WO2000036651A1 - Integrierte schaltung mit kapazitiven elementen - Google Patents

Integrierte schaltung mit kapazitiven elementen Download PDF

Info

Publication number
WO2000036651A1
WO2000036651A1 PCT/DE1999/003829 DE9903829W WO0036651A1 WO 2000036651 A1 WO2000036651 A1 WO 2000036651A1 DE 9903829 W DE9903829 W DE 9903829W WO 0036651 A1 WO0036651 A1 WO 0036651A1
Authority
WO
WIPO (PCT)
Prior art keywords
integrated circuit
supply
capacitive elements
circuit according
capacitor
Prior art date
Application number
PCT/DE1999/003829
Other languages
English (en)
French (fr)
Inventor
Thomas Ehben
Thomas Steinecke
Jens Rosenbusch
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Priority to JP2000588808A priority Critical patent/JP2002532903A/ja
Priority to EP99966817A priority patent/EP1057217A1/de
Priority to KR1020007008812A priority patent/KR20010040904A/ko
Publication of WO2000036651A1 publication Critical patent/WO2000036651A1/de
Priority to US09/640,150 priority patent/US6465868B1/en
Priority to US10/625,706 priority patent/USRE39124E1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5223Capacitor integral with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0805Capacitors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • the present invention relates to an integrated circuit with capacitive elements for smoothing the supply voltage according to the preamble of patent claim 1.
  • Integrated circuits are known in a large number of embodiments and do not require any further explanation.
  • the smoothing of the supply voltage of integrated circuits by means of capacitors has proven to be advantageous because the integrated circuits in question can thereby operate without interference and have a reduced electromagnetic emission. It is particularly advantageous for reasons of surface optimization if the capacitors provided for smoothing are also integrated in the integrated circuit.
  • the capacitors provided in integrated circuits require a large amount of chip area in comparison to other integrated elements, as a result of which the respective integrated circuit often becomes relatively large and therefore also expensive, error-prone and unwieldy.
  • JP 2-250 370 A describes an integrated circuit in which the capacitors used to smooth the supply voltage are arranged below the corresponding supply paths via which the integrated circuit is supplied with the supply voltage.
  • the capacitors are formed there by the interaction of poly sections formed in a polysilicon layer of the integrated circuit and the substrate regions located underneath. In this way, the negative side effects described above can be avoided in whole or in part.
  • an integrated circuit device by the provision of capacitors provided for smoothing the supply voltage not or at least not necessarily larger than integrated circuits that do not contain such capacitors.
  • the capacitors described in JP 2-250 370 A are sometimes not sufficient in many integrated circuits to smooth the supply voltage to the desired or required extent.
  • connection impedances This is generally due to the fact that the so-called on-chip capacitances described above have a very large resistive portion of their connection impedances, which essentially results from the high surface resistances of the polysilicon or diffusion electrodes used in particular with on-chip gate capacitances results.
  • This high resistive component of the connection impedances causes a very low damping at high frequencies, as a result of which high-frequency AC components can be radiated into the system surrounding the integrated circuit. Such electromagnetic radiation can lead to interference from sensitive circuit elements.
  • the present invention is therefore based on the object of developing an integrated circuit of the generic type in such a way that its supply voltage can be smoothed in the best possible way, even with high-frequency signals, without the associated increase in the size of the integrated circuit.
  • the integration of at least two capacitors connected in parallel to one another does not make the integrated circuit larger, or at least minimally, than would be the case without the capacitor integration.
  • the integrated circuit according to the invention can therefore be accommodated in a minimal area.
  • the proximity of the capacitors to the supply tracks that conduct the supply voltage to be smoothed furthermore makes it possible for the electrical connections required to effectively place the capacitors between the two poles of the supply voltage to be made extremely short, as a result of which the integrated circuit simple to set up and manufacture, and reliable in operation.
  • Figure 1 shows schematically in a sectional view the basic structure of an integrated circuit with Smoothing of the supply voltage provided capacitive elements
  • FIG. 2 shows the equivalent circuit diagram (a) for the elements of an integrated circuit according to FIG. 1 and the associated impedance curves (b).
  • FIGS. 1 and 2 elements that correspond to one another have been provided with the same reference symbols.
  • Figure 1 shows schematically in a sectional view the basic structure of an integrated circuit with capacitive elements provided for smoothing the supply voltage.
  • FIG. 1 it should be noted in advance that - although this is a sectional illustration - no hatching is shown for reasons of clarity.
  • the integrated circuit considered here can be any type of integrated circuit, in particular a CMOS circuit. Part of this integrated circuit is shown only in part in FIG.
  • the integrated circuit is integrated in a substrate S, which can be, for example, a semiconductor body made of silicon.
  • a poly layer P for example made of polysilicon, is arranged above the substrate at a first distance D 1.
  • a spaced-apart first metal layer M1 is provided over the poly layer P.
  • a second metal layer M2 is provided over the first metal layer M1 at a second distance D2.
  • FIG. 1 thus shows two metal layers M1, M2 and an underlying poly layer P.
  • other metal layers layers or further poly layers can be provided above the substrate S having the integrated circuit.
  • the spaces between the individual layers or the substrate S are filled with an insulating material, which is not specifically shown in FIG. 1 and which typically contains silicon dioxide.
  • the structures of the first metal layer M1 shown are a first supply path 1, which is connected to a first supply potential VI, and a second supply path 2, which is connected to a second supply potential V2. Via the first and the second supply path 1, 2, the supply voltage is supplied to the points of the integrated circuit at which it is required.
  • the first supply potential VI can be the VDD
  • the second metal layer M2 contains a third supply path 3, which is also connected to the first supply potential VI in the exemplary embodiment shown.
  • the poly layer P consists of one or more poly sections 4 and is connected to the first supply path 1 via first plated-through holes 5.
  • the second supply path 2 is connected to the substrate S via second plated-through holes 6.
  • the first supply path 1 is thus coupled via the poly section 4 in a known manner via a first capacitive element (first capacitor) 11 to the substrate S and thus to the second supply path 2.
  • first capacitor 11 is essentially arranged under the supply tracks 1, 2 and is formed by the interaction of the poly section 4 and the substrate S.
  • second capacitor 12 is also provided, which is formed from the interaction of the second supply path 2 and the third supply path 3.
  • the semiconductor body consists of an n-doped substrate S. It would of course also be conceivable to use a p-doped or undoped substrate S.
  • a p-doped well 7 is embedded in the substrate ⁇ . This trough 7 can have been introduced into the substrate S by a diffusion process, by ion implantation with an optionally subsequent temperature step, by deposition, etc.
  • At least one zone 9 is embedded in the trough 7 on the surface 8 of the substrate S.
  • zone 9 is heavily n-doped.
  • zone 9 may also have been introduced into tub 7 by diffusion or ion implantation.
  • the first zone 9 represents a channel implantation or a channel diffusion for the integrated circuit manufactured in CMOS technology or its gate capacitances 11.
  • Zone 9 is connected to second supply track 2 via second plated-through holes 6.
  • the said zone 9 and the second plated-through holes 6 thus form the substrate contacts, the function and mode of operation of which are known and require no further explanation.
  • two capacitors 11, 12 are provided, of which the first among the supply tracks 1 and 2 and the second above the supply track 2 is provided.
  • the construction and arrangement of the capacitors 11, 12 described is shown only in a highly schematic manner in FIG.
  • the first capacitor 11 located below the supply tracks 1 and 2 is formed by the poly section 4, a zone 9 provided underneath in the substrate S or the trough 7 and the insulating material lying in between.
  • the second capacitor 12 is formed by the overlapping surfaces of the second and third supply tracks 2, 3 and the insulating material lying between them.
  • the first capacitor 11 provided for smoothing the supply voltage is essentially below the supply tracks 1, 2.
  • this poly section 4 of the first capacitor 11 has a very large area, it is advantageous if the poly section 4 is connected to the first supply path 1 via a plurality of advantageously through-holes 5, which are advantageously spaced apart from one another and arranged in a row. This allows the real parts of the capacitor impedances to be kept low, which is particularly important for the high-frequency behavior of the capacitors 11. It also proves to be particularly advantageous if the ohmic resistance of the first capacitor 11 is caused in approximately equal parts by the zone 9 and the poly section 4. Typically, but not necessarily, the areas of zone 9 shown in FIG. 1 are designed to be significantly larger in area than the relevant poly section 4.
  • the second supply track 2 is particularly advantageous here for reasons of effectiveness if the second supply track 2 is essentially covered by a single, large-area supply line, namely the third supply track 3. Since the second and third supply tracks 2, 3 are typically made of metal, the real part or the ohmic part in the capacitor impedance of the second capacitor 12 is generally negligible compared to its imaginary part.
  • each poly section 4 does not have to be assigned its own zone 9; a single, large zone 9 can also be provided for all poly sections 4.
  • the arrangement of the capacitors 11, 12 under the supply tracks 1, 2, 3 proves to be advantageous in several respects: On the one hand, because this space is usually not used for other purposes in an integrated circuit, and the arrangement of the capacitors 11, 12 at this point is thus does not lead to an enlargement of the integrated circuit. On the other hand, the inevitable connections between the supply tracks 1, 2, 3 and the capacitors 11, 12 wherever provided can advantageously be established particularly simply and elegantly.
  • FIG. 1 An equivalent circuit diagram results for the structure shown in FIG. 1, which is described in more detail below with reference to FIG. 2.
  • the structure shown in FIG. 1 thus results in the parallel connection of the first capacitor 11 and the second capacitor 12 shown in FIG. 2 (a).
  • These capacitors 11, 12 are typically not to be regarded as ideal, ie they have a capacitive one Share also an inductive and resistive share.
  • the MOS capacitor 11 is known to be calculated as follows:
  • the equivalent for the second capacitor 12, referred to below as the metal capacitor, is a series connection of second capacitance CME; second inductance JJE and second resistor RMET- D i- e corresponding impedance Z MET ( S ) of the metal capacitor 12 is calculated as follows:
  • the first series connection resulting from the elements of the MOS capacitor 11 and the second series connection resulting from the elements of the metal capacitor 12 are connected in parallel with one another.
  • the total impedance Z (S) thus results for this parallel connection Z (S) - Z "os - Zm ⁇ _
  • the parallel connection of the first series connection and the second series connection is arranged between the first supply potential VI and the second supply potential V2.
  • the particular advantage of this parallel connection is that the first capacitive element CJ ⁇ QS is dimensioned much larger than the second capacitive element C ⁇ ET- This is due in particular to the fact that the plate spacing Dl of the first capacitive element C ⁇ Q S is generally significantly lower than the plate spacing D2 of the second capacitive element C ⁇ ET, so that the first capacitor accordingly has a much larger capacitance than the second capacitor.
  • D1 is usually the plate spacing of a gate capacitance; In the case of an integrated circuit, depending on the technology used, D1 is in the range of a few nanometers (eg 5-15 nm). In comparison, the plate distance D2 is typically at least 10 times larger than the plate distance Dl (eg D2> 100 nm).
  • the inductive elements L MET result from the fact that the corresponding capacitive elements ⁇ Q ⁇ , C ⁇ T generally do not represent ideal capacitances; rather, real capacitors generally also have a non-negligible, inductive component, which is increasingly noticeable, particularly in the high-frequency range of the impedance curve.
  • the first resistive element R OS essentially results from the resistance value of the poly section 4 and from the sum of the diffusion resistances of the zones 7, 9. In contrast, the corresponding conductance values of the supply tracks 1, 2 are low and can generally be neglected.
  • the second resistive element RMET essentially results from the resistance values of the supply tracks 2, 3. Ideally, the resistance value of the second resistive element RMET is almost zero and can be neglected compared to the much larger resistance value of the first resistive element R ⁇ os.
  • the respective impedance curves as a function of frequency f are shown in Figure 2 (b).
  • the curve denoted by (B) denotes the impedance curve for the MOS capacitor 11 and the curve denoted by (A) the impedance curve for the metal capacitor 12.
  • the bold curve (C) then denotes the total impedance curve for the parallel connection of the two Capacitors 11, 12 corresponding to Figure 2 (a).
  • the total impedance curve resulting from the parallel connection shows a clear improvement in the frequency behavior or in the damping behavior, since in particular the low-impedance area between the capacitive and inductive components has been significantly broadened.
  • the capacitive component dominates in the low-frequency range until the minimum of the impedance curve is reached, while the inductive component dominates in the subsequent, higher-frequency range. This behavior brings a significant increase in effectiveness of combined MOS / metal capacities compared to a single, pure MOS capacitance. At very low frequencies in the The MOS capacitance is effective below 200 MHz, and the metal capacitance at higher frequencies.
  • a parallel connection of at least two such capacitors 11, 12 thus enables broadband buffering
  • FIG. 1 Although the structure shown in FIG. 1 is currently regarded as the simplest capacitor arrangement according to the invention, this should not be understood as a limitation of the invention.
  • the capacitors 11, 12 can in principle also be arranged in any other way under the supply tracks 1, 2, 3. However, it is particularly advantageous if the first capacitor 11 and / or the second capacitor 12 are connected over the largest possible area.
  • the present invention has been illustrated in particular on the basis of a simple single MOS capacitance 11.
  • the invention can also be extended to any integrated circuits, which are designed, for example, in CMOS technology, with any number of such MOS capacitors 11.
  • CMOS complementary metal-oxide-semiconductor
  • MOS capacitances typically have at least two of these MOS capacitances, which are designed to be complementary to one another.
  • the present invention was further illustrated using a single metal capacitance 12 connected in parallel with the single MOS capacitance 11.
  • a plurality of metal capacitors 12 according to the invention are connected in parallel to one MOS capacitor 11 in each case.
  • the dimensioning of MOS capacitors 11 and metal capacitors 12 of the parallel connection means that they can be optimally adapted to the respective frequency spectrum and thus a very broadband buffering can be achieved.

Abstract

Die Erfindung betrifft eine integrierte Schaltung mit kapazitiven Elementen zur Glättung der Versorgungsspannung. Es wird hier mindestens eine zusätzliche Metallelektrode, die als hochfrequenzoptimierte Kapazität ausgebildet ist und die durch einen äußerst geringen Flächenwiderstand ausgezeichnet ist, den MOS-Kapazitäten parallel geschaltet. Durch die Parallelschaltung der flächenmäßig hocheffektiven, jedoch etwas hochohmiger angebundenen MOS-Kapazität mit flächenmäßig weniger effektiven, jedoch sehr niederohmig an die Versorgungsspannung angeschlossenen Metallkapazitäten kann eine breitbandige Pufferung und somit eine Entkopplung von hochfrequenten Störsignalen erzielt werden. Sehr hochfrequente Störanteile werden auf dem Chip gedämpft und gelangen nicht in das die integrierte Schaltung umgebende System.

Description

Beschreibung
Integrierte Schaltung mit kapazitiven Elementen
Die vorliegende Erfindung betrifft eine integrierte Schaltung mit kapazitiven Elementen zur Glättung der Versorgungsspannung gemäß dem Oberbegriff des Patentanspruchs 1.
Integrierte Schaltungen sind in einer Vielzahl von Ausfüh- rungsformen bekannt und bedürfen keiner näheren Erläuterung. Die Glättung der Versorgungsspannung von integrierten Schaltungen durch Kondensatoren erweist sich als vorteilhaft, weil die betreffenden integrierten Schaltungen dadurch störungsfrei arbeiten können und eine verringerte elektromagnetische Emission aufweisen. Dabei ist es insbesondere aus Gründen der Flächenoptimierung von besonderem Vorteil, wenn die zur Glättung vorgesehenen Kondensatoren ebenfalls in die integrierte Schaltung integriert werden. Allerdings benötigen die in integrierten Schaltungen vorgesehenen Kondensatoren im Ver- gleich zu anderen integrierten Elementen sehr viel Chipfläche, wodurch die jeweilige integrierte Schaltung oftmals relativ groß und damit auch teuer, fehleranfällig und unhandlich werden.
In der JP 2-250 370 A wird eine integrierte Schaltung beschrieben, bei der die zur Glättung der Versorgungsspannung dienenden Kondensatoren unterhalb der entsprechenden Versorgungsbahnen, über welche die integrierte Schaltung mit der Versorgungsspannung versorgt wird, angeordnet sind. Die Kon- densatoren werden dort durch ein Zusammenwirken von in einer Polysilizium-Schicht der integrierten Schaltung ausgebildeten Polyabschnitten und den darunter liegenden Substrat-Bereichen gebildet. Auf diese Weise lassen sich die oben beschriebenen negativen Begleiterscheinungen ganz oder teilweise vermeiden. Insbesondere wird eine derart aufgebaute integrierte Schal- tung durch das Vorsehen von zur Glättung der Versorgungsspannung vorgesehenen Kondensatoren nicht oder jedenfalls nicht zwangsläufig größer als integrierte Schaltungen, die keine solche Kondensatoren enthalten. Allerdings reichen die in der JP 2-250 370 A beschriebenen Kondensatoren bei vielen integrierten Schaltungen bisweilen nicht aus, um die Versorgungsspannung in dem gewünschten bzw. erforderlichen Umfang zu glätten.
Dies liegt in aller Regel daran, daß die oben beschriebenen, sogenannten On-Chip-Kapazitäten einen sehr großen resistiven Anteil ihrer Anschlußimpedanzen aufweisen, der sich im wesentlichen aus den hohen Flächenwiderständen der insbesondere bei On-Chip-Gate-Kapazitäten verwendeten Polysilizium- oder Diffusionselektroden ergibt. Dieser hohe resistive Anteil der Anschlußimpedanzen bewirkt eine sehr geringe Dämpfung bei hohen Frequenzen, wodurch hochfrequente Wechselspannungsanteile in das die integrierte Schaltung umgebende System abgestrahlt werden können. Solche elektromagnetische Abstrahlungen können dort zu Störungen von empfindlichen Schaltungselementen führen.
Ausgehend von diesem Stand der Technik liegt der vorliegenden Erfindung daher die Aufgabe zugrunde, eine gattungsgemäße in- tegrierte Schaltung derart weiterzubilden, daß deren Versorgungsspannung ohne damit einhergehender Vergrößerung der integrierten Schaltung insbesondere auch bei hochfrequenten Signalen bestmöglich geglättet werden kann.
Erfindungsgemäß wird diese Aufgabe durch eine gattungsgemäße integrierte Schaltung mit den Merkmalen des Patentanspruchs 1 gelöst .
Durch die vorliegende Erfindung kann unter den jeweiligen Versorgungsbahnen eine maximale Anzahl von einen optimalen Wirkungsgrad aufweisenden Kondensatoren vorgesehen werden. Die sich aus der Parallelschaltung der jeweiligen Kapazitäten ergebende Gesamtkapazität ist maximal und mithin in der Lage, die Versorgungsspannung insbesondere auch im hochfrequenten Bereich der integrierten Schaltung ohne damit einhergehende Vergrößerung derselben möglichst optimal zu glätten.
Da die Bereiche unter den Versorgungsbahnen in herkömmlichen integrierten Schaltungen typischerweise gänzlich ungenutzt sind, wird die integrierte Schaltung durch die Integration von mindestens zwei zueinander parallel geschalteten Kondensatoren nicht oder allenfalls minimal größer als es ohne die Kondensatorintegration der Fall wäre. Die erfindungsgemäße integrierte Schaltung kann daher auf einer minimalen Fläche untergebracht werden.
Die Nähe der Kondensatoren zu den die zu glättende Versorgungsspannung leitenden Versorgungsbahnen ermöglicht es darüber hinaus, daß die elektrischen Verbindungen, die erforder- lieh sind, um die Kondensatoren wirkungsmäßig zwischen den beiden Polen der Versorgungsspannung anzuordnen, äußerst kurz ausgebildet sein können, wodurch die integrierte Schaltung einfach im Aufbau und in deren Herstellung sowie zuverlässig im Betrieb ist.
Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.
Die Erfindung wird nachfolgend anhand eines Ausführungsbei- spiels unter Bezugnahme der beiden Figuren der Zeichnung näher erläutert. Es zeigt dabei:
Figur 1 schematisch in einer Schnittdarstellung den prinzipiellen Aufbau einer integrierten Schaltung mit zur Glättung der Versorgungsspannung vorgesehenen, kapazitiven Elementen;
Figur 2 das Ersatzschaltbild (a) für die Elemente einer inte- grierten Schaltung gemäß Figur 1 sowie die dazugehörigen Impedanzkurven (b) .
In den Figuren 1 und 2 sind einander entsprechende Elemente mit gleichen Bezugszeichen versehen worden.
Figur 1 zeigt schematisch in einer Schnittdarstellung den prinzipiellen Aufbau einer integrierten Schaltung mit zur Glattung der Versorgungsspannung vorgesehenen, kapazitiven Elementen. Zu Figur 1 sei vorab angemerkt, daß dort - ob- gleich es sich um eine Schnittdarstellung handelt - aus Gründen der Übersichtlichkeit keine Schraffuren eingezeichnet sind.
Bei der vorliegend betrachteten, integrierten Schaltung kann es sich um jede Art von integrierter Schaltung, insbesondere um eine CMOS-Schaltung, handeln. In Figur 1 ist lediglich ausschnittsweise ein Teil dieser integrierten Schaltung dargestellt. Die integrierte Schaltung ist dabei in einem Substrat S, das beispielsweise ein aus Silizium bestehender Halbleiterkörper sein kann, integriert. Über dem Substrat ist in einem ersten Abstand Dl eine beispielsweise aus Polysili- ziu bestehende Polyschicht P angeordnet. Über der Poly- schicht P ist eine mit Abstand angeordnete erste Metallschicht Ml vorgesehen. Über der ersten Metallschicht Ml ist in einem zweiten Abstand D2 eine zweite Metallschicht M2 vorgesehen.
Das Ausführungsbeispiel in Figur 1 zeigt also zwei Metallschichten Ml, M2 und eine darunterliegende Polyschicht P. Es ist jedoch nicht ausgeschlossen, daß noch weitere Metall- schichten bzw. weitere Polyschichten oberhalb des die integrierte Schaltung aufweisenden Substrats S vorgesehen sein können. Die Zwischenräume zwischen den einzelnen Schichten bzw. dem Substrat S sind durch ein in Figur 1 nicht näher be- zeichnetes Isoliermaterial, das typischerweise Siliziumdioxid enthält, aufgefüllt.
Die gezeigten Strukturen der ersten Metallschicht Ml sind eine erste Versorgungsbahn 1, die mit einem ersten Versorgungs- potential VI verbunden ist, und eine zweite Versorgungsbahn 2, die mit einem zweiten Versorgungspotential V2 verbunden ist. Über die erste und die zweite Versorgungsbahn 1, 2 wird die Versorgungsspannung den Stellen der integrierten Schaltung zugeführt, an denen diese benötigt wird. Dabei kann bei- spielsweise das erste Versorgungspotential VI das VDD-
Potential und das zweite Versorgungspotential V2 das VSS- Versorgungspotential sein. Die zweite Metallschicht M2 enthält eine dritte Versorgungsbahn 3, die im gezeigten Ausführungsbeispiel ebenfalls mit dem ersten Versorgungspotential VI verbunden ist.
Die Polyschicht P besteht aus einer oder mehreren Polyab- schnitten 4 und ist über erste Durchkontaktierungen 5 mit der ersten Versorgungsbahn 1 verbunden. Die zweite Versorgungs- bahn 2 ist über zweite Durchkontaktierungen 6 mit dem Substrat S verbunden.
Die erste Versorgungsbahn 1 ist also über den Polyabschnitt 4 in bekannter Weise über ein erstes kapazitives Element (er- ster Kondensator) 11 mit dem Substrat S und damit mit der zweiten Versorgungsbahn 2 gekoppelt. Dieser erste Kondensator 11 ist, wie noch näher beschrieben wird, im wesentlichen unter den Versorgungsbahnen 1, 2 angeordnet und wird durch das Zusammenwirken des Polyabschnittes 4 und dem Substrat S ge- bildet. Erfindungsgemäß ist ferner mindestens ein zweites kapazitives Element (zweiter Kondensator) 12 vorgesehen, welches aus dem Zusammenwirken der zweiten Versorgungsbahn 2 und der dritten Versorgungsbahn 3 gebildet wird.
Im gezeigten Ausführungsbeispiel gemäß Figur 1 besteht der Halbleiterkörper aus einem n-dotierten Substrat S. Es wäre selbstverständlich auch denkbar, ein p-dotiertes oder undo- tiertes Substrat S zu verwenden. In dem Substrat Ξ ist eine p-dotierte Wanne 7 eingebettet. Diese Wanne 7 kann durch einen Diffusionsprozeß, durch Ionenimplantation mit einem fakultativ sich anschließendem Temperaturschritt, durch Abscheidung, etc. in das Substrat S eingebracht worden sein.
An der Oberfläche 8 des Substrates S ist mindestens eine Zone 9 in die Wanne 7 eingebettet. Im vorliegenden Ausführungsbeispiel ist die Zone 9 stark n-dotiert. Die Zone 9 kann dabei wie oben beschrieben ebenfalls durch Diffusion bzw. Ionenim- plantation in die Wanne 7 eingebracht worden sein.
Typischerweise, jedoch nicht notwendigerweise, stellt die erste Zone 9 eine Kanalimplantation bzw. eine Kanaldiffusion für die in CMOS-Technologie hergestellte integrierte Schal- tung bzw. deren Gate-Kapazitäten 11 dar.
Die Zone 9 ist über zweite Durchkontaktierungen 6 mit der zweiten Versorgungsbahn 2 verbunden. Die genannte Zone 9 und die zweiten Durchkontaktierungen 6 bilden somit die Substrat- kontakte, deren Funktion und Wirkungsweise bekannt sind und keiner weiteren Erläuterungen erfordern.
Gemäß der Darstellung in Figur 1 sind, wie bereits beschrieben, zwei Kondensatoren 11, 12 vorgesehen, wovon der erste unter den Versorgungsbahnen 1 und 2 und der zweite oberhalb der Versorgungsbahn 2 vorgesehen ist. Der Aufbau und die Anordnung der beschriebenen Kondensatoren 11, 12 ist, wie vorstehend bereits erwähnt wurde, in der Figur 1 nur stark schematisiert dargestellt.
Der unter den Versorgungsbahnen 1 und 2 liegende erste Kondensator 11 wird durch den Poly-Abschnitt 4, einer darunter im Substrat S oder der Wanne 7 vorgesehenen Zone 9 und dem dazwischen liegenden Isoliermaterial gebildet. Der zweite Kondensator 12 wird durch die sich überschneidenden Flächen der zweiten und der dritten Versorgungsbahn 2, 3 und dem dazwischen liegenden Isoliermaterial gebildet.
Wie aus der Figur 1 ersichtlich ist, befindet sich der zur Glättung der Versorgungsspannung vorgesehene erste Kondensator 11 im wesentlichen unter den Versorgungsbahnen 1, 2. Der Polyabschnitt 4, der gewissermaßen eine der Kondensatorplatten darstellt, ist im wesentlichen ebenfalls unter den Versorgungsbahnen 1, 2 angeordnet.
Insbesondere wenn dieser Polyabschnitt 4 des ersten Kondensators 11 eine sehr große Fläche aufweist, ist es von Vorteil, wenn der Polyabschnitt 4 über eine Vielzahl von vorteilhafterweise in gleichem Abstand zueinander und in einer Reihe angeordneten ersten Durchkontaktierungen 5 mit der ersten Versorgungsbahn 1 verbunden ist. Dadurch lassen sich die Realteile der Kondensator-Impedanzen niedrig halten, was insbesondere für das Hochfrequenzverhalten der Kondensatoren 11 sehr bedeutsam ist. Es erweist sich ferner als besonders gün- stig, wenn der ohmsche Widerstand des ersten Kondensators 11 zu in etwa gleichen Teilen durch die Zone 9 und den Polyabschnitt 4 verursacht wird. Typischerweise, jedoch nicht notwendigerweise, sind die in Figur 1 eingezeichneten Bereiche der Zone 9 flächenmäßig deutlich größer ausgebildet als der betreffende Polyabschnitt 4. Entsprechendes gilt natürlich auch für die zweite Versorgungsbahn 2; hierbei ist es insbesondere auch aus Gründen der Effektivität von Vorteil, wenn die zweite Versorgungsbahn 2 im wesentlichen von einer einzigen, großflächigen, nämlich der dritten Versorgungsbahn 3, überdeckt wird. Da die zweiten und dritten Versorgungsbahnen 2, 3 typischerweise metallisch ausgebildet sind, ist der Realteil bzw. der ohmsche Anteil in der Kondensator-Impedanz des zweiten Kondenstors 12 gegenüber dessen Imaginärteil in der Regel vernachlässigbar gering.
In der schematischen Darstellung in Figur 1 ist lediglich ein einziger Polyabschnitt und jeweils eine einzige Versorgungsbahn 1, 2, 3 dargestellt. Selbstverständlich kann eine inte- grierte Schaltung eine Vielzahl solcher Versorgungsbahnen 1, 2, 3 und auch eine Vielzahl von Polyabschnitten 4 aufweisen. Typischerweise muß jedoch nicht jedem Polyabschnitt 4 eine eigene Zone 9 zugeordnet sein; es kann auch eine einzige, große Zone 9 für alle Polyabschnitte 4 vorgesehen sein.
Die Anordnung der Kondensatoren 11, 12 unter den Versorgungsbahnen 1, 2, 3 erweist sich in mehrfacher Hinsicht als vorteilhaft: Einerseits weil dieser Platz in einer integrierten Schaltung zumeist nicht anderweitig genutzt wird und die An- Ordnung der Kondensatoren 11, 12 an dieser Stelle somit nicht zu einer Vergrößerung der integrierten Schaltung führt. Andererseits lassen sich vorteilhafterweise die unumgänglichen Verbindungen zwischen den Versorgungsbahnen 1, 2, 3 und den wo auch immer vorgesehenen Kondensatoren 11, 12 dadurch be- sonders einfach und elegant herstellen.
Für die in Figur 1 gezeigte Struktur ergibt sich damit ein Ersatzschaltbild, welches anhand von Figur 2 nachfolgend näher beschrieben wird. Aus der in Figur 1 gezeigten Struktur ergibt sich somit die in Figur 2 (a) dargestellte Parallelschaltung des ersten Kondensators 11 und des zweiten Kondensators 12. Diese Kondensatoren 11, 12 sind typischerweise als nicht ideal zu betrach- ten, d.h. sie weisen neben einem kapazitiven Anteil auch einen induktiven und resistiven Anteil auf. Damit ergibt sich für den nachfolgend auch als MOS-Kondensator bezeichneten ersten Kondensator 11 eine Reihenschaltung einer ersten Kapazität C^OS' einer ersten Induktivität ^os und eines esten Wi- derstandes R^os • D"-e Impedanz Z^os(s) des MOS-Kondensators 11 errechnet sich bekanntlich wie folgt:
zMOS(s) = RMOS + s'LMOS + s c MOS
Mit S sind hier die komplexen Frequenzparameter S=σ+jω bezeichnet .
Äquivalent ergibt sich für den nachfolgend als Metallkondensator bezeichneten zweiten Kondensator 12 eine Reihenschal- tung aus zweiter Kapazität CME;^ zweiter Induktivität JJE und zweitem Widerstand RMET- Di-e entsprechende Impedanz ZMET(S) des Metallkondensators 12 errechnet sich äquivalent wie folgt:
ZMET (s- RMET + S'LMET +
^ ' *-MET
Die erste Reihenschaltung resultierend aus den Elementen des MOS-Kondensators 11 und die zweite Reihenschaltung resultierend aus den Elementen des Metallkondensators 12 sind zuein- ander parallel geschaltet. Somit ergibt sich für diese Parallelschaltung die Gesamtimpedanz Z (S) zu Z ( S ) - Z"os - Zmτ_
^MOS + ^MET
Die Parallelschaltung der ersten Reihenschaltung und der zweiten Reihenschaltung ist dabei zwischen dem ersten Versorgungspotential VI und dem zweiten Versorgungspotential V2 angeordnet.
