WO2001021844A1 - Procede de fabrication de bandes d'acier au carbone, notamment d'acier pour emballages, et bandes ainsi produites - Google Patents

Procede de fabrication de bandes d'acier au carbone, notamment d'acier pour emballages, et bandes ainsi produites Download PDF

Info

Publication number
WO2001021844A1
WO2001021844A1 PCT/FR2000/002597 FR0002597W WO0121844A1 WO 2001021844 A1 WO2001021844 A1 WO 2001021844A1 FR 0002597 W FR0002597 W FR 0002597W WO 0121844 A1 WO0121844 A1 WO 0121844A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
steel
carried out
packaging
reduction rate
Prior art date
Application number
PCT/FR2000/002597
Other languages
English (en)
Inventor
Michel Faral
Michel Guttmann
Jean-Hubert Schmitt
Catherine Juckum
Hélène Regle
Original Assignee
Usinor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9550194&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001021844(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Usinor filed Critical Usinor
Priority to JP2001525400A priority Critical patent/JP4620310B2/ja
Priority to AT00964323T priority patent/ATE277202T1/de
Priority to EP00964323A priority patent/EP1228254B1/fr
Priority to US10/088,176 priority patent/US6852180B1/en
Priority to CA2385685A priority patent/CA2385685C/fr
Priority to DE60014145T priority patent/DE60014145T2/de
Priority to BR0014195-0A priority patent/BR0014195A/pt
Publication of WO2001021844A1 publication Critical patent/WO2001021844A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • C21D8/0415Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2201/00Special rolling modes
    • B21B2201/04Ferritic rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0431Warm rolling

Definitions

  • the invention relates to the steel industry. More specifically, it relates to the manufacture of steel strips intended to be transformed into thin packaging, such as cans for drinks and canned food.
  • the conventional process for manufacturing steel strips intended to then be transformed into thin packaging, in particular for beverages and food products comprises the following stages:
  • this cold rolling can be carried out in a single step, or in two steps which can be separated by a heat treatment, according to the final thickness desired for the strip;
  • the thicknesses of the final strips after cold rolling and annealing are of the order of 0.09 to 0.40 mm. These strips are then cut into sheets and / or blanks, which are stamped to form the desired packaging.
  • This manufacturing chain is long and costly in energy, because it requires the use of separate installations.
  • rolling the slabs on the belt train is expensive, in particular because these slabs must first be reheated to high temperature.
  • the band train is a tool requiring a high investment.
  • the strip thus cast then undergoes pickling, a first cold rolling, a recrystallization annealing and a second cold rolling.
  • the total reduction rate undergone by the strip during cold rolling is between 85 and 95% if it is desired to obtain satisfactory results on the rate of the drawing horns, the anisotropy coefficient r and the planar anisotropy ⁇ r.
  • the casting between rolls can be followed by a light hot rolling with a reduction rate of 20 to 50%, or even more.
  • the manufacture of the hot strip which must then undergo rolling cold and associated treatments is faster and more economical. However, the need for subsequent cold rolling in two stages separated by annealing tempers these advantages.
  • the object of the invention is to propose a more economical method than the known methods for obtaining cold-rolled steel strips usable for the manufacture of packaging, in particular for food packaging such as drink cans.
  • the subject of the invention is a process for manufacturing strips of carbon steel, in particular steel for packaging, according to which: - it is cast in the form of a thin strip of 0.7 to 10 mm thickness, directly from liquid metal, a steel having a composition suitable for use as steel for packaging;
  • the subject of the invention is also a strip of carbon steel, in particular steel for packaging, characterized in that it is capable of being obtained by the preceding process.
  • the invention is based on the use of a casting process between rolls followed by at least one step of hot rolling in line and of a particular cooling of the strip.
  • a hot strip is thus obtained which tolerates then only undergoing a single cold rolling step (apart from the conventional final pass through the skin-pass) in order to be given the properties which make it suitable for the manufacture of steels for packaging.
  • the process according to the invention begins with the casting in the form of thin strips 0.7 to 10 mm thick (preferably 1 to 4 mm) of a semi-finished product with low or ultra-low carbon content. a steel which can be used for packaging of conventional composition.
  • This composition for the main elements present, meets the main criteria (the percentages are expressed as weight percentages): 0% ⁇ C ⁇ 0.15%; 0% ⁇ Mn ⁇ 0.6%; 0% ⁇ P ⁇ 0.025%; 0% ⁇ S ⁇ 0.05%; 0% ⁇ Al ⁇ 0.12%; 0% ⁇ N ⁇ 0.04% o.
  • This steel also contains the usual impurities resulting from the production, and possibly alloying elements in small quantities which will not adversely affect the properties of the products during their shaping or their use as steels for packaging (it is thus known in some steels for packaging, introduce a few thousandths of% boron), the rest being iron.
  • the alloying elements generally absent, may possibly be present in contents of up to 1%; These elements are notably Si, Cr, Ni, Mo, Cu. For regulatory reasons, certain alloying elements must be excluded when the steel is intended for packaging; these elements are for example lead, cadmium and arsenic.
  • the continuous casting of thin strips directly from liquid metal is a technique which has been tried for several years for the casting of carbon steels, stainless steels and other ferrous alloys.
  • the most commonly used technique for casting thin strips of ferrous alloys, and which is in the process of reaching the industrial stage, is the technique known as “casting between cylinders”, according to which liquid metal is introduced between two cylinders brought close together. horizontal axes, rotated in opposite directions and internally cooled. The casting space is closed laterally by refractory plates applied against the flat side faces of the cylinders.
  • Solidified metal "skins" form on each of the cylinders, and meet at the neck (the area where the gap between the cylindrical lateral surfaces of the cylinders is smallest and corresponds substantially to the thickness desired for the strip ) to form a solidified strip.
  • This technique is particularly recommended for the invention because it gives access to strip thicknesses of a few mm, and reference will be made to this in the following description.
  • other methods of direct casting of thin strips can be used, such as casting between two moving strips which makes it possible to cast products a little thicker than casting between rolls.
  • one of the advantages of casting between cylinders is the possibility of obtaining, if necessary, extremely thick transverse strip thickness profiles, thanks to the excellent mastery of the curvature of the cylinders which the modes allow. of putting this most advanced process into practice (see, for example, document EP 0 736 350).
  • the strip preferably crosses an area such as an enclosure inerted by gas blowing, where it is subjected to a non-oxidizing environment (a neutral atmosphere of nitrogen or argon, or even a atmosphere containing a certain proportion of hydrogen to make it reducing), in order to avoid or limit the formation of scale on its surface.
  • a non-oxidizing environment a neutral atmosphere of nitrogen or argon, or even a atmosphere containing a certain proportion of hydrogen to make it reducing
  • - a thickness of less than 3 mm (typically 0.9 mm) which, in conjunction with the reduction rates which will be applied during the cold rolling which will follow, will make it possible to obtain final strips having the desired thickness;
  • - a metallurgical structure which, still in conjunction with the treatments subsequently undergone by the strip, makes it possible to obtain on the strip the mechanical properties required for the future use of the metal, for example as steel for packaging;
  • a single step of hot rolling of the strip is carried out, ending at a temperature higher than the temperature Ar 3 of the cast steel, in other words in the austenitic field.
  • This hot rolling is carried out with a minimum reduction rate of 20%, and preferably this rate is greater than 50%.
  • the functions of this hot rolling are:
  • This single hot rolling step can be carried out by passing the strip through a single rolling stand. It can also be carried out more gradually by passing the strip through two or more rolling stands.
  • the first cage can, for example, apply to the strip a reduction rate which is only sufficient to close the porosities, and the second cage then provides the major part of the reduction in thickness enabling the two other functions of hot rolling to be fulfilled.
  • the main thing is that the overall reduction rate caused by this or these passages in the successive cage or cages and the temperature of the strip after its passage in the last cage are within the prescribed ranges of values.
  • hot rolling takes place in two stages, separated by reheating, and possibly by descaling.
  • the first of these steps is carried out either in the austenitic domain, or in the ferri tic domain of the casting strip, with a reduction rate of 20 to 70%. It has functions identical to those of the single hot rolling step of the first variant, and can also be carried out by passing the strip through one or more successive rolling mill stands.
  • this first rolling step takes place in the ferritic field when it is desired to obtain a final thickness of the strip that is small, because less effort is required to deform the strip evenly over its entire width than when the strip is in the austenitic domain.
  • this first hot rolling step is carried out by distributing it over several cages, it is however possible to begin this first step in the austenitic field, for example by a relatively light rolling which would mainly aim at closing the porosities, and finish in the ferritic area where the rest of the thickness reduction would be carried out.
  • the strip is allowed to cool down to the ferritic region if it is not already there (if necessary using a slight forced cooling), then a treatment is applied to it. thermal reheating which brings it back into the austenitic domain, therefore above the temperature Ar 3 . This causes an additional phase change in the strip, which results in an even further refinement of the grains of the metallurgical structure.
  • the second stage of hot rolling is carried out, in the austenitic field, with a reduction rate of 10 to 30%.
  • This second hot rolling has the essential function of correcting the geometric defects (bad planarity, saber ...) that the first hot rolling could have caused.
  • Intermediate heating can be achieved by means of an inductor through which the strip passes. For a strip 0.75 mm thick and 850 mm wide running at a speed of 200 m / min, a power of 1.04 MW is necessary if a temperature rise of 100 ° C is sought.
  • the two variants which have just been described therefore have the common point of ending with a rolling carried out on the strip in the austenitic phase, which therefore ends above the temperature Ar 3 .
  • the method according to the invention continues with cooling of the strip which includes a forced cooling step at a speed of 80 to 400 ° C / s, preferably 100 to 300 ° C / s.
  • This cooling ends in the ferritic domain of cast steel, and in general brings the strip to a temperature close to its winding temperature. Its purpose is to avoid excessive growth in the size of the grains before winding and during the stay of the strip in the form of a reel.
  • This winding temperature is typically less than 750 ° C.
  • the winding temperature can be chosen around 550 ° C or 600 ° C or 700 ° C in order to favor more or less the precipitation of aluminum nitrides.
  • This forced cooling can start immediately after the austenitic rolling of the strip, but it is advisable to start it only after having allowed the strip to cool at low speed (about 10 ° C / s, which is accessible by a simple exposure in the open air) and pass into the ferritic domain, therefore below Ar 3 .
  • the accelerated cooling should preferably not start at a temperature below Ar 3 - 10 ° C.
  • the use of rapid cooling before winding avoids the presence of large grains in the skin of the strip, which are particularly undesirable on steels for packaging. Indeed, these must have, after cold rolling, a very high homogeneity of their final characteristics.
  • the strip wound and then unwound then undergoes cold rolling at a reduction rate of at least 85%, preferably more than 90%>.
  • This cold rolling can perfectly be carried out by simple reduction, that is to say in a single stage, and not imperatively in two stages with intermediate annealing as was the case in the document JP 09-001207 already cited (cold rolling double reduction). Stamping capacities comparable to those obtained by known methods are obtained, and strip thicknesses less than 0.09 mm of known methods are available without having to resort to double reduction cold rolling. . If it is not desired to obtain thinner strips than usual, the conventional thicknesses can be obtained with lower reduction rates during cold rolling, which is more economical. It is, of course, possible to carry out a cold rolling of the strip in double reduction if one wishes to obtain an even smaller thickness or higher mechanical characteristics
  • Table 1 which gives examples of final thicknesses of the strip as a function of its initial thickness after casting and of the rolling rates applied during the hot rolling steps (in one or two steps depending on the chosen variant) and cold rolling
  • the strip undergoes the usual annealing (base or continuous) intended to give it its mechanical properties.
  • This annealing can be followed, as usual, by pickling, coating and / or passing to the skm-pass.
  • the exit speeds of the strip from the hot rolling mill being of the order of 250 m / min or less, these speeds are compatible with placing on a single line of this rolling mill (therefore of the casting line as a whole) and one or more of the cold rolling, annealing and cold treatment operations for steels for packaging, the metal throughput of which is compatible with that of the hot rolling mill.
  • the invention finds a preferred field of application in the manufacture of steel strips intended to be stamped to form packaging for beverages or canned food, it goes without saying that it can be applied to the production of strips of steel intended for other uses for which similar qualities would be required for the bands produced

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Heat Treatment Of Steel (AREA)
  • Continuous Casting (AREA)

Abstract

L'invention a pour objet un procédé de fabrication de bandes d'acier au carbone, notamment d'acier pour emballages, selon lequel: on coule sous forme d'une bande mince de 0,7 à 10 mm d'épaisseur, directement à partir de métal liquide, un acier ayant une composition adaptée à une utilisation comme acier pour emballage; on effectue une opération de laminage à chaud en ligne de ladite bande, se terminant dans le domaine austénitique dudit acier; on effectue un refroidissement forcé de ladite bande à une vitesse de 80 à 400°C/s se terminant dans le domaine ferritique dudit acier; on effectue un laminage à froid de ladite bande à un taux de réduction de 85% au moins; et on effectue un recuit de la ladite bande. L'invention à également pour objet une bande d'acier, notamment d'acier pour emballages, caractérisée en ce qu'elle est susceptible d'être obtenue par le procédé précédent.

Description

PROCEDE DE FABRICATION DE BANDES D'ACIER AU CARBONE, NOTAMMENT D'ACIER POUR EMBALLAGES, ET BANDES AINSI
PRODUITES
L'invention concerne la sidérurgie. Plus précisément, elle concerne la fabrication des bandes d'acier destinées à être transformées en emballages de faible épaisseur, tels que des boîtes pour boissons et aliments en conserve.
Le procédé classique de fabrication de bandes d'acier destinées à être ensuite transformées en emballages de faible épaisseur, notamment pour boissons et produits alimentaires, comporte les étapes suivantes :
- coulée continue de brames d'acier au carbone ;
- laminage à chaud de ces brames sur un train à bandes avec une température de fin de laminage supérieure à la température Ar3 de la nuance considérée ;
- laminage à froid de la bande à chaud ainsi obtenue, ce laminage à froid pouvant être effectué en une étape unique, ou en deux étapes pouvant être séparées par un traitement thermique, selon l'épaisseur finale désirée pour la bande ;
- recuit de la bande à froid ainsi obtenue, par recuit base ou recuit continu.
Dans la pratique, les épaisseurs des bandes finales après laminage à froid et recuit sont de l'ordre de 0,09 à 0,40 mm. Ces bandes sont ensuite découpées en feuilles et/ou en flans, qui sont emboutis pour former les emballages recherchés.
Cette filière de fabrication est longue et coûteuse en énergie, du fait qu'elle nécessite l'utilisation d'installations séparées. En particulier, le laminage des brames sur le train à bandes est onéreux, notamment parce que ces brames doivent préalablement être réchauffées à haute température. D'autre part, le train à bandes est un outil nécessitant un investissement élevé.
Cet inconvénient peut être contourné en remplaçant l'ensemble coulée continue- four de réchauffage-train à bandes par une installation de coulée directe de bandes minces d'épaisseur inférieure à 10 mm. Cette solution a été proposée dans le document JP 09- 001207, qui enseigne de couler directement à partir de métal liquide, sur une installation de coulée entre deux cylindres contrarotatifs refroidis intérieurement, des bandes dont la composition correspond à une nuance classique d'aciers pour emballages (C% < 0,15 ; Mn% < 0,6 ; P% < 0,025 ; S% < 0,025 ; Al% < 0,12% ; N% < 0,01 ; Otota,% < 0,007%, toutes ces teneurs étant exprimées en pourcentages pondéraux). La bande ainsi coulée subit ensuite un décapage, un premier laminage à froid, un recuit de recristallisation et un second laminage à froid. Le taux de réduction total subi par la bande lors des laminages à froid est compris entre 85 et 95% si on veut obtenir des résultats satisfaisants sur le taux des cornes d'emboutissage, le coefficient d'anisotropie r et l'anisotropie planaire Δr. La coulée entre cylindres peut être suivie par un léger laminage à chaud avec un taux de réduction de 20 à 50%, voire davantage. La fabrication de la bande à chaud qui doit ensuite subir le laminage à froid et les traitements associés est ainsi plus rapide et plus économique. Toutefois, la nécessité de procéder ensuite à un laminage à froid en deux étapes séparées par un recuit tempère ces avantages.
Le but de l'invention est de proposer un procédé plus économique que les procédés connus pour l'obtention de bandes d'acier laminées à froid utilisables pour la fabrication d'emballages, notamment pour emballages alimentaires tels que des boîtes- boisson.
A cet effet, l'invention a pour objet un procédé de fabrication de bandes d'acier au carbone, notamment d'acier pour emballages, selon lequel : - on coule sous forme d'une bande mince de 0,7 à 10 mm d'épaisseur, directement à partir de métal liquide, un acier ayant une composition adaptée à une utilisation comme acier pour emballage ;
- on effectue une opération de laminage à chaud en ligne de ladite bande, se terminant dans le domaine austénitique dudit acier ; - on effectue un refroidissement forcé de ladite bande à une vitesse de 80 à
400° C/s se terminant dans le domaine ferritique dudit acier ;
- on effectue un laminage à froid de ladite bande à un taux de réduction de 85% au moins ;
- et on effectue un recuit de ladite bande. L'invention a également pour objet une bande d'acier au carbone, notamment d'acier pour emballages, caractérisée en ce qu'elle est susceptible d'être obtenue par le procédé précédent.
Comme on l'aura compris, l'invention repose sur l'utilisation d'un procédé de coulée entre cylindres suivi d'au moins une étape de laminage à chaud en ligne et d'un refroidissement particulier de la bande. On obtient ainsi une bande à chaud qui tolère de ne subir ensuite qu'une seule étape de laminage à froid (hormis le classique passage final au skin-pass) pour se voir conférer les propriétés qui la rendent adaptée à la fabrication d'aciers pour emballages.
L'invention sera mieux comprise à la lecture de la description qui suit. Le procédé selon l'invention commence par la coulée sous forme de bandes minces de 0,7 à 10 mm d'épaisseur (préférentiellement de 1 à 4 mm) d'un demi-produit à basse ou ultra-basse teneur en carbone d'un acier pouvant être utilisé pour l'emballage de composition classique. Cette composition, pour les principaux éléments présents, répond aux critères principaux (les pourcentages sont exprimés en pourcentages pondéraux) : 0% < C < 0,15% ; 0% < Mn < 0,6% ; 0% < P < 0,025% ; 0% < S < 0,05% ; 0 % < Al < 0,12% ; 0% < N < 0,04%o. Cet acier contient en outre des impuretés habituelles résultant de l'élaboration, et éventuellement des éléments d'alliage en faible quantité qui n'affecteront pas défavorablement les propriétés des produits lors de leur mise en forme ou de leur utilisation comme aciers pour emballages (il est ainsi connu, dans certains aciers pour emballage, d'introduire quelques millièmes de % de bore), le reste étant du fer. Les éléments d'alliage, en général absents, peuvent, éventuellement, être présents en des teneurs pouvant aller jusqu'à 1% ; Ces éléments sont notamment Si, Cr, Ni, Mo, Cu. Pour des raisons réglementaires, certains éléments d'alliages doivent être exclus lorsque l'acier est destiné à l'emballage ; ces éléments sont par exemple le plomb, le cadmium et l'arsenic.
La coulée continue de bandes minces directement à partir de métal liquide est une technique qui est expérimentée depuis plusieurs années pour la coulée d'aciers au carbone, d'aciers inoxydables et d'autres alliages ferreux. La technique la plus couramment utilisée en coulée de bandes minces d'alliages ferreux, et qui est en train de parvenir au stade industriel, est la technique dite de « coulée entre cylindres », selon laquelle on introduit du métal liquide entre deux cylindres rapprochés à axes horizontaux, mis en rotation en sens inverses et refroidis intérieurement. L'espace de coulée est obturé latéralement par des plaques en réfractaire appliquées contre les faces latérales planes des cylindres. Des « peaux » de métal solidifié se forment sur chacun des cylindres, et se rejoignent au niveau du col (la zone où l'écart entre les surfaces latérales cylindriques des cylindres est le plus faible et correspond sensiblement à l'épaisseur désirée pour la bande) pour former une bande solidifiée. Cette technique est particulièrement recommandée pour l'invention parce qu'elle donne accès aux épaisseurs de bande de quelques mm, et on s'y référera dans la suite de la description. Mais on peut utiliser d'autres procédés de coulée directe de bandes minces, tels que la coulée entre deux bandes en défilement qui permet de couler des produits un peu plus épais que la coulée entre cylindres. Toutefois, l'un des avantages de la coulée entre cylindres est la possibilité d'obtenir, si nécessaire, des profils d'épaisseur de la bande en sens travers extrêmement plats, grâce à l'excellente maîtrise du bombé des cylindres que permettent les modes de mise en pratique de ce procédé les plus évolués (voir, par exemple, le document EP 0 736 350).
A sa sortie des cylindres, la bande traverse, de préférence, une zone telle qu'une enceinte inertée par une insufflation de gaz, où elle est soumise à un environnement non oxydant (une atmosphère neutre d'azote ou d'argon, voire une atmosphère comportant une certaine proportion d'hydrogène pour la rendre réductrice), afin d'éviter ou de limiter la formation de calamine à sa surface. En sortie de cette zone d'inertage on peut également placer un dispositif de décalaminage de la bande par projection de grenailles ou de CO2 solide sur sa surface ou par brossage, afin d'éliminer la calamine qui aurait pu se former malgré les précautions prises. On peut également choisir de laisser se former la calamine de façon naturelle sans chercher à inerter l'atmosphère environnant la bande, puis d'éliminer cette calamine par un dispositif tel qu'on vient de le décrire. La présence de calamine sur la bande n'est, en général, pas souhaitée, à cause des risques d'incrustation de cette calamine dans la surface de la bande lors des laminages ultérieurs. De telles incrustations conduisent à un médiocre état de surface des produits. De plus, la calamine augmente les efforts de laminage à appliquer, et dégrade l'état de surface des cylindres du laminoir.
Autant que possible immédiatement après la sortie de la bande de l'installation d'inertage ou de décalaminage, s'il y en a une, a lieu une opération de laminage à chaud de la bande, suivie par un refroidissement fort. Le but de ce traitement est d'obtenir une bande ayant :
- une épaisseur inférieure à 3 mm (typiquement 0,9 mm) qui, en liaison avec les taux de réduction qui seront pratiqués lors du laminage à froid qui suivra, permettra d'obtenir des bandes finales ayant l'épaisseur souhaitée ; - une structure métallurgique qui, toujours en liaison avec les traitements ultérieurement subis par la bande, permet d'obtenir sur la bande les propriétés mécaniques requises pour l'utilisation future du métal, par exemple comme acier pour emballages ;
- un profil travers plus plat que ceux obtenus avec les procédés conventionnels. Pour parvenir à ce résultat, deux variantes de schémas de fabrication sont proposées.
Selon la première variante, on effectue une unique étape de laminage à chaud de la bande, se terminant à une température supérieure à la température Ar3 de l'acier coulé, autrement dit dans le domaine austénitique. Ce laminage à chaud s'effectue avec un taux de réduction minimal de 20%, et préférentiellement ce taux est supérieur à 50%. Ce laminage à chaud a pour fonctions :
- de refermer les porosités qui peuvent être présentes au coeur de la bande après sa coulée ;
- de « casser » la microstructure de solidification ;
- et d'améliorer l'état de surface de la bande en écrasant les reliefs qui peuvent être présents à la surface de la bande, en particulier lorsqu'on a utilisé lors de la coulée des cylindres présentant une relativement forte rugosité qui peut être avantageuse pour l'optimisation des transferts thermiques entre les cylindres et les peaux solidifiées.
Cette unique étape de laminage à chaud peut être effectuée au moyen du passage de la bande dans une seule cage de laminoir. Elle peut aussi être effectuée de façon plus progressive en faisant passer la bande dans deux cages de laminoir ou plus. La première cage peut, par exemple, appliquer à la bande un taux de réduction seulement suffisant pour refermer les porosités, et la deuxième cage assure alors la majeure partie de la réduction d'épaisseur permettant de remplir les deux autres fonctions du laminage à chaud. L'essentiel est que le taux de réduction global provoqué par ce ou ces passages dans la ou les cages successives et la température de la bande après son passage dans la dernière cage se situent dans les gammes de valeurs prescrites.
Selon la seconde de ces variantes, le laminage à chaud s'effectue en deux étapes, séparées par un réchauffage, et éventuellement par un décalaminage. La première de ces étapes s'effectue soit dans le domaine austénitique, soit dans le domaine ferri tique de la bande coulée, avec un taux de réduction de 20 à 70%. Elle a des fonctions identiques à celles de l'étape unique de laminage à chaud de la première variante, et peut aussi être effectuée par le passage de la bande dans une ou plusieurs cages de laminoir successives. Préférentiellement, cette première étape de laminage a lieu dans le domaine ferritique lorsqu'on veut obtenir une épaisseur finale de la bande faible, car de moindres efforts sont nécessaires pour déformer la bande de manière régulière sur toute sa largeur que lorsque la bande est dans le domaine austénitique. Lorsqu'on réalise cette première étape de laminage à chaud en la répartissant sur plusieurs cages, il est cependant envisageable de débuter cette première étape dans le domaine austénitique, par exemple par un laminage relativement léger qui viserait principalement à refermer les porosités, et de la terminer dans le domaine ferritique où on réaliserait le restant de la réduction d'épaisseur. Après cette première étape de laminage à chaud, on laisse la bande se refroidir jusque dans le domaine ferritique si elle ne s'y trouve pas déjà (au besoin à l'aide d'un léger refroidissement forcé), puis on lui applique un traitement thermique de réchauffage qui la ramène dans le domaine austénitique, donc au-dessus de la température Ar3. On provoque ainsi un changement de phase supplémentaire dans la bande, ce qui a pour conséquence un affinement encore plus poussé des grains de la structure métallurgique. Puis on réalise la seconde étape de laminage à chaud, dans le domaine austénitique, avec un taux de réduction de 10 à 30%. Ce second laminage à chaud a pour fonction essentielle de corriger les défauts géométriques (mauvaise planeité, sabre...) que le premier laminage à chaud a pu provoquer. Le réchauffage intermédiaire peut être réalisé au moyen d'un inducteur que traverse la bande. Pour une bande d'épaisseur 0,75 mm et de largeur 850 mm défilant à une vitesse de 200 m/mn, une puissance de 1,04 MW est nécessaire si une élévation de température de 100°C est recherchée. En conséquence, si on utilise un inducteur à solénoïde en flux longitudinal fonctionnant à 500 kHz, dont le rendement est habituellement de l'ordre de 45%>, une longueur d'inducteur de 2 m environ (dont 1,5 m de zone utile) est adaptée à cet usage. Si la bande a une épaisseur plus faible, on peut utiliser la technologie de chauffage par induction sous flux transverse, décrite notamment dans le document « High flux induction for the fast heating of steel semi-product in Une with rolling » (Proceedings of the XIII International Congress on Electricity Applications, Birmingham, June 1996). Mais de manière générale, d'autres technologies plus conventionnelles, telles qu'un four à moufle sous atmosphère contrôlée, ou des tubes radiants, peuvent être utilisées pour assurer ce réchauffage.
Les deux variantes qui viennent d'être décrites ont donc pour point commun de se terminer par un laminage effectué sur la bande en phase austénitique, qui s'achève donc au- dessus de la température Ar3. Dans les deux cas, le procédé selon l'invention se poursuit par un refroidissement de la bande qui comporte une étape de refroidissement forcé à une vitesse de 80 à 400°C/s, préférentiellement 100 à 300°C/s. Ce refroidissement s'achève dans le domaine ferritique de l'acier coulé, et en général amène la bande à une température proche de sa température de bobinage. Il a pour but d'éviter une croissance trop importante de la taille des grains avant le bobinage et pendant le séjour de la bande sous forme de bobine. Cette température de bobinage est typiquement inférieure à 750°C. Pour les nuances calmées à l'aluminium, la température de bobinage peut être choisie aux environs de 550°C ou 600°C ou 700°C afin de favoriser plus ou moins la précipitation de nitrures d'aluminium.
Il est important pour la fiabilité de l'obtention des propriétés recherchées pour la bande que ce refroidissement forcé s'effectue de manière homogène sur toute la largeur de la bande. On peut chiffrer à 10°C l'amplitude maximale souhaitable des différences de température d'un point à un autre de la largeur de la bande à un instant donné. Cette homogénéité est plus difficile à garantir si la vitesse de refroidissement est élevée, ce qui motive la recommandation d'une vitesse maximale de 400°C/s. Inversement, une vitesse minimale de 80°C/s assure que le refroidissement aura l'efficacité métallurgique souhaitée. De telles vitesses de refroidissement peuvent être obtenues, notamment, par projection d'eau au moyen de gicleurs à haute pression, ou par projection d'un mélange eau-air ou similaire (atomisation). Ce refroidissement forcé peut débuter juste après le laminage austénitique de la bande, mais il est conseillé de ne le débuter qu'après avoir laissé la bande se refroidir à faible vitesse (environ 10°C/s, ce qui est accessible par une simple exposition à l'air libre) et passer dans le domaine ferritique, donc en dessous de Ar3. De cette façon, on profite pleinement de affinement du grain lié au changement de phase austénite-ferrite, alors qu'un refroidissement rapide qui débuterait dans le domaine austénitique gênerait sensiblement l'homogénéité de la microstructure. Il est à noter cependant que le refroidissement accéléré ne doit pas débuter, de préférence, à une température inférieure à Ar3 - 10°C. De manière générale, l'utilisation d'un refroidissement rapide avant bobinage permet d'éviter la présence de gros grains en peau de la bande, qui sont particulièrement indésirables sur les aciers pour emballages. En effet, ceux-ci doivent avoir, après laminage à froid, une très grande homogénéité de leurs caractéristiques finales.
La bande bobinée puis débobinée subit ensuite un laminage à froid à un taux de réduction d'au moins 85%, de préférence plus de 90%>. Ce laminage à froid peut parfaitement être exécuté par simple réduction, c'est à dire en une seule étape, et non impérativement en deux étapes avec recuit intermédiaire comme c'était le cas dans le document JP 09-001207 déjà cité (laminage à froid à double réduction). On obtient des aptitudes à l'emboutissage comparables à celles obtenues par les procédés connus, et on a accès à des épaisseurs de bande plus faibles que les 0,09 mm des procédés connus sans pour autant devoir recourir à un laminage à froid à double réduction. Si on ne désire pas obtenir de bandes plus fines qu'habituellement, on peut obtenir les épaisseurs classiques avec de moindres taux de réduction lors du laminage à froid, ce qui est plus économique. Il est, bien entendu, possible de réaliser un laminage à froid de la bande en double réduction si on désire obtenir une épaisseur encore plus faible ou des caractéπstiques mécaniques plus élevées
A titre indicatif, on peut présenter le tableau 1 qui donne des exemples d'épaisseurs finales de la bande en fonction de son épaisseur initiale après coulée et des taux de laminage appliqués lors des étapes de laminage à chaud (en une ou deux étapes selon la variante choisie) et de laminage à froid
Figure imgf000008_0001
Tableau 1 Epaisseur des bandes obtenues en fonction des divers paramètres de coulée et de laminage
Après le laminage à froid, la bande subit le recuit (base ou continu) habituel destiné à lui conférer ses propπétés mécaniques Ce recuit peut être suivi, comme d'habitude, par un décapage, un revêtement et/ou un passage au skm-pass Les vitesses de sortie de la bande du laminoir à chaud étant de l'ordre de 250 m/mn ou moins, ces vitesses sont compatibles avec une mise sur une ligne unique de ce laminoir (donc de la ligne de coulée dans son ensemble) et d'une ou plusieurs des opérations de laminage à froid, de recuit et de traitement à froid des aciers pour emballage, dont le débit de métal est compatible avec celui du laminoir à chaud On peut citer comme exemples de telles opérations, outre le décapage et le skm-pass pouvant suivre le recuit, un laquage, un vernissage, un dépôt de polymère, par exemple par coextrusion, un dépôt sous vide par plasma ou bombardement électronique, un revêtement métallique par électrodéposition Si l'opération de laminage à froid a heu en ligne avec l'opération de coulée et de laminage à chaud, cela implique la suppression de l'étape de bobinage de la bande
Si l'invention trouve un domaine d'application privilégié dans la fabπcation de bandes d'acier destinées à être embouties pour former des emballages pour boissons ou aliments en conserve, il va de soi qu'elle peut s'appliquer a la fabπcation de bandes d'acier destines a d'autres usages pour lesquels des qualités similaires seraient exigées pour les bandes produites

Claims

REVENDICATIONS
1) Procédé de fabrication de bandes d'acier au carbone, notamment d'acier pour emballages, selon lequel : - on coule sous forme d'une bande mince de 0,7 à 10 mm d'épaisseur, directement à partir de métal liquide, un acier ayant une composition adaptée à une utilisation comme acier pour emballage ;
- on effectue une opération de laminage à chaud en ligne de ladite bande, se terminant dans le domaine austénitique dudit acier ; - on effectue un refroidissement forcé de ladite bande à une vitesse de 80 à
400°C/s se terminant dans le domaine ferritique dudit acier ;
- on effectue un laminage à froid de ladite bande à un taux de réduction de 85 > au moins ;
- et on effectue un recuit de ladite bande. 2) Procédé selon la revendication 1, caractérisé en ce que ladite bande est coulée entre deux cylindres horizontaux mis en rotation en sens inverses refroidis intérieurement. 3) Procédé selon la revendication 1 ou 2, caractérisé en ce que ladite opération de laminage à chaud est effectuée en une étape unique avec un taux de réduction d'au moins
20%. 4) Procédé selon la revendication 3, caractérisé en ce que ladite opération de laminage à chaud est effectuée en une étape unique avec un taux de réduction d'au moins
50%.
5) Procédé selon la revendication 1 ou 2, caractérisé en ce que ladite opération de laminage à chaud est effectuée en deux étapes, en ce que la première de ces étapes est effectuée avec un taux de réduction de 20 à 70%, en ce qu'après cette première étape, on réchauffe la bande de manière à la faire passer du domaine ferritique dans le domaine austénitique dudit acier, et en ce qu'on effectue ensuite la seconde étape de laminage avec un taux de réduction de 10 à 30%o, celle-ci se terminant dans le domaine austénitique dudit acier. 6) Procédé selon la revendication 5, caractérisé en ce que ladite première étape est effectuée entièrement dans le domaine ferritique dudit acier.
7) Procédé selon la revendication 5, caractérisé en ce que ladite première étape est effectuée pour partie dans le domaine austénitique et pour partie dans le domaine ferritique dudit acier. 8) Procédé selon l'une des revendications 1 à 7, caractérisé en ce qu'après sa coulée, on fait traverser à la bande une zone où elle est soumise à un environnement non oxydant.
9) Procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'avant et/ou pendant le laminage à chaud on soumet la bande à une opération de décalaminage. 10) Procédé selon l'une des revendications 1 à 9, caractérisé en ce que ledit refroidissement forcé est effectué à une vitesse de 100 à 300°C/s.
11) Procédé selon l'une des revendications 1 à 10, caractérisé en ce que ledit refroidissement forcé débute lorsque la bande se trouve dans le domaine ferritique dudit acier.
12) Procédé selon l'une des revendications 1 à 11, caractérisé en ce que la bande est bobinée à une température inférieure à 750°C entre le refroidissement forcé et le laminage à froid.
13) Procédé selon l'une des revendications 1 à 12, caractérisé en ce que le taux de réduction du laminage à froid est d'au moins 85%.
14) Procédé selon l'une des revendications 1 à 13, caractérisé en ce que ledit laminage à froid est effectué en une seule étape.
15) Bande d'acier au carbone, notamment d'acier pour emballages, caractérisée en ce qu'elle est susceptible d'être obtenue par le procédé selon l'une des revendications 1 à 14.
16) Bande d'acier au carbone selon la revendication 15, caractérisée en ce que l'acier a pour composition en pourcentages pondéraux C < 0,15%o ; Mn < 0,6% ; P < 0,025% ; S < 0,05% ; Al < 0,12% ; N < 0,04%, le reste étant du fer, des impuretés résultant de l'élaboration, et éventuellement des éléments d'alliage n'empêchant pas l'utilisation de ladite bande pour fabriquer des aciers pour emballages.
PCT/FR2000/002597 1999-09-24 2000-09-20 Procede de fabrication de bandes d'acier au carbone, notamment d'acier pour emballages, et bandes ainsi produites WO2001021844A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001525400A JP4620310B2 (ja) 1999-09-24 2000-09-20 炭素鋼帯、特にパッケージング用鋼帯の製造方法、およびこうして製造された鋼帯
AT00964323T ATE277202T1 (de) 1999-09-24 2000-09-20 Verfahren zum herstellen von kohlenstoffstahlbändern, insbesondere für verpackungsmaterial
EP00964323A EP1228254B1 (fr) 1999-09-24 2000-09-20 Procede de fabrication de bandes d'acier au carbone, notamment d'acier pour emballages
US10/088,176 US6852180B1 (en) 1999-09-24 2000-09-20 Method for making carbon steel bands, in particular packaging steel bands, and resulting bands
CA2385685A CA2385685C (fr) 1999-09-24 2000-09-20 Procede de fabrication de bandes d'acier au carbone, notamment d'acier pour emballages, et bandes ainsi produites
DE60014145T DE60014145T2 (de) 1999-09-24 2000-09-20 Verfahren zum herstellen von kohlenstoffstahlbändern, insbesondere für verpackungsmaterial, und so hergestellte bändern
BR0014195-0A BR0014195A (pt) 1999-09-24 2000-09-20 Processo de fabricação de tiras de aço ao carbono, notadamente de aço para embalagens, e tiras de aço assim produzidas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/11925 1999-09-24
FR9911925A FR2798871B1 (fr) 1999-09-24 1999-09-24 Procede de fabrication de bandes d'acier au carbone, notamment d'acier pour emballages, et bandes ainsi produites

Publications (1)

Publication Number Publication Date
WO2001021844A1 true WO2001021844A1 (fr) 2001-03-29

Family

ID=9550194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/002597 WO2001021844A1 (fr) 1999-09-24 2000-09-20 Procede de fabrication de bandes d'acier au carbone, notamment d'acier pour emballages, et bandes ainsi produites

Country Status (11)

Country Link
US (1) US6852180B1 (fr)
EP (1) EP1228254B1 (fr)
JP (1) JP4620310B2 (fr)
CN (1) CN1128889C (fr)
AT (1) ATE277202T1 (fr)
BR (1) BR0014195A (fr)
CA (1) CA2385685C (fr)
DE (1) DE60014145T2 (fr)
ES (1) ES2225221T3 (fr)
FR (1) FR2798871B1 (fr)
WO (1) WO2001021844A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026424A1 (fr) * 2000-09-29 2002-04-04 Ishikawajima-Harima Heavy Industries Company Limited Production de bandes d'acier fines
WO2002026422A1 (fr) * 2000-09-29 2002-04-04 Ishikawajima-Harima Heavy Industries Company Limited Procede de production d'acier
WO2002028569A1 (fr) * 2000-10-02 2002-04-11 Ishikawajima-Harima Heavy Industries Company Limited Procede de production de bandes d'acier
CN100334235C (zh) * 2002-01-14 2007-08-29 于西纳公司 用于制造由含铜量高的碳钢制成的钢铁冶金制品的方法及根据所述方法获得的钢铁冶金制品
US7591917B2 (en) 2000-10-02 2009-09-22 Nucor Corporation Method of producing steel strip
US11225697B2 (en) 2014-12-19 2022-01-18 Nucor Corporation Hot rolled light-gauge martensitic steel sheet and method for making the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7117925B2 (en) * 2000-09-29 2006-10-10 Nucor Corporation Production of thin steel strip
JP2004315949A (ja) * 2003-04-21 2004-11-11 Internatl Business Mach Corp <Ibm> 物理状態制御用情報計算装置、物理状態制御用情報計算方法、物理状態制御用情報計算用プログラム及び物理状態制御装置
FR2855992B1 (fr) * 2003-06-10 2005-12-16 Usinor Procede et installation de coule continue directe d'une bande metallique
US20070175608A1 (en) * 2006-01-16 2007-08-02 Nucor Corporation Thin cast steel strip with reduced microcracking
WO2007079545A1 (fr) * 2006-01-16 2007-07-19 Nucor Corporation Bande d'acier coulé mince à microfissuration réduite
CN101371492B (zh) * 2006-01-17 2012-08-15 美国博通公司 以太网供电控制器及对供电设备检测和分级的方法
ES2325964T3 (es) * 2006-10-30 2009-09-25 Thyssenkrupp Steel Ag Procedimiento para fabricar productos planos de acero a partir de un acero multifasico aleado con silicio.
ATE432374T1 (de) * 2006-10-30 2009-06-15 Thyssenkrupp Steel Ag Verfahren zum herstellen von stahl-flachprodukten aus einem mit aluminium legierten mehrphasenstahl
EP1918406B1 (fr) * 2006-10-30 2009-05-27 ThyssenKrupp Steel AG Procédé pour la fabrication de produits plats à partir d'un acier à plusieurs phases micro-allié en bore
ES2325960T3 (es) * 2006-10-30 2009-09-25 Thyssenkrupp Steel Ag Procedimiento para fabricar productos planos de acero a partir de un acero que forma una estructura de fases complejas.
ATE432373T1 (de) * 2006-10-30 2009-06-15 Thyssenkrupp Steel Ag Verfahren zum herstellen von stahl-flachprodukten aus einem ein martensitisches gefüge bildenden stahl
DE102009018683A1 (de) * 2009-04-23 2010-10-28 Sms Siemag Ag Verfahren und Vorrichtung zum Stranggießen einer Bramme
CN102172813B (zh) * 2011-01-08 2012-12-19 中国科学院等离子体物理研究所 一种中心冷却管用钢带制造方法和冷却管绕制方法
DE102011056847B4 (de) * 2011-12-22 2014-04-10 Thyssenkrupp Rasselstein Gmbh Stahlblech zur Verwendung als Verpackungsstahl sowie Verfahren zur Herstellung eines Verpackungsstahls
DE102014116929B3 (de) * 2014-11-19 2015-11-05 Thyssenkrupp Ag Verfahren zur Herstellung eines aufgestickten Verpackungsstahls, kaltgewalztes Stahlflachprodukt und Vorrichtung zum rekristallisierenden Glühen und Aufsticken eines Stahlflachprodukts
CN108796191B (zh) * 2018-06-28 2020-04-03 东北大学 一种if钢薄带的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2357443A1 (de) * 1972-11-20 1974-05-30 Nippon Steel Corp Verfahren zum herstellen von alterungsbestaendigem kaltband oder -blech mit guter pressverformbarkeit
EP0572666A1 (fr) * 1991-02-20 1993-12-08 Nippon Steel Corporation Tole d'acier laminee a froid et tole d'acier galvanisee presentant une bonne aptitude au formage et a la trempe au four, et sa production
JPH07118735A (ja) * 1993-10-20 1995-05-09 Nippon Steel Corp 薄肉帯状鋳片の製造方法及び装置
EP0776984A1 (fr) * 1995-05-08 1997-06-04 Nippon Steel Corporation Equipement et procede pour fabriquer en continu des bobines de bandes metalliques

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278232A (ja) * 1986-05-26 1987-12-03 Nippon Kokan Kk <Nkk> 直送圧延法による非時効深絞り用冷延鋼板の製造方法
JPH079033B2 (ja) * 1990-03-10 1995-02-01 住友金属工業株式会社 超微細組織鋼板の製造方法
JP3027011B2 (ja) * 1990-12-28 2000-03-27 日新製鋼株式会社 耐食性および加工性に優れたクロム含有鋼板
JPH04333525A (ja) * 1991-05-07 1992-11-20 Nippon Steel Corp 板取り性が優れた極薄溶接缶用薄鋼板の製造法
JPH08294707A (ja) * 1995-04-21 1996-11-12 Nippon Steel Corp 熱延鋼帯の製造方法
BR9610708A (pt) * 1996-06-28 1999-09-14 Hoogovens Staal Bv Método e instalação para a fabricação de uma tira ou folha de aço com estampagem profunda
JP3546605B2 (ja) * 1996-07-29 2004-07-28 Jfeスチール株式会社 缶用鋼板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2357443A1 (de) * 1972-11-20 1974-05-30 Nippon Steel Corp Verfahren zum herstellen von alterungsbestaendigem kaltband oder -blech mit guter pressverformbarkeit
EP0572666A1 (fr) * 1991-02-20 1993-12-08 Nippon Steel Corporation Tole d'acier laminee a froid et tole d'acier galvanisee presentant une bonne aptitude au formage et a la trempe au four, et sa production
JPH07118735A (ja) * 1993-10-20 1995-05-09 Nippon Steel Corp 薄肉帯状鋳片の製造方法及び装置
EP0776984A1 (fr) * 1995-05-08 1997-06-04 Nippon Steel Corporation Equipement et procede pour fabriquer en continu des bobines de bandes metalliques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 08 29 September 1995 (1995-09-29) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026424A1 (fr) * 2000-09-29 2002-04-04 Ishikawajima-Harima Heavy Industries Company Limited Production de bandes d'acier fines
WO2002026422A1 (fr) * 2000-09-29 2002-04-04 Ishikawajima-Harima Heavy Industries Company Limited Procede de production d'acier
US6585030B2 (en) 2000-09-29 2003-07-01 Nucor Corporation Method of producing steel strip
EP1326723A1 (fr) * 2000-09-29 2003-07-16 Nucor Corporation Procede de production d'acier
JP2004508942A (ja) * 2000-09-29 2004-03-25 ニューコア・コーポレーション 鋼ストリップ製造方法
EP1326723A4 (fr) * 2000-09-29 2004-09-08 Nucor Corp Procede de production d'acier
US6818073B2 (en) 2000-09-29 2004-11-16 Nucor Corporation Method of producing steel strip
KR100937798B1 (ko) * 2000-09-29 2010-01-20 누코 코포레이션 강 스트립 제조 방법
WO2002028569A1 (fr) * 2000-10-02 2002-04-11 Ishikawajima-Harima Heavy Industries Company Limited Procede de production de bandes d'acier
US7591917B2 (en) 2000-10-02 2009-09-22 Nucor Corporation Method of producing steel strip
CN100334235C (zh) * 2002-01-14 2007-08-29 于西纳公司 用于制造由含铜量高的碳钢制成的钢铁冶金制品的方法及根据所述方法获得的钢铁冶金制品
US11225697B2 (en) 2014-12-19 2022-01-18 Nucor Corporation Hot rolled light-gauge martensitic steel sheet and method for making the same

Also Published As

Publication number Publication date
EP1228254B1 (fr) 2004-09-22
CN1128889C (zh) 2003-11-26
FR2798871A1 (fr) 2001-03-30
DE60014145D1 (de) 2004-10-28
BR0014195A (pt) 2002-05-21
JP4620310B2 (ja) 2011-01-26
JP2003510186A (ja) 2003-03-18
EP1228254A1 (fr) 2002-08-07
ES2225221T3 (es) 2005-03-16
ATE277202T1 (de) 2004-10-15
US6852180B1 (en) 2005-02-08
DE60014145T2 (de) 2005-10-13
CA2385685A1 (fr) 2001-03-29
FR2798871B1 (fr) 2001-11-02
CN1376209A (zh) 2002-10-23
CA2385685C (fr) 2011-05-31

Similar Documents

Publication Publication Date Title
EP1228254B1 (fr) Procede de fabrication de bandes d&#39;acier au carbone, notamment d&#39;acier pour emballages
EP1067203B1 (fr) &#34;Procédé de fabrication de bandes en alliage fer-carbone-manganèse, et bandes ainsi produites&#34;
EP1072689B1 (fr) Procédé de fabrication de bandes minces en acier de type &#34;TRIP&#34; , et bandes minces ainsi obtenues
EP0881305B1 (fr) Procédé de fabrication de bandes minces d&#39;acier inoxydable ferritique
EP1466024B1 (fr) Procede de fabrication d un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu
EP1058588A1 (fr) Installation de fabrication de bandes d&#39;acier inoxydable laminees a froid
EP1739200A1 (fr) Bande en acier inoxydable austenitique présentant un aspect de surface brillant et d&#39;excellentes caractéristiques mécaniques
EP1427866A1 (fr) Procede de fabrication de tubes soudes et tube ainsi obtenu
EP0983129A1 (fr) Procede de fabrication de bandes en alliages d&#39;aluminium par coulee continue mince entre cylindres
EP2098607A1 (fr) Procédé de revêtement d&#39;une bande métallique et installation de mise en oeuvre du procédé
EP0660882B1 (fr) Procede de fabrication d&#39;une feuille mince apte a la confection d&#39;elements constitutifs de boites
FR2511046A1 (fr) Procede pour la production de tole ou de bande en acier electromagnetique a grain oriente et tole ou bande ainsi obtenue
EP1061139B1 (fr) Procédé de fabrication de tôles d&#39;acier aptes à l&#39;emboutissage par coulée directe de bandes
EP0126696B2 (fr) Procédé de fabrication en continu d&#39;une bande d&#39;acier survieillie portant un revêtement de Zn ou d&#39;alliage Zn-Al
FR2686815A1 (fr) Procede pour produire un feuillard d&#39;acier utile dans la production d&#39;une boite par etirage et emboutissage profond.
EP0245174B1 (fr) Procédé de fabrication d&#39;une bande de tôle composite polymétallique, notamment d&#39;une bande de tôle composite mince à base d&#39;acier et articles obtenus à partir d&#39;une telle tôle
BE893814A (fr) Procede de fabrication d&#39;un feuillard d&#39;acier au silicium a grains orientes et contenant de l&#39;aluminium
BE1012462A3 (fr) Procede de fabrication d&#39;une bande d&#39;acier laminee a chaud pour emboutissage.
EP1631405B1 (fr) Procede et installation de coulee continue directe d&#39;une bande metallique
BE854191A (fr) Procede de traitement thermique en continu de toles laminees
BE555766A (fr)
BE488481A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000964323

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008131996

Country of ref document: CN

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 525400

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2385685

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10088176

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000964323

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000964323

Country of ref document: EP