CN108796191B - 一种if钢薄带的制备方法 - Google Patents

一种if钢薄带的制备方法 Download PDF

Info

Publication number
CN108796191B
CN108796191B CN201810684401.1A CN201810684401A CN108796191B CN 108796191 B CN108796191 B CN 108796191B CN 201810684401 A CN201810684401 A CN 201810684401A CN 108796191 B CN108796191 B CN 108796191B
Authority
CN
China
Prior art keywords
steel
thin strip
molten steel
rolling
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810684401.1A
Other languages
English (en)
Other versions
CN108796191A (zh
Inventor
窦为学
袁国
王鹤松
康健
曹光明
张元祥
王国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201810684401.1A priority Critical patent/CN108796191B/zh
Publication of CN108796191A publication Critical patent/CN108796191A/zh
Application granted granted Critical
Publication of CN108796191B publication Critical patent/CN108796191B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • C21D8/0415Rapid solidification; Thin strip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Continuous Casting (AREA)

Abstract

本发明属于钢铁合金材料技术领域,具体涉及一种IF钢薄带的制备方法。IF钢薄带的成分按质量百分比为:C 0.0005~0.008%,Mn 0.15~0.8%,Si 0.02~0.1%,B 0.01~0.02%,V 0.04~0.09%,P 0.005~0.08%,N≤0.005%,O≤0.002%,S≤0.002%,余量为Fe。制备方法如下:(1)熔炼钢水,预热中间包、布流包、侧封板;(2)浇入中间包;(3)浇入布流包;(4)利用双辊薄带连铸设备铸轧;(5)铸带一道次热轧;(6)卷曲;(7)酸洗;(8)冷轧;(9)连续退火。IF钢薄带的厚度为0.5~1.2mm,宽度为300~1500mm,其屈服强度为280~320MPa,抗拉强度为400~490MPa,断后延伸率为38~47%。本发明技术的制备流程短、成本低、能耗低。

Description

一种IF钢薄带的制备方法
技术领域
本发明属于钢铁合金材料技术领域,具体涉及一种IF钢薄带的制备方法。
背景技术
IF钢,又称为无间隙原子钢,它的成分特点是碳含量相对较低,成分中通常加入钛和铌元素,从而形成钛和铌的碳、氮化物。由于IF钢中碳、氮原子被固定,没有间隙原子存在,在退火过程有益于有利织构发展,因此IF钢具有优异的深冲性能。随着现代汽车产业发展需求,高强度IF钢也得到一定发展。高强度IF钢主要是通过固溶强化来提高强度,主要采取的方式是在钢中添加磷、锰、硅等固溶强化元素来提高强度。由于高强度IF钢兼具高强度和优异的深冲性能,可以加工成复杂形状的汽车用零件并可以减轻汽车重量,符合汽车行业对车身减重、提高碰撞安全性及节能环保的需求。因此,IF钢是一种重要的汽车用结构材料,已经大量广泛的应用于汽车材料。
目前,冷轧IF钢的主要制备流程为:转炉熔炼→RH真空熔炼→连铸→铸坯高温加热→粗轧→精轧→卷曲→冷轧→退火。经检索,中国专利申请(公开号CN 106702268A)提出390MPa级高强IF钢及其生产方法,其制备方法为:铸坯在步进式加热炉加热(加热温度为1150~1250℃,保温时间为90~250分钟)→热轧→卷曲→冷轧→退火,此流程铸坯需高温加热并长时间高温后再进行粗轧和精轧,能耗大,整个热轧过程轧制工艺复杂,工艺流程长。专利(公开号CN 102747281A)公开罩式退火IF钢及其生产方法,其制备流程为:冶炼钢水→连铸成板坯→热轧→卷曲→冷轧→罩式退火→平整和快速退火,此流程采用罩式退火和快速退火相结合的方法,生产流程比较复杂,并且罩式退火会影响生产效率。
发明内容
针对现有技术的不足,本发明的目的在于提供一种IF钢薄带的制备方法,解决现有冷轧IF钢的生产流程长、成本高和能耗大等问题。
本发明的技术方案如下:
一种IF钢薄带的制备方法,按以下步骤进行:
(1)按所述成分熔炼钢水,预热中间包温度至1300~1350℃,预热布流包温度至1300~1350℃,预热铸辊两侧侧封板温度至1250~1350℃,将钢包中钢水浇入到中间包内,再从中间包浇入到布流包内,然后从布流包浇入到双辊薄带连铸设备中,控制钢水进入熔池时过热度为10~40℃,经铸轧获得厚度为1.8~3.5mm的铸带;
(2)铸带出双辊薄带连铸设备后,空冷至1150~1250℃开始一道次热轧,热轧总压下量为10~30%,终轧温度为950~1150℃,获得的热轧板空冷至650~730℃进行卷曲,热轧板的厚度为1.6~3.15mm;
(3)将热轧板卷经酸洗清理掉氧化皮后进行冷轧,冷轧总压下量为62~80%,得到冷轧板;
(4)连续退火:将冷轧板以10~50℃/s加热至780~860℃保温1min~3min,再以2~5℃/s冷却至室温,得到IF钢薄带,其厚度为0.5~1.2mm,宽度为300~1500mm;IF钢薄带的屈服强度为280~320MPa,抗拉强度为400~490MPa,断后延伸率为38~47%,塑性应变比r值为2~2.16。
所述的IF钢薄带的制备方法,步骤(1)中,IF钢薄带的成分按质量百分比为:C0.0005~0.008%,Mn 0.15~0.8%,Si 0.02~0.1%,B 0.01~0.02%,V 0.04~0.09%,P0.005~0.08%,N≤0.005%,O≤0.002%,S≤0.002%,余量为Fe。
所述的IF钢薄带的制备方法,步骤(2)中,将钢水浇入到中间包之前,需要控制钢包内上表面的钢水温度为1700~1720℃。
本发明的设计思想如下:
本发明IF钢薄带的制备方法,其成分设计特点为:IF钢薄带的成分添加质量百分比为0.01~0.02%的硼元素和0.04~0.09%的钒元素,经过大量实验发现硼和钒元素在IF钢薄带内可以和碳、氮元素形成硼和钒的碳、氮化物,从而IF钢薄带中碳、氮原子被固定,没有间隙原子存在。并且硼和钒的碳、氮化物和固溶在基体组织的硼元素起到强化作用,提高IF钢薄带的强度。本发明碳含量范围略高,是因为采用大量的硼元素和钒元素可以有效的固定间隙原子碳和氮,可以达到降低对RH精炼要求的效果。
本发明IF钢薄带的制备方法,其工艺过程和工艺参数特点为:
(1)本发明IF钢铸带的制备采用双辊薄带连铸技术,该技术的凝固过程为亚快速凝固,该特点保证硼元素可以均匀的分布在凝固组织中,从而可以在后续的加工热处理过程与碳、氮元素形成均匀分布的硼的碳、氮化物。此外,采用双辊薄带连铸技术,缩短钢水转化为热轧板的制备流程。
(2)本发明钢包内的钢水先浇入到中间包内,再从中间包浇入到布流包内,然后从布流包浇入到双辊薄带连铸设备中。此过程,中间包的作用是:通过控制钢水从中间包流入布流包内的流速,从而控制钢水在铸辊间形成一个稳定的熔池液面高度,可以为布流包提供持续稳定的钢液,从而保证双辊薄带连铸过程的稳定进行;布流包的作用是:控制钢水从布流包水口沿整个铸辊宽度方向,以均匀的流速将钢水浇入铸辊间的熔池内,从而形成一个稳定的溶池液面,并保证流入铸辊间所形成的熔池内的钢水温度沿整个铸辊宽度方向一致。
(3)本发明需要严格控制钢包内上表面的钢水温度为1700~1720℃,再浇入中间包内。经过实验验证,若钢包内上表面的钢水温度高于1720℃,钢水进入熔池时的过热度会大于40℃,最终会导致断带现象的发生,不能实现一整条薄带的连续制备;若钢包内上表面的钢水温度低于1700℃,钢水进入熔池时的过热度会小于10℃,此时钢水在熔池内凝固并堵塞铸辊辊缝,导致双辊薄带连铸过程无法继续进行。
(4)本发明需要预热中间包温度至1300~1350℃,预热布流包温度至1300~1350℃,预热铸辊两侧侧封板温度至1250~1350℃。经过实验验证,中间包、布流包的预热温度若低于1300℃,钢水会在中间包或布流包的熔池中发生凝固,从而造成中间包、布流包水口堵塞,导致双辊薄带连铸过程无法进行;若中间包、布流包的预热温度高于1350℃,加热过程能耗过大,导致生产成本增加。侧封板的温度会影响铸带的边部质量,若侧封板的预热温度低于1250℃,双辊薄带连铸技术制备出的铸带边部不整齐。
本发明的优点及有益效果为:
本发明IF钢薄带的制备方法采用双辊薄带连铸和连续退火相互配合的方法。现有IF钢的制备流程,均需要进行铸坯的高温加热与保温过程,此过程需要消耗大量的能源、成本较高。此外现有IF钢的制备流程,需要进行多道次的粗轧与精轧过程,同样成本高、能耗大,并且生产效率低。而双辊薄带连铸技术是一种近终成形技术,它是以液态钢水为原料,直接可以浇铸成1~5mm的铸带,因此无需进过多道次的粗轧和精轧过程,仅需一道次热轧就可以满足热轧板的厚度需要,并且双辊薄带连铸制备出的高温铸带可以直接进行在线一道次热轧,不需要常规厚板坯流程铸坯先冷却至室温再重新加热过程,生产线比较紧凑,因此成本低、能耗低,并且生产效率高。此外,冷轧板采用连续退火处理,同样提高生产效率,并且采用连续退火可控制炉内张力,从而改善IF钢薄带的板形,IF钢薄带的平直度好。
附图说明
图1为本发明的生产设备工艺流程图。
具体实施方式
在具体实施过程中,如图1所示,本发明IF钢薄带的制备工艺流程如下:(1)熔炼钢水,预热中间包、布流包、侧封板;(2)浇入中间包;(3)浇入布流包;(4)利用双辊薄带连铸设备铸轧;(5)铸带一道次热轧;(6)卷曲;(7)酸洗;(8)冷轧;(9)连续退火。钢水从布流包浇入双辊薄带连铸设备中,是将布流包中的钢水浇入旋转方向相反的两个相对的铸辊和两个相对的侧封板组成的空腔内形成熔池,钢液经铸辊的辊缝凝固并导出。
本发明实施例中,抗拉强度和断后延伸率的测试采用的标准为GB/T228.1-2010,拉伸样的标距为25mm,室温下测试,拉伸速率为2mm/min。
下面,通过实施例对本发明进一步详细阐述。
实施例1
本实施例中,IF钢薄带的制备方法,包括如下步骤:
(1)先转炉熔炼,再RH真空熔炼钢水,钢水成分按质量百分比为:C 0.008%,Mn0.15%,Si 0.02%,B 0.02%,V 0.04%,P 0.005%,N 0.005%,O 0.002%,S 0.002%,余量为Fe。预热中间包温度至1350℃,预热布流包温度至1300℃,预热侧封板温度至1250℃,控制钢包内上表面的钢水温度为1700℃,将钢包中钢水浇入到中间包内,再从中间包浇入到布流包内,然后从布流包浇入到双辊薄带连铸设备中,控制钢水进入熔池时过热度为40℃,经铸轧获得厚度为3.0mm的铸带;
(2)铸带出双辊薄带连铸设备后空冷至1250℃开始一道次热轧,热轧总压下量为30%,终轧温度为1150℃,获得的热轧板空冷至730℃进行卷曲,热轧板厚度为2.1mm;
(3)将热轧板卷经酸洗清理掉氧化皮后进行冷轧,冷轧总压下量为76%,得到冷轧板;
(4)连续退火:将冷轧板以50℃/s加热至860℃保温1min,再以5℃/s冷却至室温,得到IF钢薄带,其厚度为0.5mm,宽度为300mm;其屈服强度为320MPa,抗拉强度为490MPa,断后延伸率为38%,塑性应变比(r值)为2。
实施例2
本实施例中,IF钢薄带的制备方法,包括如下步骤:
(1)先转炉熔炼,再RH真空熔炼钢水,钢水成分按质量百分比为:C 0.0005%,Mn0.8%,Si 0.1%,B 0.01%,V 0.09%,P 0.08%,N 0.003%,O 0.001%,S 0.001%,余量为Fe。预热中间包温度至1300℃,预热布流包温度至1350℃,预热侧封板温度至1270℃,控制钢包内上表面的钢水温度为1720℃,将钢包中钢水浇入到中间包内,再从中间包浇入到布流包内,然后从布流包浇入到双辊薄带连铸设备中,控制钢水进入熔池时过热度为30℃,经铸轧获得厚度为3.5mm的铸带;
(2)铸带出双辊薄带连铸设备后空冷至1150℃开始一道次热轧,热轧总压下量为10%,终轧温度为950℃,获得的热轧板空冷至650℃进行卷曲,热轧板厚度为3.15mm;
(3)将热轧板卷经酸洗清理掉氧化皮后进行冷轧,冷轧总压下量为80%,得到冷轧板;
(4)连续退火:将冷轧板以10℃/s加热至780℃保温3min,再以2℃/s冷却至室温,得到IF钢薄带,其厚度为0.63mm,宽度为800mm;其屈服强度为280MPa,抗拉强度为400MPa,断后延伸率为47%,r值为2.16。
实施例3
本实施例中,IF钢薄带的制备方法,包括如下步骤:
(1)先转炉熔炼,再RH真空熔炼钢水,钢水成分按质量百分比为:C 0.005%,Mn0.3%,Si 0.08%,B 0.013%,V 0.07%,P 0.01%,N 0.001%,O 0.0012%,S 0.0012%,余量为Fe。预热中间包温度至1320℃,预热布流包温度至1320℃,预热侧封板温度至1350℃,控制钢包内上表面的钢水温度为1710℃,将钢包中钢水浇入到中间包内,再从中间包浇入到布流包内,然后从布流包浇入到双辊薄带连铸设备中,控制钢水进入熔池时过热度为10℃,经铸轧获得厚度为1.8mm的铸带;
(2)铸带出双辊薄带连铸设备后空冷至1200℃开始一道次热轧,热轧总压下量为11%,终轧温度为1100℃,获得的热轧板空冷至700℃进行卷曲,热轧板厚度为1.6mm;
(3)将热轧板卷经酸洗清理掉氧化皮后进行冷轧,冷轧总压下量为65%,得到冷轧板;
(4)连续退火:将冷轧板以30℃/s加热至800℃保温1.5min,再以4℃/s冷却至室温,得到IF钢薄带,其厚度为0.56mm,宽度为1500mm;其屈服强度为285MPa,抗拉强度为420MPa,断后延伸率为43%,r值为2.08。
实施例4
本实施例中,IF钢薄带的制备方法,包括如下步骤:
(1)先转炉熔炼,再RH真空熔炼钢水,钢水成分按质量百分比为:C 0.001%,Mn0.31%,Si 0.07%,B 0.011%,V 0.045%,P 0.008%,N 0.0045%,O 0.0016%,S0.0017%,余量为Fe。预热中间包温度至1330℃,预热布流包温度至1320℃,预热侧封板温度至1350℃,控制钢包内上表面的钢水温度为1720℃,将钢包中钢水浇入到中间包内,再从中间包浇入到布流包内,然后从布流包浇入到双辊薄带连铸设备中,,控制钢水进入熔池时过热度为35℃,经铸轧获得厚度为3.5mm的铸带;
(2)铸带出双辊薄带连铸设备后空冷至1240℃开始一道次热轧,热轧总压下量为10%,终轧温度为1140℃,获得的热轧板空冷至690℃进行卷曲,热轧板厚度为3.15mm;
(3)将热轧板卷经酸洗清理掉氧化皮后进行冷轧,冷轧总压下量为62%,得到冷轧板;
(4)连续退火:将冷轧板以10℃/s加热至785℃保温3min,再以2℃/s冷却至室温,得到IF钢薄带,其厚度为1.2mm,宽度为1200mm;其屈服强度为291MPa,抗拉强度为440MPa,断后延伸率为41%,r值为2.11。
实施例结果表明,本发明技术的制备流程短、成本低、能耗低,IF钢薄带的厚度为0.5~1.2mm,宽度为300~1500mm,其屈服强度为280~320MPa,抗拉强度为400~490MPa,断后延伸率为38~47%。

Claims (2)

1.一种 IF钢薄带的制备方法,其特征在于,按以下步骤进行:
(1)按IF钢成分熔炼钢水,预热中间包温度至1300~1350℃,预热布流包温度至1300~1350℃,预热铸辊两侧侧封板温度至1250~1350℃,将钢包中钢水浇入到中间包内,再从中间包浇入到布流包内,然后从布流包浇入到双辊薄带连铸设备中,控制钢水进入熔池时过热度为10~40℃,经铸轧获得厚度为1.8~3.5mm的铸带;
(2)铸带出双辊薄带连铸设备后,空冷至1150~1250℃开始一道次热轧,热轧总压下量为10~30%,终轧温度为950~1150℃,获得的热轧板空冷至650~730℃进行卷曲,热轧板的厚度为1.6~3.15mm;
(3)将热轧板卷经酸洗清理掉氧化皮后进行冷轧,冷轧总压下量为62~80%,得到冷轧板;
(4)连续退火:将冷轧板以10~50℃/s加热至780~860℃保温1min~3min,再以2~5℃/s冷却至室温,得到IF钢薄带,其厚度为0.5~1.2mm,宽度为300~1500mm;IF钢薄带的屈服强度为280~320MPa,抗拉强度为400~490MPa,断后延伸率为38~47%,塑性应变比r值为2~2.16;
步骤(1)中,IF钢薄带的成分按质量百分比为:C 0.0005~0.008%,Mn 0.15~0.8%,Si0.02~0.1%,B 0.01~0.02%,V 0.04~0.09%,P 0.005~0.08%,N≤0.005%,O≤0.002%,S≤0.002%,余量为Fe。
2.按照权利要求1所述的IF钢薄带的制备方法,其特征在于,步骤(2)中,将钢水浇入到中间包之前,需要控制钢包内上表面的钢水温度为1700~1720℃。
CN201810684401.1A 2018-06-28 2018-06-28 一种if钢薄带的制备方法 Active CN108796191B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810684401.1A CN108796191B (zh) 2018-06-28 2018-06-28 一种if钢薄带的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810684401.1A CN108796191B (zh) 2018-06-28 2018-06-28 一种if钢薄带的制备方法

Publications (2)

Publication Number Publication Date
CN108796191A CN108796191A (zh) 2018-11-13
CN108796191B true CN108796191B (zh) 2020-04-03

Family

ID=64072391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810684401.1A Active CN108796191B (zh) 2018-06-28 2018-06-28 一种if钢薄带的制备方法

Country Status (1)

Country Link
CN (1) CN108796191B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957732B (zh) * 2019-04-08 2020-11-27 东北大学 一种锆基非晶薄带材连续制备的方法
CN110273107A (zh) * 2019-06-14 2019-09-24 河钢股份有限公司承德分公司 一种高强度if钢板及其生产方法
CN111215590B (zh) * 2020-04-16 2020-09-01 江苏沙钢集团有限公司 薄规格冷轧低合金高强钢及其基于双辊铸轧的生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1376209A (zh) * 1999-09-24 2002-10-23 于西纳公司 碳钢带,特别是包装用钢带的制备方法以及所制备的带材
CN102581008A (zh) * 2012-03-01 2012-07-18 河北钢铁股份有限公司唐山分公司 一种生产低成本高成形性if钢的加工方法
CN107699797A (zh) * 2017-11-24 2018-02-16 攀钢集团攀枝花钢铁研究院有限公司 390MPa级连退冷轧汽车结构钢板及其生产方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1376209A (zh) * 1999-09-24 2002-10-23 于西纳公司 碳钢带,特别是包装用钢带的制备方法以及所制备的带材
CN102581008A (zh) * 2012-03-01 2012-07-18 河北钢铁股份有限公司唐山分公司 一种生产低成本高成形性if钢的加工方法
CN107699797A (zh) * 2017-11-24 2018-02-16 攀钢集团攀枝花钢铁研究院有限公司 390MPa级连退冷轧汽车结构钢板及其生产方法

Also Published As

Publication number Publication date
CN108796191A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
CN109338236B (zh) 一种基于薄带铸轧的易焊接碳素结构钢及其制造方法
CN104762551B (zh) 一种薄带连铸高磁感无取向硅钢的制造方法
CN108796190B (zh) 一种薄规格高锰钢板的短流程制备方法
CN105063492B (zh) 汽车摩擦片的热轧钢材及其制备方法
CN108796191B (zh) 一种if钢薄带的制备方法
CN104831167B (zh) 一种q550e高强用钢热轧板卷及其生产方法
CN111215590B (zh) 薄规格冷轧低合金高强钢及其基于双辊铸轧的生产方法
CN110983193B (zh) 基于薄带铸轧的800MPa级高强钢及其生产方法
CN111041365B (zh) 基于薄带铸轧的500~700MPa级经济型高强钢及其生产方法
CN108486480B (zh) 一种薄规格热轧双相钢板的制造方法
CN103266266A (zh) 薄板坯连铸连轧流程生产低牌号无取向硅钢及其制备方法
CN107201478B (zh) 一种基于异径双辊薄带连铸技术的超低碳取向硅钢制备方法
CN104294155A (zh) 一种超低碳取向硅钢及其制备方法
CN109338210B (zh) 一种酸洗板及其生产方法
CN105002434B (zh) 车辆从动盘对偶钢片用热轧钢材及其制备方法
CN104831207A (zh) 一种薄规格600MPa级热镀锌板生产方法
CN107385319A (zh) 屈服强度400MPa级精密焊管用钢板及其制造方法
CN105256225B (zh) 电梯用冷轧钢板及其制备方法
CN107699797A (zh) 390MPa级连退冷轧汽车结构钢板及其生产方法
US4715905A (en) Method of producting thin sheet of high Si-Fe alloy
CN106756528B (zh) 一种高氮中锰钢薄带及其近终成形制备方法
CN105838991A (zh) 一种家电用冷轧钢板及其生产方法
CN108655354B (zh) 一种高强塑积中锰钢薄带的短流程制备方法
CN108486340A (zh) 高碳高铬的不锈钢及其加工方法
CN109338238B (zh) 一种基于薄带铸轧的冲压用低碳钢及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant