * 2002-06-14 2005-05-25 Dyax Corporation Analyse de proteines
WO2005097202A2 (fr) * 2004-04-06 2005-10-20 Affibody Ab Nouvelle utilisation et methode
EP1587843A2 (fr) * 2002-11-06 2005-10-26 Avidia Research Institute Bibliotheques combinatoires de domaines de monomere
EP1600459A3 (fr) * 2002-06-28 2005-12-07 Domantis Limited Ligand
WO2005118642A2 (fr) * 2004-06-01 2005-12-15 Domantis Limited Compositions de medicaments, fusions et conjugues
WO2006056492A1 (fr) 2004-11-29 2006-06-01 Bioxell Spa Peptides therapeutiques renfermant des sequences derivees de cdr2 ou cdr3 de trem-1 et utilisations de ceux-ci aux fins d'inhibition de la sepsie
WO2006059110A2 (fr) * 2004-12-02 2006-06-08 Domantis Limited Compositions, fusions et conjugués de domaine plad
WO2006059108A2 (fr) * 2004-12-02 2006-06-08 Domantis Limited Procedes permettant de traiter la maladie respiratoire par des antagonistes du recepteur de l'interleukine de type 1
WO2006059106A2 (fr) * 2004-12-02 2006-06-08 Domantis Limited Fusions et conjugues medicamenteux
WO2006060533A2 (fr) 2004-12-01 2006-06-08 Genentech, Inc. Conjugues medicament anticorps et procedes correspondants
EP1693384A3 (fr) * 2001-10-24 2006-11-08 Vlaams Interuniversitair Instituut voor Biotechnologie vzw. Immunoglobulines fonctionnelles contre le sérum d'albumine humaine, fragments, bibliothèque et méthodes de production de ladite immunoglobuline
WO2006122787A1 (fr) * 2005-05-18 2006-11-23 Ablynx Nv Proteines de liaison a l'albumine serique
WO2007030475A1 (fr) 2005-09-06 2007-03-15 Trinity Therapeutics, Inc. Methodes de traitement de maladies neurologiques d'origine immunitaire
US7211395B2 (en) 2001-03-09 2007-05-01 Dyax Corp. Serum albumin binding moieties
US7365162B2 (en) 1998-10-13 2008-04-29 University Of Georgia Research Foundation, Inc. Stabilized bioactive peptides and methods of identification, synthesis, and use
WO2008071685A1 (fr) * 2006-12-13 2008-06-19 Ablynx N.V. Polypeptides spécifiques de complexes impliqués dans une voie de signalisation médiée par un récepteur, tel que le complexe il-6/récepteur il-6
US7476724B2 (en) 2004-08-05 2009-01-13 Genentech, Inc. Humanized anti-cmet antibodies
WO2009016043A2 (fr) 2007-07-31 2009-02-05 Affibody Ab Nouvelles compositions, nouveaux procédés et nouvelles utilisations
EP2036923A1 (fr) * 2007-09-11 2009-03-18 Novo Nordisk A/S Dérivés d'amyline améliorés
JP2009511545A (ja) * 2005-10-14 2009-03-19 ノボ・ノルデイスク・エー/エス Il−1インヒビターを使用する糖尿病の治療
WO2009099719A2 (fr) * 2008-01-31 2009-08-13 Genentech, Inc. Compositions et procédés de traitement d'une tumeur d'origine hématopoïétique
US20090258012A1 (en) * 2001-06-28 2009-10-15 Domantis Limited Compositions and methods for treating inflammatory disorders
US7608681B2 (en) 1999-12-24 2009-10-27 Genentech, Inc. Methods and compositions for prolonging elimination half-times of bioactive compounds
US7714104B2 (en) 2004-03-10 2010-05-11 Trinity Therapeutics, Inc. Methods for inhibiting immune complex formation in a subject
WO2010054699A1 (fr) * 2008-11-17 2010-05-20 Affibody Ab Conjugués de domaine de liaison d’albumine
WO2010111367A1 (fr) 2009-03-25 2010-09-30 Genentech, Inc. Anticorps anti-fgfr3 et procédés d'utilisation de ceux-ci
WO2010120561A1 (fr) 2009-04-01 2010-10-21 Genentech, Inc. Anticorps et immunoconjugués anti-fcrh5 et procédés d'utilisation
EP2275448A2 (fr) 2003-12-19 2011-01-19 Genentech, Inc. Fragments d'anticorps monovalent et leur utilisation thérapeutique
EP2286844A2 (fr) 2004-06-01 2011-02-23 Genentech, Inc. Conjugués anticorps-médicament et procédés
WO2011022264A1 (fr) 2009-08-15 2011-02-24 Genentech, Inc. Thérapie anti-angiogenèse pour le traitement d’un cancer du sein précédemment traité
WO2011031870A1 (fr) 2009-09-09 2011-03-17 Centrose, Llc Conjugués médicamenteux ciblés à visée extracellulaire
WO2011036460A1 (fr) 2009-09-25 2011-03-31 Ucb Pharma S.A. Anticorps multivalents stabilisés par un pont disulfure
WO2011050188A1 (fr) 2009-10-22 2011-04-28 Genentech, Inc. Anticorps anti-hepsine et procédés d'utilisation de ceux-ci
WO2011057120A1 (fr) 2009-11-05 2011-05-12 Genentech, Inc. Procédés et composition de sécrétion de polypeptides hétérologues
WO2011056983A1 (fr) 2009-11-05 2011-05-12 Genentech, Inc. Conjugués d'anticorps modifiés par cystéine, radiomarqués par le zirconium
WO2011064382A1 (fr) 2009-11-30 2011-06-03 Ablynx N.V. Séquences d'acides aminés améliorées dirigées contre le virus syncytial respiratoire humain (hrsv) et polypeptides comprenant celles-ci pour la prévention et/ou le traitement d'infections du tractus respiratoire
WO2011071957A1 (fr) 2009-12-07 2011-06-16 Sea Lane Biotechnologies, Llc Conjugués comprenant un échafaudage de substituts d'anticorps présentant des propriétés pharmacocinétiques améliorées
WO2011073180A1 (fr) 2009-12-14 2011-06-23 Ablynx N.V. Anticorps à domaine variable unique dirigés contre ox4ql, produits de recombinaison et utilisation thérapeutique
WO2011083140A1 (fr) 2010-01-08 2011-07-14 Ablynx Nv Domaines variables simples d'immunoglobuline dirigés contre le cxcr4 doués d'une meilleure activité thérapeutique et produits de recombinaison les comprenant
WO2011098520A1 (fr) 2010-02-10 2011-08-18 Novartis Ag Polypeptides agonistes de liaison à dr5
WO2011106300A2 (fr) 2010-02-23 2011-09-01 Genentech, Inc. Thérapie anti-angiogénique pour le traitement du cancer des ovaires
WO2011117423A1 (fr) 2010-03-26 2011-09-29 Ablynx N.V. Domaines variables uniques de l'immunoglobuline dirigés contre cxcr7
WO2011130598A1 (fr) 2010-04-15 2011-10-20 Spirogen Limited Pyrrolobenzodiazépines et conjugués de celles-ci
WO2011144749A1 (fr) 2010-05-20 2011-11-24 Ablynx Nv Matériaux biologiques associés à her3
WO2011153243A2 (fr) 2010-06-02 2011-12-08 Genentech, Inc. Thérapie anti-angiogénique utilisée dans le traitement du cancer de l'estomac
WO2011153346A1 (fr) 2010-06-03 2011-12-08 Genentech, Inc. Imagerie par immuno-tep d'anticorps et d'immunoconjugués et utilisations correspondantes
WO2011156328A1 (fr) 2010-06-08 2011-12-15 Genentech, Inc. Anticorps et conjugués modifiés par la cystéine
US8088378B2 (en) 2007-07-16 2012-01-03 Genetech Inc. Anti-CD79B antibodies and immunoconjugates and methods of use
WO2012004384A2 (fr) 2010-07-09 2012-01-12 Affibody Ab Polypeptides
WO2012042026A1 (fr) 2010-09-30 2012-04-05 Ablynx Nv Matières biologiques associées à c-met
EP2447282A2 (fr) 2006-05-30 2012-05-02 Genentech, Inc. Anti-CD22 Anticorps, immuno-conjugués et utilisations associées
WO2012062713A1 (fr) 2010-11-08 2012-05-18 Novartis Ag Polypeptides se liant aux récepteurs de chimiokines
WO2012069654A1 (fr) 2010-11-26 2012-05-31 Molecular Partners Ag Protéines de répétition conçues se liant à l'albumine sérique
WO2012074757A1 (fr) 2010-11-17 2012-06-07 Genentech, Inc. Conjugués d'anticorps alaninyl-maytansinol
EP2468776A2 (fr) 2007-02-09 2012-06-27 Genentech, Inc. Anticorps anti-Robo4 et utilisations associées
WO2012109624A2 (fr) 2011-02-11 2012-08-16 Zyngenia, Inc. Complexes plurispécifiques monovalents et multivalents et leurs utilisations
WO2012130874A1 (fr) 2011-03-28 2012-10-04 Ablynx Nv Domaines variables uniques d'immunoglobulines anti-cxcr7 bispécifiques
EP2514767A1 (fr) 2006-12-19 2012-10-24 Ablynx N.V. Séquences d'acides aminés dirigées contre une métalloprotéinase de la famille ADAM et polypeptides les comprenant pour le traitement de maladies et troubles liés à ADAM
WO2012155019A1 (fr) 2011-05-12 2012-11-15 Genentech, Inc. Procédé lc-ms/ms de surveillance de réactions multiples pour détecter des anticorps thérapeutiques dans des échantillons animaux à l'aide de peptides de signature d'infrastructure
WO2012156219A1 (fr) 2011-05-05 2012-11-22 Ablynx Nv Séquences d'acides aminés dirigées contre il-17a, il-17f et/ou il17-a/f et polypeptides comprenant ces séquences
WO2012163887A1 (fr) 2011-05-27 2012-12-06 Ablynx Nv Inhibition de la résorption osseuse à l'aide de peptides se liant à rankl
EP2535349A1 (fr) 2007-09-26 2012-12-19 UCB Pharma S.A. Fusions d'anticorps à double spécificité
WO2012175740A1 (fr) 2011-06-23 2012-12-27 Ablynx Nv Domaines variables uniques d'immunoglobuline dirigés contre ige
WO2013004607A1 (fr) 2011-07-01 2013-01-10 Bayer Intellectual Property Gmbh Polypeptides de fusion de relaxine et leurs utilisations
WO2013007563A1 (fr) 2011-07-08 2013-01-17 Bayer Intellectual Property Gmbh Protéines de fusion libérant de la relaxine et leurs utilisations
EP2557090A2 (fr) 2006-12-19 2013-02-13 Ablynx N.V. Séquences d'acides aminés dirigées contre les GPCR et polypeptides les comprenant pour le traitement de maladies et de troubles liés au GPCR
WO2013027796A1 (fr) 2011-08-24 2013-02-28 大塚化学株式会社 Peptide de liaison à l'immunoglobuline g et procédé de détection et d'épuration d'immunoglobuline g mettant en œuvre un tel peptide
WO2013043071A1 (fr) 2011-09-23 2013-03-28 Technophage, Investigação E Desenvolvimento Em Biotecnologia, Sa Domaines de liaison à l'albumine modifiés et utilisations de ceux-ci pour améliorer la pharmacocinétique
WO2013043070A2 (fr) 2011-09-23 2013-03-28 Technophage, Investigação E Desenvolvimento Em Biotecnologia, Sa Agents du facteur de nécrose tumorale alpha et utilisations de ceux-ci
WO2013045707A2 (fr) 2011-09-30 2013-04-04 Ablynx Nv Substances biologiques liées à c-met
WO2013068571A1 (fr) 2011-11-11 2013-05-16 Ucb Pharma S.A. Anticorps se liant à l'albumine et leurs fragments de liaison
US8486890B2 (en) 2006-03-15 2013-07-16 Novo Nordisk A/S Amylin derivatives
WO2013112467A1 (fr) 2012-01-23 2013-08-01 Trustees Of Boston University Antagonistes et agonistes de despr utilisés à titre d'agents thérapeutiques
WO2013128027A1 (fr) 2012-03-01 2013-09-06 Amgen Research (Munich) Gmbh Molécules de liaison à un polypeptide à longue durée de vie
WO2013130093A1 (fr) 2012-03-02 2013-09-06 Genentech, Inc. Biomarqueurs pour un traitement à base de composés chimiothérapeutiques anti-tubuline
EP2641618A2 (fr) 2007-07-16 2013-09-25 Genentech, Inc. Anticorps anti-CD79B humanisés et immuno-conjugués et procédés dýutilisation
WO2013143890A1 (fr) 2012-03-28 2013-10-03 Affibody Ab Administration orale
EP2650311A2 (fr) 2007-11-27 2013-10-16 Ablynx N.V. Séquences d'acides aminés dirigées contre des cytokines hétérodimériques et/ou leurs récepteurs et polypeptides les comprenant
EP2657253A2 (fr) 2008-01-31 2013-10-30 Genentech, Inc. Anticorps anti-CD79b et immuno-conjugués et procédés d'utilisation
WO2013168108A2 (fr) 2012-05-09 2013-11-14 Novartis Ag Polypeptides de liaison de récepteur de chimiokine
WO2013177481A1 (fr) 2012-05-25 2013-11-28 Immunogen, Inc. Benzodiazépines et leurs conjugués
WO2014057074A1 (fr) 2012-10-12 2014-04-17 Spirogen Sàrl Pyrrolobenzodiazépines et leurs conjugués
WO2014057073A1 (fr) 2012-10-12 2014-04-17 Spirogen Sàrl Pyrrolobenzodiazépines et leurs conjugués
US8703131B2 (en) 2005-05-21 2014-04-22 Ablynx N.V. Nanobodies against tumor necrosis factor-alpha
WO2014064237A1 (fr) 2012-10-25 2014-05-01 Affibody Ab Polypeptide de liaison à abd
US8754031B2 (en) 2004-03-08 2014-06-17 Oncolix, Inc. Use of prolactin receptor antagonists in combination with an agent that inactivates the HER2/neu signaling pathway
EP2752189A1 (fr) 2008-11-22 2014-07-09 F. Hoffmann-La Roche AG Thérapie anti-angiogenèse destinée au traitement du cancer du sein
EP2752426A1 (fr) 2013-01-03 2014-07-09 Covagen AG Composés de liaison d'albumine de sérum humain et leurs protéines de fusion
WO2014115229A1 (fr) 2013-01-28 2014-07-31 独立行政法人産業技術総合研究所 Peptide liant les anticorps
US8815813B2 (en) 2008-07-18 2014-08-26 Trinity Therapeutics, Inc. Methods for treating immune-mediated Dengue Fever infections and antibody-dependent enhancement of Dengue Fever infections, including Dengue Hemorrhagic Fever and Dengue Shock Syndrome
WO2014140174A1 (fr) 2013-03-13 2014-09-18 Spirogen Sàrl Pyrrolobenzodiazépines et leurs conjugués
WO2014140862A2 (fr) 2013-03-13 2014-09-18 Spirogen Sarl Pyrrolobenzodiazépines et leurs conjugués
WO2014140358A1 (fr) 2013-03-15 2014-09-18 Amgen Research (Munich) Gmbh Molécules de liaison à chaîne simple comprenant l'abp à l'extrémité n-terminale
WO2014159981A2 (fr) 2013-03-13 2014-10-02 Spirogen Sarl Pyrrolobenzodiazépines et leurs conjugués
WO2014165093A2 (fr) 2013-03-13 2014-10-09 Bristol-Myers Squibb Company Domaines d'échafaudage à base de fibronectine liés à une sérum albumine ou fragment se liant à celle-ci
US8895504B2 (en) 2008-10-21 2014-11-25 Novo Nordisk A/S Amylin derivatives
WO2015023355A1 (fr) 2013-08-12 2015-02-19 Genentech, Inc. Conjugués anticorps-médicament dimérique 1-(chlorométhyl)-2,3-dihydro-1 h-benzo [e]indole, et méthodes d'utilisation et de traitement
EP2845866A1 (fr) 2006-10-27 2015-03-11 Genentech, Inc. Anticorps et immuno-conjugués et utilisations associées
WO2015095223A2 (fr) 2013-12-16 2015-06-25 Genentech, Inc. Composés peptidomimétiques et conjugués anticorps-médicament de ceux-ci
WO2015095212A1 (fr) 2013-12-16 2015-06-25 Genentech, Inc. Composés conjugués anticorps-médicament dimérique à base de 1-(chlorométhyl)-2,3-dihydro-1 h-benzo [e]indole, et méthodes d'utilisation et de traitement
WO2015095227A2 (fr) 2013-12-16 2015-06-25 Genentech, Inc. Composés peptidomimétiques et conjugués anticorps-médicament de ceux-ci
US9085630B2 (en) 2002-11-15 2015-07-21 Genentech, Inc. Compositions and methods for the treatment of tumor of hematopoietic origin
WO2015139046A1 (fr) 2014-03-14 2015-09-17 Genentech, Inc. Compositions de sécrétion de polypeptides hétérologues et procédés associés
EP2940128A1 (fr) * 2014-04-30 2015-11-04 Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) Adénovirus comprenant une fraction de liaison à l'albumine
EP2947097A1 (fr) 2008-04-07 2015-11-25 Ablynx N.V. Séquences d'acides aminés dirigées contre les voies Notch et leurs utilisations
US9212226B2 (en) 2008-05-16 2015-12-15 Ablynx N.V. Amino acid sequences directed against CXCR4 and other GPCRs and compounds comprising the same
EP2621538B1 (fr) 2010-09-28 2015-12-16 Amylin Pharmaceuticals, LLC Polypeptides génétiquement modifiés ayant une durée d'action renforcée
WO2015193452A1 (fr) 2014-06-18 2015-12-23 Ablynx Nv Immunoglobulines de liaison à kv1.3
WO2015132248A3 (fr) * 2014-03-03 2016-01-14 Vrije Universiteit Brussel (Vub) Séquamères - nouvelles banques de peptides non naturels aléatoirement contraints par leurs séquences primaires
WO2016040825A1 (fr) 2014-09-12 2016-03-17 Genentech, Inc. Intermédiaires disulfure d'anthracycline, conjugué anticorps-médicaments et procédés
WO2016040856A2 (fr) 2014-09-12 2016-03-17 Genentech, Inc. Anticorps et conjugués modifiés génétiquement avec de la cystéine
WO2016037644A1 (fr) 2014-09-10 2016-03-17 Medimmune Limited Pyrrolobenzodiazépines et leurs conjugués
US9320792B2 (en) 2002-11-08 2016-04-26 Ablynx N.V. Pulmonary administration of immunoglobulin single variable domains and constructs thereof
WO2016090050A1 (fr) 2014-12-03 2016-06-09 Genentech, Inc. Composés d'amine quaternaire et conjugués anticorps-médicament de ceux-ci
US9371381B2 (en) 2002-11-08 2016-06-21 Ablynx, N.V. Single domain antibodies directed against tumor necrosis factor-alpha and uses therefor
WO2016100803A2 (fr) 2014-12-19 2016-06-23 Alexion Pharmaceuticals, Inc. Méthodes de traitement d'une calcification tissulaire
US20160185874A1 (en) * 2002-06-28 2016-06-30 Genentech, Inc. Serum albumin binding peptides for tumor targeting
US9393304B2 (en) 2008-10-29 2016-07-19 Ablynx N.V. Formulations of single domain antigen binding molecules
WO2016156570A1 (fr) 2015-04-02 2016-10-06 Ablynx N.V. Polypeptides cxcr4-cd-4 bispécifiques à activité anti-vih puissante
WO2016164305A1 (fr) 2015-04-06 2016-10-13 Subdomain, Llc Polypeptides contenant un domaine de liaison de novo et leurs utilisations
EP3088004A1 (fr) 2004-09-23 2016-11-02 Genentech, Inc. Anticorps et conjugués modifiés au niveau des cystéines
US9487589B2 (en) 2011-06-30 2016-11-08 Genentech, Inc. Anti-c-met-antibody formulations
WO2016180982A1 (fr) 2015-05-13 2016-11-17 Ablynx N.V. Polypeptides recrutant des lymphocytes t sur la base de la réactivité de cd3
WO2016180969A1 (fr) 2015-05-13 2016-11-17 Ablynx N.V. Polypeptides de recrutement de lymphocytes t sur la base de la réactivité du tcr alpha/bêta
EP3095455A1 (fr) 2006-12-19 2016-11-23 Genentech, Inc. Antagonistes spécifiques de vegf pour thérapie par adjuvant et néoadjuvant et traitement de tumeurs à un stade précoce
US9512236B2 (en) 2006-12-19 2016-12-06 Ablynx N.V. Amino acid sequences directed against GPCRS and polypeptides comprising the same for the treatment of GPCR-related diseases and disorders
US9616109B2 (en) 2014-10-22 2017-04-11 Extend Biosciences, Inc. Insulin vitamin D conjugates
EP3205670A1 (fr) 2009-06-05 2017-08-16 Ablynx N.V. Séquences d'acides aminés améliorées dirigées contre le virus syncytial respiratoire humain (hrsv) et polypeptides les comprenant pour la prévention et/ou le traitement d'infections du tractus respiratoire
US9745340B2 (en) 2012-10-25 2017-08-29 Affibody Ab Method for the separation of proteins containing an albumin-binding
WO2017151707A1 (fr) 2016-03-01 2017-09-08 The Board Of Trustees Of The University Of Illinois Variants et protéines de fusion de l-asparaginase ayant une activité l-glutaminase réduite et une stabilité améliorée
WO2017165734A1 (fr) 2016-03-25 2017-09-28 Genentech, Inc. Dosage multiplexé pour la quantification d'anticorps totaux et de médicaments conjugués à des anticorps
US9789197B2 (en) 2014-10-22 2017-10-17 Extend Biosciences, Inc. RNAi vitamin D conjugates
EP3235820A1 (fr) 2014-09-17 2017-10-25 Genentech, Inc. Pyrrolobenzodiazépines et conjugués à base de disulfure d'anticorps associés
WO2017205741A1 (fr) 2016-05-27 2017-11-30 Genentech, Inc. Procédé bioanalytique pour la caractérisation de conjugués anticorps-médicament spécifiques d'un site
WO2017218786A1 (fr) 2016-06-16 2017-12-21 Alexion Pharmaceuticals, Inc. Méthodes de traitement d'une prolifération myo-intimale
WO2018007442A1 (fr) 2016-07-06 2018-01-11 Ablynx N.V. Traitement de maladies associées à l'il-6r
US9884124B2 (en) 2012-05-17 2018-02-06 Extend Biosciences, Inc. Carriers for improved drug delivery
WO2018029182A1 (fr) 2016-08-08 2018-02-15 Ablynx N.V. Anticorps à domaine variable unique d'il-6r pour le traitement de maladies liées à l'il-6r
US9919056B2 (en) 2012-10-12 2018-03-20 Adc Therapeutics S.A. Pyrrolobenzodiazepine-anti-CD22 antibody conjugates
WO2018050833A1 (fr) 2016-09-15 2018-03-22 Ablynx Nv Domaines variables uniques d'immunoglobuline dirigés contre le facteur inhibiteur de la migration des macrophages
US9931414B2 (en) 2012-10-12 2018-04-03 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US9931415B2 (en) 2012-10-12 2018-04-03 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US9950078B2 (en) 2013-10-11 2018-04-24 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
EP3311837A1 (fr) 2011-09-23 2018-04-25 Ablynx NV Inhibition prolongée de la signalisation à médiation par interleukine 6
US9956299B2 (en) 2013-10-11 2018-05-01 Medimmune Limited Pyrrolobenzodiazepine—antibody conjugates
WO2018091606A1 (fr) 2016-11-16 2018-05-24 Ablynx Nv Polypeptides de recrutement de lymphocytes t capables de se lier à cd123 et tcr alpha/bêta
US10010624B2 (en) 2013-10-11 2018-07-03 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US10029018B2 (en) 2013-10-11 2018-07-24 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
WO2018199337A1 (fr) 2017-04-28 2018-11-01 味の素株式会社 Composé renfermant une substance ayant une affinité pour une protéine soluble, fraction clivable, et groupe réactif, ou sel de celui-ci
US10118962B2 (en) 2008-10-29 2018-11-06 Ablynx N.V. Methods for purification of single domain antigen binding molecules
WO2018220234A1 (fr) 2017-06-02 2018-12-06 Merck Patent Gmbh Immunoglobulines liant les adamts
WO2018220236A1 (fr) 2017-06-02 2018-12-06 Merck Patent Gmbh Polypeptides se liant à adamts5, mmp13 et à l'aggrécane
WO2018220235A1 (fr) 2017-06-02 2018-12-06 Merck Patent Gmbh Immunoglobulines de liaison à mmp13
WO2018220225A1 (fr) 2017-06-02 2018-12-06 Ablynx Nv Immunoglobulines liant l'aggrécane
US10155792B2 (en) 2012-09-25 2018-12-18 Affibody Ab Albumin binding polypeptide
US10167322B2 (en) 2013-12-20 2019-01-01 Affibody Ab Engineered albumin binding polypeptide
EP3424526A1 (fr) 2008-06-05 2019-01-09 Ablynx NV Domaines variables uniques d'immunoglobuline contre la protéine g d'enveloppe du virus de la rage et leurs utilisation pour le traitement et la prévention de la rage
WO2019014360A1 (fr) 2017-07-11 2019-01-17 Alexion Pharmaceuticals, Inc. Polypeptides se liant au composant c5 du complément ou à l'albumine sérique et protéines de fusion de ceux-ci
WO2019032952A1 (fr) 2017-08-11 2019-02-14 The Board Of Trustees Of The University Of Illinois Variantes tronquées de la l-asparaginase de cochon d'inde et procédés d'utilisation
US10208120B2 (en) 2014-11-05 2019-02-19 Genentech, Inc. Anti-FGFR2/3 antibodies and methods using same
US10240207B2 (en) 2014-03-24 2019-03-26 Genentech, Inc. Cancer treatment with c-met antagonists and correlation of the latter with HGF expression
EP3461844A2 (fr) 2009-04-10 2019-04-03 Ablynx N.V. Séquences d'acides aminés améliorées dirigées contre l'il-6r et polypeptides les comprenant pour le traitement de maladies et de troubles liés à l'il-6r
WO2019067502A1 (fr) 2017-09-27 2019-04-04 Alexion Pharmaceuticals, Inc. Méthodes d'amélioration de la fonction cardio-vasculaire et de traitement d'une maladie cardio-vasculaire à l'aide d'une ecto-nucléotide pyrophosphatase/phosphodiestérase recombinante
EP3470425A2 (fr) 2008-12-19 2019-04-17 Ablynx N.V. Immunoglobulines contre des antigènes associés à la cellule tels que p2x7
WO2019072868A1 (fr) 2017-10-10 2019-04-18 Numab Therapeutics AG Anticorps multispécifiques
CN109790202A (zh) * 2016-09-30 2019-05-21 富士胶片株式会社 环肽、亲和层析载体、标记抗体、抗体药物复合体及药物制剂
WO2019099440A1 (fr) 2017-11-14 2019-05-23 Arcellx, Inc. Thérapies immunocellulaires multifonctionnelles
US10392393B2 (en) 2016-01-26 2019-08-27 Medimmune Limited Pyrrolobenzodiazepines
US10406202B2 (en) 2014-10-22 2019-09-10 Extend Biosciences, Inc. Therapeutic vitamin D conjugates
US10407513B2 (en) 2008-09-26 2019-09-10 Ucb Biopharma Sprl Biological products
US10420777B2 (en) 2014-09-12 2019-09-24 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
WO2019240288A1 (fr) 2018-06-14 2019-12-19 味の素株式会社 Substance ayant une affinité pour un anticorps, et composé ou sel de celui-ci possédant un groupe fonctionnel bioorthogonal
US10544223B2 (en) 2017-04-20 2020-01-28 Adc Therapeutics Sa Combination therapy with an anti-axl antibody-drug conjugate
US10543279B2 (en) 2016-04-29 2020-01-28 Medimmune Limited Pyrrolobenzodiazepine conjugates and their use for the treatment of cancer
JP2020033372A (ja) * 2012-03-28 2020-03-05 アフィボディ・アーベー 経口投与
US10584181B2 (en) 2009-12-04 2020-03-10 Genentech, Inc. Methods of making and using multispecific antibody panels and antibody analog panels
WO2020090979A1 (fr) 2018-10-31 2020-05-07 味の素株式会社 Composé comprenant une substance ayant une affinité pour un anticorps, site de clivage et groupe réactif ou sel correspondant
WO2020123275A1 (fr) 2018-12-10 2020-06-18 Genentech, Inc. Peptides de photoréticulation pour conjugaison spécifique de site à des protéines contenant fc
US10695433B2 (en) 2012-10-12 2020-06-30 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US10695439B2 (en) 2016-02-10 2020-06-30 Medimmune Limited Pyrrolobenzodiazepine conjugates
US10736903B2 (en) 2012-10-12 2020-08-11 Medimmune Limited Pyrrolobenzodiazepine-anti-PSMA antibody conjugates
US10751346B2 (en) 2012-10-12 2020-08-25 Medimmune Limited Pyrrolobenzodiazepine—anti-PSMA antibody conjugates
US10780096B2 (en) 2014-11-25 2020-09-22 Adc Therapeutics Sa Pyrrolobenzodiazepine-antibody conjugates
US10799595B2 (en) 2016-10-14 2020-10-13 Medimmune Limited Pyrrolobenzodiazepine conjugates
EP3816185A1 (fr) 2019-11-04 2021-05-05 Numab Therapeutics AG Anticorps multi-spécifique contra pd-l1 et antigène associé à une tumeur
US11000510B2 (en) 2014-09-23 2021-05-11 Genentech, Inc. Methods of using anti-CD79b immunoconjugates
US11008365B2 (en) 2016-09-01 2021-05-18 National Institute Of Advanced Industrial Science And Technology Polypeptide exhibiting affinity to antibodies forming non-native three-dimensional structure
WO2021123186A1 (fr) 2019-12-20 2021-06-24 UCB Biopharma SRL Anticorps multi-spécifique présentant une spécificité de liaison pour l'il-13 et l'il-17 humaines
US11059893B2 (en) 2015-04-15 2021-07-13 Bergenbio Asa Humanized anti-AXL antibodies
US11124573B2 (en) 2014-05-02 2021-09-21 Janssen Biotech, Inc. Compositions and methods related to engineered Fc constructs
US11135303B2 (en) 2011-10-14 2021-10-05 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US11155640B2 (en) 2016-05-23 2021-10-26 Janssen Biotech, Inc. Compositions and methods related to engineered Fc constructs
US11160872B2 (en) 2017-02-08 2021-11-02 Adc Therapeutics Sa Pyrrolobenzodiazepine-antibody conjugates
EP3915580A1 (fr) 2020-05-29 2021-12-01 Numab Therapeutics AG Anticorps multi-spécifique
US11208452B2 (en) 2015-06-02 2021-12-28 Novo Nordisk A/S Insulins with polar recombinant extensions
EP3932945A1 (fr) 2015-11-27 2022-01-05 Ablynx NV Polypeptides inhibant le ligand cd40l
WO2022004805A1 (fr) 2020-06-30 2022-01-06 株式会社ガイアバイオメディシン Procédé de stabilisation de liaison d'un anticorps sur une cellule nk et utilisation associée
US11220531B2 (en) 2017-01-06 2022-01-11 Janssen Biotech, Inc. Engineered Fc constructs
US11292825B2 (en) 2015-10-01 2022-04-05 Novo Nordisk A/S Protein conjugates
EP3988568A1 (fr) 2020-10-21 2022-04-27 Numab Therapeutics AG Traitement combiné
US11318211B2 (en) 2017-06-14 2022-05-03 Adc Therapeutics Sa Dosage regimes for the administration of an anti-CD19 ADC
WO2022098745A1 (fr) 2020-11-03 2022-05-12 Indi Molecular, Inc. Compositions, systèmes d'administration et méthodes utiles dans la thérapie antitumorale
WO2022098743A1 (fr) 2020-11-03 2022-05-12 Indi Molecular, Inc. Compositions, imagerie et procédés thérapeutiques ciblant le récepteur 1 de folate (folr1)
US11352324B2 (en) 2018-03-01 2022-06-07 Medimmune Limited Methods
WO2022122654A1 (fr) 2020-12-07 2022-06-16 UCB Biopharma SRL Anticorps multi-spécifiques et combinaisons d'anticorps
US11370801B2 (en) 2017-04-18 2022-06-28 Medimmune Limited Pyrrolobenzodiazepine conjugates
WO2022167460A1 (fr) 2021-02-02 2022-08-11 Numab Therapeutics AG Anticorps multispécifiques ayant une spécificité pour ror1 et cd3
WO2022178255A2 (fr) 2021-02-19 2022-08-25 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anticorps à domaine unique qui neutralisent le sars-cov-2
US11471537B2 (en) 2017-04-05 2022-10-18 Novo Nordisk A/S Oligomer extended insulin-Fc conjugates
US11517626B2 (en) 2016-02-10 2022-12-06 Medimmune Limited Pyrrolobenzodiazepine antibody conjugates
US11524969B2 (en) 2018-04-12 2022-12-13 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof as antitumour agents
US11612665B2 (en) 2017-02-08 2023-03-28 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US11642416B2 (en) 2017-08-09 2023-05-09 Massachusetts Institute Of Technology Albumin binding peptide conjugates and methods thereof
US11649250B2 (en) 2017-08-18 2023-05-16 Medimmune Limited Pyrrolobenzodiazepine conjugates
EP4183800A1 (fr) 2021-11-19 2023-05-24 Medizinische Hochschule Hannover Nouveaux anticorps neutralisants du sars-cov-2
US11702473B2 (en) 2015-04-15 2023-07-18 Medimmune Limited Site-specific antibody-drug conjugates
WO2024008904A2 (fr) 2022-07-08 2024-01-11 Novo Nordisk A/S Composés isvd hautement puissants capables de remplacer fviii(a)
WO2024038095A1 (fr) 2022-08-16 2024-02-22 Iome Bio Nouveaux anticorps anti-rgmb

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001827A1 (en) * 2002-06-28 2004-01-01 Dennis Mark S. Serum albumin binding peptides for tumor targeting
DE10012120A1 (de) * 2000-03-13 2001-09-27 Ktb Tumorforschungs Gmbh Therapeutische und diagnostische Ligandensysteme mit Transportmolekülbindenden Eigenschaften und diese enthaltende Arzneimittel
US9321832B2 (en) 2002-06-28 2016-04-26 Domantis Limited Ligand
US7329725B1 (en) 2003-10-29 2008-02-12 Nastech Pharmaceutical Company Inc. Phage displayed Trp cage ligands
AU2011253771B2 (en) * 2004-03-10 2013-10-31 Trinity Therapeutics, Inc. Method for inhibiting immune complex formation in a subject
EP1957540B1 (fr) 2005-12-02 2012-06-13 Genentech, Inc. Polypeptides de liaison et leurs utilisations
US7704953B2 (en) * 2006-02-17 2010-04-27 Mdrna, Inc. Phage displayed cell binding peptides
ATE536369T1 (de) * 2006-10-11 2011-12-15 Ablynx Nv Im wesentlichen ph-wert-unabhängigerweise an serumproteine bindende aminosäuresequenzen, verbindungen, die diese enthalten, und deren verwendung
KR100920729B1 (ko) * 2007-10-01 2009-10-07 한국생명공학연구원 펩타이드 혼성체를 사용한 배향성이 조절된 항체단분자막의 제조방법
KR101711472B1 (ko) 2008-06-30 2017-03-02 에스바테크 - 어 노바티스 컴파니 엘엘씨 기능화 폴리펩티드
BRPI0915460A2 (pt) 2008-07-10 2015-11-10 Esbatech Alcon Biomed Res Unit métodos e composições para a liberação intensificada de macromoléculas
US8648046B2 (en) * 2009-02-26 2014-02-11 Oncolix, Inc. Compositions and methods for visualizing and eliminating cancer stem cells
AU2010218261B2 (en) * 2009-02-26 2015-08-20 Oncolix, Inc. Compositions and methods for visualizing and eliminating cancer stem cells
RU2579977C2 (ru) 2009-11-13 2016-04-10 Грифольс Терапьютикс Инк. СОДЕРЖАЩИЕ ФАКТОР ФОН ВИЛЛЕБРАНДА (vWF) ПРЕПАРАТЫ И СПОСОБЫ, НАБОРЫ И ПРИМЕНЕНИЯ, СВЯЗАННЫЕ С НИМИ
US8822423B2 (en) * 2012-05-17 2014-09-02 Janssen Biotech, Inc. Affinity peptides toward infliximab
WO2013177398A2 (fr) 2012-05-25 2013-11-28 Janssen Biotech, Inc. Domaines consensus non endogènes de liaison à l'albumine
WO2013192546A1 (fr) 2012-06-22 2013-12-27 Cytomx Therapeutics, Inc. Anticorps activables ayant des fragments stériques ne se liant pas et leurs procédés d'utilisation
JP6152379B2 (ja) * 2012-06-29 2017-06-21 旭化成メディカル株式会社 プロテインaのbドメイン変異体を含むポリペプチドが結合された担体からなる吸着材
BR112015014669B1 (pt) 2012-12-21 2023-09-26 Medimmune Limited Compostos pirrolobenzodiazepinas, conjugados compreendendo os mesmos e uso destes para tratar uma doença proliferativa
CN105246894A (zh) 2012-12-21 2016-01-13 斯皮罗根有限公司 用于治疗增殖性和自身免疫疾病的非对称吡咯并苯并二氮杂卓二聚物
CN108137651B (zh) * 2015-10-23 2022-02-22 富士胶片株式会社 环肽、亲和层析载体、标记抗体、抗体药物复合物及药物制剂
JP2019503394A (ja) 2016-01-31 2019-02-07 ユニバーシティ・オブ・マサチューセッツUniversity Of Massachusetts 分岐オリゴヌクレオチド
CA3020976A1 (fr) 2016-04-15 2017-10-19 Berkeley Lights, Inc. Procedes, systemes et kits pour dosages in pen
CN109562146A (zh) * 2016-06-03 2019-04-02 詹森生物科技公司 血清白蛋白结合纤连蛋白iii型结构域
CA3033368A1 (fr) 2016-08-12 2018-02-15 University Of Massachusetts Oligonucleotides conjugues
EP3538560A4 (fr) 2016-11-10 2020-06-17 Keros Therapeutics, Inc. Polypeptides de fusion gdnf et leurs procédés d'utilisation
WO2019075476A2 (fr) 2017-10-15 2019-04-18 Berkeley Lights, Inc. Procédés, systèmes et kits pour essais « en enclos »
WO2019107962A2 (fr) * 2017-11-29 2019-06-06 아주대학교 산학협력단 Procédé de conjugaison d'un anticorps et d'une substance physiologiquement active
KR102037336B1 (ko) * 2017-11-29 2019-10-29 아주대학교산학협력단 항체와 생리활성물질의 접합방법
JP2021533762A (ja) 2018-08-10 2021-12-09 ユニバーシティ・オブ・マサチューセッツUniversity Of Massachusetts Snpを標的化する修飾オリゴヌクレオチド
EP3856764A4 (fr) 2018-09-27 2022-11-02 Xilio Development, Inc. Polypeptides de cytokine masqués
EP3898701A4 (fr) * 2018-12-20 2022-10-26 Kleo Pharmaceuticals, Inc. Polythérapie cellules arms et de cellules tueuses naturelles
US11492619B2 (en) 2019-01-18 2022-11-08 University Of Massachusetts Dynamic pharmacokinetic-modifying anchors
AR126207A1 (es) 2021-06-23 2023-09-27 Univ Massachusetts Compuestos de oligonucleotidos anti-flt1 optimizados para el tratamiento de la preeclampsia y otros desordenes angiogénicos

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001743A1 (fr) * 1989-08-01 1991-02-21 Cemu Bioteknik Ab Conjugues de proteines ou de peptides stabilises
EP0602290A1 (fr) * 1992-12-04 1994-06-22 Philippe Pouletty Médicaments cellulaires à ancres
WO1994018318A1 (fr) * 1993-02-01 1994-08-18 The University Of North Carolina At Chapel Hill Reactifs d'affinite entierement synthetiques
WO1998022141A2 (fr) * 1996-11-19 1998-05-28 Sangstat Medical Corporation Effets renforces pour therapeutique associee a l'haptene

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US763829A (en) 1903-01-16 1904-06-28 L E Knott Apparatus Company Apparatus for reading angular deflections.
US3561444A (en) * 1968-05-22 1971-02-09 Bio Logics Inc Ultrasonic drug nebulizer
US3703173A (en) * 1970-12-31 1972-11-21 Ted A Dixon Nebulizer and tent assembly
US3862925A (en) 1973-07-05 1975-01-28 American Home Prod Preparation of somatotropin release inhibiting factor and intermediates therefor
US3842067A (en) 1973-07-27 1974-10-15 American Home Prod Synthesis of(des-asn5)-srif and intermediates
JPS5726506B2 (fr) * 1974-03-08 1982-06-04
US4105603A (en) 1977-03-28 1978-08-08 The Salk Institute For Biological Studies Peptides which effect release of hormones
USRE30985E (en) 1978-01-01 1982-06-29 Serum-free cell culture media
US4275149A (en) 1978-11-24 1981-06-23 Syva Company Macromolecular environment control in specific receptor assays
US4399216A (en) * 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4560655A (en) 1982-12-16 1985-12-24 Immunex Corporation Serum-free cell culture medium and process for making same
US4657866A (en) 1982-12-21 1987-04-14 Sudhir Kumar Serum-free, synthetic, completely chemically defined tissue culture media
US4767704A (en) 1983-10-07 1988-08-30 Columbia University In The City Of New York Protein-free culture medium
US4635627A (en) * 1984-09-13 1987-01-13 Riker Laboratories, Inc. Apparatus and method
US4624251A (en) 1984-09-13 1986-11-25 Riker Laboratories, Inc. Apparatus for administering a nebulized substance
US4970198A (en) 1985-10-17 1990-11-13 American Cyanamid Company Antitumor antibiotics (LL-E33288 complex)
US4737456A (en) 1985-05-09 1988-04-12 Syntex (U.S.A.) Inc. Reducing interference in ligand-receptor binding assays
US4824659A (en) * 1985-06-07 1989-04-25 Immunomedics, Inc. Antibody conjugates
GB8516415D0 (en) 1985-06-28 1985-07-31 Celltech Ltd Culture of animal cells
US4927762A (en) 1986-04-01 1990-05-22 Cell Enterprises, Inc. Cell culture medium with antioxidant
US5079233A (en) * 1987-01-30 1992-01-07 American Cyanamid Company N-acyl derivatives of the LL-E33288 antitumor antibiotics, composition and methods for using the same
IE81149B1 (en) 1987-02-12 2000-05-03 Genentech Inc Methods and deoxyribonucleic acid for the preparation of tissue factor protein
US5223427A (en) 1987-03-31 1993-06-29 The Scripps Research Institute Hybridomas producing monoclonal antibodies reactive with human tissue-factor glycoprotein heavy chain
US4975278A (en) * 1988-02-26 1990-12-04 Bristol-Myers Company Antibody-enzyme conjugates in combination with prodrugs for the delivery of cytotoxic agents to tumor cells
IL87737A (en) 1987-09-11 1993-08-18 Genentech Inc Method for culturing polypeptide factor dependent vertebrate recombinant cells
US5606040A (en) * 1987-10-30 1997-02-25 American Cyanamid Company Antitumor and antibacterial substituted disulfide derivatives prepared from compounds possessing a methyl-trithio group
US5169770A (en) 1987-12-21 1992-12-08 The University Of Toledo Agrobacterium mediated transformation of germinating plant seeds
US5720937A (en) * 1988-01-12 1998-02-24 Genentech, Inc. In vivo tumor detection assay
WO1989006692A1 (fr) * 1988-01-12 1989-07-27 Genentech, Inc. Procede de traitement de cellules tumorales par inhibition de la fonction receptrice du facteur de croissance
US5135736A (en) * 1988-08-15 1992-08-04 Neorx Corporation Covalently-linked complexes and methods for enhanced cytotoxicity and imaging
AU4211989A (en) 1988-08-18 1990-03-23 California Biotechnology, Inc. Atrial natriuretic peptide clearance inhibitors
ATE135397T1 (de) 1988-09-23 1996-03-15 Cetus Oncology Corp Zellenzuchtmedium für erhöhtes zellenwachstum, zur erhöhung der langlebigkeit und expression der produkte
US5530101A (en) * 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5122614A (en) 1989-04-19 1992-06-16 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
WO1992000748A1 (fr) 1990-07-06 1992-01-23 Enzon, Inc. Copolymeres d'aminoacides et de poly(oxydes d'alkylene), vehicules de medicament et copolymeres charges bases sur lesdits vehicules
US5122469A (en) 1990-10-03 1992-06-16 Genentech, Inc. Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins
EP0576589A4 (en) 1991-03-18 1994-07-27 Enzon Inc Hydrazine containing conjugates of polypeptides and glycopolypeptides with polymers
DK0590058T3 (da) * 1991-06-14 2004-03-29 Genentech Inc Humaniseret heregulin-antistof
WO1994004679A1 (fr) * 1991-06-14 1994-03-03 Genentech, Inc. Procede pour fabriquer des anticorps humanises
JP3426599B2 (ja) * 1991-11-08 2003-07-14 ヘモゾル インコーポレイテッド 薬物担体としてのヘモグロビン
US5288931A (en) 1991-12-06 1994-02-22 Genentech, Inc. Method for refolding insoluble, misfolded insulin-like growth factor-I into an active conformation
ES2233928T3 (es) * 1993-10-01 2005-06-16 Teikoku Hormone Mfg. Co., Ltd. Derivados de dolastatina.
US5627263A (en) 1993-11-24 1997-05-06 La Jolla Cancer Research Foundation Integrin-binding peptides
SE9400088D0 (sv) * 1994-01-14 1994-01-14 Kabi Pharmacia Ab Bacterial receptor structures
US5773001A (en) * 1994-06-03 1998-06-30 American Cyanamid Company Conjugates of methyltrithio antitumor agents and intermediates for their synthesis
JP4423680B2 (ja) 1995-06-07 2010-03-03 オーソ−マクニール・フアーマシユーチカル・インコーポレーテツド Cdr−グラフト化抗組織因子抗体及びその使用
US5780054A (en) * 1996-01-17 1998-07-14 University Of British Columbia Methods for increasing the circulation half-life of protein-based therapeutics
US20020032315A1 (en) * 1997-08-06 2002-03-14 Manuel Baca Anti-vegf antibodies
ES2273415T3 (es) 1997-04-07 2007-05-01 Genentech, Inc. Anticuerpos anti-vegf.
US20050287153A1 (en) * 2002-06-28 2005-12-29 Genentech, Inc. Serum albumin binding peptides for tumor targeting
ATE422369T1 (de) 1999-12-24 2009-02-15 Genentech Inc Verfahren und zusammensetzungen zur verlängerung der entsorgungshalbwertszeit von biowirksamen verbindungen
US20060228364A1 (en) * 1999-12-24 2006-10-12 Genentech, Inc. Serum albumin binding peptides for tumor targeting
US20040001827A1 (en) * 2002-06-28 2004-01-01 Dennis Mark S. Serum albumin binding peptides for tumor targeting
US6632979B2 (en) * 2000-03-16 2003-10-14 Genentech, Inc. Rodent HER2 tumor model
WO2001079442A2 (fr) 2000-04-12 2001-10-25 Human Genome Sciences, Inc. Proteines fusionnees a de l'albumine
US20040018194A1 (en) * 2000-11-28 2004-01-29 Francisco Joseph A. Recombinant anti-CD30 antibodies and uses thereof
WO2002076489A1 (fr) * 2001-03-09 2002-10-03 Dyax Corp. Groupes de liaison d'albumine serique
US20050089932A1 (en) * 2001-04-26 2005-04-28 Avidia Research Institute Novel proteins with targeted binding
US20030009395A1 (en) * 2001-07-06 2003-01-09 Yu Philip Shi-Lung Method and apparatus for providing information regarding a product
BRPI0213207B1 (pt) 2001-10-10 2021-06-15 Novo Nordisk A/S Processo in vitro, isento de células, para a remodelagem de um peptídeo e processos para formar um conjugado entre peptídeos e um grupo de modificação
EP1482972A4 (fr) 2001-11-20 2005-11-23 Seattle Genetics Inc Traitement des troubles immunologiques au moyen des anticorps anti-cd30
JP2005522514A (ja) * 2002-04-10 2005-07-28 ジェネンテック・インコーポレーテッド 抗her2抗体改変体
JP3997859B2 (ja) * 2002-07-25 2007-10-24 株式会社日立製作所 半導体装置の製造方法および製造装置
CA2494104A1 (fr) 2002-07-31 2004-04-22 Seattle Genetics, Inc. Conjugues anticorps anti-cd20-medicament pour le traitement du cancer et des troubles immunitaires
US20040032828A1 (en) * 2002-08-16 2004-02-19 Cellglide Technologies Corp. Service management in cellular networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001743A1 (fr) * 1989-08-01 1991-02-21 Cemu Bioteknik Ab Conjugues de proteines ou de peptides stabilises
EP0602290A1 (fr) * 1992-12-04 1994-06-22 Philippe Pouletty Médicaments cellulaires à ancres
WO1994018318A1 (fr) * 1993-02-01 1994-08-18 The University Of North Carolina At Chapel Hill Reactifs d'affinite entierement synthetiques
WO1998022141A2 (fr) * 1996-11-19 1998-05-28 Sangstat Medical Corporation Effets renforces pour therapeutique associee a l'haptene

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE MEDLINE [Online] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; MAKRIDES S C ET AL: "Extended in vivo half-life of human soluble complement receptor type 1 fused to a serum albumin-binding receptor." retrieved from STN Database accession no. 96185117 XP002169607 & JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, (1996 APR) 277 (1) 534-42. , cited in the application *
P YEH ET AL.: "Design of yeast-secreted albumin derivatives for hiuman therapy; biological and antiviral properties of a serum albumin-CD4 genetic conjugate" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA., vol. 89, 1992, pages 1904-1908, XP002130704 NATIONAL ACADEMY OF SCIENCE. WASHINGTON., US ISSN: 0027-8424 cited in the application *

Cited By (372)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122516B2 (en) 1998-10-13 2006-10-17 University Of Georgia Research Foundation, Inc. Stabilized bioactive peptides and methods of identification, synthesis and use
US10018618B2 (en) 1998-10-13 2018-07-10 Peptide Biosciences, Inc. Stabilizied bioactive peptides and methods of identification, synthesis and use
US9322829B2 (en) 1998-10-13 2016-04-26 Peptide Biosciences, Inc. Stabilized bioactive peptides and methods of identification, synthesis, and use
US8440201B2 (en) 1998-10-13 2013-05-14 University Of Georgia Research Foundation, Inc. Stabilized bioactive peptides and methods of identification, synthesis, and use
US7365162B2 (en) 1998-10-13 2008-04-29 University Of Georgia Research Foundation, Inc. Stabilized bioactive peptides and methods of identification, synthesis, and use
US6818611B1 (en) 1998-10-13 2004-11-16 University Of Georgia Research Foundation, Inc. Stabilized bioactive peptides and methods of identification, synthesis and use
US8030464B2 (en) 1998-10-13 2011-10-04 The University Of Georgia Research Foundation, Inc Stabilized bioactive peptides and methods of identification, synthesis, and use
US7608681B2 (en) 1999-12-24 2009-10-27 Genentech, Inc. Methods and compositions for prolonging elimination half-times of bioactive compounds
US7635749B2 (en) 1999-12-24 2009-12-22 Genentech, Inc. Methods and compositions for prolonging elimination half-times of bioactive compounds
US7205382B2 (en) 2000-11-08 2007-04-17 Fresenius Medical Care Affina Gmbh Peptides, the production and use thereof for binding immunoglobulins
WO2002038592A3 (fr) * 2000-11-08 2003-01-23 Affina Immuntechnik Gmbh Peptides, leur fabrication et leur utilisation pour la liaison des immunoglobulines
WO2002038592A2 (fr) * 2000-11-08 2002-05-16 Affina Immuntechnik Gmbh Peptides, leur fabrication et leur utilisation pour la liaison des immunoglobulines
US7211395B2 (en) 2001-03-09 2007-05-01 Dyax Corp. Serum albumin binding moieties
US20090258012A1 (en) * 2001-06-28 2009-10-15 Domantis Limited Compositions and methods for treating inflammatory disorders
US8097251B2 (en) 2001-10-24 2012-01-17 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw Functional heavy chain antibodies, fragments thereof, library thereof and methods of production thereof
EP1693384A3 (fr) * 2001-10-24 2006-11-08 Vlaams Interuniversitair Instituut voor Biotechnologie vzw. Immunoglobulines fonctionnelles contre le sérum d'albumine humaine, fragments, bibliothèque et méthodes de production de ladite immunoglobuline
US9156905B2 (en) 2001-10-24 2015-10-13 Vib Vzw Functional heavy chain antibodies, fragments thereof, library thereof and methods of production thereof
US6916904B2 (en) 2002-04-24 2005-07-12 Zolaris Biosciences, Llc Inhibition of immune complex formation
US7584059B2 (en) 2002-04-24 2009-09-01 Trinity Therapeuties, Inc. Inhibition of immune complex formation
WO2003091395A3 (fr) * 2002-04-24 2004-10-14 Zolaris Biosciences Llc Inhibition de la formation du complexe immun
WO2003091395A2 (fr) * 2002-04-24 2003-11-06 Zolaris Biosciences, Llc Inhibition de la formation du complexe immun
EP1532173A1 (fr) * 2002-06-14 2005-05-25 Dyax Corporation Analyse de proteines
EP1532173A4 (fr) * 2002-06-14 2006-03-08 Dyax Corp Analyse de proteines
US20160185874A1 (en) * 2002-06-28 2016-06-30 Genentech, Inc. Serum albumin binding peptides for tumor targeting
EP1600459A3 (fr) * 2002-06-28 2005-12-07 Domantis Limited Ligand
EP1587843A4 (fr) * 2002-11-06 2008-01-09 Avidia Inc Bibliotheques combinatoires de domaines de monomere
EP1587843A2 (fr) * 2002-11-06 2005-10-26 Avidia Research Institute Bibliotheques combinatoires de domaines de monomere
JP2007524341A (ja) * 2002-11-06 2007-08-30 アビディア インコーポレイテッド 単量体ドメインの組み合わせライブラリー
US9320792B2 (en) 2002-11-08 2016-04-26 Ablynx N.V. Pulmonary administration of immunoglobulin single variable domains and constructs thereof
US9243065B2 (en) 2002-11-08 2016-01-26 Ablynx N.V. Polypeptide constructs including VHH directed against EGFR for intracellular delivery
US9371381B2 (en) 2002-11-08 2016-06-21 Ablynx, N.V. Single domain antibodies directed against tumor necrosis factor-alpha and uses therefor
EP2316852A1 (fr) 2002-11-08 2011-05-04 Ablynx N.V. Anticorps à domaine unique stabilisés
JP2006520584A (ja) * 2002-11-08 2006-09-14 アブリンクス エン.ヴェー. 安定化単一ドメイン抗体
US9725522B2 (en) 2002-11-08 2017-08-08 Ablynx N.V. Pulmonary administration of immunoglobulin single variable domains and constructs thereof
WO2004041865A2 (fr) 2002-11-08 2004-05-21 Ablynx N.V. Anticorps a domaine unique stabilises
EP2336179A1 (fr) 2002-11-08 2011-06-22 Ablynx N.V. Anticorps a domaine unique stabilises
US9085630B2 (en) 2002-11-15 2015-07-21 Genentech, Inc. Compositions and methods for the treatment of tumor of hematopoietic origin
EP2275448A2 (fr) 2003-12-19 2011-01-19 Genentech, Inc. Fragments d'anticorps monovalent et leur utilisation thérapeutique
US8754031B2 (en) 2004-03-08 2014-06-17 Oncolix, Inc. Use of prolactin receptor antagonists in combination with an agent that inactivates the HER2/neu signaling pathway
US8362202B2 (en) 2004-03-10 2013-01-29 Trinity Therapeutics, Inc. Methods for inhibiting immune complex formation in a subject
US7714104B2 (en) 2004-03-10 2010-05-11 Trinity Therapeutics, Inc. Methods for inhibiting immune complex formation in a subject
US10179803B2 (en) 2004-03-10 2019-01-15 Trinity Therapeutics, Inc. Methods for inhibiting immune complex formation in a subject
US9447145B2 (en) 2004-03-10 2016-09-20 Trinity Therapeutics, Inc. Compositions for inhibiting immune complex formation in a subject
US7786258B2 (en) 2004-03-10 2010-08-31 Trinity Therapeutics, Inc. Methods for inhibiting immune complex formation in a subject
US8642743B2 (en) 2004-04-06 2014-02-04 Affibody Ab Method for reducing the immune response to a biologically active protein
WO2005097202A3 (fr) * 2004-04-06 2006-04-27 Affibody Ab Nouvelle utilisation et methode
EP2380594A1 (fr) 2004-04-06 2011-10-26 Affibody AB Utilisation de conjugues comprenant un peptide capable de lier l'albumine serique pour la preparation de medicament
WO2005097202A2 (fr) * 2004-04-06 2005-10-20 Affibody Ab Nouvelle utilisation et methode
AU2005250216B2 (en) * 2004-06-01 2009-12-10 Domantis Limited Bispecific fusion antibodies with enhanced serum half-life
US8921528B2 (en) 2004-06-01 2014-12-30 Domantis Limited Bispecific fusion antibodies with enhanced serum half-life
EP2740743A2 (fr) 2004-06-01 2014-06-11 Domantis Limited Anticorps de fusion bispecifiqus avec une demi-vie augmentee
EP2740743A3 (fr) * 2004-06-01 2015-08-19 Domantis Limited Anticorps de fusion bispecifiqus avec une demi-vie augmentee
WO2005118642A2 (fr) * 2004-06-01 2005-12-15 Domantis Limited Compositions de medicaments, fusions et conjugues
WO2005118642A3 (fr) * 2004-06-01 2006-03-23 Domantis Ltd Compositions de medicaments, fusions et conjugues
EP2286844A2 (fr) 2004-06-01 2011-02-23 Genentech, Inc. Conjugués anticorps-médicament et procédés
EA012622B1 (ru) * 2004-06-01 2009-10-30 Домэнтис Лимитед Биспецифичные гибридные антитела с увеличенным периодом полувыведения из сыворотки
US7476724B2 (en) 2004-08-05 2009-01-13 Genentech, Inc. Humanized anti-cmet antibodies
EP3088004A1 (fr) 2004-09-23 2016-11-02 Genentech, Inc. Anticorps et conjugués modifiés au niveau des cystéines
US10603357B2 (en) 2004-11-29 2020-03-31 Bristol-Myers Squibb Company Therapeutic TREM-1 peptides
WO2006056492A1 (fr) 2004-11-29 2006-06-01 Bioxell Spa Peptides therapeutiques renfermant des sequences derivees de cdr2 ou cdr3 de trem-1 et utilisations de ceux-ci aux fins d'inhibition de la sepsie
WO2006060533A2 (fr) 2004-12-01 2006-06-08 Genentech, Inc. Conjugues medicament anticorps et procedes correspondants
WO2006059106A3 (fr) * 2004-12-02 2007-01-04 Domantis Ltd Fusions et conjugues medicamenteux
EP2769990A2 (fr) 2004-12-02 2014-08-27 Domantis Limited Anticorps bispecifiques de domaine visant l'albumine serique et GPL-1 ou PYY
WO2006059108A3 (fr) * 2004-12-02 2007-02-22 Domantis Ltd Procedes permettant de traiter la maladie respiratoire par des antagonistes du recepteur de l'interleukine de type 1
WO2006059110A2 (fr) * 2004-12-02 2006-06-08 Domantis Limited Compositions, fusions et conjugués de domaine plad
WO2006059106A2 (fr) * 2004-12-02 2006-06-08 Domantis Limited Fusions et conjugues medicamenteux
WO2006059110A3 (fr) * 2004-12-02 2007-03-15 Domantis Ltd Compositions, fusions et conjugués de domaine plad
WO2006059108A2 (fr) * 2004-12-02 2006-06-08 Domantis Limited Procedes permettant de traiter la maladie respiratoire par des antagonistes du recepteur de l'interleukine de type 1
US11472871B2 (en) 2005-05-18 2022-10-18 Ablynx N.V. Nanobodies against tumor necrosis factor-alpha
EP2365000A2 (fr) 2005-05-18 2011-09-14 Ablynx N.V. NanobodiesTM améliorés contre le facteur alpha de la nécrose des tumeurs
US9067991B2 (en) 2005-05-18 2015-06-30 Ablynx N.V. Nanobodies against tumor necrosis factor-alpha
EP2172484A2 (fr) 2005-05-18 2010-04-07 Ablynx N.V. Protéines liant la sérum albumine
EP2949668A1 (fr) 2005-05-18 2015-12-02 Ablynx N.V. Nanobodies tm améliorés contre le facteur alpha de la nécrose des tumeurs
EP2365000A3 (fr) * 2005-05-18 2013-01-16 Ablynx N.V. NanobodiesTM améliorés contre le facteur alpha de la nécrose des tumeurs
EP2172484A3 (fr) * 2005-05-18 2010-05-19 Ablynx N.V. Protéines liant la sérum albumine
EP2479191A2 (fr) 2005-05-18 2012-07-25 Ablynx N.V. NanobodiesTM améliorés contre le facteur alpha de la nécrose des tumeurs
EP3613767A1 (fr) 2005-05-18 2020-02-26 Ablynx N.V. Nanobodies tm améliorés contre le facteur de nécrose tumorale alpha
NO345340B1 (no) * 2005-05-18 2020-12-21 Ablynx Nv Aminosyresekvens, fusjonsprotein eller konstrukt inneholdende denne aminosyresekvensen, samt fremgangsmåte for fremstilling av aminosyresekvensen.
US8188223B2 (en) 2005-05-18 2012-05-29 Ablynx N.V. Serum albumin binding proteins
WO2006122787A1 (fr) * 2005-05-18 2006-11-23 Ablynx Nv Proteines de liaison a l'albumine serique
US8703131B2 (en) 2005-05-21 2014-04-22 Ablynx N.V. Nanobodies against tumor necrosis factor-alpha
EP1940436A1 (fr) * 2005-09-06 2008-07-09 Trinity Therapeutics, Inc. Methodes de traitement de maladies neurologiques d'origine immunitaire
EP1940436A4 (fr) * 2005-09-06 2012-05-30 Trinity Therapeutics Inc Methodes de traitement de maladies neurologiques d'origine immunitaire
WO2007030475A1 (fr) 2005-09-06 2007-03-15 Trinity Therapeutics, Inc. Methodes de traitement de maladies neurologiques d'origine immunitaire
JP2009511545A (ja) * 2005-10-14 2009-03-19 ノボ・ノルデイスク・エー/エス Il−1インヒビターを使用する糖尿病の治療
US8486890B2 (en) 2006-03-15 2013-07-16 Novo Nordisk A/S Amylin derivatives
US8524865B2 (en) 2006-05-30 2013-09-03 Genentech, Inc. Antibodies and immunoconjugates and uses therefor
EP2447282A2 (fr) 2006-05-30 2012-05-02 Genentech, Inc. Anti-CD22 Anticorps, immuno-conjugués et utilisations associées
EP2446904A2 (fr) 2006-05-30 2012-05-02 Genentech, Inc. Anti-CD22 anticorps, immuno-conjugués et utilisations associées
US8226945B2 (en) 2006-05-30 2012-07-24 Genentech, Inc. Antibodies and immunoconjugates and uses therefor
US8968741B2 (en) 2006-05-30 2015-03-03 Genentech, Inc. Anti-CD22 antibodies and immunoconjugates and methods of use
US8394607B2 (en) 2006-05-30 2013-03-12 Genentech, Inc. Anti-CD22 antibodies and immunoconjugates and methods of use
EP2845866A1 (fr) 2006-10-27 2015-03-11 Genentech, Inc. Anticorps et immuno-conjugués et utilisations associées
WO2008071685A1 (fr) * 2006-12-13 2008-06-19 Ablynx N.V. Polypeptides spécifiques de complexes impliqués dans une voie de signalisation médiée par un récepteur, tel que le complexe il-6/récepteur il-6
EP3095455A1 (fr) 2006-12-19 2016-11-23 Genentech, Inc. Antagonistes spécifiques de vegf pour thérapie par adjuvant et néoadjuvant et traitement de tumeurs à un stade précoce
US9512236B2 (en) 2006-12-19 2016-12-06 Ablynx N.V. Amino acid sequences directed against GPCRS and polypeptides comprising the same for the treatment of GPCR-related diseases and disorders
EP2557090A2 (fr) 2006-12-19 2013-02-13 Ablynx N.V. Séquences d'acides aminés dirigées contre les GPCR et polypeptides les comprenant pour le traitement de maladies et de troubles liés au GPCR
EP2514767A1 (fr) 2006-12-19 2012-10-24 Ablynx N.V. Séquences d'acides aminés dirigées contre une métalloprotéinase de la famille ADAM et polypeptides les comprenant pour le traitement de maladies et troubles liés à ADAM
EP2468776A2 (fr) 2007-02-09 2012-06-27 Genentech, Inc. Anticorps anti-Robo4 et utilisations associées
US8691531B2 (en) 2007-07-16 2014-04-08 Genentech, Inc. Anti-CD79B antibodies and immunoconjugates and methods of use
US8088378B2 (en) 2007-07-16 2012-01-03 Genetech Inc. Anti-CD79B antibodies and immunoconjugates and methods of use
US10494432B2 (en) 2007-07-16 2019-12-03 Genentech, Inc. Anti-CD79B antibodies and immunoconjugates and methods of use
US11866496B2 (en) 2007-07-16 2024-01-09 Genentech, Inc. Humanized anti-CD79B antibodies and immunoconjugates and methods of use
US8545850B2 (en) 2007-07-16 2013-10-01 Genentech, Inc. Anti-CD79B antibodies and immunoconjugates and methods of use
EP2474557A2 (fr) 2007-07-16 2012-07-11 Genentech, Inc. Anticorps anti-CD79b, immuno-conjugués et procédés d'utilisation
EP2641618A2 (fr) 2007-07-16 2013-09-25 Genentech, Inc. Anticorps anti-CD79B humanisés et immuno-conjugués et procédés dýutilisation
EP2502937A2 (fr) 2007-07-16 2012-09-26 Genentech, Inc. Anticorps anti-CD 79b, immuno-conjugués et procédés d'utilisation
USRE48558E1 (en) 2007-07-16 2021-05-18 Genentech, Inc. Anti-CD79B antibodies and immunoconjugates and methods of use
US10981987B2 (en) 2007-07-16 2021-04-20 Genentech, Inc. Humanized anti-CD79b antibodies and immunoconjugates and methods of use
EP2546261A2 (fr) 2007-07-31 2013-01-16 Affibody AB Nouvelles compositions, nouveaux procédés et nouvelles utilisations
WO2009016043A2 (fr) 2007-07-31 2009-02-05 Affibody Ab Nouvelles compositions, nouveaux procédés et nouvelles utilisations
EP2036923A1 (fr) * 2007-09-11 2009-03-18 Novo Nordisk A/S Dérivés d'amyline améliorés
WO2009034119A1 (fr) * 2007-09-11 2009-03-19 Novo Nordisk A/S Dérivés améliorés de l'amyline
EP2535351A2 (fr) 2007-09-26 2012-12-19 UCB Pharma S.A. Fusions d'anticorps à double spécificité
US10100130B2 (en) 2007-09-26 2018-10-16 Ucb Biopharma Sprl Dual specificity antibody fusions
US9309327B2 (en) 2007-09-26 2016-04-12 Ucb Pharma S.A. Dual specificity antibody fusions
US11427650B2 (en) 2007-09-26 2022-08-30 UCB Biopharma SRL Dual specificity antibody fusions
US8629246B2 (en) 2007-09-26 2014-01-14 Ucb Pharma S.A. Dual specificity antibody fusions
US9828438B2 (en) 2007-09-26 2017-11-28 Ucb Pharma S.A. Dual specificity antibody fusions
EP2535349A1 (fr) 2007-09-26 2012-12-19 UCB Pharma S.A. Fusions d'anticorps à double spécificité
EP2535350A1 (fr) 2007-09-26 2012-12-19 UCB Pharma S.A. Fusions d'anticorps à double spécificité
EP2650311A2 (fr) 2007-11-27 2013-10-16 Ablynx N.V. Séquences d'acides aminés dirigées contre des cytokines hétérodimériques et/ou leurs récepteurs et polypeptides les comprenant
US9896506B2 (en) 2008-01-31 2018-02-20 Genentech, Inc. Anti-CD79B antibodies and immunoconjugates and methods of use
US10544218B2 (en) 2008-01-31 2020-01-28 Genentech, Inc. Anti-CD79B antibodies and immunoconjugates and methods of use
WO2009099719A2 (fr) * 2008-01-31 2009-08-13 Genentech, Inc. Compositions et procédés de traitement d'une tumeur d'origine hématopoïétique
WO2009099719A3 (fr) * 2008-01-31 2009-10-29 Genentech, Inc. Compositions et procédés de traitement d'une tumeur d'origine hématopoïétique
EP2657253A2 (fr) 2008-01-31 2013-10-30 Genentech, Inc. Anticorps anti-CD79b et immuno-conjugués et procédés d'utilisation
EP2947097A1 (fr) 2008-04-07 2015-11-25 Ablynx N.V. Séquences d'acides aminés dirigées contre les voies Notch et leurs utilisations
US9212226B2 (en) 2008-05-16 2015-12-15 Ablynx N.V. Amino acid sequences directed against CXCR4 and other GPCRs and compounds comprising the same
EP3424526A1 (fr) 2008-06-05 2019-01-09 Ablynx NV Domaines variables uniques d'immunoglobuline contre la protéine g d'enveloppe du virus de la rage et leurs utilisation pour le traitement et la prévention de la rage
US8815813B2 (en) 2008-07-18 2014-08-26 Trinity Therapeutics, Inc. Methods for treating immune-mediated Dengue Fever infections and antibody-dependent enhancement of Dengue Fever infections, including Dengue Hemorrhagic Fever and Dengue Shock Syndrome
US10407513B2 (en) 2008-09-26 2019-09-10 Ucb Biopharma Sprl Biological products
US8895504B2 (en) 2008-10-21 2014-11-25 Novo Nordisk A/S Amylin derivatives
US9993552B2 (en) 2008-10-29 2018-06-12 Ablynx N.V. Formulations of single domain antigen binding molecules
US10118962B2 (en) 2008-10-29 2018-11-06 Ablynx N.V. Methods for purification of single domain antigen binding molecules
US11370835B2 (en) 2008-10-29 2022-06-28 Ablynx N.V. Methods for purification of single domain antigen binding molecules
US9393304B2 (en) 2008-10-29 2016-07-19 Ablynx N.V. Formulations of single domain antigen binding molecules
WO2010054699A1 (fr) * 2008-11-17 2010-05-20 Affibody Ab Conjugués de domaine de liaison d’albumine
EP3178478A1 (fr) 2008-11-22 2017-06-14 F. Hoffmann-La Roche AG Utilisation d'anticorps anti-vegf en combinaison avec la chimiotherapie pour le traitement du cancer du sein
EP2752189A1 (fr) 2008-11-22 2014-07-09 F. Hoffmann-La Roche AG Thérapie anti-angiogenèse destinée au traitement du cancer du sein
EP3470425A2 (fr) 2008-12-19 2019-04-17 Ablynx N.V. Immunoglobulines contre des antigènes associés à la cellule tels que p2x7
WO2010111367A1 (fr) 2009-03-25 2010-09-30 Genentech, Inc. Anticorps anti-fgfr3 et procédés d'utilisation de ceux-ci
WO2010120561A1 (fr) 2009-04-01 2010-10-21 Genentech, Inc. Anticorps et immunoconjugués anti-fcrh5 et procédés d'utilisation
EP3461844A2 (fr) 2009-04-10 2019-04-03 Ablynx N.V. Séquences d'acides aminés améliorées dirigées contre l'il-6r et polypeptides les comprenant pour le traitement de maladies et de troubles liés à l'il-6r
EP3205670A1 (fr) 2009-06-05 2017-08-16 Ablynx N.V. Séquences d'acides aminés améliorées dirigées contre le virus syncytial respiratoire humain (hrsv) et polypeptides les comprenant pour la prévention et/ou le traitement d'infections du tractus respiratoire
WO2011022264A1 (fr) 2009-08-15 2011-02-24 Genentech, Inc. Thérapie anti-angiogenèse pour le traitement d’un cancer du sein précédemment traité
EP3090758A1 (fr) 2009-08-15 2016-11-09 F. Hoffmann-La Roche AG Thérapie anti-angiogenèse destinée au traitement du cancer du sein précédemment traité
WO2011031870A1 (fr) 2009-09-09 2011-03-17 Centrose, Llc Conjugués médicamenteux ciblés à visée extracellulaire
WO2011036460A1 (fr) 2009-09-25 2011-03-31 Ucb Pharma S.A. Anticorps multivalents stabilisés par un pont disulfure
WO2011050188A1 (fr) 2009-10-22 2011-04-28 Genentech, Inc. Anticorps anti-hepsine et procédés d'utilisation de ceux-ci
WO2011056983A1 (fr) 2009-11-05 2011-05-12 Genentech, Inc. Conjugués d'anticorps modifiés par cystéine, radiomarqués par le zirconium
WO2011057120A1 (fr) 2009-11-05 2011-05-12 Genentech, Inc. Procédés et composition de sécrétion de polypeptides hétérologues
WO2011064382A1 (fr) 2009-11-30 2011-06-03 Ablynx N.V. Séquences d'acides aminés améliorées dirigées contre le virus syncytial respiratoire humain (hrsv) et polypeptides comprenant celles-ci pour la prévention et/ou le traitement d'infections du tractus respiratoire
EP3778917A2 (fr) 2009-12-04 2021-02-17 F. Hoffmann-La Roche AG Anticorps multispécifiques, analogues d'anticorps, compositions et procédés
US10584181B2 (en) 2009-12-04 2020-03-10 Genentech, Inc. Methods of making and using multispecific antibody panels and antibody analog panels
WO2011071957A1 (fr) 2009-12-07 2011-06-16 Sea Lane Biotechnologies, Llc Conjugués comprenant un échafaudage de substituts d'anticorps présentant des propriétés pharmacocinétiques améliorées
WO2011073180A1 (fr) 2009-12-14 2011-06-23 Ablynx N.V. Anticorps à domaine variable unique dirigés contre ox4ql, produits de recombinaison et utilisation thérapeutique
EP3309176A1 (fr) 2009-12-14 2018-04-18 Ablynx N.V. Immunoglobulin anticorps à domaine variable unique contre ox40l, constructions et utilisation thérapeutique
WO2011083140A1 (fr) 2010-01-08 2011-07-14 Ablynx Nv Domaines variables simples d'immunoglobuline dirigés contre le cxcr4 doués d'une meilleure activité thérapeutique et produits de recombinaison les comprenant
WO2011098520A1 (fr) 2010-02-10 2011-08-18 Novartis Ag Polypeptides agonistes de liaison à dr5
EP3696194A1 (fr) 2010-02-23 2020-08-19 F. Hoffmann-La Roche AG Thérapie anti-angiogenèse destinée au traitement du cancer des ovaires
WO2011106300A2 (fr) 2010-02-23 2011-09-01 Genentech, Inc. Thérapie anti-angiogénique pour le traitement du cancer des ovaires
US9758584B2 (en) 2010-03-26 2017-09-12 Ablynx N.V. Biological materials related to CXCR7
WO2011117423A1 (fr) 2010-03-26 2011-09-29 Ablynx N.V. Domaines variables uniques de l'immunoglobuline dirigés contre cxcr7
US8937164B2 (en) 2010-03-26 2015-01-20 Ablynx N.V. Biological materials related to CXCR7
WO2011130598A1 (fr) 2010-04-15 2011-10-20 Spirogen Limited Pyrrolobenzodiazépines et conjugués de celles-ci
EP3546483A1 (fr) 2010-05-20 2019-10-02 Ablynx N.V. Matériaux biologiques associés à her3
WO2011144749A1 (fr) 2010-05-20 2011-11-24 Ablynx Nv Matériaux biologiques associés à her3
WO2011153243A2 (fr) 2010-06-02 2011-12-08 Genentech, Inc. Thérapie anti-angiogénique utilisée dans le traitement du cancer de l'estomac
US8771966B2 (en) 2010-06-03 2014-07-08 Genentech, Inc. Immuno-PET imaging of antibodies and immunoconjugates and uses therefor
WO2011153346A1 (fr) 2010-06-03 2011-12-08 Genentech, Inc. Imagerie par immuno-tep d'anticorps et d'immunoconjugués et utilisations correspondantes
WO2011156328A1 (fr) 2010-06-08 2011-12-15 Genentech, Inc. Anticorps et conjugués modifiés par la cystéine
EP2933262A1 (fr) 2010-07-09 2015-10-21 Affibody AB Polypeptides
WO2012004384A2 (fr) 2010-07-09 2012-01-12 Affibody Ab Polypeptides
US10329331B2 (en) 2010-07-09 2019-06-25 Affibody Ab Polypeptides
EP2621538B1 (fr) 2010-09-28 2015-12-16 Amylin Pharmaceuticals, LLC Polypeptides génétiquement modifiés ayant une durée d'action renforcée
WO2012042026A1 (fr) 2010-09-30 2012-04-05 Ablynx Nv Matières biologiques associées à c-met
EP3575321A1 (fr) 2010-11-08 2019-12-04 Ablynx N.V. Polypeptides se liant aux récepteurs de cxcr2
EP3578568A2 (fr) 2010-11-08 2019-12-11 Ablynx N.V. Polypeptides se liant aux récepteurs de cxcr2
WO2012062713A1 (fr) 2010-11-08 2012-05-18 Novartis Ag Polypeptides se liant aux récepteurs de chimiokines
WO2012074757A1 (fr) 2010-11-17 2012-06-07 Genentech, Inc. Conjugués d'anticorps alaninyl-maytansinol
EP3514169A1 (fr) 2010-11-26 2019-07-24 Molecular Partners AG Liaison de protéines de répétition conçues à l'albumine sérique
WO2012069654A1 (fr) 2010-11-26 2012-05-31 Molecular Partners Ag Protéines de répétition conçues se liant à l'albumine sérique
WO2012109624A2 (fr) 2011-02-11 2012-08-16 Zyngenia, Inc. Complexes plurispécifiques monovalents et multivalents et leurs utilisations
US9994639B2 (en) 2011-03-28 2018-06-12 Ablynx N.V. Biological materials related to CXCR7
WO2012130874A1 (fr) 2011-03-28 2012-10-04 Ablynx Nv Domaines variables uniques d'immunoglobulines anti-cxcr7 bispécifiques
WO2012156219A1 (fr) 2011-05-05 2012-11-22 Ablynx Nv Séquences d'acides aminés dirigées contre il-17a, il-17f et/ou il17-a/f et polypeptides comprenant ces séquences
EP3363815A1 (fr) 2011-05-05 2018-08-22 Merck Patent GmbH Séquences d'acides aminés dirigées contre il-17a, il-17f et/ou il17-a/f et polypeptides les comprenant
EP4105231A1 (fr) 2011-05-05 2022-12-21 Merck Patent GmbH Séquences d'acides aminés dirigées contre il-17a, il-17f et/ou il17-a/f et polypeptides les comprenant
WO2012155019A1 (fr) 2011-05-12 2012-11-15 Genentech, Inc. Procédé lc-ms/ms de surveillance de réactions multiples pour détecter des anticorps thérapeutiques dans des échantillons animaux à l'aide de peptides de signature d'infrastructure
WO2012163887A1 (fr) 2011-05-27 2012-12-06 Ablynx Nv Inhibition de la résorption osseuse à l'aide de peptides se liant à rankl
WO2012175740A1 (fr) 2011-06-23 2012-12-27 Ablynx Nv Domaines variables uniques d'immunoglobuline dirigés contre ige
US9487589B2 (en) 2011-06-30 2016-11-08 Genentech, Inc. Anti-c-met-antibody formulations
US9382305B2 (en) 2011-07-01 2016-07-05 Bayer Intellectual Property Gmbh Relaxin fusion polypeptides and uses thereof
WO2013004607A1 (fr) 2011-07-01 2013-01-10 Bayer Intellectual Property Gmbh Polypeptides de fusion de relaxine et leurs utilisations
WO2013007563A1 (fr) 2011-07-08 2013-01-17 Bayer Intellectual Property Gmbh Protéines de fusion libérant de la relaxine et leurs utilisations
US9365619B2 (en) 2011-08-24 2016-06-14 Otsuka Chemical Co., Ltd. IgG-binding peptide and method for detecting and purifying IgG using same
WO2013027796A1 (fr) 2011-08-24 2013-02-28 大塚化学株式会社 Peptide de liaison à l'immunoglobuline g et procédé de détection et d'épuration d'immunoglobuline g mettant en œuvre un tel peptide
WO2013043071A1 (fr) 2011-09-23 2013-03-28 Technophage, Investigação E Desenvolvimento Em Biotecnologia, Sa Domaines de liaison à l'albumine modifiés et utilisations de ceux-ci pour améliorer la pharmacocinétique
WO2013043070A2 (fr) 2011-09-23 2013-03-28 Technophage, Investigação E Desenvolvimento Em Biotecnologia, Sa Agents du facteur de nécrose tumorale alpha et utilisations de ceux-ci
EP3311837A1 (fr) 2011-09-23 2018-04-25 Ablynx NV Inhibition prolongée de la signalisation à médiation par interleukine 6
WO2013045707A2 (fr) 2011-09-30 2013-04-04 Ablynx Nv Substances biologiques liées à c-met
US11135303B2 (en) 2011-10-14 2021-10-05 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US9803004B2 (en) 2011-11-11 2017-10-31 Ucb Biopharma Sprl Albumin binding antibodies and binding fragments thereof
US10023631B2 (en) 2011-11-11 2018-07-17 Ucb Biopharma Sprl Albumin binding antibodies and binding fragments thereof
WO2013068571A1 (fr) 2011-11-11 2013-05-16 Ucb Pharma S.A. Anticorps se liant à l'albumine et leurs fragments de liaison
WO2013112467A1 (fr) 2012-01-23 2013-08-01 Trustees Of Boston University Antagonistes et agonistes de despr utilisés à titre d'agents thérapeutiques
WO2013128027A1 (fr) 2012-03-01 2013-09-06 Amgen Research (Munich) Gmbh Molécules de liaison à un polypeptide à longue durée de vie
WO2013130093A1 (fr) 2012-03-02 2013-09-06 Genentech, Inc. Biomarqueurs pour un traitement à base de composés chimiothérapeutiques anti-tubuline
JP2020033372A (ja) * 2012-03-28 2020-03-05 アフィボディ・アーベー 経口投与
JP2018052961A (ja) * 2012-03-28 2018-04-05 アフィボディ・アーベー 経口投与
JP2015512902A (ja) * 2012-03-28 2015-04-30 アフィボディ・アーベー 経口投与
WO2013143890A1 (fr) 2012-03-28 2013-10-03 Affibody Ab Administration orale
WO2013168108A2 (fr) 2012-05-09 2013-11-14 Novartis Ag Polypeptides de liaison de récepteur de chimiokine
US9884124B2 (en) 2012-05-17 2018-02-06 Extend Biosciences, Inc. Carriers for improved drug delivery
WO2013177481A1 (fr) 2012-05-25 2013-11-28 Immunogen, Inc. Benzodiazépines et leurs conjugués
US10155792B2 (en) 2012-09-25 2018-12-18 Affibody Ab Albumin binding polypeptide
US10722594B2 (en) 2012-10-12 2020-07-28 Adc Therapeutics S.A. Pyrrolobenzodiazepine-anti-CD22 antibody conjugates
WO2014057074A1 (fr) 2012-10-12 2014-04-17 Spirogen Sàrl Pyrrolobenzodiazépines et leurs conjugués
US10751346B2 (en) 2012-10-12 2020-08-25 Medimmune Limited Pyrrolobenzodiazepine—anti-PSMA antibody conjugates
US10799596B2 (en) 2012-10-12 2020-10-13 Adc Therapeutics S.A. Pyrrolobenzodiazepine-antibody conjugates
US9889207B2 (en) 2012-10-12 2018-02-13 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
EP2839860A1 (fr) 2012-10-12 2015-02-25 Spirogen Sàrl Pyrrolobenzodiazépines et ses conjugués
US10736903B2 (en) 2012-10-12 2020-08-11 Medimmune Limited Pyrrolobenzodiazepine-anti-PSMA antibody conjugates
US9919056B2 (en) 2012-10-12 2018-03-20 Adc Therapeutics S.A. Pyrrolobenzodiazepine-anti-CD22 antibody conjugates
US11779650B2 (en) 2012-10-12 2023-10-10 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US9931414B2 (en) 2012-10-12 2018-04-03 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US9931415B2 (en) 2012-10-12 2018-04-03 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US10994023B2 (en) 2012-10-12 2021-05-04 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US10695433B2 (en) 2012-10-12 2020-06-30 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US11771775B2 (en) 2012-10-12 2023-10-03 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US10335497B2 (en) 2012-10-12 2019-07-02 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US10646584B2 (en) 2012-10-12 2020-05-12 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US11701430B2 (en) 2012-10-12 2023-07-18 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US10780181B2 (en) 2012-10-12 2020-09-22 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US11690918B2 (en) 2012-10-12 2023-07-04 Medimmune Limited Pyrrolobenzodiazepine-anti-CD22 antibody conjugates
WO2014057073A1 (fr) 2012-10-12 2014-04-17 Spirogen Sàrl Pyrrolobenzodiazépines et leurs conjugués
US10011641B2 (en) 2012-10-25 2018-07-03 Affibody Ab ABD binding polypeptide
WO2014064237A1 (fr) 2012-10-25 2014-05-01 Affibody Ab Polypeptide de liaison à abd
US9745340B2 (en) 2012-10-25 2017-08-29 Affibody Ab Method for the separation of proteins containing an albumin-binding
US10364419B2 (en) 2013-01-03 2019-07-30 Covagen Ag Human serum albumin binding compounds and fusion proteins thereof
WO2014106583A1 (fr) 2013-01-03 2014-07-10 Covagen Ag Composés liant l'albumine sérique humaine et protéines de fusion correspondantes
EP2752426A1 (fr) 2013-01-03 2014-07-09 Covagen AG Composés de liaison d'albumine de sérum humain et leurs protéines de fusion
US9790475B2 (en) 2013-01-03 2017-10-17 Covagen Ag Human serum albumin binding compounds and fusion proteins thereof
WO2014115229A1 (fr) 2013-01-28 2014-07-31 独立行政法人産業技術総合研究所 Peptide liant les anticorps
US9605029B2 (en) 2013-01-28 2017-03-28 National Institute Of Advanced Industrial Science And Technology Antibody-binding peptide
WO2014140174A1 (fr) 2013-03-13 2014-09-18 Spirogen Sàrl Pyrrolobenzodiazépines et leurs conjugués
WO2014140862A2 (fr) 2013-03-13 2014-09-18 Spirogen Sarl Pyrrolobenzodiazépines et leurs conjugués
WO2014159981A2 (fr) 2013-03-13 2014-10-02 Spirogen Sarl Pyrrolobenzodiazépines et leurs conjugués
WO2014165093A2 (fr) 2013-03-13 2014-10-09 Bristol-Myers Squibb Company Domaines d'échafaudage à base de fibronectine liés à une sérum albumine ou fragment se liant à celle-ci
WO2014140358A1 (fr) 2013-03-15 2014-09-18 Amgen Research (Munich) Gmbh Molécules de liaison à chaîne simple comprenant l'abp à l'extrémité n-terminale
EP3653642A1 (fr) 2013-03-15 2020-05-20 Amgen Research (Munich) GmbH Molécules de liaison à chaîne unique comprenant une abp n-terminale
WO2015023355A1 (fr) 2013-08-12 2015-02-19 Genentech, Inc. Conjugués anticorps-médicament dimérique 1-(chlorométhyl)-2,3-dihydro-1 h-benzo [e]indole, et méthodes d'utilisation et de traitement
US10029018B2 (en) 2013-10-11 2018-07-24 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US9950078B2 (en) 2013-10-11 2018-04-24 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US10010624B2 (en) 2013-10-11 2018-07-03 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US9956299B2 (en) 2013-10-11 2018-05-01 Medimmune Limited Pyrrolobenzodiazepine—antibody conjugates
WO2015095212A1 (fr) 2013-12-16 2015-06-25 Genentech, Inc. Composés conjugués anticorps-médicament dimérique à base de 1-(chlorométhyl)-2,3-dihydro-1 h-benzo [e]indole, et méthodes d'utilisation et de traitement
WO2015095227A2 (fr) 2013-12-16 2015-06-25 Genentech, Inc. Composés peptidomimétiques et conjugués anticorps-médicament de ceux-ci
WO2015095223A2 (fr) 2013-12-16 2015-06-25 Genentech, Inc. Composés peptidomimétiques et conjugués anticorps-médicament de ceux-ci
US10167322B2 (en) 2013-12-20 2019-01-01 Affibody Ab Engineered albumin binding polypeptide
WO2015132248A3 (fr) * 2014-03-03 2016-01-14 Vrije Universiteit Brussel (Vub) Séquamères - nouvelles banques de peptides non naturels aléatoirement contraints par leurs séquences primaires
WO2015139046A1 (fr) 2014-03-14 2015-09-17 Genentech, Inc. Compositions de sécrétion de polypeptides hétérologues et procédés associés
US10240207B2 (en) 2014-03-24 2019-03-26 Genentech, Inc. Cancer treatment with c-met antagonists and correlation of the latter with HGF expression
KR102628234B1 (ko) 2014-04-30 2024-01-22 펀다시오 인스티튜트 드’인베스티가시오 바이오메티칼 드 벨리비티게 (아이디벨) 알부민-결합 모이어티를 포함하는 아데노바이러스
EP2940128A1 (fr) * 2014-04-30 2015-11-04 Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) Adénovirus comprenant une fraction de liaison à l'albumine
KR20160145825A (ko) * 2014-04-30 2016-12-20 펀다시오 인스티튜트 드’인베스티가시오 바이오메티칼 드 벨리비티게 (아이디벨) 알부민-결합 모이어티를 포함하는 아데노바이러스
WO2015166082A1 (fr) * 2014-04-30 2015-11-05 Institut D'investigació Biomèdica De Bellvitge (Idibell) Adénovirus comprenant un fragment de liaison à l'albumine
US10604549B2 (en) 2014-04-30 2020-03-31 Fundació Institut D'investigació Biomèdica De Bellvitge (Idibell) Adenovirus comprising an albumin-binding moiety
US11578104B2 (en) 2014-04-30 2023-02-14 Fundació Institut D'lnvestigació Biomedica De Bellvitge (í DIBELL) Adenovirus comprising an albumin-binding moiety
US11124573B2 (en) 2014-05-02 2021-09-21 Janssen Biotech, Inc. Compositions and methods related to engineered Fc constructs
WO2015193452A1 (fr) 2014-06-18 2015-12-23 Ablynx Nv Immunoglobulines de liaison à kv1.3
US10188746B2 (en) 2014-09-10 2019-01-29 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
WO2016037644A1 (fr) 2014-09-10 2016-03-17 Medimmune Limited Pyrrolobenzodiazépines et leurs conjugués
WO2016040825A1 (fr) 2014-09-12 2016-03-17 Genentech, Inc. Intermédiaires disulfure d'anthracycline, conjugué anticorps-médicaments et procédés
WO2016040856A2 (fr) 2014-09-12 2016-03-17 Genentech, Inc. Anticorps et conjugués modifiés génétiquement avec de la cystéine
US10420777B2 (en) 2014-09-12 2019-09-24 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
EP3235820A1 (fr) 2014-09-17 2017-10-25 Genentech, Inc. Pyrrolobenzodiazépines et conjugués à base de disulfure d'anticorps associés
US11000510B2 (en) 2014-09-23 2021-05-11 Genentech, Inc. Methods of using anti-CD79b immunoconjugates
US9789197B2 (en) 2014-10-22 2017-10-17 Extend Biosciences, Inc. RNAi vitamin D conjugates
US10420819B2 (en) 2014-10-22 2019-09-24 Extend Biosciences, Inc. Insulin vitamin D conjugates
US10406202B2 (en) 2014-10-22 2019-09-10 Extend Biosciences, Inc. Therapeutic vitamin D conjugates
US11116816B2 (en) 2014-10-22 2021-09-14 Extend Biosciences, Inc. Therapeutic vitamin d conjugates
US10702574B2 (en) 2014-10-22 2020-07-07 Extend Biosciences, Inc. Therapeutic vitamin D conjugates
US9616109B2 (en) 2014-10-22 2017-04-11 Extend Biosciences, Inc. Insulin vitamin D conjugates
US10208120B2 (en) 2014-11-05 2019-02-19 Genentech, Inc. Anti-FGFR2/3 antibodies and methods using same
US10780096B2 (en) 2014-11-25 2020-09-22 Adc Therapeutics Sa Pyrrolobenzodiazepine-antibody conjugates
WO2016090050A1 (fr) 2014-12-03 2016-06-09 Genentech, Inc. Composés d'amine quaternaire et conjugués anticorps-médicament de ceux-ci
EP3967755A1 (fr) 2014-12-19 2022-03-16 Alexion Pharmaceuticals, Inc. Méthodes de traitement d'une calcification tissulaire
WO2016100803A2 (fr) 2014-12-19 2016-06-23 Alexion Pharmaceuticals, Inc. Méthodes de traitement d'une calcification tissulaire
WO2016156570A1 (fr) 2015-04-02 2016-10-06 Ablynx N.V. Polypeptides cxcr4-cd-4 bispécifiques à activité anti-vih puissante
WO2016164308A1 (fr) 2015-04-06 2016-10-13 Subdomain, Llc Polypeptides contenant un domaine de liaison de novo et leurs utilisations
WO2016164305A1 (fr) 2015-04-06 2016-10-13 Subdomain, Llc Polypeptides contenant un domaine de liaison de novo et leurs utilisations
EP3903804A1 (fr) 2015-04-06 2021-11-03 Subdomain, LLC Polypeptides contenant un domaine de liaison de novo et leurs utilisations
US11059893B2 (en) 2015-04-15 2021-07-13 Bergenbio Asa Humanized anti-AXL antibodies
US11702473B2 (en) 2015-04-15 2023-07-18 Medimmune Limited Site-specific antibody-drug conjugates
WO2016180969A1 (fr) 2015-05-13 2016-11-17 Ablynx N.V. Polypeptides de recrutement de lymphocytes t sur la base de la réactivité du tcr alpha/bêta
EP3611192A2 (fr) 2015-05-13 2020-02-19 Ablynx N.V. Polypeptides de recrutement de lymphocytes t basés sur la réactivité tcr alpha/bêta
EP4345112A2 (fr) 2015-05-13 2024-04-03 Ablynx N.V. Polypeptides de recrutement de lymphocytes t basés sur la réactivité à cd3
WO2016180982A1 (fr) 2015-05-13 2016-11-17 Ablynx N.V. Polypeptides recrutant des lymphocytes t sur la base de la réactivité de cd3
US11208452B2 (en) 2015-06-02 2021-12-28 Novo Nordisk A/S Insulins with polar recombinant extensions
US11292825B2 (en) 2015-10-01 2022-04-05 Novo Nordisk A/S Protein conjugates
EP3932945A1 (fr) 2015-11-27 2022-01-05 Ablynx NV Polypeptides inhibant le ligand cd40l
US10392393B2 (en) 2016-01-26 2019-08-27 Medimmune Limited Pyrrolobenzodiazepines
US11517626B2 (en) 2016-02-10 2022-12-06 Medimmune Limited Pyrrolobenzodiazepine antibody conjugates
US10695439B2 (en) 2016-02-10 2020-06-30 Medimmune Limited Pyrrolobenzodiazepine conjugates
WO2017151707A1 (fr) 2016-03-01 2017-09-08 The Board Of Trustees Of The University Of Illinois Variants et protéines de fusion de l-asparaginase ayant une activité l-glutaminase réduite et une stabilité améliorée
WO2017165734A1 (fr) 2016-03-25 2017-09-28 Genentech, Inc. Dosage multiplexé pour la quantification d'anticorps totaux et de médicaments conjugués à des anticorps
EP4273551A2 (fr) 2016-03-25 2023-11-08 F. Hoffmann-La Roche AG Dosage multiplexé pour la quantification d'anticorps totaux et de médicaments conjugués à des anticorps
US10543279B2 (en) 2016-04-29 2020-01-28 Medimmune Limited Pyrrolobenzodiazepine conjugates and their use for the treatment of cancer
US11623964B2 (en) 2016-05-23 2023-04-11 Momenta Pharmaceuticals, Inc. Compositions and methods related to engineered Fc constructs
US11155640B2 (en) 2016-05-23 2021-10-26 Janssen Biotech, Inc. Compositions and methods related to engineered Fc constructs
WO2017205741A1 (fr) 2016-05-27 2017-11-30 Genentech, Inc. Procédé bioanalytique pour la caractérisation de conjugués anticorps-médicament spécifiques d'un site
EP3827835A1 (fr) 2016-06-16 2021-06-02 Inozyme Pharma, Inc. Méthodes de traitement d'une prolifération myo-intimale
WO2017218786A1 (fr) 2016-06-16 2017-12-21 Alexion Pharmaceuticals, Inc. Méthodes de traitement d'une prolifération myo-intimale
WO2018007442A1 (fr) 2016-07-06 2018-01-11 Ablynx N.V. Traitement de maladies associées à l'il-6r
WO2018029182A1 (fr) 2016-08-08 2018-02-15 Ablynx N.V. Anticorps à domaine variable unique d'il-6r pour le traitement de maladies liées à l'il-6r
US11008365B2 (en) 2016-09-01 2021-05-18 National Institute Of Advanced Industrial Science And Technology Polypeptide exhibiting affinity to antibodies forming non-native three-dimensional structure
WO2018050833A1 (fr) 2016-09-15 2018-03-22 Ablynx Nv Domaines variables uniques d'immunoglobuline dirigés contre le facteur inhibiteur de la migration des macrophages
EP3521300A4 (fr) * 2016-09-30 2019-12-25 FUJIFILM Corporation Peptide cyclique, support de chromatographie d'affinité, anticorps marqué, conjugué anticorps-médicament, et préparation pharmaceutique
CN109790202A (zh) * 2016-09-30 2019-05-21 富士胶片株式会社 环肽、亲和层析载体、标记抗体、抗体药物复合体及药物制剂
US11066446B2 (en) 2016-09-30 2021-07-20 Fujifilm Corporation Cyclic peptide, affinity chromatography support, labeled antibody, antibody drug conjugate, and pharmaceutical preparation
EP4043479A1 (fr) * 2016-09-30 2022-08-17 FUJIFILM Corporation Peptide cyclique, support de chromatographie par affinité, anticorps étiqueté, conjugué anticorps-médicament et préparation pharmaceutique
US10799595B2 (en) 2016-10-14 2020-10-13 Medimmune Limited Pyrrolobenzodiazepine conjugates
WO2018091606A1 (fr) 2016-11-16 2018-05-24 Ablynx Nv Polypeptides de recrutement de lymphocytes t capables de se lier à cd123 et tcr alpha/bêta
US11827682B2 (en) 2017-01-06 2023-11-28 Momenta Pharmaceuticals, Inc. Engineered Fc constructs
US11220531B2 (en) 2017-01-06 2022-01-11 Janssen Biotech, Inc. Engineered Fc constructs
US11160872B2 (en) 2017-02-08 2021-11-02 Adc Therapeutics Sa Pyrrolobenzodiazepine-antibody conjugates
US11612665B2 (en) 2017-02-08 2023-03-28 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US11813335B2 (en) 2017-02-08 2023-11-14 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US11471537B2 (en) 2017-04-05 2022-10-18 Novo Nordisk A/S Oligomer extended insulin-Fc conjugates
US11370801B2 (en) 2017-04-18 2022-06-28 Medimmune Limited Pyrrolobenzodiazepine conjugates
US10544223B2 (en) 2017-04-20 2020-01-28 Adc Therapeutics Sa Combination therapy with an anti-axl antibody-drug conjugate
WO2018199337A1 (fr) 2017-04-28 2018-11-01 味の素株式会社 Composé renfermant une substance ayant une affinité pour une protéine soluble, fraction clivable, et groupe réactif, ou sel de celui-ci
WO2018220235A1 (fr) 2017-06-02 2018-12-06 Merck Patent Gmbh Immunoglobulines de liaison à mmp13
EP4272822A2 (fr) 2017-06-02 2023-11-08 Merck Patent GmbH Immunoglobulines se liant à adamts
WO2018220225A1 (fr) 2017-06-02 2018-12-06 Ablynx Nv Immunoglobulines liant l'aggrécane
WO2018220236A1 (fr) 2017-06-02 2018-12-06 Merck Patent Gmbh Polypeptides se liant à adamts5, mmp13 et à l'aggrécane
WO2018220234A1 (fr) 2017-06-02 2018-12-06 Merck Patent Gmbh Immunoglobulines liant les adamts
US11938192B2 (en) 2017-06-14 2024-03-26 Medimmune Limited Dosage regimes for the administration of an anti-CD19 ADC
US11318211B2 (en) 2017-06-14 2022-05-03 Adc Therapeutics Sa Dosage regimes for the administration of an anti-CD19 ADC
WO2019014360A1 (fr) 2017-07-11 2019-01-17 Alexion Pharmaceuticals, Inc. Polypeptides se liant au composant c5 du complément ou à l'albumine sérique et protéines de fusion de ceux-ci
US11642416B2 (en) 2017-08-09 2023-05-09 Massachusetts Institute Of Technology Albumin binding peptide conjugates and methods thereof
WO2019032952A1 (fr) 2017-08-11 2019-02-14 The Board Of Trustees Of The University Of Illinois Variantes tronquées de la l-asparaginase de cochon d'inde et procédés d'utilisation
US11649250B2 (en) 2017-08-18 2023-05-16 Medimmune Limited Pyrrolobenzodiazepine conjugates
WO2019067502A1 (fr) 2017-09-27 2019-04-04 Alexion Pharmaceuticals, Inc. Méthodes d'amélioration de la fonction cardio-vasculaire et de traitement d'une maladie cardio-vasculaire à l'aide d'une ecto-nucléotide pyrophosphatase/phosphodiestérase recombinante
WO2019072868A1 (fr) 2017-10-10 2019-04-18 Numab Therapeutics AG Anticorps multispécifiques
WO2019099440A1 (fr) 2017-11-14 2019-05-23 Arcellx, Inc. Thérapies immunocellulaires multifonctionnelles
US11352324B2 (en) 2018-03-01 2022-06-07 Medimmune Limited Methods
US11524969B2 (en) 2018-04-12 2022-12-13 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof as antitumour agents
WO2019240288A1 (fr) 2018-06-14 2019-12-19 味の素株式会社 Substance ayant une affinité pour un anticorps, et composé ou sel de celui-ci possédant un groupe fonctionnel bioorthogonal
WO2020090979A1 (fr) 2018-10-31 2020-05-07 味の素株式会社 Composé comprenant une substance ayant une affinité pour un anticorps, site de clivage et groupe réactif ou sel correspondant
WO2020123275A1 (fr) 2018-12-10 2020-06-18 Genentech, Inc. Peptides de photoréticulation pour conjugaison spécifique de site à des protéines contenant fc
WO2021089609A1 (fr) 2019-11-04 2021-05-14 Numab Therapeutics AG Anticorps multispécifiques
EP3816185A1 (fr) 2019-11-04 2021-05-05 Numab Therapeutics AG Anticorps multi-spécifique contra pd-l1 et antigène associé à une tumeur
WO2021123186A1 (fr) 2019-12-20 2021-06-24 UCB Biopharma SRL Anticorps multi-spécifique présentant une spécificité de liaison pour l'il-13 et l'il-17 humaines
EP3915580A1 (fr) 2020-05-29 2021-12-01 Numab Therapeutics AG Anticorps multi-spécifique
WO2021239987A1 (fr) 2020-05-29 2021-12-02 Numab Therapeutics AG Anticorps multispécifique
WO2022004805A1 (fr) 2020-06-30 2022-01-06 株式会社ガイアバイオメディシン Procédé de stabilisation de liaison d'un anticorps sur une cellule nk et utilisation associée
EP3988568A1 (fr) 2020-10-21 2022-04-27 Numab Therapeutics AG Traitement combiné
WO2022084440A2 (fr) 2020-10-21 2022-04-28 Numab Therapeutics AG Polythérapie
WO2022098745A1 (fr) 2020-11-03 2022-05-12 Indi Molecular, Inc. Compositions, systèmes d'administration et méthodes utiles dans la thérapie antitumorale
US11766414B2 (en) 2020-11-03 2023-09-26 Indi Molecular, Inc. Compositions, delivery systems, and methods useful in tumor therapy
US11733246B2 (en) 2020-11-03 2023-08-22 Indi Molecular, Inc. Compositions, imaging, and therapeutic methods targeting folate receptor 1 (FOLR1)
WO2022098743A1 (fr) 2020-11-03 2022-05-12 Indi Molecular, Inc. Compositions, imagerie et procédés thérapeutiques ciblant le récepteur 1 de folate (folr1)
WO2022122654A1 (fr) 2020-12-07 2022-06-16 UCB Biopharma SRL Anticorps multi-spécifiques et combinaisons d'anticorps
WO2022167460A1 (fr) 2021-02-02 2022-08-11 Numab Therapeutics AG Anticorps multispécifiques ayant une spécificité pour ror1 et cd3
WO2022178255A2 (fr) 2021-02-19 2022-08-25 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anticorps à domaine unique qui neutralisent le sars-cov-2
WO2023089107A1 (fr) 2021-11-19 2023-05-25 Medizinische Hochschule Hannover Anticorps neutralisant le nouveaux sars-cov-2
EP4183800A1 (fr) 2021-11-19 2023-05-24 Medizinische Hochschule Hannover Nouveaux anticorps neutralisants du sars-cov-2
WO2024008904A2 (fr) 2022-07-08 2024-01-11 Novo Nordisk A/S Composés isvd hautement puissants capables de remplacer fviii(a)
WO2024038095A1 (fr) 2022-08-16 2024-02-22 Iome Bio Nouveaux anticorps anti-rgmb

Also Published As

Publication number Publication date
JP2007289200A (ja) 2007-11-08
AU2009201933B2 (en) 2013-01-10
CA2390691A1 (fr) 2001-06-28
US20100121039A1 (en) 2010-05-13
US20070160534A1 (en) 2007-07-12
EP2180054A1 (fr) 2010-04-28
EP1240337A2 (fr) 2002-09-18
CY1106236T1 (el) 2011-06-08
ATE422369T1 (de) 2009-02-15
US7635749B2 (en) 2009-12-22
PT1240337E (pt) 2007-01-31
US7608681B2 (en) 2009-10-27
US20040253247A1 (en) 2004-12-16
DE60041564D1 (de) 2009-03-26
JP2003518075A (ja) 2003-06-03
EP1240337B1 (fr) 2006-08-23
ES2270893T3 (es) 2007-04-16
JP2007289187A (ja) 2007-11-08
JP5004640B2 (ja) 2012-08-22
AU2006202341A1 (en) 2006-06-29
DE60030323T2 (de) 2007-10-11
AU784285B2 (en) 2006-03-02
ATE337403T1 (de) 2006-09-15
JP4949132B2 (ja) 2012-06-06
DK1240337T3 (da) 2007-01-02
DE60030323D1 (de) 2006-10-05
AU2006202341B2 (en) 2009-02-19
WO2001045746A3 (fr) 2001-10-11
AU2458701A (en) 2001-07-03
AU2009201933A1 (en) 2009-06-04
CA2390691C (fr) 2016-05-10
CA2921260A1 (fr) 2001-06-28

Similar Documents

Publication Publication Date Title
US7608681B2 (en) Methods and compositions for prolonging elimination half-times of bioactive compounds
JP2007289187A5 (fr)
US20160185874A1 (en) Serum albumin binding peptides for tumor targeting
US20070020264A1 (en) Serum albumin binding peptides for tumor targeting
US20060228364A1 (en) Serum albumin binding peptides for tumor targeting
CA2286397C (fr) Anticorps humanises et methode permettant de les produire
JP2003518075A5 (fr)
CN114828895A (zh) 制备基于艾日布林的抗体-药物缀合物的方法
CN113045659B (zh) 抗cd73人源化抗体
EP1757311B1 (fr) Méthodes et compositions pour la prolongation de la demi-période d'élimination de composés bioactifs
US20040077547A1 (en) FVIIa antagonists
WO2022136582A1 (fr) Anticorps spécifiques pour séquences structurellement désordonnées
CN115160434A (zh) 人源化单域抗体及其应用和药物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 24587/01

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2390691

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10149835

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 546685

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000988373

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000988373

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000988373

Country of ref document: EP