WO2001005703A1 - Feuille de graphite expanse thermoresistante et procede de production associe - Google Patents

Feuille de graphite expanse thermoresistante et procede de production associe Download PDF

Info

Publication number
WO2001005703A1
WO2001005703A1 PCT/JP2000/004717 JP0004717W WO0105703A1 WO 2001005703 A1 WO2001005703 A1 WO 2001005703A1 JP 0004717 W JP0004717 W JP 0004717W WO 0105703 A1 WO0105703 A1 WO 0105703A1
Authority
WO
WIPO (PCT)
Prior art keywords
expanded graphite
phosphate
graphite sheet
acid
heat
Prior art date
Application number
PCT/JP2000/004717
Other languages
English (en)
French (fr)
Inventor
Yoshikazu Sakairi
Toshihiko Shimura
Kohei Kurose
Toshiki Kusuyama
Hideki Inomoto
Hideaki Kakimi
Original Assignee
Toyo Tanso Co., Ltd.
Oiles Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co., Ltd., Oiles Corporation filed Critical Toyo Tanso Co., Ltd.
Priority to JP2001511368A priority Critical patent/JP3430243B2/ja
Priority to EP00946308A priority patent/EP1211221B1/en
Priority to DE60045077T priority patent/DE60045077D1/de
Publication of WO2001005703A1 publication Critical patent/WO2001005703A1/ja
Priority to US11/029,650 priority patent/US20050208305A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/536Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/02Inorganic compounds
    • C09K2200/0239Oxides, hydroxides, carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the present invention relates to an expanded graphite sheet and a method for producing the same, and more particularly, to an expanded graphite sheet having extremely excellent heat resistance and resistance to oxidation and consumption, and a method for producing the same.
  • the expanded graphite sheet is made of graphite such as natural graphite, quiche graphite, pyrolytic graphite, etc., strong oxidizing agents such as concentrated sulfuric acid, concentrated nitric acid, concentrated sulfuric acid and potassium chlorate, concentrated sulfuric acid and potassium nitrate, or hydrogen peroxide, bromine or
  • An intercalation compound is formed by treatment with a halide such as aluminum chloride, and the graphite particles (acid-treated graphite raw material) on which the intercalation compound is formed are rapidly heated, for example, at a high temperature of 95 CTC or higher, for 1 to 1 C.
  • the expanded graphite sheet thus produced has various excellent properties, and is effectively used in a wide range of fields such as gaskets, ceilings, heat insulating materials, and cushioning materials.
  • expanded graphite particles with a high expansion ratio can be used to produce a sheet only with graphite, and therefore have high purity, and therefore have excellent physical properties. . Therefore, at present, high-magnification expanded graphite particles are usually used for the production of expanded graphite sheets.
  • conventional expanded graphite sheets are exposed to air, especially at temperatures as high as 700 ° C or higher.
  • heat resistance there is a problem in heat resistance, and as a result, there is a fatal drawback that a so-called oxidative consumption rate is high L, which causes oxidative consumption of graphite. .
  • the present invention has been made in view of the above-mentioned points, and has as its object the purpose of having a low oxidative consumption rate in air even when exposed to a high temperature condition of 700 ° C. or more for a long time, and having a low heat resistance. It is an object of the present invention to provide an expanded graphite sheet which is excellent in heat resistance and can satisfy various other performances required as this kind of expanded graphite sheet and a method for producing the same.
  • an expanded graphite sheet containing phosphorus pentoxide and phosphate at a predetermined ratio has excellent heat resistance and a temperature of 700 ° C or more. It has been found that even when exposed for a long time under the high temperature conditions described above, the oxidative depletion rate in air is low, and it is possible to satisfy various other properties required for this kind of expanded graphite sheet.
  • the present invention has been completed based on such knowledge, and the gist of each invention is as follows.
  • the heat-resistant expanded graphite sheet according to the first embodiment of the present invention contains phosphorus pentoxide and a phosphate.
  • the sheet since the sheet contains phosphorus pentoxide and a phosphate, the sheet is excellent in heat resistance and can be used under a high temperature condition of 700 ° C. or more. Even when exposed for a long time, the rate of oxidative depletion in air is low, and it can be applied to various applications under high temperature use conditions. Further, the sheet has various properties required for this kind of expanded graphite sheet, and can satisfy other various performances.
  • the heat-resistant expanded graphite sheet according to the first embodiment includes 0.05 to 5.0% by weight of phosphorus pentoxide in the sheet, and phosphoric acid. Salt is contained in the ratio of 1 to 16% by weight.
  • the heat-resistant expanded graphite sheet of the second embodiment of the present invention when the content of phosphorus pentoxide in the sheet is less than 0.05% by weight, the oxidative consumption rate of the sheet can be remarkably reduced. It is not possible, and even if the content exceeds 5.0% by weight, no effect is observed in lowering the oxidation consumption rate.
  • the content of the phosphate is less than 1% by weight, no sufficient effect of reducing the oxidative consumption rate is recognized, and when the content exceeds 16% by weight, the sheet tends to be hardened. This impairs the flexibility of the expanded graphite sheet.
  • the phosphate contained in the sheet includes lithium first phosphate and lithium second phosphate. Selected from the group consisting of calcium phosphate monobasic, calcium phosphate dibasic, aluminum phosphate monobasic, and aluminum phosphate dibasic.
  • the heat-resistant expanded graphite sheet according to the fourth aspect of the present invention the heat-resistant expanded graphite sheet according to any of the first to third aspects, wherein the sheet is stored in air at 700 ° C. for 3 hours. Oxidation depletion rate upon exposure is less than 10%.
  • the sheet contains phosphorus pentoxide and phosphate in a predetermined ratio, so that the sheet has excellent heat resistance and can be used under high temperature conditions. Even after prolonged exposure, the oxidative consumption rate is extremely low.
  • the method for producing a heat-resistant expanded graphite sheet according to the fifth aspect of the present invention comprises the steps of: adding a phosphate to an acid-treated graphite raw material obtained by treating a graphite raw material with a strong acid and phosphoric acid; drying; Graphite powder is obtained, and this is compression molded or Lonore molded to form a sheet.
  • the method for producing a heat-resistant expanded graphite sheet according to the sixth aspect of the present invention comprises the steps of: adding an acid-treated graphite raw material obtained by treating a graphite raw material with a strong acid; adding phosphoric acid and a phosphate; drying; Is performed to obtain an expanded graphite powder, which is formed into a sheet by compression molding or roll molding.
  • Sulfuric acid can be exemplified as the strong acid at this time.
  • the expansion temperature is 90 It is preferable to expand at about 0 ° C. or more, preferably about 950 to 1200 ° C., to about 200 to 300 times.
  • the method for producing a heat-resistant expanded graphite sheet according to the seventh aspect of the present invention is characterized in that the phosphoric acid is selected from orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, and polymethacrylate. Selected from phosphoric acid.
  • phosphoric acid uniformly mixed in the acid-treated graphite raw material is subjected to dehydration reaction of phosphorus pentoxide ( P 2 0 5 ) is produced and is contained in the sheet at a predetermined ratio by compression molding or roll molding.
  • the method for producing a heat-resistant expanded graphite sheet according to the fifth or sixth aspect wherein the phosphate is lithium first phosphate or lithium second phosphate. Selected from the group consisting of calcium phosphate monobasic, calcium phosphate dibasic, aluminum phosphate monobasic and aluminum phosphate dibasic.
  • the phosphate uniformly mixed with the acid-treated graphite raw material undergoes almost no change even in the step of expansion treatment by heating. It is contained in the sheet as it is without phosphate. Therefore, the heat-resistant expanded graphite sheet produced by the production method contains phosphorus pentoxide and phosphate in a predetermined ratio.
  • the acid-treated graphite raw material is a raw material obtained by treating graphite with sulfuric acid and an oxidizing agent according to a conventional method and drying it according to a conventional method. More specifically, graphite is acid-treated with a strong acid such as sulfuric acid using a conventionally known oxidizing agent such as hydrogen peroxide, and dried by a conventional method, usually at about 100 to 120 ° C. It is a thing. In addition, in this invention, what processed by using phosphoric acid with sulfuric acid at this time is also included. The acid-treated graphite raw material is described in more detail below.
  • A Acid-treated graphite raw material obtained by treating graphite raw material with sulfuric acid
  • B Acid-treated graphite raw material obtained by treating graphite raw material with sulfuric acid and phosphoric acid
  • the above-mentioned acid-treated graphite raw material is used.
  • graphite raw materials which have been conventionally used, for example, natural graphite, quiche graphite, pyrolytic graphite and the like are widely used.
  • the phosphoric acid to be uniformly mixed into the acid-treated graphite powder orthophosphoric acid (H 3 P0 4), metaphosphoric acid (HP0 3), polyphosphoric acid, specifically pyrophosphate (H 4 P 2 0 7) , tripolyphosphate It is selected from chain condensed phosphoric acid such as (H 5 P 8 O 10 ) and polymetaphosphoric acid, specifically cyclic condensed phosphoric acid such as trimetaphosphoric acid and tetramethyl phosphoric acid, and is usually used in the form of an aqueous solution.
  • primary phosphates and secondary phosphates are used as the phosphate uniformly mixed with the above phosphoric acid.
  • alkali metal salts and alkaline earth metal salts are preferred, and lithium and calcium are particularly preferred.
  • an aluminum salt can be used as the metal salt.
  • these phosphates used in the form or in the form of a suspension of an aqueous solution Is done.
  • the expanded graphite raw material is preferably treated at a high temperature of 950 to 1200 ° C. for about 1 to 10 seconds to generate a decomposition gas, and the gas pressure expands the graphite layer to expand about 200 to 300 times.
  • the expanded graphite particles are compression-molded or roll-formed to produce an expanded graphite sheet.
  • the expanded graphite sheet thus obtained contains phosphorus pentoxide (P 2 O 5 ) generated by a dehydration reaction of phosphoric acid and a phosphate.
  • the content of phosphorus pentoxide and phosphate contained in the expanded graphite sheet depends on the heat resistance of the expanded graphite sheet, and hence the oxidative consumption of the expanded graphite sheet. The quality of the rate will be affected.
  • phosphorus pentoxide is contained in an amount of 0.05% to 5.0% by weight, preferably 0.2% to 2.0% by weight, and a phosphate in an amount of 1% to 16% by weight, preferably 2% to 10% by weight. It was confirmed that the expanded graphite sheet contained at a relatively high rate had excellent heat resistance and, consequently, excellent oxidation and wear resistance. If the content of phosphorus pentoxide in the expanded graphite sheet is less than 0.05% by weight, the oxidation consumption rate of the expanded graphite sheet cannot be remarkably reduced, and it exceeds 5.0% by weight. No effect is observed in lowering the oxidative consumption rate even if it is contained, and rather, white smoke is generated when phosphorus pentoxide is generated by the dehydration reaction of phosphoric acid, which is not preferable from the viewpoint of environmental health.
  • the content of the phosphate is less than 1% by weight, no sufficient effect of reducing the oxidative consumption rate is observed, and when the content is more than 16% by weight, the amount of the phosphate when formed into an expanded graphite sheet is reduced. The sheet tends to be hard, which impairs the flexibility of the expanded graphite sheet.
  • the properties of the expanded graphite sheet of the present invention containing 0.05 to 5.0% by weight of the above phosphorus pentoxide and 1 to 16% by weight of a phosphate are as follows.
  • FIG. 1 shows the results of a test on the oxidative depletion rate of the expanded graphite sheet of the present invention obtained by containing 4% by weight of phosphate (aluminum monophosphate) and varying the content of phosphorus pentoxide. It is as follows.
  • Fig. 1 shows the results of testing the oxidative depletion rate of expanded graphite sheets when the phosphate (aluminum monophosphate) content was kept constant at 4% by weight and the phosphorus pentoxide content was varied.
  • the rate of oxidative depletion of the expanded graphite sheet when the expanded graphite sheet is allowed to stand in air maintained at a temperature of 700 ° C. for 3 hours is represented by a weight loss rate.
  • FIG. 2 is a drawing showing an example of a test device for evaluating the flexibility of an expanded graphite sheet.
  • the heat-resistant expanded graphite sheet of the present invention is extremely excellent in heat resistance and oxidation resistance, and is used for gaskets, sealings, heat insulating materials, cushioning materials and the like.
  • the acid-treated graphite from which sulfuric acid was sufficiently removed was dried in a drying furnace maintained at a temperature of 110 ° C. for 3 hours to obtain an acid-treated graphite raw material.
  • an aqueous solution of orthophosphoric acid having a concentration of 84% as phosphoric acid 0.16 to 3.5 parts by weight and a concentration of 50% as phosphate were added to the acid-treated graphite raw material.
  • a solution prepared by diluting 2 to 38 parts by weight of an aqueous solution of primary phosphoric acid with 10 parts by weight of methanol was blended in a spray form, and uniformly stirred to obtain a wettable mixture. This wet mixture was dried in a drying oven maintained at a temperature of 120 ° C. for 2 hours.
  • Tables 1 to 5 show the test results of the composition of the expanded graphite sheet thus obtained and the oxidative consumption rate of the expanded graphite sheet.
  • the numerical values of the component compositions in the table are expressed in weight% o
  • the evaluation of the oxidative consumption rate of the expanded graphite sheet was represented by the weight reduction rate (%) of the expanded graphite sheet after leaving the expanded graphite sheet to stand in air maintained at a temperature of 700 ° C. for 3 hours.
  • An acid-treated graphite raw material was produced in the same manner as in Example 1. While stirring the acid-treated graphite raw material (100 parts by weight), 0.7-1.4 parts by weight of an orthophosphoric acid aqueous solution having a concentration of 84% as phosphoric acid and a concentration of 50% as a phosphate were added to the acid-treated graphite raw material. A solution prepared by diluting 4.0 to 17.4 parts by weight of an aqueous solution of calcium monophosphate with 20 parts by weight of methanol was blended in a spray form, and uniformly stirred to obtain a wettable mixture.
  • expanded graphite particles having an expansion ratio of 240 times were produced in the same manner as in Example 1, and the same procedure as in Example 1 was performed to produce an expanded graphite sheet.
  • Tables 6 to 7 show the results of tests on the component composition of the expanded graphite sheet thus obtained and the oxidative consumption rate of the expanded graphite sheet.
  • the numerical values of the component compositions in the table are% by weight. Further, the oxidative consumption rate of the expanded graphite sheet was evaluated by the same method as in the above example.
  • An acid-treated graphite raw material was produced in the same manner as in Example 1. While stirring the acid-treated graphite raw material (100 parts by weight), 0.3 to 1.7 parts by weight of an orthophosphoric acid aqueous solution having a concentration of 84% as a phosphate is added to the acid-treated graphite raw material in a spray form, and the mixture is uniformly mixed. Stirring yielded a wettable mixture. Thereafter, expanded graphite particles having an expansion ratio of 250 times were produced in the same manner as in Example 1, and then treated in the same manner as in Example 1 to produce an expanded graphite sheet.
  • Table 8 shows the test results of the composition of the expanded graphite sheet thus obtained and the rate of oxidative depletion of the expanded graphite sheet.
  • the numerical values of the component compositions in the table are expressed in terms of% by weight, and the oxidative consumption rate of the expanded graphite sheet was evaluated by the same method as in the above-mentioned Example. [Table 8]
  • An acid-treated graphite raw material was produced in the same manner as in Example 1. While stirring the acid-treated graphite raw material in an amount of 100 parts by weight, 8.4 to 38 parts by weight of a 50% aqueous aluminum phosphate solution as phosphate was added to the acid-treated graphite raw material in 30 parts by weight of methanol. The solution diluted in part was spray-blended and uniformly stirred to obtain a wettable mixture.
  • expanded graphite particles having an expansion ratio of 230 times were produced in the same manner as in Example 1 described above, and bow I was processed in the same manner as in Example 1 to produce an expanded graphite sheet.
  • Table 9 shows the results of tests on the component composition of the expanded graphite sheet thus obtained and the oxidative consumption rate of the expanded graphite sheet.
  • the numerical values of the component compositions in the table are expressed in terms of% by weight, and the oxidative consumption rate of the expanded graphite sheet was evaluated in the same manner as in the above examples.
  • the expanded graphite sheets of Examples 1 to 28 contain phosphorus pentoxide and phosphate generated by the dehydration reaction of phosphoric acid in the sheets, a synergistic effect between the two even under a high temperature condition of 700 ° C. Is exhibited, and the oxidation consumption rate (weight reduction rate) shows an extremely low value, indicating that it has heat resistance.
  • the expanded graphite screen of the comparative example containing phosphoric acid or phosphate alone in the expanded graphite -The oxidative consumption rate (weight loss rate) is high, and expanded graphite sheets containing phosphate alone (Comparative Examples 6 to 9) have an extremely high oxidative consumption rate and poor heat resistance. There is.
  • Table 10 shows properties of the expanded graphite sheets of Examples 8 and 15 described above.
  • the flexibility in Table 10 was evaluated using the test device shown in Fig. 2 and a width of 1 mm and a length of 1 mm. The number of times until a sample of 100 mm (expanded graphite sheet) was alternately bent at an angle of 90 degrees and cut was cut off.
  • reference numeral 1 denotes a sample
  • 2 denotes a 50 g weight
  • 3 denotes a bending range.
  • the expanded graphite sheet of the present invention has heat resistance by containing phosphorus pentoxide and a phosphate at a predetermined ratio in the sheet, and has a heat resistance of 700 ° C. Extremely low oxidation consumption rate even under the above high temperature conditions! ⁇ , And has the same properties without impairing the properties of the expanded graphite sheet originally possessed.
  • the expanded graphite sheet of the present invention is extremely excellent in heat resistance and oxidation and wear resistance, it is effectively used for gaskets, sealing, heat insulating materials, cushioning materials, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Sealing Material Composition (AREA)

Description

明 細 書 耐熱性膨張黒鉛シート及びその製造方法 技術分野
本発明は膨張黒鉛シート及びその製造方法に関し、 更に詳しくは、 耐熱性や耐酸化消耗 性が極めて優れた膨張黒鉛シート及びその製造方法に関する。 背景技術
膨張黒鉛シートは天然黒鉛、 キッシュ黒鉛、 熱分解黒鉛等の黒鉛を、 濃硫酸、 濃硝酸、 濃硫酸と塩素酸カリウム、 濃硫酸と硝酸カリウム、 又は過酸化水素等の強酸化剤、 臭素あ るいは塩化アルミニウム等のハロゲン化物で処理することにより層間化合物を形成し、 こ の層間化合物の形成された黒鉛粒子 (酸処理黒鉛原料) を急激に加熱、 例えば 9 5 CTC以 上の高温で 1〜1 0秒間処理して分解ガスを発生せしめ、 そのガス圧により黒鉛層間を拡 張して膨張黒鉛粒子を形成し、 この膨張黒鉛粒子を結合剤の存在下又は不存在下で圧縮成 形ないしローノレ成形して製造される。 このように製造された膨張黒鉛シートは、 種々優れ た特性を有し、 例えばガスケッ ト、 シーリング、 断熱材、 クッション材等の広い分野に於 いて有効に使用されている。
また、 従来この種膨張黒鉛シートに使用される膨張黒鉛粒子としては、 その膨張倍率が 低いもの、 例えば 2 0〜7 0倍程度のものでは、 結合剤の不存在下でのシート化は成形が 困難で接着剤を用レ、る必要があり、 この接着剤使用による純度の低下及び各種物性の低下 という難点がある。
これに対し、 膨張倍率を高く、 通常 2 0 0〜3 0 0倍程度にした膨張黒鉛粒子では、 黒 鉛のみでシートを製造できるため、 純度が高く、 このため各種物性に優れたものとなる。 従って、 現在膨張黒鉛シートの製造には、 通常高倍率の膨張黒鉛粒子が使用されている。 しかしながら、 従来の膨張黒鉛シートは空気中、 とくに 7 0 0 °C以上の高温の空気中に おいて、 耐熱性に問題があり、 結果として黒鉛の酸化消耗を惹起するという、 所謂酸化消 耗率が高 L、という致命的な欠点がある。.
この難点を解決するものとして、 低膨張黒鉛粒子を用い、 且つ燐酸または燐酸塩の酸化 抑制処理を施した膨張黒鉛シートも開発されている (特公昭 5 4— 3 0 6 7 8号) 。 この ものでは燐酸または燐酸塩を使用することにより、 接着剤なしで低膨張黒鉛粒子を用いて シート化できる旨開示されているが、 たとえシート化できても基本的に接着剤を用いてい ないので膨張黒鉛シートとしての各種物性特に機械的特性、 シ一卜の均一性等が満足でき ない。 しかも加えて、 耐酸化性が向上する旨記載されているが、 これも不充分で、 特に長 時間暴露した場合は、 酸化消耗が激しく、 決して満足のいくものではない。
本発明は前記諸点に鑑みてなされたもので、 その目的とするところは 7 0 0 °C以上の高 温条件下に長時間暴露した場合においても、 空気中での酸化消耗率が低く耐熱性に優れ、 しかもこの種膨張黒鉛シートとして要求されるその他の各種性能を満足し得る膨張黒鉛シ ートおよびその製造方法を提供することである。
発明の開示
本発明者等は、 上記目的を達成するべく鋭意検討を重ねた結果、 五酸化燐および燐酸塩 力所定の割合で含有されてなる膨張黒鉛シートは、 耐熱性に優れ、 7 0 0 °C以上の高温条 件下に長時間暴露した場合においても、 空気中での酸化消耗率が低く、 しかもこの種膨張 黒鉛シートとして要求されるその他の各種性能を満足し得るとの知見を得た。 本発明は、 斯かる知見に基づき完成されたもので、 各発明の要旨は次の通りである。
本発明の第一の態様の耐熱膨張黒鉛シートは、 五酸化燐及び燐酸塩が含有されてなる。 第一の態様の耐熱性膨張黒鉛シー卜によれば、 当該シート中に五酸化燐および憐酸塩が 含有されているので、 耐熱性に優れ、 7 0 0 °C以上の高温条件下に長時間暴露した場合に おいても、 空気中での酸化消耗率が低く、 高温使用条件下での各種用途に適用することが できる。 また、 当該シートはこの種膨張黒鉛シートとして要求される諸性質を具備してお り、 その他の各種性能を満足し得る。 本発明の第二の態様の耐熱性膨張黒鉛シートでは、 第一の態様の耐熱性膨張黒鉛シ一ト において、 該シート中に五酸化燐が 0. · 0 5〜5. 0重量%、 燐酸塩が 1〜 1 6重量%の 割合で含有されている。
本発明の第二の態様の耐熱性膨張黒鉛シー卜によれば、 シ一ト中の五酸化燐の含有量が 0. 0 5重量%未満では該シートの酸化消耗率を著しく低下せしめることができず、 また 5. 0重量%を超えて含有させても酸化消耗率の低下に効果が認められない。 また、 燐酸 塩の含有量が 1重量%未満では、 十分な酸化消耗率の低下に効果が認められず、 また 1 6 重量%を超えて含有させると、 該シートを硬くする傾向を示し、 該膨張黒鉛シートの具有 する可撓性を阻害することになる。
本発明の第三態様の耐熱性膨張黒鉛シートでは、 第一又は第二の態様の耐熱性膨張黒鉛 シートにおいて、 当該シート中に含有される燐酸塩は、 第一燐酸リチウム、 第二燐酸リチ ゥム、 第一燐酸カルシウム、 第二燐酸カルシウム、 第一燐酸アルミニウム及び第二燐酸ァ ルミニゥムから選択される。
本発明の第四の態様の耐熱性膨張黒鉛シートでは、 第一から第三のいずれかの態様の耐 熱性膨張黒鉛シー卜において、 当該シ一トは 7 0 0 °Cの空気中において 3時間暴露した時 の酸化消耗率が 1 0 %未満である。
本発明の第四の態様の耐熱性膨張黒鉛シー卜によれば、 該シート中に所定量の割合で五 酸化燐と燐酸塩とが含有されているので、 耐熱性に優れ、 高温条件下に長時間暴露した場 合にお 、ても酸化消耗率が極めて低 、。
本発明の第五の態様の耐熱性膨張黒鉛シー卜の製造方法は、 黒鉛原料を強酸及び燐酸で 処理した酸処理黒鉛原料に、 燐酸塩を加え、 乾燥し、 引き続き膨張化処理を施して膨張黒 鉛粉末を得、 これを圧縮成形あるいはローノレ成形してシート化するものである。
また本発明の第六の態様の耐熱性膨張黒鉛シ一卜の製造方法は、 黒鉛原料を強酸で処理 した酸処理黒鉛原料に、 燐酸と燐酸塩とを添加し、 乾燥し、 引き続き膨張化処理を施して 膨張黒鉛粉末を得、 これを圧縮成形あるいはロール成形してシート化するものである。 この際の強酸としては、 硫酸が例示できる。 また膨張化処理としては、 膨張化温度 9 0 0 °C以上、 好ましくは 9 5 0 ~ 1 2 0 0 °C程度の温度で、 2 0 0〜 3 0 0倍程度に膨張せ しめることが好ましい。
本発明の第七の態様の耐熱性膨張黒鉛シートの製造方法では、 第五及び第六の態様の耐 熱性膨張黒鉛シートの製造方法において、 燐酸は、 オルト燐酸、 メタ燐酸、 ポリ燐酸、 ポ リメタ燐酸から選択される。
本発明の第七の態様の耐熱性膨張黒鉛シー卜の製造方法によれば、 酸処理黒鉛原料に均 一に配合された燐酸は加熱による膨張化処理の工程において、 脱水反応により五酸化燐 (P 205) を生成し、 圧縮成形あるいはロール成形によりシート中に所定量の割合で含有され る。
本発明の第八の態様の耐熱性膨張黒鉛シー卜の製造方法では、 第五又は第六の態様の耐 熱性膨張黒鉛シートの製造方法において、 燐酸塩は、 第一燐酸リチウム、 第二燐酸リチウ ム、 第一燐酸カルシウム、 第二燐酸カルシウム、 第一燐酸アルミニウム及び第二燐酸アル ミニゥムから選択される。
本発明の第九の態様の耐熱性膨張黒鉛シートの製造方法によれば、 酸処理黒鉛原料に均 一に配合された燐酸塩は加熱による膨張化処理の工程におし、ても、 殆ど変化せずに燐酸塩 のままシート中に含有される。 従って、 当該製造方法によって製造された耐熱性膨張黒鉛 シート中には、 所定量の割合で五酸化燐と燐酸塩が含有されている。
以下、 本発明の実施の形態について詳細に説明する。
耐熱性膨張黒鉛シー卜の製造方法について説明する。
本発明に於いて酸処理黒鉛原料とは、 黒鉛を常法に従って硫酸と酸化剤とで処理し、 常 法に従って乾燥させた原料であり、 従来から使用されてきたものである。 更に詳しくは、 従来公知の過酸化水素等の酸化剤を用いて、 強酸例えば硫酸を用いて黒鉛を酸処理し、 こ れを常法、 通常 1 0 0〜1 2 0 °C程度で乾燥させたものである。 尚、 本発明に於いては、 この際燐酸を硫酸と共に用いて処理したものも含まれる。 酸処理黒鉛原料について更に詳 しく説明すると以下の通りである。
(A) 黒鉛原料を硫酸で処理した酸処理黒鉛原料 (B)黒鉛原料を硫酸及び燐酸で処理した酸処理黒鉛原料
本発明に於いては、 上記の酸処理黒鉛原料の! ^、ずれかが使用される。
これ等のいずれかの酸処理黒鉛原料を用いて、 (A) の場合には、 燐酸と燐酸塩を同時 に、 又は燐酸を最初に加え、 後から燐酸塩を加え、 また (B) の場合には、 燐酸塩を加え て、 以後常法に従って好ましくは 950〜1200°C程度の膨張化温度で 200〜300 倍程度に膨張させ、 これをシート化すれば良い。
この際の黒鉛としてはやはり従来から使用されてきた各種黒鉛原料、 例えば天然黒鉛、 キッシュ黒鉛、 熱分解黒鉛等が広く使用される。
酸処理黒鉛粉末に均一に配合される燐酸としては、 オルト燐酸 (H3P04)、 メタ燐酸 (HP03)、 ポリ燐酸、 具体的にはピロ燐酸 (H4P207)、 トリポリ燐酸 (H5P8O10) 等の鎖状縮合燐酸、 ポリメタ燐酸、 具体的にはトリメタ燐酸、 テ卜ラメ夕燐酸等の環状縮 合燐酸から選択され、 通常水溶液の形態で使用される。
また、 上記燐酸とともに均一に配合される燐酸塩としては、 第一燐酸塩および第二燐酸 塩が使用され、 中でもアルカリ金属塩およびアルカリ土類金属塩力好ましく、 とくにリチ ゥムおよびカルシウムが好ましい。 また金属塩として、 アルミニウム塩を使用することも できる。 具体的には、 第一燐酸リチウム (L i H2PO4) 、 第二燐酸リチウム (L i 2H P04)、 第一燐酸カルシウム [Ca (H2PO4) 2] 、 第二燐酸カルシウム (CaHPO 4) 、 第一燐酸アルミニウム [A 1 (H2P〇4) 3] 、 第二燐酸アルミニウム [A 12 (H P04) 3] が挙げられ、 これら燐酸塩は水溶液の形態あるいは懸濁液の形態で使用される。
、で、 膨張黒鉛原料を好ましくは 950〜 1200 °Cの高温で 1〜 10秒間程度処理 して分解ガスを発生せしめ、 そのガス圧により黒鉛層間を拡張して 200〜300倍程度 に膨張させた膨張黒鉛粒子を形成したのち、 この膨張黒鉛粒子を圧縮成形或 t、はロール成 形して膨張黒鉛シートを作製する。
このようにして得られた膨張黒鉛シ一卜中には、 燐酸の脱水反応によって生成した五酸 化燐 (P2O5)と燐酸塩が含有される。 膨張黒鉛シート中に含有される五酸化燐および燐 酸塩の含有量の多寡が、 該膨張黒鉛シートの耐熱性、 延いては膨張黒鉛シートの酸化消耗 率の良否を左右することになる。
本発明では、 五酸化燐が 0. 05重量%〜5. 0重量%、 好ましくは 0. 2〜2. ◦重 量%、 燐酸塩が 1〜16重量%、 好ましくは 2〜10重量%の割合で含有されている膨張 黒鉛シ一卜が耐熱性、 延いては耐酸化消耗性に優れていることを確認した。 . 膨張黒鉛シ一ト中の五酸化燐の含有量が 0. 05重量%未満では、 膨張黒鉛シー卜の酸 化消耗率を著しく低下せしめることができず、 また、 5. 0重量%を超えて含有させても 酸化消耗率の低下に効果が認められず、 却つて燐酸の脱水反応による五酸化燐の生成時に 白煙を生じ、 環境衛生上好ましくない。
また、 燐酸塩の含有量が 1重量%未満では十分な酸化消耗率の低下に効果が認められず、 また 16重量%を超えて含有させると、 膨張黒鉛シ一卜に形成した際に、 該シートを硬く する傾向を示し、 該膨張黒鉛シー卜の具有する可撓性を阻害することになる。
上述の五酸化燐を 0. 05-5. 0重量%及び燐酸塩を 1〜 16重量%含有した本発明 の膨張黒鉛シートの諸性質はつぎの通りである。
厚さ (mm) : 0. 2〜1. 5
嵩密度 (gZcm3) : 0. 8〜1. 1
引張強度 (k g f Zcm2) : 40〜60
圧縮率 (70kg fZcm2、%) : 10〜25
復元率 (70kg fZcm2、%) : 25〜45
また、 燐酸塩 (第一燐酸アルミニウム) を 4重量%含有せしめ、 且つ五酸化燐の含有量 を種々変化させて得た本発明の膨張黒鉛シー卜の酸化消耗率について試験した結果は第 1 図のとおりである。
試験結果を示すグラフから、 五酸化燐および燐酸塩を含有する膨張黒鉛シートは、 70 0°C、 3時間という厳しい条件下においても酸化消耗、 すなわち重量減少率が 10%未満 と極めて低いことが判る。 図面の簡単な説明 第 1図は燐酸塩 (第一燐酸アルミニウム) の含有量を 4重量%と一定にし、 五酸化燐の 含有量を種々変化させたときの膨張黒鉛シー卜の酸化消耗率を試験した結果を示すグラフ で、 膨張黒鉛シートを 7 0 0 °Cの温度に保持した空気中に 3時間静置した時の該膨張黒鉛 シートの酸化消耗率を重量減少率で表したものである。
第 2図は膨張黒鉛シートの可撓性を評価する試験装置の一例を示す図面である。 産業上の利用分野
本発明の耐熱性膨張黒鉛シ一トは、 耐熱性及び耐酸化消耗性が極めて優れているので、 ガスケット、 シーリング、 断熱材、 クッシヨン材等に使用される。 発明を実施するための最良の形態
以下、 本発明を実施例によりさらに詳細に説明するが、 本発明は、 その要旨を超えない 限り、 以下の実施例に限定されるものではない。
【実施例 1〜2 0】
濃度 9 8 %の濃硫酸 3 0 0重量部を撹拌しながら、 酸化剤として過酸化水素の 6 0 %水 溶液 5重量部を加え、 これを反応液とした。 この反応液を冷却して 1 0 °Cの温度に保持し、 粒度 3 0〜 8 0メッシュの天然鱗片状黒鉛粉末 1 0 0重量部を添加し、 3 0分間反応を行つ た。 反応後、 吸引瀘過して酸処理黒鉛を分離し、 該酸処理黒鉛を 3 0 0重量部の水で 1 0 分間撹拌して吸引瀘過するという洗浄作業を 2回繰り返し、 酸処理黒鉛から硫酸分を十分 除去した。
次いで、 硫酸分を十分除去した酸処理黒鉛を 1 1 0 °Cの温度に保持した乾燥炉で 3時間 乾燥し、 これを酸処理黒鉛原料とした。
酸処理黒鉛原料 1 0 0重量部を撹拌しながら、 該酸処理黒鉛原料に燐酸として濃度 8 4 %のオルト燐酸水溶液 0. 1 6〜3. 5重量部と、 燐酸塩として濃度 5 0 %の第一燐酸ァ ルミニゥム水溶液 2〜 3 8重量部をメタノ一ル 1 0重量部で希釈した溶液を噴霧状に配合 し均一に撹拌して湿潤性を有する混合物を得た。 この湿潤性を有する混合物を、 120°Cの温度に保持した乾燥炉で 2時間乾燥した。 これを、 1000°Cの温度で 5秒間処理して、 分解ガスを発生せしめ、 そのガス圧によ り黒鉛層間を拡張して膨張させた黒鉛粒子 (膨張倍率 240倍) を製造した。 この膨張処 理工程において、 成分中のオルト燐酸は脱水反応を生じて五酸化燐を生成し、 また第一燐 酸アルミニウムはほとんど変化せずに五酸化燐と共存して含有されていることを確認した c この膨張黒鉛粒子をロール間隙 0. 33mmでロール成形し、 厚さ 0. 36mmの膨張黒 鉛シー卜を作製した。
このようにして得た膨張黒鉛シー卜の成分組成および当該膨張黒鉛シー卜の酸化消耗率 について試験した結果を表 1〜表 5に示す。 なお、 表中の成分組成の数値は重量%で表示 した o
膨張黒鉛シー卜の酸化消耗率の評価は、 膨張黒鉛シートを 700°Cの温度に保持した空 気中に 3時間静置した後の該膨張黒鉛シートの重量減少率 (%) で表示した。
【表 1】
実 施 例
1 2 3 4
膨張黒鉛 98. 9 95. 9 93. 9 91. 9
五酸化燐 0. 1 0. 1 0. 1 0. 1
燐酸塩
第一燐酸アルミニウム 1. 0 4. 0 6. 0 8. 0
重量減少率 9% 9% 8% 8% 【表 2】
Figure imgf000010_0001
【表 3】
Figure imgf000010_0002
【表 4】
実 施 例
13 14 15 16 膨張黒鉛 95. 6 91. 6 95. 3 91. 3 五酸化燐 0. 4 0. 4 0. 7 0. 7 燐酸塩
第一燐酸アルミニウム 4. 0 8. 0 4. 0 8. 0 重量減少率 6% 5% 5% 5% 【表 5】
Figure imgf000011_0001
【実施例 2 1〜2 8】
前記実施例 1と同様にして酸処理黒鉛原料を作製した。 該酸処理黒鉛原料 1 0 0重量部 を撹拌しながら、 該酸処理黒鉛原料に燐酸として濃度 8 4 %のオル卜燐酸水溶液 0. 7〜 1. 4重量部と、 燐酸塩として濃度 5 0 %の^一燐酸カルシウム水溶液 4. 0〜1 7. 4 重量部をメタノール 2 0重量部で希釈した溶液を噴霧状に配合し、 均一に撹拌して湿潤性 を有する混合物を得た。 以下、 前記実施例 1と同様の方法で膨張倍率 2 4 0倍の膨張黒鉛 粒子を製造し、 弓 Iき続き前記実施例 1と同様に処理して膨張黒鉛シートを作製した。
このようにして得た膨張黒鉛シートの成分組成および当該膨張黒鉛シートの酸化消耗率 について試験した結果を表 6〜表 7に示す。 なお、 表中の成分組成の数値は重量%である。 また、 膨張黒鉛シートの酸化消耗率は、 前記実施例と同様の方法で評価した。
【表 6】
Figure imgf000012_0001
【比較例 1〜5】
前記実施例 1と同様にして酸処理黒鉛原料を作製した。 該酸処理黒鉛原料 1 0 0重量部 を撹拌しながら、 該酸処理黒鉛原料に燐酸塩として濃度 8 4 %のオルト燐酸水溶液 0. 3 〜1. 7重量部を噴霧状に配合し、 均一に撹拌して湿潤性を有する混合物を得た。 以下、 前記実施例 1と同様の方法で膨張倍率 2 5 0倍の膨張黒鉛粒子を製造し、 引き続き前記実 施例 1と同様に処理して膨張黒鉛シ一トを作製した。
このようにして得た膨張黒鉛シー卜の成分組成および当該膨張黒鉛シー卜の酸化消耗率 について試験した結果を表 8に示す。 なお、 表中の成分組成の数値は重量%で表示し、 ま た膨張黒鉛シー卜の酸化消耗率は、 前記実施例と同様の方法で評価した。 【表 8】
Figure imgf000013_0001
【比較例 6〜9】
前記実施例 1と同様にして酸処理黒鉛原料を作製した。 該酸処理黒鉛原料 1 0 0重量部 を撹拌しながら、 該酸処理黒鉛原料に燐酸塩として濃度 5 0 %の第一燐酸アルミニゥム水 溶液 8. 4〜 3 8重量部をメタノ一ル 3 0重量部で希釈した溶液を噴霧状に配合し均一に 撹拌して湿潤性を有する混合物を得た。 以下、 前記実施例 1と同様の方法で膨張倍率 2 3 0倍の膨張黒鉛粒子を製造し、 弓 Iき続き実施例 1と同様に処理して膨張黒鉛シートを作製 した α
このようにして得た膨張黒鉛シー卜の成分組成および当該膨張黒鉛シ一卜の酸化消耗率 について試験した結果を表 9に示す。 なお、 表中の成分組成の数値は重量%で表示し、 ま た膨張黒鉛シートの酸化消耗率は、 前記実施例と同様の方法で評価した。
【表 9】
Figure imgf000013_0002
実施例 1〜2 8の膨張黒鉛シートは当該シート中に燐酸の脱水反応によって生成した五 酸化燐と燐酸塩が含有されているため、 7 0 0 °Cの高温条件下においても両者の相乗効果 が発揮され、 酸化消耗率 (重量減少率) は極めて低い値を示し、 耐熱性を有することが判 る。 一方、 膨張黒鉛中に燐酸または燐酸塩をそれぞれ単独で含有する比較例の膨張黒鉛シ —トは、 酸化消耗率 (重量減少率) が高く、 とくに燐酸塩を単独で含有する膨張黒鉛シ一 ト (比較例 6〜9 ) は酸化消耗率が極めて高く、 耐熱性に劣っていることが る。
上述した実施例 8および実施例 1 5の膨張黒鉛シ一卜の諸性質は表 1 0に示す通りであ る。
【表 1 0】
Figure imgf000014_0001
表 1 0から、 酸化消耗率が極めて低く、 耐熱性を備えた実施例 8および実施例 1 5の膨 張黒鉛シートは、 膨張黒鉛シートの本来具有する諸性質を何等損なうことなく従来製品と ほぼ同等の諸性質を具備していることが判る。 但し、 表 1 0中の 「従来製品」 は東洋炭素 (株)製の膨張黒鉛シート 「品番 P F— 3 8 DJ を表す。
また、 表 1 0中の可撓性の評価は、 第 2図に示す試験装置を用いて幅 1 O mm、 長さ 1 0 0 mmの試料 (膨張黒鉛シート) を交互に 9 0度の角度に曲げて当該試料が切断するま での回数で示した。 第 2図中、 符号 1は試料、 2は 5 0 gの重り、 3は曲げ範囲を示す。 上述の実施例から明らかなように、 本発明の膨張黒鉛シートは、 当該シート中に五酸化 燐と燐酸塩を所定量の割合で含有したことにより、 耐熱性を有し、 7 0 0 °C以上の高温条 件下にお t、ても酸化消耗率が極めて低! ^、という効果を発揮するとともに本来具有する膨張 黒鉛シー卜の諸性質を何等損なうことなく同等の性質を具備するものである。 産業上の利用可能性
以上のように、 本発明の膨張黒鉛シートは耐熱性や耐酸化消耗性に極めて優れているの で、 ガスケッ ト、 シーリング、 断熱材、 クッション材等に有効に使用される。

Claims

請 求 の 範 囲
1. 五酸化燐及び憐酸塩が含有されて成る耐熱性膨張黒鉛シート。
2. 上記五酸化燐の含有量が 0. 0 5〜5. 0重量%、 上記燐酸塩が 1〜1 6重量%の割 合で含有されている請求項 1に記載の耐熱性膨張黒鉛シート。
3. 燐酸塩が、 第一燐酸リチウム、 第二燐酸リチウム、 第一燐酸カルシウム、 第二燐酸力 ルシゥム、 第一燐酸アルミニウム及び第二燐酸アルミニウムから選択される、 請求項 1又 は 2に記載の耐熱性膨張黒鉛シート。
4. 7 0 0 °Cの空気中において 3時間暴露した時の酸化消耗率が 1 0 %未満である請求項 1 ~ 3のいずれかに記載の耐熱性膨張黒鉛シート。
5. 黒鉛原料を強酸及び燐酸で処理した酸処理黒鉛原料に、 燐酸塩を添加した原料を用い て、 製造することを特徴とする耐熱性膨張黒鉛シー卜の製造方法。
6. 黒鉛原料を強酸で処理した酸処理黒鉛原料に、 燐酸と燐酸塩を添加した原料を用いて、 製造することを特徴とする耐熱性膨張黒鉛シー卜の製造方法。
7. 燐酸は、 オルト燐酸、 メタ燐酸、 ポリ燐酸、 ポリメタ燐酸から選択される、 請求項 5 又は 6に記載の耐熱性膨張黒鉛シー卜の製造方法。
8. 燐酸塩は、 第一燐酸リチウム、 第二燐酸リチウム、 第一燐酸カルシウム、 第二燐酸力 ルシゥム、 第一燐酸アルミニウム及び第二燐酸アルミニウムから選択される、 請求項 5 ~ 7のいずれかに記載の耐熱性膨張黒鉛シートの製造方法。
9. 請求項 5〜 8のいずれか一項に記載の耐熱性膨張黒鉛シートの製造方法によって得ら れた、 五酸化燐が 0. 0 5〜5. 0重量%、 燐酸塩が 1〜1 6重量%の割合で含有されて いる耐熱性膨張黒鉛シ一ト。
PCT/JP2000/004717 1999-07-14 2000-07-13 Feuille de graphite expanse thermoresistante et procede de production associe WO2001005703A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001511368A JP3430243B2 (ja) 1999-07-14 2000-07-13 耐熱性膨張黒鉛シート及びその製造方法
EP00946308A EP1211221B1 (en) 1999-07-14 2000-07-13 Heat-resistant expanded graphite sheet and method for producing the same
DE60045077T DE60045077D1 (de) 1999-07-14 2000-07-13 Hitzebeständige, expandierte graphitplatten und verfahren zu deren herstellung
US11/029,650 US20050208305A1 (en) 1999-07-14 2005-01-06 Heat-resistant expanded graphite sheet and method for production of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20049399 1999-07-14
JP11/200493 1999-07-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/029,650 Division US20050208305A1 (en) 1999-07-14 2005-01-06 Heat-resistant expanded graphite sheet and method for production of the same

Publications (1)

Publication Number Publication Date
WO2001005703A1 true WO2001005703A1 (fr) 2001-01-25

Family

ID=16425248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004717 WO2001005703A1 (fr) 1999-07-14 2000-07-13 Feuille de graphite expanse thermoresistante et procede de production associe

Country Status (7)

Country Link
US (1) US20050208305A1 (ja)
EP (1) EP1211221B1 (ja)
JP (1) JP3430243B2 (ja)
KR (1) KR100769920B1 (ja)
CN (1) CN1222470C (ja)
DE (1) DE60045077D1 (ja)
WO (1) WO2001005703A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201363A (ja) * 2004-01-15 2005-07-28 Nippon Leakless Corp 高耐熱性膨張黒鉛シート
JP2007204299A (ja) * 2006-01-31 2007-08-16 Kaneka Corp グラファイトフィルムおよびグラファイトフィルムの製造方法
JP2010521597A (ja) * 2006-11-30 2010-06-24 グラフテック インターナショナル ホールディングス インコーポレーテッド 耐火複合パネル

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4264802B2 (ja) 2002-09-04 2009-05-20 東洋炭素株式会社 膨張黒鉛成形体及びその製造方法
CN100351175C (zh) * 2002-09-26 2007-11-28 奥依列斯工业株式会社 耐热膨胀石墨片材
CN1703595B (zh) 2002-10-08 2012-06-27 奥依列斯工业株式会社 球形环状密封件
JP2005263548A (ja) * 2004-03-17 2005-09-29 Oiles Ind Co Ltd 耐熱性膨張黒鉛シート
JP5277536B2 (ja) * 2006-12-07 2013-08-28 オイレス工業株式会社 耐熱性膨張黒鉛シート及びその製造方法
JP5760364B2 (ja) * 2010-08-19 2015-08-12 オイレス工業株式会社 球帯状シール体
CN102320600A (zh) * 2011-08-17 2012-01-18 山东东昀石墨科技有限公司 一种低硫可膨胀石墨(石墨层间化合物)的制备方法
KR102288642B1 (ko) * 2018-10-12 2021-08-12 주식회사 멕스플로러 복합 코팅액, 이를 이용하여 제조된 금속 기판 구조체, 및 그 제조 방법
CN110563464A (zh) * 2019-09-29 2019-12-13 威海恒科精工有限公司 一种耐高温抗氧化石墨模具及其制备方法
CN111927952A (zh) * 2020-07-17 2020-11-13 贵州兰鑫石墨机电设备制造有限公司 一种柔性石墨垫片及其制备方法
CN114230379B (zh) * 2022-01-06 2022-11-29 中钢集团洛阳耐火材料研究院有限公司 SiC气凝胶/陶瓷涂层结构一体化防隔热复合材料的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3333941A (en) * 1966-09-22 1967-08-01 Dow Chemical Co Acid-wetted expandable phosphorous containing graphite composition and method of preparation
JPS5235205A (en) * 1975-08-02 1977-03-17 Hitachi Chemical Co Ltd Manufacture of flexible graphite products
JPS55118987A (en) * 1979-03-06 1980-09-12 Dainichi Nippon Cables Ltd Foaming fireproof composition
JPS598607A (ja) * 1982-07-02 1984-01-17 Hitachi Chem Co Ltd 黒鉛層間化合物の製造方法
EP0305984A2 (en) * 1987-08-31 1989-03-08 Union Carbide Corporation Intercalation of graphite
US5288429A (en) * 1991-05-25 1994-02-22 Bayer Aktiengesellschaft Process for the production of mouldings
US5582811A (en) * 1990-12-21 1996-12-10 Ucar Carbon Technology Corporation Stable blister free flexible graphite and method
JPH09286972A (ja) * 1996-04-22 1997-11-04 Hitachi Chem Co Ltd シリンダヘッドガスケット
JPH10101316A (ja) * 1996-09-30 1998-04-21 Sekisui Chem Co Ltd 可撓性グラファイト複合難燃組成物及び難燃シート

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895713A (en) * 1987-08-31 1990-01-23 Union Carbide Corporation Intercalation of graphite
JP4617521B2 (ja) * 1999-09-28 2011-01-26 オイレス工業株式会社 球帯状シール体ならびにその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3333941A (en) * 1966-09-22 1967-08-01 Dow Chemical Co Acid-wetted expandable phosphorous containing graphite composition and method of preparation
JPS5235205A (en) * 1975-08-02 1977-03-17 Hitachi Chemical Co Ltd Manufacture of flexible graphite products
JPS55118987A (en) * 1979-03-06 1980-09-12 Dainichi Nippon Cables Ltd Foaming fireproof composition
JPS598607A (ja) * 1982-07-02 1984-01-17 Hitachi Chem Co Ltd 黒鉛層間化合物の製造方法
EP0305984A2 (en) * 1987-08-31 1989-03-08 Union Carbide Corporation Intercalation of graphite
US5582811A (en) * 1990-12-21 1996-12-10 Ucar Carbon Technology Corporation Stable blister free flexible graphite and method
US5288429A (en) * 1991-05-25 1994-02-22 Bayer Aktiengesellschaft Process for the production of mouldings
JPH09286972A (ja) * 1996-04-22 1997-11-04 Hitachi Chem Co Ltd シリンダヘッドガスケット
JPH10101316A (ja) * 1996-09-30 1998-04-21 Sekisui Chem Co Ltd 可撓性グラファイト複合難燃組成物及び難燃シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1211221A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201363A (ja) * 2004-01-15 2005-07-28 Nippon Leakless Corp 高耐熱性膨張黒鉛シート
JP4549067B2 (ja) * 2004-01-15 2010-09-22 日本リークレス工業株式会社 高耐熱性膨張黒鉛シート
JP2007204299A (ja) * 2006-01-31 2007-08-16 Kaneka Corp グラファイトフィルムおよびグラファイトフィルムの製造方法
JP2010521597A (ja) * 2006-11-30 2010-06-24 グラフテック インターナショナル ホールディングス インコーポレーテッド 耐火複合パネル

Also Published As

Publication number Publication date
KR20020048373A (ko) 2002-06-22
EP1211221A4 (en) 2006-07-19
CN1222470C (zh) 2005-10-12
DE60045077D1 (de) 2010-11-18
EP1211221B1 (en) 2010-10-06
KR100769920B1 (ko) 2007-10-24
US20050208305A1 (en) 2005-09-22
JP3430243B2 (ja) 2003-07-28
EP1211221A1 (en) 2002-06-05
CN1374927A (zh) 2002-10-16

Similar Documents

Publication Publication Date Title
US20050208305A1 (en) Heat-resistant expanded graphite sheet and method for production of the same
JP5277536B2 (ja) 耐熱性膨張黒鉛シート及びその製造方法
US5503717A (en) Method of manufacturing flexible graphite
US5981072A (en) Oxidation and corrosion resistant flexible graphite composite sheet and method
US4146401A (en) Graphite material having compressibility and recovering property and method for manufacturing the same
KR100726018B1 (ko) 인산을 사용한 팽창가능한 그래파이트 삽입 화합물의 제조방법
JP7269007B2 (ja) 方向性電磁鋼板の絶縁被膜形成用組成物、これを用いた絶縁被膜の形成方法、および絶縁被膜が形成された方向性電磁鋼板
PL194356B1 (pl) Sposób wytwarzania koksu igiełkowego do elektrod grafitowych
TW385298B (en) Oxidation and corrosion resistant flexible graphite composite sheet and method
EP0305984B1 (en) Intercalation of graphite
JPH0450283A (ja) ジョイントシート並びにその製造方法
US2715059A (en) Phosphatizing composition
EP1559680B1 (en) Heat-resistant exfoliated graphite sheet
JPH10101316A (ja) 可撓性グラファイト複合難燃組成物及び難燃シート
EP1535881B1 (en) Shaped expanded graphite article and method for producing the same
EP3712299A1 (en) Coating solution for forming insulating film for grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
JPS6369705A (ja) 膨張黒鉛の製造方法
JP2002274826A (ja) 膨張黒鉛シート
RU2811287C1 (ru) Способ изготовления графитовой фольги
US4650559A (en) Carbon electrode for reducing dusting and gasification in an electrolytic cell
WO2000066513A1 (fr) Coke aciculaire destine a une electrode en graphite et procede de production associe
JPH03223397A (ja) 摺動部材用ふっ素樹脂組成物
JPS60264316A (ja) 膨張黒鉛成形体の製造法
JPS6172609A (ja) 膨張黒鉛の製造方法
JPH066510B2 (ja) 人造黒鉛電極の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020027000442

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2000946308

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008129207

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10030088

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000946308

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027000442

Country of ref document: KR