WO2000079112A1 - Dispositif de commande pour moteur thermique d'automobile - Google Patents

Dispositif de commande pour moteur thermique d'automobile Download PDF

Info

Publication number
WO2000079112A1
WO2000079112A1 PCT/JP2000/003974 JP0003974W WO0079112A1 WO 2000079112 A1 WO2000079112 A1 WO 2000079112A1 JP 0003974 W JP0003974 W JP 0003974W WO 0079112 A1 WO0079112 A1 WO 0079112A1
Authority
WO
WIPO (PCT)
Prior art keywords
throttle opening
drive torque
driving torque
torque
control
Prior art date
Application number
PCT/JP2000/003974
Other languages
English (en)
French (fr)
Inventor
Satoru Watanabe
Masanobu Kanamaru
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2000079112A1 publication Critical patent/WO2000079112A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque

Definitions

  • the present invention relates to a control device for an internal combustion engine, and more particularly to a control device for an internal combustion engine for a vehicle that controls a driving torque toward a target value.
  • the internal combustion engine for automobiles is designed to change the driving torque by depressing the accelerator pedal, and the amount of depression of the accelerator pedal (hereinafter referred to as “accelerator opening”) indicates the driver's required driving torque (target driving torque). It is. Therefore, it is desirable to always obtain the same drive torque with the same accelerator opening.
  • the driving torque of the internal combustion engine differs depending on the operating state, especially the temperature, even with the same accelerator opening. This is due to the fact that the friction of the engine and / or the transmission connected to the engine is different, or that the fuel is actually sucked in by adhering to the intake pipe wall. This is due to differences in the amount of fuel.
  • the present invention has been made in view of the above problems, and has as its object to provide a device for controlling an internal combustion engine so that the same drive torque can always be obtained with the same accelerator opening. Aim. ⁇ ⁇ Disclosure of the invention
  • throttle opening control means capable of controlling the throttle opening independently of the accelerator opening, and target driving torque calculating means for calculating a target driving torque from the accelerator opening And actual driving torque calculating means for calculating an actual driving torque; and driving torque deviation calculating means for calculating a deviation between the target driving torque and the actual driving torque.
  • the throttle is opened based on the driving torque deviation.
  • a control device for an internal combustion engine for a vehicle which performs feedback control of a driving torque such that an actual driving torque matches a target driving torque in degrees.
  • the drive torque is filtered based on the drive torque deviation such that the actual drive torque matches the target drive torque at the throttle opening.
  • the throttle opening before executing the feedback control, is once set to the reference throttle opening for the target drive torque determined from the accelerator opening. On the basis of the reference throttle opening, the drive torque is feedback-controlled by the throttle opening based on the driving torque deviation.
  • the time is determined from the degree of opening of the accelerator.
  • the throttle opening is fixed to the reference throttle opening for the target drive torque, the feedback control based on the throttle opening is stopped, and the ignition timing or the ignition timing is determined based on the drive torque deviation.
  • the drive torque is controlled by the feedback control based on the fuel injection amount.
  • the throttle opening is fixed to the reference throttle opening with respect to the target drive torque determined from the accelerator opening while the throttle opening is fixed. The feedback control is stopped and the drive torque is controlled by the ignition timing or the fuel injection amount based on the drive torque deviation.
  • FIG. 1 is a flowchart of the control according to the first embodiment.
  • FIG. 2 is a control flowchart of a modified example of the first embodiment.
  • FIG. 3 is a control flowchart of the second embodiment.
  • FIG. 4 is a control flowchart of the third embodiment.
  • FIG. 5 is a control flowchart of the fourth embodiment.
  • FIG. 6 is a control flowchart of the fourth embodiment.
  • Figure 7 is a map showing the reference throttle opening with respect to the target drive torque.
  • FIG. 8 is a map showing the ignition timing with respect to the throttle opening.
  • FIG. 9 is a map showing the fuel injection amount with respect to the throttle opening.
  • FIG. 10 is a diagram showing a hardware configuration common to the embodiments. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 10 is a schematic diagram showing a hardware configuration common to each embodiment described later.
  • an electronically controlled throttle 3 is provided in an intake passage 2 of an internal combustion engine 1 on a downstream side of a not-shown ecleaner.
  • the electronically controlled slot valve 3 drives the throttle valve 3a to be opened and closed by a throttle motor 3b.
  • the ECU (engine control unit) 10 sends an opening command to the throttle valve 3a.
  • the throttle valve 3b responds to this command value to make the throttle valve 3a follow the command opening.
  • the throttle valve 3a is controlled to open from a fully closed state shown by a solid line to a fully open state shown by a broken line.
  • the opening is detected by a throttle opening sensor 4.
  • This command opening is determined according to the accelerator pedal depression signal (accelerator opening signal) from the accelerator pedal sensor 15 which is attached to the accelerator pedal 14 and detects the accelerator depression.
  • the throttle valve 3 it is possible to control the amount of intake air at the time of idle. It is powerful enough.
  • the idle speed control valve (bypassing the throttle valve 3a) The following ISCV) 5 is provided, and it is also possible to control the amount of intake air at the time of idle by using this ISCV5.
  • An atmospheric pressure sensor 18 is located upstream of the throttle valve 3 in the intake passage 2, and a surge tank 6 is located downstream.
  • the surge tank 6 is provided with a pressure sensor 7 for detecting the pressure of the intake air.
  • a fuel injection valve 8 for supplying pressurized fuel from a fuel supply system to an intake port is provided for each cylinder.
  • ignition is performed by generating a discharge at an ignition plug 29 by an ignition coil 28 based on a signal sent from the ECU 10 to an igniter 27.
  • a water temperature sensor 11 for detecting the temperature of the cooling water is provided in the cooling water passage 9 of the cylinder block of the internal combustion engine 1.
  • the water temperature sensor 11 generates an electric signal of an analog voltage corresponding to the temperature of the cooling water.
  • the exhaust passage 12 is provided with a three-way catalytic converter (not shown) that simultaneously purifies three harmful components HC, CO, and NOX in the exhaust gas.
  • the exhaust passage on the upstream side of the catalytic converter is provided.
  • the 1 2, which is a kind of air-fuel ratio sensor 0 2 sensor 1 3 is provided.
  • 0 2 sensor 1 3 generates an electrical signal according to the oxygen component concentration in the exhaust gas.
  • the signal of each sensor is input to the ECU 10.
  • the ECU 10 has key position signals (accessory position, ON position, starter position) from an ignition switch 17 connected to the battery 16, a crank shaft
  • the signal CA, the reference position signal from the cam position sensor 30, the lubricating oil temperature from the oil temperature sensor 22 and the vehicle speed signal from the vehicle speed sensor 31 provided in the transmission (not shown) are input.
  • a ring gear 23 provided at the other end of the crank shaft is rotated by a starter 19 when the engine 1 starts.
  • the ECU 10 includes an AZD converter that converts analog signals from various sensors to digital signals, input signals from various sensors, and various signals.
  • Memory such as input / output interface 101 for input / output of the output signal for driving the actuator, CPU 102 for performing arithmetic processing, R0M103, RAM104, etc. Locks 105 and the like are provided, and these are interconnected by a bus 106.
  • the timing rotor 24 has signal teeth 25 for each 10 ° C A. There are two missing teeth 26 for detecting the top dead center, which is 34 teeth.
  • the crank position sensor 21 is composed of an electromagnetic pickup, and outputs a crank rotation signal every 10 °.
  • the rotation speed Ne can be obtained by measuring the interval (time) between the crank angle signals.
  • the first embodiment corresponds to claim 1, in which a deviation between a target driving torque and an actual driving torque is calculated, and the throttle opening (ie, intake air) is calculated based on the deviation. ) To perform feedback control.
  • FIG. 1 shows a flowchart of the first embodiment.
  • step 1001 whether the accelerator opening aps is 0 (zero) based on the signal of the accelerator opening sensor 15 is determined. No, that is, whether the vehicle is running or not is determined. If a negative determination is made, nothing is performed, and the routine jumps to step 106 and returns.
  • step 1001 If an affirmative determination is made in step 1001, the target drive torque ttrq is calculated from the accelerator opening aps in step 1002.
  • step 03 the actual driving torque atrq is calculated from the engine 1 data and the transmission data (sent to the ECU 10) not shown in FIG.
  • step 04 the actual drive torque calculated in step 1003 is calculated from the target drive torque 11 rq calculated in step 1002.
  • the drive torque deviation dtrq is calculated by subtracting luk atrq.
  • step 1005 based on the drive torque deviation dtrq calculated in step 1004, the throttle opening is set so that the actual drive torque at rq becomes the target drive torque 11rq.
  • the throttle opening is controlled by the electronic throttle 3.
  • the first embodiment operates as described above, and when the actual driving force atrq does not coincide with the target driving force ttrq, the actual driving force at is calculated based on the difference between the actual driving force atrq and the target driving force ttrq. Feedback control is performed with the throttle opening to match the force ttrq.
  • This second embodiment corresponds to the second aspect of the present invention, in which the throttle opening is set to a reference slot corresponding to a target driving torque determined in advance from the accelerator opening before the feedback control.
  • the first embodiment differs from the first embodiment in that the throttle opening is set once, and the feedback control is performed based on the throttle opening based on the throttle opening.
  • FIG. 2 shows a flow chart of the second embodiment.
  • Steps 2001 and 2002 are steps 1001 and 1002 of the first embodiment.
  • the accelerator opening aps is determined to be a force that is not 0 (zero) or not, and the target drive torque ttrq is calculated from the accelerator opening aps.
  • step 2003 the reference throttle opening mtha with respect to the target drive torque ttrq is calculated from the map shown in Fig. 7, and the throttle opening corresponding to the reference throttle opening mtha is obtained. Adjust the electronic slot 3 as described above.
  • step 204 the ignition timing and fuel injection amount corresponding to the slot opening set in step 2003 are determined based on the maps shown in Figs. Set.
  • step 205 the actual drive torque atrq at the throttle opening, ignition timing, and fuel injection amount set in steps 203 and 204 is calculated, and in step 206, The actual driving torque atrq calculated in step 205 is subtracted from the target driving torque 11 rq calculated in step 2002 to calculate the driving torque deviation dtrq. Then, in step 2007, based on the drive torque deviation dtrq calculated in step 206, the actual drive torque atrq is set to the target drive torque ttrq based on the drive torque deviation dtrq, and the throttle opening is used. After performing the debug control, proceed to step 208 and return.
  • the feedback control is performed after the throttle opening is set to the reference throttle opening mtha corresponding to the target driving torque 11 rq, and then the feedback is performed.
  • the control width in feedback control is small, and controllability is good.
  • This third embodiment corresponds to claim 3, wherein the difference between the target drive torque and the actual drive torque exceeds a predetermined value and is continuous for a predetermined time or more.
  • the throttle opening is fixed to the reference throttle opening corresponding to the target drive torque ttrq, i.e., the feedback control at the throttle opening is stopped, and the target The feedback control is performed so that the driving torque ttrq can be obtained.
  • FIG. 3 shows a flowchart according to the third embodiment. Steps 3001 to 3002 correspond to steps 1001 to 1002 of the first embodiment. Is the same.
  • step 3003 it is determined whether or not the drive torque deviation dtrq exceeds a predetermined value kdtrq, and if the determination is affirmative, in step 304, the drive torque deviation dtrq is further determined. Is a predetermined value It is determined whether the time exceeding kdtrq is continuous for a predetermined time or more.
  • step 304 If an affirmative determination is made in step 304, the process proceeds to step 3005, in which the throttle opening is fixed to the reference throttle opening mtha corresponding to the target drive torque ttrq obtained from the map. In step 300, the actual driving torque atrq in that state is obtained, and
  • the actual driving torque attr is determined by subtracting the actual driving torque atrq from the target driving torque ttrq in step 7, and the actual driving torque at becomes the target driving torque ttrq at the ignition timing based on the driving torque deviation dtrq in step 3. Make sure that feedback control is performed so that
  • step 309 determines the actual driving torque atrq
  • the drive torque deviation dtrq is determined by subtracting the actual drive torque atrq from the target drive torque ttrq at 1 0, and the actual drive torque atrq is changed to the target drive torque ttrq at the throttle opening based on the drive torque deviation dtrq at step 310. After performing the feedback control so as to match the above, go to step 3102 and return.
  • the third embodiment operates as described above.
  • the throttle opening is fixed to the reference throttle opening corresponding to the target drive torque ttrq, and is controlled by feedback at the ignition timing. The opening is further increased and the atomization of the fuel becomes even worse, thereby preventing the combustion state from becoming worse.
  • FIG. 4 is a control flowchart of a modification of the third embodiment.
  • the throttle opening Is fixed to the reference throttle opening corresponding to the target drive torque ttrq, and then the feedback control is performed not with the ignition timing but with the fuel injection amount (step 3108). Is different from the embodiment of the present invention.
  • the other steps are the same as the respective steps of the third embodiment, and the description is omitted.
  • This fourth embodiment corresponds to claim 4 and performs control in cold acceleration.According to cold acceleration, there is a high possibility that the combustion state becomes defective. However, as in the third embodiment, steps 304 and 305 for confirming that the combustion state is poor are not provided, and the throttle opening is fixed and the fuel is controlled by the ignition timing. It is designed to perform feedback control.
  • FIG. 5 is a flowchart of the control according to the fourth embodiment.
  • Steps 4001 and 4002 correspond to steps 3001 and 3002 of the third embodiment. Is the same.
  • step 4003 it is determined whether the cooling water temperature tw of the engine 1 is lower than a predetermined determination value ktwc and the vehicle is in a cold state, and if an affirmative determination is made, in step 4004, the vehicle is accelerating. If the determination is affirmative also in step 4004, the process proceeds to step 4005. If a negative determination is made in step 4003 or step 4004, the flow jumps to step 4009.
  • Steps 405 to 408 correspond to the steps of the third embodiment.
  • the throttle opening is fixed to the reference throttle opening mtha corresponding to the target driving torque ttrq based on the map, and the actual driving torque in that state.
  • Atrq is calculated, and the driving torque deviation dtrq is determined by subtracting the actual driving torque atrq from the target driving torque ttrqkara, and based on the driving torque deviation dtrq, the actual driving torque atrq is obtained at the ignition timing.
  • the feedback control is performed so that the target driving torque t trq is equal to the target driving torque t trq, and then, the process proceeds to step 410 and returns.
  • Steps 409 to 411 the actual driving torque atrq is obtained and the driving torque deviation dtrq is calculated in the same manner as in Step 310-301 of the third embodiment.
  • the actual drive torque atrq is subtracted from the target drive torque ttrq, and feedback control is performed based on the drive torque deviation dtrq so that the actual drive torque atrq at the throttle opening matches the target drive torque ttrq. And then go to step 410 and return.
  • the control is immediately shifted to the feedback control by the ignition timing, so that the controllability is improved.
  • a fuel injection amount is used instead of the ignition timing in step 4008 in the same manner as in the fourth embodiment. It is possible to consider a modified example in which the feedback control is performed.
  • the fifth embodiment is
  • FIG. 6 is a flowchart of the control according to the fifth embodiment, in which step 509 learns the control values when the feedback control is performed at the ignition timing for each water temperature and load. This is a step for learning the control value at the time when the feedback control is performed by the throttle opening at step 513. Since the fifth embodiment operates as described above, the control value when the feedback control is performed at the ignition timing and the control value when the feedback control is performed at the throttle opening are different. Since the learned value is used, the control time until the drive torque reaches the target value is shortened by using the learned value the next time the control under the same conditions is performed, and the controllability is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

明 細 書 自動車用内燃機関の制御装置 技術分野
本発明は内燃機関の制御装置、 特に駆動 トルクを目標値に向けて 制御する自動車用内燃機関の制御装置に関する。 背景技術
自動車用内燃機関はアクセルペダルを踏み込むこ とによって駆動 トルクを変化せしめるよう にされており、 アクセルペダル踏み込み 量 (以下アクセル開度という) は運転者の要求駆動 トルク (目標駆 動 トルク) を示すものである。 したがって、 同 じアクセル開度で、 常に同じ駆動 トルクを得られるようにするこ とが望ま しい。
と ころが、 内燃機関は、 運転状態、 特に、 その温度により、 同じ アクセル開度でも駆動 トルクは異なる。 これは、 機関、 および、 ま たは、 機関に連結された変速機のフ リ ク シ ョ ンが異なるこ と、 ある いは、 燃料が吸気管壁面に付着するこ とにより実際に吸入される燃 料量が異なる こ と等に起因する。
運転者の要求駆動 トルクになるよう に機関と変速機を制御する技 術が特開平 1 0 — 1 4 8 1 4 5号公報に開示されている。 しかしな がら、 同公報に開示されている技術は変速時に運転者の要求駆動 ト ルクが得られるよう に変速時のスロ ッ トル開度と変速タイ ミ ングを 調整する ものであり、 変速の有無に関係なく 発生する上記のような 問題を解決することはできない。
本発明は、 上記問題に鑑み、 同じアクセル開度で、 常に同 じ駆動 トルクを得られるよう に内燃機関を制御する装置を提供するこ とを 目的とする。 ― ― 発明の開示
本発明によれば、 ア ク セル開度と独立にスロ ッ トル開度を制御可 能なスロ ッ トル開度制御手段と、 ア ク セル開度から目標駆動 トルク を算出する目標駆動 トルク算出手段と、 実駆動 トルクを算出する実 駆動 トルク算出手段と、 目標駆動 トルク と実駆動 トルク との偏差を 算出する駆動 トルク偏差算出手段と、 を具備し、 駆動 トルク偏差に 基づいて、 スロ ッ トル開度で実駆動 トルクが目標駆動 トルクに一致 するよう に駆動 トルクをフ ィ 一 ドバッ ク制御する、 自動車用内燃機 関の制御装置が提供される。
このよ う に構成された自動車用内燃機関の制御装置によれば、 駆 動 トルク偏差に基づいて、 スロ ッ トル開度で実駆動 トルクが目標駆 動 トルクに一致するよ うに駆動 トルクがフ ィ一ドバッ ク制御される
本発明の別の態様によれば、 フ ィ ー ドバッ ク制御の実行の前に、 ア ク セル開度から決定した目標駆動 トルク に対する基準スロ ッ トル 開度にスロ ッ トル開度を一旦設定し、 基準スロ ッ トル開度をベース に、 駆動 トルク偏差に基づいて、 スロ ッ トル開度で駆動 トルクをフ ィ一 ドバッ ク制御するようにされている。
本発明の別の態様によれば、 目標駆動 トルク と実駆動 トルク との 偏差が予め定めた値以上である時間が、 予め定めた所定時間以上連 続した場合には、 ァクセル開度から決定した目標駆動 卜ルクに対す る基準スロ ッ トル開度にスロ ッ トル開度を固定しスロ ッ トル開度に よるフ ィ ー ドバッ ク制御は中止して、 駆動 トルク偏差に基づいて、 点火時期あるいは燃料噴射量で駆動 トルクをフ ィ ー ドバッ ク制御す るよう にされている。 本発明の別の態様によれば、 機関冷間状態における加速時には、 ア クセル開度から決定した目標駆動 トルク に対する基準スロ ッ トル 開度にスロ ッ トル開度を固定してスロ ッ トル開度によるフィ ー ドバ ッ ク制御は中止して、 駆動 トルク偏差に基づいて、 点火時期あるい は燃料噴射量で駆動 トルクをフィ ー ドバッ ク制御するようにされて いる。
そして、 機関温度領域、 および、 または、 負荷域毎に、 フ ィ ー ド バック制御の制御量を学習するようにすれば、 当該機関温度領域、 および、 負荷域の次回のフィ一 ドバッ ク制御における収束時間が短 く なり制御性を向上することができる。 図面の簡単な説明
図 1 は、 第 1 の実施の形態の制御のフ ローチ ヤ 一 トである。
図 2 は、 第 1 の実施の形態の変形例の制御のフローチ ヤ一トであ 。
図 3 は、 第 2の実施の形態の制御のフローチヤ一トである。
図 4 は、 第 3の実施の形態の制御のフローチ ヤ一 トである。
図 5 は、 第 4の実施の形態の制御のフローチ ヤ一トである。
図 6 は、 第 4の実施の形態の制御のフローチ ヤ一トである。
図 7 は、 目標駆動 トルク に対する基準スロ ッ トル開度を示すマツ プである。
図 8 は、 スロ ッ トル開度に対する点火時期を示すマップである。 図 9 は、 スロ ッ トル開度に対する燃料噴射量を示すマップである 図 1 0 は、 各実施の形態に共通のハー ド構成を示す図である。 発明を実施するための最良の形態 以下添付図面を用いて本発明の実施の形態を説明する。
図 1 0 は後述の各実施の形態に共通のハー ド構成を示す概略図で ある。 図 1 0 において、 内燃機関 1 の吸気通路 2 には図示しないェ ァク リ ーナの下流側に電子制御スロ ッ トル 3 が設けられている。 こ の電子制御スロ ッ トノレ 3 はスロ ッ トル弁 3 aをスロ ッ トルモータ 3 bで開閉駆動する ものであって、 E C U (エンジン ' コ ン ト ロール • ュニ ッ ト) 1 0 から開度指令値が入力された時に、 スロ ッ ト ルモ —夕 3 bがこの指令値に応答してスロ ッ トル弁 3 aを指令開度に追 従させる。
スロ ッ トル弁 3 aは実線で示す全閉状態から破線で示す全開状態 までの開度に制御される。 そ してその開度はスロ ッ トル開度セ ンサ 4 で検出される。 この指令開度は、 アクセルペダル 1 4 に取り付け られてアクセル踏込量を検出するアクセル開度センサ 1 5 からのァ クセルペダルの踏込量信号 (アクセル開度信号) に応じて決定され なお、 上記の電子スロ ッ トル弁 3 により、 アイ ドル時の吸気量の 制御をおこなう こ とは充分可能である力く、 この図のよう に、 スロ ッ トル弁 3 aをバイパスするアイ ドルスピー ドコ ン ト ロールバルブ ( 以下 I S C V ) 5 を設けて、 この I S C V 5 によりアイ ドル時の吸 気量の制御をおこなう こ と も可能である。
吸気通路 2 のスロ ッ トル弁 3 の上流側には大気圧センサ 1 8があ り、 下流側にはサージタ ンク 6 がある。 このサージタ ンク 6 内には 吸気の圧力を検出する圧力センサ 7が設けられている。 更に、 サー ジタ ンク 6 の下流側には、 各気筒毎に燃料供給系から加圧燃料を吸 気ポー トへ供給するための燃料噴射弁 8 が設けられている。 また点 火は E C U 1 0 からィグナイ タ 2 7 に送られる信号にもとづきィ グ ニッ シ ヨ ンコイル 2 8 によ り点火栓 2 9 で放電を発生させておこな われる。
また、 内燃機関 1 のシ リ ンダブロ ッ クの冷却水通路 9 には、 冷却 水の温度を検出するための水温センサ 1 1 が設けられている。 水温 センサ 1 1 は冷却水の温度に応じたアナログ電圧の電気信号を発生 する。 排気通路 1 2 には、 排気ガス中の 3 つの有害成分 H C, C O , N O Xを同時に浄化する三元触媒コ ンバータ (図示せず) が設け られており、 この触媒コ ンバータの上流側の排気通路 1 2 には、 空 燃比センサの一種である 0 2 センサ 1 3 が設けられている。 0 2 セ ンサ 1 3 は排気ガス中の酸素成分濃度に応じて電気信号を発生する 。 各センサの信号は E C U 1 0 に入力される。
更に、 この E C U 1 0 には、 ノくッテ リ 1 6 に接続されたィ グニッ シ ヨ ンスィ ッチ 1 7 からのキー位置信号 (アクセサリ位置、 オン位 置、 スタータ位置) 、 クラ ンク シャフ トの一端に取り付けられたク ラ ンク シャフ トタイ ミ ングプー リ と一体型のタイ ミ ングロータ 2 4 に近接した設けられたクラ ンクポジショ ンセンサ 2 1 からの上死点 信号 T D Cや所定角度毎のク ラ ンク角信号 C Aや、 カムポジシ ョ ン センサ 3 0 からの基準位置信号、 油温センサ 2 2 からの潤滑油の温 度、 図示しない変速機内に設けられた車速センサ 3 1 からの車速信 号が入力される。 また、 クラ ンク シャフ トの他端に設けられた リ ン グギヤ 2 3 は機関 1 の始動時にスタータ 1 9 によって回転させられ る ο
そ して、 機関 1 が稼働を開始すると、 E C U 1 0 が通電されてプ ログラムが起動し、 各センサからの出力を取り込み、 スロ ッ トル弁 3 aを開閉するスロ ッ トルモータ 3 b、 I S C V 5、 燃料噴射弁 8 、 ィ グナイ タ 2 7或いはその他のァクチユエ一タを制御する。 その ために、 E C U 1 0 には、 各種センサからのアナログ信号をデイ ジ タル信号に変換する A Z D変換器、 各種センサからの入力信号や各 ァクチユエ一タを駆動する出力信号が出入りする入出力イ ンタフ ヱ ース 1 0 1 、 演算処理を行う C P U 1 0 2、 R 0 M 1 0 3 や R AM 1 0 4 等のメ モリや、 ク ロ ッ ク 1 0 5等が設け られており、 これら はバス 1 0 6 で相互に接続されている。
ここで、 回転数 neの検出について説明する。
タイ ミ ングロータ 2 4 には 1 0 ° C A毎に信号歯 2 5 が設けられ ている力 上死点の検出用に 2枚の欠歯部 2 6 があり 3 4 歯となつ ている。 ク ラ ンクポジシ ョ ンセンサ 2 1 は電磁ピッ クア ップから構 成され、 1 0 ° 毎のクラ ンク回転信号を出力する。 回転数 Neは、 こ のク ラ ンク角信号の間隔 (時間) を計測するこ とにより得られる。 以下、 上記のよう にハー ド構成される本発明の各実施の形態の制 御について説明する。
初めに第 1 の実施の形態について説明する。 第 1 の実施の形態は 、 請求項 1 に対応する ものであり、 目標駆動 トルク と実駆動 トルク との偏差を算出 して、 その偏差に基づいて、 スロ ッ トル開度 (すな わち吸気量) でフ ィ一ドバッ ク制御をおこなう ものである。
図 1 に示すのが第 1 の実施の形態のフ ローチヤ一トであって、 ス テツプ 1 0 0 1 ではアクセル開度センサ 1 5 の信号に基づきァクセ ル開度 aps が 0 (ゼロ) でないか否か、 すなわち、 走行中である力、 否かを判定し、 否定判定された場合は何もせずに、 ステップ 1 0 0 6 に飛びリ ターンする。
ステップ 1 0 0 1 で肯定判定された場合は、 ステップ 1 0 0 2 で アクセル開度 aps から目標駆動 トルク ttrqを算出 し、 ステップ 1 0
0 3ではエンジン 1 のデータと図 1 0 には図示されていない トラ ン ス ミ ッ シ ョ ンのデータ ( E C U 1 0 に送られている) から実駆動 ト ルク atrqを算出し、 ステップ 1 0 0 4 ではステップ 1 0 0 2 で算出 した目標駆動 トルク 11 rqからステップ 1 0 0 3 で算出 した実駆動 ト ルク atrqを減算して駆動 トルク偏差 dtrqを算出する。
そ して、 ステップ 1 0 0 5 でステップ 1 0 0 4で算出 した駆動 ト ルク偏差 d t r qに基づき実駆動 トルク a t rqが目標駆動 トルク 11 r qにな るよう にスロ ッ トル開度でフ ィ ー ドバッ ク制御するよう に してから ステップ 1 0 0 6 に進んでリ ターンする。 こ こで、 スロ ッ トル開度 の制御は電子スロ ッ トル 3でおこなう。
第 1 の実施の形態は上記のよう に作動し実駆動力 atrqが目標駆動 力 ttrqに一致していないときに実駆動力 atrqと目標駆動力 ttrqの差 にもとづいて実駆動力 at が目標駆動力 ttrqに一致するよう にスロ ッ トル開度でフ ィ ー ドバッ ク制御される。
次に、 第 2 の実施の形態について説明する。 この第 2 の実施の形 態は請求項 2 に対応する ものであって、 フ ィ ー ドバッ ク制御の前に スロ ッ トル開度を予めアクセル開度から決定した目標駆動 トルクに 対する基準スロ ッ トル開度に一旦設定して、 そこをベースにスロ ッ トル開度でフ ィ一ドバッ ク制御をおこなう点が第 1 の実施の形態に 対して異なる。
図 2 に示すのが第 2 の実施の形態のフ ローチヤ一 卜であって、 ス テツプ 2 0 0 1 、 2 0 0 2 は第 1 の実施の形態のステップ 1 0 0 1 、 1 0 0 2 と同じように、 アクセル開度 aps 力く 0 (ゼロ) でない力、 否かの判定と、 アクセル開度 aps からの目標駆動 トルク ttrqの算出 をおこなう。
ステ ップ 2 0 0 3では目標駆動 トルク ttrqに対する基準スロ ッ ト ル開度 mthaを図 7 に示すマップから算出 して、 その基準スロ ッ トル 開度 mthaに対応するスロ ッ トル開度になるよう に電子スロ ッ トノレ 3 を調節する。
ステップ 2 0 0 4では、 ステップ 2 0 0 3 で設定したスロ ッ トノレ 開度に対応する点火時期、 燃料噴射量を図 8 、 図 9 のマップを基に 設定する。
ステップ 2 0 0 5では、 ステップ 2 0 0 3、 2 0 0 4 で設定され た、 スロ ッ トル開度、 点火時期、 燃料噴射量における実駆動 トルク atrqを算出 し、 ステップ 2 0 0 6では、 ステ ップ 2 0 0 2 で算出 し た目標駆動 トルク 11 rqからステ ップ 2 0 0 5 で算出 した実駆動 トル ク atrqを減算して駆動 トルク偏差 dtrqを算出する。 そ して、 ステツ プ 2 0 0 7 でステップ 2 0 0 6 で算出 した駆動 トルク偏差 d t rqに基 づき実駆動 トルク atrqが目標駆動 トルク ttrqになるよう にスロ ッ ト ル開度でフ ィ ー ドバッ ク制御するよう にしてからステップ 2 0 0 8 に進んでリ ターンする。
第 2 の実施の形態は上記のよう に、 一旦目標駆動 トルク 11 r qに対 応する基準スロ ッ トル開度 mthaにスロ ッ トル開度を設定してからフ ィ 一 ドバッ ク制御をおこなうのでフ ィ ー ドバッ ク制御における制御 幅が小さ く なり制御性がよい。
次に、 第 3 の実施の形態について説明する。 この第 3 の実施の形 態は請求項 3 に対応する ものであって、 目標駆動 トルク と実駆動 ト ルクの差が予め定めた所定値を超え、 かつ、 それが予め定めた所定 時間以上連続した場合に、 スロ ッ トル開度は目標駆動 トルク ttrqに 対応する基準スロ ッ トル開度に固定し、 すなわち、 スロ ッ トル開度 でのフ ィ ー ドバッ ク制御は中止し、 点火時期で目標駆動 トルク ttrq が得られるようにフ ィ一ドバッ ク制御をおこなう ものである。
図 3 に示すのが第 3 の実施の形態のフローチヤ一卜であって、 ス テツプ 3 0 0 1〜 3 0 0 2 は第 1 の実施の形態のステップ 1 0 0 1 〜 1 0 0 2 と同じである。
そ して、 ステップ 3 0 0 3では駆動 トルク偏差 dtrqが予め定めた 所定値 kdtrq を超えているか否かを判定し、 肯定判定された場合は ステップ 3 0 0 4でさ らに駆動 トルク偏差 dtrqが予め定めた所定値 kdtrq を超えている時間が予め定めた所定時間以上連続しているか 否かを判定する。
ステップ 3 0 0 4で肯定判定された場合は、 ステップ 3 0 0 5 に 進んで、 スロ ッ トル開度はマップからもとめた目標駆動 トルク ttrq に対応する基準スロ ッ トル開度 mthaに固定する。 ステップ 3 0 0 6 では、 その状態における実駆動 トルク atrqを求め、 ステップ 3 0 0
7 で駆動 トルク偏差 dtrqを目標駆動 トルク ttrqから実駆動 トルク at rqを減算してもとめ、 ステップ 3 0 0 8で駆動 トルク偏差 dtrqに基 づき、 点火時期で実駆動 トルク at が目標駆動 トルク ttrqに一致す るよう にフ ィ ー ドバッ ク制御をおこなうよう にしてからステップ 3
0 1 2 に進んでリ ター ンする。
一方、 ステップ 3 0 0 4、 3 0 0 5 で否定判定された場合は、 ス テツプ 3 0 0 9 に進んで、 実駆動 トルク atrqを求め、 ステップ 3 0
1 0で駆動 トルク偏差 dtrqを目標駆動 トルク ttrqから実駆動 トルク atrqを減算してもとめ、 ステップ 3 0 1 1 で駆動 トルク偏差 dtrqに 基づきスロ ッ トル開度で実駆動 トルク atrqが目標駆動 トルク ttrqに 一致するようにフ ィ一ドバッ ク制御をおこなうようにしてからステ ップ 3 0 1 2 に進んでリ ター ンする。
第 3 の実施の形態は上記のよう に作動する。 目標駆動 トルク と実 駆動 トルクの差が予め定めた所定値を超え、 かつ、 それが予め定め た所定時間以上連続した場合、 すなわち、 燃焼状態不良が発生して いる場合を意味している力く、 これに対して、 上記のように、 スロ ッ トル開度は目標駆動 トルク ttrqに対応する基準スロ ッ トル開度に固 定され点火時期でフ ィ一ドバッ ク制御されるので、 スロ ッ トル開度 がさ らに増大されて燃料の霧化が尚更悪く なり、 その結果、 燃焼状 態がより悪化するこ とが防止される。
図 4 は、 第 3 の実施の形態の変形例の制御のフローチ ャ ー トであ つて、 この第 4 の実施の形態は、 目標駆動 トルク と実駆動 トルクの 差が予め定めた所定値を超え、 かつ、 それが予め定めた所定時間以 上連続した場合は、 スロ ッ トル開度は目標駆動 トルク ttrqに対応す る基準スロ ッ トル開度に固定してから、 点火時期ではな く 燃料噴射 量でフ ィ ー ドバッ ク制御する (ステップ 3 1 0 8 ) と ころが、 第 3 の実施の形態と異なる。 その他のステップは、 第 3 の実施の形態の 各ステ ップと同じであるので説明は省略する。
次に第 4 の実施の形態について説明する。 この第 4 の実施の形態 は、 請求項 4 に対応し、 冷間時の加速における制御をおこなう もの であって、 冷間時の加速は燃焼状態が不良になる可能性が非常に高 いので、 第 3 の実施の形態のよう に燃焼状態が不良であるこ とを確 認するステップ 3 0 0 4、 3 0 0 5 を設けず、 スロ ッ トル開度を固 定して点火時期でフ ィ ー ドバッ ク制御するよう に したものである。
図 5 は、 第 4 の実施の形態の制御のフローチャー トであって、 ス テツプ 4 0 0 1 、 4 0 0 2 は第 3 の実施の形態のステップ 3 0 0 1 、 3 0 0 2 と同じである。 ステップ 4 0 0 3 では、 エンジン 1 の冷 却水温 twが予め定めた判定値 ktwcより低く 、 冷間状態であるか否か が判定され、 肯定判定されると、 ステップ 4 0 0 4 では加速中か否 かが判定される、 ステップ 4 0 0 4でも、 肯定判定されると、 ステ ップ 4 0 0 5 に進む。 ステップ 4 0 0 3 あるいはステップ 4 0 0 4 で否定判定された場合はステップ 4 0 0 9 に飛ぶ。
ステップ 4 0 0 5〜 4 0 0 8 では、 第 3 の実施の形態のステップ
3 0 0 5〜 3 0 0 8 と同じように、 スロ ッ トル開度をマップからも とめた目標駆動 トルク ttrqに対応する基準スロ ッ トル開度 mthaに固 定し、 その状態における実駆動 トルク atrqを求め、 駆動 トルク偏差 dtrqを目標駆動 トルク ttrqkaraから実駆動 トルク atrqを減算しても とめ、 駆動 トルク偏差 dtrqに基づき、 点火時期で実駆動 トルク atrq が目標駆動 トルク t trqに二-致するよう にフ ィ 一 ドバック制御をおこ なうよう にし、 その後ステップ 4 0 1 2 に進んでリ ターンする。 一方、 ステップ 4 0 0 9 〜 4 0 1 1 では、 第 3 の実施の形態のス テツプ 3 0 0 9 - 3 0 1 1 と同じよ う に、 実駆動 トルク atrqを求め 、 駆動 トルク偏差 dtrqを目標駆動 トルク ttrqから実駆動 トルク atrq を減算してもとめ、 駆動 トルク偏差 dtrqに基づきスロ ッ トル開度で 実駆動 トルク atrqが目標駆動 トルク ttrqに一致するよう にフ ィ ー ド バッ ク制御をおこなうよう に し、 その後ステップ 4 0 1 2 に進んで リ ターンする。
第 4 の実施の形態は、 上記のよう に作動するので、 冷間時の加速 において、 直ぐに、 点火時期によるフ ィ ー ドバッ ク制御に移行され るので、 制御性が向上する。
なお、 この第 4 の実施の形態に対しても、 第 3 の実施の形態に対 するその変形例と同じように、 ステップ 4 0 0 8 で点火時期の代わ り に燃料噴射量でフ イ ー ドバッ ク制御するよう に した変形例を考え るこ とができる。
次に、 第 5 の実施の形態について説明する。 第 5 の実施の形態は
、 請求項 5 に対応し第 4 の実施の形態と同様に冷間時の加速の時に 点火時期でフ ィ ー ドバッ ク制御をおこない、 そうでない時はスロ ッ トル開度でフ ィ ー ドバッ ク制御をおこなう ものであるが、 点火時期 でフ ィ ー ドバッ ク制御したときの制御値を水温と負荷毎に学習する のと、 スロ ッ トル開度でフ ィ ー ドバッ ク制御した時の制御値を学習 するのが異なる。 図 6が第 5 の実施の形態の制御のフ ローチ ヤ 一 ト であって、 ステップ 5 0 0 9 が点火時期でフ ィ ー ドバッ ク制御した ときの制御値を水温と負荷毎に学習するためのステップであり、 ス テツプ 5 0 1 3 がスロ ッ トル開度でフ ィ ー ドバッ ク制御した時の制 御値を学習するためのステップである。 第 5 の実施の形態は上記のよう に作動するので、 点火時期でフ ィ — ドバッ ク制御したときの制御値と、 スロ ッ トル開度でフ ィ ー ドバ ッ ク制御した時の制御値が学習されるので、 次に同じ条件の制御を おこなう ときにこの学習された値を使用するこ とによって駆動 トル クが目標値に到達するまでの制御時間が短縮され制御性が向上する

Claims

請- 求 の 範 囲
1 . アクセル開度と独立にスロ ッ トル開度を制御可能なスロ ッ ト ル開度制御手段と、
アクセル開度から目標駆動 トルクを算出する目標駆動 トルク算出 手段と、
実駆動 トルクを算出する実駆動 トルク算出手段と、
目標駆動トルク と実駆動 トルク との偏差を算出する駆動 トルク偏 差算出手段と、 を具備し、
駆動 トルク偏差に基づいて、 スロ ッ トル開度で実駆動 トルクが目 標駆動 トルクに一致するよう に駆動 トルクをフ ィ ー ドバッ ク制御す る、
こ とを特徴とする自動車用内燃機関の制御装置。
2 . フ ィ ー ドバッ ク制御の実行の前に、 アクセル開度から決定し た目標駆動 トルクに対する基準スロ ッ トル開度にスロ ッ トル開度を 一旦設定し、 基準スロ ッ トル開度をベースに、 駆動 トルク偏差に基 づいて、 スロ ッ トル開度で駆動 トルクをフ ィ一ドバッ ク制御する、 こ とを特徴とする請求項 1 に記載の自動車用内燃機関の制御装置 o
3 . 目標駆動 トルク と実駆動 トルク との偏差が予め定めた値以上 である時間が、 予め定めた所定時間以上連続した場合には、
アクセル開度から決定した目標駆動 トルクに対する基準スロ ッ ト ル開度にスロ ッ トル開度を固定しスロ ッ トル開度によるフ ィ ー ドバ ッ ク制御は中止して、 駆動 トルク偏差に基づいて、 点火時期あるい は燃料噴射量で駆動 トルクをフ ィ ー ドバッ ク制御する、
こ とを特徴とする請求項 1 に記載の自動車用内燃機関の制御装置
4 . 機関?令間状態における加速時には、
ア ク セル開度から決定した目標駆動 トルク に対する基準スロ ッ ト ル開度にスロ ッ トル開度を固定してスロ ッ トル開度によるフ ィ ー ド ノくッ ク制御は中止して、 駆動 トルク偏差に基づいて、 点火時期ある いは燃料噴射量で駆動 トルクをフ ィ ー ドバッ ク制御する、
こ とを特徴とする請求項 1 に記載の自動車用内燃機関の制御装置
5 . 機関温度領域、 および、 または、 負荷域毎に、 フ ィ ー ドバッ ク制御の制御量を学習するよう にされている、
こ とを特徴とする請求項 1 から 4 に記載の自動車用内燃機関の制 御装置。
PCT/JP2000/003974 1999-06-18 2000-06-16 Dispositif de commande pour moteur thermique d'automobile WO2000079112A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11172982A JP2001003790A (ja) 1999-06-18 1999-06-18 自動車用内燃機関の制御装置
JP11/172982 1999-06-18

Publications (1)

Publication Number Publication Date
WO2000079112A1 true WO2000079112A1 (fr) 2000-12-28

Family

ID=15951984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003974 WO2000079112A1 (fr) 1999-06-18 2000-06-16 Dispositif de commande pour moteur thermique d'automobile

Country Status (2)

Country Link
JP (1) JP2001003790A (ja)
WO (1) WO2000079112A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223707A (ja) * 2007-03-15 2008-09-25 Toyota Motor Corp 内燃機関の制御装置
JP4325701B2 (ja) * 2007-05-16 2009-09-02 トヨタ自動車株式会社 内燃機関の制御装置
JP2009041528A (ja) * 2007-08-10 2009-02-26 Toyota Motor Corp 内燃機関の制御装置
JP5109802B2 (ja) * 2008-05-21 2012-12-26 日産自動車株式会社 ブローバイガス処理機構の異常診断装置及び方法
GB2497820B (en) 2012-02-23 2013-11-27 Wcm Products Ltd Fire-extiguishing compositions and apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164632A (ja) * 1984-02-07 1985-08-27 Nissan Motor Co Ltd 自動車の電子制御装置
JPS60175742A (ja) * 1984-02-23 1985-09-09 Toyota Motor Corp エンジントルク制御装置
JPS6183467A (ja) * 1984-09-29 1986-04-28 Mazda Motor Corp エンジンの制御装置
JPH01313636A (ja) * 1988-06-14 1989-12-19 Nissan Motor Co Ltd 車両用内燃機関の制御装置
JPH02176138A (ja) * 1988-09-05 1990-07-09 Toyota Motor Corp 内燃機関の空燃比制御装置
JPH02181042A (ja) * 1989-01-06 1990-07-13 Nissan Motor Co Ltd 内燃機関の制御装置
JPH02201058A (ja) * 1989-01-31 1990-08-09 Mitsubishi Motors Corp エンジン出力制御方法
JPH03182667A (ja) * 1989-12-11 1991-08-08 Nissan Motor Co Ltd 車両用エンジンの制御装置
JPH03237243A (ja) * 1990-02-09 1991-10-23 Nissan Motor Co Ltd 車両用エンジンの制御装置
JPH0463945A (ja) * 1990-06-30 1992-02-28 Mazda Motor Corp エンジンのスロットル弁制御装置
JPH04365957A (ja) * 1991-06-12 1992-12-17 Japan Electron Control Syst Co Ltd 車両用エンジンの制御装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164632A (ja) * 1984-02-07 1985-08-27 Nissan Motor Co Ltd 自動車の電子制御装置
JPS60175742A (ja) * 1984-02-23 1985-09-09 Toyota Motor Corp エンジントルク制御装置
JPS6183467A (ja) * 1984-09-29 1986-04-28 Mazda Motor Corp エンジンの制御装置
JPH01313636A (ja) * 1988-06-14 1989-12-19 Nissan Motor Co Ltd 車両用内燃機関の制御装置
JPH02176138A (ja) * 1988-09-05 1990-07-09 Toyota Motor Corp 内燃機関の空燃比制御装置
JPH02181042A (ja) * 1989-01-06 1990-07-13 Nissan Motor Co Ltd 内燃機関の制御装置
JPH02201058A (ja) * 1989-01-31 1990-08-09 Mitsubishi Motors Corp エンジン出力制御方法
JPH03182667A (ja) * 1989-12-11 1991-08-08 Nissan Motor Co Ltd 車両用エンジンの制御装置
JPH03237243A (ja) * 1990-02-09 1991-10-23 Nissan Motor Co Ltd 車両用エンジンの制御装置
JPH0463945A (ja) * 1990-06-30 1992-02-28 Mazda Motor Corp エンジンのスロットル弁制御装置
JPH04365957A (ja) * 1991-06-12 1992-12-17 Japan Electron Control Syst Co Ltd 車両用エンジンの制御装置

Also Published As

Publication number Publication date
JP2001003790A (ja) 2001-01-09

Similar Documents

Publication Publication Date Title
US6875154B2 (en) Control system and method for motor vehicles
JP6082215B2 (ja) 可変バルブタイミング機構の制御装置
JP2003065105A (ja) 内燃機関の自動停止始動制御装置
US9145796B2 (en) Control unit for variable valve timing mechanism and control method for variable valve timing mechanism
JP3506042B2 (ja) 内燃機関の制御装置
JP2007092531A (ja) 内燃機関の制御装置
JP4385940B2 (ja) 内燃機関装置およびこれを搭載する自動車並びに内燃機関の運転停止方法
JP2000291468A (ja) 内燃機関の制御装置
JP5851898B2 (ja) 可変バルブタイミング機構の制御装置
JP2007154737A (ja) 車両用エンジンの制御装置
WO2000079112A1 (fr) Dispositif de commande pour moteur thermique d'automobile
US6742497B1 (en) Device for controlling rotational speed of internal combustion engine
JP3908385B2 (ja) 内燃エンジンの制御装置
JP3294894B2 (ja) 車両の退避走行装置
JP3478175B2 (ja) 内燃機関の回転数制御装置
JP3496575B2 (ja) 内燃機関の回転数制御装置
JPH0849587A (ja) 内燃機関の吸入空気量制御装置
JP3478170B2 (ja) 内燃機関のアイドル回転数制御装置
JP7115632B2 (ja) 内燃機関の制御方法および制御装置
JP2005240607A (ja) 内燃機関用制御装置
JP3613662B2 (ja) 内燃機関の吸気制御装置
JP2000352339A (ja) 内燃機関の回転数制御装置
KR100830655B1 (ko) 내연기관의 제어장치 및 제어방법
KR100877363B1 (ko) 내연기관의 제어장치 및 제어방법
JP3991685B2 (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09926777

Country of ref document: US

122 Ep: pct application non-entry in european phase