WO2000067251A1 - Procede et dispositif d'enregistrement d'information optique et support d'enregistrement sur lequel est enregistre le programme de commande d'enregistrement d'information optique - Google Patents
Procede et dispositif d'enregistrement d'information optique et support d'enregistrement sur lequel est enregistre le programme de commande d'enregistrement d'information optique Download PDFInfo
- Publication number
- WO2000067251A1 WO2000067251A1 PCT/JP2000/002828 JP0002828W WO0067251A1 WO 2000067251 A1 WO2000067251 A1 WO 2000067251A1 JP 0002828 W JP0002828 W JP 0002828W WO 0067251 A1 WO0067251 A1 WO 0067251A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- recording
- difference
- information
- recording power
- reflected light
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/0045—Recording
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/125—Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
- G11B7/126—Circuits, methods or arrangements for laser control or stabilisation
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/007—Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
- G11B7/013—Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track for discrete information, i.e. where each information unit is stored in a distinct discrete location, e.g. digital information formats within a data block or sector
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/09—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B7/094—Methods and circuits for servo offset compensation
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/09—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B7/095—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
- G11B7/0956—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for tilt, skew, warp or inclination of the disc, i.e. maintain the optical axis at right angles to the disc
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/125—Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
- G11B7/127—Lasers; Multiple laser arrays
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/007—Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
- G11B7/013—Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track for discrete information, i.e. where each information unit is stored in a distinct discrete location, e.g. digital information formats within a data block or sector
- G11B2007/0133—Details of discrete information structures, e.g. shape or dimensions of pits, prepits
Definitions
- the present invention relates to an optical information recording method and apparatus, and a recording medium on which an optical information recording control program is recorded.
- an optical information recording medium for example, an optical disc such as a write-once optical disc (CD-R) has been used.
- CD-R write-once optical disc
- information has been recorded at 2 to 6 times speed or even higher recording speed.
- the technology to do it is popular.
- the optical pickup When recording information on an optical disk, the optical pickup irradiates a pulsed laser beam to the rotating optical disk based on the digital signal obtained by digitizing the information to be recorded. Forming a pit.
- the intensity of a laser beam applied to the optical disk during a high level period of the digital signal is controlled to a high intensity.
- the pits are formed by changing the state of the recording layer by the laser light energy.
- laser light of low light intensity required for tracking is applied during the period of the mouth level.
- the information recording surface on the disc may be tilted due to the warpage or deformation of the disc.
- the inclination of the information recording surface is not constant, and gradually increases from the inner circumference to the outer circumference of the optical disc.
- the tilt angle 0 of the information recording surface with respect to a plane perpendicular to the rotation axis of the optical disk is generally called a tilt angle.
- the tilt (tilt angle) of the optical disc recording surface of the optical disc is detected, and the optical big-up is tilted based on the tilt angle so that the laser beam emission direction is perpendicular to the information recording surface of the optical disc.
- servo control such as focus control of the laser light spot and tracking control so that the laser light spot follows the group, an optimum pit can be formed. ing.
- the recording laser beam intensity is optimized even at the outer periphery (OPC: Optimum Power Control, hereinafter referred to as OPC).
- OPC Optimum Power Control
- ⁇ [ ⁇ 114H + 114L)-(I3H + I3L)] / [2 (114H-114L)] ⁇ (B)
- Al is the top level of the pulse whose CD-R length is 11 T
- A2 is the bottom-level value with a length of 11T.
- I14H is the top level of a 14-T pulse with DVD-R length
- 114L is the bottom level of a 14-T pulse
- I3H is the top level of a 3-T pulse
- I3L is The bottom level of a 3 T pulse. Disclosure of the invention SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical information recording method and apparatus capable of performing information recording with a constant laser light emitting direction even when an information recording surface of an optical information recording medium is inclined or the like. .
- the present invention provides a recording medium on which an optical information recording control program for recording information with a constant laser light emitting direction even if the information recording surface of the optical information recording medium is inclined or the like. The purpose is to provide.
- a laser beam spot having a predetermined diameter is formed on an optical information recording medium on the basis of a digital signal including a first level representing a bit forming period and a second level representing a pit non-formation period. Irradiating the optical information recording medium to form a pit having a length corresponding to the bit formation period,
- recording is performed on the optical information recording medium by sequentially changing the recording pattern of the laser light applied to the optical information recording medium, and asymmetry is detected for each recording power. Determining a first relationship between the asymmetry and the recording power;
- recording is performed on the optical information recording medium by fixing the recording node to a predetermined recording plane and sequentially changing the spatial positional relationship of the laser beam with respect to the optical information recording medium, Detecting a second relationship between the asymmetry and the reflected light amount ratio by detecting an asymmetry and a reflected light amount ratio for pits having different lengths for each of the spatial positional relationships;
- a third relation between the recording power and the reflected light amount ratio is obtained based on the first relation and the second relation, and an optimum reflected light amount ratio corresponding to the optimum recording power is obtained.
- the recording power corresponding to the detected reflected light amount ratio is obtained based on the third relationship by detecting the reflected light amount ratio, and the detected reflected light amount ratio and the optimum reflection light ratio are determined. Correct the recording power so that the difference in the light amount ratio becomes zero
- the recording performed prior to the actual recording of information is a so-called 0 PC.
- the test writing is divided into two times, and in the first test writing, the test writing is performed by sequentially changing the recording power of the laser beam, thereby achieving the asymmetry.
- the first relationship between the laser power and the recording power is determined, and in the second trial writing, the spatial writing is performed by sequentially changing the spatial position of the laser beam on the optical information recording medium.
- the second relationship is obtained, and the third relationship between the recording power and the reflected light amount ratio is obtained from the first relationship obtained in the first test writing and the second relationship obtained in the second test writing.
- the correction the recording power is corrected based on the reflected light amount ratio at the time of actual recording, thereby making it possible to optimally correct the inclination or the like generated on the information recording surface of the optical information recording medium.
- the recording power can be sequentially changed by controlling the laser control unit to change the laser power in a predetermined step.
- This can be performed by changing the offset of at least one servo system of focus, tracking, and tilt of the optical information recording device in a predetermined step.
- the reflected light amount ratio is detected as, for example, a ratio of the total reflected light amount from a bit smaller than the spot diameter to the total reflected light amount from a pit sufficiently larger than the spot diameter of the laser light spot. Contains the information on the tilt or the like generated on the information recording surface of the optical information recording medium. By using this reflected light amount ratio, the information can be recorded even if the information recording surface of the optical information recording medium has a tilt or the like. Optimal correction is possible only by controlling the power.
- the asymmetry is a value calculated by the formula (A) or (B) described above.
- the optical information recording method of the present invention provides a method for forming a laser beam spot having a predetermined diameter on an optical information recording medium based on a digital signal comprising a first level representing a pit forming period and a second level representing a bit non-forming period. Irradiating the optical information recording medium to form a bit having a length corresponding to the bit forming period;
- the optical information The first recording for recording the test data on the optical information recording medium by sequentially changing the recording power of the laser light applied to the recording medium is performed,
- first information that mainly depends on the recording power
- second information that depends on the recording power and the spatial positional relationship
- asymmetry is detected.
- a first relationship with the first information with respect to recording power, a second relationship with the second information with respect to the recording power, and a relationship with recording power with respect to the asymmetry are stored.
- the optimal recording power at which the optimal asymmetry can be obtained is obtained and stored, and the optimal first information corresponding to the optimal recording power is obtained from the first relationship and the second relationship.
- the third information and the asymmetry mainly depending on the spatial positional relationship are detected, and the relationship of the third information to the asymmetry is stored.
- a third relationship between the relationship between the recording power for the asymmetry stored at the time of the first recording and the second information stored for the asymmetry at the time of the second recording and the third information for the recording power is obtained. Is obtained and stored, and from the third relationship, optimum third information corresponding to the optimum recording power is written,
- the detected first difference Calculating a recording power based on the information and the first relationship, correcting the recording power so that the first difference becomes zero,
- the recording power is obtained based on the detected third information and the third relationship, and the third difference is zero. Correct the recording power so that
- the recording power is determined based on the detected second information and the second relationship. And the recording power is corrected so that the second difference becomes zero.
- two trial writings a first trial writing in which the recording power of the laser light is sequentially changed, and a second trial writing in which the spatial positional relationship of the laser light to the optical information recording medium is sequentially changed.
- the recording power optimized corresponding to the tilt or the like generated on the information recording surface of the optical information recording medium but also the reproduced signal independent of the tilt or the like generated on the information recording surface of the optical information recording medium
- the optimization of the record number corresponding to the optimization of the recording is performed.
- the first trial writing in the first trial writing, the first information mainly depending on the recording power, the second information dependent on the recording power and the spatial positional relationship, and the asymmetry are detected, and the second trial writing is performed.
- the third information and the asymmetry mainly depending on the spatial positional relationship are detected, and in the first trial writing, the optimum recording power is obtained from the relationship with the recording power for the asymmetry, and the recording power is determined.
- the first difference between the first information and the optimum first information is not zero, it is determined that it is necessary to optimize the recording power mainly depending on the recording power, and the detected first The recording power is obtained based on the information and the first relationship, and the recording power is corrected so that the first difference becomes zero.
- the recording power is obtained based on the detected third information and the third relationship, and the recording power is corrected so that the third difference becomes zero.
- the recording power is determined based on the detected second information and the second relationship. Then, the recording power is corrected so that the second difference becomes zero.
- the first information for example, a differential light consisting of a difference between the maximum value of the reflected light intensity at the front end of the bit larger than the spot diameter of the laser light spot and the average value of the reflected light intensity at the rear end of the bit
- a difference detection value consisting of a difference between the difference light intensity value and the reflected light amount ratio
- the reflected light amount ratio can be used.
- the optical information recording method of the present invention includes a step of forming a laser beam spot of a predetermined diameter on an optical information recording medium based on a digital signal including a first level representing a bit forming period and a second level representing a bit non-forming period. Irradiating the optical information recording medium to form pits having a length corresponding to the bit forming period,
- a spot diameter of the laser beam spot is larger than The difference between the maximum value of the reflected light intensity at the leading end of the bit and the average value of the reflected light intensity at the trailing end of the bit and the spot diameter relative to the total reflected light quantity from the pit that is larger than the spot diameter.
- the reflected light amount ratio and asymmetry which are the ratio of the total reflected light amount from the small pits, are detected according to the recording power, and the difference between the difference light intensity value and the reflected light amount ratio is calculated as a difference detection value.
- a ninth step of sequentially changing the offset of one servo system in a predetermined step and recording test data on the optical information recording medium; and in the ninth step, the reflected light amount ratio and the asymmetry for each of the offsets A first 10 step of detecting
- the recording power is obtained based on the difference light intensity value detected in the fourteenth step and the first detection formula, and the first power is obtained.
- each of the first to third detection equations can be composed of a linear function.
- the optical information recording apparatus of the present invention has a first level indicating a pit formation period and a bit.
- the optical information recording medium is irradiated with a laser beam spot having a predetermined diameter based on a digit signal composed of a second level indicating a non-forming period, and the optical information recording medium is irradiated with a laser beam having a length corresponding to the bit forming period.
- An optical pickup that irradiates the optical information recording medium with laser light, receives reflected light from the optical information recording medium, and outputs a received light signal
- Laser control means for controlling the recording noise of the laser light output from the optical pickup
- Servo control means for controlling at least one of focus, tracking, and tilt of the optical pickup
- Reflected light quantity ratio detecting means Based on the received light signal output from the optical pickup, the ratio of the total reflected light amount from the pit to the total reflected light amount from the pit larger than the spot diameter of the laser light spot is detected as the reflected light amount ratio. Reflected light quantity ratio detecting means,
- Asymmetry detecting means for detecting an asymmetry of the received light signal based on the received light signal output from the optical pickup
- the recording power of the laser light applied to the optical information recording medium is sequentially changed so that the optical information recording is performed.
- the first recording is performed on the medium, and the asymmetry is detected by the asymmetry detecting means for each recording power to determine a first relationship between the asymmetry and the recording power.
- a second recording is performed on the optical information recording medium by changing at least one of the focus, tilt, and tracking of the optical pickup in a predetermined step while fixing the recording power, and the asymmetry is performed for each offset.
- the asymmetry from the detecting means and the reflected light amount ratio from the reflected light amount ratio detecting means are detected, and the asymmetry and the reflected light amount ratio are detected.
- a third relationship between the recording power and the reflected light amount ratio is determined based on the first relationship and the second relationship.
- the reflected light amount ratio is detected by the reflected light amount ratio detecting means.
- a recording power corresponding to the detected reflected light amount ratio is obtained based on the third relationship, and the recording power is adjusted so that the difference between the detected reflected light amount ratio and the optimum reflected light amount ratio becomes zero.
- the above configuration enables optimal correction for inclination or the like generated on the information recording surface of the optical information recording medium.
- the optical information recording device of the present invention provides a laser beam having a predetermined diameter on an optical information recording medium based on a digital signal including a first level representing a bit forming period and a second level representing a pit non-forming period.
- An optical information recording apparatus that irradiates the optical spot and forms a bit having a length corresponding to the pit forming period on the optical information recording medium;
- An optical pickup that irradiates the optical information recording medium with laser light, receives reflected light from the optical information recording medium, and outputs a received light signal
- Laser control means for controlling the recording level of the laser light output from the optical pickup
- Servo control means for controlling a spatial positional relationship of the laser light with respect to the optical information recording medium
- the first information mainly depending on the recording noise based on the light receiving signal output from the optical pickup, the second information dependent on the recording power and the spatial positional relationship, and the spatial positional relationship.
- Asymmetry detection means for detecting an asymmetry of the received light signal based on the received light signal output from the optical pickup
- the control means includes:
- the recording power of the laser light to be applied to the optical information recording medium is sequentially changed so that the optical information recording is performed. Perform the first recording of the test data on the medium.
- Second recording control means for performing a second recording for recording test data
- the first information and the second information are obtained based on the output of the information detecting means for each recording power, and the asymmetry is obtained based on the output of the asymmetry detecting means.
- the third information is obtained based on the output of the information detecting means, and the asymmetry is obtained based on the output of the asymmetry detecting means, and a relationship of the third information to the asymmetry is stored.
- a third relationship between the relationship between the recording power for the asymmetry stored at the time of the first recording and the second information stored for the asymmetry at the time of the second recording and the third information for the recording power is obtained.
- the first information, the second information, and the third information are detected based on an output of the information detecting means, and the detected first information and the optimal first information are detected.
- Calculating a first difference from the information, a second difference between the second information and the optimal second information, and a third difference between the third information and the optimal third information, wherein the third difference is zero If the first difference is not zero, the recording power is obtained based on the detected first information and the first relationship, and the recording power is corrected so that the first difference becomes zero.
- the third difference is not zero and the first difference is zero, the recording power is obtained based on the detected third information and the third relationship, and the third difference is obtained.
- the recording power is corrected so that the minute becomes zero. If the third difference is not zero, and the first difference is not zero, and the second difference is not zero, the detection is performed. Correction means for obtaining a recording power based on second information and the second relationship, and correcting the recording power so that the second difference becomes zero.
- the optical information recording device of the present invention provides a laser beam having a predetermined diameter on an optical information recording medium based on a digital signal including a first level indicating a bit forming period and a second level indicating a bit non-forming period.
- An optical pickup that irradiates the optical information recording medium with laser light, receives reflected light from the optical information recording medium, and outputs a received light signal
- Laser control means for controlling a recording pattern of laser light output from the optical pickup
- Servo control means for controlling at least one of focus, tracking, and tilt of the optical pickup
- Difference light intensity value detection means for detecting a difference light intensity value comprising a difference between the maximum value of the reflected light intensity at the leading end of the bit larger than the spot diameter of the laser light spot and the average value of the reflected light intensity at the rear end.
- Reflected light amount ratio detecting means for detecting Based on the light receiving signal output from the optical pickup, the ratio of the total reflected light amount from the pit to the total reflected light amount from the pit larger than the spot diameter of the laser light spot is defined as the reflected light amount ratio. Reflected light amount ratio detecting means for detecting,
- Asymmetry detecting means for detecting an asymmetry of the received light signal based on the received light signal output from the optical pickup; Control means and
- the control means includes:
- the recording power of the laser light to be applied to the optical information recording medium is sequentially changed so that the optical information recording is performed.
- First recording control means for recording test data on a medium
- the differential light intensity value is detected by the differential light intensity value detection means in correspondence with the recording power
- the reflected light intensity ratio is detected by the reflected light intensity ratio detection means
- asymmetry detection means First acquisition means for acquiring an asymmetry from the above and calculating a difference between the difference light intensity value and the reflected light amount ratio as a difference detection value
- First processing means for obtaining and storing a first detection formula indicating a relationship between the recording power and the difference light intensity value based on the difference light intensity value acquired by the first acquisition means; and Second processing means for obtaining and storing a second detection formula indicating a relationship between the recording power and the difference detection value based on the difference detection value calculated by the obtaining means,
- Third processing means for obtaining and storing a reference formula indicating a relationship between the asymmetry and the recording power based on the asymmetry obtained by the first obtaining means
- Fourth processing means for obtaining and storing an optimum recording power capable of obtaining optimum asymmetry based on the reference formula stored in the third processing means;
- Fifth processing means for storing a difference light intensity value corresponding to the optimum recording power based on the optimum recording power obtained by the fourth processing means and the first detection formula as an optimum difference light intensity value
- Sixth processing means for storing a difference detection value corresponding to the optimum recording value as an optimal standardized difference detection value based on the optimum recording power obtained by the fourth processing means and the second detection formula; ,
- the recording power is fixed to an optimum recording level determined by the fourth storage means, and the optical information recording is performed.
- a method of recording test data on the optical information recording medium by sequentially changing the offset of at least one of the focus, tilt, and tracking of an optical pickup that irradiates a laser beam onto the medium at predetermined steps. 2 recording control means,
- a second acquisition unit that acquires the reflected light amount ratio from the reflected light amount ratio detection unit and acquires asymmetry from the asymmetry detection unit for each offset.
- a seventh processing unit for obtaining a relational expression of a reflected light amount ratio with respect to the asymmetry based on the reflected light amount ratio and the asymmetry obtained by the second obtaining unit;
- Eighth processing means for obtaining and storing a third detection expression indicating a relationship between the recording power and the reflected light amount ratio based on the reference expression obtained by the third processing means,
- Ninth processing means for storing a reflection light quantity ratio corresponding to the optimum recording power as an optimum reflection light quantity ratio based on the optimum recording quantity obtained by the fourth processing means and the third detection formula
- acquiring the reflected light intensity ratio from the reflected light intensity ratio detecting means further comprising: Third acquisition means for calculating a difference from the reflected light amount ratio as a difference detection value;
- 11th processing means for calculating a second difference between the difference detection value calculated by the third acquisition means and the optimum standardized difference detection value
- the recording power is obtained based on the difference light intensity value obtained by the third obtaining means and the first detection formula, and the first power is obtained.
- the recording medium on which the optical information recording control program of the present invention has been recorded is recorded on the optical information recording medium based on a digital signal comprising a first level representing a pit formation period and a second level representing a pit non-formation period.
- recording is performed on the optical information recording medium by sequentially changing the recording power of the laser light applied to the optical information recording medium, and asymmetry is detected for each of the recording powers. Determining a first relationship between the asymmetry and the recording power,
- the recording nozzle is fixed to a predetermined recording nozzle, and the spatial positional relationship of the laser beam with respect to the optical information recording medium is sequentially changed to record on the optical blue recording medium. And detecting a second relationship between the asymmetry and the reflected light amount ratio by detecting an asymmetry and a reflected light amount ratio for a bit having a different length for each of the spatial positional relationships,
- a third relationship between the recording power and the reflected light amount ratio is determined based on the first relationship and the second relationship, and an optimal reflected light amount ratio corresponding to the optimal recording power is determined.
- the recording power corresponding to the detected reflected light amount ratio is obtained based on the third relationship by detecting the reflected light amount ratio, and the detected reflected light amount ratio and the optimum reflection light ratio are determined. Correct the recording power so that the difference in the light amount ratio becomes zero It is characterized by the following.
- the recording medium on which the optical information recording control program of the present invention has been recorded is recorded on the optical information recording medium based on a digital signal comprising a first level representing a pit formation period and a second level representing a pit non-formation period.
- the first method of recording test data on the optical information recording medium by sequentially changing the recording power of the laser beam applied to the optical information recording medium is described. And record the
- first information that mainly depends on the recording power
- second information that depends on the recording power and the spatial positional relationship
- asymmetry is detected.
- a first relationship with the first information with respect to recording power, a second relationship with the second information with respect to the recording power, and a relationship with recording power with respect to the asymmetry are stored.
- the optimum recording power at which the optimum asymmetry can be obtained from the relationship with the recording power with respect to the asymmetry is obtained and stored, and the optimum first information corresponding to the optimum recording power is obtained from the first relation and the second relation. And the optimal second information,
- the relation between the relationship between the recording power for the asymmetry stored at the time of the first recording and the second information for the asymmetry stored at the time of the second recording and the third information for the recording power is calculated.
- the third relationship is obtained and stored, and the optimum third information corresponding to the optimum recording power is recorded from the third relationship.
- the first information, the second information, and the third information are detected.
- a recording power is obtained based on the detected first information and the first relationship, and the first difference is set to zero.
- the recording power is obtained based on the detected third information and the third relationship, and the third difference is zero. Correct the recording power so that
- the recording parameter is determined based on the detected second information and the second relationship. And correct the recording power so that the second difference becomes zero.
- the recording medium on which the optical information recording control program of the present invention is recorded is recorded on the optical information recording medium based on a digital signal comprising a first level representing a bit formation period and a second level representing a pit non-formation period.
- a recording medium in which a laser beam spot having a predetermined diameter is irradiated, and an optical information recording control program which is processed by evening is formed by forming a pit having a length corresponding to the bit forming period on the optical information recording medium.
- test data is recorded on the optical information recording medium by sequentially changing the recording level of the laser light applied to the optical information recording medium.
- a difference light intensity value which is a difference between a maximum value of a reflected light intensity at a front end portion of a bit larger than a spot diameter of the laser light spot and an average value of a reflected light intensity at a rear end portion;
- the ratio of the total amount of reflected light from bits smaller than the spot diameter to the amount of total reflected light from bits larger than the spot diameter A second step of detecting an emission light ratio and asymmetry corresponding to the recording power, and calculating a difference between the difference light intensity value and the reflected light ratio as a difference detection value;
- the recording power is obtained based on the difference light intensity value detected in the fourteenth step and the first detection formula, and the first power is obtained.
- FIG. 1 is a block diagram of an electric circuit showing an optical information recording apparatus according to an embodiment of the present invention.
- FIG. 2 is a diagram showing the detection of the recording power deviation of the optical information recording apparatus according to the embodiment of the present invention.
- FIG. 4 is a block diagram of an electric circuit showing a part.
- FIG. 3 is a diagram for explaining a reflected light amount ratio in one embodiment of the present invention.
- FIG. 4 is a diagram for explaining a differential light intensity value in one embodiment of the present invention.
- FIG. 5 is a diagram illustrating the relationship between the laser spot diameter and the bit length according to one embodiment of the present invention.
- FIG. 6 is a diagram illustrating the relationship between the laser spot diameter and the pit length in one embodiment of the present invention using an eye pattern.
- FIG. 7 is a flowchart illustrating processing related to the correction of the recording power according to the embodiment of the present invention.
- FIG. 8 is a flowchart illustrating processing related to the correction of the recording power according to the embodiment of the present invention.
- FIG. 9 is a flowchart illustrating a process related to the correction of the recording power according to the embodiment of the present invention.
- FIG. 10 is a diagram for explaining a recording power correction process according to an embodiment of the present invention.
- FIG. 11 is a diagram for explaining a recording power correction process according to an embodiment of the present invention.
- FIG. 12 is a diagram for explaining a recording power correction process according to an embodiment of the present invention.
- FIG. 13 is a diagram for explaining a recording power correction process according to an embodiment of the present invention.
- FIG. 14 is a diagram for explaining a recording power correction process according to an embodiment of the present invention.
- FIG. 1 is a main electric circuit showing an optical information recording apparatus according to an embodiment of the present invention. It is a block diagram of. In this embodiment, a description will be given of an apparatus configuration for a well-known DVD-R as a write-once optical information recording medium. The device configuration using a well-known CD-R as a write-once optical disc is almost the same.
- reference numeral 10 denotes a write-once optical disc
- reference numeral 20 denotes an optical information recording device.
- the optical information recording device 20 includes a disk rotation motor 21, a motor drive control circuit 22, an optical pickup 23, a laser control unit 24, a servo control unit 25, and a recording power deviation detection unit 2. 6, an asymmetry detector 27, a system controller 28, and the like.
- groups are formed in advance in the recording areas (recording tracks).
- a disk rotation control signal and the like can be extracted from the undulation of this group or the land bits formed on the group side.
- the disk rotation motor 21 is driven to rotate at a predetermined rotation speed by a drive voltage supplied from the motor drive control circuit 22.
- the motor drive control circuit 22 supplies a drive voltage to the disk rotation motor 21 based on a command signal input from the system controller 28.
- the optical pickup 23 includes a laser diode (LD) 231, a well-known four-division photodetector (PD) 232, and an objective lens (not shown). Further, the optical pickup 23 can be moved in the radial direction of the optical disc 10 by, for example, a well-known big-up feed mechanism using a linear mode.
- LD laser diode
- PD four-division photodetector
- objective lens not shown
- the laser controller 24 receives a digital signal corresponding to the information to be recorded, and generates a write pulse from the digital signal based on the strategy setting information specified by the system controller 28. Further, a drive current having a magnitude corresponding to the laser beam intensity specified by the system controller 28 is supplied to the laser diode 231, in synchronization with the write pulse. As a result, the laser diode 2 31 emits a laser beam having the intensity specified by the system controller 28.
- the servo control unit 25 includes a focus control unit 251, a tracking control unit 252, a tilt control unit 253, and the like. Based on this, the operation control of the objective lens actuator of the optical pickup 23 and the big-up feed mechanism is performed.
- the recording power shift detection unit 26 includes a 3T detection circuit 261, a 14T detection circuit 262, a reflected light amount detection circuit 263, 264, and a division circuit 265. , A peak detection circuit 266, a sample hold circuit 267, and a subtraction circuit 268.
- DVD-R records information by forming pits having a length of 3T to 11 1 and 14 ⁇ on a recording layer of a medium.
- a pit having a length of 3 mm (hereinafter simply referred to as a pit) having a small spot diameter of a laser beam spot irradiated on the optical disc 10 is referred to as a pit.
- a 14-bit pit (hereinafter simply referred to as a 14-bit pit), which is a pit having a length equal to or longer than the spot diameter, and using the reflected light amount ratio ( ⁇ 2) and the difference Detect the light intensity value (XI).
- the reflected light amount ratio ( ⁇ 2) is the ratio of the total reflected light amount S 3 ⁇ ⁇ from the 3 ⁇ pit to the total reflected light amount S 14 ⁇ from the 14 ⁇ pit during recording.
- the difference light intensity value (XI) is the difference between the peak value V pk at the leading end of the bit of the RF signal corresponding to the 14 ⁇ pit during recording and the average value V s P of the rear part excluding the leading end. It is an intensity value.
- a 3 T detection circuit 26 1 receives the RF signal output from the optical pickup 23 and outputs only the reflected light current from the 3 T bit during information recording.
- the reflected light current from the 3 T pit is charged to the capacitor 26 3 b via the resistor 26 3 a of the reflected light amount detection circuit 26 3.
- the charging voltage of the capacitor 263 b becomes a value corresponding to the total reflected light amount from the 3 T bit, and the reflected light amount detection circuit 263 outputs the total reflected light amount S 3 T from the 3 T pit.
- the voltage corresponding to the value corresponding to is output.
- the 14-detection circuit 26 1 receives the RF signal output from the optical pickup 23 and outputs only the reflected light current from the 14 T pit during information recording.
- the reflected light current from the 14 T bit is passed through the resistor 2 64 a of the reflected light amount detection circuit 26 4 a.
- the charging voltage of the capacitor 264b becomes a value corresponding to the total reflection light amount from the 14T bit, and the reflection light amount detection circuit 264 outputs a voltage corresponding to the value corresponding to the total reflection light amount S14T from the 14T bit. Is forced.
- the voltage output from the reflected light amount detection circuit 263 and the voltage output from the reflected light amount detection circuit 264 are divided by a division circuit 265 and output to the system controller 28 as a reflected light amount ratio (X2).
- the beak detecting circuit 265 detects a beak value Vpk at the tip of the pit of the reflected light current from the 14T pit based on the output of the 14T detecting circuit 261.
- the sample and hold circuit 266 detects the output of the 14T detecting circuit 261. Based on this, the average value Vsp of the reflected photocurrent in the rear part of the 14 T pitch is detected.
- the beak value Vpk at the tip of the pit of the reflected light current from the 14T pit detected by the peak detection circuit 265 by the subtraction circuit 267 and the reflected light of the rear part of the 14 T pit detected by the sample hold circuit 266 The difference from the average value Vs of the current is calculated and output to the system controller 28 as the differential light intensity value (XI).
- the asymmetry detection section 27 detects the asymmetry from the RF signal output from the optical pickup 23, and outputs the detection result to the system controller 28.
- the system controller 28 is composed of a well-known CPU or the like, and outputs a control command to the laser control unit 24, the servo control unit 25, and the like based on the output signals of the recording power deviation detection unit 26 and the asymmetry detection unit 27. Record information.
- the laser beam intensity during recording (recording laser beam intensity) is simply referred to as recording power.
- the reflected light ratio (X2) is, as described above, the total amount from the 14 T pit during recording. This is the ratio of the total amount of reflected light S 3 T from the 3-bit to the amount of reflected light S 14 T.
- the total reflected light amount S 3 T from the 3 T bit is the reflected light from the optical disc 10 when 3 T recording is performed using the 3 T recording pulse as shown in FIG. It can be obtained from the area of the RF signal as shown in (b).
- the total reflection light amount S 14T from the 14T pit is the optical disk when 14 T recording is performed using the 14 T recording pulse (recording pulse using the pulse train method) as shown in Fig. 3 (c). It can be obtained from the area of the RF signal as shown in Fig. 3 (d) corresponding to the reflected light from 10.
- the reflected light amount detection circuit 263 shown in FIG. 2 outputs a voltage corresponding to the value corresponding to the total reflected light amount S 3 T from the 3T bit, and the reflected light amount detection circuit 264 shown in FIG. Since the voltage corresponding to the value corresponding to the total reflected light amount S 14 T from the 14 T pit is output, the division circuit 265 divides the output of the reflected light amount detection circuit 263 by the reflected light amount detection circuit 264 to record.
- the reflected light amount ratio (X2) which is the ratio of the total reflected light amount S3T from the 3T pit to the total reflected light amount S14T from the 14T pit at the time, can be obtained.
- the 3T bit is a pit shorter than the spot diameter of the laser beam
- the 14T pit is a pit sufficiently longer than the spot diameter of the laser beam. It changes in response to the surface state such as tilt with respect to the ten data beams, and as a result, includes information mainly depending on the surface state of the optical disc 10.
- the differential light intensity value (XI) is the peak value V pk at the pit tip of the RF signal corresponding to the 14T pit at the time of recording 3, and the average value V s of the rear part excluding the tip. Is the light intensity value of the difference from.
- the peak value detection circuit 266 shown in FIG. 2 outputs the peak value Vpk of the reflected light current from the 14 T pit at the tip of the bit, and the sample hold circuit 266 outputs the reflected light at the rear part of the 14 T pit. Since the average value Vsp of the current is output, the difference light intensity value (XI) can be obtained by obtaining the difference between the peak value detection circuit 266 and the sample hold circuit 266 by the subtraction circuit 268.
- this RF signal is a signal that depends only on the recording power without being affected by the surface condition such as tilt of the optical disk 10 with respect to the dither beam.
- the difference light intensity value (X 1) includes information mainly depending on the recording power of the laser light applied to the optical disc 10.
- the differential light intensity value (XI) can be detected using an RF signal from a pit that is sufficiently longer than the laser beam spot diameter, and the reflected light amount ratio (X2) is shorter than the laser beam spot diameter. Since it can be detected using the RF signal from the laser beam and the RF signal from a pit that is sufficiently longer than the laser beam spot diameter, the recording path deviation detection unit in FIG. The longest pit in DVD-R, 14 T pits, was used, and the shorter bits than the laser beam spot diameter, 3 T bits, shortest pits in DVD-R, were used, but this is not a limitation.
- the relationship between the spot diameter of the laser beam and the pit length can be detected as follows.
- the length of 1 T is about 0.13 / m at a linear velocity of 3.49 ms.
- 7 T The level or amplitude of the RF signal indicates the maximum value at the point, and in this case, the length of 7T bits is considered to be equal to the spot diameter. Therefore, the spot diameter is about 0.9 zm.
- the system controller 28 performs OPC at the start of recording information. During the OPC execution, a relational expression, etc., for correcting the recording data to the optimal value is obtained. I do.
- the system controller 28 moves the optical pickup 23 to the test writing area of the optical disk 10 (SK1) at the time of executing 0 PC, and sequentially changes the recording power (X) in predetermined steps, as shown in FIG. Record test data (S K2)
- the difference light intensity value (XI) and the reflected light amount ratio (X2) are acquired for each recording power (X) based on the output signal of the recording power deviation detection unit 26 (SK3 , SK4).
- the system controller 28 inputs the output of the asymmetry detection unit 27 while reproducing the recorded information, and acquires the asymmetry (y) for each recording power (X) (SK5).
- This asymmetry (y) is a value corresponding to / calculated by the above formula (A) or (B).
- a relational expression between the differential light intensity value (XI) and the recording power (X) is obtained as in the following expression (1), and a memory (not shown) is used as a first detection expression.
- SK6 o
- a 1 and b 1 are constants.
- the difference between the difference light intensity value (XI) and the reflected light amount ratio (X2) is defined as a difference detection value D
- the difference detection value D and the recording power (X) Equation (2) is obtained as shown in the following equation (2), and is stored in the memory as the second detection equation (SK7).
- a2 and b2 are constants.
- c 1 and d 1 are constants.
- the system controller 28 calculates the recording power (X) at which the optimum asymmetry (y) conforming to the standard is obtained by using the above-mentioned reference formula, and stores this value in the memory as the optimum recording power (Xms). Yes (SK 9).
- the system controller 28 calculates the differential light intensity value (XI) at which the above-mentioned optimum recording power (Xms) is obtained by using the above-described first detection formula, and calculates this value as the optimum difference spectral intensity value (Xms). X 1 ms) and store it in the memory (SK 10).
- the system controller 28 calculates a difference detection value (X2ms) at which the above-mentioned optimum recording power (Xms) is obtained using the above-mentioned second detection formula, and calculates this value as the optimum standardized difference detection value (Dms). (SK I 1).
- system controller 28 performs the processing shown in FIG. 8 at the time of executing the OPC, obtains the third detection formula, and the optimal reflected light amount ratio (X2ms), and stores it in the memory.
- the system controller 28 uses the above-mentioned optimum recording power (Xms) to execute at least one of focus, tilt, and tracking controlled by the servo control unit 25 when the 0 PC is executed.
- the test data is recorded by changing the offset of the servo system at a predetermined step (SL 1), and this is reproduced, and the asymmetry (y) is obtained for each offset value based on the output of the asymmetry detector 27.
- the reflected light amount ratio (X2) is obtained for each offset value based on the output of the recording power deviation detection unit 26 (SL 3)
- the system controller 28 obtains the relational expression between the reflected light amount ratio (X2) and the asymmetry (y) using the results of SL2 and SL3 as in the following expression (4) (SL4) .
- c 2 and d 2 are constants.
- a 3 and b 3 are constants.
- the system controller 28 obtains the reflected light amount ratio (X2) at which the above-mentioned optimum recording power (Xms) is obtained, and stores this value in the memory as the optimum reflected light amount ratio (X2ms) (SL6).
- the system controller 28 After performing the above-described processing at the time of executing the OPC, the system controller 28 performs actual information recording while performing the recording power correction processing in real time as shown in FIGS.
- a differential light intensity value during recording (XI) is acquired (SM1), and this differential light intensity value (XI) and the stored optimal differential light intensity value (XI ms) are obtained. Then, these differences are calculated as a first difference (SM2).
- the system controller 28 acquires the reflected light amount ratio during recording (XI) based on the output signal of the recording power deviation detection unit 26 (SM3), and obtains the reflected light amount ratio (X).
- the difference between the difference light intensity value during recording (XI) and the reflected light amount value during recording (X2) is calculated as a difference detection value during recording (D5) based on the results of SM1 and SM3 (SM5).
- the system controller 28 calculates the difference between the stored optimum standardized difference detection value (D ms) and the difference detection value (D) obtained in the processing of SM5 as a second difference (SM6 ).
- SM7 it is determined whether or not the third difference obtained in the processing of SM4 is 0 (SM7). If it is 0, it is further determined whether or not the first difference is 0 (SM8). As a result, when the first difference is 0, the process proceeds to the SM1 process. When the first difference is not 0, the recording difference light intensity value (XI) obtained in the SM1 process is substituted into the first detection formula, and Calculate the word self-recording power (Xr) (SM9).
- XI recording difference light intensity value
- a control command is output to the laser control unit 24 so that the first difference becomes 0, and the calculated recording power (Xr) is corrected (SM10). After that, the processing shifts to the SM1 processing.
- the recording power (Xr) at the present time is calculated by substituting the reflected light amount ratio during recording (X2) obtained in the processing of SM 3 into the third detection formula. (SM12).
- the recording difference detection value (D) obtained in the process of SM5 is substituted into the second detection formula to obtain the current recording level (Xr) (SM15)
- FIG. 11 shows the relationship between the above-described reference formula, the first detection formula, the second detection formula, and the three detection formulas.
- the vertical axis indicates the asymmetry y or the recording power X
- the horizontal axis indicates the recording power X, the difference light intensity detection value X1, the difference detection value D, or the reflected light amount ratio X2.
- the recording power X at which the asymmetry y shows the optimum value in the reference formula is the optimum recording power X ms.
- the difference light intensity detection value X1 at which the recording power X becomes the optimum recording power Xms is the optimum difference light intensity detection value Xlms
- the recording power X is the optimum recording power.
- the difference detection value D that is equal to one Xms is the optimum standardized difference detection value Dms
- the reflected light amount ratio X2 where the recording power X is the optimum recording power Xms in the second detection formula is the optimum reflected light amount ratio X2 ms.
- the present recording power (Xr) is obtained based on the third detection equation, and the current recording power (Xr) required to make the third difference 0 is optimized.
- the correction corresponding to the recording power and the design of the optical disc 10 are performed.
- the current recording phase (Xr) is calculated based on the second detection formula, as shown in FIG.
- the laser controller 24 outputs a control command to correct the difference between the current recording power (Xr) required to make the second difference 0 and the recording power corresponding to the optimal reflected light amount ratio (X2ms) to the laser controller 24.
- the pits are changed while changing the recording laser beam intensity so as to obtain the optimum asymmetry and the optimum reflected light amount from the pits being formed. Therefore, even if the optical disc 10 is tilted, the decrease in the amount of irradiation light per unit area caused by the tilt of the information recording surface of the optical disc 10 is corrected without correcting the emission direction of the recording laser beam even if the optical disc 10 is tilted. Can be.
- pits having a necessary and sufficient shape can be formed at appropriate positions, so that information recording with excellent information reproduction characteristics can be performed.
- the information recording can always be performed with the optimum recording power (recording laser beam intensity), which can cope with the difference of the optical disk and the partial reflectance difference on the optical disk.
- the first to third detection formulas and the reference formula are linear formulas (primary functions), the processing speed can be improved.
- the present invention relates to an optical information recording method and apparatus, and an optical information recording control program which enable information recording to be performed with a constant laser beam emission direction even when an information recording surface of an optical information recording medium is inclined or the like. And a recording medium on which is recorded.
- the pits are formed while changing the laser beam intensity according to the inclination of the optical information recording medium. It is possible to correct the decrease in the amount of irradiation light per unit area caused by the inclination of the information recording surface without having to correct the emission direction of light. As a result, pits having a necessary and sufficient shape can be formed at appropriate positions, so that information recording with excellent information reproduction characteristics can be performed.
- the present invention can reduce the time required for the laser light intensity correction processing performed during actual information recording.
- an accurate correction process can be performed even if the spot diameter of the recording laser beam slightly changes.
- pits can be formed while changing the laser light intensity in accordance with the inclination of the optical information recording medium. It is possible to correct the decrease in the amount of irradiation light per unit area caused by the inclination of the information recording surface. As a result, pits having a necessary and sufficient shape can be formed at appropriate positions, so that information recording with excellent information reproduction characteristics can be performed. Further, since there is no need to provide a means for correcting the emission direction of the laser beam unlike the related art, the cost of the apparatus can be reduced. Further, according to the optical information recording apparatus of the present invention, in addition to the above-described effects, it is possible to shorten the time required for the laser light intensity correction processing performed during actual information recording.
- optical information recording apparatus of the present invention in addition to the above-described effects, accurate correction processing can be performed even if the spot diameter of the recording laser beam slightly changes.
- the recording medium on which the optical information recording control program of the present invention is recorded, pits are formed while changing the laser beam intensity in accordance with the inclination of the optical information recording medium by operating the combination using the program. Therefore, even if the optical information recording medium is tilted, it is not necessary to correct the emission direction of the laser beam, and the amount of irradiation light per unit area caused by the tilt of the information recording surface is corrected. can do. As a result, bits having a necessary and sufficient shape can be formed at appropriate positions, so that information recording with excellent information reproduction characteristics can be performed.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Recording Or Reproduction (AREA)
- Optical Head (AREA)
Description
明 細 書 光情報記録方法および装置並びに光情報記録制御プログラムを記録した記録媒 体 技術分野
この発明は、 光情報記録方法および装置並びに光情報記録制御プログラムを記 録した記録媒体に関する。 背景技術
従来、 光情報記録媒体、 例えば追記型光ディスク (C D— R ) 等の光ディスク に大容量の情報を記録する技術が用いられ、 近年においては 2 ~ 6倍速或いはさ らに速い記録速度で情報を記録する技術が一般に普及している。
光ディスクに情報を記録する際には、 記録対象の情報をデイジ夕ル化したディ ジ夕ル信号に基づいて、 回転している光ディスクに対して光ピックアップからパ ルス状のレーザ光を照射してピットを形成している。
記録対象の情報をディジタル化したディジ夕ル信号を用いて光ディスク上にピ ットを形成するときは、 例えばディジタル信号のハイレベルの期間に光ディスク に照射するレーザ光の強度を高強度に制御し、 このレーザ光エネルギーによって 記録層の状態を変化させてピットを形成している。 また、 口一レベルの期間には トラッキングを行うために必要な低い光強度のレーザ光を照射している。
また、 光ディスクは、 ディスクの反りや変形によってディスク上の情報記録面 に傾きが生じることがある。 この情報記録面の傾きは、 一定したものではない場 合がほとんどであり、 光ディスクの内周から外周に向かうほど徐々に大きくなつ ていく。 ここで、 光ディスクの回転軸に直交する平面に対する情報記録面の傾き 角度 0を一般にチルト角度と称している。
情報記録面に傾きが生じていないときは、 光ビックアップから情報記録面に対 してほぼ垂直にレ一ザ光を照射してピットを形成する。
しかし、 レーザ光の射出方向を一定とした場合、 情報記録面に傾きが生じると、 レーザ光のスポットが歪むために情報記録面の単位面積あたりの照射光量が減少 するので、 ピットの大きさが小さくなつてしまい、 情報再生時にジッターが悪化 する。
このため、 光ディスクの倩報記録面の傾き (チルト角度) を検出し、 チルト角 度に基づいて光ビックアツプを傾けて、 レーザ光の射出方向が光デイスクの情報 記録面に対して垂直になるように制御するチルトサーボ制御が採用されている。 さらに、 上記のチルトサーボ制御に加えて、 レーザ光スポッ トのフォーカス制 御およびレーザ光スポッ卜がグループに追従するようにトラッキング制御等のサ ーボ制御を行うことにより最適なピットを形成できるようにしている。
しかしながら、 光ピックアップをチルト角度 0に応じて傾ける機構は、 複雑で あり装置のコスト高を招いていた。
また、 チルト補正機構を用いず、 記録を適正 (適正/?) にする方法としては、
「光ディスク記録再生装置のパワーキヤリブレーション方法」 (特開平 8— 14 7701号) に開示されるように外周においても記録レーザ光強度最適ィ匕 (OP C: Optimum Power Control , 以下 OP Cと称する) を行うことも考えられるが、 この場合は 0 P Cに時間がかかってしまう。
なお、 上記/?は、 ァシンメトリを表し、 次の (A) 若しくは (B) 式によって 表される。
β= (A1 + A2) / (A1-A2) … (Α)
β = [{114H+ 114L)-( I 3H+ I 3L)]/[ 2 ( 114H- 114L)] ··· (B) ここで、 Alは CD— Rの長さが 1 1 Tのパルスのトップレベル、 A2は長さが 1 1 Tのボトムレベルの値である。
また、 I14Hは、 DVD— Rの長さが 14 Tのパルスのトップレベル、 114Lは、 長さが 14 Tのパルスのボトムレベル、 I3Hは、 長さが 3 Tのパルスのトップレ ベル、 I3Lは、 長さが 3 Tのパルスのボトムレベルの値である。 発明の開示
この発明は、 光情報記録媒体の情報記録面に傾き等が生じていてもレーザ光射 出方向を一定にして情報記録を行えるようにした光情報記録方法および装置を提 供することを目的とする。
また、 この発明は、 光情報記録媒体の情報記録面に傾き等が生じていてもレ一 ザ光射出方向を一定にして情報記録を行えるようにした光情報記録制御プログラ ムを記録した記録媒体を提供することを目的とする。
この発明の光情報記録方法は、 ビット形成期間を表す第 1レベルとピット不形 成期間を表す第 2レベルとから成るディジ夕ル信号に基づいて光情報記録媒体に 所定径のレーザ光スポットを照射し、 該光情報記録媒体に前記ビット形成期間に 対応した長さのピットを形成する光情報記録方法において、
実際の情報の記録に先立ち、 前記光情報記録媒体に照射するレーザ光の記録パ ヮ一を順次変化させて該光情報記録媒体に記録を行うともに、 前記記録パワー毎 にァシンメ トリを検出して前記ァシンメトリと前記記録パワーとの第 1の関係を 求め、
次に、 前記記録ノ ヮ一を所定記録パヮ一に固定して前記光情報記録媒体に対す る前記レーザ光の空間的位置関係を順次変化させて該光情報記録媒体に記録を行 うとともに、 前記空間的位置関係毎にァシンメ トリおよび異なる長さのピットに 関する反射光量比を検出して、 前記ァシンメ トリと前記反射光量比との第 2の関 係を求め、
更に、 前記第 1の関係と前記第 2の関係に基づき前記記録パワーと前記反射光 量比との第 3の関係を求めるとともに、 最適記録パワーに対応する最適反射光量 比を求め、
実際の情報の記録に際しては、 前記反射光量比を検出することにより前記第 3 の関係に基づき該検出した反射光量比に対応する記録パワーを求めて、 該検出し た反射光量比と前記最適反射光量比の差分が零になるように該記録パワーを補正 する
ことを特徴とする。
ここで、 実際の情報の記録に先立ち行われる記録とは、 いわゆる 0 P Cにおけ
る試し書きといわれるもので、 この発明においては、 この試し書きを 2回に分け て行い、 1回目の試し書きにおいて、 レーザ光の記録パワーを順次変化させて試 し書きを行うことで、 ァシンメトリと記録パワーとの第 1の関係を求め、 2回目 の試し書きにおいて、 光情報記録媒体に対するレーザ光の空間的位置関係を順次 変化させて試し書きを行うことで、 ァシンメトリと反射光量比との第 2の関係を 求め、 1回目の試し書きにおいて求めた上記第 1の関係と 2回目の試し書きにお いて求めた上記第 2の関係から記録パワーと反射光量比との第 3の関係を求める ことにより、 実際の記録に際して反射光量比に基づく記録パワーの補正を行うこ とで、 光情報記録媒体の情報記録面に生じた傾き等に対する最適な補正を可能に している。
ここで、 上記記録パワーを順次変化させるためには、 レーザ制御部を制御して レ一ザパワーを所定のステップで変化させることにより実現でき、 また空間的位 置関係を順次変化させるためには、 光情報記録装置のフォーカス、 トラッキング、 チルトの少なくとも 1つのサーボ系のオフセットを所定ステップで変化させるこ とにより行うことができる。
また、 反射光量比は、 例えば、 レーザ光スポットのスポット径より十分大きい ピットからの全反射光量に対する該スポット径より小さいビットからの全反射光 量の比として検出されるもので、 この反射光量比には、 光情報記録媒体の情報記 録面に生じた傾き等に対する情報が含まれており、 この反射光量比を用いること で光情報記録媒体の情報記録面に傾き等が生じていても記録パワーの制御だけで 最適な補正が可能になる。
また、 ァシンメトリとは、 前掲の式 (A) 若しくは (B ) で算出される値であ る。
また、 この発明の光情報記録方法は、 ピット形成期間を表す第 1レベルとビッ ト不形成期間を表す第 2レベルとから成るディジタル信号に基づいて光情報記録 媒体に所定径のレーザ光スポットを照射し、 該光情報記録媒体に前記ビット形成 期間に対応した長さのビットを形成する光情報記録方法において、
実際の情報の記録に先立つ記録レーザ光強度最適化処理に際して、 前記光情報
記録媒体に照射するレーザ光の記録パワーを順次変化させて該光情報記録媒体に 試験データを記録する第 1の記録を行うとともに、
前記記録パワーを固定して前記光情報記録媒体に対する前記レーザ光の空間的 位置関係を順次変化させて該光情報記録媒体に試験デ一夕を記録する第 2の記録 を行い、
前記第 1の記録に際して、 前記記録パワー毎に前記記録パワーに主に依存する 第 1の情報および前記記録パワーと前記空間的位置関係に依存する第 2の情報お よびァシンメトリを検出して、 前記記録パワーに対する前記第 1の情報との第 1 の関係、 前記記録パワーに対する前記第 2の情報との第 2の関係、 前記ァシンメ トリに対する記録パワーとの関係を記憶するともに、
前記ァシンメトリに対する記録パワーとの関係から最適ァシンメトリが得られ る最適記録パワーを求めて記憶するとともに前記第 1の関係および前記第 2の関 係から前記最適記録パワーに対応する最適第 1の情報および最適第 2の情報を記 τ忌し、
前記第 2の記録に際して、 前記空間的位置関係に主に依存する第 3の情報およ びァシンメトリを検出して、 前記ァシンメトリに対する第 3の情報の関係を記憶 し、
前記第 1の記録に際して記憶した前記ァシンメトリに対する記録パワーとの関 係と前記第 2の記録に際して記憶した前記ァシンメトリに対する第 2の情報の関 係から前記記録パワーに対する前記第 3の情報との第 3の関係を求めて記憶する とともに、 該第 3の関係から前記最適記録パワーに対応する最適第 3の情報を記 し、
実際の情報の記録に際しては、 前記第 1の情報および前記第 2の情報および前 記第 3の情報を検出して、
該検出した第 1の情報と前記最適第 1の情報との第 1の差分、 第 2の情報と最 適第 2の情報との第 2の差分、 第 3の情報と最適第 3の情報との第 3の差分を求 め、
前記第 3の差分が零で前記第 1の差分が零でない場合は、 前記検出した第 1の
情報と前記第 1の関係に基づき記録パワーを求めて、 前記第 1の差分が零になる ように該記録パワーを補正し、
前記第 3の差分が零でなく、 前記第 1の差分が零である場合は、 前記検出した 第 3の情報と前記第 3の関係に基づき記録パワーを求めて、 前記第 3の差分が零 になるように該言 3録パワーを補正し、
前記第 3の差分が零でなく、 かつ前記第 1の差分が零でなく、 前記第 2の差分 が零でない場合は、 前記検出した第 2の情報と前記第 2の関係に基づき記録パヮ 一を求めて、 前記第 2の差分が零になるように該記録パワーを補正する
ことを特徴とする。
この発明においてもレーザ光の記録パワーを順次変化させてた 1回目の試し書 きと光情報記録媒体に対するレーザ光の空間的位置関係を順次変化させた 2回目 の試し書きの 2回の試し書きを行う。
ただし、 この発明においては、 光情報記録媒体の情報記録面に生じた傾き等に 対応する記録パワーの適正化だけでなく、 光情報記録媒体の情報記録面に生じた 傾き等に依存しない再生信号の最適化にも対応する記録ノ ヮ一の適正化が行われ る。
すなわち、 この発明では、 1回目の試し書きにおいて、 記録パワーに主に依存 する第 1の情報、 記録パワーと空間的位置関係に依存する第 2の情報、 ァシンメ トリを検出し、 2回目の試し書きにおいて、 空間的位置関係に主に依存する第 3 の情報およびァシンメ トリを検出し、 1回目の試し書きにおいては、 ァシンメ ト リに対する記録パワーとの関係から最適記録パワーを求めるとともに、 記録パヮ 一に対する第 1の情報との第 1の関係および記録パワーに対する第 2の情報との 第 2の関係から最適記録パワーに対応する最適第 1の情報および最適第 2の情報 を記憶し、 2回目の試し書きにおいては、 1回目の試し書きにおいて求めたァシ ンメ トリに対する記録パワーとの関係と 2回目の試し書きにおいて求めたァシン メトリに対する第 2の情報の関係から記録パワーに対する第 3の情報との第 3の 関係を求めて記憶するとともに、 該第 3の関係から最適記録パワーに対応する最 適第 3の情報を記憶する。
そして、 実際の情報の記録に際しては、 前記第 1の情報および前記第 2の情報 および前記第 3の情報を検出して、 第 3の情報と最適第 3の情報との第 3の差分 が零で第 1の情報と最適第 1の情報との第 1の差分が零でない場合は、 記録パヮ 一に主に依存する記録パヮ一の適正化が必要であると判断して、 検出した第 1の 情報と第 1の関係に基づき記録パワーを求めて、 第 1の差分が零になるように該 記録パワーを補正する。
また、 第 3の差分が零でなく、 第 1の差分が零である場合は、 光情報記録媒体 の情報記録面に生じた傾き等に対応する記録パワーの適正化が必要であると判断 して、 検出した第 3の情報と第 3の関係に基づき記録パワーを求めて、 第 3の差 分が零になるように該記録パワーを補正する。
また、 第 3の差分が零でなく、 かつ第 1の差分が零でなく、 かつ第 2の差分が 零でない場合は、 記録ノ ヮ一に主に依存する記録ノ ワ一の適正化と光情報記録媒 体の情報記録面に生じた傾き等に対応する記録パワーの適正化の両者が必要であ ると判断して、 検出した第 2の情報と前記第 2の関係に基づき記録パワーを求め て、 前記第 2の差分が零になるように該記録パワーを補正する。
ここで、 第 1の情報としては、 例えば、 レーザ光スポットのスポット径より大 きいビットの先端部における反射光強度の極大値と後端部の反射光強度の平均値 との差からなる差分光強度値を用いることができ、 第 2の情報としては、 例えば、 差分光強度値と前記反射光量比との差からなる差分検出値を用いることができ、 第 3の情報としては、 例えば、 前記反射光量比を用いることができる。
また、 この発明の光情報記録方法は、 ビット形成期間を表す第 1レベルとビッ ト不形成期間を表す第 2レベルとから成るディジタル信号に基づいて光情報記録 媒体に所定径のレーザ光スポットを照射し、 該光情報記録媒体に前記ビット形成 期間に対応した長さのピットを形成する光情報記録方法において、
実際の情報の記録に先立つ記録レーザ光強度最適化処理に際して、 前記光情報 記録媒体に照射するレーザ光の記録パワーを順次変化させて該光情報記録媒体に 試験データを記録する第 1のステップと、
前記第 1のステップにおいて、 前記レーザ光スポットのスポット径より大きい
ビットの先端部における反射光強度の極大値と後端部の反射光強度の平均値との 差からなる差分光強度値および前記スポット径より大きいのピッ卜からの全反射 光量に対する前記スポット径より小さいピットからの全反射光量の比からなる反 射光量比およびァシンメトリを前記記録パワーに対応して検出するとともに、 前 記差分光強度値と前記反射光量比との差を差分検出値として算出する第 2のステ ヅプと、
前記第 2のステツプで検出した差分光強度値に基づき前記記録パワーと前記差 分光強度値との関係を示す第 1検出式を求めて記憶する第 3のステップと、 前記第 2のステップで算出した差分検出値に基づき前記記録パワーと前記差分 検出値との関係を示す第 2検出式を求めて記憶する第 4のステップと、
前記第 2のステップで検出したァシンメ トリに基づき前記ァシンメトリと前記 記録パワーとの関係を示す基準式を求めて記憶する第 5のステップと、
前記第 5のステップで記憶した基準式に基づき最適ァシンメ トリが得られる最 適記録パワーを求めて記憶する第 6のステップと、
前記第 6のステツプで求めた最適記録パワーと前記第 1検出式に基づき前記最 適記録パワーに対応する差分光強度値を最適差分光強度値として記憶する第 7の ステップと、
前記第 6のステップで求めた最適記録パワーと前記第 2検出式に基づき前記最 適記録ノ ^ヮ一に対応する差分検出値を最適基準化差分検出値として記憶する第 8 のステップと、
前記記録ノ ヮーを前記第 6のステツプで求めた最適記録ノ ヮ一の固定して前記 光情報記録媒体に対してレ一ザ光を照射する光ピックアップのフォーカス、 チル ト、 トラキングの内の少なくとも 1つのサーボ系のオフセットを所定ステップで 順次変化させて該光情報記録媒体に試験データを記録する第 9のステツプと、 前記第 9のステップにおいて、 前記記オフセット毎に前記反射光量比およびァ シンメトリを検出する第 1 0のステップと、
前記第 1 0のステップで検出した前記反射光量比およびァシンメ トリに基づき 前記ァシンメ トリに対する反射光量比の関係式を求める第 1 1のステップと、
前記第 1 1のステツプで求めた関係式と前記第 5のステツプで求めた基準式に 基づき前記記録パワーと前記反射光量比との関係を示す第 3検出式を求めて記憶 する第 1 2のステップと、
前記第 6のステツプで求めた最適記録パワーと前記第 3検出式に基づき前記最 適記録パワーに対応する反射光量比を最適反射光量比として記憶する第 1 3のス テツプと、
実際の情報の記録に際しては、 前記差分光強度値および前記反射光量比を検出 するとともに、 差分検出値を算出する第 1 4のステップと、
前記第 1 4のステップで検出した差分光強度値と前記最適差分光強度値との第 1の差分を算出する第 1 5のステップと、
前記第 1 4のステップで算出した差分検出値と前記最適基準化差分検出値との 第 2差分を算出する第 1 6のステップと、
前記第 1 4のステツプで検出した反射光量比と前記最適反射光量比との第 3の 差分を算出する第 1 7のステップと、
前記第 3の差分が零で前記第 1の差分が零でない場合は、 前記第 1 4のステツ プで検出した差分光強度値と前記第 1検出式に基づき記録パワーを求めて、 前記 第 1の差分が零になるように該記録パワーを補正する第 1 8のステップと、 前記第 3の差分が零でなく、 前記第 1の差分が零である場合は、 前記第 1 4の ステップで検出した反射光量比と前記第 3検出式に基づき記録パワーを求めて、 前記第 3の差分が零になるように該記録パワーを補正する第 1 9のステツプと、 前記第 3の差分が零でなく、 かつ前記第 1の差分が零でなく、 前記第 2の差分 が零でない場合は、 前記第 1 4のステップで算出した差分検出値と前記第 2検出 式に基づき記録パワーを求めて、 前記第 2の差分が零になるように該記録パワー を補正する第 2 0のステップと
を具備することを特徴とする。
ここで、 上記第 1検出式乃至第 3検出式は、 それそれ一次関数から構成するこ とができる。
また、 この発明の光情報記録装置は、 ピット形成期間を表す第 1レベルとビッ
ト不形成期間を表す第 2レベルとから成るディジ夕ル信号に基づいて光情報記録 媒体に所定径のレーザ光スポットを照射し、 該光情報記録媒体に前記ビット形成 期間に対応した長さのピットを形成する光情報記録装置において、
前記光情報記録媒体にレーザ光を照射するとともに該光情報記録媒体からの反 射光を受光して受光信号を出力する光ピックアップと、
前記光ピックアップから出力されるレ一ザ光の記録ノ ワ一を制御するレ一ザ制 御手段と、
前記光ピックアップのフォーカス、 トラキング、 チルトの少なくとも 1つを制 御するサーボ制御手段と、
前記光ピックアップから出力される受光信号に基づき前記レ一ザ光スポットの スポット径より大きいピッ卜からの全反射光量に対する前記スポット径より小さ ぃピットからの全反射光量の比を反射光量比として検出する反射光量比検出手段 と、
前記光ピックアップから出力される受光信号に基づき該受光信号のァシンメト リを検出するァシンメ トリ検出手段と、
実際の情報の記録に先立ち、 前記レ一ザ制御手段を制御および前記サ一ボ制御 手段を制御することにより前記光情報記録媒体に照射するレーザ光の記録パワー を順次変化させて該光情報記録媒体に第 1の記録を行うともに、 前記記録パワー 毎にァシンメ トリ検出手段からァシンメトリを検出して該ァシンメ トリと前記記 録パワーとの第 1の関係を求め、 次に、 前記記録パワーを所定記録パワーに固定 して前記光ピックアップのフォーカス、 チルト、 トラキングの内の少なくとも 1 つのオフセットを所定ステップで順次変化させて該光情報記録媒体に第 2の記録 を行うとともに、 前記オフセット毎にァシンメ トリ検出手段からァシンメ トリぉ よび反射光量比検出手段から反射光量比を検出して、 前記ァシンメ トリと前記反 射光量比との第 2の関係を求め、 更に、 前記第 1の関係と前記第 2の関係に基づ き前記記録パワーと前記反射光量比との第 3の関係を求めるとともに、 最適記録 パワーに対応する最適反射光量比を求める第 1の制御手段と、
実際の情報の記録に際して、 前記反射光量比検出手段から反射光量比を検出す
ることにより前記第 3の関係に基づき該検出した反射光量比に対応する記録パヮ —を求めて、 該検出した反射光量比と前記最適反射光量比の差分が零になるよう に該記録パワーを補正する第 2の制御手段と
を具備することを特徴とする。
上記構成は、 光情報記録媒体の情報記録面に生じた傾き等に対する最適な補正 を可能にするものである。
また、 この発明の光情報記録装置は、 ビット形成期間を表す第 1レベルとピッ ト不形成期間を表す第 2レベルとから成るディジ夕ル信号に基づいて光情報記録 媒体に所定径のレ一ザ光スポットを照射し、 該光情報記録媒体に前記ピット形成 期間に対応した長さのビットを形成する光情報記録装置において、
前記光情報記録媒体にレーザ光を照射するとともに該光情報記録媒体からの反 射光を受光して受光信号を出力する光ピックアップと、
前記光ビックアップから出力されるレ一ザ光の記録ノ ワ一を制御するレ一ザ制 御手段と、
前記光情報記録媒体に対する前記レ一ザ光の空間的位置関係を制御するサーボ 制御手段と、
前記光ビックアップから出力される受光信号に基づき前記記録ノ ワ一に主に依 存する第 1の情報および前記記録パワーと前記空間的位置関係に依存する第 2の 情報および前記空間的位置関係に主に依存する第 3の情報を検出する情報検出手 段と、
前記光ビックァップから出力される受光信号に基づき該受光信号のァシンメト リを検出するァシンメトリ検出手段と、
制御手段と
とを具備し、
前記制御手段は、
実際の情報の記録に先立つ記録レ一ザ光強度最適化処理に際して、 前記レーザ 制御手段を制御することにより前記光情報記録媒体に照射するレーザ光の記録パ ヮーを順次変化させて該光情報記録媒体に試験データを記録する第 1の記録を行
う第 1の記録制御手段と、
前記レ一ザ制御手段および前記サーボ制御手段を制御することにより、 前記記 録パワーを固定して前記光情報記録媒体に対する前記レーザ光の空間的位置関係 を順次変化させて該光情報記録媒体に試験データを記録する第 2の記録を行う第 2の記録制御手段と、
前記第 1の記録に際して、 前記記録パワー毎に前記情報検出手段の出力に基づ き前記第 1の情報および前記第 2の情報を取得するするとともに前記ァシンメト リ検出手段の出力に基づきァシンメトリを取得して、 前記記録パワーに対する前 記第 1の情報との第 1の関係、 前記記録パワーに対する前記第 2の情報との第 2 の関係、 前記ァシンメトリに対する記録パワーとの関係を記憶する第 1の記憶手 段と、
前記ァシンメトリに対する記録パワーとの関係から最適ァシンメトリが得られ る最適記録パワーを求めて記憶するとともに前記第 1の関係および前記第 2の関 係から前記最適記録パワーに対応する最適第 1の情報および最適第 2の情報を記 憶する第 2の記憶手段と、
前記第 2の記録に際して、 前記情報検出手段の出力に基づき前記第 3の情報を 取得するするとともに前記ァシンメトリ検出手段の出力に基づきァシンメトリを 取得して、 前記ァシンメトリに対する第 3の情報の関係を記憶する第 3の記憶手 段と、
前記第 1の記録に際して記憶した前記ァシンメトリに対する記録パワーとの関 係と前記第 2の記録に際して記憶した前記ァシンメトリに対する第 2の情報の関 係から前記記録パワーに対する前記第 3の情報との第 3の関係を求めて記憶する とともに、 該第 3の関係から前記最適記録パワーに対応する最適第 3の情報を記 憶する第 4の記憶手段と、
実際の情報の記録に際して、 前記情報検出手段の出力に基づき前記第 1の情報 および前記第 2の情報および前記第 3の情報を検出して、 該検出した第 1の情報 と前記最適第 1の情報との第 1の差分、 第 2の情報と最適第 2の情報との第 2の 差分、 第 3の情報と最適第 3の情報との第 3の差分を求め、 前記第 3の差分が零
で前記第 1の差分が零でない場合は、 前記検出した第 1の情報と前記第 1の関係 に基づき記録パワーを求めて、 前記第 1の差分が零になるように該記録パワーを 補正し、 前記第 3の差分が零でなく、 前記第 1の差分が零である場合は、 前記検 出した第 3の情報と前記第 3の関係に基づき記録パワーを求めて、 前記第 3の差 分が零になるように該記録パワーを補正し、 前記第 3の差分が零でなく、 かつ前 記第 1の差分が零でなく、 前記第 2の差分が零でない場合は、 前記検出した第 2 の情報と前記第 2の関係に基づき記録パワーを求めて、 前記第 2の差分が零にな るように該記録パワーを補正する補正手段と
を具備することを特徴とする。
また、 この発明の光情報記録装置は、 ビット形成期間を表す第 1レベルとビッ ト不形成期間を表す第 2レベルとから成るディジ夕ル信号に基づいて光情報記録 媒体に所定径のレーザ光スポットを照射し、 該光情報記録媒体に前記ピット形成 期間に対応した長さのピットを形成する光情報記録装置において、
前記光情報記録媒体にレーザ光を照射するとともに該光情報記録媒体からの反 射光を受光して受光信号を出力する光ピックアップと、
前記光ピックァップから出力されるレ一ザ光の記録パヮ一を制御するレ一ザ制 御手段と、
前記光ピックアップのフォーカス、 トラキング、 チルトの少なくとも 1つを制 御するサーボ制御手段と、
前記レーザ光スポットのスポット径より大きいビットの先端部における反射光 強度の極大値と後端部の反射光強度の平均値との差からなる差分光強度値を検出 する差分光強度値検出手段と、
前記光ビックアップから出力される受光信号に基づき前記レ一ザ光スポットの スポット径より大きいピッ 卜からの全反射光量に対する前記スポット径より小さ ぃピットからの全反射光量の比を反射光量比として検出する反射光量比検出手段 と、
前記光ピックアップから出力される受光信号に基づき該受光信号のァシンメト リを検出するァシンメ トリ検出手段と、
制御手段と
を具備し、
前記制御手段は、
実際の情報の記録に先立つ記録レ一ザ光強度最適化処理に際して、 前記レーザ 制御手段を制御することにより前記光情報記録媒体に照射するレーザ光の記録パ ヮーを順次変化させて該光情報記録媒体に試験データを記録する第 1の記録制御 手段と、
前記第 1の記録制御手段による記録に際して、 前記記録パワーに対応して前記 差分光強度値検出手段から前記差分光強度値を、 前記反射光量比検出手段から前 記反射光量比を、 ァシンメトリ検出手段からァシンメトリを取得するとともに前 記差分光強度値と前記反射光量比との差を差分検出値として算出する第 1の取得 手段と、
前記第 1の取得手段で取得した前記差分光強度値に基づき前記記録パワーと前 記差分光強度値との関係を示す第 1検出式を求めて記憶する第 1の処理手段と、 前記第 1の取得手段で算出した差分検出値に基づき前記記録パワーと前記差分 検出値との関係を示す第 2検出式を求めて記憶する第 2の処理手段と、
前記第 1の取得手段で取得したァシンメトリに基づき前記ァシンメトリと前記 記録パワーとの関係を示す基準式を求めて記憶する第 3の処理手段と、
前記第 3の処理手段で記憶した基準式に基づき最適ァシンメ トリが得られる最 適記録パワーを求めて記憶する第 4の処理手段と、
前記第 4の処理手段で求めた最適記録パワーと前記第 1検出式に基づき前記最 適記録パワーに対応する差分光強度値を最適差分光強度値として記憶する第 5の 処理手段と、
前記第 4の処理手段で求めた最適記録パワーと前記第 2検出式に基づき前記最 適記録ノ ^ヮ一に対応する差分検出値を最適基準化差分検出値として記憶する第 6 の処理手段と、
前記レーザ制御手段および前記サーボ制御手段を制御することにより前記記録 パワーを前記第 4の記憶手段で求めた最適記録ノ ワ一の固定して前記光情報記録
媒体に刘してレーザ光を照射する光ピックアップのフォーカス、 チルト、 トラキ ングの内の少なくとも 1つのサーボ系のオフセットを所定ステツプで順次変化さ せて該光情報記録媒体に試験データを記録する第 2の記録制御手段と、
前記第 2の記録制御手段による記録に際して、 前記記オフセット毎に前記反射 光量比検出手段から前記反射光量比を取得するとともに前記ァシンメトリ検出手 段からァシンメトリを取得する第 2の取得手段と、
前記第 2の取得手段で取得した前記反射光量比およびァシンメトリに基づき前 記ァシンメトリに対する反射光量比の関係式を求める第 7の処理手段と、 前記第 7の処理手段で求めた関係式と前記第 3の処理手段で求めた基準式に基 づき前記記録パワーと前記反射光量比との関係を示す第 3検出式を求めて記憶す る第 8の処理手段と、
前記第 4の処理手段で求めた最適記録ノ ワ一と前記第 3検出式に基づき前記最 適記録パワーに対応する反射光量比を最適反射光量比として記憶する第 9の処理 手段と、
実際の情報の記録に際して、 前記差分光強度値検出手段から前記差分光強度値 を取得するとともに、 前記反射光量比検出手段から前記反射光量比を取得し、 更 に、 前記差分光強度値と前記反射光量比との差を差分検出値として算出する第 3 の取得手段と、
前記第 3の取得手段で取得した差分光強度値と前記最適差分光強度値との第 1 の差分を算出する第 1 0の処理手段と、
前記第 3の取得手段で算出した差分検出値と前記最適基準化差分検出値との第 2差分を算出する第 1 1の処理手段と、
前記第 3の取得手段で取得した反射光量比と前記最適反射光量比との第 3の差 分を算出する第 1 2の処理手段と、
前記第 3の差分が零で前記第 1の差分が零でない場合は、 前記第 3の取得手段 で取得した差分光強度値と前記第 1検出式に基づき記録パワーを求めて、 前記第 1の差分が差分になるように該記録パヮ一を補正する第 1の補正手段と、 前記第 3の差分が零でなく、 前記第 1の差分が零である場合は、 前記第 3の取
得手段で取得した反射光量比と前記第 3検出式に基づき記録パワーを求めて、 前 記第 3の差分が零になるように該記録パワーを補正する第 2の補正手段と、 前記第 3の差分が零でなく、 かつ前記第 1の差分が零でなく、 前記第 2の差分 が零でない場合は、 前記第 3の取得手段で算出した差分検出値と前記第 2検出式 に基づき記録パワーを求めて、 前記第 2の差分が零になるように該記録パワーを 補正する第 3の補正手段と
を具備することを特徴とする。
また、 この発明の光情報記録制御プログラムを記録した記録媒体は、 ピット形 成期間を表す第 1レベルとピット不形成期間を表す第 2レベルとから成るディジ タル信号に基づいて光情報記録媒体に所定径のレーザ光スポットを照射し、 該光 情報記録媒体に前記ピット形成期間に対応した長さのピットを形成するコンビュ —夕によって処理される光情報記録制御プログラムを記録した記録媒体であって、 実際の情報の記録に先立ち、 前記光情報記録媒体に照射するレーザ光の記録パ ヮーを順次変化させて該光情報記録媒体に記録を行うともに、 前記記録パワー毎 にァシンメトリを検出して前記ァシンメトリと前記記録パワーとの第 1の関係を 求め、
次に、 前記記録ノ ヮ一を所定記録ノ ヮ一に固定して前記光情報記録媒体に対す る前記レーザ光の空間的位置関係を順次変化させて該光!青報記録媒体に記録を行 うとともに、 前記空間的位置関係毎にァシンメ トリおよび異なる長さのピヅトに 関する反射光量比を検出して、 前記ァシンメ トリと前記反射光量比との第 2の関 係を求め、
更に、 前記第 1の関係と前記第 2の関係に基づき前記記録パワーと前記反射光 量比との第 3の関係を求めるとともに、 最適記録パヮ一に対応する最適反射光量 比を求め、
実際の情報の記録に際しては、 前記反射光量比を検出することにより前記第 3 の関係に基づき該検出した反射光量比に対応する記録パワーを求めて、 該検出し た反射光量比と前記最適反射光量比の差分が零になるように該記録パワーを補正 する
ことを特徴とする。
また、 この発明の光情報記録制御プログラムを記録した記録媒体は、 ピット形 成期間を表す第 1レベルとピット不形成期間を表す第 2レベルとから成るディジ タル信号に基づいて光情報記録媒体に所定径のレーザ光スポットを照射し、 該光 情報記録媒体に前記ビット形成期間に対応した長さのピットを形成するコンビュ 一夕によって処理される光情報記録制御プログラムを記録した記録媒体であって、 実際の情報の記録に先立つ記録レ一ザ光強度最適化処理に際して、 前記光情報 記録媒体に照射するレーザ光の記録パワーを順次変化させて該光情報記録媒体に 試験データを記録する第 1の記録を行うとともに、
前記記録パワーを固定して前記光情報記録媒体に対する前記レーザ光の空間的 位置関係を順次変化させて該光情報記録媒体に試験データを記録する第 2の記録 を行い、
前記第 1の記録に際して、 前記記録パワー毎に前記記録パワーに主に依存する 第 1の情報および前記記録パワーと前記空間的位置関係に依存する第 2の情報お よびァシンメトリを検出して、 前記記録パワーに対する前記第 1の情報との第 1 の関係、 前記記録パワーに対する前記第 2の情報との第 2の関係、 前記ァシンメ トリに対する記録パワーとの関係を記憶するともに、
前記ァシンメトリに対する記録パワーとの関係から最適ァシンメ トリが得られ る最適記録パワーを求めて記憶するとともに前記第 1の関係および前記第 2の関 係から前記最適記録パワーに対応する最適第 1の情報および最適第 2の情報を記 f¾し、
前記第 2の記録に際して、 前記空間的位置関係に主に依存する第 3の情報およ びァシンメトリを検出して、 前記ァシンメ トリに対する第 3の情報の関係を記憶 し、
前記第 1の記録に際して記憶した前記ァシンメ トリに対する記録パワーとの関 係と前記第 2の記録に際して記憶した前記ァシンメトリに対する第 2の情報の関 係から前記記録パワーに対する前記第 3の情報との第 3の関係を求めて記憶する とともに、 該第 3の関係から前記最適記録パワーに対応する最適第 3の情報を記
憶し、
実際の倩報の記録に際しては、 前記第 1の情報および前記第 2の情報および前 記第 3の情報を検出して、
該検出した第 1の情報と前記最適第 1の情報との第 1の差分、 第 2の情報と最 適第 2の情報との第 2の差分、 第 3の情報と最適第 3の情報との第 3の差分を求 め、
前記第 3の差分が零で前記第 1の差分が零でない場合は、 前記検出した第 1の 情報と前記第 1の関係に基づき記録パワーを求めて、 前記第 1の差分が零になる ように該記録パワーを補正し、
前記第 3の差分が零でなく、 前記第 1の差分が零である場合は、 前記検出した 第 3の情報と前記第 3の関係に基づき記録パワーを求めて、 前記第 3の差分が零 になるように該記録パワーを補正し、
前記第 3の差分が零でなく、 かつ前記第 1の差分が零でなく、 前記第 2の差分 が零でない場合は、 前記検出した第 2の倩報と前記第 2の関係に基づき記録パヮ —を求めて、 前記第 2の差分が零になるように該記録パワーを補正する
ことを特徴とする。
また、 この発明の光情報記録制御プログラムを記録した記録媒体は、 ビット形 成期間を表す第 1レベルとピット不形成期間を表す第 2レベルとから成るディジ タル信号に基づいて光情報記録媒体に所定径のレーザ光スポッ トを照射し、 該光 情報記録媒体に前記ビット形成期間に対応した長さのピットを形成するコンビュ —夕によって処理される光情報記録制御プログラムを記録した記録媒体であって、 実際の情報の記録に先立つ記録レーザ光強度最適化処理に際して、 前記光情報 記録媒体に照射するレ一ザ光の記録ノ ヮ一を順次変化させて該光情報記録媒体に 試験データを記録する第 1のステップと、
前記第 1のステップにおいて、 前記レーザ光スポットのスポット径より大きい ビッ卜の先端部における反射光強度の極大値と後端部の反射光強度の平均値との 差からなる差分光強度値および前記スポット径より大きいのビットからの全反射 光量に対する前記スポット径より小さいビットからの全反射光量の比からなる反
射光量比およびァシンメトリを前記記録パワーに対応して検出するとともに、 前 記差分光強度値と前記反射光量比との差を差分検出値として算出する第 2のステ ップと、
前記第 2のステヅプで検出した差分光強度値に基づき前記記録パワーと前記差 分光強度値との関係を示す第 1検出式を求めて記憶する第 3のステップと、 前記第 2のステツプで算出した差分検出値に基づき前記記録パワーと前記差分 検出値との関係を示す第 2検出式を求めて記憶する第 4のステップと、
前記第 2のステップで検出したァシンメ トリに基づき前記ァシンメ トリと前記 記録パワーとの関係を示す基準式を求めて記憶する第 5のステップと、
前記第 5のステツプで記憶した基準式に基づき最適ァシンメ トリが得られる最 適記録パヮ一を求めて記憶する第 6のステップと、
前記第 6のステツプで求めた最適記録パワーと前記第 1検出式に基づき前記最 適記録ノ ワ一に対応する差分光強度値を最適差分光強度値として記憶する第 7の ステップと、
前記第 6のステツプで求めた最適記録パワーと前記第 2検出式に基づき前記最 適記録ノ ヮ一に対応する差分検出値を最適基準化差分検出値として記憶する第 8 のステップと、
前記記録ノ ヮーを前記第 6のステップで求めた最適記録ノ ワ一の固定して前記 光情報記録媒体に対してレーザ光を照射する光ピックアップのフォーカス、 チル ト、 トラキングの内の少なくとも 1つのサーボ系のオフセットを所定ステップで 順次変化させて該光情報記録媒体に試験データを記録する第 9のステップと、 前記第 9のステップにおいて、 前記記オフセット毎に前記反射光量比およびァ シンメ トリを検出する第 1 0のステップと、
前記第 1 0のステップで検出した前記反射光量比およびァシンメトリに基づき 前記ァシンメ トリに対する反射光量比の関係式を求める第 1 1のステップと、 前記第 1 1のステツプで求めた関係式と前記第 5のステツプで求めた基準式に 基づき前記記録パワーと前記反射光量比との関係を示す第 3検出式を求めて記憶 する第 1 2のステップと、
前記第 6のステツプで求めた最適記録パワーと前記第 3検出式に基づき前記最 適記録パワーに対応する反射光量比を最適反射光量比として記憶する第 1 3のス テツプと、
実際の情報の記録に際しては、 前記差分光強度値および前記反射光量比を検出 するとともに、 差分検出値を算出する第 1 4のステップと、
前記第 1 4のステップで検出した差分光強度値と前記最適差分光強度値との第 1の差分を算出する第 1 5のステツプと、
前記第 1 4のステップで算出した差分検出値と前記最適基準化差分検出値との 第 2差分を算出する第 1 6のステップと、
前記第 1 4のステツプで検出した反射光量比と前記最適反射光量比との第 3の 差分を算出する第 1 7のステップと、
前記第 3の差分が零で前記第 1の差分が零でない場合は、 前記第 1 4のステツ プで検出した差分光強度値と前記第 1検出式に基づき記録パワーを求めて、 前記 第 1の差分が零になるように該記録パワーを補正する第 1 8のステップと、 前記第 3の差分が零でなく、 前記第 1の差分が零である場合は、 前記第 1 4の ステップで検出した反射光量比と前記第 3検出式に基づき記録パワーを求めて、 前記第 3の差分が零になるように該記録パワーを補正する第 1 9のステツプと、 前記第 3の差分が零でなく、 かつ前記第 1の差分が零でなく、 前記第 2の差分 が零でない場合は、 前記第 1 4のステップで算出した差分検出値と前記第 2検出 式に基づき記録パワーを求めて、 前記第 2の差分が零になるように該記録パワー を補正する第 2 0のステップと
を具備する
ことを特徴とする。 図面の簡単な説明
図 1は、 この発明の一実施形態における光情報記録装置を示す電気系回路のブ 口ヅク図である。
図 2は、 この発明の一実施形態における光情報記録装置の記録パワーずれ検出
部を示す電気系回路のブロック図である。
図 3は、 この発明の一実施形態における反射光量比を説明するための図である。 図 4は、 この発明の一実施形態における差分光強度値を説明するための図であ る
図 5は、 この発明の一実施形態におけるレ一ザスポット径とビット長との関係 を説明する図である。
図 6は、 この発明の一実施形態におけるレーザスポット径とピット長との関係 をアイパターンを用いて説明する図である。
図 7は、 この発明の一実施形態における記録パワーの補正に係る処理を説明す るフローチャートである。
図 8は、 この発明の一実施形態における記録パワーの補正に係る処理を説明す るフローチャートである。
図 9は、 この発明の一実施形態における記録パワーの補正に係る処理を説明す るフローチャートである。
図 1 0は、 この発明の一実施形態における記録パワーの補正処理を説明する図 である。
図 1 1は、 この発明の一実施形態における記録パワーの補正処理を説明する図 である。
図 1 2は、 この発明の一実施形態における記録パワーの補正処理を説明する図 でめる。
図 1 3は、 この発明の一実施形態における記録パワーの補正処理を説明する図 である。
図 1 4は、 この発明の一実施形態における記録パワーの補正処理を説明する図 である。 発明を実施するための最良の形態
以下、 図面に基づいてこの発明の一実施形態を説明する。
図 1は、 この発明の一実施形態における光情報記録装置を示す主要電気系回路
のブロック図である。 なお、 本実施形態では、 追記型の光情報記録媒体として、 周知の D V D— Rを対象とした装置構成について説明する。 また、 追記型光ディ スクとして周知の C D— Rを用いた装置構成もほぼ同様である。
図 1において、 1 0は追記型の光ディスク、 2 0は光情報記録装置である。 光情報記録装置 2 0は、 ディスク回転モー夕 2 1、 モー夕駆動制御回路 2 2、 光ピックアップ 2 3、 レ一ザ制御部 2 4、 サーボ制御部 2 5、 記録パヮ一ずれ検 出部 2 6、 ァシンメ トリ検出部 2 7、 およびシステムコントローラ 2 8等を備え ている。
光ディスク 1 0には、 その記録領域 (記録トラック) に予めグループが形成さ れている。 このグループのうねり或いはグループサイ ドに形成されたランドピッ 卜から、 ディスク回転制御信号等を抽出することができる。
ディスク回転モ一夕 2 1は、 モー夕駆動制御回路 2 2から供給される駆動電圧 によって所定の回転数にて回転駆動される。
モー夕駆動制御回路 2 2は、 システムコントローラ 2 8から入力される命令信 号に基づいてディスク回転モ一夕 2 1へ駆動電圧を供給する。
光ピックアップ 2 3は、 レーザダイオード (L D ) 2 3 1、 周知の 4分割のフ オトディテクタ (P D ) 2 3 2、 および図示していないが対物レンズァクチユエ 一夕等を備えている。 さらに、 光ピックアップ 2 3は、 例えば周知のリニアモー 夕方式によるビックアップ送り機構によって光ディスク 1 0の半径方向に移動可 能になっている。
レーザ制御部 2 4は、 記録対象となる情報に対応したディジタル信号を入力し、 システムコントローラ 2 8から指定されたストラテジ設定情報に基づいて、 この ディジタル信号からライ トパルスを生成する。 さらに、 このライ トパルスに同期 してシステムコントローラ 2 8から指定されたレーザ光強度に対応する大きさの 駆動電流をレーザダイオード 2 3 1に供給する。 これにより、 レーザダイォード 2 3 1は、 システムコントローラ 2 8が指定した強度のレーザ光を射出する。 サーボ制御部 2 5は、 フォ一カス制御部 2 5 1、 トラツキング制御部 2 5 2、 およびチルト制御部 2 5 3等からなり、 システムコントローラ 2 8からの命令に
基づいて、 光ピックアップ 2 3の対物レンズァクチユエ一夕およびビックアップ 送り機構の動作制御を行う。
記録パワーずれ検出部 2 6は、 図 2に示すように、 3 T検出回路 2 6 1、 1 4 T検出回路 2 6 2、 反射光量検出回路 2 6 3, 2 6 4、 除算回路 2 6 5、 ピーク 検出回路 2 6 6、 サンプルホールド回路 2 6 7、 および減算回路 2 6 8から構成 されている。
周知のように D VD— Rは、 媒体の記録層に長さが 3 T〜 l 1 Τおよび 1 4 Τ のピットを形成することにより情報記録を行っている。
そこで、 本実施形態の記録パワーずれ検出部 2 6においては、 光ディスク 1 0 に照射されるレーザ光のスポット径ょりも小さい長さのピットである長さが 3 Τ のピット (以下、 単に 3 Τピッ卜と称する) およびスポヅト径以上の長さのピッ トである長さが 1 4 Τのピット (以下、 単に 1 4 Τピットと称する) を用いて、 反射光量比 (Χ 2 ) および差分光強度値 (X I ) を検出する。
ここで、 反射光量比 (Χ 2 ) は、 記録時おける 1 4 Τピットからの全反射光量 S 1 4 Τ対する 3 Τピッ卜からの全反射光量 S 3 Τの比である。
また、 差分光強度値 (X I ) は、 記録時における 1 4 Τピットに対応する R F 信号のビット先端部におけるピーク値 V p kと先端部を除く後部分の平均値 V s Pとの差分の光強度値である。
図 2において、 3 T検出回路 2 6 1は、 光ピックアップ 2 3から出力される R F信号を入力し、 情報記録中の 3 Tビットからの反射光電流のみを出力する。 3 Tピットからの反射光電流は、 反射光量検出回路 2 6 3の抵抗器 2 6 3 aを介し てコンデンサ 2 6 3 bに充電される。 これにより、 コンデンサ 2 6 3 bの充電電 圧は 3 Tピッ卜からの全反射光量に対応した値となり、 反射光量検出回路 2 6 3 からは 3 Tピヅ卜からの全反射光量 S 3 Tに対応した値に対応する電圧が出力さ れる。
また、 1 4丁検出回路2 6 1は、 光ビックアップ 2 3から出力される R F信号 を入力し、 情報記録中の 1 4 Tピットからの反射光電流のみを出力する。 1 4 T ビットからの反射光電流は、 反射光量検出回路 2 6 4の抵抗器 2 6 4 aを介して
コンデンサ 264 bに充電される。 これにより、 コンデンサ 264bの充電電圧 は 14Tピッ 卜からの全反射光量に対応した値となり、 反射光量検出回路 264 からは 14Tビットからの全反射光量 S 14 Tに対応した値に対応する電圧が出 力される。
そして、 反射光量検出回路 263から出力される電圧および反射光量検出回路 264から出力される電圧は、 除算回路 265で除算され、 反射光量比 (X2) としてシステムコントローラ 28に出力される。
また、 ビーク検出回路 265は、 14T検出回路 261の出力に基づき 14T ピッ卜からの反射光電流のピット先端部におけるビーク値 Vpkを検出し、 また サンプルホールド回路 266は、 14 T検出回路 261の出力に基づき 14 Tピ ッ卜の後部分の反射光電流の平均値 Vs pを検出する。
そして、 減算回路 267によってピーク検出回路 265で検出された 14Tピ ットからの反射光電流のピット先端部におけるビーク値 Vpkとサンプルホール ド回路 266で検出された 14 Tピットの後部分の反射光電流の平均値 Vs と の差が算出され、 差分光強度値 (XI) としてシステムコントローラ 28に出力 される。
ァシンメ トリ検出部 27は、 光ピックアップ 23から出力される RF信号から ァシンメ トリを検出して、 この検出結果はシステムコントロ一ラ 28に出力され る。
システムコントローラ 28は、 周知の CPU等から構成され、 記録パワーずれ 検出部 26およびァシンメトリ検出部 27の出力信号に基づいて、 レーザ制御部 24, サ一ボ制御部 25等に制御命令を出力して情報記録を行う。
この際に、 後述する演算処理を行い、 リアルタイムで記録時のレ一ザ光強度を 補正しながら情報の記録を行う。 以下、 記録時のレーザ光強度 (記録レーザ光強 度) を単に記録パワーと称する。
ここで、 反射光量比 (X2) および差分光強度値 (XI) の詳細について説明 する。
反射光量比 (X2) は、 前述したように、 記録時おける 14 Tピットからの全
反射光量 S 14 Tに対する 3 Τピヅトからの全反射光量 S 3 Tの比である。
3 Tビットからの全反射光量 S 3 Tは、 図 3 (a) に示すような 3 T記録パル スを用いて 3 Tの記録を行った場合の光ディスク 10からの反射光に対応する図 3 (b) に示すような RF信号の面積から求めることができる。
また、 14Tピットからの全反射光量 S 14Tは、 図 3 (c) に示すような 1 4 T記録パルス (パルストレイン法を用いた記録パルス) を用いて 14 Tの記録 を行った場合の光ディスク 10からの反射光に対応する図 3 (d) に示すような RF信号の面積から求めることができる。
すなわち、 図 2に示した反射光量検出回路 263からは 3 Tビットからの全反 射光量 S 3 Tに対応した値に対応する電圧が出力され、 図 2に示した反射光量検 出回路 264からは 14 Tピットからの全反射光量 S 14 Tに対応した値に対応 する電圧が出力されるので、 除算回路 265で反射光量検出回路 263の出力を 反射光量検出回路 264で除算することにより、 記録時おける 14Tピッ卜から の全反射光量 S 14 Tに対する 3 Tピットからの全反射光量 S 3 Tの比からなる 反射光量比 (X2) を求めることができる。
ここで、 3 Tビットは、 レ一ザ光のスポット径より短いピヅ トであり、 14T ピットは、 レーザ光のスポット径より十分長いピットであるので、 この反射光量 比 (X2) は、 光ディスク 10のデーザビームに対するチルト等の表面の状態に 対応して変化し、 その結果、 光ディスク 10の表面の状態に主に依存する情報を 含むことになる。
また、 差分光強度値 (XI) は、 前述したように、 言 3録時における 14Tピッ トに対応する R F信号のピット先端部におけるピーク値 V p kと先端部を除く後 部分の平均値 V s との差分の光強度値である。
図 3 (c) に示すような、 パルストレイン法を用いた 14 T記録パルスを用い て 14Tピットを形成する場合、 光ディスク 10からは図 3 (d) に示すような RF信号が得られる。 ここで、 この RF信号のピット先端部におけるピーク値が V p kとなり、 先端部を除く後部分のサンプリング期間 T s pの平均値を求める と Vs pとなり、 このピーク値 Vpkの平均値 Vs pとの差分 Vd fから差分光
強度値 (XI) を求める。
すなわち、 図 2に示したピーク値検出回路 266からは 14 Tピットからの反 射光電流のビット先端部におけるピーク値 Vpkが出力され、 サンプルホールド 回路 266からは、 14 Tピットの後部分の反射光電流の平均値 V s pが出力さ れるので、 減算回路 268で、 ピーク値検出回路 266とサンプルホールド回路 266の差分を求めることで、 差分光強度値 (XI) を求めることができる。 ここで、 レーザ光のスポット径より十分長いピットであるので、 この RF信号 は、 光ディスク 10のデーザビームに対するチルト等の表面の状態の影響を受け ずに、 記録パワーのみに依存する信号となるので、 その結果、 差分光強度値 (X 1) は、 光ディスク 10に照射したレーザ光の記録パワーに主に依存する情報を 含むことになる。
なお、 差分光強度値 (XI) は、 レーザ光のスポット径より十分長いピットか らの RF信号を用いて検出することができ、 反射光量比 (X2) は、 レーザ光の スポット径より短いピッ卜からの RF信号およびレーザ光のスポット径より十分 長いピットからの RF信号を用いて検出することができるので、 図 2の記録パヮ —ずれ検出部では、 レーザ光のスポット径より十分長いビットとして DVD— R における最長ピットである 14 Tピットを用い、 レーザ光のスポット径より短い ビットとして DVD— Rにおける最短ピットである 3 Tビットを用いたが、 これ に限定されいない。
なお、 レーザ光のスポット径に対するピット長の関係は、 以下のようにして検 出することができる。
すなわち、 DVD— Rの場合の 3 T〜 11 Τおよび 14 Τのビット Ρ 3 Τ〜Ρ 11 Τおよび Ρ 14 Τからの RF信号を調べると、 図 5に示すように、 ピット長 Lがスポヅト径 2 Rより短い領域 Aにある場合は、 RF信号のレベルはピット長 が長くなるにしたがって順次増加するが、 ピット長 Lがスポット径 2 Rよりを長 くなる領域 Bになると、 R F信号のレベルは飽和して一定値となる。
また、 DVD— Rの場合の 3 T〜 1 ITおよび 14Tのピット P3T〜P 11 Τおよび Ρ 14 Τからの RF信号のアイパターンを調べると、 図 6に示すように、
その振幅は、 ビット長がスポット径より短い場合は、 ピット長が長くなるにした がって順次増加するが、 ビット長がスポット径よりを長くなると、 その振幅は飽 和して一定値となる。
なお、 DVD— R (4. 7 Gバイ トディスク) の場合、 線速 3. 49msのと き、 1 Tの長さは約 0. 13 /mとなり、 図 5および図 6においては、 7 Tピヅ トでで RF信号のレベル若しくは振幅が最大値を示しており、 この場合は、 7T ビットの長さがスポヅト径と等しいと考えられる。 従って、 スポヅト径は、 約 0. 9 zmとなる。
したがって、 この図 5若しくは図 6に示す R F信号のレベル若しくは振幅が飽 和するピット長からレーザ光のスポット径より小さいピット長のピットおよび等 のスポット径より十分大きいピット長のピットを選択することができる。
次に、 システムコントローラ 28の情報記録処理におけるこの発明に係る処理 に関して、 図 7乃至図 10に示すフローチャートを参照して詳細に説明する。 システムコントローラ 28は、 情報の記録開始時に OP Cを行う。 この OPC 実行時に言 3録パヮ一を最適値に補正するための関係式等を求め、 実際の情報言己録 時にはこの関係式を用いてリアルタイムで記録パワーの補正を行いながら、 倩報 の記録を行う。
すなわち、 システムコントローラ 28は、 0 PC実行時に、 図 7に示すように、 光ピックァヅプ 23を光ディスク 10の試し書き領域に移動し (SK 1) 、 記録 パワー (X) を所定ステップで順次変化させながら試験データの記録を行う (S K2)
また、 この試験データの記録中において、 記録パワーずれ検出部 26の出力信 号に基づいて、 記録パワー (X) 毎に差分光強度値 (X I) および反射光量比 (X2) を取得する (SK3, SK4) 。
次に、 システムコントローラ 28は、 記録した情報を再生しながらァシンメ ト リ検出部 27の出力を入力して、 各記録パワー (X) 毎にァシンメ トリ (y) を 取得する (SK 5) 。 このァシンメ トリ (y) は、 前掲の式 (A) または (B) で算出される/?に対応する値である。
この後、 前記 SK 3の結果を用いて、 差分光強度値 (XI) と記録パワー (X) の関係式を次の ( 1) 式のように求めて、 第 1検出式として図示しないメ モリに記憶する (SK6) o
X=a 1 · X 1 +b 1··· ( 1)
ここで、 a 1, b 1は定数である。
次に、 前記 SK 3および SK 4の結果を用いて、 差分光強度値 (X I) と反射 光量比 (X2) との差を差分検出値 Dとして、 この差分検出値 Dと記録パワー (X) との関係式を次の (2) 式のように求めて、 第 2検出式としてメモリに記 憶する (SK7) 。
X=a 2 · D + b 2- (2)
ここで、 a 2, b 2は定数である。
さらに、 前記 SK 5の結果を用いて、 記録パヮ一 (X) とァシンメ トリ (y) の関係式を次の (3) 式のように求めて、 基準式としてメモリに記憶する (SK 8) 。
y=c 1 · X + d 1- (3)
ここで、 c 1 , d 1は定数である。
次に、 システムコントローラ 28は、 規格に合った最適なァシンメトリ (y) が得られる記録パワー (X) を上記の基準式を用いて算出し、 この値を最適記録 パワー (Xms) としてメモリに記憶する (SK 9) 。
この後、 システムコントローラ 28は、 上記最適言 3録パワー (Xms) が得ら れる差分光強度値 (X I) を上記の第 1検出式を用いて算出し、 この値を最適差 分光強度値 (X 1ms) としてメモリに記憶する (SK 10) 。
さらに、 システムコントローラ 28は、 上記最適記録パヮ一 (Xms) が得ら れる差分検出値 (X2ms) を上記第 2検出式を用いて算出し、 この値を最適基 準化差分検出値 (Dms) としてメモリに記憶する (SK I 1) 。
以上の処理によって、 第 1検出式 (X=a l · X 1 +b 1) 、 第 2検出式 (X =a 2 - D + b 2) 、 基準式 (y二 c l ' X + d l) 、 最適差分光強度値 (X 1 ms) 、 最適基準化差分検出値 (Dms) 、 最適記録パワー (Xms) がシステ
ムコントローラ 28に記憶される。
さらに、 システムコントローラ 28は、 OP C実行時に図 8に示す処理を行い、 第 3検出式、 最適反射光量比 (X2ms) を求めて、 メモリに保存する。
すなわち、 システムコントローラ 28は、 0 PC実行時に、 上記の最適記録パ ヮー (Xms) を用いて、 サーボ制御部 25で制御されるフォ一カス、 チルト、 トラッキングの内の少なくとも何れか 1つのサ一ボ系のオフセットを所定ステツ プで変化させて試験デ一夕を記録して (SL 1) 、 これを再生し、 ァシンメトリ 検出部 27の出力に基づき各オフセット値毎にァシンメ トリ (y) を取得する
(SL 2) 。
さらに、 記録パワーずれ検出部 26の出力に基づき各オフセット値毎に、 反射 光量比 (X2) を取得する (SL 3)
この後、 システムコントローラ 28は、 前記 S L 2及び S L 3の結果を用いて 反射光量比 (X2) とァシンメトリ (y) との関係式を次の (4) 式のように求 める (SL4) 。
y= c 2 · X2 +d 2·'· (4)
ここで、 c 2, d 2は定数である。
そして、 上記 (4) 式と前記基準式 (3) より、 反射光量比 (X2) と記録パ ヮー (X) の関係式を次の (5) 式のように求め、 これを第 3検出式としてメモ リに記憶する (SL 5) 。
X=a 3 · X 2 +b 3- (5)
ここで、 a 3, b 3は定数である。
さらに、 システムコントローラ 28は、 上記最適記録パワー (Xms) が得ら れる反射光量比 (X2) を求めて、 この値を最適反射光量比 (X2ms) として メモリに記憶する (SL 6)
システムコントローラ 28は、 OP Cの実行時に上記の処理を行った後に、 図 9および図 10に示すように記録パワーの補正処理をリアルタイムで行いながら、 実際の情報記録を行う。
すなわち、 実際の情報記録時には、 システムコントローラ 28は、 記録パワー
ずれ検出部 26の出力信号に基づいて、 記録中差分光強度値 (XI) を取得し (SM1)、 この差分光強度値 (XI) と記憶している最適差分光強度値 (XI ms) とを比較し、 これらの差を第 1差分として算出する (SM2) 。
次に、 システムコント口一ラ 28は、 記録パワーずれ検出部 26の出力信号に 基づいて、 記録中反射光量比 (XI) を取得し (SM3) 、 この反射光量比 (X
1) と記憶している最適反射光量比 (Xlms) とを比較し、 これらの差を第 3 差分として算出する (SM4) 。
さらに、 SM1および SM 3の結果に基づき記録中差光強度値 (XI) と記録 中反射光量値 (X2) との差を記録中差分検出値 (D) として算出する (SM 5)
次に、 システムコントローラ 28は、 記憶していた最適基準化差分検出値 (D ms) と、 前記 SM 5の処理で求めた差分検出値 (D) との差を第 2差分として 算出する (SM6) 。
次いで、 前記 SM4の処理で求めた第 3差分が 0であるか否かを判定し (SM 7)、 0のときはさらに第 1差分が 0であるか否かを判定する (SM8) この判定の結果、 第 1差分が 0のときは前記 SM1の処理に移行し、 0でない ときは上記 SM 1の処理で取得した記録中差分光強度値 (XI) を第 1検出式に 代入して現時点の言己録パワー (Xr) を算出する (SM9) 。
そして、 第 1差分が 0になるようにレーザ制御部 24に制御命令を出力してこ の算出された記録パワー (Xr) を補正する (SM10) 。 この後、 前記 SM1 の処理に移行する。
前記 SM7の判定の結果、 第 3差分が 0でないときは、 第 1差分が 0であるか 否かを判定する (SMI 1) 。
この判定の結果、 第 1差分が 0のときは上記 S M 3の処理で取得した記録中反 射光量比 (X2) を第 3検出式に代入して現時点の記録パワー (Xr) を算出す る (SM 12) 。
そして、 第 3差分が 0になるようにレーザ制御部 24に制御命令を出力してこ の算出された記録パワー (Xr) を補正する (SM13)
前記 SMI 1の判定の結果、 第 1差分が 0でないときは、 第 2差分が 0である か否かを判定し (SM14) 、 0のときは前記 SMIの処理に移行する。
また、 第 2差分が 0のときは、 前記 SM 5の処理で求めた記録中差分検出値 (D) を第 2検出式に代入して現時点の記録パヮ一 (Xr) を求める (SM1 5)
そして、 第 2差分が 0になるようにレーザ制御部 24に制御命令を出力してこ の算出された記録パワー (Xr) を補正する (SM16) 。
上記処理を図 11乃至図 14を参照して更に説明する。
図 11は、 上述した基準式と第 1検出式、 第 2検出式、 3検出式の関係を示し たものである。
図 11において、 縦軸はァシンメトリ y若しくは記録パワー Xを示し、 横軸は、 記録パワー X若しくは差分光強度検出値 X 1若しくは差分検出値 D若しくは反射 光量比 X 2を示す。
ここで基準式でァシンメ トリ yが最適値を示す記録パワー Xが最適記録パワー X m sである。
また、 第 1検出式で記録パワー Xが最適記録パワー Xmsとなる差分光強度検 出値 X 1が最適差分光強度検出値 X lmsであり、 第 2検出式で記録パワー Xが 最適記録ノ ヮ一 Xmsとなる差分検出値 Dが最適基準化差分検出値 D m sであり、 第 2検出式で記録パワー Xが最適記録パワー Xmsとなる反射光量比 X 2が最適 反射光量比 X 2 msである。
前記 SM7, SM8の判定において、 第 3差分が 0でありかつ第 1差分が 0以 外の値のときは、 光ディスク 10のデ一ザビームに対するチルト等の表面の状態 に対応した補正は必要とせずに、 記録パヮ一のみに対応した補正だけを行えばよ いので、 図 12に示すように、 第 1検出式に基づき現時点における記録パワー (Xr) を求めて、 第 1差分を 0にするのに必要な現時点における記録パワー (Xr) と最適差分光強度検出値 (Xlms) に対応する記録パワーとの差だけ 補正する制御命令をレーザ制御部 24に出力してレーザ出力パヮ一 〈記録パヮ 一〉 を最適化する。
また、 SM7, SMI 1の判定において、 第 3差分が 0以外の値でありかつ第 1差分が 0のときは、 光ディスク 10のデ一ザビームに対するチルト等の表面の 状態に対応した補正を行えばよいので、 図 13に示すように、 第 3検出式に基づ き現時点における記録パヮ一 (Xr) を求めて、 第 3差分を 0にするのに必要な 現時点における記録パワー (Xr) と最適反射光量比 (X2ms) に対応する記 録パワーとの差だけ補正する制御命令をレーザ制御部 24に出力してレーザ出力 パワー 〈記録パワー〉 を最適化する。
また、 SM7, SM11, SM 14の判定において、 第 3差分および第 1差分 並びに第 2差分が共に 0以外の値であるときは、 記録パワーに対応した補正およ び光ディスク 10のデ一ザビ一ムに対するチルト等の表面の状態に対応した補正 の両者が必要となるので、 この場合は、 図 14に示すように、 第 2検出式に基づ き現時点における記録パヮ一 (Xr) を求めて、 第 2差分を 0にするのに必要な 現時点における記録パワー (Xr) と最適反射光量比 (X2ms) に対応する記 録パワーとの差だけ補正する制御命令をレーザ制御部 24に出力してレーザ出力 パワー 〈記録パワー〉 を最適化する。
このように本実施形態によれば、 光ディスク 10に傾きが生じていたとしても、 最適なァシンメ トリおよび形成中のピットから最適な反射光量が得られるように 記録レーザ光強度を変化しながらピットを形成するので、 光ディスク 10に傾き が生じていても記録レーザ光の射出方向を補正することなく、 光ディスク 10の 情報記録面の傾斜に伴って生ずる単位面積あたりの照射光量の減少分を補正する ことができる。
これにより、 必要十分な形状のピットを適切な位置に形成することができるの で、 情報再生特性に優れた情報記録を行うことができる。
さらに、 従来のようにチルト角度に基づいて光ピックアップ 23を傾けて、 記 録レーザ光の射出方向が光ディスク 10の情報記録面に対して垂直になるように する複雑な機構を備える必要がないので、 従来よりも装置のコストを低減するこ とができる。
また、 本実施形態によれば、 光ディスク 10の傾きだけではなく、 媒体の種類
の違いや光ディスク上の部分的な反射率の違い等にも対応でき常に最適な記録パ ヮー (記録レーザ光強度) で情報の記録 (ピットの形成) を行うことができる。 また、 本実施形態では、 第 1乃至第 3検出式並びに基準式を直線式 (一次関 数) としたので、 処理速度の向上を図ることができる。
尚、 前述した実施形態はこの発明の一具体例にすぎず、 この発明がこれに限定 されることはない。 産業上の利用可能性
この発明は、 光情報記録媒体の情報記録面に傾き等が生じていてもレーザ光射 出方向を一定にして情報記録を行えるようにした光情報記録方法および装置およ び光情報記録制御プログラムを記録した記録媒体を提供する。
この発明によれば、 光情報記録方法によれば、 光情報記録媒体の傾きに応じて レーザ光強度を変化しながらピットを形成するので、 光情報記録媒体に傾きが生 じていてもレーザ光の射出方向を補正する必要なく情報記録面の傾斜に伴って生 ずる単位面積あたりの照射光量の減少分を補正することができる。 これにより、 必要十分な形状のピットを適切な位置に形成することができるので、 情報再生特 性に優れた情報記録を行うことができる。
また、 この発明は上記の効果に加えて、 実際の情報記録時に行うレーザ光強度 の補正処理時間短縮を図ることができる。
また、 この発明の光情報記録方法によれば、 上記の効果に加えて、 記録レーザ 光のスポット径が多少変化しても正確な補正処理を行うことができる。
また、 この発明の光情報記録装置によれば、 光情報記録媒体の傾きに応じてレ 一ザ光強度を変化しながらピットを形成できるので、 光情報記録媒体に傾きが生 じていても前記情報記録面の傾斜に伴って生ずる単位面積あたりの照射光量の減 少分を補正することができる。 これにより、 必要十分な形状のピットを適切な位 置に形成することができるので、 情報再生特性に優れた情報記録を行うことがで きる。 さらに、 従来のようにレーザ光の射出方向を補正する手段を設ける必要が ないので、 装置コストを低減することができる。
また、 この発明の光情報記録装置によれば、 上記の効果に加えて、 実際の情報 記録時に行うレ一ザ光強度の補正処理時間短縮を図ることができる。
また、 この発明の光情報記録装置によれば、 上記の効果に加えて、 記録レーザ 光のスポット径が多少変化しても正確な補正処理を行うことができる。
また、 この発明の光情報記録制御プログラムを記録した記録媒体によれば、 該 プログラムを用いてコンビユー夕を動作させることにより光情報記録媒体の傾き に応じてレーザ光強度を変化しながらピットを形成することができるので、 光情 報記録媒体に傾きが生じていてもレーザ光の射出方向を補正する必要なく前記情 報記録面の傾斜に伴って生ずる単位面積あたりの照射光量の減少分を補正するこ とができる。 これにより、 必要十分な形状のビットを適切な位置に形成すること ができるので、 情報再生特性に優れた情報記録を行うことができる。
Claims
1 . ピット形成期間を表す第 1レベルとピット不形成期間を表す第 2レべ ルとから成るディジ夕ル信号に基づいて光情報記録媒体に所定径のレーザ光スポ ットを照射し、 該光情報記録媒体に前記ピット形成期間に対応した長さのビット を形成する光情報記録方法において、
実際の情報の記録に先立ち、 前記光情報記録媒体に照射するレーザ光の記録パ ヮーを順次変化させて該光情報記録媒体に記録を行うともに、 前記記録パワー毎 にァシンメ トリを検出して前記ァシンメ トリと前記記録パワーとの第 1の関係を 求め、
次に、 前記記録パワーを所定記録パワーに固定して前記光情報記録媒体に対す る前記レーザ光の空間的位置関係を順次変化させて該光情報記録媒体に記録を行 うとともに、 前記空間的位置関係毎にァシンメ トリおよび異なる長さのピットに 関する反射光量比を検出して、 前記ァシンメ トリと前記反射光量比との第 2の関 係を求め、
更に、 前記第 1の関係と前記第 2の関係に基づき前記記録パワーと前記反射光 量比との第 3の関係を求めるとともに、 最適記録パワーに対応する最適反射光量 比を求め、
実際の情報の記録に際しては、 前記反射光量比を検出することにより前記第 3 の関係に基づき該検出した反射光量比に対応する記録パワーを求めて、 該検出し た反射光量比と前記最適反射光量比の差分が零になるように該記録パワーを補正 する
ことを特徴とする光情報記録方法。
2 . 前記光情報記録媒体に対する前記レーザ光の空間的位置関係の順次変 化は、 前記光情報記録媒体に対してレーザ光を照射する光ピックアップのフォー カス、 チルト、 トラキングの内の少なくとも 1つのサーボ系のオフセットを所定 ステップで変化させることにより行われる
ことを特徴とする請求項 1記載の光情報記録方法。
3 . 前記第 1の関係に基づき最適記録パワーを求め、
前記所定記録ノ ワーを該求めた最適記録ノ ヮ一に設定する
ことを特徴とする請求項 1記載の光情報記録方法。
4 . 前記反射光量比は、 前記レーザ光スポットのスポット径より小さい第 1のビッ卜からの第 1の全反射光量および前記スポット径より大きい第 2のビッ 卜からの第 2の全反射光量を検出して、 該第 2の全反射光量に対する前記第 1の 全反射光量の比から算出する
ことを特徴とする請求項 1記載の光情報記録方法。
5 . 前記第 1のピットは、 前記情報の記録に用いられる最小長のピットで あり、
前記第 2のピットは、 前記情報の記録に用いられる最大長のピットである ことを特徴とする請求項 4記載の光情報記録方法。
6 . ピット形成期間を表す第 1レベルとピット不形成期間を表す第 2レべ ルとから成るディジ夕ル信号に基づいて光情報記録媒体に所定径のレ一ザ光スポ ットを照射し、 該光情報記録媒体に前記ピット形成期間に対応した長さのピット を形成する光情報記録方法において、
実際の情報の記録に先立つ記録レーザ光強度最適化処理に際して、 前記光情報 記録媒体に照射するレーザ光の記録パワーを順次変化させて該光情報記録媒体に 試験データを記録する第 1の記録を行うとともに、
前記記録パヮ一を固定して前記光情報記録媒体に対する前記レ一ザ光の空間的 位置関係を順次変化させて該光情報記録媒体に試験デ一夕を記録する第 2の記録 を行い、
前記第 1の記録に際して、 前記記録パワー毎に前記記録パワーに主に依存する 第 1の情報および前記記録パワーと前記空間的位置関係に依存する第 2の情報お
よびァシンメトリを検出して、 前記記録パワーに対する前記第 1の情報との第 1 の関係、 前記記録パワーに対する前記第 2の情報との第 2の関係、 前記ァシンメ トリに対する言己録パワーとの関係を記憶するともに、
前記ァシンメトリに対する記録パワーとの関係から最適ァシンメトリが得られ る最適記録パワーを求めて記憶するとともに前記第 1の関係および前記第 2の関 係から前記最適記録パワーに対応する最適第 1の情報および最適第 2の情報を記 T、し、
前記第 2の記録に際して、 前記空間的位置関係に主に依存する第 3の情報およ びァシンメトリを検出して、 前記ァシンメトリに対する第 3の情報の関係を記憶 し、
前記第 1の記録に際して記憶した前記ァシンメトリに対する記録パワーとの関 係と前記第 2の記録に際して記憶した前記ァシンメトリに対する第 2の情報の関 係から前記記録パワーに対する前記第 3の情報との第 3の関係を求めて記憶する とともに、 該第 3の関係から前記最適記録パワーに対応する最適第 3の情報を記 し、
実際の情報の記録に際しては、 前記第 1の情報および前記第 2の情報および前 記第 3の情報を検出して、
該検出した第 1の情報と前記最適第 1の情報との第 1の差分、 第 2の情報と最 適第 2の情報との第 2の差分、 第 3の情報と最適第 3の情報との第 3の差分を求 め、
前記第 3の差分が零で前記第 1の差分が零でない場合は、 前記検出した第 1の 情報と前記第 1の関係に基づき記録ノ ヮ一を求めて、 前記第 1の差分が零になる ように該記録パワーを補正し、
前記第 3の差分が零でなく、 前記第 1の差分が零である場合は、 前記検出した 第 3の情報と前記第 3の関係に基づき記録パワーを求めて、 前記第 3の差分が零 になるように該言己録パヮ一を補正し、
前記第 3の差分が零でなく、 かつ前記第 1の差分が零でなく、 前記第 2の差分 が零でない場合は、 前記検出した第 2の情報と前記第 2の関係に基づき記録パヮ
一を求めて、 前記第 2の差分が零になるように該記録パワーを補正する ことを特徴とする光情報記録方法。
7 . 前記光情報記録媒体に対する前記レーザ光の空間的位置関係の順次変 化は、 前記光情報記録媒体に対してレーザ光を照射する光ピックアツプのフォー カス、 チルト、 トラキングの内の少なくとも 1つのサーボ系のオフセットを所定 ステップで変化させることにより行われる
ことを特徴とする請求項 6記載の光情報記録方法。
8 . 前記第 2の記録は、 前記記録パワーを前記ァシンメ トリに対する記録 パワーとの関係から求めた最適記録パワーに固定して記録を行うことを特徴とす る請求項 6記載の光情報記録方法。
9 . 前記第 1の情報は、 前記レーザ光スポットのスポット径より大きいビ ッ卜の先端部における反射光強度の極大値と後端部の反射光強度の平均値との差 からなる差分光強度値である
ことを特徴とする請求項 6記載の光情報記録方法。
1 0 . 前記レーザ光スポットのスポット径より大きいビットは、 前記情報 の記録に用いられる最大長のピットである
ことを特徴とする請求項 9記載の光情報記録方法。
1 1 . 前記第 2の情報は、 前記レーザ光スポットのスポット径より大きい ビットの先端部における反射光強度の極大値と後端部の反射光強度の平均値との 差からなる差分光強度値と、 前記スポット径より大きいのピットからの全反射光 量に対する前記スポット径より小さいピットからの全反射光量の比からなる反射 光量比との差からなる差分検出値である
ことを特徴とする請求項 6記載の光情報記録方法。
1 2 . 前記レーザ光スポットのスポット径より大きいビットは、 前記情報 の記録に用いられる最大長のピットであり、
前記レーザ光スポットのスポット径より小さいビットは、 前記情報の記録に用 いられる最小長のビヅトである
ことを特徴とする請求項 1 1記載の光情報記録方法。
1 3 . 前記第 3の情報は、 前記スポット径より大きいのピッ卜からの全反 射光量に対する前記スポット径より小さいピッ卜からの全反射光量の比からなる 反射光量比である
ことを特徴とする請求項 6記載の光情報記録方法。
1 4 . 前記レーザ光スポットのスポット径より大きいビットは、 前記情報 の記録に用いられる最大長のピットであり、
前記レーザ光スポッ卜のスポット径より小さいビットは、 前記情報の記録に用 いられる最小長のビットである
ことを特徴とする請求項 1 3記載の光情報記録方法。
1 5 . ピット形成期間を表す第 1レベルとピット不形成期間を表す第 2レ ベルとから成るディジ夕ル信号に基づいて光情報記録媒体に所定径のレ一ザ光ス ポットを照射し、 該光情報記録媒体に前記ピット形成期間に対応した長さのビッ トを形成する光情報記録方法において、
実際の情報の記録に先立つ記録レ一ザ光強度最適化処理に際して、 前記光情報 記録媒体に照射するレ一ザ光の記録パヮ一を順次変化させて該光情報記録媒体に 試験データを記録する第 1のステップと、
前記第 1のステップにおいて、 前記レーザ光スポッ卜のスポット径より大きい ビットの先端部における反射光強度の極大値と後端部の反射光強度の平均値との 差からなる差分光強度値および前記スポット径より大きいのピッ卜からの全反射
光量に対する前記スポット径より小さいピットからの全反射光量の比からなる反 射光量比およびァシンメトリを前記記録パワーに対応して検出するとともに、 前 記差分光強度値と前記反射光量比との差を差分検出値として算出する第 2のステ ヅプと、
前記第 2のステツプで検出した差分光強度値に基づき前記記録パワーと前記差 分光強度値との関係を示す第 1検出式を求めて記憶する第 3のステツプと、 前記第 2のステツプで算出した差分検出値に基づき前記記録パワーと前記差分 検出値との関係を示す第 2検出式を求めて記憶する第 4のステップと、
前記第 2のステップで検出したァシンメ トリに基づき前記ァシンメトリと前記 記録パワーとの関係を示す基準式を求めて記憶する第 5のステップと、
前記第 5のステップで記憶した基準式に基づき最適ァシンメ トリが得られる最 適記録パワーを求めて記憶する第 6のステップと、
前記第 6のステツプで求めた最適記録パワーと前記第 1検出式に基づき前記最 適記録ノ ヮ一に対応する差分光強度値を最適差分光強度値として記憶する第 7の ステップと、
前記第 6のステップで求めた最適記録パワーと前記第 2検出式に基づき前記最 適記録ノ ヮ一に対応する差分検出値を最適基準化差分検出値として記憶する第 8 のステップと、
前記記録パワーを前記第 6のステツプで求めた最適記録パワーの固定して前記 光情報記録媒体に対してレーザ光を照射する光ピックアツプのフォーカス、 チル ト、 トラキングの内の少なくとも 1つのサ一ボ系のオフセヅトを所定ステップで 順次変化させて該光情報記録媒体に試験デ一夕を記録する第 9のステップと、 前記第 9のステップにおいて、 前記記オフセット毎に前記反射光量比およびァ シンメ トリを検出する第 1 0のステップと、
前記第 1 0のステップで検出した前記反射光量比およびァシンメ トリに基づき 前記ァシンメトリに対する反射光量比の関係式を求める第 1 1のステップと、 前記第 1 1のステツプで求めた関係式と前記第 5のステツプで求めた基準式に 基づき前記記録パワーと前記反射光量比との関係を示す第 3検出式を求めて記憶
する第 1 2のステップと、
前記第 6のステツブで求めた最適記録パワーと前記第 3検出式に基づき前記最 適記録ノ ワ一に対応する反射光量比を最適反射光量比として記憶する第 1 3のス テツプと、
実際の情報の記録に際しては、 前記差分光強度値および前記反射光量比を検出 するとともに、 差分検出値を算出する第 1 4のステップと、
前記第 1 4のステップで検出した差分光強度値と前記最適差分光強度値との第 1の差分を算出する第 1 5のステップと、
前記第 1 4のステップで算出した差分検出値と前記最適基準化差分検出値との 第 2差分を算出する第 1 6のステップと、
前記第 1 4のステツプで検出した反射光量比と前記最適反射光量比との第 3の 差分を算出する第 1 7のステップと、
前記第 3の差分が零で前記第 1の差分が零でない場合は、 前記第 1 4のステツ プで検出した差分光強度値と前記第 1検出式に基づき記録パワーを求めて、 前記 第 1の差分が零になるように該記録パワーを補正する第 1 8のステップと、 前記第 3の差分が零でなく、 前記第 1の差分が零である場合は、 前記第 1 4の ステップで検出した反射光量比と前記第 3検出式に基づき記録パワーを求めて、 前記第 3の差分が零になるように該記録パワーを補正する第 1 9のステツプと、 前記第 3の差分が零でなく、 かつ前記第 1の差分が零でなく、 前記第 2の差分 が零でない場合は、 前記第 1 4のステップで算出した差分検出値と前記第 2検出 式に基づき記録パワーを求めて、 前記第 2の差分が零になるように該記録パワー を補正する第 2 0のステップと
を具備することを特徴とする光情報記録方法。
1 6 . 前記第 1検出式乃至前記第 3検出式は、 それそれ一次関数からなる ことを特徴とする請求項 1 5記載の光情報記録方法。
1 7 . 前記レーザ光スポッ卜のスポヅト径より大きいビットは、
前記情報の記録に用いられる最大長のピットであり、
前記レーザ光スポットのスポット径より小さいビットは、
前記情報の記録に用いられる最小長のビットである
ことを特徴とする請求項 1 5記載の光情報記録方法。
1 8 . ピット形成期間を表す第 1レベルとピット不形成期間を表す第 2レ ベルとから成るディジタル信号に基づいて光情報記録媒体に所定径のレーザ光ス ポットを照射し、 該光情報記録媒体に前記ピット形成期間に対応した長さのビッ トを形成する光情報記録装置において、
前記光情報記録媒体にレーザ光を照射するとともに該光情報記録媒体からの反 射光を受光して受光信号を出力する光ビックアップと、
前記光ピックァップから出力されるレーザ光の記録パワーを制御するレーザ制 御手段と、
前記光ピックアップのフォーカス、 トラキング、 チルトの少なくとも 1つを制 御するサーボ制御手段と、
前記光ビックアップから出力される受光信号に基づき前記レ一ザ光スポットの スポット径より大きいビットからの全反射光量に対する前記スポット径より小さ ぃピットからの全反射光量の比を反射光量比として検出する反射光量比検出手段 と、
前記光ピックアップから出力される受光信号に基づき該受光信号のァシンメ ト リを検出するァシンメ トリ検出手段と、
実際の情報の記録に先立ち、 前記レ一ザ制御手段を制御および前記サーボ制御 手段を制御することにより前記光情報記録媒体に照射するレーザ光の記録パワー を順次変化させて該光情報記録媒体に第 1の記録を行うともに、 前記記録パワー 毎にァシンメ トリ検出手段からァシンメトリを検出して該ァシンメ トリと前記記 録パワーとの第 1の関係を求め、 次に、 前記記録パヮ一を所定記録パワーに固定 して前記光ピックアップのフォーカス、 チルト、 トラキングの内の少なくとも 1 つのオフセットを所定ステップで順次変化させて該光情報記録媒体に第 2の記録
を行うとともに、 前記オフセット毎にァシンメトリ検出手段からァシンメトリぉ よび反射光量比検出手段から反射光量比を検出して、 前記ァシンメトリと前記反 射光量比との第 2の関係を求め、 更に、 前記第 1の関係と前記第 2の関係に基づ き前記記録ノ ヮ一と前記反射光量比との第 3の関係を求めるとともに、 最適記録 パワーに対応する最適反射光量比を求める第 1の制御手段と、
実際の情報の記録に際して、 前記反射光量比検出手段から反射光量比を検出す ることにより前記第 3の関係に基づき該検出した反射光量比に対応する記録パヮ —を求めて、 該検出した反射光量比と前記最適反射光量比の差分が零になるよう に該記録パワーを補正する第 2の制御手段と
を具備することを特徴とする光情報記録装置。
1 9 . 前記第 1の制御手段は、
前記第 1の記録に際して求めた第 1の関係に基づき最適記録パワーを求め、 該求めた最適記録パワーで前記第 2の記録の所定記録パワーを設定する ことを特徴とする請求項 1 8記載の光情報記録装置。
2 0 . 前記反射光量比検出手段は、
前記光ピックァップから出力される受光信号に基づき前記レ一ザ光スポットの スポット径より小さい第 1のビットからの全反射光量を検出する第 1の検出回路 と、
前記光ピックアップから出力される受光信号に基づき前記レ一ザ光スポットの スポット径より大きい第 2のピットからの全反射光量を検出する第 2の検出回路 と、
前記第 1の検出手段の検出出力を前記第 2の検出手段の検出出力で除算する除 算回路と
を具備することを特徴とする請求項 1 8記載の光情報記録装置。
2 1 . 前記第 1のピットは、
前記情報の記録に用いられる最小長のピットであり
前記第 2のビットは、
前記情報の記録に用いられる最大長のピットである
ことを特徴とする請求項 2 0記載の光情報記録装置。
2 2 . ビット形成期間を表す第 1レベルとピット不形成期間を表す第 2レ ベルとから成るディジ夕ル信号に基づいて光情報記録媒体に所定径のレーザ光ス ポットを照射し、 該光情報記録媒体に前記ピット形成期間に対応した長さのピッ トを形成する光情報記録装置において、
前記光情報記録媒体にレーザ光を照射するとともに該光情報記録媒体からの反 射光を受光して受光信号を出力する光ピックアップと、
前記光ピックアツプから出力されるレ一ザ光の記録パヮ一を制御するレーザ制 御手段と、
前記光情報記録媒体に対する前記レ一ザ光の空間的位置関係を制御するサーボ 制御手段と、
前記光ピックアップから出力される受光信号に基づき前記記録ノ ヮ一に主に依 存する第 1の情報および前記記録パワーと前記空間的位置関係に依存する第 2の 情報および前記空間的位置関係に主に依存する第 3の情報を検出する情報検出手 段と、
前記光ピックァップから出力される受光信号に基づき該受光信号のァシンメ ト リを検出するァシンメ トリ検出手段と、
制御手段と
とを具備し、
前記制御手段は、
実際の情報の記録に先立つ記録レーザ光強度最適化処理に際して、 前記レーザ 制御手段を制御することにより前記光情報記録媒体に照射するレーザ光の記録パ ヮ一を順次変化させて該光情報記録媒体に試験データを記録する第 1の記録を行 う第 1の記録制御手段と、
前記レーザ制御手段および前記サーボ制御手段を制御することにより、 前記記 録パワーを固定して前記光情報記録媒体に対する前記レーザ光の空間的位置関係 を順次変化させて該光情報記録媒体に試験データを記録する第 2の記録を行う第 2の記録制御手段と、
前記第 1の記録に際して、 前記記録パワー毎に前記情報検出手段の出力に基づ き前記第 1の情報および前記第 2の情報を取得するするとともに前記ァシンメ ト リ検出手段の出力に基づきァシンメトリを取得して、 前記記録パワーに対する前 記第 1の情報との第 1の関係、 前記記録パワーに対する前記第 2の情報との第 2 の関係、 前記ァシンメトリに対する記録パワーとの関係を記憶する第 1の記憶手 段と、
前記ァシンメトリに対する記録パヮ一との関係から最適ァシンメトリが得られ る最適記録パワーを求めて記憶するとともに前記第 1の関係および前記第 2の関 係から前記最適記録パワーに対応する最適第 1の情報および最適第 2の情報を記 憶する第 2の記憶手段と、
前記第 2の記録に際して、 前記情報検出手段の出力に基づき前記第 3の情報を 取得するするとともに前記ァシンメトリ検出手段の出力に基づきァシンメトリを 取得して、 前記ァシンメトリに対する第 3の情報の関係を記憶する第 3の記憶手 段と、
前記第 1の記録に際して記憶した前記ァシンメトリに対する記録パワーとの関 係と前記第 2の記録に際して記憶した前記ァシンメトリに対する第 2の情報の関 係から前記記録パワーに対する前記第 3の情報との第 3の関係を求めて記憶する とともに、 該第 3の関係から前記最適記録パワーに対応する最適第 3の情報を記 憶する第 4の記憶手段と、
実際の情報の記録に際して、 前記情報検出手段の出力に基づき前記第 1の情報 および前記第 2の情報および前記第 3の情報を検出して、 該検出した第 1の情報 と前記最適第 1の情報との第 1の差分、 第 2の情報と最適第 2の情報との第 2の 差分、 第 3の情報と最適第 3の情報との第 3の差分を求め、 前記第 3の差分が零 で前記第 1の差分が零でない場合は、 前記検出した第 1の情報と前記第 1の関係
に基づき記録パワーを求めて、 前記第 1の差分が零になるように該記録パワーを 補正し、 前記第 3の差分が零でなく、 前記第 1の差分が零である場合は、 前記検 出した第 3の情報と前記第 3の関係に基づき記録パワーを求めて、 前記第 3の差 分が零になるように該記録パワーを補正し、 前記第 3の差分が零でなく、 かつ前 記第 1の差分が零でなく、 前記第 2の差分が零でない場合は、 前記検出した第 2 の情報と前記第 2の関係に基づき記録パワーを求めて、 前記第 2の差分が零にな るように該記録パワーを補正する補正手段と
を具備することを特徴とする光情報記録装置。
2 3 . 前記サ一ボ制御手段は、
前記光ピックアップのフォーカスサ一ボ系、 チルトサーボ系、 トラキングサー ボ系を具備し、
前記第 2の記録に際しての空間的位置関係の順次変化は、
前記サーボ制御手段のフォーカスサーボ系、 チルトサーボ系、 トラキングサ一 ボ系の少なくとも 1つのオフセットを所定ステップで変化させることにより行わ れる
ことを特徴とする請求項 2 2記載の光情報記録装置。
2 4 . 前記第 2の記録は、
前記記録パワーを前記ァシンメ トリに対する記録パワーとの関係から求めた最 適記録ノ ワ一に固定して記録を行うことを特徴とする請求項 2 2記載の光情報記
2 5 . 前記第 1の情報は、
前記レーザ光スポッ卜のスポット径より大きいビッ卜の先端部における反射光 強度の極大値と後端部の反射光強度の平均値との差からなる差分光強度値である ことを特徴とする請求項 2 2記載の光情報記録装置。
2 6 . 前記レーザ光スポットのスポット径より大きいビットは、 前記情報の記録に用いられる最大長のピットである
ことを特徴とする請求項 2 5記載の光情報記録装置。
2 7 . 前記第 2の情報は、
前記レーザ光スポットのスポット径より大きいビッ卜の先端部における反射光 強度の極大値と後端部の反射光強度の平均値との差からなる差分光強度値と、 前 記スポット径より大きいのピッ卜からの全反射光量に対する前記スポット径より 小さいピットからの全反射光量の比からなる反射光量比との差からなる差分検出 値である
ことを特徴とする請求項 2 2記載の光情報記録装置。
2 8 . 前記レーザ光スポットのスポット径より大きいビットは、 前記情報の記録に用いられる最大長のビットであり、
前記レーザ光スポッ卜のスポット径より小さいビットは、
前記情報の記録に用いられる最小長のピットである
ことを特徴とする請求項 2 7記載の光情報記録装置。
2 9 . 前記第 3の情報は、
前記スポット径より大きいのピットからの全反射光量に対する前記スポット径 より小さいピットからの全反射光量の比からなる反射光量比である
ことを特徴とする請求項 2 2記載の光情報記録方法。
3 0 . 前記レーザ光スポットのスポット径より大きいビットは、 前記情報の記録に用いられる最大長のビットであり、
前記レ一ザ光スポットのスポット径より小さいビットは、
前記情報の記録に用いられる最小長のピットである
ことを特徴とする請求項 2 9記載の光情報記録方法。
3 1 . ピット形成期間を表す第 1レベルとビット不形成期間を表す第 2レ ベルとから成るディジ夕ル信号に基づいて光情報記録媒体に所定径のレーザ光ス ポットを照射し、 該光情報記録媒体に前記ピット形成期間に対応した長さのビッ トを形成する光情報記録装置において、
前記光情報記録媒体にレーザ光を照射するとともに該光情報記録媒体からの反 射光を受光して受光信号を出力する光ピックアップと、
前記光ピックアップから出力されるレ一ザ光の記録ノ ヮーを制御するレ一ザ制 御手段と、
前記光ピックアップのフォーカス、 トラキング、 チルトの少なくとも 1つを制 御するサ一ボ制御手段と、
前記レーザ光スポットのスポット径より大きいビッ卜の先端部における反射光 強度の極大値と後端部の反射光強度の平均値との差からなる差分光強度値を検出 する差分光強度値検出手段と、
前記光ビックアップから出力される受光信号に基づき前記レ一ザ光スポットの スポット径より大きいビッ卜からの全反射光量に対する前記スポット径より小さ いビットからの全反射光量の比を反射光量比として検出する反射光量比検出手段 と、
前記光ピックアップから出力される受光信号に基づき該受光信号のァシンメ ト リを検出するァシンメ トリ検出手段と、
制御手段と
を具備し、
前記制御手段は、
実際の情報の記録に先立つ記録レーザ光強度最適化処理に際して、 前記レーザ 制御手段を制御することにより前記光情報記録媒体に照射するレーザ光の記録パ ヮーを順次変化させて該光情報記録媒体に試験データを記録する第 1の記録制御 手段と、
前記第 1の記録制御手段による記録に際して、 前記記録パワーに対応して前記
差分光強度値検出手段から前記差分光強度値を、 前記反射光量比検出手段から前 記反射光量比を、 ァシンメトリ検出手段からァシンメトリを取得するとともに前 記差分光強度値と前記反射光量比との差を差分検出値として算出する第 1の取得 手段と、
前記第 1の取得手段で取得した前記差分光強度値に基づき前記記録パワーと前 記差分光強度値との関係を示す第 1検出式を求めて記憶する第 1の処理手段と、 前記第 1の取得手段で算出した差分検出値に基づき前記記録パワーと前記差分 検出値との関係を示す第 2検出式を求めて記憶する第 2の処理手段と、
前記第 1の取得手段で取得したァシンメトリに基づき前記ァシンメトリと前記 記録パワーとの関係を示す基準式を求めて記憶する第 3の処理手段と、
前記第 3の処理手段で記憶した基準式に基づき最適ァシンメトリが得られる最 適記録パワーを求めて記憶する第 4の処理手段と、
前記第 4の処理手段で求めた最適記録パワーと前記第 1検出式に基づき前記最 適記録パワーに対応する差分光強度値を最適差分光強度値として記憶する第 5の 処理手段と、
前記第 4の処理手段で求めた最適記録パヮ一と前記第 2検出式に基づき前記最 適記録パワーに対応する差分検出値を最適基準化差分検出値として記憶する第 6 の処理手段と、
前記レーザ制御手段および前記サーボ制御手段を制御することにより前記記録 パワーを前記第 4の記憶手段で求めた最適記録パワーの固定して前記光情報記録 媒体に対してレーザ光を照射する光ピヅクアップのフォーカス、 チルト、 トラキ ングの内の少なくとも 1つのサーボ系のオフセットを所定ステップで順次変化さ せて該光情報記録媒体に試験デ一夕を記録する第 2の記録制御手段と、
前記第 2の記録制御手段による記録に際して、 前記記オフセット毎に前記反射 光量比検出手段から前記反射光量比を取得するとともに前記ァシンメトリ検出手 段からァシンメ トリを取得する第 2の取得手段と、
前記第 2の取得手段で取得した前記反射光量比およびァシンメトリに基づき前 記ァシンメトリに対する反射光量比の関係式を求める第 7の処理手段と、
前記第 7の処理手段で求めた関係式と前記第 3の処理手段で求めた基準式に基 づき前記記録パワーと前記反射光量比との関係を示す第 3検出式を求めて記憶す る第 8の処理手段と、
前記第 4の処理手段で求めた最適記録パヮ一と前記第 3検出式に基づき前記最 適記録パワーに対応する反射光量比を最適反射光量比として記憶する第 9の処理 手段と、
実際の情報の記録に際して、 前記差分光強度値検出手段から前記差分光強度値 を取得するとともに、 前記反射光量比検出手段から前記反射光量比を取得し、 更 に、 前記差分光強度値と前記反射光量比との差を差分検出値として算出する第 3 の取得手段と、
前記第 3の取得手段で取得した差分光強度値と前記最適差分光強度値との第 1 の差分を算出する第 1 0の処理手段と、
前記第 3の取得手段で算出した差分検出値と前記最適基準化差分検出値との第 2差分を算出する第 1 1の処理手段と、
前記第 3の取得手段で取得した反射光量比と前記最適反射光量比との第 3の差 分を算出する第 1 2の処理手段と、
前記第 3の差分が零で前記第 1の差分が零でない場合は、 前記第 3の取得手段 で取得した差分光強度値と前記第 1検出式に基づき記録パワーを求めて、 前記第 1の差分が差分になるように該記録パワーを補正する第 1の補正手段と、 前記第 3の差分が零でなく、 前記第 1の差分が零である場合は、 前記第 3の取 得手段で取得した反射光量比と前記第 3検出式に基づき記録パヮ一を求めて、 前 記第 3の差分が零になるように該記録パワーを補正する第 2の補正手段と、 前記第 3の差分が零でなく、 かつ前記第 1の差分が零でなく、 前記第 2の差分 が零でない場合は、 前記第 3の取得手段で算出した差分検出値と前記第 2検出式 に基づき記録パワーを求めて、 前記第 2の差分が零になるように該記録パワーを 補正する第 3の補正手段と
を具備することを特徴とする光情報記録装置。
3 2 . 前記第 1検出式乃至前記第 3検出式は、 それそれ一次関数からなる ことを特徴とする請求項 3 1記載の光情報記録装置。
3 3 . 前記差分光強度値検出手段は、
前記光ピックアップから出力される受光信号に基づき前記レ一ザ光スポットの スポット径より大きいピットからの受光信号を検出する検出回路と、
前記検出回路の出力に基づき前記レーザ光スポットのスポット径より大きいピ ッ卜の先端部における反射光強度の極大値を検出するピーク検出回路と、 前記検出回路の出力に基づき前記レーザ光スポッ卜のスポット径より大きいピ ッ卜の後端部の反射光強度の平均値を求めるサンプルホールド回路と、
前記ビーク検出回路の出力と前記サンプルホールド回路の出力との差を求める 減算回路と
を具備することを特徴とする請求項 3 1記載の光情報記録装置。
3 4 . 前記レ一ザ光スポットのスポット径より大きいピットは、 前記情報の記録に用いられる最大長のピットである
ことを特徴とする請求項 3 3記載の光情報記録装置。
3 5、 前記反射光量比検出手段は、
前記光ピックアップから出力される受光信号に基づき前記レ一ザ光スポットの スポット径より小さい第 1のピットからの全反射光量を検出する第 1の検出回路 と、
前記光ピックアップから出力される受光信号に基づき前記レ一ザ光スポットの スポット径より大きい第 2のピッ卜からの全反射光量を検出する第 2の検出回路 と、
前記第 1の検出手段の検出出力を前記第 2の検出手段の検出出力で除算する除 算回路と
を具備することを特徴とする請求項 3 1記載の光情報記録装置。
3 6 . 前記第 1のビットは、
前記情報の記録に用いられる最小長のピットであり
前記第 2のピットは、
前記情報の記録に用いられる最大長のビットである
ことを特徴とする請求項 3 5記載の光情報記録装置。
3 7 . ビット形成期間を表す第 1レベルとピット不形成期間を表す第 2レ ベルとから成るディジ夕ル信号に基づいて光情報記録媒体に所定径のレーザ光ス ポットを照射し、 該光情報記録媒体に前記ピット形成期間に対応した長さのピッ トを形成するコンビユー夕によって処理される光情報記録制御プログラムを記録 した記録媒体であって、
実際の情報の記録に先立ち、 前記光情報記録媒体に照射するレーザ光の記録パ ヮーを順次変化させて該光情報記録媒体に記録を行うともに、 前記記録パワー毎 にァシンメトリを検出して前記ァシンメトリと前記記録パワーとの第 1の関係を 求め、
次に、 前記記録ノ ヮーを所定記録ノ ヮ一に固定して前記光情報記録媒体に対す る前記レーザ光の空間的位置関係を順次変化させて該光情報記録媒体に記録を行 うとともに、 前記空間的位置関係毎にァシンメトリおよび異なる長さのビットに 関する反射光量比を検出して、 前記ァシンメトリと前記反射光量比との第 2の関 係を求め、
更に、 前記第 1の関係と前記第 2の関係に基づき前記記録パワーと前記反射光 量比との第 3の関係を求めるとともに、 最適記録ノ ^ヮ―に対応する最適反射光量 比を求め、
実際の情報の記録に際しては、 前記反射光量比を検出することにより前記第 3 の関係に基づき該検出した反射光量比に対応する記録パワーを求めて、 該検出し た反射光量比と前記最適反射光量比の差分が零になるように該記録パワーを補正 する
ことを特徴とする光情報記録制御プログラムを記録した記録媒体。
3 8 . ピット形成期間を表す第 1レベルとピット不形成期間を表す第 2レ ベルとから成るディジ夕ル信号に基づいて光情報記録媒体に所定径のレ一ザ光ス ポットを照射し、 該光情報記録媒体に前記ピット形成期間に対応した長さのピッ トを形成するコンピュータによって処理される光情報記録制御プログラムを記録 した記録媒体であって、
実際の情報の記録に先立つ記録レーザ光強度最適化処理に際して、 前記光情報 記録媒体に照射するレーザ光の記録パヮ一を順次変化させて該光情報記録媒体に 試験デ一夕を記録する第 1の記録を行うとともに、
前記記録ノ ワ一を固定して前記光情報記録媒体に対する前記レ一ザ光の空間的 位置関係を順次変化させて該光情報記録媒体に試験データを記録する第 2の記録 を行い、
前記第 1の記録に際して、 前記記録パワー毎に前記記録パワーに主に依存する 第 1の情報および前記記録パワーと前記空間的位置関係に依存する第 2の情報お よびァシンメトリを検出して、 前記記録パワーに対する前記第 1の情報との第 1 の関係、 前記記録パワーに対する前記第 2の情報との第 2の関係、 前記ァシンメ トリに対する記録パワーとの関係を記憶するともに、
前記ァシンメトリに対する記録パワーとの関係から最適ァシンメトリが得られ る最適記録パワーを求めて記憶するとともに前記第 1の関係および前記第 2の関 係から前記最適記録パワーに対応する最適第 1の情報および最適第 2の情報を記 τ思し、
前記第 2の記録に際して、 前記空間的位置関係に主に依存する第 3の情報およ びァシンメトリを検出して、 前記ァシンメトリに対する第 3の情報の関係を記憶 し、
前記第 1の記録に際して記憶した前記ァシンメトリに対する記録パワーとの関 係と前記第 2の記録に際して記憶した前記ァシンメトリに対する第 2の情報の関 係から前記記録パワーに対する前記第 3の情報との第 3の関係を求めて記憶する
とともに、 該第 3の関係から前記最適記録パワーに対応する最適第 3の情報を記 τ思し、
実際の情報の記録に際しては、 前記第 1の情報および前記第 2の情報および前 記第 3の情報を検出して、
該検出した第 1の情報と前記最適第 1の情報との第 1の差分、 第 2の情報と最 適第 2の情報との第 2の差分、 第 3の情報と最適第 3の情報との第 3の差分を求 め、
前記第 3の差分が零で前記第 1の差分が零でない場合は、 前記検出した第 1の 情報と前記第 1の関係に基づき記録パワーを求めて、 前記第 1の差分が零になる ように該記録パワーを補正し、
前記第 3の差分が零でなく、 前記第 1の差分が零である場合は、 前記検出した 第 3の情報と前記第 3の関係に基づき記録パワーを求めて、 前記第 3の差分が零 になるように該記録パワーを補正し、
前記第 3の差分が零でなく、 かつ前記第 1の差分が零でなく、 前記第 2の差分 が零でない場合は、 前記検出した第 2の情報と前記第 2の関係に基づき記録パヮ —を求めて、 前記第 2の差分が零になるように該記録パワーを補正する
ことを特徴とする光情報記録制御プログラムを記録した記録媒体。
3 9 . ピット形成期間を表す第 1レベルとビット不形成期間を表す第 2レ ベルとから成るディジタル信号に基づいて光情報記録媒体に所定径のレーザ光ス ポットを照射し、 該光情報記録媒体に前記ピット形成期間に対応した長さのピッ トを形成するコンピュータによって処理される光情報記録制御プログラムを記録 した記録媒体であって、
実際の情報の記録に先立つ記録レーザ光強度最適化処理に際して、 前記光情報 記録媒体に照射するレ一ザ光の記録ノ ^ヮ一を順次変化させて該光情報記録媒体に 試験デ一夕を記録する第 1のステップと、
前記第 1のステップにおいて、 前記レーザ光スポッ卜のスポット径より大きい ビットの先端部における反射光強度の極大値と後端部の反射光強度の平均値との
差からなる差分光強度値および前記スポット径より大きいのピッ卜からの全反射 光量に対する前記スポット径より小さいピッ卜からの全反射光量の比からなる反 射光量比およびァシンメ トリを前記記録パワーに対応して検出するとともに、 前 記差分光強度値と前記反射光量比との差を差分検出値として算出する第 2のステ ップと、
前記第 2のステツプで検出した差分光強度値に基づき前記記録パワーと前記差 分光強度値との関係を示す第 1検出式を求めて記憶する第 3のステップと、 前記第 2のステツプで算出した差分検出値に基づき前記記録パワーと前記差分 検出値との関係を示す第 2検出式を求めて記憶する第 4のステップと、
前記第 2のステップで検出したァシンメトリに基づき前記ァシンメ トリと前記 記録パワーとの関係を示す基準式を求めて記憶する第 5のステップと、
前記第 5のステップで記憶した基準式に基づき最適ァシンメトリが得られる最 適記録パワーを求めて記憶する第 6のステップと、
前記第 6のステツプで求めた最適記録パワーと前記第 1検出式に基づき前記最 適記録ノ、'ヮ一に対応する差分光強度値を最適差分光強度値として記憶する第 7の ステップと、
前記第 6のステツプで求めた最適記録パワーと前記第 2検出式に基づき前記最 適記録ノ ヮ一に対応する差分検出値を最適基準化差分検出値として記憶する第 8 のステツプと、
前記記録ノ ヮ一を前記第 6のステップで求めた最適記録ノ ワ一の固定して前記 光情報記録媒体に対してレーザ光を照射する光ビックアツプのフォーカス、 チル ト、 トラキングの内の少なくとも 1つのサ一ボ系のオフセットを所定ステップで 順次変化させて該光情報記録媒体に試験デ一夕を記録する第 9のステツプと、 前記第 9のステップにおいて、 前記記オフセット毎に前記反射光量比およびァ シンメトリを検出する第 1 0のステップと、
前記第 1 0のステップで検出した前記反射光量比およびァシンメ トリに基づき 前記ァシンメトリに対する反射光量比の関係式を求める第 1 1のステップと、 前記第 1 1のステツプで求めた関係式と前記第 5のステツプで求めた基準式に
基づき前記記録パワーと前記反射光量比との関係を示す第 3検出式を求めて記憶 する第 1 2のステップと、
前記第 6のステツプで求めた最適記録パワーと前記第 3検出式に基づき前記最 適記録パワーに対応する反射光量比を最適反射光量比として記憶する第 1 3のス テツプと、
実際の情報の記録に際しては、 前記差分光強度値および前記反射光量比を検出 するとともに、 差分検出値を算出する第 1 4のステップと、
前記第 1 4のステップで検出した差分光強度値と前記最適差分光強度値との第 1の差分を算出する第 1 5のステップと、
前記第 1 4のステップで算出した差分検出値と前記最適基準化差分検出値との 第 2差分を算出する第 1 6のステップと、
前記第 1 4のステップで検出した反射光量比と前記最適反射光量比との第 3の 差分を算出する第 1 7のステップと、
前記第 3の差分が零で前記第 1の差分が零でない場合は、 前記第 1 4のステツ プで検出した差分光強度値と前記第 1検出式に基づき記録パワーを求めて、 前記 第 1の差分が零になるように該記録パワーを補正する第 1 8のステップと、 前記第 3の差分が零でなく、 前記第 1の差分が零である場合は、 前記第 1 4の ステップで検出した反射光量比と前記第 3検出式に基づき記録パワーを求めて、 前記第 3の差分が零になるように該記録パワーを補正する第 1 9のステップと、 前記第 3の差分が零でなく、 かつ前記第 1の差分が零でなく、 前記第 2の差分 が零でない場合は、 前記第 1 4のステップで算出した差分検出値と前記第 2検出 式に基づき記録パワーを求めて、 前記第 2の差分が零になるように該記録パワー を補正する第 2 0のステップと
を具備する
ことを特徴とする光情報記録制御プログラムを記録した記録媒体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000616013A JP4074063B2 (ja) | 1999-04-28 | 2000-04-28 | 光情報記録方法および装置並びに光情報記録制御プログラムを記録した記録媒体 |
US09/719,501 US7050367B1 (en) | 1999-04-28 | 2000-04-28 | Optical information recording method and apparatus, and recorded medium where optical information recording control program is recorded |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12119299 | 1999-04-28 | ||
JP11/121192 | 1999-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000067251A1 true WO2000067251A1 (fr) | 2000-11-09 |
Family
ID=14805150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/002828 WO2000067251A1 (fr) | 1999-04-28 | 2000-04-28 | Procede et dispositif d'enregistrement d'information optique et support d'enregistrement sur lequel est enregistre le programme de commande d'enregistrement d'information optique |
Country Status (5)
Country | Link |
---|---|
US (1) | US7050367B1 (ja) |
JP (1) | JP4074063B2 (ja) |
KR (1) | KR100646189B1 (ja) |
TW (1) | TW476930B (ja) |
WO (1) | WO2000067251A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7242653B2 (en) | 2000-09-13 | 2007-07-10 | Teac Corporation | Optical disc apparatus capable of detecting recording characteristics based on a predetermined signal prerecorded and reproduced |
JPWO2006103919A1 (ja) * | 2005-03-25 | 2008-09-04 | 日本電気株式会社 | 情報記録媒体の記録条件調整方法及び情報記録再生装置 |
CN100423094C (zh) * | 2002-02-25 | 2008-10-01 | 蒂雅克株式会社 | 光盘装置 |
JP2009540479A (ja) * | 2006-06-09 | 2009-11-19 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 記録装置及び方法 |
CN113380278A (zh) * | 2018-11-20 | 2021-09-10 | 中国科学院上海高等研究院 | 基于纳米光刻的光盘读取方法、读取装置及光盘读写装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100505640B1 (ko) * | 2002-09-09 | 2005-08-03 | 삼성전자주식회사 | 디스크 구동기에 있어서 최적의 기록 파워 결정 장치 및방법 |
JP2004192754A (ja) * | 2002-12-13 | 2004-07-08 | Sanyo Electric Co Ltd | 光ディスク記録再生装置のチルト制御方法 |
JP2004199779A (ja) * | 2002-12-18 | 2004-07-15 | Sanyo Electric Co Ltd | 光ディスク記録再生装置のチルト制御方法 |
US7230895B2 (en) * | 2003-02-25 | 2007-06-12 | Pioneer Corporation | Information recording apparatus and information recording method |
JP2005116027A (ja) * | 2003-10-06 | 2005-04-28 | Ricoh Co Ltd | 記録パワー決定方法、記録パワー決定装置及び光ディスク装置 |
JP2008033981A (ja) * | 2006-07-26 | 2008-02-14 | Tdk Corp | 光記録媒体の情報記録方法、光記録装置 |
JP4303267B2 (ja) * | 2006-07-26 | 2009-07-29 | Tdk株式会社 | 光記録媒体の情報記録方法、光記録装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04263129A (ja) * | 1991-02-18 | 1992-09-18 | Pioneer Electron Corp | 記録レーザパワーのキャリブレーション方法 |
JPH0863751A (ja) * | 1994-08-25 | 1996-03-08 | Sony Corp | 光デイスク、光デイスク再生装置及び光デイスク再生方法 |
JPH09270128A (ja) * | 1996-04-01 | 1997-10-14 | Taiyo Yuden Co Ltd | 光ディスクのランニングopc方法及び光ディスク記録再生装置 |
JPH09282663A (ja) * | 1996-04-09 | 1997-10-31 | Hitachi Ltd | 情報の記録再生装置 |
JPH10188316A (ja) * | 1996-12-26 | 1998-07-21 | Sony Corp | ディスク装置およびその記録パワーのキャリブレーション方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5563862A (en) * | 1994-05-31 | 1996-10-08 | Sony Corporation | Write once optical disc recording apparatus with reduced data error rate because the value of asymmetry is equalized as additional data is recorded thereon |
JP2869349B2 (ja) | 1994-11-28 | 1999-03-10 | 太陽誘電株式会社 | 光ディスク記録再生装置のパワーキャリブレーション方法 |
US5898656A (en) * | 1996-08-29 | 1999-04-27 | Sony Corporation | Optical disc-shaped recording medium recording device and method for setting illumination power thereof |
KR100288783B1 (ko) * | 1998-09-18 | 2001-05-02 | 구자홍 | 광기록매체의 기록 광파워 검출저장 및 이를 이용한 기록 광파워 조절장치와 그 방법 |
JP3718082B2 (ja) * | 1998-10-26 | 2005-11-16 | 株式会社リコー | 光ディスク記録装置 |
-
2000
- 2000-04-28 US US09/719,501 patent/US7050367B1/en not_active Expired - Fee Related
- 2000-04-28 TW TW089108069A patent/TW476930B/zh not_active IP Right Cessation
- 2000-04-28 JP JP2000616013A patent/JP4074063B2/ja not_active Expired - Fee Related
- 2000-04-28 KR KR1020007014852A patent/KR100646189B1/ko not_active IP Right Cessation
- 2000-04-28 WO PCT/JP2000/002828 patent/WO2000067251A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04263129A (ja) * | 1991-02-18 | 1992-09-18 | Pioneer Electron Corp | 記録レーザパワーのキャリブレーション方法 |
JPH0863751A (ja) * | 1994-08-25 | 1996-03-08 | Sony Corp | 光デイスク、光デイスク再生装置及び光デイスク再生方法 |
JPH09270128A (ja) * | 1996-04-01 | 1997-10-14 | Taiyo Yuden Co Ltd | 光ディスクのランニングopc方法及び光ディスク記録再生装置 |
JPH09282663A (ja) * | 1996-04-09 | 1997-10-31 | Hitachi Ltd | 情報の記録再生装置 |
JPH10188316A (ja) * | 1996-12-26 | 1998-07-21 | Sony Corp | ディスク装置およびその記録パワーのキャリブレーション方法 |
Non-Patent Citations (2)
Title |
---|
HIROAKI SHIMIZU et al., "CD-R Kosoku Kiroku Gijutsu", Needs Seeds (Japan), Technical Report of Taiyo Yuden Kabushiki Kaisha in 1998, Vol. 14, pages 72-76. * |
YOSHIKAZU TAKAGISHI et al., "8 Bai Soku Kiroku Taio CD-R no Kaihatsu", Needs Seeds (Japan), Technical Report of Taiyo Yuden Kabushiki Kaisha, 1998, Vol. 14, pages 67-71. * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7242653B2 (en) | 2000-09-13 | 2007-07-10 | Teac Corporation | Optical disc apparatus capable of detecting recording characteristics based on a predetermined signal prerecorded and reproduced |
CN100423094C (zh) * | 2002-02-25 | 2008-10-01 | 蒂雅克株式会社 | 光盘装置 |
JPWO2006103919A1 (ja) * | 2005-03-25 | 2008-09-04 | 日本電気株式会社 | 情報記録媒体の記録条件調整方法及び情報記録再生装置 |
JP2009540479A (ja) * | 2006-06-09 | 2009-11-19 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 記録装置及び方法 |
CN113380278A (zh) * | 2018-11-20 | 2021-09-10 | 中国科学院上海高等研究院 | 基于纳米光刻的光盘读取方法、读取装置及光盘读写装置 |
CN113380278B (zh) * | 2018-11-20 | 2023-03-31 | 中国科学院上海高等研究院 | 基于纳米光刻的光盘读取方法、读取装置及光盘读写装置 |
Also Published As
Publication number | Publication date |
---|---|
TW476930B (en) | 2002-02-21 |
US7050367B1 (en) | 2006-05-23 |
KR20010083074A (ko) | 2001-08-31 |
JP4074063B2 (ja) | 2008-04-09 |
KR100646189B1 (ko) | 2006-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4407623B2 (ja) | 再生装置、球面収差補正値及びフォーカスバイアス調整方法 | |
US7085211B2 (en) | Optical recording/reproducing method and apparatus | |
WO2000067251A1 (fr) | Procede et dispositif d'enregistrement d'information optique et support d'enregistrement sur lequel est enregistre le programme de commande d'enregistrement d'information optique | |
KR20040025636A (ko) | 트랙킹 제어 장치 및 트랙킹 제어 방법 | |
JP3773196B2 (ja) | 記録再生装置及びcav記録時のレーザパワー制御方法 | |
KR100805764B1 (ko) | 광 픽업 틸트 보정 제어 장치 및 틸트 보정 방법 | |
JP2005085307A (ja) | 光ディスク駆動装置および方法、記録媒体、並びにプログラム | |
US7164637B2 (en) | Information recording method and information recording apparatus | |
JP2008159195A (ja) | 光ディスク装置及びその記録パワー設定方法 | |
US20080144456A1 (en) | Optical disc apparatus and optical disc recording and reproduction method | |
KR20050118810A (ko) | 광기록 및 재생장치에 있어서 기록 및 미기록 영역의판별에 기초한 디펙 보정 방법 및 장치 | |
KR20070014055A (ko) | 광디스크 구동장치 및 신호 기록 방법 | |
JPH1055543A (ja) | 光情報再生装置 | |
US8031572B2 (en) | Optical disc device and recording condition setting method | |
JP4518138B2 (ja) | 光ディスク再生装置 | |
KR100636809B1 (ko) | 광기록재생장치 및 그의 제어방법 | |
JP2002092880A (ja) | 光ディスク記録再生装置及び光ディスク記録再生方法 | |
JP4695585B2 (ja) | 光ディスク記録方法及び光ディスク記録装置 | |
JP2002216366A (ja) | 光ディスク装置 | |
WO2006001424A1 (ja) | 情報記録再生装置、情報記録再生方法及びフォーカス位置調整プログラム | |
KR20050107955A (ko) | 광기록재생기의 기록 방법 | |
JP2004046926A (ja) | 光ディスク装置 | |
JP2007042161A (ja) | 光ディスク装置の記録学習方法および光ディスク装置 | |
JP2011134366A (ja) | 光ディスク記録装置 | |
JPH087281A (ja) | 光学的情報記録再生媒体及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09719501 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref country code: KR Ref document number: 2000 2000714852 Kind code of ref document: A Format of ref document f/p: F |