WO2000063988A2 - Membranelektrolyt für eine hochtemperatur-membran-brennstoffzelle und verfahren zu seiner herstellung - Google Patents
Membranelektrolyt für eine hochtemperatur-membran-brennstoffzelle und verfahren zu seiner herstellung Download PDFInfo
- Publication number
- WO2000063988A2 WO2000063988A2 PCT/DE2000/001229 DE0001229W WO0063988A2 WO 2000063988 A2 WO2000063988 A2 WO 2000063988A2 DE 0001229 W DE0001229 W DE 0001229W WO 0063988 A2 WO0063988 A2 WO 0063988A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- fuel cell
- self
- membrane electrolyte
- dissociating
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0289—Means for holding the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1025—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1027—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/103—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1032—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- Membrane electrolyte for a high-temperature membrane fuel cell and method for its production.
- the invention relates to a membrane electrolyte for a high-temperature membrane (HTM) fuel cell and a method for producing a membrane electrolyte.
- HTM high-temperature membrane
- the polymer electrolyte membrane fuel cell is known, which has a base polymer as membrane electrolytes on which [- S0 3 H] groups are attached.
- the electrolytic conduction takes place via hydrated protons.
- this membrane requires liquid water, ie operating temperatures below 100 ° C under normal pressure, in order to ensure proton conductivity. This leads to the problem that the inflowing process gases have to be humidified at temperatures above approx. 65 ° C.
- HTM fuel cell high-temperature membrane fuel cell
- Start / stop operation is carried out, for example in the mobile application.
- the electrolyte loss caused by the rinsing lust can lead to a loss of performance or even a failure of the cell.
- the flushed membrane electrolyte leaves the cell with the process gas stream, for example. To maintain the functionality of the cell, membrane electrolyte must be added.
- PAFC Phosphoric Acid Fuel Cell
- the object of the invention is to provide a membrane electrolyte which contains phosphoric acid or another self-dissociating or autoprotolytic compound which is not simply rinsed out by dilution with product water when the fuel cell system is started up.
- the invention relates to a membrane electrolyte for an HTM fuel cell with a base polymer and at least one self-dissociating compound as an electrolytically active component, the self-dissociating compound being chemically bound to the base polymer.
- the invention also relates to a method for producing a membrane electrolyte with a base polymer and at least one chemically bound self-dissociating compound, in which the self-dissociating Broenstedt acid is chemically bound to the base polymer and / or a polymer is formed from a monomer which is a self-dissociating compound contains chemically bound.
- the self-dissociating compound is preferably bound to the base polymer via a ⁇ (sigma) single bond.
- the binding is preferably carried out via the central atom of the Broenstedt acid or via one or more of its ligands.
- oxidation- and temperature-stable polymers are used as base polymers, e.g. Polyether ketones, polyether sulfones and / or polyimidazoles.
- a Broenstedt acid is preferably used as the self-dissociating or autoprotolytic compound.
- Phosphoric acid, phosphonic acid and phosphoric acid are preferably used.
- the Broensted acids used can take up and release protons.
- the chemical binding of the self-dissociating compound preferably takes place via a sig a-multiple bond, but it can just as well be carried out via any other chemical binding, as long as this binding ensures that the self-dissociating compound is not diluted and rinsed out by the resulting liquid product water.
- the classification of a chemical bond as, for example, "sigma emission" is always incomplete, so that there is no complete description if a ⁇ -
- Polystyrene is first reacted with phosphoric acid trichloride in the presence of aluminum trichloride.
- the dichlorophosinaryl compound formed is hydrolyzed with water to give the corresponding phosphinic acid compound.
- the phosphinic acid compound obtained according to point 1 is reacted with nitric acid and / or KJ 3 in pyridine to give the polystyrenephosphonic acid compound.
- CH 2 C (CH 3 ) -CO-0-CH 2 -CH 2 -0-PO (OH) 2
- a high-temperature membrane (HTM) fuel cell is any fuel cell that contains a conventional electrolyte membrane and / or which contains a membrane as a matrix for physical and / or chemical absorption of the electrolyte as its core and whose operating temperature is higher than that of conventional PEM -Fuel cell is, therefore, higher than 80 ° C, preferably higher than 100 ° C.
- the maximum operating temperature is around 220 ° C to 250 ° C.
- the HTM fuel cell has a membrane electrolyte that has good conductivity even in a non-aqueous environment at the temperatures mentioned above.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Abstract
Die Erfindung betrifft einen Membranelektrolyten für eine Hochtemperatur-Membran-(HTM)Brennstoffzelle und ein Verfahren zur Herstellung eines Membranelektrolyts. Der Membranelektrolyt umfaßt ein Basispolymer und eine eigendissoziierende Verbindung, die chemisch an das Basispolymer gebunden ist.
Description
Beschreibung
Membranelektrolyt für eine Hochtemperatur-Membran- Brennstoffzelle und Verfahren zu seiner Herstellung.
Die Erfindung betrifft einen Membranelektrolyten für eine Hochtemperatur-Membran- (HTM) Brennstoffzelle und ein Verfahren zur Herstellung eines Membranelektrolyts.
Bekannt ist die Polymer-Elektrolyt-Membran-Brennstoffzelle, die als Membranelektrolyten ein Basispolymer hat, an dem [- S03H] -Gruppen hangen. Die elektrolytische Leitung findet dabei über hydratisierte Protonen statt. Diese Membran braucht entsprechend flussiges Wasser, d.h. unter Normaldruck Be- triebstemperaturen unter 100°C, um die Protonenleitfahigkeit zu gewährleisten. Daraus ergibt sich das Problem, daß die einströmenden Prozeßgase bei Temperaturen oberhalb von ca. 65°C befeuchtet werden müssen.
Ein Ansatzpunkt, die Beschrankung der Betriebstemperatur aufzuheben, ist, daß anstelle der [-SO3H] -Gruppen enthaltenden Membran eine andere Membran (dabei kann es sich auch um eine Ionenaustauschermembran handeln) und/oder eine Matrix mit freier und/oder physikalisch gebundener Phosphorsaure und/oder einer anderen eigendissoziierenden bzw. autoprotoly- tischen Verbindung als Membranelektrolyt einer Brennstoffzelle eingesetzt wird. Durch die Möglichkeit, diese Brennstoffzelle bei einer Betriebstemperatur > 100° einzusetzen, wird sie auch Hochtemperatur-Membran-Brennstoffzelle (HTM- Brennstoffzelle) genannt. Bei der Realisierung einer HTM- Brennstoffzelle mit z.B. freier Phosphorsaure tritt jedoch zumindest ein Problem auf, nämlich die Ausspülung des Membra- nelektrolyten durch Produktwasser bei Temperaturen unter 100°C, also beim Starten der Brennstoffzellenanlage. Dies ist hauptsächlich em Problem, wenn die Brennstoffzelle im
Start/Stop Betrieb gefahren wird, also z.B. bei der mobilen Anwendung. Der durch die Ausspülung bedingte Elektrolytver-
lust kann zu Leistungseinbußen bis hin zum Funktionsausfall der Zelle führen. Der ausgespülte Membranelektrolyt verläßt beispielsweise mit dem Prozeßgasstrom die Zelle. Zum Erhalt der Funktionsfähigkeit der Zelle muß Membranelektrolyt nach- dosiert werden.
Das Problem ist von der Phosphorsäurebrennstoffzelle PAFC (Phosphor Acid Fuel Cell) her bekannt, dort jedoch von untergeordneter Bedeutung, weil die PAFC vornehmlich stationär im ständigen Betrieb über einen längeren Zeitraum eingesetzt wird und der Großteil des Elektrolytverlustes, wie gesagt, während des Startens entsteht. An eine Anwendung der vorliegenden Erfindung bei mobilen wie bei stationären Anlagen ist gedacht.
Aufgabe der Erfindung ist, einen Membranelektrolyten zur Verfügung zu stellen, der Phosphorsäure oder eine andere eigendissoziierende bzw. autoprotolytische Verbindung enthält, die beim Hochfahren der Brennstoffzellenanlage nicht durch die Verdünnung mit Produktwasser einfach ausgespült wird.
Gegenstand der Erfindung ist ein Membranelektrolyt für eine HTM-Brennstoffzelle mit einem Basispolymer und zumindest einer eigendissoziierenden Verbindung als elektrolytisch akti- ven Bestandteil, wobei die eigendissoziierende Verbindung chemisch an das Basispolymer gebunden ist.
Außerdem ist Gegenstand der Erfindung ein Verfahren zur Herstellung eines Membranelektrolyten mit einem Basispolymer und zumindest einer chemisch gebundenen eigendissoziierenden Verbindung, bei dem an das Basispolymer die eigendissoziierende Broenstedt-Säure chemisch gebunden wird und/oder ein Polymer aus einem Monomer gebildet wird, das eine eigendissoziierende Verbindung chemisch gebunden enthält.
Bevorzugt wird die eigendissoziierende Verbindung über eine σ- (sigma) -Einfachbindung an das Basispolymer gebunden.
Die Anbmdung erfolgt bevorzugt über das Zentralatom der Bro- enstedt-Saure oder über einen oder mehrere ihrer Liganden.
Als Basispolymere werden konventionelle oxidations- und tem- peraturstabile Polymere eingesetzt, wie z.B. Polyetherketone, Polyethersulfone und/oder Polyimidazole.
Als eigendissoziierende bzw. autoprotolytische Verbindung wird bevorzugt e ne Broenstedt-Saure eingesetzt. Bevorzugt wird Phosphmsaure, Phosphonsaure und Phosphorsaure verwendet. Als eigendissoziierend wird dabei die Eigenschaft einer Broenstedt-Saure, d.h. einer Protonensaure, bezeichnet, sowohl als Base als auch als Saure zu reagieren. Die verwende- ten Broensted-Sauren können Protonen aufnehmen und abgeben.
Die chemische Bindung der eigendissoziierenden Verbindung findet bevorzugt über eine sig a-Emfachbindung statt, sie kann aber genauso gut über eine beliebige andere chemisch Bindung erfolgen, solange diese Bindung gewährleistet, dass die eigendissoziierende Verbindung nicht durch das entstehende flussige Produktwasser verdünnt und ausgespult wird. Die Klassifizierung einer chemischen Bindung als beispielsweise „sigma-Emfachbmdung" ist immer unvollständig, so dass keine vollständige Beschreibung vorliegt, wenn von einer σ-
Emfachbmdung z.B. bei der Bindung eines Phosphorsaurerestes an einen Phenylrest gesprochen wird. Deshalb kann die Art der Bindung hier nicht abgrenzend positiv beschrieben werden sondern nur, wie oben geschehen, über eine Abgrenzung zu einer rein physikalischen Bindung, bei der die Zugabe von flussigem Losungsmittel wie Produktwasser zur Ausspülung fuhrt.
Denkbar s nd beispielsweise ausser der Einfachbindung auch eine π-Bmdung, eine Dreifachbindung, eine π-Donor-Akzeptor Bindung, eine Komplexbindung, eine lonogene Bindung und schließlich auch eine Protonen- oder sonstige -Bruckenbm- dung.
Im folgenden werden Beispiele zur Herstellung des Membranelektrolyten gegeben:
1. Phosphinierung von Polystyrol
Polystyrol wird zunächst in Gegenwart von Aluminiumtrichlorid mit Phosphorsäuretrichlorid umgesetzt. Die entstandene Dich- lorphosinarylverbindung wird mit Wasser zur entsprechenden Phosphinsäureverbindung hydrolisiert .
- [CHPh-CH2]n- + PC1 - Zugabe von A1C13 und Abspaltung von
HC1 ergibt - [CH (Ph~PCl2) -CH2] n > Hydrolyse ergibt
-[CH(Ph-PHO(OH) )-CH2]n- Phosphinat" oder *Phosphinsäure" an Styrol gebunden
2. Phosphonierung von Polystyrol
Die nach Punkt 1 erhaltene Phosphinsäureverbindung wird mit Salpetersäure und/oder KJ3 in Pyridin zur Polystyrolphosphon- säureverbindung umgesetzt.
-[CH(Ph-PHO(OH) )-CH2]n- ~ Oxidation mit HN03 ergibt
- [CH (Ph-PO (OH) 2) -CH2] n- „Phosphonsäure* an Polystyrol gebunden
3. Radikalische Polymerisation von Monomeren mit Phosphorsäuregruppen ergibt auch den Membranelektrolyten.
Ein denkbares Monomer dabei wäre das folgende:
CH2=C (CH3) -CO-0-CH2-CH2-0-PO (OH) 2
4. Chloralkylierung von Polystyrol und Umsetzung mit Tri- methoxyphosphin zum entsprechenden Phosphonsäureester der anschließend hydrolisiert wird.
- [CHPh-CH2]n- + CH30CH2C1 - Umsetzung nach Friedel-Craft ergibt -[CH(PhCH2Cl)-CH2]n- "> Umsetzung mit P(OCH3)3 ergibt - [CH ( PhCH2PO ( OCH3) 2) -CH2] n- -» Hydrolyse ergibt - [CH (Ph-CH2PO (OH) 2) -CH2] n- „Phosphonsäure" an Polystyrol gebunden
Als Hochtemperatur-Membran- (HTM) -Brennstoffzelle wird jede Brennstoffzelle bezeichnet, die eine herkömmliche Elektrolyt- Membran und/oder die eine Membran als Matrix zur physikalischen und/oder chemischen Aufnahme des Elektrolyten als Kernstück enthält und deren Betriebstemperatur höher als die der herkömmlichen PEM-Brennstoffzelle ist, also höher als 80°C, bevorzugt höher als 100 °C. Die maximale Betriebstemperatur liegt in etwa bei 220°C, bis 250°C. Die HTM-Brennstoffzelle hat einen Membranelektrolyten, der gute Leitfähigkeit auch im nicht-wässrige Milieu bei den oben genannten Temperaturen besitzt.
Claims
1. Membranelektrolyt für eine HTM-Brennstoffzelle mit einem Basispolymer und zumindest einer eigendissoziierenden Verbin- düng als elektrolytisch_ aktiven Bestandteil, wobei die eigendissoziierende Verbindung chemisch an das Basispolymer gebunden ist.
2. Membranelektrolyt nach Anspruch 1, bei dem die eigendissoziierende Verbindung eine Protonensäure ist.
3. Membranelektrolyt nach Anspruch 1 oder 2, bei dem die eigendissoziierende Verbindung Phosphor-, Phos- phin- und/oder Phosphonsäure ist.
4. Membranelektrolyt nach einem der vorstehenden Ansprüche, bei dem die chemische Bindung an das Basispolymer im wesentlichen eine σ-Einfachbindung ist.
5. Verfahren zur Herstellung eines Membranelektrolyten mit einem Basispolymer und zumindest einer chemisch gebundenen eigendissoziierenden Verbindung, bei dem an das Basispolymer die eigendissoziierende Broenstedt-Säure chemisch gebunden wird und/oder ein Polymer aus einem Monomer gebildet wird, das eine eigendissoziierende Verbindung chemisch gebunden enthält.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19917813A DE19917813A1 (de) | 1999-04-20 | 1999-04-20 | Membranelektrolyt für eine Hochtemperatur-Membran-Brennstoffzelle und Verfahren zu seiner Herstellung |
DE19917813.5 | 1999-04-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2000063988A2 true WO2000063988A2 (de) | 2000-10-26 |
WO2000063988A3 WO2000063988A3 (de) | 2001-04-05 |
Family
ID=7905194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2000/001229 WO2000063988A2 (de) | 1999-04-20 | 2000-04-19 | Membranelektrolyt für eine hochtemperatur-membran-brennstoffzelle und verfahren zu seiner herstellung |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE19917813A1 (de) |
WO (1) | WO2000063988A2 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1895612A1 (de) * | 2005-06-21 | 2008-03-05 | Dainippon Ink and Chemicals, Incorporated | Trennglied für eine brennstoffzelle, prozess zu seiner herstellung und brennstoffzelle |
WO2008142570A2 (en) * | 2007-03-21 | 2008-11-27 | Advent Technologies | Proton conductors based on aromatic polyethers and their use as electrolytes in high temperature pem fuel cells |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001043878A (ja) * | 1999-05-27 | 2001-02-16 | Honda Motor Co Ltd | 燃料電池発電システム |
DE10053849A1 (de) * | 2000-10-30 | 2002-05-08 | Siemens Ag | Brennstoffzellenanlage für ein Fahrzeug, insbesondere Kraftfahrzeug |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5468574A (en) * | 1994-05-23 | 1995-11-21 | Dais Corporation | Fuel cell incorporating novel ion-conducting membrane |
WO1996039379A1 (en) * | 1995-06-06 | 1996-12-12 | Ballard Power Systems Inc. | Substituted trifluorostyrene compositions |
DE19535086A1 (de) * | 1995-09-21 | 1997-03-27 | Fraunhofer Ges Forschung | Polymere Festkörperelektrolyte auf Basis funktionalisierter Copoly(m-phenylen)e |
US5643689A (en) * | 1996-08-28 | 1997-07-01 | E.C.R.-Electro-Chemical Research Ltd. | Non-liquid proton conductors for use in electrochemical systems under ambient conditions |
DE19632285A1 (de) * | 1996-08-09 | 1998-02-19 | Hoechst Ag | Protonenleiter mit einer Temperaturbeständigkeit in einem weiten Bereich und guten Protonenleitfähigkeiten |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5635039A (en) * | 1993-07-13 | 1997-06-03 | Lynntech, Inc. | Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same |
JP3521579B2 (ja) * | 1995-10-18 | 2004-04-19 | Jsr株式会社 | リン酸基含有重合体 |
-
1999
- 1999-04-20 DE DE19917813A patent/DE19917813A1/de not_active Withdrawn
-
2000
- 2000-04-19 WO PCT/DE2000/001229 patent/WO2000063988A2/de active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5468574A (en) * | 1994-05-23 | 1995-11-21 | Dais Corporation | Fuel cell incorporating novel ion-conducting membrane |
WO1996039379A1 (en) * | 1995-06-06 | 1996-12-12 | Ballard Power Systems Inc. | Substituted trifluorostyrene compositions |
DE19535086A1 (de) * | 1995-09-21 | 1997-03-27 | Fraunhofer Ges Forschung | Polymere Festkörperelektrolyte auf Basis funktionalisierter Copoly(m-phenylen)e |
DE19632285A1 (de) * | 1996-08-09 | 1998-02-19 | Hoechst Ag | Protonenleiter mit einer Temperaturbeständigkeit in einem weiten Bereich und guten Protonenleitfähigkeiten |
US5643689A (en) * | 1996-08-28 | 1997-07-01 | E.C.R.-Electro-Chemical Research Ltd. | Non-liquid proton conductors for use in electrochemical systems under ambient conditions |
Non-Patent Citations (1)
Title |
---|
DATABASE WPI Section Ch, Week 199727 Derwent Publications Ltd., London, GB; Class A26, AN 1997-295036 XP002148931 & JP 09 110982 A (NIPPON GOSEI GOMU KK), 28. April 1997 (1997-04-28) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1895612A1 (de) * | 2005-06-21 | 2008-03-05 | Dainippon Ink and Chemicals, Incorporated | Trennglied für eine brennstoffzelle, prozess zu seiner herstellung und brennstoffzelle |
EP1895612A4 (de) * | 2005-06-21 | 2012-05-30 | Dainippon Ink & Chemicals | Trennglied für eine brennstoffzelle, prozess zu seiner herstellung und brennstoffzelle |
WO2008142570A2 (en) * | 2007-03-21 | 2008-11-27 | Advent Technologies | Proton conductors based on aromatic polyethers and their use as electrolytes in high temperature pem fuel cells |
WO2008142570A3 (en) * | 2007-03-21 | 2009-02-05 | Advent Technologies | Proton conductors based on aromatic polyethers and their use as electrolytes in high temperature pem fuel cells |
Also Published As
Publication number | Publication date |
---|---|
WO2000063988A3 (de) | 2001-04-05 |
DE19917813A1 (de) | 2000-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69930474T2 (de) | Festpolymerelektrolyte | |
DE60214166T2 (de) | Polymerelektrolyt für eine brennstoffzelle des festpolymertyps und brennstoffzelle | |
EP1177247B1 (de) | Komposite und kompositmembranen | |
DE102008030659A1 (de) | Fester Elektrolyt mit hoher Ionenleitfähigkeit und Verfahren zur Herstellung desselben, und elektrochemisches System, das den festen Elektrolyten verwendet | |
DE19917812C2 (de) | Membranelektrodeneinheit für eine selbstbefeuchtende Brennstoffzelle, Verfahren zu ihrer Herstellung und Brennstoffzellenbatterie mit einer solchen Membranelektrodeneinheit | |
DE112006003025T5 (de) | Bestandteile von Brennstoffzellen mit hoher Haltbarkeit mit Cersalzzusätzen | |
DE19919708A1 (de) | Stufenweise Alkylierung von polymeren Aminen | |
WO2009109512A1 (de) | Ionische flüssigkeit enthaltende katalysatortinte und deren verwendung in elektroden-, ccm-, gde- und mea-herstellung | |
DE10021104A1 (de) | Organisch-anorganische Membranen | |
KR20110081174A (ko) | 고체 고분자 전해질형 연료 전지용 음이온 교환막의 제조 방법 | |
DE102014009170A1 (de) | Kombinatorisches Materialsystem für Ionenaustauschermembranen und dessen Verwendung in elektrochemischen Prozessen | |
EP3239193A1 (de) | Wasserunlösliche anionenaustauschermaterialien | |
WO2000063988A2 (de) | Membranelektrolyt für eine hochtemperatur-membran-brennstoffzelle und verfahren zu seiner herstellung | |
DE68907275T2 (de) | Verfahren zur Herstellung eines aminomethylphosphonischen chelatierenden Harzes. | |
CN101024723A (zh) | 燃料电池用电解质、膜电极接合体以及燃料电池用电解质的制造方法 | |
EP1986769B1 (de) | Katalytisches verfahren für die phosphonylierung von hochtemperaturpolymeren | |
DE112007002070T5 (de) | Polymer, Polymerelektrolyt und Brennstoffzelle mit Verwendung desselben | |
DE69900094T2 (de) | Polymerelektrolyt-Brennstoffzelle und Herstellungsverfahren | |
DE102019008024A1 (de) | Kationenaustauscher- und Anionenaustauscherpolymere und -(blend)membranen aus hochfluorierte aromatische Gruppen enthaltenden Polymeren mittlels nucleophiler Substitution | |
DE1921829B2 (de) | Verfahren zur herstellung von kationenaustauschermembranen aus poly-p-vinylphenol | |
DE4211267C2 (de) | Bipolare Membran und Verfahren zu deren Herstellung | |
DE102012002781B4 (de) | Polyperfluorcyclobutanionomer mit phosphonsäuregruppen für hochtemperatur-brennstoffzellen | |
EP3005459B1 (de) | Chemische verbindung zur katalysator-/membranoberflächenhaftung in brennstoffzellen mit membranelektrolyten | |
EP1181731A1 (de) | Hochtemperatur-membran-brennstoffzellenelektrolyt, verfahren zum betreiben einer htm-brennstoffzelle und htm-brennstoffzellenbatterie | |
DE102005045317B4 (de) | Verbund-Protonenaustauschmembran und Verfahren zu deren Herstellung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): CA CN JP NO US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): CA CN JP NO US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |