WO2005091366A2 - Halbleitermodul mit einem kopplungssubstrat und verfahren zur herstellung desselben - Google Patents

Halbleitermodul mit einem kopplungssubstrat und verfahren zur herstellung desselben Download PDF

Info

Publication number
WO2005091366A2
WO2005091366A2 PCT/DE2005/000477 DE2005000477W WO2005091366A2 WO 2005091366 A2 WO2005091366 A2 WO 2005091366A2 DE 2005000477 W DE2005000477 W DE 2005000477W WO 2005091366 A2 WO2005091366 A2 WO 2005091366A2
Authority
WO
WIPO (PCT)
Prior art keywords
coupling
semiconductor chips
substrate
semiconductor module
coupling substrate
Prior art date
Application number
PCT/DE2005/000477
Other languages
English (en)
French (fr)
Other versions
WO2005091366A3 (de
Inventor
Georg Meyer-Berg
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2005091366A2 publication Critical patent/WO2005091366A2/de
Publication of WO2005091366A3 publication Critical patent/WO2005091366A3/de
Priority to US11/532,321 priority Critical patent/US7498674B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1701Structure
    • H01L2224/1703Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73207Bump and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19102Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device
    • H01L2924/19103Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device interposed between the semiconductor or solid-state device and the die mounting substrate, i.e. chip-on-passive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19102Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device
    • H01L2924/19104Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device on the semiconductor or solid-state device, i.e. passive-on-chip

Definitions

  • the invention relates to a semiconductor module with a coupling substrate for the electrical coupling of integrated circuits of adjacent chips and to a method for producing the semiconductor module.
  • the semiconductor chips with their integrated circuits are arranged next to one another on a wiring substrate and are electrically connected to external contacts of the semiconductor module via the wiring substrate.
  • Another known possibility is to use a multilayer wiring substrate which, via its structured metal layers and correspondingly planned through contacts, enables internal connections between integrated circuits of adjacent semiconductor chips of the semiconductor module.
  • This solution is cost-intensive because the housing costs are high with a high connection density in a rewiring substrate rise sharply, especially since additional "build-up" layers are required for the rewiring substrate.
  • the object of the invention is to provide a semiconductor module and to provide a method for its production which does not increase the requirement for the wiring density of a wiring substrate and nevertheless enables integrated circuits of semiconductor chips of the semiconductor module arranged next to one another to be partially internally interconnected. It is also an object of the invention to provide an inexpensive solution to this problem.
  • a semiconductor module with a coupling substrate for the electrical coupling of integrated circuits of adjacent semiconductor chips is created.
  • the semiconductor module has semiconductor chips with integrated circuits. These semiconductor chips are arranged on a carrier structure, via which the semiconductor chips are electrically connected to external contacts of the semiconductor module.
  • This carrier structure can be a wiring substrate, which the few 10 ⁇ m contact surfaces of the semiconductor chips via wiring structures with the external contacts, the dimensions of some 100 ⁇ m, electrically connected.
  • a carrier structure can also have flat conductor structures which are formed with the aid of a flat conductor frame or a “lead frame”.
  • the coupling substrate for the electrical coupling of the integrated circuit of the adjacent semiconductor chips overlaps edge regions of these adjacent semiconductor chips. Chip contact surfaces are arranged on the active upper side of the semiconductor chips, which are electrically connected to one another via the coupling substrate.
  • Such a semiconductor module has the advantage that internal connections between the integrated circuits of adjacent semiconductor chips do not have to run via the relatively cost-intensive wiring substrate, but rather can be coupled to one another via a relatively inexpensive coupling substrate. Furthermore, this solution has the advantage that it is not a problem to allow crossings of assignments to the contact surfaces of the semiconductor chips via the coupling substrate. The user is therefore not bound to provide a strict sequence of opposing contact surfaces. In extreme cases, it can even connect a contact area of an integrated circuit located on the top left of a semiconductor chip with a contact area of an integrated circuit of an adjacent semiconductor chip located at the bottom right.
  • the coupling substrate has an upper side with coupling contact surfaces and an underside opposite the upper side.
  • the coupling substrate has an axis of symmetry, to which the coupling contact surfaces are arranged in mirror symmetry and are electrically connected to one another via coupling conductor tracks of the coupling substrate. Connections to correspondingly arranged contact surfaces of the integrated circuits of adjacent semiconductor components can then be made in the shortest possible way from such symmetrically arranged coupling surfaces.
  • the width of the coupling substrate can be adapted to the requirements of these connections between the coupling substrate and contact areas of adjacent semiconductor chips.
  • the coupling surfaces are electrically connected in pairs on both sides of the axis of symmetry.
  • This paired internal connection between the coupling contact surfaces of the coupling substrate has the advantage that no crossings occur and thus it is possible to use a single-layer combination of an insulating support and a metallic wiring structure for the formation of the coupling substrate, which reduces the cost of the coupling substrate.
  • Another advantageous coupling contact surface arrangement provides that not only signal connections and test connections are coupled via the coupling substrate, but also supply potentials such as V DD and V S s are connected via the coupling substrate.
  • the coupling substrate with its length 1 can be adapted to the length L of the side edges of the semiconductor chips to be coupled, and a large-area coupling contact surface can be provided for the respective supply potential in the area of the broad sides of the coupling substrate.
  • Via several bond wires connected in parallel an elongated and wide contact connection strip can thus be formed on the long sides of the coupling substrate for contact connection areas of the potential supply, which supplies the integrated circuits to be coupled with potential voltages via bonding wires or flipchip contacts.
  • the coupling contact areas in such a way that 2 bond connections are positioned thereon, which lead to two adjacent semiconductor chips and connect them to one another via such coupling contact areas.
  • the coupling contact surfaces are arranged in a staggered manner on the coupling substrate and spaced apart from one another in such a way that bond connections to the supply potential are possible in between.
  • the coupling contact areas with flip-chip contacts and to arrange them in such a way that they can be applied directly to contact areas of the adjacent integrated circuits of the semiconductor chips.
  • This ' coupling possibility establishes the shortest connection between the integrated circuits of the adjacent semiconductor chips.
  • the coupling substrate is simplified by the flip-chip technology in such a way that this solution for internal connections is superior to the previous solution proposals, as mentioned above.
  • a high connection density can be achieved with the flipchip technology, especially since the flipchip contacts cannot be applied with the aid of bonding tools, and thus enable a smaller step size or a smaller center distance between the coupling contact surfaces and thus also between the coupling conductor tracks , Furthermore, it is possible to connect the coupling contact areas to the chip contact areas via bond wire connections.
  • the respective width of the bonding tool must be taken into account for the center distance between the two coupling contact surfaces, so that although a larger step size is required, the adjustment options for bonding wire connections compared to aligning flipchip contacts are made considerably easier because this Executing operating personnel can closely observe the coupling contact surfaces to be adjusted and the chip contact surfaces. It is assumed that both the active upper side of the adjacent semiconductor chips and the upper sides of the coupling substrates can be viewed from a stereomicroscope, and the undersides of the coupling substrates are arranged in edge regions of the adjacent semiconductor chips.
  • the coupling substrate with its back not to the Randsei- th of the semiconductor chips, but on top 'of the wiring substrate of the semiconductor module disposed such that the edge regions of the adjacent semiconductor chips overlap the upper surface of the coupling substrate.
  • the coupling substrate has flip-chip contacts or surface-mountable contacts on its upper side, which can be connected to one another with the contact areas in an overlapping region of the semiconductor chips when the semiconductor chips are applied to the wiring substrate.
  • This embodiment of the invention has the advantage that the coupling substrate is almost completely mechanically protected by the adjacent semiconductor chips, because the overlapping edge regions of the semiconductor chips are arranged above the coupling substrate.
  • the coupling substrate has passive and / or active components which provide trimming, tuning, matching, inductive coupling and / or capacitive coupling between adjacent semiconductor chips via the coupling substrate.
  • passive components can be resistors, coils and capacitors, which arise depending on the line routing.
  • active components such as thin film transistors or thin film diodes, can also be implemented on the coupling substrate in order to increase the functionality of the integrated circuits coupled to one another.
  • fuse lines or "fuses” which can be interrupted later if necessary in order to increase the modularity of the semiconductor module.
  • "fuses” it is not even necessary to provide a special conductor track design, especially since normal coupling conductor tracks already exist in pairs between the coupling contact surfaces of the coupling substrate. These existing lines can be separated from each other.
  • An IC component with thin-film wiring can also be used as the coupling substrate.
  • the coupling substrate can be elongated and can be adapted to the edge length L of the adjacent semiconductor chips. If the edge length L of the adjacent semiconductor chips exceeds a critical length, then two, three or more coupling substrates with a single length 1 can also be provided, the sum of which can reach the total edge length L.
  • a contact area arrangement of adjacent semiconductor chips is preferably adapted to the arrangement of the coupling contact areas of the coupling substrate. The more precisely this adaptation takes place, the easier it is to maintain a reliable adjustment even when using flipchip contacts for the coupling substrate.
  • the methods for producing a semiconductor module with a coupling substrate have three main variants. These variants depend on whether the semiconductor chips with flip chip contacts or with bond connections are arranged on the wiring substrate. In addition, these methods depend on whether the coupling substrates are equipped with flipchip contacts or are intended for bond connections.
  • a wiring substrate for a semiconductor module with adjacent semiconductor chips is first produced using flip-chip technology, the adjacent semiconductor chips not only having flip-chip contacts on their active top side but also the integrated circuitry gene.
  • a coupling substrate which has flip-chip contacts on its upper side, is then applied with its lower side to the wiring substrate.
  • the coupling substrate is positioned in such a way that provided edge regions of the semiconductor chips overlap the coupling substrate.
  • the structure of the coupling substrate can also be electrically connected to the wiring substrate via vias.
  • These adjacent semiconductor chips also have flip-chip contacts, but with a larger diameter than the flip-chip contacts of the coupling substrate.
  • the next step is to apply adjacent semiconductor chips by overlapping the coupling substrate and by connecting the flip chip contacts of the semiconductor chip to the wiring substrate and the flip chip contacts of the coupling substrate with corresponding chip contact areas in the edge regions of the active top sides of the adjacent semiconductor chips.
  • This method has the advantage that the coupling substrate is largely covered by the semiconductor chips arranged above and overlapping and is thus protected against mechanical damage.
  • the method has the advantage that the coupling of the integrated circuit of adjacent semiconductor chips can be carried out with relatively few method steps.
  • a second variant of the method provides for the production of a wiring substrate for a semiconductor module with adjacent semiconductor chips, which have integrated circuits, as the first method step. Then the
  • This connection can preferably be done by soldering.
  • the last step is to establish bond connections between freely accessible chip contact areas of adjacent semiconductor chips with the wiring substrate.
  • This method has the advantage that the shortest possible electrical connections between the integrated circuits are created when the coupling substrate is applied.
  • the method differs from the first method in that bond connections are now also to be taken into account, but which only occur in edge regions of the wiring substrate. However, such bond connections must be embedded in a plastic compound in order to protect them from mechanical damage.
  • a third method variant for producing a semiconductor module provides that a wiring substrate for a semiconductor module with adjacent semiconductor chips which have integrated circuits is first produced. Then these semiconductor chips are placed on the wiring substrate, with a material connection between the rear sides of the
  • both the internal connections from the contact areas of the semiconductor chips to the coupling substrate and the external connections from the contact areas of the semiconductor chips to the external contact areas of the wiring substrate via the contact connection areas are produced using one and the same technique, which reduces the manufacturing costs of such a semiconductor module ,
  • Figure 1 shows a schematic plan view of a semiconductor module with two coupling substrates of a first embodiment of the invention
  • Figure 2 shows one. schematic cross section through the semiconductor module according to Figure 1;
  • FIG. 3 shows a schematic plan view of an upper side of a coupling substrate for the first embodiment of the invention according to FIG. 1;
  • FIG. 4 shows a schematic top view of a semiconductor module with a coupling substrate
  • FIG. 5 shows a schematic top view of a semiconductor module with two coupling substrates of a second embodiment of the invention
  • FIG. 6 shows a schematic cross section of a semiconductor module according to FIG. 5
  • FIG. 7 shows a schematic top view of an upper side of a coupling substrate for the second embodiment of the invention according to FIG. 5;
  • FIG. 8 shows a schematic top view of a semiconductor module with two coupling substrates of a third embodiment of the invention.
  • FIG. 9 shows a schematic cross section through the semiconductor module according to FIG. 8.
  • FIG. 10 shows a schematic plan view of an upper side of a coupling substrate for the third embodiment of the invention according to FIG. 8.
  • FIG. 1 shows a schematic top view of a semiconductor module 4 with two coupling substrates 1 of a first embodiment of the invention.
  • a plastic compound covering the semiconductor module 4 is omitted in FIG. 1 in order to show the two coupling substrates 1 and their internal bond connection 17 to the adjacent semiconductor chips 2 and 3 on a wiring substrate 5 of the semiconductor module 4.
  • FIG. 1 shows that the bond wire technology is used for this semiconductor module 4 as connection technology.
  • internal chip contact areas 8 are arranged in edge areas 6 and 7 of the adjacent semiconductor chips 2 and 3, respectively.
  • the two coupling substrates 1 overlap the semiconductor edges in the edge regions 6 and 7 and in turn have coupling contact surfaces 12. Between the coupling contact areas 12, the coupling substrates 1 and the internal chip contact areas 8 of the integrated circuits of the adjacent half conductor components 2 and 3, bond connections 17 are arranged, which produce the internal bond connection 17 between the internal chip contact areas 8 and the coupling contact areas 12.
  • the adjacent semiconductor chips 2 and 3 For the external connections of the semiconductor module 4 to its external contacts, the adjacent semiconductor chips 2 and 3 have external chip contact areas 23. These external chip contact areas 23 are connected via bond connections 16 to contact connection areas 24 on an upper side 25 of the wiring substrate 5.
  • the coupling substrates 1 While the semiconductor chips 2 and 3 have an edge length L x or L 2 , the coupling substrates 1 have a length li or 1 2 at a width b. Since in this embodiment of the invention two coupling substrates 1 are provided for the lengths Li and L 2 of the semiconductor chips 2 and 3, the length li and 1 2 of the coupling substrates are less than half the edge length L of the semiconductor chips 2 and 3.
  • the width b of the coupling substrates is selected so that a sufficient number of coupling contact surfaces 12 in pairs and staggered in their symmetry with respect to an axis of symmetry are possible number of coupling contact surfaces 12.
  • FIG. 2 shows a schematic cross section through the semiconductor module 4 according to FIG. 1 along the section plane AA in FIG. 1.
  • the semiconductor chips 2 and 3 are adjacent to
  • Rear sides 19 and 20 are arranged on chip mounting surfaces 21 of the top side 25 of the wiring substrate 5.
  • the underside of the coupling substrate 1 is integrally connected to the edge regions 6 and 7 of the semiconductor chips 2 and 3, respectively.
  • the underside of the coupling substrate 1 is integrally connected to the edge regions 6 and 7 of the semiconductor chips 2 and 3, respectively.
  • the coupling contact surfaces 12 are opposed in pairs in this embodiment of the invention arranged and connected via bond connections 17 to the pair of opposing internal chip contact surfaces 8. This results in an internal bond connection between the circuit of the integrated circuit of the semiconductor chip 2 and the circuit of the integrated circuit of the semiconductor chip 3 on the active upper side 10 of the semiconductor chip. With this coupling substrate 1, the connection density of the wiring substrate 5 for the semiconductor module 4 is thus relieved.
  • the external contacts 22 on the underside of the wiring substrate 5 are also the external contacts
  • FIG. 3 shows a schematic plan view of an upper side 11 of a coupling substrate 1 with a coupling contact surface arrangement 18 for the first embodiment of the invention according to FIG. 1.
  • the total edge length 1 of the coupling substrate 1 is 2.6 mm and the total width b is for this embodiment of the invention 0.7 mm.
  • the step size w for the coupling contact surfaces 12 is, for example, 80 ⁇ m, so that coupling lines, not shown, connect the 126 coupling contact surfaces 12 arranged in pairs on both sides of the axis of symmetry 14. With an edge length 1 of 10 mm, approximately 500 coupling contact surfaces 12 on the coupling substrate 1 are possible on both sides of the axis of symmetry 14.
  • the coupling contact surfaces 12 are rectangular and a minimum step width w cannot be undershot due to the dimensions of the bonding tool. Furthermore, three rows of coupling contact areas 12 are provided on both sides of the axis of symmetry 14, the alignment of the coupling contact areas 12 being offset from one row to the next row, and taking into account the thickness of a bonding wire, so that three bonding wires can be arranged next to one another in three rows without having to move touching each other and without triggering short circuits.
  • FIG. 4 shows a schematic plan view of a semiconductor module 4 with a coupling substrate 1.
  • This coupling substrate 1 has a coupling contact surface arrangement 18 which differs from the coupling substrate 1 of FIG. 3.
  • the coupling substrate 1 With this coupling substrate 1, not only signal connections and test connections are coupled via the coupling substrate 1, but also supply potentials such as V DD and V ss are connected via the coupling substrate 1.
  • the coupling substrate 1 corresponds in its edge length 1 approximately to the edge length L of the side edges of the semiconductor chips 2 and 3 to be coupled.
  • large-area coupling contact surfaces 32, 33, 34 and 35 for the respective supply potential V DD or V ss provided.
  • An elongated and wide contact connection strip 38, 39 can thus be formed on the long sides of the coupling substrate 1 via a plurality of bonding wires 36 connected in parallel to contact connection areas 37 of the potential supply. Supply these contact connection strips 38 and 39 the integrated circuits to be coupled with potential voltages V DD or V ss via the parallel bond wires 36 or via flip-chip contacts, as shown in FIG. 8.
  • the remaining coupling contact surfaces 12 are designed such that 2 bond connections 40 and 41 can be positioned thereon, which lead to two adjacent semiconductor chips 2 and 3 and are connected to one another via the coupling contact surfaces 12.
  • the coupling contact surfaces 12 are arranged gestaf- Feit on the coupling substrate 1 and spaced from each other such that between bond connections 42 to the supply potentials V DD and V ss are possible.
  • FIG. 5 shows a schematic top view of a semiconductor module 4 with two coupling substrates 1 of a second embodiment of the invention.
  • Components with the same functions as in the previous figures are identified by the same reference numerals and are not discussed separately.
  • the difference between this second embodiment and the first embodiment according to FIG. 1 is that the two coupling substrates 1 have no bond connections, but rather have flip-chip contacts which correspond to corresponding internal contact connection areas 24 of the integrated circuits of the adjacent semiconductor chips 2 and 3. pondieren. Only the contact areas 23 on the edge sides of the semiconductor chips 2 and 3 intended for an external connection are connected to contact connection areas 24 on the top side 25 of the wiring substrate 5 via bond connections 16.
  • FIG. 6 shows a schematic cross section of a semiconductor module 4 according to FIG. 5 along the section plane BB in FIG. 4.
  • the upper side of the coupling substrate 1 is 11 aligned on the top sides 9 and 10 of the semiconductor chip 2 and 3 and has on this top side 11 flip chip contacts 15 which are connected to internal chip contact surfaces 8.
  • Such a coupling substrate 1 can be more compact and have more coupling contact surfaces 12 than a coupling substrate 1, as is shown in FIG. 1 in the first embodiment of the invention.
  • a dashed line 26 in FIG. 5 again indicates the contour of a possible semiconductor module housing.
  • FIG. 7 shows a schematic top view of an upper side of a coupling substrate 1 with a coupling contact surface arrangement 18 for the second embodiment of the invention according to FIG. 4.
  • the edge length 1 of the coupling substrate 1 is 1.5 mm and the width b is 0.45 mm.
  • the step size w for the coupling contact surfaces 12, which are provided for flip-chip contacts, is likewise 60 ⁇ , and four rows of coupling contact surfaces 12 can be accommodated on this surface of the coupling substrate 1 on each side of the axis of symmetry 14.
  • the total number is set to 'either side of the axis of symmetry 14 100 coupling pads 12.
  • a side length 1 of 10 mm can be accommodated with the same arrangement of up to 650 coupling pads 12th
  • An advantage of flipchip contacts on a coupling substrate 1 is that the coupling contact surfaces 12 for flipchip contacts can be arranged in rows and columns and do not have to be staggered, as is the case with coupling contact surfaces 12 intended for bonding connections, as in FIG. 3 are.
  • FIG. 8 shows a schematic top view of a semiconductor module 4 with two coupling substrates 1 of a third embodiment of the invention.
  • Components with the same functionality NEN, as in the previous figures, are identified by the same reference symbols and are not discussed separately.
  • the third embodiment of the invention differs from the first and second embodiment of the invention in that the coupling substrate 1 is arranged with its underside 13 in a material-locking manner on the wiring substrate 5 and via flip-chip contacts 15 with internal chip contact areas in edge regions and the semiconductor chips 2 and 3 connected is.
  • FIG. 9 shows a schematic cross section through the semiconductor module 4 according to FIG. 8 along the section plane CC in FIG. 7.
  • the coupling substrate 1 is arranged between the wiring substrate 5, on which it is fixed in an electrically conductive manner with its underside 13, and the semiconductor chips 2 and 3.
  • the flipchip contacts 15 of the coupling substrate 1 have a smaller diameter than the flipchip contacts 30 of the semiconductor chips 2 and 3 and are partially electrically connected to the wiring substrate 5 via vias 31.
  • the rear sides 19 and 20 of the semiconductor chips 2 and 3 can simultaneously form an upper side of the semiconductor module 4, while the outer contacts 22 are arranged on the lower side 27.
  • a heat sink can be applied to the rear sides 19 and 20 of the semiconductor chips 2 and 3 without a plastic housing compound hindering the heat conduction.
  • a dashed line 26 again indicates the possible outlines of a plastic housing, which in this case can consist of an "undermold" material.
  • the flipchip contacts 30 of the semiconductor chips 2 and 3 have a larger diameter than the flipchip contacts 15 of the coupling substrate. And this diameter Difference is compensated for by the coupling substrate 1 itself.
  • FIG. 10 shows a schematic plan view of a top side 11 of a coupling substrate 1 for the third embodiment of the invention according to FIG. 8.
  • a plurality of flip chip contacts 30 are interconnected via conductor tracks 43 to supply connections of large area for the supply potential V DD or V SS , both of which Supply semiconductor chips with supply potentials, especially since these are electrically connected to supply lines of the wiring substrate of the semiconductor module via vias through the coupling substrate 1.

Abstract

Die Erfindung betrifft ein Halbleitermodul (4) mit einem Kopplungssubstrat (1) und Verfahren zur Herstellung derselben. Das Kopplungssubstrat (1) dient der internen elektrischen Kopplung integrierter Schaltung benachbarter Halbleiterchips (2, 3). Die Halbleiterchips (2, 3) weisen integrierte Schaltungen auf und sind auf einer Trägerstruktur angeordnet. Die Halbleiterchips (2, 3) stehen extern mit Außenkontakten (22) in Verbindung. Das Kopplungssubstrat (1) überlappt Randbereiche (6, 7) der benachbarten Halbleiterchips (2, 3).

Description

Beschreibung
Halbleitermodul mit einem Kopplungssubstrat und Verfahren zur Herstellung desselben
Die Erfindung betrifft ein Halbleitermodul mit einem Kopplungssubstrat zur elektrischen Kopplung integrierter Schaltung benachbarter Chips und ein Verfahren zur Herstellung des Halbleitermoduls. Die Halbleiterchips mit ihren integrierten Schaltungen sind nebeneinander auf einem Verdrahtungssubstrat angeordnet und elektrisch über das Verdrahtungssubstrat mit Außenkontakten des Halbleitermoduls verbunden.
Elektrische Verbindungen der integrierten Schaltungen unter- einander, ohne Kombination mit einem Außenkontakt werden als interne Verbindungen bezeichnet und üblicherweise durch Drahtbonden von Halbleiterchip zu Halbleiterchip realisiert. Das hat den Nachteil, dass die zu verbindenden Kontaktflächen der integrierten Schaltungen in gleicher Reihenfolge für bei- de Halbleiterchips entlang ihrer benachbarten Kanten vorliegen müssen, da Kreuzungen von Bonddrähten zu Kurzschlüssen führen können. Außerdem ist durch die erforderlichen Bondwerkzeuge die Verbindungsdichte zwischen den integrierten Schaltungen benachbarter Halbleiterchips auf wenige interne Verbindungen beschränkt.
Eine weitere bekannte Möglichkeit besteht darin, ein mehrlagiges Verdrahtungssubstrat einzusetzen, das über seine strukturierten Metalllagen und über entsprechend geplante Durch- kontakte interne Verbindungen zwischen integrierten Schaltungen benachbarter Halbleiterchips des Halbleitermoduls ermöglicht. Diese Lösung ist kostenintensiv, da mit hoher Verbindungsdichte in einem Umverdrahtungssubstrat die Gehäusekosten stark ansteigen, zumal zusätzliche "Build-up"-Lagen für das Umverdrahtungssubstrat erforderlich sind.
Schließlich ist es möglich, ergänzende Verbindungen über zusätzliche Flipchip-Kontakte der beteiligten Halbleiterchips und des Verdrahtungssubstrats zu schaffen, wobei auch hier sehr schnell die Grenzen der Verbindungsdichten in dem Umverdrahtungssubstrat erreicht werden und damit die Kosten explosionsartig steigen.
Aufgabe der Erfindung ist es, ein Halbleitermodul zu schaffen und ein Verfahren zu seiner Herstellung anzugeben, das die Anforderung an die Verdrahtungsdichte eines Verdrahtungssubstrats nicht erhöht und dennoch ermöglicht, dass integrierte Schaltungen nebeneinander angeordneter Halbleiterchips des Halbleitermoduls teilweise intern miteinander verschaltet werden können. Ferner ist es Aufgabe der Erfindung, eine preiswerte Lösung dieser Aufgabe anzugeben.
Diese Aufgabe wird mit dem Gegenstand der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildung der Erfindung ergeben sich aus den Unteransprüchen.
Erfindungsgemäß wird ein Halbleitermodul mit einem Kopplungs- substrat zur elektrischen Kopplung integrierter Schaltung benachbarter Halbleiterchips geschaffen. Das Halbleitermodul weist Halbleiterchips mit integrierten Schaltungen auf. Diese Halbleiterchips sind auf einer Trägerstruktur angeordnet, ü- ber das die Halbleiterchips mit Außenkontakten des Halblei- termoduls elektrisch in Verbindung stehen. Diese Trägerstruktur kann ein Verdrahtungssubstrat sein, das die wenige 10 μm großen Kontaktflächen der Halbleiterchips über Verdrahtungsstrukturen mit den Außenkontakten, die Dimensionen von eini- gen 100 μm aufweisen, elektrisch verbindet. Eine Trägerstrukturen kann auch Flachleiterstrukturen aufweisen, die mit Hilfe eines Flachleiterrahmens bzw. eines "Leadframes" gebildet sind. Das Kopplungssubstrat zur elektrischen Kopplung der integrierten Schaltung der benachbarten Halbleiterchips überlappt Randbereiche dieser benachbarten Halbleiterchips. Auf der aktiven Oberseite der Halbleiterchips sind Chipkontaktflächen angeordnet, die über das Kopplungssubstrat elektrisch miteinander in Verbindung stehen.
Ein derartiges Halbleitermodul hat den Vorteil, dass interne Verbindungen zwischen den integrierten Schaltungen benachbarter Halbleiterchips nicht über das relativ kostenintensive Verdrahtungssubstrat laufen müssen, sondern vielmehr über ein relativ preiswertes Kopplungssubstrat miteinander gekoppelt werden können. Des Weiteren hat diese Lösung den Vorteil, dass es kein Problem ist, über das Kopplungssubstrat auch Kreuzungen von Zuordnungen zu den Kontaktflächen der Halbleiterchips zuzulassen. Somit ist der Anwender nicht daran ge- bunden, eine strikte Reihenfolge gegenüberliegender Kontaktflächen vorzusehen. Er kann sogar im Extremfall eine links oben auf einem Halbleiterchip liegende Kontaktfläche einer integrierten Schaltung mit einer rechts unten angeordneten Kontaktfläche einer integrierten Schaltung eines benachbarten Halbleiterchips verbinden. Dazu weist das Kopplungssubstrat eine Oberseite mit Kopplungskontaktflächen und eine der Oberseite gegenüberliegende Unterseite auf. Der Spalt zwischen den Halbleiterchips, der von dem Kopplungssubstrat überbrückt wird, kann mit einer Kunststoffmasse aufgefüllt sein. Dieser aufgefüllte Spalt verleiht dem Kopplungssubstrat einen zusätzlichen Halt und stabilisiert mechanisch das flachen Halbleitermodul. In einer bevorzugten Ausführungsform der Erfindung weist das Kopplungssubstrat eine Symmetrieachse auf, zu der die Kopplungskontaktflächen spiegelsymmetrisch angeordnet sind und über Kopplungsleiterbahnen des Kopplungssubstrats miteinander elektrisch in Verbindung stehen. Von derartig symmetrisch angeordneten Kopplungsflächen können dann jeweils Verbindungen zu entsprechend angeordneten Kontaktflächen der integrierten Schaltungen benachbarter Halbleiterbauteile auf kürzestem Wege hergestellt werden. Die Breite des Kopplungssubstrats kann den Erfordernissen dieser Verbindungen zwischen Kopplungssubstrat und Kontaktflächen benachbarter Halbleiterchips ange- passt werden.
Bei einer weiteren Ausführungsform der Erfindung stehen die Kopplungsflächen beiderseits der Symmetrieachse paarweise e- lektrisch in Verbindung. Diese paarweise interne Verbindung zwischen den Kopplungskontaktflächen des Kopplungssubstrats hat den Vorteil, dass keine Kreuzungen auftreten und somit ist es möglich, mit einer einlagigen Kombination aus einem isolierenden Träger und einer metallischen Verdrahtungsstruktur für die Bildung des Kopplungssubstrats auszukommen, was die Kosten des Kopplungssubstrats vermindert.
Eine weitere vorteilhafte Kopplungskontaktflächenanordnung sieht vor, dass nicht nur Signalanschlüsse und Testanschlüsse über das Kopplungssubstrat gekoppelt werden, sondern auch Versorgungspotentiale, wie VDD und VSs über das Kopplungssubstrat angeschlossen werden. Dazu kann das Kopplungssubstrat mit seiner Länge 1 der Länge L der Seitenkanten der zu kop- pelnden Halbleiterchips angepasst werden und im Bereich der Breitseiten des Kopplungssubstrats kann eine großflächige Kopplungskontaktfläche für das jeweilige Versorgungspotential vorgesehen sein. Über mehrere parallel geschaltete Bonddrähte zu Kontaktanschlussflächen der Potentialversorgung kann somit ein langgezogener und breiter Kontaktanschlussstreifen auf den Längsseiten des Kopplungssubstrats gebildet werden, der die zu koppelnden integrierten Schaltungen mit Potentialspan- nungen über Bonddrähte oder Flipchip-Kontakte versorgt.
Ferner ist es möglich die Kopplungskontaktflächen derart zu gestalten, dass 2 Bondanschlüsse darauf positioniert werden, die zu zwei benachbarten Halbleiterchips führen und diese ü- ber derartige Kopplungskontaktflächen miteinander verbindet. Dazu sind die Kopplungskontaktflächen gestaffelt auf dem Kopplungssubstrat angeordnet und derart voneinander beabstandet, dass dazwischen Bondverbindungen zu dem Versorgungspotentialen möglich sind.
Weiterhin ist es möglich, die Kopplungskontaktflächen mit Flipchip-Kontakten zu versehen und diese derart anzuordnen, dass sie unmittelbar auf Kontaktflächen der benachbarten integrierten Schaltungen der Halbleiterchips aufgebracht werden können. Diese ' Kopplungsmöglichkeit stellt die kürzeste Verbindung zwischen den integrierten Schaltungen der benachbarten Halbleiterchips her. Außerdem wird durch die Flipchip- Technik das Kopplungssubstrat derart vereinfacht, dass diese Lösung für interne Verbindungen den bisherigen Lösungsvor- schlagen, wie sie oben erwähnt werden, überlegen ist. Hinzu kommt, dass mit der Flipchip-Technik eine hohe Verbindungsdichte erreicht werden kann, zumal die Flipchip-Kontakte nicht mithilfe von Bondwerkzeugen aufzubringen sind, und somit eine geringere Schrittweite bzw. einen kleineren Mit- telabstand zwischen den Kopplungskontaktflächen und damit auch zwischen den Kopplungsleiterbahnen ermöglichen. Weiterhin ist es möglich, die Kopplungskontaktflächen über Bonddrahtverbindungen zu den Chipkontaktflächen zu verbinden. In diesem Fall muss bei dem Mittelabstand zwischen den zwei Kopplungskontaktflächen die jeweilige Breite des Bondwerk- zeugs berücksichtigt werden, sodass damit zwar eine größere Schrittweite erforderlich wird, jedoch die Justagemöglichkei- ten bei Bonddrahtverbindungen gegenüber dem Ausrichten von Flipchip-Kontakten erheblich erleichtert wird, weil das ausführende Bedienungspersonal die zueinander zu justierenden Kopplungskontaktflächen und die Chipkontaktflächen genau beobachten kann. Dabei wird vorausgesetzt, dass sowohl die aktive Oberseite der benachbarten Halbleiterchips, als auch die Oberseiten der Kopplungssubstrate von einem Stereomikroskop aus einsehbar sind, und die Kopplungssubstrate mit ihren Un- terseiten in Randbereichen der benachbarten Halbleiterchips angeordnet sind.
Bei einer alternativen Ausführungsform der Erfindung ist das Kopplungssubstrat mit seiner Rückseite nicht auf den Randsei- ten der Halbleiterchips, sondern auf der Oberseite' des Verdrahtungssubstrats des Halbleitermoduls derart angeordnet, dass die Randbereiche der benachbarten Halbleiterchips die Oberseite des Kopplungssubstrats überlappen. Das Kopplungssubstrat weist in dieser Ausführungsform der Erfindung Flip- chip-Kontakte oder oberflächenmontierbare Kontakte auf seiner Oberseite auf, die mit den Kontaktflächen in einem überlappenden Bereich der Halbleiterchips beim Aufbringen der Halbleiterchips auf das Verdrahtungssubstrat miteinander verbindbar sind. Diese Ausführungsform der Erfindung hat den Vor- teil, dass das Kopplungssubstrat durch die benachbarten Halbleiterchips fast vollständig mechanisch geschützt wird, weil die überlappenden Randbereiche der Halbleiterchips über dem Kopplungssubstrat angeordnet sind. Demgegenüber ist eine Anordnung, bei der das Kopplungssubstrat auf Randbereichen der Halbleiterchips überlappend mit seiner Unterseite fixiert ist und Kopplungskontaktflächen seiner Oberseite über Bondverbindung mit Chipkontaktflächen auf den aktiven Oberseiten der benachbarten Halbleiterchips elektrisch in Verbindung stehen, eine weniger vor mechanischen Beschädigungen geschützte Lösung. In diesem Fall ist es erforderlich, das gesamte Halbleitermodul mit einer Kunst- stoffgehäusemasse auf der Oberseite des Verdrahtungssubstrats zu beschichten, sodass die Halbleiterchips, die Bondverbindungen und die Kopplungssubstrate in der Kunststoffmasse eingebettet sind.
Bei einer weiteren Ausführungsform der Erfindung weist das Kopplungssubstrat passive und/oder aktive Bauelemente auf, die ein Trimmen, ein Abstimmen, ein Anpassen, ein induktives Koppeln und/oder ein kapazitives Koppeln zwischen benachbarten Halbleiterchips über das Kopplungssubstrat bereitstellen. Derartige passive Bauelemente können Widerstände, Spulen und Kondensatoren sein, die abhängig von der Leitungsführung entstehen. Andererseits können auch aktive Bauelemente, wie Dünnfilmtransistoren oder Dünnfilmdioden, auf dem Kopplungssubstrat verwirklicht werden, um die Funktionalität der mit- einander gekoppelten integrierten Schaltungen zu erhöhen.
Schließlich ist es auch möglich, so genannte Sicherungsleitungen oder "fuses" vorzusehen, die bei Bedarf nachträglich unterbrochen werden können, um die Modularität des Halbleitermoduls zu erhöhen. Für derartige "fuses" ist es nicht ein- mal nötig eine besondere Leiterbahnausbildung vorzusehen, zumal bereits normale Kopplungsleiterbahnen paarweise zwischen den Kopplungskontaktflächen des Kopplungssubstrats bestehen. Diese bestehenden Leitungen können durch einfachen Laserab- trag nachträglich voneinander getrennt werden. Ebenso kann auch ein IC-Bauteil mit Dünnfilmverdrahtung als Kopplungssubstrat eingesetzt werden.
Das Kopplungssubstrat kann lang gestreckt ausgebildet sein und an die Kantenlänge L der benachbarten Halbleiterchips angepasst sein. Überschreitet die Kantenlänge L der benachbarten Halbleiterchips eine kritische Länge, so können auch zwei, drei oder mehrere Kopplungssubstrate mit einer Einzel- länge 1 vorgesehen werden, die in ihrer Summe die Gesamtkantenlänge L erreichen können.
Weiterhin wird vorzugsweise eine Kontaktflächenanordnung benachbarter Halbleiterchips an die Anordnung der Kopplungskon- taktflächen des Kopplungssubstrats angepasst. Je genauer diese Anpassung erfolgt, umso einfacher ist es, auch bei der Anwendung von Flipchip-Kontakten für das Kopplungssubstrat eine zuverlässige Justage einzuhalten.
Die Verfahren zur Herstellung eines Halbleitermodüls mit einem Kopplungssubstrat, wie es die Erfindung vorsieht, weisen drei Hauptvarianten auf. Diese Varianten sind abhängig davon, ob die Halbleiterchips mit Flipchip-Kontakten oder mit Bondverbindungen auf dem Verdrahtungssubstrat angeordnet sind. Außerdem sind diese Verfahren davon abhängig, ob die Kopplungssubstrate mit Flipchip-Kontakten ausgestattet sind oder für Bondverbindungen vorgesehen sind.
In einer ersten Verfahrensvariante wird zunächst ein Verdrah- tungssubstrat für ein Halbleitermodul mit benachbarten Halbleiterchips in Flipchip-Technik hergestellt, wobei die benachbarten Halbleiterchips auf ihrer aktiven Oberseite nicht nur Flipchip-Kontakte sondern auch die integrierten Schaltun- gen aufweisen. Als Nächstes wird dann ein Kopplungssubstrat, das Flipchip-Kontakte auf seiner Oberseite aufweist, mit seiner Unterseite auf dem Verdrahtungssubstrat aufgebracht. Dabei wird das Kopplungssubstrat derart positioniert, dass vor- gesehene Randbereiche der Halbleiterchips das Kopplungssubstrat überlappen. Alternativ kann auch die Struktur des Kopplungssubstrats mit dem Verdrahtungssubstrat elektrisch über Durchkontakte verbunden sein. Diese benachbarten Halbleiterchips weisen ebenfalls Flipchip-Kontakte auf, jedoch mit ei- nem größeren Durchmesser als die Flipchip-Kontakte des Kopplungssubstrats. Als nächster Schritt folgt ein Aufbringen benachbarter Halbleiterchips unter Überlappung des Kopplungssubstrats und unter Verbinden der Flipchip-Kontakte des Halbleiterchips mit dem Verdrahtungssubstrat und der Flipchip- Kontakte des Kopplungssubstrats mit entsprechenden Chipkontaktflächen in den Randbereichen der aktiven Oberseiten der benachbarten Halbleiterchips.
Dieses Verfahren hat den Vorteil, dass das Kopplungssubstrat weitgehend von den darüber und überlappend angeordneten Halbleiterchips bedeckt wird und somit vor mechanischer Beschädigung geschützt wird. Darüber hinaus hat das Verfahren den Vorteil, dass mit relativ wenigen Verfahrensschritten die Kopplung der integrierten Schaltung benachbarter Halbleiter- chips durchgeführt werden kann.
Eine zweite Variante des Verfahrens sieht als ersten Verfahrensschritt das Herstellen eines Verdrahtungssubstrats für ein Halbleitermodul mit benachbarten Halbleiterchips vor, die integrierte Schaltungen aufweisen. Anschließend werden die
Halbleiterchips benachbart auf das Verdrahtungssubstrat unter stoffschlüssiger Verbindung der Rückseiten der Halbleiterchips mit Chipmontageflächen des Verdrahtungssubstrats aufge- bracht. Somit ergibt sich ein freier Zugriff auf Chipkontaktflächen auf der Oberseite der Halbleiterchips. Schließlich, wird auf die Oberseiten der Halbleiterchips auf benachbarten Randbereichen der Halbleiterchips ein Kopplungssubstrat aufgebracht, das Flipchip-Kontakte aufweist. Die Flipchip- Kontakte des Kopplungssubstrats werden dann mit Chipkontaktflächen benachbarter Halbleiterchips in den Überlappungsbereichen zwischen Kopplungssubstrat und den Halbleiterchips elektrisch verbunden.
Dieses Verbinden kann vorzugsweise durch Auflöten erfolgen. Als letzter Schritt folgt noch ein Herstellen von Bondverbindungen zwischen frei zugänglichen Chipkontaktflächen von benachbarten Halbleiterchips mit dem Verdrahtungssubstrat. Die- ses Verfahren hat den Vorteil, dass beim Aufbringen des Kopplungssubstrats die kürzest möglichen elektrischen Verbindungen zwischen den integrierten Schaltungen untereinander entstehen. Das Verfahren unterscheidet sich von dem ersten Verfahren dadurch, dass nun auch Bondverbindungen zu berücksich- tigen sind, die jedoch nur in Randbereichen des Verdrahtungssubstrats auftreten. Derartige Bondverbindungen müssen jedoch in eine Kunststoffmasse eingebettet werden, um sie vor mechanischen Beschädigungen zu schützen.
Eine dritte Verfahrensvariante zur Herstellung eines Halbleitermoduls sieht vor, dass zunächst ein Verdrahtungssubstrat für ein Halbleitermodul mit benachbarten Halbleiterchips die integrierte Schaltungen aufweisen hergestellt wird. Anschließend werden diese Halbleiterchips auf das Verdrahtungssub- strat, unter stoffschlüssiger Verbindung der Rückseiten der
Halbleiterchips mit Flipchip-Kontaktflächen des Verdrahtungssubstrats und unter freiem Zugriff auf Chipkontaktflächen auf den Oberseiten der Halbleiterchips, aufgebracht. In diesem Fall .besteht ein voller Zugriff zu den Kontaktflächen der Halbleiterchips auf ihren Oberseiten. Anschließend wird ein Kopplungssubstrat aufgebracht, das nicht wie oben Flipchip- Kontakte aufweist, sondern Kontaktflächen. Dieses Kopplungs- substrat wird mit seiner Unterseite auf die Randber,eiche der Halbleiterchips aufgebracht und mit diesen Randbereichen stoffschlüssig verbunden. Auf der Oberseite des Kopplungssubstrats sind Kontaktflächen angeordnet, die nun frei zugänglich sind und über Bondverbindung mit entsprechenden Kontakt- flächen auf den Halbleiterchips zur internen elektrischen Verbindung zwischen den einzelnen integrierten Schaltungen verbunden werden können. Abschließend werden auch hier die Kontaktflächen der Halbleiterchips, die nicht mit dem Kopplungssubstrat verbunden sind, mit einem Bonddraht versehen, der diese Kontaktflächen mit den Kontaktanschlussflächen des Verdrahtungssubstrats verbindet.
Bei diesem Verfahren werden sowohl die internen Verbindungen von den Kontaktflächen der Halbleiterchips zu dem Kopplungs- substrat als auch die externen Verbindungen von den Kontaktflächen der Halbleiterchips zu den Außenkontaktflachen des Verdrahtungssubstrats über die Kontaktanschlussflächen mit ein und derselben Technik hergestellt, was die Herstellungskosten eines derartigen Halbleitermoduls vermindert.
Zusammenfassend ist festzustellen, dass alle Probleme, die im Stand der Technik auftreten, dadurch gelöst werden können, dass ein kleines zusätzliches hierarchisches Kopplungssubstrat verwendet wird, um die internen Verbindungen zwischen den benachbarten Komponenten zu realisieren. Weil das zusätzliche Kopplungssubstrat sehr klein und überschaubar ist, um interne Verbindungen zu realisieren, bildet dies eine preiswertere Lösung, als das komplexe Verdrahtungssubstrat zu er- weitern. Wenn für das Kopplungssubstrat außerdem Flipchip- Kontakte vorgesehen sind, so entfallen die Nachteile einer eingeschränkten Verbindungsdichte, wie sie beim Drahtbonden auftreten. Das Kopplungssubstrat kann darüber hinaus, sowohl aktive als auch passive Schaltungselemente zusätzlich aufweisen, und so eine höhere Funktionalität des Halbleitermoduls verwirklichen.
Die Erfindung wird nun anhand der beigefügten Figuren näher erläutert.
Figur 1 zeigt eine schematische Draufsicht auf ein Halbleitermodul mit zwei Kopplungssubstraten einer ersten Ausführungsform der Erfindung;
Figur 2 zeigt einen. schematischen Querschnitt durch das Halbleitermodul gemäß Figur 1;
Figur 3 zeigt eine schematische Draufsicht auf eine Oberseite eines Kopplungssubstrats für die erste Äusführungs- form der Erfindung gemäß Figur 1;
Figur 4 zeigt eine schematische Draufsicht auf ein Halbleitermodul mit einem Kopplungssubstrat;
Figur 5 zeigt eine schematische Draufsicht auf ein Halbleitermodul mit zwei Kopplungssubstraten einer zweiten Ausführungsform der Erfindung;
Figur 6 zeigt einen schematischen Querschnitt eines Halbleitermoduls gemäß der Figur 5; Figur 7 zeigt eine schematische Draufsicht auf eine Oberseite eines Kopplungssubstrats für die zweite Ausführungsform der Erfindung gemäß Figur 5;
Figur 8 zeigt eine schematische Draufsicht auf ein Halbleitermodul mit zwei Kopplungssubstraten einer dritten Ausführungsform der Erfindung;
Figur 9 zeigt einen schematischen Querschnitt durch das Halb- leitermodul gemäß Figur 8;
Figur 10 zeigt eine schematische Draufsicht auf eine Oberseite eines Kopplungssubstrats für die dritte Ausführungsform der Erfindung gemäß Figur 8.
Figur 1 zeigt eine schematische Draufsicht auf ein Halbleitermodul 4 mit zwei Kopplungssubstraten 1 einer ersten Ausführungsform der Erfindung. Eine, das Halbleitermodul 4 bedeckende, Kunststoffmasse ist in Figur 1 weggelassen, um die zwei Kopplungssubstrate 1 und ihre internen Bondverbindung 17 zu den benachbarten Halbleiterchips 2 und 3 auf einem Verdrahtungssubstrat 5 des Halbleitermoduls 4 zu zeigen. Darüber hinaus zeigt Figur 1 das für dieses Halbleitermodul 4 als Verbindungstechnik die Bonddrahttechnik eingesetzt ist. Für eine interne Verdrahtung sind interne Chipkontaktflächen 8 in Randbereichen 6 und 7 der benachbarten Halbleiterchips 2 bzw. 3 angeordnet.
Die zwei Kopplungssubstrate 1 überlappen die Halbleiterkanten in den Randbereichen 6 und 7 und weisen ihrerseits Kopplungskontaktflächen 12 auf. Zwischen den Kopplungskontaktflächen 12, der Kopplungssubstraten 1 und den internen Chipkontaktflächen 8 der integrierten Schaltungen der benachbarten Halb- leiterbauteile 2 und 3, sind Bondverbindungen 17 angeordnet, welche die internen Bondverbindung 17 zwischen den internen Chipkontaktflächen 8 und den Kopplungskontaktflächen 12 herstellen. Für die externen Verbindungen des Halbleitermoduls 4 zu seinen Außenkontakten, weisen die benachbarten Halbleiterchips 2 und 3 externe Chipkontaktflächen 23 auf. Diese externen Chipkontaktflächen 23 sind über Bondverbindungen 16 mit Kontaktanschlussflächen 24 auf einer Oberseite 25 des Verdrahtungssubstrats 5 verbunden.
Während die Halbleiterchips 2 bzw. 3 eine Kantenlänge Lx oder L2 aufweisen, haben die Kopplungssubstrate 1 eine Länge li bzw. 12 bei einer Breite b. Da in dieser Ausführungsform der Erfindung zwei Kopplungssubstrate 1 für die Längen Li und L2 der Halbleiterchips 2 und 3 vorgesehen sind, sind die Länge li und 12 der Kopplungssubstrate geringer als die halbe Kantenlänge L der Halbleiterchips 2 und 3. Die Breite b der Kopplungssubstrate wird so gewählt, dass eine ausreichende Anzahl an Kopplungskontaktflächen 12 paarweise und in ihrer Symmetrie zu einer Symmetrieachse gestaffelte Anzahl an Koppelkontaktflächen 12 möglich sind.
Figur 2 zeigt einen schematischen Querschnitt durch das Halbleitermodul 4 gemäß Figur 1 entlang der Schnittebene AA in Figur 1. Die Halbleiterchips 2 und 3 sind benachbart mit
Rückseiten 19 und 20 auf Chipmontageflächen 21 der Oberseite 25 des Verdrahtungssubstrats 5 angeordnet. Das Kopplungssubstrat 1 ist mit seiner Unterseite 13 stoffschlüssig mit den Randbereichen 6 und 7 der Halbleiterchips 2 bzw. 3 verbunden. Das Kopplungssubstrat 1 ist mit seiner Unterseite 13 stoffschlüssig mit den Randbereichen 6 und 7 der Halbleiterchips 2 bzw. 3 verbunden. Die Kopplungskontaktflächen 12 sind in dieser Ausführungsform der Erfindung paarweise gegenüberliegend angeordnet und über Bondverbindungen 17 mit den paarweise gegenüberliegenden internen Chipkontaktflächen 8 verbunden. Daraus ergibt sich eine interne Bondverbindung zwischen der Schaltung des integrierten Schaltkreises des Halbleiterchips 2 mit der Schaltung des integrierten Schaltkreises des Halbleiterchips 3 auf der aktiven Oberseite 10 der Halbleiterchips. Mit diesem Kopplungssubstrat 1 wird somit die Verbindungsdichte des Verdrahtungssubstrats 5 für das Halbleitermodul 4 entlastet. Die Außenkontakte 22 auf der Unterseite des Verdrahtungssubstrats 5 sind gleichzeitig die Außenkontakte
12 des Halbleitermoduls 4. Diese Außenkontakte 22 stellen externe Verbindungsmöglichkeiten dar und sind über Außenkon- taktflächen 28 des Verdrahtungssubstrats 5, wie über Durchkontakte 29 durch das Verdrahtungssubstrat 5, mit Kontaktan- Schlussflächen 24 auf der Oberseite 25 des Verdrahtungssubstrats 5 verbunden. Von dort aus besteht eine Bonddrahtverbindung 16 zu Chipkontaktflächen 23 auf der Oberseite 10 für die Halbleiterchips 2 bzw. 3. Die Kontur des Halbleitermodulgehäuses wird mit einer gestrichelten Linie 26 gekennzeich- net.
Figur 3 zeigt eine schematische Draufsicht auf eine Oberseite 11 eines Kopplungssubstrats 1 mit einer Koppelkontaktflächen- anordnung 18 für die erste Ausführungsform der Erfindung ge- maß Figur 1. Die gesamte Kantenlänge 1 des Kopplungssubstrats 1 beträgt 2,6 mm und die gesamte Breite b beträgt für diese Ausführungsform der Erfindung 0,7 mm. Die Schrittweite w für die Kopplungskontaktflächen 12 sei beispielsweise 80 μm, so- dass nicht gezeigte Kopplungsleitungen die beiderseits der Symmetrieachse 14 paarweise angeordneten 126 Kopplungskontaktflächen 12 verbinden. Bei einer Kantenlänge 1 von 10 mm sind beiderseits der Symmetrieachse 14 ungefähr 500 Kopplungskontaktflächen 12 auf dem Kopplungssubstrat 1 möglich. Da in der ersten Ausführungsform der Erfindung Bondverbindungen vorgesehen sind, sind die Kopplungskontaktflächen 12 rechteckförmig und es kann eine Mindestschrittweite w auf- grund der Dimensionen des Bondwerkzeuges nicht unterschritten werden. Ferner sind drei Reihen von Kopplungskontaktflächen 12 beiderseits der Symmetrieachse 14 vorgesehen, wobei die Ausrichtung der Kopplungskontaktflächen 12 von einer Reihe zur nächsten Reihe versetzt ist, und die Dicke eines Bond- drahtes berücksichtigt, sodass bei drei Reihen drei Bonddrähte nebeneinander angeordnet werden können, ohne sich gegenseitig zu berühren und ohne Kurzschlüsse auszulösen.
Figur 4 zeigt eine schematische Draufsicht auf ein Halblei- termodul 4 mit einem Kopplungssubstrat 1. Dieses Kopplungssubstrat 1 weist eine Kopplungskontaktflächenanordnung 18 auf, die sich von dem Kopplungssubstrat 1 der Figur 3 unterscheidet.
Mit diesem Kopplungssubstrat 1 werden nicht nur Signalanschlüsse und Testanschlüsse über das Kopplungssubstrat 1 angekoppelt, sondern auch Versorgungspotentiale wie VDD und Vss über das Kopplungssubstrat 1 angeschlossen. Dazu entspricht das Kopplungssubstrat 1 in seiner Kantenlänge 1 etwa der Kan- tenlänge L der Seitenkanten der zu koppelnden Halbleiterchips 2 und 3. Ferner sind im Bereich der Breitseiten des Kopplungssubstrats 1 großflächige Kopplungskontaktflächen 32, 33, 34 und 35 für das jeweilige Versorgungspotential VDD bzw. Vss vorgesehen. Über mehrere parallel geschaltete Bonddrähte 36 zu Kontaktanschlussflächen 37 der Potentialversorgung kann somit ein langgezogener und breiter Kontaktanschlussstreifen 38, 39 auf den Längsseiten des Kopplungssubstrats 1 gebildet werden. Diese Kontaktanschlussstreifen 38 und 39 versorgen die zu koppelnden integrierten Schaltungen mit Potentialspannungen VDD bzw. Vss über die parallel geschalteten Bonddrähte 36 oder über Flipchip-Kontakte, wie sie Figur 8 zeigt.
Die übrigen Kopplungskontaktflächen 12 sind derart gestaltet, dass 2 Bondanschlüsse 40 und 41 darauf positioniert werden können, die zu zwei benachbarten Halbleiterchips 2 und 3 führen und über die Kopplungskontaktflächen 12 miteinander verbunden sind. Dazu sind die Kopplungskontaktflächen 12 gestaf- feit auf dem Kopplungssubstrat 1 angeordnet und derart voneinander beabstandet, dass dazwischen Bondverbindungen 42 zu den Versorgungspotentialen VDD bzw. Vss möglich sind.
Figur 5 zeigt eine schematische Draufsicht auf ein Halblei- termodul 4 mit zwei Kopplungssubstraten 1 einer zweiten Ausführungsform der Erfindung. Komponenten mit gleichen Funktionen, wie in den vorhergehenden Figuren, werden mit gleichen Bezugszeichen gekennzeichnet und nicht extra erörtert. Der Unterschied dieser zweiten Ausführungsform gegenüber der ers- ten Ausführungsform nach Figur 1 liegt darin, dass die zwei Kopplungssubstrate 1 keine Bondverbindungen aufweisen, sondern vielmehr Flipchip-Kontakte besitzen, die mit entsprechenden internen Kontaktanschlussflächen 24 der integrierten Schaltungen der benachbarten Halbleiterchips 2 und 3 korres- pondieren. Lediglich die für eine externe Verbindung bestimmten Kontaktflächen 23 auf den Randseiten der Halbleiterchips 2 und 3 sind über Bondverbindungen 16 mit Kontaktanschlussflächen 24 auf der Oberseite 25 des Verdrahtungssubstrats 5 verbunden.
Figur 6 zeigt einen schematischen Querschnitt eines Halbleitermoduls 4 gemäß Figur 5 entlang der Schnittebene BB in Figur 4. Das Kopplungssubstrat 1 ist mit seiner Oberseite 11 auf die Oberseiten 9 und 10 des Halbleiterchips 2 bzw. 3 ausgerichtet und weist auf dieser Oberseite 11 Flipchip-Kontakte 15 auf, die mit internen Chipkontaktflächen 8 in Verbindung stehen. Ein derartiges Kopplungssubstrat 1 kann kompakter aufgebaut sein und mehr Kopplungskontaktflächen 12 aufweisen, als ein Kopplungssubstrat 1, wie es in der ersten Ausführungsform der Erfindung mit Figur 1 gezeigt wird. Eine gestrichelte Linie 26 deutet in Figur 5 wieder die Kontur eines möglichen Halbleitermodulgehäuses an.
Figur 7 zeigt eine schematische Draufsicht auf eine Oberseiten eines Kopplungssubstrats 1 mit einer Koppelkontaktflä- chenanordnung 18 für die zweite Ausführungsform der Erfindung gemäß Figur 4. Die Kantenlänge 1 des Kopplungssubstrats 1 ist 1,5 mm und die Breite b ist 0,45 mm. Die Schrittweite w für die Kopplungskontaktflächen 12, die für Flipchip-Kontakte vorgesehen sind, beträgt ebenfalls 60 μ , und es lassen sich vier Reihen von Kopplungskontaktflächen 12 auf dieser Fläche des Kopplungssubstrats 1 auf jeder Seite der Symmetrieachse 14 unterbringen. Damit ist die Gesamtzahl auf 'jeder Seite der Symmetrieachse 14 100 Kopplungskontaktflächen 12. Bei einer Kantenlänge 1 von 10 mm lassen sich bei gleicher Anordnung bis zu 650 Kopplungskontaktflächen 12 unterbringen. Ein Vorteil von Flipchip-Kontakten auf einem Kopplungssubstrat 1 liegt darin, dass die Kopplungskontaktflächen 12 für Flipchip-Kontakte in Zeilen und Spalten angeordnet werden können und nicht versetzt vorgesehen werden müssen, wie bei Kopplungskontaktflächen 12, die für Bondverbindungen, wie in Figur 3, vorgesehen sind.
Figur 8 zeigt eine schematische Draufsicht auf ein Halbleitermodul 4 mit zwei Kopplungssubstraten 1 einer dritten Ausführungsform der Erfindung. Komponenten mit gleichen Funktio- nen, wie in den vorhergehenden Figuren, werden mit gleichen Bezugszeichen gekennzeichnet und nicht extra erörtert. Die dritte Ausführungsform der Erfindung unterscheidet sich von der ersten und zweiten Ausführungsform der Erfindung dadurch, dass das Kopplungssubstrat 1 mit seiner Unterseite 13 stoffschlüssig auf dem Verdrahtungssubstrat 5 angeordnet ist und über Flipchip-Kontakte 15 mit internen Chipkontaktflächen in Randbereichen und der Halbleiterchips 2 bzw. 3 verbunden ist.
Figur 9 zeigt einen schematischen Querschnitt durch das Halbleitermodul 4 gemäß Figur 8 entlang der Schnittebene CC in Figur 7 Das Kopplungssubstrat 1 ist zwischen dem Verdrahtungssubstrat 5, auf dem es mit seiner Unterseite 13 elektrisch leitend fixiert ist, und den Halbleiterchips 2 und 3 angeordnet. Die Flipchip-Kontakte 15 des Kopplungssubstrats 1 weisen einen geringeren Durchmesser auf, als die Flipchip- Kontakte 30 der Halbleiterchips 2 und 3 und stehen teilweise über Durchkontakte 31 mit dem Verdrahtungssubstrat 5 elektrisch in Verbindung.
Dadurch können die Rückseiten 19 und 20 der Halbleiterchips 2 bzw. 3 gleichzeitig eine Oberseite des Halbleitermoduls 4 bilden, während auf der Unterseite 27 die Außenkontakte 22 angeordnet sind. Bei diesem Halbleitermodul 4 kann auf den Rückseiten 19 und 20 der Halbleiterchips 2 und 3 eine Wärmesenke aufgebracht werden, ohne dass eine Kunststoffgehäusemasse die Wärmeleitung behindert. Eine gestrichelte Linie 26 deutet wieder die möglichen Umrisse eines Kunststoffgehäuses an, das in diesem Fall aus einem "Undermold"-Material beste- hen kann. Die Flipchip-Kontakte 30 der Halbleiterchips 2 und 3 weisen einen größeren Durchmesser auf als die Flipchip- Kontakte 15 des Kopplungssubstrats. Und dieser Durchmesserun- terschied wird durch das Kopplungssubstrat 1 selbst ausgeglichen.
Figur 10 zeigt eine schematische Draufsicht auf eine Obersei- te 11 eines Kopplungssubstrats 1 für die dritte Ausführungsform der Erfindung gemäß Figur 8. Mehrere Flipchip-Kontakte 30 sind über Leiterbahnen 43 zu großflächige Versorgungsanschlüssen für die Versorgungspotential VDD bzw. Vss zusammengeschaltet, die beide Halbleiterchips mit Versorgungspotenti- alen versorgen, zumal diese über Durchkontakte durch das Kopplungssubstrat 1 mit Versorgungsleitungen des Verdrahtungssubstrats des Halbleitermoduls elektrisch verbunden sind.

