WO2000073837A1 - Structure anti-lumiere - Google Patents

Structure anti-lumiere Download PDF

Info

Publication number
WO2000073837A1
WO2000073837A1 PCT/JP2000/003442 JP0003442W WO0073837A1 WO 2000073837 A1 WO2000073837 A1 WO 2000073837A1 JP 0003442 W JP0003442 W JP 0003442W WO 0073837 A1 WO0073837 A1 WO 0073837A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
magnetic
lens barrel
magnetic fluid
magnetic force
Prior art date
Application number
PCT/JP2000/003442
Other languages
English (en)
French (fr)
Inventor
Hiroshi Anzai
Takemi Namba
Hirokazu Yamamoto
Yoshimi Imamoto
Takao Kanno
Original Assignee
Nok Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corporation filed Critical Nok Corporation
Priority to AU47825/00A priority Critical patent/AU4782500A/en
Priority to JP2001500900A priority patent/JP4370748B2/ja
Priority to DE10084660T priority patent/DE10084660T1/de
Publication of WO2000073837A1 publication Critical patent/WO2000073837A1/ja
Priority to US09/926,649 priority patent/US6733143B1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/20Light-tight connections for movable optical elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid
    • F16J15/43Sealings between relatively-moving surfaces by means of fluid kept in sealing position by magnetic force
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path

Definitions

  • the present invention relates to a light blocking structure for blocking light, for example, to a light blocking structure used for blocking light between a plurality of lens barrels of a camera having a zoom function.
  • a light-shielding seal that forms a light-shielding structure such as a zoom lens portion of a camera of this type does not exert much force on the seal itself as compared with an oil seal, and sliding is performed at a relatively low speed and infrequently. Things.
  • Conventionally known configurations include: 1) a light-shielding seal made of oil-impregnated silicone rubber, 2) a light-shielding seal coated with PTFE on silicone rubber, 3) a light-shielding seal made by burning oil-impregnated silicone rubber on metal fittings, and 4) PTFE coating.
  • Fig. 11 shows the light-shielding seal shown in Fig. 11.
  • the light-shielding seal 100 is made up of a seal lip portion 101 made of a silicone rubber ring coated with PTFE and a reinforcing portion 1 ⁇ 2 made of a metal ring as a bracket. It is configured by bonding.
  • the seal inner diameter end of the seal lip portion 101 is provided with a diameter slightly smaller than the outer diameter of the lens barrel 200.
  • the lens barrel 200 is inserted into the seal inner diameter, and the seal lip portion 101 is deformed into an L-shape. Light and dust are prevented from entering when the tube enters and exits, and light shielding and sealing are provided.
  • the sliding resistance is reduced by impregnating the seal lip with oil or coating the seal with PTFE.
  • the conventional light-blocking seal slides by contact between the solid body of the lens barrel and the light-blocking seal.
  • the reduction effect has a limit.
  • the sliding resistance per piece was as large as 20 to 100 gf.
  • the space for installing the light shielding seal changes depending on the eccentric amount of the lens barrel. If the eccentric amount is large, for example, even if the entire light shielding seal is made of rubber, Where the space for installing the light-blocking seal is narrow, the space is crushed, and where the space is wide, a gap is created, causing light leakage.
  • the lens barrel had burrs (parting lines) on the parting surface, which caused light leakage in some cases.
  • An object of the present invention is to provide a light-shielding structure that can effectively absorb an error even when the error or the like matches.
  • the technical problem of the invention described in claim 6 is to provide a light-shielding structure capable of further improving the light-shielding effect, in addition to the technical problem of the invention described in claim 1.
  • the technical problem of the invention described in claims 7 and 8 is that in addition to the technical problem described in claim 1, a light-shielding structure capable of securing a larger holding force of a magnetic fluid and more reliably shielding light is provided. is there.
  • the technical problem of the invention described in claim 9 is that, in addition to the technical problem of the invention described in claim 1, in a camera having a plurality of lens barrels, a light-shielding structure capable of reliably blocking light between the lens barrels is provided. Is to provide.
  • Claim 1 The technical problem of the invention is to provide, in addition to the technical problem of the ninth invention, a light-shielding structure of a camera lens barrel that can be easily assembled. You.
  • An object of the present invention is to provide a light-shielding structure that can effectively absorb light.
  • the technical problem of the invention described in claim 12 is, in addition to the technical problem of the invention described in claim 10, a light-shielding structure that can effectively prevent dust from entering the inside of the lens barrel from the outside. Is to provide.
  • An object of the present invention is to provide a light-shielding structure which can be held at a position of a magnetic force generating means without a magnetic fluid flowing in contact therewith.
  • the technical problem of the invention described in claim 14 is, in addition to the technical problem of the invention described in claim 1, a light-shielding structure that can prevent the magnetic fluid from being wet when contacting a member and can further improve light-shielding properties. Is to provide. Disclosure of the invention
  • a predetermined interval is set.
  • a light-shielding structure that is provided between a plurality of members placed so as to be able to move relative to each other and that can prevent light from entering through a gap formed between the plurality of members;
  • a magnetic force generating means disposed on one of the members; and a magnetic fluid magnetically held by the magnetic force generating means and in contact with the other member.
  • the magnetic fluid is formed between the plurality of members by the magnetic fluid. It is characterized in that the air gap is shielded.
  • the magnetic force generating means refers to a so-called magnet
  • the magnetic fluid refers to a liquid in which ferromagnetic fine particles are stably dispersed by adsorbing a surfactant to the surface of the magnetic fine particles, and include a hydrocarbon, A mixture of base oils such as fluorine and silicone mixed with magnetic particles that adsorb surfactants is used. With the predetermined concentration of the magnetic fine particles, necessary light-shielding properties can be appropriately obtained in relation to the thickness of the magnetic fluid in the light-shielding direction.
  • This magnetic fluid forms a magnetic fluid along the shape of the magnetic force lines by the magnetic force lines generated from the magnetic force generating means,
  • the sliding resistance can be drastically reduced as compared with the conventional sliding resistance caused by contact between solids.
  • the sliding resistance is reduced in this manner, the amount of power required for the relative movement of the two members is reduced, and power savings can be achieved.
  • the magnetic fluid moves following the magnetic field distribution and the gap between the two members is reduced. Because it is filled, the eccentricity followability is improved, and complete shading can be achieved.
  • the improved eccentricity follow-up eliminates the need to provide a space equal to or greater than the eccentric amount on the outer diameter side of the light-shielding seal as in the past, and is particularly efficient for small cameras that require miniaturization. Space saving can be achieved.
  • the invention according to claim 2 is characterized in that the magnetic force generating means is formed in a shape capable of concentrating a magnetic force toward the other member.
  • the magnetic fluid is shaped and held in a shape along the line of magnetic force by the concentrated magnetic force. It comes into contact with another member while being strongly pressed.
  • the invention according to claim 3 is characterized in that the magnetic force generating means is formed in a tip shape protruding toward the other member.
  • the tip of the magnetic force generating means when the tip of the magnetic force generating means is formed so as to protrude to the other member, the tip of the magnetic force generating means 2, 3, 5 has a flat surface. Since the surface tension of the magnetic fluids 4 and 8 can be formed larger than in the case of the shape, the magnetic fluids 4 and 8 are held by the magnetic force generating means with a larger holding force. As a result, light can be more reliably shielded.
  • the invention according to claim 4 is characterized in that the magnetic force generating means 2, 3, 5 is provided with a porous material.
  • the porous material corresponds to, for example, a woven fabric or a nonwoven fabric.
  • the magnetic fluid is more firmly held by the magnetic force generating means due to the capillary force of the porous material, in addition to the holding force by the magnetic force, so that light is reliably blocked. This is possible.
  • the invention according to claim 5 is characterized in that the other member is formed of a non-magnetic material.
  • the other member is formed of a magnetic material.
  • the other member is formed of a magnetic material, not only the magnetic material but also the other members are attracted to the magnetic force generating means by the magnetic force.
  • the magnetic fluid does not take the form of the lines of magnetic force and is deformed by crushing, so that the contact area with other members can be increased.
  • the light shielding effect can be further improved.
  • a pair of magnetic fluid holding means made of a magnetic material is provided on both sides of the magnetic force generating means, and the magnetic fluid is a magnetic force generating means and a pair of magnetic fluid holding means. Characterized by being magnetically held by
  • the magnetic fluid is not only magnetically generated by the magnetic force generating means but also magnetically held by the pair of magnetic fluid holding means, so that the magnetic fluid is more firmly held. It will be.
  • the invention according to claim 8 is characterized in that the magnetic fluid holding means is formed in a shape capable of concentrating a magnetic force on another member.
  • the magnetic fluid since the lines of magnetic force concentrate on a portion of the magnetic fluid holding means which is closer to other members, the magnetic fluid also has a shape along the lines of magnetic force, and as a result, However, the amount of contact of the magnetic fluid with other members can be increased.
  • the plurality of members are a lens barrel of a camera, and the magnetic force generating means is fixed around the entire inner surface of the outer lens barrel. Is characterized in that it abuts over the entire outer surface of the inner lens barrel and shields the gap between the outer tube and the inner lens barrel.
  • the distance between the outer lens barrel and the inner lens barrel is reduced. Is disposed in a state where a magnetic fluid magnetically held by magnetic force generating means fixed over the entire circumference of the outer lens barrel is in contact with the entire outer peripheral surface of the inner lens barrel. Therefore, the space between the outer barrel and the inner barrel is shielded from light by the magnetic fluid.
  • the magnetic force generation means and the magnetic fluid holding means are fixed in advance to a metal member mounted on an end of the lens barrel.
  • An eleventh aspect of the present invention is characterized in that the magnetic force generating means and the magnetic fluid holding means are arranged apart from the inner peripheral surface of the outer barrel. Therefore, in the invention according to claim 11, since the magnetic force generating means and the magnetic fluid holding means are arranged separately from the mounting portion formed on the inner peripheral surface of the outer lens barrel, A slight gap is formed between the magnetic force generating means and the magnetic fluid holding means and the mounting portion formed on the inner peripheral surface of the outer lens barrel.
  • the gap can absorb the error. It is possible to perform so-called centering that matches the center of the axis.
  • the invention according to claim 12 is characterized in that a shielding member capable of preventing dust from entering from outside is provided on the outside of the magnetic fluid holding means. Therefore, in the invention according to claim 12, the shielding member can prevent intrusion from outside. As a result, it is possible to prevent a situation in which intrusions from the outside are caught between the magnetic fluid holding means and another member, and rub against the other member, increasing the sliding resistance and increasing the power consumption of the camera. can do.
  • the tip of the magnetic force generating means or the magnetic fluid holding means, or the outer surface of the side barrel is provided with the inner barrel and the outer barrel. It is characterized in that 3 ⁇ 4 of a shape capable of holding the magnetic fluid at the position of the magnetic force generating means is formed by the relative rotational movement.
  • the invention according to claim 14 is characterized in that the surface of the other member with which the magnetic fluid comes into contact is subjected to a surface coating treatment capable of ensuring oil repellency.
  • the surface treatment that can ensure oil repellency is, for example, a case where an oil repellent solid film is formed on the surface of the other member, or an oil that does not mix with the oil constituting the magnetic fluid.
  • FIG. 1 is a half-sectional view showing a light-shielding seal 1 according to the first embodiment
  • FIG. 2 is a half-sectional view showing a light-shielding seal 1 of Example 1 according to the first embodiment
  • FIG. 3 is an explanatory view showing a state in which the sliding resistance is measured
  • FIG. 4 is a half-sectional view showing a light-shielding seal 1 of a comparative example according to the prior art
  • FIG. FIG. 6 is an explanatory view showing a compact camera according to the first embodiment.
  • FIG. 6 is a half-sectional view showing another example of the light shielding seal 1 according to the first embodiment.
  • FIG. 8 is a half sectional view showing a light shielding seal 1 according to a second embodiment
  • FIG. 8 is a half sectional view showing a light shielding seal 1 of Example 2 according to the second embodiment.
  • FIG. 9 is a half-sectional view showing another example of the light-shielding shell 1 according to the second embodiment.
  • FIG. 10 is a half-sectional view showing another example of the light-shielding shell according to the second embodiment.
  • ⁇ FIG. 11 is a half sectional view showing a conventional light-shielding seal 1
  • FIG. 12 is an explanatory view showing an eccentric state of the conventional light-shielding seal 1.
  • FIG. 13 is a view showing one embodiment of a configuration of a magnet, in which a tip is bent, and FIG.
  • FIG. 14 is a view showing one embodiment of a configuration of a single magnet.
  • FIG. 15 is a diagram showing one embodiment of a configuration of a plurality of magnets
  • FIG. 16 is a diagram showing a configuration in which a magnetic material is sandwiched between a plurality of magnets.
  • the figure is a diagram showing a configuration in which a protrusion is formed by a plurality of magnets
  • FIG. 18 is a diagram showing a configuration in which a protrusion is formed by a plurality of magnets
  • FIG. FIG. 20 is a diagram illustrating a configuration in which a protruding portion is formed by magnets.
  • FIG. 20 is a diagram illustrating a magnet configured by sandwiching a porous material by a plurality of magnets.
  • FIG. 1 is a diagram showing a magnet constituted by sandwiching a porous material by a plurality of magnets
  • FIG. 2 is a diagram showing a magnet constituted by fixing a porous material at the center of the plurality of magnets.
  • FIG. 23 is a diagram showing a magnet formed by fixing a porous material to the center of a plurality of magnets
  • FIG. 24 is a diagram showing an embodiment in which the tip of a pole piece is bent.
  • FIG. 25 is a diagram showing an embodiment in which the tip of the pole piece is bent and formed, and the tip is cut off.
  • FIG. FIG. 27 is a diagram showing a state in which a fluid is in contact with a non-magnetic material
  • FIG. 27 is a diagram showing a state in which a magnetic fluid is in contact with a magnetic material
  • FIG. 29 is a diagram showing a case where the light-shielding seal is previously fixed to a ring member at the distal end of the lens barrel.
  • FIG. 30 is a view showing a case where the light-shielding seal is fixed to the ring member at the rear end of the lens barrel in advance.
  • FIG. 32 is a view showing a case where the light-shielding seal is floating with respect to the lens barrel.
  • FIG. 33 is a diagram showing a case where the light shielding seal is mounted in a floating state with respect to the lens barrel
  • FIG. 34 is a diagram showing a case where the light shielding seal is mounted in a floating state.
  • FIG. 35 is a diagram showing a case where a shielding member is attached to a seal
  • FIG. 35 is a diagram showing a case where a shielding member is attached to a light shielding seal
  • FIG. 37 is a diagram showing a light-shielding structure using a fluid.
  • FIG. 37 is a diagram showing a case where magnetic fluid is provided on both sides of a multiple member of a magnet
  • FIG. 38 is a diagram showing the entire magnet.
  • FIG. 39 is a diagram showing a case in which a magnetic fluid is provided so as to cover
  • FIG. 39 is a diagram showing a state in which a plurality of fine grooves are cut in a portion corresponding to a light-shielding seal of an inner barrel.
  • FIG. 5 illustrates a compact camera as the light shielding device according to the first embodiment.
  • the compact camera 10 shown in the schematic diagram 5 is disposed inside the three lens barrels 12, 13, 14, which protrude from the camera body 11 movably, and the innermost lens barrel 14.
  • a zoom lens unit having a lens 15 and a shutter unit 16. Eh.
  • the zoom lens unit is provided with a light-shielding seal 1 between each of the lens barrels 12, 13, 14, and between the lens barrel 12 and the camera body 11. Light and dust are prevented from entering when the zoom lens enters and exits.
  • FIG. 1 shows a light-blocking seal 1 attached to a zoom lens unit according to the first embodiment.
  • Each of the light-shielding seals 1 is provided with the same configuration, and the description here will be made with respect to the light-shielding seal 1 provided between the cylindrical lens barrels 13 and 14.
  • the light-shielding seal 1 is magnetized in a direction opposite to each other in the radial direction, and has a pair of magnets 2 and 3 (magnetic force generating means) arranged on the inner peripheral surface of the lens barrel 13 and a pair of magnets 2 and 3. And a magnetic fluid 4 held at the inner peripheral end.
  • the pair of magnets 2 and 3 are joined at opposite axial end faces of the magnets 2 and 3 magnetized in opposite directions in the radial direction, and according to the magnetic field distribution between the magnets 2 and 3, the inner circumference of the pair of magnets A magnetic fluid 4 is magnetically held at the end.
  • the pair of magnets 2 and 3 have a height such that the inner peripheral end does not come into contact with the outer peripheral surface of the opposing barrel 14 even when the barrels 13 and 14 are eccentric. It is provided to protrude from the peripheral surface.
  • magnets 2 and 3 permanent magnets made of metal or an organic material filled with magnet powder are used.
  • the magnetic fluid 4 is used oil F e 3 ⁇ 4 like particles, water, those dispersed in colloids form in an organic 3 ⁇ 4 medium.
  • the light-shielding seal 1 is filled with a hydrocarbon-based magnetic fluid having a saturation magnetization of about 250 gauss so that the thickness dimension in the light-shielding direction is about 200, Irradiation at 000 to 100,000 lux was performed, and the presence or absence of transmitted light was determined depending on the exposure of the photographic film. As a result of the light transmission test, no light transmission was observed. In addition, tests were performed using fluorocarbon oil and silicone oil in addition to hydrocarbon oil as a base oil containing fine particles, and the results were almost the same.
  • the magnetic fluid 4 is a fluid
  • the magnetic fluid 4 is deformed according to the outer peripheral surface shape of the lens barrel 14 and the space between the lens barrels 13 and 14 The gap can be closed so that light is always shielded and sliding resistance can be reduced.
  • the outer peripheral surface of the lens barrel 14 is made of a material that improves the oil repellency of the magnetic fluid 4, that is, n
  • an oil-repellent solid film may be formed on the surface of the lens barrel, and a surface-modifying agent such as a coupling agent having fluorine or a monomer having a fluorine chain which can be easily polymerized is used. Preferably, it is used.
  • a fluorine-based oil may be impregnated in a nonwoven fabric as a porous material, and such a woven fabric may be disposed in front of the light-shielding seal 1 to form an oil film on the surface of the lens barrel.
  • a brush, felt, or the like may be used.
  • the oil forming such an oil film may be any fluid that is not compatible with the magnetic fluid.
  • the oil repellency to the magnetic fluid can be improved by using an oil that is not compatible with the oil used for the light-shielding seal 1. This can prevent the magnetic fluid 4 from "wetting" on the surface of the inner lens barrel 14.
  • the sliding resistance of the first embodiment having the above configuration was measured as described below. As shown in Fig. 3, the measurement was performed by attaching a light-shielding seal 1 as a sample to a simulated lens barrel having an outer diameter of 4 Omm. Specifically, the light-shielding seal 1 as a sample was fixed to a jig, the simulated lens barrel was also fixed to a fixing jig, and the jig side on which the light-shielding seal 1 was fixed was slid.
  • the measuring device is Shimadzu Autograph AG—1000 KN.
  • the measuring conditions are as follows: the sliding direction is the zoom contraction direction (no rotation), the sliding speed is 5 OmmZm in, the sliding distance is 15 mm, and the measurement temperature is At room temperature.
  • the light-shielding seal 1 of Example 1 is shown in FIG. 2, and a magnet having an outer diameter of ⁇ 43 ⁇ , an inner diameter of ⁇ 4> 60.6 mm, and a width of 0.2 mm is applied in a radial direction. It is composed of a pair of magnets 2 and 3 joined in opposite directions of magnetization and a magnetic fluid 4 held at the peripheral ends of the pair of magnets 2 and 3.
  • the light-shielding seal 1 of the comparative example which is a sample of the prior art, is shown in FIG. 102
  • the S US plate was baked, and partly (thickness 0.1 mm) was turned into the S US plate inner diameter side, and the outer diameter ⁇ 43 ⁇ , diameter ⁇ 38 ⁇ , width 0.3 mm PTF ⁇ A seal lip 101 made of a single piece of silicone rubber, and a force.
  • the sliding resistance of these two samples was measured with the above device. 46 gf and sliding resistance of 30 gf.
  • the sliding resistance with the lens barrel 14 as a solid can be drastically reduced.
  • the magnetic field follows the magnetic field distribution. Since the fluid 4 moves and fills the gap between the lens barrels 13 and 14, the eccentricity followability is improved and complete light shielding can be performed.
  • the light-shielding seal 1 of the present embodiment has a pair of magnetic poles provided on a pair of magnets 2 and 3 which are magnetized and joined in opposite directions to each other.
  • the light-blocking seal 1 is arranged on the outer peripheral surface of the inner lens barrel 14, and the magnetic fluid 4 is brought into contact with the inner peripheral surface of the lens barrel 13.
  • the configuration may be such that the gap between the columns 4 is filled, and the present invention is not limited to the shape as long as the gap between the lens barrels 13 and 14 is filled with the magnetic fluid 4.
  • the magnet may be formed in a shape capable of concentrating the magnetic force toward the other member.
  • the magnetic fluid 4 is formed in such a shape that the magnetic force can be concentrated toward the other member, the magnetic fluid 4 is firmly held by the concentrated magnetic force. As a result, it comes into contact with the other member while being pressed more strongly.
  • the inner lens barrel 13 moves while the magnetic fluid 4 is in contact with the other member, Magnetic fluid 4 is pulled by the sliding resistance of inner barrel 13
  • the shape as a light-shielding seal is always ensured, light-shielding properties can be improved.
  • the two magnets 20 themselves are each formed in an L-shape, different magnetic poles are arranged to face each other, and the bent end portion of the magnet 20 is bent.
  • a magnetic fluid can be held in between.
  • a single magnet 2 may be used, and in this case, magnets that are opposite to each other in the length direction of the rectangular magnet 21 may be mounted in the radial direction of the lens barrel, and a magnet 22 having an opposite magnetic pole in the magnet width direction may be mounted in the radial direction of the lens barrel. Further, as shown in FIGS. 15 (A) and (B), a plurality of magnets 23 may be provided.
  • the magnetic force generating means is constituted by a plurality of magnets 23, 23 as described above, the magnetic force can be further increased, and as a result, the holding force of the magnetic fluid can be increased.
  • a magnetic material 24 is sandwiched between a pair of magnets 20, 20 on the inner barrel 14 side in the longitudinal direction of the magnet 20, It may be used in a part close to the lens barrel 14. As described above, when the magnetic material 24 is sandwiched, the magnetic force is concentrated on the inner barrel 14 side, and the magnetic fluid 4 can be pressed more strongly by the inner barrel 14. Thus, a more effective light-shielding process can be performed.
  • the magnet as the magnetic force generating means may be formed in a tip shape protruding toward the other member. That is, as shown in FIG. 1 and FIGS. 17 to 19, for example, when the magnet is fixed to the outer lens barrel 13, the magnet projects the projecting part 25 protruding in the inner lens barrel 14 direction. Can also be formed.
  • the magnetic force can be concentrated in the same manner as described above, and the surface tension of the magnetic fluid at the end of the protrusion 25 is increased. Therefore, the magnetic fluid is held by the magnet as the magnetic force generating means with a larger holding force. As a result, light can be more reliably shielded.
  • FIG. 17A a plurality of magnets 23, 23 having a substantially symmetrical shape in the left and right cross sections are joined by inverting the magnetic poles, as shown in FIG. 17B.
  • the magnets 22, 22 that are asymmetrical in the left and right cross sections are formed by joining the same magnetic poles.
  • the projection of such an asymmetrical magnet is arranged at a position from the inside of the lens barrel, the sliding resistance is generated by the movement of the inner lens barrel 14.
  • the magnets 22 and 22 having the same shape as in FIG. 18 may be configured so that the magnetic poles can be arranged in the opposite direction in the axial direction of the lens barrel.
  • a porous material 26 can be fixed to the magnets 23, 23 as the magnetic force generating means, so that the magnetic fluid can be held more firmly.
  • the porous material 26 corresponds to, for example, a woven fabric or a nonwoven fabric.
  • the magnetic fluid is more strongly reinforced by the capillary force of the porous material 26 and the magnets 2 and 3 as the magnetic force generating means are used. 3, and light can be reliably shielded.
  • the porous material 26 is sandwiched between a pair of magnets 2 and 3 arranged so as to have opposite magnetic poles in the radial direction of the lens barrel. Is sandwiched between a pair of magnets 2 and 3 arranged to have opposite magnetic poles in the axial direction of the lens barrel. Further, in FIG. 22, a pair of magnets 2 and 3 arranged so as to have opposite magnetic poles in the radial direction of the lens barrel are fixed to the center of the inner lens barrel part, In FIG. 23, a pair of magnets 2 and 3 arranged so as to have opposite magnetic poles in the axial direction of the lens barrel is fixed to the center of the inner lens barrel.
  • FIG. 7 shows a second embodiment.
  • the light-shielding seal 1 includes an annular magnet 5 (magnetic force generating means) magnetized in the axial direction, and a pair of annular pole pieces 6 and 7 made of a magnetic material fixed to both sides of the magnet 5 in the axial direction. It is composed of a magnetic fluid 8 held between the pole pieces 6 and 7 and a force.
  • a magnetic circuit is formed by the magnet 5, the pole piece 7, the magnetic fluid 8, and the pole piece 6, and the magnetic fluid 8 is magnetically held by the magnetic field distribution of the magnetic circuit.
  • the pair of pole pieces 6 and 7 are installed in the lens barrel 13 with the magnet 5 interposed therebetween, and protrude from the inner peripheral surface of the lens barrel 13.
  • the height of the pole pieces 6, 7 protruding from the inner peripheral surface of the lens barrel 13 is set so that even if the pole pieces 6 and 7 are eccentric, the peripheral end does not contact the outer peripheral surface of the lens barrel 14 facing the eccentricity.
  • the magnet 5 is made of a metal, an organic material filled with magnet powder, or an electromagnet.
  • the pole pieces 6 and 7 are made of metal or organic material filled with magnetic metal powder.
  • the magnetic fluid 8 is a fluid, so the magnetic fluid 8 is deformed according to the outer peripheral surface shape of the lens barrel 14 and the space between the lens barrels 13 and 14 The gap can be closed so that light is always shielded and sliding resistance can be reduced.
  • the sliding resistance of the second embodiment having the above configuration was measured as described below. As in the first embodiment, the measurement was performed by mounting a light-shielding seal 1 as a sample on a simulated lens barrel having an outer diameter of 40 mm as shown in FIG.
  • a light-shielding seal 1 of Example 2 is shown in FIG. 8, and has a pair of outer diameter of ⁇ 41.8 mm, diameter of ⁇ 40.6 mm, and width of 0.2 mm. Between a pair of pole pieces 6 and 7, a pair of pole pieces 6 and 7, an axially magnetized permanent magnet 5 having a width of 1.0 mm, and a pair of pole pieces 6 and 7 And a magnetic fluid 8 held in the liquid.
  • the outer surface of the lens barrel 14 that comes into contact with the magnetic fluid 8 is also provided with a magnetic material, and the magnetic fluid 8 is ⁇
  • a seal lip 9 made of silicone rubber or the like may be provided on both sides (or one side) of the pole pieces 6 and 7 as in the related art.
  • the seal lip portion 9 in FIG. 9 has a configuration in which the tip is lightly contacted with the outer peripheral surface of the lens barrel 14 so as not to hinder the contact between the magnetic fluid 8 and the outer peripheral surface of the lens barrel 14.
  • the sealing lip portion 9 can reliably prevent the leakage of the magnetic fluid 8 due to the relative movement, so that the sealing property of the light shielding seal 1 can be improved.
  • the light-shielding seal 1 is disposed on the outer peripheral surface of the inner lens tube 14, and the magnetic fluid 8 and the inner peripheral surface of the lens tube 13 are brought into contact with each other, so that the lens tubes 13, 14 It is also possible to fill the gap between them.
  • the pole piece as the magnetic fluid holding means may be formed in a shape capable of concentrating magnetic flux on another member side. If the pole piece is formed in such a shape, the lines of magnetic force concentrate on a portion of the magnetic fluid holding means that is closer to the inner lens barrel, so that the magnetic fluid also has a shape along the lines of magnetic force. It is formed and functions as a sealing material, and as a result, the contact amount of the magnetic fluid to other members can be increased. As a result, light can be shielded more reliably.
  • the tip sides 27, 27 of the pole pieces 6, 7, are bent inwardly in an L-shape.
  • the magnetic fluid 4 may be sandwiched between the distal ends 27 and 27.
  • the distal ends 27, 27 of the pole pieces 6, 7 are formed in an L-shape in this way, the magnetic force is concentrated on the distal ends 27, 27, and the pair of distal ends 27, 27 form a magnetic force.
  • the sandwiched magnetic fluid 4 is also held more reliably.
  • the outer barrel side of the pair of distal ends 27 and 27 was cut and formed, and the distal ends ⁇ 28 and 28 were formed on the inner barrel side.
  • magnetic lines of force are generated further in the direction of the inner lens barrel than in the case of FIG. 27 above, and the magnetic fluid 4 is shaped according to the magnetic lines of force and functions as a sealing material. It comes into contact with the lens barrel 14. Therefore, the gap 29 between the inner lens barrel 14 and the outer lens barrel 13 can be more greatly shielded than in the case of FIG.
  • FIG. 26 when the inner lens barrel 14 is formed of the non-magnetic material 30, an automatic centering function is provided by using the light shielding structure according to the present embodiment. Alternatively, an eccentricity following function can be obtained.
  • the magnetic fluid 4 is formed into a shape according to the shape of the line of magnetic force by the magnetic force generated by the magnet 2.
  • the inner lens barrel 14 is formed of a non-magnetic material, the inner lens barrel 14 is not attracted to the light shielding seal 1. Therefore, when the magnetic fluid 4 is formed into a shape according to the line of magnetic force, a force is exerted to press the magnetic fluid 4 toward the inner lens barrel 14. This force is due to the force of the magnetic fluid 4 trying to align with the line of magnetic force.
  • the light-shielding seal 1 is provided on the entire inner surface of the outer lens barrel 13, the pressing force toward the shaft center in the entire circumferential direction of the inner lens barrel 14 is reduced.
  • a pressing force acts from all directions toward the axis center of the inner barrel 14, and the pressing force causes the axial center of the inner barrel 14 to shift. Even if it has, eccentricity can be corrected.
  • the magnetic fluid is formed along the line of magnetic force by the magnetic force of the magnet 2 and functions as a sealing material.
  • the inner lens barrel 14 itself is also attracted toward the magnetic force generating means by the magnetic force of the magnetic force generating means.
  • the outer surface of the inner lens tube 14 slightly presses the magnetic fluid, so that the contact portion of the magnetic fluid with the inner lens tube 14 is crushed and deformed, and the inner lens tube is deformed.
  • the contact portion with 14 expands. Therefore, the magnetic fluid 4 also has a larger contact area with the inner lens barrel 14 in the axial direction of the inner lens barrel 14 than in the case of FIG. .
  • the light-shielding seal 1 provided with such a magnetic force generating means and a magnetic fluid holding means is attached to a metal member 32 attached to the end of the outer lens barrel 14. It may be fixed in advance.
  • a pair of metal magnets are provided on the inner peripheral surface of a metal ring member 32 formed in an L-shaped cross section and fixed to the distal end of the outer lens barrel 13, and on both sides of the magnet.
  • the pole pieces 6 and 7 are fixed, and the magnetic fluid 4 is held by the pole pieces 6 and 7.
  • the light-shielding seal 1 constituted by the above is fixed. That is, in FIG. 28, only the side surface of one pole piece 6 is fixed to the radial portion of the ring member 32.
  • the ring member 32 to which the light-shielding seal 1 configured as described above is fixed in advance is, for example, an integral part of the lens barrel body made of synthetic resin. And fix it.
  • a ring member 32 to which a light-shielding seal 1 is attached as an integral part is previously fixed to a lens barrel integrally formed of resin. It is possible to provide a light-shielding structure that can be easily attached.
  • the present invention is not limited to the above-described embodiment, and as shown in FIG.
  • the part, the magnet 2 and the entire other pole piece 7 may be fixed to the ring member 32.
  • the light-shielding seal 1 is fixed to the ring member 32 on the rear end side of the inner lens barrel 14, and the magnetic fluid 2 is fixed to the outer lens barrel 13. May be configured to come into contact with the inner side surface portion.
  • the present invention is not limited to the above-described embodiment ⁇ . It may be integrated with the outer lens barrel 13.
  • such a light-shielding seal 1 may not be fixed to the lens barrel. That is, as shown in FIGS. 32 and 33, in the present embodiment, the light-shielding seal 1 composed of the magnet 2 and the pole pieces 6 and 7 is provided on the inner peripheral surface of the outer barrel 13. 33 is spaced apart from 3.
  • a light-shielding seal 1 mounting portion 34 composed of a concave portion is formed at the tip of the outer lens barrel 13 made of synthetic resin.
  • the light-blocking seal 1 is disposed in a state where a gap 35 is slightly formed between the light-blocking seal 3 and the bottom surface of the plate 34.
  • the light shielding seal 1 is formed with a slight gap 35 formed between the inner peripheral surface of the ring member 32 fixed to the distal end of the outer lens barrel 13. Is arranged. In this case, the gap 35 is about 0.1 ⁇ ⁇ . If the light-shielding seal 1 is arranged with such a gap 35, a manufacturing error or an assembly error of the lens barrel may be caused.
  • the above-mentioned gap can absorb the error of the axis, maintain the automatic centering function, and easily perform centering. . Further, as described above, since the gap 35 is about 0.1 mm and is formed very small, even when the light shielding seal 1 is mounted with the gap 35 as described above, When the lens barrel is moved, there is no particular problem such as rattling.
  • a shielding member 36 which can prevent dust from entering from outside may be provided on the outer side of the light shielding seal 1.
  • the outer pole piece 6 fixed to the side of the magnet 2 and the ring member 32 have an outer portion.
  • a shielding member 36 is provided to prevent dust from entering from one side.
  • the width L of the shielding member 36 is larger than the width of the pole piece and smaller than the distance L1 from the base end of the pole piece to the inner lens barrel.
  • Suitable materials for the shielding member 36 include, for example, felt, rubber, Mylar, PTF E, sponge, and the like.
  • the shielding member 36 can prevent dust from entering from outside.
  • intrusions from the outside are caught between the pole pieces 6 and 7 and the inner barrel 14, and rubbed when the inner barrel 14 moves, increasing the sliding resistance and increasing the camera's resistance. It is possible to prevent a situation where power consumption increases.
  • This shielding member 36 is particularly effective for dust made of a magnetic material. That is, even without such a shielding member 36, dust of the non-magnetic material can be prevented from entering the inside of the lens barrel because it is removed by the magnetic force of the magnet. The dust may enter the lens barrel due to the magnetic force of the magnet, and may adhere to the pole pieces 6 and 7 in the magnetic fluid 4 and rub against the surface of the lens barrel. Can effectively prevent intrusion of dust made of the magnetic material.
  • the shielding member 36 is disposed only on the inner lens barrel side of the magnet 2 has been described as an example, but is not limited to the above embodiment.
  • the magnetic fluid 4 may be provided on the pole piece 7 side on the inner side of the magnet 2 as shown in FIG. 36 in each of the above embodiments.
  • the present invention is not limited to the above-described embodiment, and as shown in FIG. It may be arranged between the lens barrel 13 and the ring member 32 fixed to the distal end of the lens barrel 13.
  • both magnetic fluids are disposed.
  • 4 and 4 are formed into a shape following the lines of magnetic force by the magnetic force, and function as a light shielding material. Further, in the case of this embodiment, the magnets 2 and 3 constituting the light shielding seal 1 are assembled in a floating state on the outer barrel by the magnetic levitation force.
  • a slight gap between the light-shielding seal 1 and the outer-side lens barrel 13 may occur due to an error in mounting the light-shielding seal 1 to the outer barrel 13.
  • a gap may be formed, and there is a possibility that light may enter through such a gap.
  • the constituent members of the light shielding seal 1 and the outer barrel 13 are described. Since the magnetic fluid 4 is also shielded from outside, it is possible to more completely shield external light.
  • the magnetic fluids 4 and 4 are arranged at two force points in the direction perpendicular to the axis, if the axis of the lens barrel is misaligned, only one force point is applied in the direction perpendicular to the axis. As compared with the case where a magnetic fluid is present, it is possible to sufficiently follow a larger displacement of the shaft center.
  • the magnets 2 and 3 can be arranged over the entire peripheral surface so as to surround the magnets 2 and 3 with the magnetic fluid 4.
  • the magnetic fluid 4 magnetizes according to the shape of the magnetic lines of force of the magnets 2 and 3 and surrounds the magnets 2 and 3. It functions as a light-blocking seal material in the form of a slab.
  • the magnetic fluid 4 functions as a light-shielding sealing material also in the axial direction of the lens barrels of the magnets 2 and 3, the side wall of the mounting portion of the light-shielding seal 1 provided on the lens barrel is provided. Direct contact with 37 can be prevented.
  • the light-shielding seal 1 fixed to the outer barrel 13 is opposed to the light-shielding seal 1.
  • a plurality of very small grooves 38 are engraved on the inner side of the lens barrel 14 to block the magnetic fluid 4 when the lens barrels 13 and 14 move. It may be configured so that it does not leak from the seal part.
  • the lens barrel of a so-called zoom type camera moves forward and backward while rotating slightly during focusing or zooming, for example. Therefore, in consideration of the rotation direction and the moving direction of the lens barrel, the plurality of extremely narrow grooves 38 are formed in the inner lens barrel 14 at a position facing the light-shielding seal 1,
  • the magnetic fluid 4 may be configured to always guide the magnetic fluid 4 so that the magnetic fluid 4 does not flow out of the light-shielding seal portion when moving forward or backward.
  • the groove 38 is provided on the inner barrel 14 side.
  • the present invention is not limited to the above embodiment. It may be provided on the surface of the tip of one piece 6, 7, on the surface of the magnet 2 or on the surface of the tip of the above-mentioned shielding member 36.
  • the surface of the inner lens barrel 13 with which the magnetic fluid 4 of the light-shielding seal 1 of the outer lens barrel 13 comes into contact is provided with oil repellency on the surface of the other member with which the magnetic fluid comes into contact. Provided surface coating treatment may be applied.
  • the surface coating treatment having oil repellency means, for example, a case where an oil repellent solid film is formed on the surface of the other member, or an oil film which is not compatible with the oil constituting the magnetic fluid is formed to form an oil film. This is the case.
  • the magnetic fluid 4 When such a treatment is performed, even if the magnetic fluid 4 comes into contact with the inner lens barrel 13 and the inner lens barrel 13 moves, the magnetic fluid 4 remains in the inner lens barrel 13. Has an oil-repellent surface coating, and the magnetic fluid 4 is less likely to “wet” the inner lens barrel 13. When the magnetic fluid 4 comes into contact or sliding contact, the magnetic fluid 4 hardly flows, and the light-shielding seal 1 is formed more reliably.
  • the use of the magnetic fluid for the light-shielding seal allows the other member in contact with the light-shielding seal to contact the magnetic fluid.
  • the sliding resistance can be significantly reduced compared to the sliding resistance.
  • Even when there is a burr (parting line) on the surface the magnetic fluid moves following the magnetic field distribution and fills the gap between the two members, improving eccentricity followability and enabling complete light shielding.
  • As a result of the improved followability there is no need to provide a space equal to or more than the eccentric amount on the outer diameter side of the conventional light-shielding seal, so that space can be saved.
  • a light-shielding structure capable of securing a greater holding force of the magnetic fluid and more reliably shielding light is provided. be able to.
  • a light-shielding structure capable of reliably blocking light between the lens barrels. Can be.
  • the tenth aspect of the present invention in addition to the effects of the ninth aspect, it is possible to provide a light-shielding structure for a lens barrel of a force lens that can be easily assembled.
  • a light-shielding structure for a lens barrel of a force lens that can be easily assembled.
  • the invention of claim 11 in addition to the effect of the invention of claim 9, even if an error occurs in the center of the axis of the camera lens barrel, the error can be effectively reduced.
  • a light-shielding structure capable of absorbing light can be provided.
  • a light-shielding structure capable of effectively preventing dust from entering the inside of the lens barrel from the outside is provided.
  • a light-shielding structure can be provided that can be held at the position of the magnetic force generating means without a magnetic fluid that reliably contacts the lens barrel flowing.
  • the light-shielding structure according to the present invention is very useful for light-shielding between the lens barrels of a multi-barreled camera having a zoom function. It is very suitable for shielding light between a plurality of members arranged so as to be relatively movable.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Lens Barrels (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Description

,
明 細 書 遮光構造 技術分野
本発明は、 光を遮断する遮光構造に関し、 例えばズーム機能を備えたカメラの複 数の鏡筒間の遮光に使用される遮光構造に関する。 背景技術
従来、 この種のカメラのズームレンズ部等の遮光構造を形成する遮光シールは、 オイルシールなどと比べてシール自体にそれほどの力もかからず、 また摺動も比較 的低速で低頻度に行われるものである。
従来から知られている構成としては、 例えば、 ①含油シリコーンゴム製の遮光シ ール、 ②シリコーンゴムに P T F Eをコーティングした遮光シール、 ③含油シリコ ーンゴムを金具に焼き付けた遮光シール、 ④ P T F Eをコーティングしたシリコ一 ンゴムを金具に焼き付けた遮光シールなどがあつた。
図 1 1に④の遮光シールを示す。 図 1 1において、 遮光シール 1 0 0は、 P T F Eがコ一ティングされたシリコーンゴム製のリングからなるシールリップ部 1 0 1 と、 金具としての金属製のリングからなる補強部 1 ◦ 2とを接着して構成されてい る。
シールリップ部 1 0 1のシール内径端は、 鏡筒 2 0 0の外径に対して少し小さ目 の径に設けられている。
そして、 使用時には、 シール内径に鏡筒 2 0 0を挿入し、 シールリップ部 1 0 1 が L字形に変形し、 その緊迫力で鏡筒 2 0 0に密着することで、 ズームアップなど で鏡筒が出入りする際の光及びダス卜の侵入を防ぎ、 遮光性及び密封性を持たせて いる。
このように、 従来の遮光シールは、 シールリップ部に対し、 含油としたり、 P T F Eをコーティングすることによって、 摺動抵抗の低下を図っていた。
しかしながら、 上記のような従来技術の場合には、 下記のような問題が生じてい た。
近年、 コンパク トカメラは、 小型化が進み、 かつ多機能化を実現している。 その —方で、 コンパク トカメラの電源からの電力量は限られており、 各ユニット毎に省 電力化を図っている。
そのような中で、 従来の遮光シールでは、 鏡筒と遮光シールの固体同士の接触に よる摺動のため、 含油としたり、 P T F Eをコーティングして、 いかに摺動抵抗の 低下を図っても、 その低減効果には限界があった。 例えば、 摺動抵抗の比較的低い 上記した④の遮光シールでも、 1個当たりの摺動抵抗は 2 0〜1 0 0 g f と大きな ものであった。
このように、 遮光シールの摺動抵抗が大きいために、 ズームを行う際に比較的大 きな電力を消費してしまっていた。
一方、 鏡筒が伸縮する際には、 鏡筒の偏心量によって遮光シール設置スペースが 変化するため、 偏心量が大きい場合には、 例えば遮光シール全体がゴムでできてい た場合であっても、 遮光シール設置スペースが狭いところでは押しつぶされ、 また スペースが広いところでは隙間が生じ、 漏光が起こつてしまう。
このため、 従来の遮光装置では、 小型化を図る場合であっても、 図 1 1に示すよ うに、 遮光シールの外径側に偏心量と同等以上のスペース Sを設ける必要があった 。 このスペース Sが偏心があった場合には、 図 1 2に示す '::に、 偏心量を吸収す ることにより遮光シールの機能を損なわないように構成されていた。
また鏡筒には、 型割面にバリ (パーテイングライン) があり、 そこから漏光が起 こる場合もあった。
上記の従来技術の課題を解決するためになされたもので、 請求項 1記載の技術的 課題は、 摺動抵抗を低減できると共に遮光性を向上し、 さらには省スペース化を図 ることが可能な遮光構造を提供することにある。
請求項 2乃至 4及び 1 4記載の発明の技術的課題は、 請求項 1記載の技術的課 題に加えて、 磁性流体の、 より大きな保持力を確保し、 より確実に遮光しうる遮 光構造を提供することにある。
請求項 5記載の発明の技術的課題は、 請求項 1記載の発明の技術的課題に加え て、 磁性流体のより大きな保持力を確保すると共に、 複数の部材間に組み付けの 誤差等が合った場合であっても有効に誤差を吸収することができる遮光構造を提 供することにある。
請求項 6記載の発明の技術的課題は、 請求項 1記載の発明の技術的課題に加え て、 より遮光効果を向上させることができる遮光構造を提供することにある。 請求項 7乃至 8記載の発明の技術的課題は、 請求項 1記載の技術的課題に加え て、 磁性流体のより大きな保持力を確保し、 より確実に遮光しうる遮光構造を提 供することにある。
請求項 9記載の発明の技術的課題は、 請求項 1記載の発明の技術的課題に加え て、 複数の鏡筒を有するカメラにおいて、 鏡筒間の遮光を確実に行うことができ る遮光構造を提供することにある。
請求項 1 ◦記载^ '発明の技術的課題は、 請求項 9記載の発明の技術的課題に加 えて、 鏡筒の組み付け作業の容易なカメラの鏡筒の遮光構造を提供することにあ る。
請求項 1 1記載の発明の技術的課題は、 請求項 9記載の発明の技術的課題に加 えて、 カメラの鏡筒の軸中心に誤差が発生している場合であっても、 当該誤差を 有効に吸収することができる遮光構造を提供することにある。
請求項 1 2記載の発明の技術的課題は、 請求項 1 0記載の発明の技術的課題に 加えて、 外方から鏡筒内部へのちりの侵入を有効に防止することができる遮光構 造を提供することにある。
am求項 1 3記載の発明の技術的課題は、 請求項 9記載の発明の技術的課題に加 えて、 カメラの鏡筒が前出又は後退した場合であっても、 確実に鏡筒に当接する 磁性流体が流れてしまうことなく、 磁力発生手段位置に保持しうる遮光構造を提 供することにある。
請求項 1 4記載の発明の技術的課題は、 請求項 1記載の発明の技術的課題に加 えて、 部材に接触した際の磁性流体の濡れを防止し、 より遮光性を向上させうる 遮光構造を提供することにある。 発明の開示
上記技術的課題を達成するために請求項 1記載の本発明にあっては、 所定間隔を Λ
4
置いて互いに相対移動しうるように配置される複数の部材間に設けられ、 これらの 複数の部材間に形成される空隙からの光の侵入を防止しうる遮光構造であって、 上 記複数の部材のいずれか一方に配設された磁力発生手段と、 この磁力発生手段に 磁気的に保持され、 他方の部材に当接する磁性流体を備え、 上記磁性流体により 上記複数の部材間に形成される空隙を遮蔽することを特徴とする。
ここに磁力発生手段とはいわゆる磁石を指し、 また、 磁性流体とは、 強磁性の 微粒子を、 界面活性剤を磁性微粒子表面に吸着させて安定に分散させた液体の意 であり、 炭化水素、 フッ素、 シリ コーン等のベースオイルに界面活性剤吸着の磁 性微粒子を混入したものが使用される。 この所定濃度の磁性微粒子により、 磁性 流体の遮光方向の厚さ寸法との関連で、 適宜、 必要な遮光性を得ることができる 。 この磁性流体は磁力発生手段から発生する磁力線により、 磁力線の形状に沿つ た形の磁性流体が形成され、
他の部材に当接するため、 外部からの光は遮断される。 また、 磁性流体は磁力線 により保持されているため、 所定の形状を維持し続ける。
また、 上記他方の部材は磁性流体に接触するので、 従来の固体同士の接触によ る摺動抵抗よりも飛躍的に摺動抵抗を低減することができる。 その結果、 このよう に摺動抵抗が低減されたため、 2部材の相対移動に必要とされる電力の消費量を低 減し、 省電力化が可能となる。
また、 2部材の偏心により遮光シール設置スペースが変化した場合や、 型割面の バリ (パーテイングライン) がある場合でも、 磁場分布に追随して磁性流体が移動 して 2部材間の隙間を埋めるため、 偏心追随性が向上し、 完全な遮光ができる。 さらに、 偏心追随性が向上した結果、 遮光シールの外径側に、 従来のように偏心 量と同等以上のスペースを設ける必要がなくなるため、 特に、 小型化が要求される 小型カメラにおいて、 効率的に省スペース化を図ることができる。
請求項 2記載の発明にあっては、 上記磁力発生手段は、 磁力を上記他方の部材 方向へ集中させうる形状に形成されていることを特徴とする。
従って、 請求項 2記載の発明にあっては、 磁力が他方の部材方向へ集中される ため、 磁性流体は集中した磁力により、 磁力線に沿った形状に造形されて保持さ れ、 その結果、 より強く他の部材に押圧した状態で接触することとなる。 -
その結果、 いずれか一方の部材が相対的に移動した場合であっても当接する磁 性流体が当該移動する部材に引きづられる、 という事態を低減することができる ため、 より遮光性を向上させることができる。
請求項 3記載の発明にあっては、 上記磁力発生手段は、 他方の部材方向へ突出 する先端形状に形成されていることを特徴とする。
従って、 請求項 3記載の発明にあっては、 磁力発生手段の先端形状が他方の部 材へ突出するように形成された場合には、 磁力発生手段 2 , 3 , 5の先端部が平 面形状の場合に比して、 磁性流体 4, 8の表面張力をより大きく形成できるため 、 磁性流体 4 , 8はより大きな保持力で磁力発生手段に保持されることになる。 その結果、 より確実に遮光することが可能となる。
請求項 4記載の発明にあっては、 上記磁力発生手段 2 , 3 , 5には、 多孔質材 が配設されていることを特徴とする。
ここに多孔質材とは、 例えば、 織布ゃ不織布等が該当する。 このような多孔質 材が配設された場合には、 磁力による保持力に加えて、 多孔質材の毛管力により 磁性流体がより強固に磁力発生手段に保持されることとなり、 確実に遮光するこ とが可能となる。
請求項 5記载の発明にあっては、 上記他方の部材は非磁性材により形成されて いることを特徴とする。
請求項 5記載の発明によれば、 磁性流体が磁力発生手段からの磁力により磁力 線に沿った形状となった場合、 磁性流体は非磁性材に対して、 結杲的に押圧され ることとなる。
従って、 一方の部材と他方の部材との間に組み付け誤差等が合った場合であつ ても、 当該誤差を有効に吸収できる。
請求項 6記載の発明によれば、 上記他方の部材は磁性材により形成されている ことを特徴とする。
従って、 請求項 6記載の発明によれば、 上記他方の部材は磁性材により形成さ れているため、 上記磁力発生手段に磁性材のみならず、 他の部材も磁力で引きつ けられるため、 磁性流体が磁力線の形とはならずつぶれ変形することにより、 他 の部材との接触面積を大きくすることができる。 その結果、 請求項 6記載の発明にあっては、 より遮光効果を向上させることが できる。
請求項 7記載の発明にあっては、 上記磁力発生手段の両側には、 磁性体からな る一対の磁性流体保持手段が設けられ、 上記磁性流体は、 磁力発生手段及び一対 の磁性流体保持手段により磁気的に保持されていることを特徴とする。
従って、 請求項 7記載の発明にあっては、 磁性流体は磁力発生手段から発生す る磁力のみならず、 一対の磁性流体保持手段により磁気的に保持されるため、 よ り強固に保持されることとなる。
請求項 8記載の発明にあっては、 上記磁性流体保持手段は、 磁力を他の部材側 に集中させることができる形状に形成されていることを特徴とする。
従って、 請求項 8記載の発明にあっては、 磁性流体保持手段のより他の部材に 位置的に近い部位に磁力線が集中することから、 磁性流体もその磁力線に沿った 形状になり、 その結果、 他の部材側への磁性流体の当接量をより大きくすること ができる。
従って、 請求項 8記載の発明にあっては、 より確実に遮光することができる。 請求項 9記載の発明にあっては、 上記複数の部材は、 カメラのレンズの鏡筒で あって、 上記磁力発生手段は外方側鏡筒の内側面部全周に亘つて固定され、 磁性 流体は内方側鏡筒の外側面部全周に亘つて当接し、 外方^镜筒と内方側鏡筒との 間の空隙を遮蔽することを特徴とする。
従って、 請求項 9記載の発明にあっては、 例えば、 カメラのズーム時に、 内方 側鏡筒が前後動した場合であっても、 外方側鏡筒と内方側鏡筒との間においては 、 外方側鏡筒の全周に亘つて固定された磁力発生手段により磁気的に保持された 磁性流体が、 内方側鏡筒の外側面部全周に亘つて当接した状態で配置されている ため、 外方側鏡筒と内方側鏡筒との間は上記磁性流体により遮光される。
請求項 1 0記載の発明にあっては、 上記磁力発生手段及び磁性流体保持手段は 、 上記鏡筒の端部に装着される金属部材にあらかじめ固定されていることを特徴 とする。
従って、 請求項 1 0記載の発明にあっては、 鏡筒の製造作業の容易な遮光構造 を提供することができる。 n
請求項 1 1記載の発明にあっては、 上記磁力発生手段及び磁性流体保持手段は 上記外方側鏡筒の内周面部とは離間して配置されていることを特徴とする。 従って、 請求項 1 1記載の発明にあっては、 磁力発生手段及び磁性流体保持手 段が外方側鏡筒の内周面部に形成された取付部とは離間して配置されているため 、 磁力発生手段及び磁性流体保持手段と外方側鏡筒の内周面部に形成された取付 部との間にはわずかに空隙が形成されている。
その結果、 例えば、 カメラのレンズの鏡筒の製造誤差、 組み付け誤差等により 軸中心に若干のずれがあった場合であっても、 上記空隙部が上記誤差を吸収する ことができ、 各鏡筒の軸中心を合致させる、 いわゆるセンタリ ングを行うことが 可能となる。
請求項 1 2記载の発明にあっては、 上記磁性流体保持手段の外方側には、 外方 からのちりの侵入を防止しうる遮蔽部材が設けられていることを特徴とする。 従って、 請求項 1 2記載の発明にあっては、 上記遮蔽部材により外方からのち りの侵入を防止できる。 その結果、 外方から侵入したちりが磁性流体保持手段と 他の部材との間に挟まり、 他方の部材とこすれ、 摺動抵抗が大きくなり、 カメラ の消費電力の増大を招く、 という事態を防止することができる。
請求項 1 3記載の発明にあっては、 上記磁力発生手段又は磁性流体保持手段の 先端部、 もしくは、 內方側鏡筒の外表面には、 内方側鏡筒及び外方側鏡筒の相対 的な回転運動により、 磁性流体を磁力発生手段位置に保持しうる形状の ¾が刻設 されていることを特徴とする。
従って、 他の部材が一方の部材に対して移動した場合であっても、 他方の部材 に当接している磁性流体は、 他方の部材に引かれ、 流れてしまうことなく、 上記 溝により磁性流体は常時、 磁力発生手段位置に止まる。
その結果、 請求項 1 3記載の発明にあっては、 より確実に遮光を行うことがで きる。
請求項 1 4記載の発明にあっては、 上記磁性流体が接触する他方の部材の表面 には、 撥油性を確保しうる表面皮膜処理が施されていることを特徴とする。 ここで撥油性を確保しうる表面処理とは、 例えば、 撥油性の固体膜を他方の部 材の表面に形成する場合や、 当該磁性流体を構成するオイルとなじまないオイル ^
を塗布し油膜を形成する場合が該当する。
他方の部材表面にこのような処理を施した場合には、 磁性流体が他の部材と当 接又は摺接した場合であっても、 磁性流体が内方側鏡筒の表面に対して濡れにく くなるため、 磁性流体は流れにく くなり、 より確実に遮光シールを形成すること ができる。 図面の簡単な説明
第 1図は、 第 1の実施の形態に係る遮光シール 1を示す半断面図であり、 第 2図 は、 第 1の実施の形態に係る実施例 1の遮光シール 1を示す半断面図であり、 第 3 図は、 摺動抵抗を測定する状態を示す説明図であり、 第 4図は、 従来技術に係る比 較例の遮光シール 1を示す半断面図であり、 第 5図は、 第 1の実施の形態に係るコ ンパク トカメラを示す説明図であり、 第 6図は、 第 1の実施の形態に係る他の例の 遮光シール 1を示す半断面図であり、 第 7図は、 第 2の実施の形態に係る遮光シー ル 1を示す半断面図であり、 第 8図は、 第 2の実施の形態に係る実施例 2の遮光シ —ル 1を示す半断面図であり、 第 9図、 第 2の実施の形態に係る他の例の遮光シ一 ル 1を示す半断面図であり、 第 1 0図は、 第 2の実施の形態に係る他の例の遮光シ ール 1を示す半断面図であり、 第 1 1図は、 従来技術の遮光シール 1を示す半断面 図であり、 第 1 2図は、 従来技術の遮光シール 1の偏心状態を示す説明図であり、 第 1 3図は、 磁石の構成の一態様であって、 先端を接曲形成したものを示す図で あり、 第 1 4図は、 単一の磁石の構成の一態様を示す図であり、 第 1 5図は、 複 数の磁石の構成の一態様を示す図であり、 第 1 6図は、 複数の磁石の間に磁性材 を挟持した構成を示す図であり、 第 1 7図は、 複数の磁石により突出部を形成し た構成を示す図であり、 第 1 8図は、 複数の磁石により突出部を形成した構成を 示す図であり、 第 1 9図は、 複数の磁石により突出部を形成した構成を示す図で あり、 第 2 0図は、 複数の磁石により多孔質材を挟持して構成した磁石を示す図 であり、 第 2 1図は、 複数の磁石により多孔質材を挟持して構成した磁石を示す 図であり、 第 2 2図は、 複数の磁石の中央に多孔質材を固定して構成した磁石を 示す図であり、 第 2 3図は、 複数の磁石の中央に多孔質材を固定して構成した磁 石を示す図であり、 第 2 4図は、 ポールピースの先端部を接曲形成した実施の形 態を示す図であり、 第 2 5図は、 ポールピースの先端部を接曲形成し、 さらに先 端部を切り欠いた状態の実施の形態を示す図であり、 第 2 6図は、 磁性流体が非 磁性材に当接している状態を示す図であり、 第 2 7図は、 磁性流体が磁性材に当 接している状態を示す図であり、 第 2 8図は、 遮光シールが鏡筒の先端部リング 部材にあらかじめ固定されている場合を示す図であり、 第 2 9図は、 遮光シール が鏡筒の先端部のリング部材にあらかじめ固定されている場合を示す図であり、 第 3 0図は、 遮光シールが鏡筒の後端部のリング部材にあらかじめ固定されてい る場合を示す図であり、 第 3 1図は、 遮光シールが鏡筒の後端部リ ング部材にあ らかじめ固定されている場合を示す図であり、 第 3 2図は、 遮光シールが鏡筒に 対して浮遊状態で取り付けられている場合を示す図であり、 第 3 3図は、 遮光シ —ルが鏡筒に対して浮遊状態で取り付けられている場合を示す図であり、 第 3 4 図は、 遮光シールに遮蔽部材が取り付けられている場合を示す図であり、 第 3 5 図は、 遮光シールに遮蔽部材が取り付けられている場合を示す図であり、 第 3 6 図は、 一般的な、 磁性流体を利用した遮光構造を示す図であり、 第 3 7図は、 磁 石の復数部材の双方側に磁性流体を設けた場合を示す図であり、 第 3 8図は、 磁 石全体を被覆するように磁性流体を設けた場合を示す図であり、 第 3 9図は、 内 方側鏡筒の遮光シール対応部位に微細な複数の溝を刻設した状態を示す図である
発明を実施するための最良の形態
以下に図面を参照して、 この発明の好適な実施の形態を例示的に詳しく説明する 。 ただし、 この実施の形態に記載されている構成部品の寸法、 材質、 形状、 その相 対配置などは、 特に特定的な記載がない限りは、 この発明の範囲をそれらのみに限 定する趣旨のものではない。
(第 1の実施の形態)
図 5に第 1の実施の形態に係る遮光装置として、 コンパク トカメラについて説明 する。 概略図 5に示すコンパク トカメラ 1 0は、 カメラ本体 1 1から移動可能に突 き出た 3連の鏡筒 1 2, 1 3 , 1 4と、 1番内側の鏡筒 1 4内部に配置されたレン ズ 1 5及びシャッタ一ュニット 1 6と、 を有するズームレンズ部を備えている。 ェ。
このズームレンズ部には、 各鏡筒 1 2, 1 3 , 1 4間、 及び鏡筒 1 2とカメラ本 体 1 1間の隙間に、 遮光シール 1が設けられており、 ズ一ムなどでズ一ムレンズ部 が出入りする際の光及びダストの侵入を防いでいる。
図 1に第 1の実施の形態に係るズームレンズ部に装着された遮光シール 1を示す 。 遮光シール 1はどれも同じ構成で設けてあり、 ここでの説明は、 円筒状の鏡筒 1 3 , 1 4間に設けられた遮光シール 1について行うものである。
遮光シール 1は、 径方向に互いに逆向きに着磁され、 鏡筒 1 3内周面に配置され た漯状の一対の磁石 2, 3 (磁力発生手段) と、 一対の磁石 2, 3の内周端部に保 持された磁性流体 4と、 から構成される。
一対の磁石 2 , 3は、 径方向に互いに逆向きに着磁された磁石 2 , 3の向かい合 う軸方向端面同士を接合され、 磁石 2, 3間の磁場分布に従って一対の磁石の内周 端部に磁性流体 4が磁気的に保持されている。
また一対の磁石 2 , 3は、 鏡筒 1 3, 1 4が偏心していた場合であっても内周端 部が対向する鏡筒 1 4外周面に当接しない高さに鏡筒 1 3内周面から突出して設け られている。
磁石 2 , 3としては、 金属、 又は磁石粉を充填した有機材料等からなる永久磁石 を用いている。
磁性流体 4としては、 F e 34等の粒子を油, 水, 有機¾媒等の中にコロイ ド状 に分散させたものを用いている。 本実施の形態においては、 飽和磁化約 2 5 0ガウ スの炭化水素ベースの磁性流体を遮光方向における厚さ寸法が約 2 0 0 となる ように遮光シール 1に充填し、 可視光で 2 0 0 0 0〜 1 0 0 , 0 0 0ルクスの照 射を行い、 写真フィルムの感光の如何により透過光の有無を判定した。 この光透 過試験の結果、 光の透過は認められなかった。 また、 微粒子を混入するベースォ ィルとして、 炭化水素油以外に、 フッ素油、 シリコーン油をも使用して試験を行 つたが結果は略同様であつた。
そして、 遮光シール 1の内径に鏡筒 1 4を装着すると、 磁性流体 4は流体である ので、 固体である鏡筒 1 4の外周面形状に合わせて変形し、 鏡筒 1 3, 1 4間の隙 間を塞ぎ、 常に遮光すると共に摺動抵抗を低減することができる。
ここで、 鏡筒 1 4の外周面は、 磁性流体 4の撥油性を向上させる材料、 即ち、 磁 n
性流体 4との濡れ性を低下させる材料によって被膜処理が施されてコーティングさ れた場合には、 磁性流体 4の保持力が向上する。 この場合、 例えば、 撥油性の固体 膜を鏡筒表面に形成してもよく、 また、 フッ素を有するカップリング剤や、 高分子 量化が容易なフッ素鎖を有するモノマ一等の表面改質剤を用いることが好ましい。 また、 フッ素系の油を多孔質材としての識布ゃ不織布に含浸させ、 このような 織布を上記遮光シール 1の前方部に配設して鏡筒表面に油膜を形成してもよい。 この場合、 ブラシやフェルト等を用いてもよい。 また、 このような油膜を形成す る油としては磁性流体とはなじまない流体であればよい。 例えば、 炭化水素ベー スのオイルとフッ素ベースのオイルとはなじまないことから、 当該遮光シール 1 に使用されているオイルとなじまないオイルを用いることにより、 磁性流体に対 する撥油性を向上させることができ、 磁性流体 4が内方側鏡筒 1 4の表面に関す る 「濡れ」 の事態を防止することができる。
以上の構成の第 1の実施の形態について以下に示すように摺動抵抗を測定した。 測定は、 図 3に示すように、 外径 φ 4 Ommの模擬鏡筒に、 試料となる遮光シール 1を装着して行った。 詳しくは、 試料となる遮光シール 1を治具に固定し、 また模 擬鏡筒も固定用治具に固定し、 遮光シール 1を固定した治具側を摺動させることで 行った。
測定装置は、 島津製作所製ォ一トグラフ AG— 1000 KNであり、 測定条件は 、 摺動方向をズーム縮み方向 (回転なし)、 摺動速度を 5 OmmZm i n、 摺動距 離 1 5mm、 測定温度を室温として行った。
本実施の形態に係る試料として実施例 1の遮光シール 1は、 図 2に示すもので、 外径 φ 43πιιιι、 内径 <ί> 40. 6 mm, 幅 0. 2 mmの磁石を、 径方向に互いに着 磁方向を反対として接合した一対の磁石 2, 3と、 一対の磁石 2, 3の內周端部に 保持された磁性流体 4と、 から構成される。
これに対し、 従来技術の試料として比較例の遮光シール 1は、 図 4に示すもので 、 外径 <i> 43mm、 内径 φ 41. 2 mm, 幅 0. 2 mmの S U S板からなる補強部 102と、 S US板を焼き付けられ、 一部 (厚さ 0. 1 mm) S US板内径側に回 り込み、 外径 Φ 43πιπι、 內径 φ 38πιιη、 幅 0· 3 mmの P T F Εでコ一ティン グされたシリコーンゴムからなるシールリップ部 101と、 力 構成される。 これら二つの試料について上記の装置で摺動抵抗を測定した結果は、 実施例 1の 遮光シール 1では起動抵抗及び摺動抵抗共に測定限界の 1 g f 以下となり、 比較例 の遮光シール 1では起動抵抗 4 6 g f 、 摺動抵抗 3 0 g f となった。
このように、 従来の構成に比して本実施の形態の遮光シール 1の摺動抵抗が飛躍 的に低減することが上記の測定で確認できた。
したがって、 本発明は、 流体である磁性流体 4を用いた遮光シール 1を設けるこ とで、 固体である鏡筒 1 4との摺動抵抗の飛躍的な低減を図ることができる。
このため、 コンパク トカメラにあっては、 ズームレンズ部のズーム時に必要とさ れる電力の消費量が低減でき省電力化を達成することができる。
また、 鏡筒 1 4の偏心により遮光シール 1設置スペースが変化した場合や、 鏡筒 1 4外周面に型割面のバリ (パーテイングライン) がある場合でも、 磁場分布に追 随して磁性流体 4が移動して鏡筒 1 3 , 1 4間の隙間を埋めるため、 偏心追随性が 向上し、 完全な遮光ができる。
さらに、 偏心追随性が向上した結果、 遮光シール 1の外径側に、 従来のように偏 心量と同等以上のスペース Sを設ける必要がなくなるため、 省スペース化を図るこ とができる。
本実施の形態の遮光シール 1は、 互いに逆向きに着磁されて接合された一対の磁 石 2, 3に、 一対の磁極部を設けたことで、 構成が容易で製造性、 組立性に優れる なお、 図 6に示すように、 遮光シール 1を内側の鏡筒 1 4外周面に配置し、 磁性 流体 4と鏡筒 1 3内周面とを当接させて、 鏡筒 1 3 , 1 4間の隙間を埋める構成と してもよいし、 さらに、 本発明は磁性流体 4によって鏡筒 1 3 , 1 4間の隙間を埋 める構成であれば形状に限定されないものである。
磁力発生手段としての磁石の形状に関しては、 磁力を上記他方の部材方向へ集 中させうる形状に形成されていてもよい。 このように磁力を上記他方の部材方向 へ集中させうる形状に形成されていた場合には、 磁性流体 4は集中した磁力によ り強固に保持される。 その結果、 より強く他の部材に押圧した状態で接触するこ ととなり、 上記のように、 例えば、 磁性流体 4が当接した状態で内方側鏡筒 1 3 が移動した場合あっても、 内方側鏡筒 1 3の摺動抵抗により磁性流体 4が引きづ られにく く、 常時遮光シールとしての形状を確保するため、 遮光性を向上させる ことができる。
即ち、 例えば、 図 1 3に示すように、 2つの磁石 2 0そのものをそれぞれ L字 状に形成し、 互いに、 異なる磁極を対向させて配置し、 磁石 2 0の接曲された先 端部の間に磁性流体を保持することもできる。
磁力発生手段としての磁石の構成については、 図 1 4に示すように、 単一の磁 石 2でもよく、 この場合、 長方形に形成された磁石の長さ方向において互いに反 対の磁極となる磁石 2 1を鏡筒の半径方向において装着してもよく、 また、 磁石 幅方向において反対の磁極となる磁石 2 2を鏡筒の半径方向において装着しても よレ、。 また、 図 1 5 ( A ) , ( B ) に示すように、 磁石 2 3は複数でもよい。 こ のように複数の磁石 2 3, 2 3により磁力発生手段を構成した場合には、 より磁 力を大きくすることができ、 その結果、 磁性流体の保持力を大きくすることがで きる。
更に、 図 1 6に示すように、 一対の磁石 2 0, 2 0の間に磁性材 2 4を、 磁石 2 0の長さ方向の内方側鏡筒 1 4側において挟持させ、 内方側鏡筒 1 4に近接し た部位において使用してもよい。 このように、 磁性材 2 4を挟持して構成した場 合には内方側鏡筒 1 4側に磁力が集中し、 磁性流体 4を内方側鏡筒 1 4により強 く押圧することができ、 より効果的な遮光処理を行うことができる。
また、 上記磁力発生手段としての磁石は、 他方の部材方向へ突出する先端形状 に形成されていてもよい。 即ち、 図 1及び図 1 7乃至 1 9に示すように、 例えば 、 外方の鏡筒 1 3に固定した場合に、 磁石を、 内方の鏡筒 1 4方向に突出する突 出部 2 5を有する形状に形成することもできる。 このような突出部 2 5が形成さ れた場合には、 上記同様に磁力を集中させることができると共に、 上記突出部 2 5の先端において磁性流体の表面張力がより大きく形成されることになるため、 磁性流体はより大きな保持力で磁力発生手段としての磁石に保持されることにな る。 その結果、 より確実に遮光することが可能となる。
この場合、 図 1 7 Aにおいては、 複数の磁石 2 3 , 2 3を左右断面において略 対象の形状のものを、 磁極を互いに逆にして接合させたものであり、 図 1 7 Bに おいては、 複数の磁石 2 3 , 2 3を左右断面において略対象の形状のものを同一 の磁極を接合させたものである。
図 1 8においては、 左右断面において左右非対称の磁石 2 2 , 2 2を、 同一の 磁極を接合させて構成したものである。 この場合、 このような左右非対称の磁石 の突部を鏡筒の内方より部位に配置した場合には、 内方側鏡筒 1 4の移動によつ て摺動抵抗が発生した場合であっても、 磁性流体が内方側鏡筒 1 4により引きず られ鏡筒外方へ流出する、 という事態を低減することができる。
また、 図 1 9に示すように、 図 1 8と同一の形状の磁石 2 2, 2 2を、 磁極が 鏡筒の軸方向において反対となって配置しうるように構成してもよい。
さらに、 図 2 0〜図 2 3に示すように、 上記磁力発生手段としての磁石 2 3, 2 3には、 多孔質材 2 6を固定させ、 磁性流体をより強固に保持させることもで きる。 ここに多孔質材 2 6とは、 例えば、 織布ゃ不織布等が該当する。 このよう な織布等の多孔質材 2 6が磁石 2 , 3に配設された場合には、 多孔質材 2 6の毛 管力により磁性流体がより強固に磁力発生手段としての磁石 2 , 3に保持される こととなり、 確実に遮光することが可能となる。
図 2 0においては、 多孔質材 2 6を、 鏡筒の半径方向において互いに反対の磁 極となるように配置した一対の磁石 2 , 3の間に挟持させており、 また、 図 2 1 においては、 鏡筒の軸方向において互いに反対の磁極となるように配置した一対 の磁石 2 , 3の間に挟持させている。 更に、 図 2 2にお' ては、 鏡筒の半径方向 において互いに反対の磁極となるように配置した一対の磁石 2, 3の中央に内方 側鏡筒部側に固定したものであり、 図 2 3においては、 鏡筒の軸方向において互 いに反対の磁極となるように配置した一対の磁石 2, 3の中央に内方側鏡筒部側 に固定したものである。
(第 2の実施の形態)
図 7には、 第 2の実施の形態が示されている。 遮光シール 1は、 軸方向に着磁し た環状の磁石 5 (磁力発生手段) と、 この磁石 5の軸方向両側に固着された磁性体 からなる環状の一対のポールピース 6, 7と、 一対のポールピース 6 , 7間に保持 された磁性流体 8と、 力 ら構成される。
ここでは、 第 2の実施の形態に係る遮光シール 1について説明し、 その他の第 1 の実施の形態と同じ構成は、 同じ符号を付して説明を省略する。 , ^
15
磁石 5 , ポールピース 7 , 磁性流体 8, ポールピース 6とによって磁気回路が形 成されており、 磁性流体 8はこの磁気回路の磁場分布によって磁気的に保持されて いる。
一対のポールピース 6 , 7は、 磁石 5を挟んだ状態で鏡筒 1 3に設置され、 鏡筒 1 3内周面に突出する。 このポールピース 6 , 7の鏡筒 1 3内周面に突出する高さ は、 偏心した場合でも內周端部が対向する鏡筒 1 4外周面に当接しない高さに設け られている。
磁石 5としては、 金属、 磁石粉を充填した有機材料、 又は電磁石等からなるもの を用いている。
ポールピース 6 , 7としては、 金属、 又は磁性金属粉を充填した有機材料などか らなるものを用い-'—いる。
そして、 遮光シール 1の内径に鏡筒 1 4を装着すると、 磁性流体 8は流体である ので、 固体である鏡筒 1 4の外周面形状に合わせて変形し、 鏡筒 1 3 , 1 4間の隙 間を塞ぎ、 常に遮光すると共に摺動抵抗を低減することができる。
以上の構成の第 2の実施の形態について以下に示すように摺動抵抗を測定した。 測定は、 第 1の実施の形態と同じように、 図 3に示すように、 外径 4 0 m mの模 擬鏡筒に、 試料となる遮光シール 1を装着して行った。
本実施の形態に係る試料として実施例.2の遮光シール 1は、 図 8に示すもので、 外径^ 4 1 . 8 mm , 內径 φ 4 0 . 6 mm , 幅 0 . 2 m mの一対のポールピース 6 , 7と、 一対のポールピース 6 , 7間に挟まれ、 幅 1 . 0 m mの軸方向に着磁され た永久磁石 5と、 一対のポールピース 6, 7内周端部間に保持される磁性流体 8と 、 から構成されるものである。
この試料について測定した結果を以下に示す。 実施例 2の遮光シール 1では、 第 1の実施の形態での実施例 1の遮光シール 1と同様に、 起動抵抗及び摺動抵抗共に 測定限界の 1 g f 以下であった。
このように、 本実施の形態でも、 従来の構成に比して遮光シール 1の摺動抵抗が 飛躍的に低減することが上記の測定で確認できた。 したがって、 第 1の実施の形態 と同様の効果を得ることができる。
なお、 磁性流体 8と接触する鏡筒 1 4外周面も磁性体で設け、 磁性流体 8をそれ ^
ぞれのポールピース 6, 7と鏡筒 1 4外周面間で保持するようにしてもよい。
また、 図 9に示すように、 従来と同様のシリ コーンゴム製等のシールリップ部 9 をポールピース 6, 7の両側 (或いは片側) に設ける構成とすることもできる。 こ の図 9のシ一ルリップ部 9は、 磁性流体 8と鏡筒 1 4外周面との接触を妨げること がないように、 鏡筒 1 4外周面に軽く先端を接触させる構成としている。
この図 9の構成によると、 シールリップ部 9が相対移動に伴う磁性流体 8の漏出 防止を確実にすることができ、 よって遮光シール 1のシール性を向上することがで きる。
さらに、 図 1 0に示すように、 遮光シール 1を内側の鏡筒 1 4外周面に配置し、 磁性流体 8と鏡筒 1 3内周面とを当接させて鏡筒 1 3, 1 4間の隙間を埋める構成 としてもよレ、。
また、 上記磁性流体保持手段としてのポールピースは、 磁束を他の部材側に集 中させることができる形状に形成されていてもよい。 ポールピースがこのような 形状に形成された場合には、 磁性流体保持手段のより内方側鏡筒に位置的に近い 部位に磁力線が集中することから、 磁性流体もその磁力線に沿った形状に形成さ れてシール材として機能し、 その結果、 他の部材側への磁性流体の当接量をより 大きくすることができる。 その結果、 より確実に遮光することができる。
即ち、 図 2 4に示すように、 上記ポールピース 6 , 7の先端形状に関しては、 ポールピース 6 , 7の先端側 2 7, 2 7を内方に L字状に接曲形成し、 この一対 の先端部 2 7, 2 7の間に磁性流体 4を挟持するように構成してもよい。 このよ うにポールピース 6 , 7の先端側 2 7, 2 7を L字状に形成した場合には、 先端 部 2 7 , 2 7に磁力は集中され、 一対の先端部 2 7 , 2 7により挟持された磁性 流体 4もより確実に保持される。
更に 図 2 5に示すように、 上記一対の先端部 2 7 , 2 7の外方側鏡筒側を切 削形成して、 内方側鏡筒側に先端緣 2 8 , 2 8を形成した場合には、 上記図 2 7 の場合よりも更に内方側鏡筒方向に磁力線が発生し、 その磁力線に従って磁性流 体 4が造形されてシ一ル材として機能するため、 より多く内方側鏡筒 1 4に当接 した状態となる。 従って、 図 2 4の場合よりも、 より大きく内方側鏡筒 1 4と外 方側鏡筒 1 3との間の空隙 2 9を遮蔽することができる。 また、 図 2 6に示すように、 内方側鏡筒 1 4が非磁性材 3 0により形成された 場合には、 本実施の形態に係る遮光構造を用いることにより自動的な調芯機能も しくは偏芯追随機能を得ることができる。
即ち、 内方側鏡筒 1 4は本体部分が樹脂成形により形成されていた場合には、 磁石 2により発生する磁力により磁性流体 4は磁力線の形状に従った形状に造形 される。 この場合、 内方側鏡筒 1 4は非磁性材により形成されているため、 内方 側鏡筒 1 4は遮光シール 1に引きつけられることはない。 従って、 磁性流体 4の 磁力線に従った形状に造形される際に、 磁性流体 4から内方側鏡筒 1 4へ向かつ て押圧する力が作用する。 この力は磁性流体 4が磁力線に配向しょうとする力に よるものである。
この場合、 遮光シール 1は外方側鏡筒 1 3の内側面部全周に配設されているた め、 内方側鏡筒 1 4の周面方向全体において上記の軸中心へ向かう押圧力が作用 する。 従って、 内方側鏡筒 1 4の軸中心に向かって全方位から軸中心に向かって 押圧力が作用することとなり、 この押圧力により、 内方側鏡筒 1 4の軸中心にず れが生じていた場合であっても、 偏芯を修正することができる。
—方、 内方側鏡筒 1 4が磁性材により形成された場合には、 図 2 7に示すよう に、 磁石 2の磁力により磁性流体が磁力線に沿って造形されてシール材として機 能するが、 この時、 同時に、 内方側鏡筒 1 4そのものも磁力発生手段の磁力によ り、 磁力発生手段方向に吸引される。 その結果、 内方側鏡筒 1 4の外側面部が磁 性流体を若干押圧するため、 磁性流体の内方側鏡筒 1 4との当接部分はつぶれ変 形して、 内方側鏡筒 1 4との当接部分が拡大する。 従って、 磁性流体 4は内方側 鏡筒 1 4の軸方向における内方側鏡筒 1 4との接触領域も、 図 2 6の場合よりも 拡大し、 より確実に遮光することが可能となる。
なお、 このような磁力発生手段及び磁性流体保持手段を備えた遮光シール 1は 図 2 8乃至 3 1に示すように、 外方側鏡筒 1 4の端部に装着される金属部材 3 2 にあらかじめ固定されていてもよい。
本実施の形態にあっては、 外方側鏡筒 1 3の先端部に固定された断面 L字状に 形成された金属製のリング部材 3 2の内周面部に、 磁石の両側部に一対のポール ピース 6, 7が固定されると共にポールピース 6 , 7により磁性流体 4が保持さ れて構成された遮光シール 1が固定されている。 即ち、 図 2 8においては、 一方 のポールピース 6の側面部のみが上記リング部材 3 2の半径方向部に固定されて いる。
従って、 外方側鏡筒 1 3を製作する場合には、 あらかじめこのように構成され た遮光シール 1が固定されたリ ング部材 3 2を、 例えば、 合成樹脂製の鏡筒本体 に一体の部品として取付固定する。
このよ うに構成された実施の形態にあっては、 樹脂により一体成形された鏡筒 に対して、 あらかじめ、 一体の部品としての、 遮光シール 1が取り付けられたリ ング部材 3 2を取付固定すればよく、 取付作業の容易な遮光構造を提供すること ができる。
このような遮光シール 1をあらかじめ鏡筒の構成部品であるリング部材 3 2に 固定する場合には、 上記実施の形態に限定されず、 図 3 0に示すように、 一方の ポールピース 6の側面部、 磁石 2及び他方のポールピース 7全体がリング部材 3 2に固定されていてもよい。 また、 図 2 9及び図 3 1に示すように、 遮光シール 1が内方側鏡筒 1 4の後端部側のリング部材 3 2に固定され、 磁性流体 2が外方 側鏡筒 1 3の内側面部に当接するように構成されていてもよい。
なお、 上記実施の形態にあっては、 遮光シール 1がリング部材 3 2にあらかじ め固定されている場合を例に説明したが、 上記実施の形^に限定されず、 例えば 、 樹脂製の外方側鏡筒 1 3に一体に組み付けられていてもよい。
さらに、 このような遮光シール 1は、 上記鏡筒に固定されていなくてもよい。 即ち、 図 3 2及び図 3 3に示すように、 本実施の形態にあっては、 磁石 2及びポ —ルピース 6, 7からなる遮光シール 1は上記外方側鏡筒 1 3の内周面部 3 3と は離間して配置されている。
図 3 2に示す実施の形態にあっては、 合成樹脂製の外方側鏡筒 1 3の先端部に 凹部からなる遮光シール 1取付部 3 4が形成されており、 この遮光シール 1取付 部 3 4の底面部との間にわずかに間隙 3 5が形成された状態で遮光シール 1が配 置されている。 また、 図 3 3においては、 外方側鏡筒 1 3の先端部に固定された リング部材 3 2の内周面部との間にわずかに間隙 3 5が形成された状態で遮光シ —ル 1が配置されている。 この場合、 上記間隙 3 5は 0 . 1 πι πι程度であり、 このような間隙 3 5をもつ て遮光シール 1を配置した場合には、 鏡筒の製作誤差、 組み付け誤差等が原因と なって軸心がわずかにずれていた場合であっても、 上記間隙により軸心の誤差を 吸収することができ、 自動的な調芯機能を保持させることができ、 容易にセンタ リングを行うことができる。 また、 上述のように、 上記間隙 3 5は 0 . 1 m m程 度であり非常に小さく形成されているため、 このように間隙 3 5を以て遮光シー ル 1が装着された場合であっても、 鏡筒の移動時等に、 特に、 がたつき等の不具 合は生じることはない。
さらに、 図 3 4及び図 3 5に示すように、 遮光シール 1の外方側には、 外方か らのちりの侵入を防止しうる遮蔽部材 3 6が設けられていてもよレ、。 図 3 4及び 図 3 5に示すよ 'こ、 本実施の形態にあっては、 磁石 2の側方に固定された外方 側のポールピース 6とリング部材 3 2との間には、 外方からのちりの侵入を防止 しうる遮蔽部材 3 6が設けられている。 この遮蔽部材 3 6の幅寸法 Lは、 ポール ピースの幅寸法よりも大きく、 かつ、 ポールピース基端部から内方側鏡筒までの 間隔寸法 L 1よりも小さく形成されている。 この遮蔽部材 3 6の素材としては、 例えば、 フェルト、 ゴム、 マイラ一、 P T F E、 スポンジ等が適当である。 従って、 本実施の形態にあっては、 上記遮蔽部材 3 6が設けられていることか ら、 上記遮蔽部材 3 6により外方からのちりの侵入を防止できる。 その結果、 外 方から侵入したちりがポールピース 6 , 7と内方側鏡筒 1 4との間に挟まり、 内 方側鏡筒 1 4の移動時にこすれ、 摺動抵抗が増大し、 カメラの電力消費が大きく なる、 という事態を防止することができる。
この遮蔽部材 3 6は、 特に磁性材からなるちりに関して有効である。 即ち、 こ のような遮蔽部材 3 6がない場合であっても、 非磁性材のちりは磁石の磁力によ り排除されることから鏡筒内部への侵入を防止しうるが、 磁性材からなるちりは 磁石の磁力により鏡筒内部へ侵入し、 磁性流体 4内においてポールピース 6 , 7 に吸着して鏡筒表面部とこすれる可能性があるが、 上記遮蔽部材 3 6を設けた場 合には上記磁性材からなるちりの侵入を有効に防止しうる。
さらに、 図 3 4に示すように、 遮蔽部材 3 6が磁石 2の内方側鏡筒側のみに配 置されている場合を例に説明したが、 上記実施の形態に限定されず、 例えば、 図 3 5に示すように、 磁石 2の内方側のポールピース 7側に設けられていてもよい また、 上記各実施の形態においては、 図 3 6に示すように、 磁性流体 4が、 磁 石 2, 3と内方側鏡筒 1 4との間に配設されている場合を例に説明したが、 上記 実施の形態に限定されず、 図 3 7に示すように、 更に、 外方側鏡筒 1 3の先端部 に固定されたリング部材 3 2との間にも配置されていてもよい。
このように磁石 2, 3と内方側鏡筒 1 4との間及び、 磁石 2 , 3とリング部材 3 2との間の双方に磁性流体 4が配置された場合には、 双方の磁性流体 4 , 4が 磁力により磁力線に従った形状に造形されて遮光シール材として機能する。 また 、 この実施の形態の場合には、 遮光シール 1を構成する磁石 2, 3は磁気浮揚力 により外方側鏡筒に浮遊状態で組み付けられることとなる。
その結果、 上記他の実施の形態の場合には、 遮光シール 1の外方側鏡筒 1 3へ の取付誤差等により、 遮光シール 1材と外方側鏡筒 1 3との間にわずかながら隙 間が形成される場合もあり、 このような隙間からの光の侵入の可能性もあったが 、 本実施の形態にあっては、 遮光シール 1と外方側鏡筒 1 3の構成部材との間も 磁性流体 4により遮蔽されるため、 より完全に外光を遮蔽することが可能となる 。 また、 軸心に直交する方向において 2力所に磁性流体 4, 4が配置されること から、 鏡筒の軸心にずれがあった場合に、 軸心に直交する方向において 1力所の み磁性流体がある場合に比して、 より大きな軸芯のずれに対しても充分に追随す ることができる。
また、 図 3 8に示すように、 磁性流体 4により磁石 2 , 3を包囲するように、 全周面に亘つて配置することもできる。 この場合、 磁石 2, 3の磁力線は磁石の 鏡筒軸方向においても形成されるものであるため、 磁性流体 4は磁石 2 , 3の磁 力線の形状に従って帯磁し、 磁石 2 , 3を包囲する形での遮光シ一ル材として機 能する。
このように構成された場合には、 磁石 2 , 3の鏡筒軸方向においても磁性流体 4が遮光シール材として機能することから、 鏡筒に設けられた遮光シール 1の取 付部の側壁部 3 7との直接的な接触を防止することとができる。
更に、 図 3 9に示すように、 外方側鏡筒 1 3に固定された遮光シール 1に対向 丄
する内方側鏡筒 1 4の部位に、 スパイラルグループと呼ばれる、 非常に細径な溝 3 8を複数刻設して、 鏡筒 1 3 , 1 4の移動時に、 常時、 磁性流体 4を遮光シー ル部から流出しないようにガイ ドするように構成してもよレ、。
いわゆるズームタイプのカメラの鏡筒は、 例えば、 フォーカスの合焦時、 又は ズーム時には若干回転しながら前出、 後退を行う。 従って、 この回転方向及び鏡 筒の移動方向を考慮して、、 内方側鏡筒 1 4の遮光シール 1に対向する部位に、 上記複数の非常に細い溝 3 8を刻設し、 鏡筒の前出、 後退時に、 常時、 磁性流体 4が遮光シール部から流出しないように磁性流体 4をガイ ドするように構成する こともできる。
本実施の形態にあっては、 上記溝 3 8を内方側鏡筒 1 4側に設けた場合につい て説明したが、 上記実施の形態に限定されず、 例えば、 遮光シール側、 即ち、 ポ 一ルピース 6 , 7の先端部表面、 磁石 2又は上記の遮蔽部材 3 6の先端部表面に 設けてもよレ、。
さらに、 上記外方側鏡筒 1 3の遮光シール 1の磁性流体 4が接触する内方側鏡 筒 1 3の表面には、 上記磁性流体が接触する他方の部材の表面には、 撥油性を備 える表面被膜処理が施されていてもよい。
ここで、 撥油性を備える表面被膜処理とは、 例えば、 撥油性の固体膜を他方の 部材の表面に形成する場合や、 当該磁性流体を構成するオイルとなじまないオイ ルを塗布し油膜を形成する場合が該当する。
このような処理を施した場合には、 磁性流体 4が内方側鏡筒 1 3と接触し、 内 方側鏡筒 1 3が移動した場合であっても、 内方側鏡筒 1 3には撥油性の表面皮膜 処理が施されており、 磁性流体 4が内方側鏡筒 1 3に対して 「濡れ」 にく くなる ことから、 磁性流体 4が、 磁性流体 4が他の部材と当接又は摺接した場合に、 磁 性流体 4は流れにくく、 より確実に遮光シール 1を形成する。
以上説明したように請求項 1記載の発明にあっては、 遮光シールに磁性流体を 用いたことで、 遮光シールと接触する他方の部材が磁性流体に接触するので、 従来 の固体同士の接触による摺動抵抗よりも飛躍的に摺動抵抗を低減することができる また、 複数の部材の偏心により遮光シール設置スペースが変化した場合や、 型割 面のバリ (パ一ティングライン) がある場合でも、 磁場分布に追随して磁性流体が 移動して 2部材間の隙間を埋めるため、 偏心追随性が向上し、 完全な遮光ができる さらに、 偏心追随性が向上した結果、 従来の遮光シールの外径側に偏心量と同等 以上のスペースを設ける必要がなくなるため、 省スペース化を図ることができる。 請求項 2乃至 4及び 1 4記載の発明にあっては、 請求項 1記載の効杲に加えて 、 磁性流体の、 より大きな保持力を確保し、 より確実に遮光しうる遮光構造を提 供することができる。
請求項 5記載の発明にあっては、 請求項 1記載の発明の効果に加えて、 磁性流 体のより大きな保持力を確保すると共に、 複数の部材間に組み付けの誤差等が合 つた場合であっても有効に誤差を吸収することができる遮光構造を提供すること ができる。
請求項 6記載の発明にあっては、 請求項 1記載の発明の効果に加えて、 より遮 光効果を向上させることができる遮光構造を提供することができる。
請求項 7乃至 8記載の発明にあっては、 請求項 1記載の効果に加えて、 磁性流 体のより大きな保持力を確保し、 より確実に遮光しうる遮光構造を提供すること ができる。
請求項 9記載の発明にあっては、 請求項 1記載の発明の効果に加えて、 複数の 鏡筒を有するカメラにおいて、 鏡筒間の遮光を確実に行うことができる遮光構造 を提供することができる。
請求項 1 0記載の発明にあっては、 請求項 9記載の発明の効果に加えて、 鏡筒 の組み付け作業の容易な力メラの鏡筒の遮光構造を提供することができる。 請求項 1 1記載の発明にあっては、 請求項 9記載の発明の効果に加えて、 カメ ラの鏡筒の軸中心に誤差が発生している場合であっても、 当該誤差を有効に吸収 することができる遮光構造を提供することができる。
請求項 1 2記載の発明にあっては、 請求項 1 0記載の発明の効杲に加えて、 外 方から鏡筒内部へのちりの侵入を有効に防止することができる遮光構造を提供す ることができる。
請求項 1 3記載の発明にあっては、 請求項 9記載の発明の効果に加えて、 カメ ラの鏡筒が前出又は後退した場合であっても、 確実に鏡筒に当接する磁性流体が 流れてしまうことなく、 磁力発生手段位置に保持しうる遮光構造を提供すること ができる。
請求項 1 4記載の発明の技術的課題は、 請求項 1記載の発明の効果に加えて、 部材に接触した際の磁性流体の濡れを防止し、 より遮光性を向上させることがで きる。 産業上の利用可能性
以上のように、 本発明に係る遮光構造は、 ズーム機能を備えた多鏡筒のカメラ の鏡筒間の遮光に非常に有用であり、 また、 カメラに限らず、 小さな間隔寸法に をおいて相対移動しうるように配置される複数の部材間において遮光する場合に 非常に適している。

Claims

請 求 の 範 囲
1 . 所定間隔を置いて互いに相対移動しうるように配置される複数の部材間に設 けられ、 これらの複数の部材間に形成される空隙からの光の侵入を防止しうる遮光 構造であって、
上記複数の部材のいずれか一方に配設された磁力発生手段と、 この磁力発生手 段に磁気的に保持され、 他方の部材に当接する磁性流体を備え、
上記磁性流体により上記複数の部材間に形成される空隙を遮蔽することを特徴 とする遮光構造。
2 . 上記磁力発生手段は、 磁力を上記他方の部材方向へ集中させうる形状に形 成されていることを特徴とする請求項 1記載の遮光構造。
3 . 上記磁力発生手段は、 他方の部材方向へ突出する先端形状に形成されてい ることを特徴とする請求項 1記載の遮光構造。
4 . 上記磁力発生手段には、 多孔質材が配設されていることを特徴とする請求 項 1記載の遮光構造。
5 . 上記他方の部材は非磁性材により形成されていることを特徴とする請求項 1記載の遮光構造。
6 . 上記他方の部材は磁性材により形成されていることを特徴とする請求項 1 記載の遮光構造。
7 . 上記磁力発生手段には、 磁性体からなる磁性流体保持手段が設けられ、 上 記磁性流体は、 磁力発生手段及び磁性流体保持手段により磁気的に保持されてい ることを特徴とする請求項 1記載の遮光構造。
8 . 上記磁性流体保持手段は、 磁力を他の部材側に集中させることができる形 状に形成されていることを特徴とする請求項 7記載の遮光構造。
9 . 上記複数の部材は、 カメラのレンズの鏡筒であって、 上記磁力発生手段は 外方側鏡筒の内側面部に固定され、 磁性流体は内方側鏡筒の外側面部に接触し、 外方側鏡筒と内方側鏡筒との間の空隙を遮蔽することを特徴とする請求項 1記載 の遮光構造。
1 0 . 上記磁力発生手段及び磁性流体保持手段は、 上記鏡筒の端部に装着される 金属部材にあらかじめ固定されていることを特徴とする請求項 9記載の遮光構造
1 1 . 上記磁力発生手段及び磁性流体保持手段は上記外方側鏡筒の內周面部とは 離間して配置されていることを特徴とする請求項 9記載の遮光構造。
1 2 . 上記磁性流体保持手段には、 外方からのちりの侵入を防止しうる遮蔽部材 が設けられていることを特徴とする請求項 1 0 , 1 1記載の遮光構造。
1 3 . 上記磁力発生手段又は磁性流体保持手段の先端部、 もしくは、 内方側鏡筒 の外表面には、 内方側鏡筒及び外方側鏡筒の相対的な回転運動により、 磁性流体 を磁力発生手段位置に保持しうる形状の溝が刻設されていることを特徴とする請 求項 9記載の遮光構造。
1 4 . 上記磁性流体が接触する他方の部材の表面には、 撥油性を備える表面被膜 処理が施されていることを特徴とする請求項 1記載の遮光構造。
PCT/JP2000/003442 1999-05-28 2000-05-29 Structure anti-lumiere WO2000073837A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU47825/00A AU4782500A (en) 1999-05-28 2000-05-29 Light shielding structure
JP2001500900A JP4370748B2 (ja) 1999-05-28 2000-05-29 遮光構造
DE10084660T DE10084660T1 (de) 1999-05-28 2000-05-29 Lichtabschirmstruktur
US09/926,649 US6733143B1 (en) 1999-05-28 2001-11-28 Light shielding structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/150559 1999-05-28
JP15055999 1999-05-28

Publications (1)

Publication Number Publication Date
WO2000073837A1 true WO2000073837A1 (fr) 2000-12-07

Family

ID=15499535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003442 WO2000073837A1 (fr) 1999-05-28 2000-05-29 Structure anti-lumiere

Country Status (7)

Country Link
US (1) US6733143B1 (ja)
JP (1) JP4370748B2 (ja)
KR (1) KR100709668B1 (ja)
CN (1) CN1352752A (ja)
AU (1) AU4782500A (ja)
DE (1) DE10084660T1 (ja)
WO (1) WO2000073837A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031385A1 (fr) * 2000-10-12 2002-04-18 Nok Corporation Dispositif de joint d'etancheite magnetique
JP6288804B1 (ja) * 2016-12-10 2018-03-07 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 光学レンズ
JP2019109373A (ja) * 2017-12-19 2019-07-04 新思考電機有限公司 支持機構、光学部材駆動装置、カメラ装置及び電子機器
JP2020056941A (ja) * 2018-10-03 2020-04-09 キヤノン株式会社 画像観察装置および撮像装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1245650C (zh) * 2000-06-21 2006-03-15 Nok株式会社 磁性流体密封装置和磁性流体密封装置的安装方法
JP4318571B2 (ja) * 2004-03-18 2009-08-26 ソニー株式会社 カメラ
CN100501481C (zh) * 2004-11-11 2009-06-17 鸿富锦精密工业(深圳)有限公司 降低杂散光功能的镜头模组
KR100748179B1 (ko) * 2006-11-09 2007-08-09 손규태 자성유체씰 구조를 갖는 스로틀 밸브
JP2012118343A (ja) * 2010-12-01 2012-06-21 Sony Corp 鏡筒装置及び撮像装置
KR20130025635A (ko) * 2011-09-02 2013-03-12 삼성전기주식회사 냉각장치
CN103383514B (zh) * 2013-07-24 2016-08-10 南昌欧菲光电技术有限公司 影像模组及含有该影像模组的移动终端
CN104954636B (zh) * 2014-03-26 2019-02-12 南昌欧菲光电技术有限公司 一种摄像模块及摄像模块制造方法
DE102016005337A1 (de) * 2016-04-18 2017-10-19 Kastriot Merlaku Kamera-System für ein Mobiltelefon / Smartphone
CN105822768B (zh) * 2016-05-25 2017-12-05 广西科技大学 一种串联型端面式磁性流体密封装置
CN106151527B (zh) * 2016-08-15 2018-04-10 广西科技大学 一种磁源串联型阶梯式磁流体密封装置
PL233831B1 (pl) * 2018-01-22 2019-11-29 Akademia Gorniczo Hutnicza Im Stanislawa Staszica W Krakowie Obrotowe uszczelnienie odsrodkowe z ciecza magnetyczna
CN208401902U (zh) * 2018-04-26 2019-01-18 Oppo广东移动通信有限公司 终端显示屏组件及移动终端
CN110764273B (zh) * 2019-10-31 2022-08-19 京东方科技集团股份有限公司 透镜模块、显示装置及显示方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642766A (en) * 1980-07-31 1981-04-21 Nippon Telegr & Teleph Corp <Ntt> Magnetic fluid supplier
JPS63178672U (ja) * 1987-05-11 1988-11-18
JPS63285369A (ja) * 1987-05-15 1988-11-22 Takeo Yamaguchi 磁性流体を利用したシ−ル装置
JPS6439926U (ja) * 1987-09-04 1989-03-09
JPH04101868U (ja) * 1991-02-12 1992-09-02 エヌオーケー株式会社 磁性流体シール装置
JPH0594578U (ja) * 1992-05-20 1993-12-24 エヌオーケー株式会社 磁性流体シール装置
JPH0777282A (ja) * 1993-09-09 1995-03-20 Canon Inc 機器及び機械装置等におけるシール構造

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3910687A (en) * 1972-08-18 1975-10-07 West Electric Co Light control device
US4486026A (en) 1982-02-10 1984-12-04 Nippon Seiko K.K. Sealing and bearing means by use of ferrofluid
JPS62135215A (ja) * 1985-12-06 1987-06-18 日立電線株式会社 電線、ケ−ブルの貫通部
JPS63178672A (ja) 1987-01-19 1988-07-22 Canon Inc 撮像装置
JPS6439926A (en) 1987-08-06 1989-02-10 Shinto Paint Co Ltd Method for sprinkling termite controlling agent
JPH04101868A (ja) 1990-08-22 1992-04-03 Nakajima All Precision Kk 印字装置
JPH0594578A (ja) 1991-10-02 1993-04-16 Nec Corp クレジツトカード使用可否判定方式

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642766A (en) * 1980-07-31 1981-04-21 Nippon Telegr & Teleph Corp <Ntt> Magnetic fluid supplier
JPS63178672U (ja) * 1987-05-11 1988-11-18
JPS63285369A (ja) * 1987-05-15 1988-11-22 Takeo Yamaguchi 磁性流体を利用したシ−ル装置
JPS6439926U (ja) * 1987-09-04 1989-03-09
JPH04101868U (ja) * 1991-02-12 1992-09-02 エヌオーケー株式会社 磁性流体シール装置
JPH0594578U (ja) * 1992-05-20 1993-12-24 エヌオーケー株式会社 磁性流体シール装置
JPH0777282A (ja) * 1993-09-09 1995-03-20 Canon Inc 機器及び機械装置等におけるシール構造

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031385A1 (fr) * 2000-10-12 2002-04-18 Nok Corporation Dispositif de joint d'etancheite magnetique
US6769694B2 (en) 2000-10-12 2004-08-03 Nok Corporation Magnetic fluid seal device
JP6288804B1 (ja) * 2016-12-10 2018-03-07 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 光学レンズ
JP2018097331A (ja) * 2016-12-10 2018-06-21 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 光学レンズ
JP2019109373A (ja) * 2017-12-19 2019-07-04 新思考電機有限公司 支持機構、光学部材駆動装置、カメラ装置及び電子機器
JP7016694B2 (ja) 2017-12-19 2022-02-07 新思考電機有限公司 支持機構、光学部材駆動装置、カメラ装置及び電子機器
JP2020056941A (ja) * 2018-10-03 2020-04-09 キヤノン株式会社 画像観察装置および撮像装置
JP7187236B2 (ja) 2018-10-03 2022-12-12 キヤノン株式会社 画像観察装置および撮像装置

Also Published As

Publication number Publication date
KR100709668B1 (ko) 2007-04-19
AU4782500A (en) 2000-12-18
JP4370748B2 (ja) 2009-11-25
US6733143B1 (en) 2004-05-11
CN1352752A (zh) 2002-06-05
KR20020005051A (ko) 2002-01-16
DE10084660T1 (de) 2002-06-06

Similar Documents

Publication Publication Date Title
WO2000073837A1 (fr) Structure anti-lumiere
KR100327627B1 (ko) 현상장치및프로세스카트리지
JP2004340979A (ja) コーダ内蔵密閉構造
KR100866696B1 (ko) 자성유체밀봉장치
US5165701A (en) Magnetic fluid seal apparatus
JP2015146767A (ja) 魚釣用スピニングリール
US6290233B1 (en) Sealing apparatus
JP4182754B2 (ja) 磁性流体シール装置
JP2016101104A (ja) 磁性流体シール付き軸受、及び磁性流体シール付き軸受を配設した魚釣用リール
JP3873780B2 (ja) 磁性流体シール装置
JP2002005307A (ja) 磁性流体シール装置
JPH04322155A (ja) リニアモータ
JP2003336749A (ja) 磁性流体シール
JPS599369A (ja) 磁性流体シ−ル機構
JPH0777282A (ja) 機器及び機械装置等におけるシール構造
JP4240907B2 (ja) 磁性流体シール装置
JP3804257B2 (ja) 密封装置
GB2285533A (en) Magnetic fluid seal and ground path for low profile disk drives
KR950001422Y1 (ko) 자성유체시일에 의한 밀봉장치
JP2001124216A (ja) 磁性流体シール装置
JPS58137669A (ja) シ−ル機構
JP2006266343A (ja) 密封装置
JP2004138138A (ja) 磁性流体シール装置
JPH0138368Y2 (ja)
JP2001200936A (ja) 往復動シール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00808150.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2001 500900

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017015228

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09926649

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020017015228

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 10084660

Country of ref document: DE

Date of ref document: 20020606

WWE Wipo information: entry into national phase

Ref document number: 10084660

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: 1020017015228

Country of ref document: KR