WO2001038595A1 - Feuille d'acier electromagnetique non orientee a anisotropie magnetique reduite dans la region des hautes frequences et excellente ouvrabilite a la presse - Google Patents

Feuille d'acier electromagnetique non orientee a anisotropie magnetique reduite dans la region des hautes frequences et excellente ouvrabilite a la presse Download PDF

Info

Publication number
WO2001038595A1
WO2001038595A1 PCT/JP2000/008220 JP0008220W WO0138595A1 WO 2001038595 A1 WO2001038595 A1 WO 2001038595A1 JP 0008220 W JP0008220 W JP 0008220W WO 0138595 A1 WO0138595 A1 WO 0138595A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron loss
steel sheet
high frequency
mass
press workability
Prior art date
Application number
PCT/JP2000/008220
Other languages
English (en)
French (fr)
Inventor
Toshiro Fujiyama
Keiji Sakai
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to EP00976408A priority Critical patent/EP1156128B1/en
Priority to KR1020017009349A priority patent/KR20010101681A/ko
Priority to DE60020217T priority patent/DE60020217T2/de
Priority to US09/889,907 priority patent/US6428632B1/en
Publication of WO2001038595A1 publication Critical patent/WO2001038595A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a non-oriented electrical steel sheet suitable for use mainly in rotating equipment such as a motor and a small power transformer.
  • the present invention aims to improve the magnetic properties by reducing the magnetic anisotropy in the high frequency range, and at the same time to reduce the hardness at the same iron loss level as that of the conventional product, thereby improving the punching property at the time of pressing. It is what we are trying to figure out. Background art
  • Japanese Patent Application Laid-Open No. 53-66816 proposes the positive addition of A1 in order to increase the specific resistance of the steel sheet and to avoid the effect of suppressing the grain growth due to the precipitation of fine A1N. Also, in Japanese Patent Application Laid-Open No. 55-73819, good high magnetic field characteristics are achieved by adding A1 and reducing the internal oxide layer on the steel sheet surface by adjusting the annealing atmosphere.
  • JP-A-54-68716 and JP-A-58-25427 A1 is added.
  • REM and Sb are combined or refined to improve the texture and reduce iron loss.
  • JP-A-61-87823 improvement of magnetic properties is achieved by adding A1 and controlling the steel sheet cooling rate during finish annealing.
  • improvement of magnetic properties is achieved by adding A1 and preventing oxynitridation by adding B, Sb, and Sn in combination.
  • improvement of magnetic properties is achieved by adding A1 and controlling the cold rolling to reduce the L, C property ratio of the steel sheet.
  • improvement in magnetic properties is achieved by adding Mn and A1 in combination.
  • JP Application Laid-Open No. 4-136138 an improvement in magnetic properties is achieved by adding A1 and making the Si extremely low, and by adding P and Sb to improve the texture.
  • An object of the present invention is to propose a non-oriented electrical steel sheet for rotating equipment having a small magnetic anisotropy in a high frequency range, which can further enhance the efficiency of a high-efficiency rotating machine.
  • Another object of the present invention is to propose a non-oriented electrical steel sheet which has improved press formability, has low magnetic anisotropy in a high frequency range, and has excellent press formability.
  • the inventors not only investigated the magnetic properties of various magnetic steel sheets in detail, but also actually manufactured rotating machines (motors) using these magnetic steel sheets, and studied the actual machine characteristics and material characteristics of these motors. The relationship with was examined in detail. As a result, the inventors have found that it is extremely important to reduce the magnetic anisotropy of the material in a higher frequency range than the commercial frequency in order to increase the motor efficiency of the actual machine.
  • the inventors also note that it is effective to limit the hardness of a steel sheet to an appropriate range according to its iron loss value in order to prevent the deterioration of magnetic properties that may be a concern during press working such as punching. I found it.
  • the present invention is based on the above findings.
  • the gist configuration of the present invention is as follows.
  • the magnetic properties measured in the rolling direction (L direction), the direction perpendicular to the rolling direction (C direction), and the direction at 45 ° to the rolling direction (D direction) using Epstein test specimens were as follows: L, C average iron loss at 1.5 T, 50 Hz W 15/5 . (L + C) [W / kg] and L, C average magnetic flux density at 5000 A / m B 5 D (L + C) [T] BsoCL + C) ⁇ 0.03-W (L + C) + 1.63 ------ (1)
  • Non-oriented electrical steel sheet with low magnetic anisotropy in the high frequency range and excellent press workability characterized by being determined according to (L + C).
  • a non-oriented electrical steel sheet having low magnetic anisotropy in a high frequency range and excellent press workability characterized by satisfying the following relationship.
  • a non-oriented electrical steel sheet having low magnetic anisotropy in a high frequency range and excellent press workability characterized by satisfying the following relationship.
  • a non-oriented electrical steel sheet having low magnetic anisotropy in a high frequency range and excellent press workability characterized by having a composition containing
  • the present invention will be described specifically.
  • the inventors first obtained various commercially available brushless DC motors, and produced molds that could be machined into shapes equivalent to the rotors and stators of these brushless DC motors. Then, the inventors punched various steel plate materials into predetermined shapes using these dies, and produced various motors.
  • Figure 1 shows the results of examining the effects of material iron loss and magnetic flux density on motor efficiency.
  • the motor efficiency is represented by ⁇ for 92% or more, ⁇ for 89 to 92%, and X for less than 89%.
  • Fig. 2 shows the obtained results.
  • the motor efficiency increases as the motor's iron loss and copper loss decrease.
  • the iron loss is influenced mainly iron loss of the material, whereas c the motor as low core loss material low iron loss, copper loss becomes higher the permeability of the others the flux density of the material is high, Since less current is required for excitation, the generated Joule loss, ie, copper loss, is reduced.
  • the material properties are usually measured under ideal sinusoidal excitation, whereas the actual machine properties are affected by the complicated shape and magnetic path of the motor, and the magnetic flux waveform is distorted. It will have high frequency components.
  • inverter control has been used for higher efficiency, and it has become possible to change the rotation speed by changing the frequency.
  • the inverter frequency not only has a high carrier frequency but also a relatively high fundamental frequency.
  • normal material evaluation mainly evaluates only L and C specimens, whereas motors use all directions of the magnetic steel sheet used (D direction, which forms 45 ° to the rolling direction).
  • the magnetic flux flows in all directions in the plane including the plate.
  • the reason why the motor efficiency was improved within the scope of the present invention described above is that the characteristics in the D direction, particularly the low magnetic field and the high frequency characteristics, play a relatively important role inside the motor. available.
  • the steel sheets (thickness: 0.35 mm) of various materials used in the above-mentioned motor fabrication were punched out, and two types of test pieces of -30 mm X 280 mm and 7.5 mm x 280 mm were sampled. Of these test pieces, four pieces of 7.5 mm x 280 band size were arranged in parallel and the magnetic measurement was performed by the Epps evening test method. In the test, punches were made so that the length direction was the rolling direction and the direction perpendicular to the rolling, respectively, and the average iron loss was determined.
  • the inventors performed the same magnetic measurement on a material having a thickness of 0.50ii as in the case of the above-mentioned 0.35mm thickness.
  • Deterioration of magnetic properties due to punching is largely due to distortion due to deformation when the punched end face is sheared.
  • the degree of this deformation is considered to be affected by the crystal grain size and texture of the material.
  • the punchability deteriorates as the hardness increases, it is considered that by optimizing the crystal grain size and the texture, the limit hardness that deteriorates the magnetic properties after the punching increases.
  • Iron loss W. Is considered to be affected by the crystal grain size and texture. It is considered that the crystal grain size and the texture are optimized to have a good punching property as the value becomes lower.
  • Iron loss W 1 5/5 limit hardness such punching property is good.
  • the dependence on is significant when the material satisfies equations (1) and (2).
  • the smaller the anisotropy of the magnetic properties the smaller the difference in punchability due to the difference in the shearing direction (that is, the difference in magnetic degradation).
  • the influence of the crystal grain size and texture on punchability becomes relatively large. Therefore, it is considered that the range of the hardness at which the punching property is good is as expressed by the formula (3) or (4).
  • C not only increases the ⁇ region and lowers the ⁇ - ⁇ transformation point, but also suppresses the growth of ⁇ particles during annealing because the ⁇ phase is formed in a film at the ⁇ grain boundaries, so C is basically small. There is a need to. In addition, even if it contains a large amount of Si and A1 phase stabilizing elements and the C phase exceeds 0.0050 mass% even when the ⁇ phase is not generated in all temperature ranges, it causes aging deterioration of iron loss characteristics. There is a risk.
  • the C content is limited to 0.0050 mass% or less.
  • S i 0.5 to 4.5 mas s% Si is a useful element that increases the specific resistance of steel and reduces iron loss, and at least 0.5 mass% is required to obtain its effect.
  • excessive addition of Si increases the hardness and deteriorates the cold rollability, so the upper limit of Si was set to 4.5 mass%.
  • A1 like Si, has the function of increasing the specific resistance of steel and reducing iron loss, so it is added in an amount of 0.2 mass% or more.
  • the upper limit of A1 was set to 2.5 mass%.
  • Mn 0.1 to 2.5 mass%
  • Mn has the effect of increasing the specific resistance of steel and reducing iron loss, and also effectively contributes to the improvement of hot rollability.
  • the Mn content is less than 0.1 mass%, the effect of the addition is poor.
  • the Mn content is too large, the cold rolling property deteriorates. Therefore, the upper limit of Mn was set to 2.5 mass%.
  • Sb not only improves the texture and improves the magnetic flux density, but also suppresses the oxynitridation of the surface layer of the steel sheet, particularly aluminum, and thus suppresses the formation of surface layer fine grains.
  • the Sb content is less than 0.005 mass%, the effect of the addition is poor.On the other hand, if the Sb content exceeds 0.12 mass%, the grain growth is inhibited and the magnetic properties are deteriorated. It was made to contain in the range of 12 mass%.
  • P is not as large as Si or A1, it has the effect of increasing the specific resistance of steel and reducing iron loss.
  • P may be added if necessary, because grain boundary segregation has the effect of improving the texture after cold rolling recrystallization and improving the magnetic flux density.
  • excessive grain boundary segregation of P inhibits grain growth and deteriorates iron loss, so the upper limit of P is set to 0.1 mass%.
  • Ni, Cu, Cr, etc. are elements that increase the specific resistance, so they may be added.However, if the content exceeds 10 mass%, the rollability deteriorates.Therefore, the content should be 10 mass% or less. Is preferred.
  • the hot rolling conditions are not specified, but the slab heating temperature is desirably 1200 ° C or less to save energy.
  • the temperature is 800 ° C or higher, it is preferable to perform the hot-rolled sheet annealing in a temperature range of 800 ° C or higher.
  • the axis of easy magnetization ie, 100>, points in the 1) direction. It has been found that it is preferable to include a certain degree of difficult axis, that is, 1 1 1>. In order to obtain the above texture, it is important to apply at least 20% reduction in the temperature range of 50 ° C or more during cold rolling.
  • the rolling temperature is less than 50 ° C or the rolling reduction is less than 20%, the generation of D ⁇ 11 1 is insufficient and good D characteristics cannot be obtained.
  • Figure 1 shows the core loss W l 5/5 on the motor efficiency. (L + C) and magnetic flux density B 5 . Graph showing the effect of (L + C),
  • Figure 4 satisfies the condition Material (thickness: 0.35 mm) of the formula (1) and (2) iron loss and hardness H Vl materials on iron loss deterioration of 5/5.
  • Fig. 5 shows the hardness HV, and the iron loss W, 5/5 , which affect the iron loss of a material (thickness: 0.50mm) that satisfies the conditions of equations (1) and (2). It is a graph which showed the influence of (L + C).
  • a steel slab having the composition shown in Table 1 was heated to 1150 ° C in a normal gas heating furnace, and then hot-rolled into a hot-rolled sheet with a thickness of 2.6 mm. Then, after annealing the hot-rolled sheet at 950 ° C for 1 minute, it was finished to 0.35mm thickness by a 4-stand tandem rolling mill. At this time, the temperature at the entrance of the fourth stand was 80 ° C, and the rolling reduction was 32%. Then, after recrystallization annealing at 950 ° C, a coating process was performed to obtain a product plate.
  • the tandem rolling mill consists of four stands, of which the temperature at the entrance to the stand is the highest and the entry temperature and rolling reduction are described.
  • Table 3 shows the measurement results for material properties and motor efficiency, and Table 4 shows the measured hardness values.
  • a non-directional electromagnetic device having a small magnetic anisotropy in a high frequency range, and thus having excellent magnetic properties especially for rotating equipment and also having excellent press workability such as punching properties.
  • a steel sheet can be obtained stably.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Brushless Motors (AREA)

Description

明 細 書 高周波域における磁気異方性が小さくかつプレス加工性に優れた 無方向性電磁鋼板 技術分野
本発明は、 主にモータなどの回転機器や小型の電源トランス等に使用して好適 な無方向性電磁鋼板に関するものである。
特に本発明は、 高周波域における磁気異方性を低減して磁気特性の改善を図る と同時に、 従来製品に対し同一鉄損レベルで硬度を下げて、 プレス時における打 抜性の有利な改善を図ろうとするものである。 背景技術
近年、 省エネルギー化の要請が強化されるに伴って、 電気機器類の高効率化指 向が高まってきた。 鋼板メーカーは上記の要請に応えるべく、 以下に述べるよう な様々な手段によって電気機器類用電磁鋼板の鉄損特性の改善に努めてきた。 電磁鋼板に対する S iの添加は、 鋼板の比抵抗を高めることによって鉄損を低減 させる最も有効な手段であり、 この S i添加による鉄損低減技術は、 電磁鋼板の分 野において広く用いられている。 また、 添加元素としては、 A 1も S iと同様の効果 を有することが知られる。
例えば特開昭 53— 66816 号公報では、 鋼板の比抵抗を高め、 かつ微細な A 1 Nの 析出による粒成長抑制作用を避けるために、 A 1の積極添加が提案されている。 また、 特開昭 55— 73819 号公報では、 A 1を添加し、 かつ焼鈍雰囲気調整により 鋼板表面の内部酸化層を低減することによって、 良好な高磁場特性を達成してい る。
さらに、 特開昭 54— 68716 号公報および特開昭 58— 25427 号公報では、 A 1を添 加すると共に、 REM と Sbを複合添加したりあるいは高純化したり して、 集合組織 を改善することにより鉄損を低減している。
その他、 特開昭 61— 87823 号公報では、 A1を添加し、 仕上げ焼鈍時の鋼板冷却 速度を制御することによって磁気特性の改善を達成している。 特開平 3 - 274247 号公報では、 A1を添加すると共に、 B, Sb, Snの複合添加により酸窒化を防止す ることによって磁気特性の改善を達成している。 特開平 3— 294422号公報では、 A1を添加し、 冷間圧延を制御して鋼板の L , C特性比を低減することによって磁 気特性の改善を達成している。 特開平 4 一 63252 号公報では、 Mnと A1を複合添加 することによって磁気特性の改善を達成している。 特開平 4— 136138号公報では、 A1を添加すると共に極低 S iとし、 かつ P , Sbの添加により集合組織を改善するこ とによって磁気特性の改善を達成している。
以上述べた技術はいずれも、 電磁鋼板自体の特性を改善することによって、 か ような電磁鋼板を使用する電気機器の効率向上につなげるものであった。
一方、 最近では、 半導体の性能向上、 価格の低下と共に、 半導体の周辺技術の 飛躍的な向上によって、 小型回転機器の制御技術が急速に進歩し、 インバーター による回転制御が行われるようになった。 また、 永久磁石素材の進歩によって、 D Cブラシレスモ一夕のような高効率回転機の製造が可能となった。
しかしながら、 小型回転機器の制御技術の進歩や永久磁石素材の進歩に伴って、 モータの駆動条件は複雑化し、 高回転域のみならず低回転域においても励磁条件 は歪などによる高周波成分を多く含むようになつてきた。 しかも、 高周波成分を 多く含むようになったことが原因で、 上述したような従来材料を用いたモー夕鉄 心においてはこれ以上の鉄損低減が困難となり、 モータの効率改善は頭打ちとな つてきた。
加えて、 低鉄損化のために、 S iや A1等の比抵抗元素の含有量を増加すると、 鋼 板の硬度が上昇し、 モータや変圧器のプレス加工時に金型寿命の低下を招いたり、 打ち抜き不良が増加するという問題も発生した。 発明の開示
本発明は、 高効率回転機の効率を一層高めることが可能な、 高周波域における 磁気異方性が小さい回転機器用無方向性電磁鋼板を提案することを目的とする。 また、 本発明は、 プレス加工性も併せて改善した、 高周波域における磁気異方 性が小さくかつプレス加工性に優れた無方向性電磁鋼板を提案することを目的と する。
さて、 発明者らは、 種々の電磁鋼板の磁気特性を詳細に調査するだけでなく、 これらの電磁鋼板を用いて実際に回転機 (モータ) を作製し、 これらモータの実 機特性と素材特性との関係について詳細に検討した。 その結果、 発明者らは、 実 機のモータ効率を高めるためには、 商用周波数よりも高周波の領域における素材 の磁気異方性を小さくすることが極めて重要であることの知見を得た。
また、 発明者らは、 打ち抜き等のプレス加工時に懸念される磁気特性の劣化を 防止するには、 鋼板の硬度をその鉄損値に応じて適正範囲に制限することが有効 であることも併せて見出した。
本発明は、 上記の知見に立脚するものである。
すなわち、 本発明の要旨構成は次のとおりである。
1. C : 0.0050mass%以下、
Si : 0.5 〜4.5 mass9¾、
Mn: 0.1 〜2.5 mass%および
A1 : 0.2 〜1, 5 mass%
を含有し、 かつ
S : 0.01mass%以下
に抑制した組成になり、 ェプスタイン試験片を用いた圧延方向 (L方向) 、 圧延 直角方向 (C方向) および圧延方向に対して 45° をなす方向 (D方向) の磁気特 性測定値について、 1.5 T、 50Hzにおける L, C平均鉄損 W15/5。(L+C) [W/kg]と 5000 A/mでの L, C平均磁束密度 B 5 D (L+C) [T] との間に、 次式(U BsoCL+C) ≥0.03 - W (L+C) + 1.63 ——― (1)
の関係が成立し、 かつ 1.0T、 400Hz における D鉄損 W1()/4。。(D) [W/kg] の L, じ平均鉄損 ^/^ し+ ^/!^] に対する比が、 次式(2)
W, 0/4 o o(D) /W1 0/4 o o(L+C) ≤ 1.2 ― (2)
の範囲を満足し、 さらに鋼板の硬度を板厚と W15/5。(L+C)に応じて定めることを 特徴とする高周波域における磁気異方性が小さくかつプレス加工性に優れた無方 向性電磁鋼板。
2. 上記 1において、 鋼板の硬度を板厚と W15/5。(L+C)に応じて定めることを特 徴とする高周波域における磁気異方性が小さくかつプレス加工性に優れた無方向 性電磁鋼板。
3. 上記 2において、 鋼板の硬度: Hv, (JIS Ζ 2244、 試験荷重: 9.807 Ν) が- 板厚: 0.35隱 ±0.02睡の時、 鉄損値: W15/5。( C)≤5.0 W/kgの範囲において、 次式(3)
Ην^-83.3 - W (L+C) +380 ― (3)
の関係を満足することを特徴とする高周波域における磁気異方性が小さくかつプ レス加工性に優れた無方向性電磁鋼板。
4. 上記 2において、 鋼板の硬度: Hv, (JIS Z 2244、 試験荷重: 9.807 N) が- 板厚: 0.50mm ± 0.02mmの時、 鉄損値: W! 5/5。(L+C)≤ 5.0 W/kgの範囲において、 次式(4)
Hv,≤-63.6 - W (L+C) +360 ― (4)
の関係を満足することを特徴とする高周波域における磁気異方性が小さくかつプ レス加工性に優れた無方向性電磁鋼板。
5. 上記 1〜 4のいずれかにおいて、 鋼成分が、 さらに
Sb: 0.005 〜0.12mass%
を含有する組成になることを特徴とする高周波域における磁気異方性が小さくか つプレス加工性に優れた無方向性電磁鋼板。 以下、 本発明を具体的に説明する。
さて、 発明者らは先ず、 市販の種々の D Cブラシレスモータを入手し、 これら D Cブラシレスモータのロータおよびステ一タと同等の形状に加工できる金型を 作製した。 そして、 発明者らは、 これらの金型を用いて、 種々の鋼板素材を所定 の形状に打ち抜き、 種々のモータを作製した。
なお、 素材特性の評価に際しては、 従来の圧延方向、 圧延直角方向のエブスタ イン試験片 (各々 L片, C片という) だけでなく、 圧延方向に対して 45° をなす 方向のェプスタイン試験片 (同 D片) についても磁気測定を行った。 また、 商用 周波数だけでなく、 50 kHzまでの高周波域における磁気測定も行った。 そして、 発明者らは、 これらの測定結果を詳細に解析検討した。
図 1に、 モータ効率に及ぼす素材の鉄損と磁束密度の影響について調べた結果 を示す。 なお、 モータ効率は、 92%以上を〇、 89〜92%を△、 89%未満を Xで表 すものとする。
同図に示したとおり、 素材の 1. 5 T、 50Hzにおける L , C平均鉄損 W 1 5 / 5。(L+ C) [W/kg]と 5000Α/Π1での L , C平均磁束密度 B 5。(L+C) [ T ] との間に、 次式(1)
B s o (L+C) ≥0. 03 - W (L+C) + 1. 63 --- (1) の関係が成立する場合に、 モータ効率が 92%以上の優れた特性が得られることが 判明した。
ただし、 上掲式の条件を満足する場合であっても、 必ずしも全てが 92%以上の 高効率とはならなかった。
そこで、 発明者らは、 この原因を明らかにするために、 さらに高周波域特性、 角度別特性および歪み波解析などについて詳細な検討を行った。
得られた結果を図 2に示す。
なお、 上記の実験において、 素材は全て上掲式(1) を満足するものを用いた。 ここで、 ,。 。。(L+C) [W/kg] ぉょび ,。^。。^) ^/!^] はそれぞれ、 素材の圧 延方向 (L方向) とその直角方向 (C方向) との平均および圧延方向に対して 45ε の方向 (D方向) の、 1. 0 T, 400 Hzにおける鉄損値である。
同図から明らかなように、 これらの比が、 次式(2)
W 1 0 / 4 o o (D) / W , o / 4 o o (L+C) ≤ 1. 2 ― (2) の範囲を満足する場合にのみ、 良好なモータ効率が安定して得られることが判明 した。
上述したように、 本発明に従い上掲式(1), (2)の条件を満足する素材を使用し た場合においてのみ、 良好なモ一夕効率が得られる理由は、 必ずしも明らかでは ないが、 以下のように推察できる。
つまり、 モータ効率は、 モ一夕の鉄損および銅損が小さいものほど高くなる。 ここに、 鉄損は主に素材の鉄損に影響され、 低鉄損材ほど低鉄損のモータとなる c 一方、 銅損は、 素材の磁束密度が高いものものほど透磁率が高くなり、 励磁に要 する電流が少なくて済むため、 発生するジュール損すなわち銅損が低減される。 しかしながら、 素材特性は、 通常、 理想的な正弦波励磁下で測定された特性で あるのに対して、 実機特性は、 モータの複雑な形状や磁路の影響を受けるため、 磁束波形が歪み、 高周波成分を持つことになる。 また、 最近では、 高効率化のた めにィンバーター制御が用いられ、 周波数を変えることによって回転数が変える ことが可能になってきた。 このインバーター周波数は、 キャ リア周波数が高周波 であるだけでなく、 基本周波数も比較的高周波数が用いられる。
このように、 実際のモータ効率には、 通常の素材評価では考慮されていない磁 気特性の高周波成分が影響してくる。
また、 通常の素材評価は、 L, C試験片のみの評価が主体であるのに対して、 モータでは、 使用される電磁鋼板のすべての方向 (圧延方向に対して 45° をなす D方向を含めた板面内すベての方向) に磁束が流れる。
従って、 上記した本発明の範囲でモータ効率が改善されたのは、 モータ内部で は、 D方向の特性、 特に低磁場、 高周波特性が相対的に重要な役割を果たしてい ることによるものと者えられる。 次に、 発明者らは、 打ち抜きが磁気特性に与える影響について調査した。
前述したモータ作製に用いた種々の素材の鋼板 (板厚: 0.35mm) を打ち抜いて- 30mm X 280 薩および 7.5mmx 280 mmの 2種類の試験片を採取した。 これらの試験 片のうち、 7.5mmx 280 匪サイズについては 4枚を並列に並べェプス夕イン試験 法により磁気測定を行った。 試験では、 長さ方向がそれぞれ圧延方向および圧延 直角方向となるように打ち抜いたものを用い、 それらの平均鉄損を求めた。
用いた素材のうち、 式(1) および(2) の条件を満たさない素材について、 30mm 幅の試験片に対する 7.5隱幅の試験片の鉄損の劣化傾向について調べた結果を、 素材の硬度 Ην,と鉄損 W15/5。(L+C)との関係で図 3に示す。 ここで、 横軸となる 鉄損 W15/5。(L+C)の値は 30mnix 280mm サイズの素材の測定結果を用いた。 また、 鉄損劣化は、 8%以下を〇、 8〜10%を 、 10%以上を Xで表すものとした。 同図より、 鉄損の劣化が 10%以上となる場合は、 硬度の上昇に伴って多くなる という一応の傾向は認められたものの、 鉄損 5/5。(L+C)に対しては特段の傾向 は認められなかった。
ところが、 式(1) および(2) の条件を満たす素材について、 同様な調査を行つ たところ、 図 4に示すように、 鉄損 W15/5。(L+C)が低くなるについて 7.5iMi幅の 鉄損が 10%以上劣化する限界の素材硬度が高くなることが判明した。
同図より、 次式(3)
Hv,≤-83.3 - W (L+C)+380 ― (3)
を満足する場合には、 打ち抜きによる鉄損劣化が軽減できることが明らかになつ た。
さらに、 発明者らは、 板厚: 0.50i iの素材について、 上記した 0.35mm厚の場合 と同様な磁気測定を行った。
得られた結果を、 図 5に示すが、 同図に示したとおり、 次式(4)
Hv,≤-63.6 - W (L+C)+360 ― (4)
を満足する場合には、 打ち抜きによる鉄損劣化が軽減できることが明らかになつ た。
この理由については必ずしも明らかではないが、 発明者らは次のように考えて いる。
打ち抜きによつて磁気特性が劣化するのは、 打ち抜き端面が剪断される際の変 形による歪みの影響が大きい。 この変形の度合は、 素材の結晶粒径や集合組織に 影響を受けると考えられる。 一般に、 硬度が上がるにつれて打抜性は悪くなるが- 結晶粒径や集合組織を適正化することにより、 打ち抜き後の磁気特性を劣化させ る限界の硬度が高くなると考えられる。 鉄損 W 。 は、 結晶粒径や集合組織に 影響されると考えられるが、 鉄損 W 。 が低くなるにつれて、 結晶粒径や集合 組織が打拔性に良好な状態に適正化されているものと考えられる。
このような打抜性が良好である限界硬度の鉄損 W 1 5 / 5。 に対する依存性は、 素 材が式(1) および(2) を満たす場合に顕著になる。 つまり磁気特性の異方性が小 さくなることより、 剪断された方向の差による打抜性の差 (すなわち磁性劣化の 差) が小さくなる。 その結果、 相対的に結晶粒径や集合組織が打抜性に与える影 響が大きくなる。 従って、 打抜性が良好な硬度の範囲が式(3) あるいは式(4) で 表されるようになつたものと考えられる。
次に、 本発明において、 素材の成分組成を前記の範囲に限定した理由について 説明する。
C : 0. 0050mas s %以下
Cは、 ァ域を拡大し α —ァ変態点を低下させるだけでなく、 焼鈍中にァ相が α 粒界にフィルム状に生成し α粒の成長を抑制するため、 Cは基本的に少なくする 必要がある。 さらに、 S iや A 1のひ相安定化元素を多く含有し、 全温度域でァ相が 生成しない場合でも C含有量が 0. 0050mass%を超えると鉄損特性の時効劣化を引 き起こすおそれがある。
従って、 本発明では、 C含有量は 0. 0050mas s%以下に限定した。
S i : 0. 5 ~ 4. 5 mas s% S iは、 鋼の比抵抗を高め鉄損を低下させる有用元素であり、 その効果を得るた めには最低 0. 5mass%が必要である。 しかしながら、 S iの過度の添加は硬度を上 昇させ冷間圧延性を劣化させるので、 S iの上限は 4. 5 mass%とした。
A1 : 0. 2 〜2. 5 mass%
A 1は、 S iと同様、 鋼の比抵抗を高め鉄損を低下させる働きがあるので、 0. 2 ma ss%以上添加する。 しかしながら、 A1含有量が多い場合には連続錡造でのモール ドとの潤滑性が低下し銹造が困難となるので、 A 1の上限は 2. 5 mas s%とした。 Mn: 0. 1 〜2. 5 mass%
Mnは、 S iや A1ほどではないが、 鋼の比抵抗を高め、 鉄損を低下させる作用があ り、 また熱間圧延性の改善にも有効に寄与する。 しかしながら、 Mn含有量が 0. 1 mass%に満たないとその添加効果に乏しく、 一方 Mn含有量があまり多くなると冷 聞圧延性が劣化するので、 Mnの上限は 2. 5 mass%とした。
S : 0. 01mass%以下
Sは、 析出物、 介在物を形成し、 粒成長性を阻害するので、 Sの混入は極力低 減する必要があるが、 S混入量が 0. 0 lmas s%以下であれば許容できる。
以上、 必須成分および抑制成分について説明したが、 本発明では、 その他にも 必要に応じて以下の元素を適宜添加することができる。
Sb: 0. 005 〜0. 12mass%
Sbは、 集合組織を改善して磁束密度を向上させるだけでなく、 鋼板表層の特に アルミの酸窒化を抑制し、 ひいては表層細粒の生成を抑制する。 このように、 表 層細粒の生成を抑制することにより、 表面硬度の上昇を抑えて、 打ち抜き加工性 を向上させる作用がある。 しかしながら、 Sb含有量が 0. 005 mass%に満たないと その添加効果に乏しく、 一方 0. 12mass%を超えると粒成長性が阻害され磁気特性 の劣化するので、 Sbは 0. 005〜0. 12mass%の範囲で含有させるものとした。
P : 0. 1 mass%以下
Pも、 S iや A 1ほどではないが、 鋼の比抵抗を高め、 鉄損を低下させる効果があ り、 また粒界偏析により冷延再結晶後の集合組織を改善して磁束密度を向上させ る効果があるので、 Pは必要に応じて添加してもよい。 しかしながら、 Pの過度 の粒界偏析は粒成長性を阻害し鉄損を劣化させるので、 Pの上限は 0. lmas s%と する。
その他、 N i , Cuおよび Cr等も比抵抗を高める元素であるので、 添加してもよい が、 いずれも 10mas s%を超えると圧延性が劣化するので、 10mas s %以下で添加す ることが好ましい。
次に、 本発明の好適製造条件について説明する。
熱延条件は特に規定しないが、 省エネルギーのため、 スラブ加熱温度は 1200°C 以下とすることが望ましい。
熱延板焼鈍は、 800 °C以上でないと磁束密度を向上させることが難しいので、 800 °C以上の温度域で行うことが好ましい。
ついで、 1回または中間焼鈍を含む 2回の圧延を施すが、 この冷間圧延におい て、 集合組織を適正とするためには、 50°C以上の温度域で少なく とも 20%以上の 圧下を施すことが好ましい。
つまり、 比較的低磁場、 高周波域での D方向の鉄損を良くするには、 磁化容易 軸であるく 1 0 0 >が1)方向を向くのが理想的であるが、 それに加えて磁化困難 軸であるく 1 1 1 〉をある程度含んでいることが好ましいことが究明された。 そして、 上記のような集合組織とするには、 冷間圧延の際、 50°C以上の温度域 で少なく とも 20%以上の圧下を施すことが重要なのである。
この理由は明確ではないが、 磁区構造に起因するものと推定している。
ここに、 圧延温度が 50°C未満であったり、 圧下率が 20%未満であったりすると D〃く 1 1 1 >の生成が不十分であり良好な D特性が得られない。
なお、 この圧延は、 ゼンジマ一圧延でも達成可能であるが、 生産効率の観点か らは夕ンデム圧延の方が好ましい。
仕上げ焼鈍については、 その温度が 850°Cに満たないと粒成長が不十分で良好 なし, C , D鉄損が得られないので、 850 °C以上とすることが好ましい。 図面の簡単な説明
図 1は、 モータ効率に及ぼす素材の鉄損 Wl 5/5。(L+C)と磁束密度 B 5。(L+C) の 影響を示したグラフ、
図 2は、 モータ効率に及ぼす素材の D鉄損 W 1 0/4 Q。(D) と L, C平均鉄損 W I 0 / 400 (L + C) の影響を示したグラフ、
図 3は、 式(1) および(2) の条件を満たさない素材 (板厚: 0.35mm) の鉄損劣 化に及ぼす素材の硬度 H V ,と鉄損 W , 5 / 5。(L+C)の影響を示したグラフ、
図 4は、 式(1) および(2) の条件を満たす素材 (板厚: 0.35mm) の鉄損劣化に 及ぼす素材の硬度 HVlと鉄損 5/5。(L+C)の影響を示したグラフ、
図 5は、 式(1) および(2) の条件を満たす素材 (板厚: 0.50mm) の鉄損劣化に 及ぼす素材の硬度 H V ,と鉄損 W , 5/5。(L+C)の影響を示したグラフである。 発明を実施するための最良の形態
実施例 1
表 1に示す成分組成になる鋼スラブを、 通常のガス加熱炉により 1150°Cに加熱 したのち、 熱間圧延により 2.6 關厚の熱延板とした。 ついで 950°Cで 1分の熱延 板焼鈍後、 4スタンドのタンデム圧延機により 0.35mm厚に仕上げた。 この時、 第 4番目のスタンドの入側の温度は 80°Cで、 圧下率は 32%とした。 ついで 950°Cで 再結晶焼鈍を施したのち、 コ一ティング処理を施して製品板とした。
得られた製品板から、 素材評価のため L , C , D方向のェプスタイン試験片を 採取し、 磁気特性を測定した。 また、 300Wの D Cブラシレスモータを試作してそ のモータ効率を測定した。 さらに、 各製品板の硬度: Hv, (JIS Ζ 2244、 試験荷 重: 9· 807 Ν ) についても測定した。
かく して得られた結果を整理して表 2に示す。 —鋼。 C Si Mn Al P S Sb Cu Ni Cr Ti 0 N 備 考 言 3号 (ppm) (mass%) (mass%) (mass%) (mass%) (ppm) (mass%) (mass%) (mass%) (mass%) (ppm) (ppm) (ppm)
A 32 2.1 0.2 0.5 0.02 25 0.05 0.01 0.02 0.01 10 15 22 発明例
B 25 1.3 0.5 1.5 0.02 35 tr 0.01 0.01 0.01 12 25 25 〃
C 21 1.5 0.5 1.2 0.02 15 tr 0.02 0.05 0.01 14 16 14 〃
D 18 1.6 1.2 0.6 0.05 20 tr 0.05 0.01 0.02 8 14 15 〃
E 35 0.9 1.8 1.0 0.05 14 tr 0.08 0.02 0.01 5 13 18 〃
F 8 2.0 0.8 1.2 0.06 10 tr 0.10 0.01 0.03 15 14 19
G 16 2.9 0.5 0.8 0.07 7 tr 0.01 0.01 0.01 14 15 25 〃
H 21 2.8 0.5 0.3 0.02 2 0.02 0.01 0.02 0.01 21 19 24
I 22 0.9 0.4 0.7 0.05 15 0.03 0.01 0.01 0.01 30 21 15 〃
J 12 0.4 1.5 0.1 0.02 10 tr 0.01 0.01 0.01 18 18 18 比較例
表 2
Figure imgf000015_0001
表 2から明らかなように、 本発明に従えば、 高周波域における磁気異方性が小 さい素材が得られる。 その結果、 良好なモータ特性が得られている。 また、 発明 例はいずれも適正な硬度を有していてプレス加工性にも優れている。
実施例 1
表 1の鋼記号 A , Gの素材を用いて製品板を製造するに当たり、 タンデム圧延 条件を種々変化させて圧延を行った。 ついで、 これらを 880°Cで再結晶焼鈍後、 コーティング処理を施して得た製品板から、 素材評価のため L , C, D方向のェ ブスタイン試験片を採取して特性を測定した。 また、 300Wの D Cブラシレスモ一 夕を試作してそのモータ効率を測定した。
なお、 タンデム圧延機は 4スタンドよりなり、 このうちスタンド入側の温度が 一番高いものについて、 入側温度と圧下率を記載した。
さらに、 各製品板の硬度: H v , ( J I S Ζ 2244、 試験荷重: 9. 807 Ν ) について も測定した。
素材特性およびモータ効率についての測定結果を表 3に、 また硬度の測定値を 表 4にそれぞれ示す。
表 3 鋼 圧延温度 圧下率 0.03xW /5o(L+C) B50(L+C) W,o/4oo(L+C) W(D)/W(L+C) モータ効率 備 考 きコ 、し 0 /レ„、
\/o) 卞 1.0 i/ g;
A ο onυ on 2.34 11.7 /ΠUΠU 1. 1 1 i0y.9 L 23.5 し QQ 7
00. / o b ^
〃 l in 2.20 1 i. 1· iq 5 24.6 QQ Q
〃 60 25 2.34 1.700 1.742 18.5 19.5 1.05 94.1 発明例
〃 83 33 2.09 1.693 1.749 18.4 18.4 1.00 94.8 〃
〃 154 28 2.11 1.693 1.761 17.5 19.0 1.09 94.9 〃
〃 256 25 2.25 1.698 1.755 19.1 19.5 1.02 94.8 〃
G 81 35 2.01 1.690 1.723 15.2 16.5 1.09 93.3 〃
〃 165 21 1.95 1.689 1.724 16.2 16.5 1.02 93.2 〃
〃 238 24 1.87 1.686 1.731 14.9 15.3 1.03 93.7 〃
表 4
Figure imgf000018_0001
表 3 , 4から明らかなように、 本発明に従う鋼板はいずれも、 高周波域におけ る磁気異方性が小さく、 良好なモータ特性が得られているだけでなく、 適正な硬 度を有していてプレス加工性にも優れている。
産業上の利用可能性
かく して、 本発明によれば、 高周波域における磁気異方性が小さく、 従って特 に回転機器用としての磁気特性に優れ、 しかも打抜性等のプレス加工性にも優れ た無方向性電磁鋼板を安定して得ることができる。

Claims

請 求 の 範 囲
1 . C : 0.0050mass%以下、
Si : 0.5 ~4.5 mass%、
Mn : 0.1 〜1.5 mass%および
Al : 0.2 〜2.5 mass%
を含有し、 かつ
S : 0.01mass%以下
に抑制した組成になり、 ェプスタイン試験片を用いた圧延方向 (L方向) 、 圧 延直角方向 (C方向) および圧延方向に対して 45° をなす方向 (D方向) の磁 気特性測定値について、 1.5 T、 50Hzにおける L, C平均鉄損 W15/5。(L+C) [W /kg]と 5000 A/mでの L, C平均磁束密度 B 5。(L+C) [T] との間に、 次式(1)
B (L+C) ≥0.03 - W: (L+C) + 1.63 ― (1) の関係が成立し、 かつ 1.0T、 400Hz にぉける D鉄損Wl。/4。。(D) [W/kg] のし, C平均鉄損 W1 ()/4。。( C) [W/kg] に対する比が、 次式(2)
W, (D) /W, (L + C) ≤ 1.2 --- (2) の範囲を満足することを特徴とする高周波域における磁気異方性が小さくかつ プレス加工性に優れた無方向性電磁鋼板。
2. 請求項 1において、 鋼板の硬度を板厚と w15/5。 α+c)に応じて定めることを 特徴とする高周波域における磁気異方性が小さくかつプレス加工性に優れた無 方向性電磁鋼板。
3. 請求項 2において、 鋼板の硬度: Hv, (JIS Ζ 2244、 試験荷重: 9.807 Ν) が、 板厚: 0.35睡 ±0.02匪の時、 鉄損値: W15/5。(L+C)≤5.0 W/kgの範囲にお いて、 次式(3) Hv,≤-83.3 - Wi5 (L+C) +380 -— (3) の関係を満足することを特徴とする高周波域における磁気異方性が小さくかつ プレス加工性に優れた無方向性電磁鋼板。
4. 請求項 2において、 鋼板の硬度: Hv, (JIS Ζ 2244、 試験荷重: 9.807 Ν) が、 板厚: 0.50隱 ±0.02匪の時、 鉄損値: W15/5。( C)≤5.0 W/kgの範囲にお いて、 次式(4)
Hv,≤-63.6 - W15/50 (L+C) +360 --- (4)
の関係を満足することを特徴とする高周波域における磁気異方性が小さくかつ プレス加工性に優れた無方向性電磁鋼板。
5. 請求項 1〜 4のいずれかにおいて、 鋼成分が、 さらに
Sb: 0.005 ~0.12mass%
を含有する組成になることを特徴とする高周波域における磁気異方性が小さく かつプレス加工性に優れた無方向性電磁鋼板。
PCT/JP2000/008220 1999-11-26 2000-11-21 Feuille d'acier electromagnetique non orientee a anisotropie magnetique reduite dans la region des hautes frequences et excellente ouvrabilite a la presse WO2001038595A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP00976408A EP1156128B1 (en) 1999-11-26 2000-11-21 Non-oriented electromagnetic steel sheet having reduced magnetic anisotropy in high frequency region and excellent press workability
KR1020017009349A KR20010101681A (ko) 1999-11-26 2000-11-21 고주파 영역에서 작은 자기 이방성 및 우수한 프레스가공성을 갖는 무방향성 전자기 강판
DE60020217T DE60020217T2 (de) 1999-11-26 2000-11-21 Nicht-orientiertes magnetisches stahlblech mit reduzierter magnetischer anisotropie in hochfrequenzbereichen und hervorragender pressbearbeitbarkeit
US09/889,907 US6428632B1 (en) 1999-11-26 2000-11-21 Non-oriented electromagnetic steel sheet having reduced magnetic anisotropy in high frequency region and excellent press workability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33559799A JP4507316B2 (ja) 1999-11-26 1999-11-26 Dcブラシレスモーター
JP11/335597 1999-11-26

Publications (1)

Publication Number Publication Date
WO2001038595A1 true WO2001038595A1 (fr) 2001-05-31

Family

ID=18290373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008220 WO2001038595A1 (fr) 1999-11-26 2000-11-21 Feuille d'acier electromagnetique non orientee a anisotropie magnetique reduite dans la region des hautes frequences et excellente ouvrabilite a la presse

Country Status (7)

Country Link
US (1) US6428632B1 (ja)
EP (1) EP1156128B1 (ja)
JP (1) JP4507316B2 (ja)
KR (1) KR20010101681A (ja)
CN (1) CN1129677C (ja)
DE (1) DE60020217T2 (ja)
WO (1) WO2001038595A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3835227B2 (ja) * 2001-09-21 2006-10-18 住友金属工業株式会社 無方向性電磁鋼板とその製造方法
JP2012036459A (ja) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
CN102373367A (zh) * 2010-08-26 2012-03-14 宝山钢铁股份有限公司 一种用于快循环同步加速器的冷轧电磁钢板及其制造方法
CN103305748A (zh) 2012-03-15 2013-09-18 宝山钢铁股份有限公司 一种无取向电工钢板及其制造方法
US11047018B2 (en) 2016-07-29 2021-06-29 Salzgitter Flachstahl Gmbh Steel strip for producing a non-grain-oriented electrical steel, and method for producing such a steel strip
KR101892231B1 (ko) * 2016-12-19 2018-08-27 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR102106409B1 (ko) * 2018-07-18 2020-05-04 주식회사 포스코 무방향성 전기강판 및 그 제조방법
US20220396848A1 (en) * 2019-11-12 2022-12-15 Lg Electronics Inc. Non-oriented electrical steel sheet and manufacturing method therefore

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718335A (ja) * 1993-07-07 1995-01-20 Sumitomo Metal Ind Ltd 優れた磁気特性を有する電磁鋼板の製造方法
JPH08246108A (ja) * 1995-03-03 1996-09-24 Nippon Steel Corp 異方性の少ない無方向性電磁鋼板およびその製造方法
JPH09157804A (ja) * 1995-12-11 1997-06-17 Nkk Corp 低磁場での磁気特性に優れ、磁気異方性が小さい無方向性電磁鋼板およびその製造方法
EP0866144A1 (en) * 1997-03-18 1998-09-23 Nkk Corporation Non-oriented electromagnetic steel sheet and method for manufacturing the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046602A (en) * 1976-04-15 1977-09-06 United States Steel Corporation Process for producing nonoriented silicon sheet steel having excellent magnetic properties in the rolling direction
PL202451A1 (pl) 1976-11-26 1978-06-19 Kawasaki Steel Co Sposob wytwarzania arkuszy ze stali krzemowej nie orientowanej o wysokiej indukcji magnetycznej i o niskich stratach w ferromagnetyku
JPS5468716A (en) 1977-11-11 1979-06-02 Kawasaki Steel Co Cold rolling unidirectional electromagnetic steel plate with high magnetic flux density
JPS5573819A (en) 1978-11-22 1980-06-03 Nippon Steel Corp Production of cold rolled non-directional electromagnetic steel plate of superior high magnetic field iron loss
JPS598049B2 (ja) * 1981-08-05 1984-02-22 新日本製鐵株式会社 磁気特性の優れた無方向性電磁鋼板の製造法
JPS5825427A (ja) 1981-08-10 1983-02-15 Kawasaki Steel Corp 無方向性電磁鋼板の製造方法
JPS6187823A (ja) 1984-10-04 1986-05-06 Nippon Steel Corp 鉄損の著しく低い無方向性電磁鋼板の製造法
FR2647813B1 (fr) * 1989-06-01 1991-09-20 Ugine Aciers Tole magnetique obtenue a partir d'une bande d'acier laminee a chaud contenant notamment du fer, du silicium et de l'aluminium
DD299102A7 (de) * 1989-12-06 1992-04-02 ������@����������@��������@��������@��@��������k�� Verfahren zur herstellung von nichtorientiertem elektroblech
JPH0686647B2 (ja) 1990-03-22 1994-11-02 住友金属工業株式会社 磁気特性に優れた無方向性電磁鋼板
JPH0737651B2 (ja) 1990-04-13 1995-04-26 新日本製鐵株式会社 磁気特性の優れた無方向性電磁鋼板の製造方法
JPH0463252A (ja) 1990-07-02 1992-02-28 Sumitomo Metal Ind Ltd 磁気特性の優れた無方向性電磁鋼板
JPH0686648B2 (ja) 1990-09-27 1994-11-02 住友金属工業株式会社 磁気特性の優れた無方向性電磁鋼板
JP3274247B2 (ja) 1993-09-20 2002-04-15 杏林製薬株式会社 光学活性なインドリン誘導体の製法と中間体
JP3294422B2 (ja) 1994-02-10 2002-06-24 ジヤトコ株式会社 自動変速機の円錐クラッチ装置
JP2984185B2 (ja) * 1994-07-26 1999-11-29 川崎製鉄株式会社 磁気異方性の小さい低鉄損無方向性電磁鋼板の製造方法
JPH11124626A (ja) 1997-10-20 1999-05-11 Nkk Corp 鉄損の低い無方向性電磁鋼板の製造方法
JP2000144348A (ja) * 1998-11-09 2000-05-26 Kawasaki Steel Corp 高周波域における磁気異方性が小さい回転機器用無方向性電磁鋼板およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718335A (ja) * 1993-07-07 1995-01-20 Sumitomo Metal Ind Ltd 優れた磁気特性を有する電磁鋼板の製造方法
JPH08246108A (ja) * 1995-03-03 1996-09-24 Nippon Steel Corp 異方性の少ない無方向性電磁鋼板およびその製造方法
JPH09157804A (ja) * 1995-12-11 1997-06-17 Nkk Corp 低磁場での磁気特性に優れ、磁気異方性が小さい無方向性電磁鋼板およびその製造方法
EP0866144A1 (en) * 1997-03-18 1998-09-23 Nkk Corporation Non-oriented electromagnetic steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
CN1129677C (zh) 2003-12-03
EP1156128A1 (en) 2001-11-21
CN1344332A (zh) 2002-04-10
DE60020217T2 (de) 2005-12-01
KR20010101681A (ko) 2001-11-14
DE60020217D1 (de) 2005-06-23
EP1156128A4 (en) 2003-05-14
US6428632B1 (en) 2002-08-06
JP4507316B2 (ja) 2010-07-21
JP2001152300A (ja) 2001-06-05
EP1156128B1 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
WO2013137092A1 (ja) 無方向性電磁鋼板の製造方法
JP4023183B2 (ja) 回転機用無方向性電磁鋼板とその製造方法
JP5699642B2 (ja) モータコア
JP4860783B2 (ja) 無方向性電磁鋼板
JP2008174773A (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP2020503444A (ja) 無方向性電磁鋼板およびその製造方法
JP2008127659A (ja) 異方性の小さい無方向性電磁鋼板
JP5824965B2 (ja) 無方向性電磁鋼板の製造方法
WO2001038595A1 (fr) Feuille d'acier electromagnetique non orientee a anisotropie magnetique reduite dans la region des hautes frequences et excellente ouvrabilite a la presse
JP3835227B2 (ja) 無方向性電磁鋼板とその製造方法
JP4116748B2 (ja) 磁石埋設型のモータ用無方向性電磁鋼板
JP3835216B2 (ja) 無方向性電磁鋼板およびその製造方法
JPH1018005A (ja) 磁気特性に優れた高強度無方向性電磁鋼板およびその製造方法
JP2007039754A (ja) Cu含有無方向性電磁鋼板の製造方法
JP2001335897A (ja) 加工性およびリサイクル性に優れた低鉄損かつ高磁束密度の無方向性電磁鋼板
JP4186384B2 (ja) 無方向性電磁鋼板
JP2000144348A (ja) 高周波域における磁気異方性が小さい回転機器用無方向性電磁鋼板およびその製造方法
JP2011184787A (ja) 高周波鉄損の優れた高張力無方向性電磁鋼板
JP2003013190A (ja) 高級無方向性電磁鋼板
JP2007162062A (ja) 回転子用無方向性電磁鋼板の製造方法
KR20150074930A (ko) 무방향성 전기강판 및 그 제조방법
JP4284870B2 (ja) リラクタンスモータ鉄心用の無方向性電磁鋼板の製造方法
JP7444275B2 (ja) 無方向性電磁鋼板とその製造方法
KR100321035B1 (ko) 수요가 열처리후 자기특성이 우수한 무방향성 전기강판 및 그제조방법
JP4258949B2 (ja) Dcモータ用電磁鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00805274.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 09889907

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000976408

Country of ref document: EP

Ref document number: 1020017009349

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017009349

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000976408

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000976408

Country of ref document: EP