Claims

Patentansprüche
1. Halbleitermodul mit einem Kopplungssubstrat (1) zur e- lektrischen Kopplung und Versorgung integrierter Schaltungen benachbarter Halbleiterchips (2, 3) , wobei das Halbleitermodul (4) Halbleiterchips (2, 3) mit integrierten Schaltungen aufweist, die auf einem Trägerstruktur angeordnet sind und die elektrischen über das Verdrahtungssubstrat (5) mit Außenkontakten (22) des Halbleitermoduls (4) in Verbindung stehen; das Kopplungssubstrat (1) Randbereiche (6, 7) benachbarter Halbleiterchips (2, 3) überlappt und - Chipkontaktflächen (8) auf aktiven Oberseiten (9, 10) benachbarter Halbleiterchips (2, 3) über das Kopplungssubstrat (1) elektrisch miteinander in Verbindung stehen.
2. Halbleitermodul nach Anspruch 1, dadurch gekennzeichnet, dass das Kopplungssubstrat (1) eine Oberseite (11) mit Kopplungskontaktflächen (12) und eine der Oberseite (11) gegenüberliegenden Unterseite (13) aufweist.
3. Halbleitermodul nach Anspruch 2, dadurch gekennzeichnet, dass das Kopplungssubstrat (1) eine Symmetrieachse (14) aufweist, zu der die Kopplungskontaktflächen (12) spiegel- symmetrisch angeordnet sind und über Kopplungsleiterbahnen des Kopplungssubstrats (1) miteinander elektrisch in Verbindung stehen.
4. Halbleitermodul nach Anspruch 3, dadurch gekennzeichnet, dass die Kopplungskontaktflächen (12) beiderseits der Symmetrieachse (14) paarweise elektrisch in Verbindung ste- hen.
5. Halbleitermodul nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Kopplungskontaktflächen (12) Flipchip-Kontakte (15) aufweisen.
6. Halbleitermodul nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Kopplungskontaktflächen (12) Bonddrahtverbindungen (17) zu den Chipkontaktflächen (8) aufweisen.
7. Halbleitermodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kopplungssubstrat (1) mit seiner Unterseite (13) auf dem Verdrahtungssubstrat (5) angeordnet ist und über Flipchip-Kontakte (15) auf der Oberseite (11) des Kopplungssubstrats (1) mit Chip ontaktflächen (8) von Halbleiterchips (2, 3) in Flipchip-Technik elektrisch in Verbindung steht.
8. Halbleitermodul nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Kopplungssubstrat (1) auf Randbereichen (6, 7) der Halbleiterchips (2, 3) überlappend angeordnet ist und Flipchip-Kontakte (15) aufweist, die mit Chipkontaktflächen (8) in den Randbereichen (6, 7) der Halbleiterchips (2, 3) elektrisch in Verbindung stehen.
Halbleitermodul nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Kopplungssubstrat (1) auf Randbereichen (6, 7) der Halbleiterchips (2, 3) überlappend mit seiner Unterseite (13) fixiert ist und Kopplungskontaktflächen (12) seiner Oberseite (11) über Bondverbindungen (17) mit. Chipkontaktflächen (8) auf den aktiven Oberseiten (9, 10) der benachbarten Halbleiterchips (2, 3) elektrisch in Verbindung stehen.
10. Halbleitermodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kopplungssubstrat (1) passive und/oder aktive Bauelemente aufweist, die ein Trimmen, ein Abstimmen, ein Anpassen, ein induktives Koppeln ein kapazitives Koppeln und/oder eine weitere zusätzliche Funktionalität zwischen benachbarten Halbleiterchips (2, 3) über das Kopplungssubstrat (1) bereitstellen.
11. Halbleitermodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kopplungssubstrat (1) lang gestreckt und an die Kantenlänge (L) der benachbarten Halbleiterchips (2, 3) angepasst ist.
12. Halbleitermodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Kontaktflächenanordnung (18) benachbarter Halbleiterchips (2, 3) an eine Kontaktflächenanordnung (18) der Kontaktfläche des Kopplungssubstrats (1) angepasst sind.
13. Verfahren zur Herstellung eines Halbleitermoduls (4) mit einem Kopplungssubstrat (1) zur elektrischen Kopplung integrierter Schaltungen benachbarter Halbleiterchips (2, 3) , wobei das Verfahren nachfolgende Verfahrensschritte aufweist: Herstellen eines Verdrahtungssubstrats (5) für ein Halbleitermodul (4) mit benachbarten Halbleiterchips (2, 3) in Flipchip-Technik, die integrierte Schaltungen aufweisen; Aufbringen eines Kopplungssubstrats (1) , das Flipchip-Kontakte (15) auf seiner Oberseite (11) auf- weist, mit seiner Unterseite (13) auf dem Verdrahtungssubstrat (5) , in der Weise, dass das Kopplungssubstrat (1) überlappend zwischen Positionen, die für benachbarte Halbleiterchips (2, 3) vorgesehen sind, angeordnet wird; - Aufbringen benachbarter Halbleiterchips (2, 3) unter Überlappung des Kopplungssubstrats (1) und unter Verbindenden der Flipchip-Kontakte (15) der Halbleiterchips (2, 3) mit dem Verdrahtungssubstrat (5) und der Flipchip-Kontakte (15) des Kopplungs- Substrats (1) mit entsprechenden Chipkontaktflächen (8) in den Randbereichen (6, 7) der aktiven Oberseiten (9, 10) der benachbarten Halbleiterchips (2, 3).
14. Verfahren zur Herstellung eines Halbleitermoduls (4) mit einem Kopplungssubstrat (1) zur elektrischen Kopplung integrierter Schaltungen benachbarter Halbleiterchips (2, 3) , wobei das Verfahren nachfolgende Verfahrensschritte aufweist: - Herstellen eines Verdrahtungssubstrats (5) für ein Halbleitermodul (4) mit benachbarten Halbleiterchips (2, 3) die integrierte Schaltungen aufweisen; Aufbringen benachbarter Halbleiterchips (2, .3) auf das Verdrahtungssubstrat (5) unter stoffschlüssiger Verbindung der Rückseiten (19, 20) der Halbleiterchips (2, 3) mit Chipmontageflächen (21) des Ver- drahtungssubstrats (5) und unter freiem Zugriff auf Chipkontaktflächen (8) auf den Oberseiten (9, 10) der Halbleiterchips (2, 3) ; Aufbringen eines Kopplungssubstrats (1) , das Flipchip-Kontakte (15) aufweist, wobei die Flipchip- Kontakte (15) des Kopplungssubstrats (1) mit Chipkontaktflächen (8) benachbarter Halbleiterchips (2, 3) in Überlappungsbereichen zwischen Kopplungssubstrat (1) und Halbleiterchips (2, 3) elektrisch verbunden werden; - Herstellen von Bondverbindungen (17) zwischen frei zugänglichen Chipkontaktflächen (8) der benachbarten Halbleiterchips (2, 3) und dem Verdrahtungssubstrat (5) .
15. Verfahren zur Herstellung eines Halbleitermoduls (4) mit einem Kopplungssubstrat (1) zur elektrischen Kopplung integrierter Schaltungen benachbarter Halbleiterchips (2, 3) , wobei das Verfahren nachfolgende Verfahrensschritte aufweist: - Herstellen eines Verdrahtungssubstrats (5) für ein Halbleitermodul (4) mit benachbarten Halbleiterchips (2, 3), die integrierte Schaltungen aufweisen; Aufbringen benachbarter Halbleiterchips (2, 3) auf das Verdrahtungssubstrat (5) unter stoffschlüssiger Verbindung der Rückseiten (19, 20) der Halbleiterchips (2, 3) mit Chipmontageflächen (21) des Verdrahtungssubstrats (5) und unter freiem Zugriff auf Chipkontaktflächen (8) auf den Oberseiten (9, 10) der Halbleiterchips (2, 3) ;
Aufbringen eines Kopplungssubstrats (1) mit seiner Unterseite (13) auf Randbereiche (6, 7) der benach- barten Halbleiterchips (2, 3), wobei das Kopplungssubstrat (1) Kopplungs ontaktflächen (12) auf seiner frei zugänglichen Oberseite (11) aufweist; Herstellen von Bondverbindungen (17) zwischen frei zugänglichen Kopplungskontaktflächen (12) des Kopp- lungssubstrats (1) mit Chipkontaktflächen (8) der benachbarten Halbleiterchips (2, 3) und von Bondverbindungen (16) zwischen Chipkontaktflächen (8) der Halbleiterchips (2, 3) und dem Verdrahtungssubstrat (5) .
PCT/DE2005/000477 2004-03-18 2005-03-16 Halbleitermodul mit einem kopplungssubstrat und verfahren zur herstellung desselben WO2005091366A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/532,321 US7498674B2 (en) 2004-03-18 2006-09-15 Semiconductor module having a coupling substrate, and methods for its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004013681A DE102004013681B3 (de) 2004-03-18 2004-03-18 Halbleitermodul mit einem Kopplungssubstrat und Verfahren zur Herstellung desselben
DE102004013681.5 2004-03-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/532,321 Continuation US7498674B2 (en) 2004-03-18 2006-09-15 Semiconductor module having a coupling substrate, and methods for its production

Publications (2)

Publication Number Publication Date
WO2005091366A2 true WO2005091366A2 (de) 2005-09-29
WO2005091366A3 WO2005091366A3 (de) 2006-03-16

Family

ID=34964926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/000477 WO2005091366A2 (de) 2004-03-18 2005-03-16 Halbleitermodul mit einem kopplungssubstrat und verfahren zur herstellung desselben

Country Status (4)

Country Link
US (1) US7498674B2 (de)
CN (1) CN100517703C (de)
DE (1) DE102004013681B3 (de)
WO (1) WO2005091366A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498674B2 (en) 2004-03-18 2009-03-03 Infineon Technologies Ag Semiconductor module having a coupling substrate, and methods for its production
WO2015120196A1 (en) * 2014-02-06 2015-08-13 Xilinx, Inc. Low insertion loss package pin structure and method
US10177107B2 (en) 2016-08-01 2019-01-08 Xilinx, Inc. Heterogeneous ball pattern package

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9069418B2 (en) * 2008-06-06 2015-06-30 Apple Inc. High resistivity metal fan out
US8227904B2 (en) * 2009-06-24 2012-07-24 Intel Corporation Multi-chip package and method of providing die-to-die interconnects in same
US9059179B2 (en) * 2011-12-28 2015-06-16 Broadcom Corporation Semiconductor package with a bridge interposer
DE102013106965B4 (de) * 2013-03-15 2021-12-16 Taiwan Semiconductor Manufacturing Co., Ltd. Halbleiter-Die-Package und Verfahren zum Bilden desselben
US9070644B2 (en) 2013-03-15 2015-06-30 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging mechanisms for dies with different sizes of connectors
US9646894B2 (en) 2013-03-15 2017-05-09 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging mechanisms for dies with different sizes of connectors
US11069734B2 (en) 2014-12-11 2021-07-20 Invensas Corporation Image sensor device
US11056373B2 (en) * 2015-07-21 2021-07-06 Apple Inc. 3D fanout stacking
US20180166419A1 (en) * 2016-12-12 2018-06-14 Nanya Technology Corporation Semiconductor package
US11177201B2 (en) * 2017-11-15 2021-11-16 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor packages including routing dies and methods of forming same
WO2020010265A1 (en) 2018-07-06 2020-01-09 Invensas Bonding Technologies, Inc. Microelectronic assemblies
KR102538704B1 (ko) * 2018-12-04 2023-06-01 에스케이하이닉스 주식회사 플렉시블 브리지 다이를 포함한 스택 패키지
US11296053B2 (en) 2019-06-26 2022-04-05 Invensas Bonding Technologies, Inc. Direct bonded stack structures for increased reliability and improved yield in microelectronics
KR20210029422A (ko) * 2019-09-06 2021-03-16 에스케이하이닉스 주식회사 전자기간섭 차폐층을 포함하는 반도체 패키지
US11631647B2 (en) 2020-06-30 2023-04-18 Adeia Semiconductor Bonding Technologies Inc. Integrated device packages with integrated device die and dummy element
US11764177B2 (en) 2020-09-04 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded structure with interconnect structure
US11728273B2 (en) 2020-09-04 2023-08-15 Adeia Semiconductor Bonding Technologies Inc. Bonded structure with interconnect structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2569052A1 (fr) * 1984-08-10 1986-02-14 Thomson Csf Procede d'interconnexion de circuits integres
US20020056911A1 (en) * 1999-05-06 2002-05-16 Hitachi, Ltd. Semiconductor device
US6436735B1 (en) * 1997-05-23 2002-08-20 Alpine Microsystems, Inc. Method for mounting an integrated circuit having reduced thermal stresses between a bond pad and a metallic contact

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0509825A3 (en) * 1991-04-16 1993-11-24 Nec Corp Package structure for semiconductor device
US5917242A (en) 1996-05-20 1999-06-29 Micron Technology, Inc. Combination of semiconductor interconnect
US5817530A (en) 1996-05-20 1998-10-06 Micron Technology, Inc. Use of conductive lines on the back side of wafers and dice for semiconductor interconnects
US6517117B1 (en) 2000-11-13 2003-02-11 Han-Chin Lai Through wall connector for a reservoir
JP3839267B2 (ja) * 2001-03-08 2006-11-01 株式会社ルネサステクノロジ 半導体装置及びそれを用いた通信端末装置
JP3948393B2 (ja) * 2002-03-13 2007-07-25 ソニー株式会社 半導体装置及びその製造方法
TWI221333B (en) * 2003-01-14 2004-09-21 Advanced Semiconductor Eng Bridge connection type of MCM package
DE102004013681B3 (de) 2004-03-18 2005-11-17 Infineon Technologies Ag Halbleitermodul mit einem Kopplungssubstrat und Verfahren zur Herstellung desselben

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2569052A1 (fr) * 1984-08-10 1986-02-14 Thomson Csf Procede d'interconnexion de circuits integres
US6436735B1 (en) * 1997-05-23 2002-08-20 Alpine Microsystems, Inc. Method for mounting an integrated circuit having reduced thermal stresses between a bond pad and a metallic contact
US20020056911A1 (en) * 1999-05-06 2002-05-16 Hitachi, Ltd. Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498674B2 (en) 2004-03-18 2009-03-03 Infineon Technologies Ag Semiconductor module having a coupling substrate, and methods for its production
WO2015120196A1 (en) * 2014-02-06 2015-08-13 Xilinx, Inc. Low insertion loss package pin structure and method
US10038259B2 (en) 2014-02-06 2018-07-31 Xilinx, Inc. Low insertion loss package pin structure and method
US10177107B2 (en) 2016-08-01 2019-01-08 Xilinx, Inc. Heterogeneous ball pattern package

Also Published As

Publication number Publication date
US20070080442A1 (en) 2007-04-12
WO2005091366A3 (de) 2006-03-16
US7498674B2 (en) 2009-03-03
DE102004013681B3 (de) 2005-11-17
CN1961426A (zh) 2007-05-09
CN100517703C (zh) 2009-07-22

Similar Documents

Publication Publication Date Title
WO2005091366A2 (de) Halbleitermodul mit einem kopplungssubstrat und verfahren zur herstellung desselben
DE2542518C3 (de)
DE10250538B4 (de) Elektronisches Bauteil als Multichipmodul und Verfahren zu dessen Herstellung
DE102005016439B4 (de) Halbleiterbauelementpackung und Herstellungsverfahren
DE4301915C2 (de) Mehrfachchip-Halbleitervorrichtung
DE102004022884B4 (de) Halbleiterbauteil mit einem Umverdrahtungssubstrat und Verfahren zur Herstellung desselben
DE102005010156B4 (de) Verfahren zum Ausbilden einer Anordnung aus gestapelten Einzelschaltkreisen
EP1716595B1 (de) Halbleiterbauteil mit einem stapel aus halbleiterchips und verfahren zur herstellung desselben
DE10259221B4 (de) Elektronisches Bauteil mit einem Stapel aus Halbleiterchips und Verfahren zur Herstellung desselben
DE102018132701A1 (de) Halbleiter-Package und Herstellungsverfahren dafür
DE3233195A1 (de) Halbleitervorrichtung
DE4027072C2 (de) Halbleiteranordnung
DE102006016345A1 (de) Halbleitermodul mit diskreten Bauelementen und Verfahren zur Herstellung desselben
DE19714470A1 (de) Drahtbondchipverbindung mit hoher Dichte für Multichip-Module
DE10142119B4 (de) Elektronisches Bauteil und Verfahren zu seiner Herstellung
DE1933547A1 (de) Anschlussvorrichtung fuer Halbleiterelemente
EP1120831A2 (de) Elektrisches Bauteil mit einer Abschirmeinrichtung
DE19801312A1 (de) Halbleiterbauelement mit mehreren Substratlagen und zumindest einem Halbleiterchip und einem Verfahren zum Herstellen eines solchen Halbleiterbauelementes
DE102005041174A1 (de) Leistungshalbleiterbauteil mit Leitungen innerhalb eines Gehäuses
EP0022176A1 (de) Modul für Schaltungschips
DE19517367A1 (de) Verfahren zum Anschließen der Ausgangsbereiche eines Chips mit integrierter Schaltung und so erhaltener Mehr-Chip-Modul
DE60215019T2 (de) Trennung von integrierten optischen modulen und strukturen
DE102005027356A1 (de) Halbleiterleistungsbauteilstapel in Flachleitertechnik mit oberflächenmontierbaren Außenkontakten und ein Verfahren zur Herstellung desselben
EP1145315A1 (de) Vertikal integrierte halbleiteranordnung
DE10142117A1 (de) Elektronisches Bauteil mit wenigstens zwei gestapelten Halbleiterchips sowie Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11532321

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580015247.X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 11532321

Country of ref document: US

122 Ep: pct application non-entry in european phase