Der besondere Vorteil dieser Parallelschaltung liegt nun dar- in, daß das erste kapazitive Element CJ^QS sehr viel größer dimensioniert ist als das zweite kapazitive Element C^ET- Dies rührt insbesondere aus der Tatsache, daß der Plattenabstand Dl des ersten kapazitiven Elementes C^QS im Vergleich zum Plattenabstand D2 des zweiten kapazitiven Elementes C^ET in der Regel deutlich niedriger ist, wodurch entsprechend der erste Kondensator eine sehr viel größere Kapazität als der zweite Kondensator aufweist. Mit Dl ist dabei üblicherweise der Plattenabstand einer Gatekapazität bezeichnet; bei einer integrierten Schaltung bewegt sich je nach verwendeter Tech- nologie Dl im Bereich von einigen Nanometern (z.B. 5-15 nm) . Im Vergleich hierzu ist der Plattenabstand D2 typischerweise mindestens um den Faktor 10 größer als der Plattenabstand Dl (z.B. D2 > 100 nm) .
Die induktiven Elemente
Figure imgf000012_0001
LMET ergeben sich aus der Tatsache, daß die entsprechenden kapazitiven Elemente ^Q^ , C^ T in der Regel keine idealen Kapazitäten darstellen; vielmehr weisen reale Kapazitäten in aller Regel auch einen nicht vernachlässigbar geringen, induktiven Anteil auf, der sich insbesondere im hochfrequenten Bereich der Impedanzkurve zunehmend bemerkbar macht. Das erste resistive Element R OS resultiert im wesentlichen aus dem Widerstandswert des Polyabschnittes 4 sowie aus der Summe der Diffusionswiderstände der Zonen 7, 9. Die entsprechenden Leitwerte der Versorgungsbahnen 1, 2 sind demgegen- über gering und können in der Regel vernachlässigt werden.
Das zweite resistive Element RMET resultiert im wesentlichen aus den Widerstandswerten der Versorgungsbahnen 2, 3. Idealerweise ist der Widerstandswert des zweiten resistiven Ele- mentes RMET nahezu null und kann gegenüber dem sehr viel größeren Widerstandswert des ersten resistiven Elementes R^os vernachlässigt werden.
Die jeweiligen Impedanzkurven als Funktion der Frequenz f sind in Figur 2 (b) dargestellt. Dabei bezeichnet die mit (B) bezeichnete Kurve die Impedanzkurve für den MOS-Kondensator 11 und die mit (A) bezeichnete Kurve die Impedanzkurve für den Metallkondensator 12. Die fett durchgezogene Kurve (C) bezeichnet dann die Gesamtimpedanzkurve für die Parallel- Schaltung der beiden Kondensatoren 11, 12 entsprechend Figur 2(a) .
Die aus der Parallelschaltung resultierende Gesamtimpedanz- kurve (fett eingezeichnete Kurve (C) in Figur 2 (b) ) zeigt ei- ne deutliche Verbesserung im Frequenzverhalten bzw. im Dämpfungsverhalten, da insbesondere der niederimpedante Bereich zwischen kapazitivem und induktivem Anteil signifikant verbreitert wurde. In dem niederfrequenten Bereich bis zum Erreichen des Minimums der Impedanzkurve dominiert bekanntlich der kapazitive Anteil, während in dem darauffolgenden, höher- frequentem Bereich der induktive Anteil dominiert. Dieses Verhalten bringt eine deutliche Effektivitätssteigerung von kombinierten MOS-/Metallkapazitäten gegenüber einer einzigen, reinen MOS-Kapazität . Bei sehr niedrigen Frequenzen im Be- reich unterhalb von 200 MHz wirkt die MOS-Kapazitat, bei höheren Frequenzen die Metallkapazität.
Somit ermöglicht eine Parallelschaltung von mindestens zwei solcher Kapazitäten 11, 12 eine breitbandige Pufferung und
Entkopplung von hochfrequenten Störsignalen. Durch die Parallelschaltung einer flächenmäßig hocheffektiven, jedoch etwas hochohmiger angebundenen MOS-Kapazität 11 mit einer flächenmäßig weniger effektiven, jedoch sehr niederohmig an die Ver- sorgungsspannung angeschlossenen Metallkapazität 12 kann eine breitbandige Pufferung und somit eine Entkopplung von hochfrequenten Störsignalen erzielt werden. Sehr hochfrequente Störanteile werden somit auf dem Chip gedämpft und gelangen nicht mehr in das die integrierte Schaltung umgebende System.
Wenngleich die in der Figur 1 dargestellte Struktur derzeit als die einfachste erfindungsgemäße Kondensator-Anordnung angesehen wird, soll dies nicht als Einschränkung der Erfindung verstanden werden. Die Kondensatoren 11, 12 können grund- sätzlich auch beliebig anders unter den Versorgungsbahnen 1, 2, 3 angeordnet werden. Besonders vorteilhaft ist es jedoch, wenn der erste Kondensator 11 und/oder der zweite Kondensator 12 möglichst großflächig angebunden sind.
Die vorliegende Erfindung ist insbesondere anhand einer einfachen einzigen MOS-Kapazität 11 dargestellt worden. Selbstverständlich läßt sich die Erfindung jedoch auch auf beliebige integrierte Schaltungen, die beispielsweise in CMOS- Technologie ausgebildet sind, mit beliebig vielen solcher MOS-Kondensatoren 11 erweitern. Insbesondere in CMOS-
Technologie ausgebildete, integrierte Schaltungen weisen typischerweise mindestens zwei dieser MOS-Kapazitäten, die zueinander komplementär aufgebaut sind, auf. Die vorliegende Erfindung wurde desweiteren anhand einer einzigen, zu der einzigen MOS-Kapazität 11 parallelgeschalteten Metallkapazität 12 dargestellt. Insbesondere ist es auch von besonderem Vorteil, wenn jeweils einem MOS-Kondensator 11 ei- ne Mehrzahl von erfindungsgemäßen Metallkondensatoren 12 parallel geschaltet sind. Insbesondere kann durch die Dimensionierung von MOS-Kondensatoren 11 und Metallkondensatoren 12 der Parallelschaltung diese optimal an das jeweilige Frequenzspektrum angepaßt werden und somit eine sehr breitbandi- ge Pufferung erzielt werden.
Zusammenfassend und abschließend kann festgestellt werden, daß die beschriebene integrierte Schaltung auf sehr einfache Art und Weise auf einer minimalen Fläche unterbringbar ist.

Claims

Patentansprüche
1. Integrierte Schaltung mit kapazitiven Elementen (11, 12) zur Glättung einer Versorgungsspannung, mit einer ersten Ver- sorgungsbahn (1) für ein erstes Versorgungspotential (VI) und einer zweiten Versorgungsbahn (2) für ein zweites Versorgungspotential (V2), die die integrierte Schaltung mit der Versorgungsspannung versorgen und die Bestandteil einer ersten metallischen Schicht (Ml) der integrierten Schaltung sind, d a d u r c h g e k e n n z e i c h n e t, daß mindestens eine weitere metallische Schicht (M2) mit mindestens einer weiteren Versorgungsbahn (3) vorgesehen ist, die jeweils über der ersten metallischen Schicht (Ml) ange- ordnet ist und die an ein Versorgungspotential (VI, V2) angeschlossen ist.
2. Integrierte Schaltung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß mindestens ein erstes kapazitives Element (11) und mindestens ein weiteres kapazitives Element (12), die zueinander parallel geschaltet sind, vorgesehen sind, wobei die ersten kapazitiven Elemente (11) unter der ersten metallischen Schicht (Ml) und die weiteren kapazitiven Elemente (12) zwi- sehen der ersten und der weiteren metallischen Schicht (Ml, M2) angeordnet sind.
3. Integrierte Schaltung nach einem der Ansprüche 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß die ersten kapazitiven Elemente (11) sowohl unter der ersten Versorgungsbahn (1) als auch unter der zweiten Versorgungsbahn (2) angeordnet sind und/oder die zweiten kapazitiven Elemente (12) sowohl über der zweiten Versorgungsbahn (2) als auch über der ersten Versorgungsbahn (1) angeordnet sind.
4. Integrierte Schaltung nach einem der Ansprüche 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß die ersten kapazitiven Elemente (11) im wesentlichen unter der ersten Versorgungsbahn (1) und/oder die weiteren ka- pazitiven Elemente (12) im wesentlichen über der zweiten Versorgungsbahn (2) angeordnet sind.
5. Integrierte Schaltung nach einem oder mehreren der vorstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß der Kapazitätswert der ersten kapazitiven Elemente (11) mindestens um den Faktor 10 größer ist als der Kapazitätswert der weiteren kapazitiven Elemente (12) .
6. Integrierte Schaltung nach einem oder mehreren der vorstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß die ersten kapazitiven Elemente (11) durch ein Zusammenwirken von mindestens einer in einer Polysiliziumschicht (P) der integrierten Schaltung ausgebildeten Polyabschnitten (4) und darunter im Substrat (S) der integrierten Schaltung ausgebildeten Dotierungsbereichen (7, 9) gebildet werden.
7. Integrierte Schaltung nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, daß die Polyabschnitte (4) mit den Versorgungsbahnen (1, 2) der ersten Metallschicht (Ml) jeweils über eine Vielzahl von Durchkontaktierungen (5) verbunden ist.
8. Integrierte Schaltung nach einem oder mehreren der vorstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß die weiteren kapazitiven Elemente (12) durch ein Zusammenwirken der weiteren Versorgungsbahnen (3) der weiteren me- tallischen Schichten (M2) und der jeweils darunter angeordne- ten ersten und/oder zweiten Versorgungsbahnen (1, 2) der ersten metallischen Schicht (Ml) gebildet werden.
9. Integrierte Schaltung nach einem oder mehreren der vorste- henden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß die kapazitiven Elemente (11, 12) jeweils einen resisiti- ven Anteil, der dem jeweiligen kapazitiven Anteil der kapazitiven Elemente (11, 12) in Reihe geschaltet ist, aufweist, wobei der resistive Anteil der weiteren kapazitiven Elemente (12) sich im wesentlichen aus den Leitwerten der entsprechenden Versorgungsbahnen (1, 2, 3) der ersten und der weiteren metallischen Schichten (Ml, M2) ergibt und wobei der resistive Anteil der ersten kapazitiven Elemente (11) sich im we- sentlichen aus den Leitwerten der Poly-Abschnitte (4) und der entsprechenden Dotierungsbereiche (7, 9) im Substrat (S) ergibt.
10. Integrierte Schaltung nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß der resistive Anteil der ersten kapazitiven Elemente (11) zumindest um den Faktor 10 größer ist als der entsprechende resistive Anteil der weiteren kapazitiven Elemente (12) .
PCT/DE1999/003829 1998-12-16 1999-12-01 Integrierte schaltung mit kapazitiven elementen WO2000036651A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000588808A JP2002532903A (ja) 1998-12-16 1999-12-01 容量性素子を有する集積回路
EP99966817A EP1057217A1 (de) 1998-12-16 1999-12-01 Integrierte schaltung mit kapazitiven elementen
KR1020007008812A KR20010040904A (ko) 1998-12-16 1999-12-01 용량성 성분들을 가지는 집적 회로
US09/640,150 US6465868B1 (en) 1998-12-16 2000-08-16 Integrated circuit having capacitive elements
US10/625,706 USRE39124E1 (en) 1998-12-16 2003-07-23 Integrated circuit having capacitive elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19858114 1998-12-16
DE19858114.9 1998-12-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/640,150 Continuation US6465868B1 (en) 1998-12-16 2000-08-16 Integrated circuit having capacitive elements

Publications (1)

Publication Number Publication Date
WO2000036651A1 true WO2000036651A1 (de) 2000-06-22

Family

ID=7891328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/003829 WO2000036651A1 (de) 1998-12-16 1999-12-01 Integrierte schaltung mit kapazitiven elementen

Country Status (6)

Country Link
US (2) US6465868B1 (de)
EP (1) EP1057217A1 (de)
JP (1) JP2002532903A (de)
KR (1) KR20010040904A (de)
CN (1) CN1291352A (de)
WO (1) WO2000036651A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1723673A2 (de) * 2004-03-10 2006-11-22 Freescale Semiconductor, Inc. Verfahren zur herstellung eines halbleiterbauelements und dadurch hergestelltes halbleiterbauelement

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332447A (ja) * 2002-05-13 2003-11-21 Mitsubishi Electric Corp 容量素子
US7768044B2 (en) * 2004-07-30 2010-08-03 Agere Systems Inc. Metal capacitor stacked with a MOS capacitor to provide increased capacitance density
US7675138B2 (en) 2005-09-30 2010-03-09 Broadcom Corporation On-chip capacitor structure
US8049302B2 (en) * 2005-09-30 2011-11-01 Broadcom Corporation On-chip capacitor structure with adjustable capacitance
JP4908006B2 (ja) * 2006-02-03 2012-04-04 株式会社東芝 半導体装置
JP2011165824A (ja) * 2010-02-08 2011-08-25 Nec Corp 半導体装置
CN102610609B (zh) * 2011-01-19 2014-09-10 万国半导体股份有限公司 集成一个电容的双金属氧化物半导体场效应晶体管
US9287350B2 (en) * 2014-07-22 2016-03-15 Taiwan Semiconductor Manufacturing Co., Ltd. Metal-insulator-metal capacitor
EP3174189B1 (de) * 2014-07-24 2020-09-16 NTN Corporation Leistungsübertragungsvorrichtung
JP6445374B2 (ja) * 2015-04-01 2018-12-26 ローム株式会社 コンデンサ構造
FR3080948A1 (fr) 2018-05-02 2019-11-08 Stmicroelectronics (Rousset) Sas Circuit integre comprenant un element capacitif, et procede de fabrication
GB2611444A (en) * 2018-09-10 2023-04-05 Pragmatic Printing Ltd Electronic circuit and method of manufacture
GB2604728B (en) * 2018-09-10 2023-07-19 Pragmatic Printing Ltd Electronic circuit and method of manufacture
US11152458B2 (en) 2020-02-07 2021-10-19 Macronix International Co., Ltd. Metal capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0163384A1 (de) * 1984-03-30 1985-12-04 Kabushiki Kaisha Toshiba Leiteranordnung für die Energieversorgung in einer integrierten Schaltung
JPH02250370A (ja) * 1989-03-23 1990-10-08 Nec Ic Microcomput Syst Ltd 半導体集積回路
US5396198A (en) * 1992-09-09 1995-03-07 Hitachi, Ltd. Electronic circuit device having a series connection of resistor and capacitance as a noise reducing circuit connected to a power source wiring
EP0656657A1 (de) * 1993-12-01 1995-06-07 Matra Mhs Anordnung zur Verminderung des Rauschpegels in einer integrierten Schaltung mit mehreren Leitschichten
JPH09246476A (ja) * 1996-03-14 1997-09-19 Oki Electric Ind Co Ltd 半導体集積回路の電源線及びそのレイアウト方法
EP0908950A2 (de) * 1997-08-20 1999-04-14 Siemens Aktiengesellschaft Integrierte Schaltung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127464A (ja) 1990-09-18 1992-04-28 Seiko Epson Corp マスタースライス方式集積回路装置用電源キャパシタセル
SE470415B (sv) 1992-07-06 1994-02-14 Ericsson Telefon Ab L M Kondensator med hög kapacitans i ett integrerat funktionsblock eller en integrerad krets, förfarande för framställning av kondensatorn och användning av kondensatorn som en integrerad avkopplingskondensator
JP2919241B2 (ja) * 1993-09-13 1999-07-12 日本電気株式会社 電源配線
JPH09186293A (ja) * 1996-01-04 1997-07-15 Kawasaki Steel Corp 半導体装置
US5959320A (en) * 1997-03-18 1999-09-28 Lsi Logic Corporation Semiconductor die having on-die de-coupling capacitance
US6146939A (en) * 1998-09-18 2000-11-14 Tritech Microelectronics, Ltd. Metal-polycrystalline silicon-N-well multiple layered capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0163384A1 (de) * 1984-03-30 1985-12-04 Kabushiki Kaisha Toshiba Leiteranordnung für die Energieversorgung in einer integrierten Schaltung
JPH02250370A (ja) * 1989-03-23 1990-10-08 Nec Ic Microcomput Syst Ltd 半導体集積回路
US5396198A (en) * 1992-09-09 1995-03-07 Hitachi, Ltd. Electronic circuit device having a series connection of resistor and capacitance as a noise reducing circuit connected to a power source wiring
EP0656657A1 (de) * 1993-12-01 1995-06-07 Matra Mhs Anordnung zur Verminderung des Rauschpegels in einer integrierten Schaltung mit mehreren Leitschichten
JPH09246476A (ja) * 1996-03-14 1997-09-19 Oki Electric Ind Co Ltd 半導体集積回路の電源線及びそのレイアウト方法
EP0908950A2 (de) * 1997-08-20 1999-04-14 Siemens Aktiengesellschaft Integrierte Schaltung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 014, no. 576 (E - 1016) 21 December 1990 (1990-12-21) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 01 30 January 1998 (1998-01-30) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1723673A2 (de) * 2004-03-10 2006-11-22 Freescale Semiconductor, Inc. Verfahren zur herstellung eines halbleiterbauelements und dadurch hergestelltes halbleiterbauelement
EP1723673A4 (de) * 2004-03-10 2010-06-16 Freescale Semiconductor Inc Verfahren zur herstellung eines halbleiterbauelements und dadurch hergestelltes halbleiterbauelement

Also Published As

Publication number Publication date
CN1291352A (zh) 2001-04-11
JP2002532903A (ja) 2002-10-02
EP1057217A1 (de) 2000-12-06
KR20010040904A (ko) 2001-05-15
US6465868B1 (en) 2002-10-15
USRE39124E1 (en) 2006-06-13

Similar Documents

Publication Publication Date Title
EP2143117B1 (de) Elektrisches vielschichtbauelement mit elektrisch nicht kontaktierter abschirmstruktur
WO2000036651A1 (de) Integrierte schaltung mit kapazitiven elementen
EP1497862B1 (de) Halbleiterbauelement mit integrierter gitterförmiger kapazitätsstruktur
DE10046910A1 (de) Halbleitervorrichtung
WO2005091366A2 (de) Halbleitermodul mit einem kopplungssubstrat und verfahren zur herstellung desselben
EP0289794B1 (de) RC-Leitung
DE10330490B4 (de) Integrierte MIM-Kondensatorstruktur
DE3844393A1 (de) Schaltungsanordnung mit geschalteter spule
EP1817778B1 (de) Vielschichtbauelement mit mehreren varistoren unterschiedlicher kapazität als esd-schutzelement
DE102005056906B4 (de) Integrierte Schaltungsanordnung mit in Reihe geschalteten Kondensatoren und Verwendung
EP1946340B1 (de) Elektrisches vielschichtbauelement mit spezieller form der elektroden zur reduzierung der fertigungsstreuung der kapazität
DE102008027422B4 (de) Integrierte Schaltung mit mehrstufiger Anpassungsschaltung und Verfahren zum Herstellen einer integrierten Schaltung mit mehrstufiger Anpassungsschaltung
DE602004000651T2 (de) Integrierte Spannungsreglerschaltung und deren Herstellungsverfahren
DE102004060369A1 (de) Halbleiterscheibe mit Teststruktur
DE19651554C2 (de) Halbleiterbauelement, das gegen elektromagnetische Störungen geschützt ist
DE112020006270B4 (de) Frequenzselektive oberfläche und elektromagnetische-welle-absorber
DE10302603B4 (de) Schaltungsstruktur mit einer in einem Chip angeordneten Treiberschaltung und einer Strom / Masse-Leitung
DE19736197C1 (de) Integrierte Schaltung mit Kondensatoren
DE10341564B4 (de) Kondensatoranordnung und Verfahren zur Herstellung derselben
DE10058782B4 (de) Verfahren zum Herstellen einer Kondensatoranordnung
EP2246866B1 (de) Elektrisches Bauelement und Schaltungsanordnung
DE3632944C2 (de) Hochfrequenz-Leistungstransistor mit abgleichbarem Anpassungsnetzwerk
DE102021105680B3 (de) Halbleitervorrichtung und Verfahren zum Bilden einer Halbleitervorrichtung
WO1989007373A1 (en) Electronic appliance
DE10131491B4 (de) Verfahren zum Herstellen einer Halbleiterspeichereinrichtung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99803004.X

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 1999966817

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1999966817

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1020007008812

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09640150

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999966817

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007008812

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020007008812

Country of ref document: KR