WO2000034771A1 - Procede de detection d'hydrogene sulfure ou d'ion sulfure et procede de detection de substance specifique utilisant le premier procede - Google Patents

Procede de detection d'hydrogene sulfure ou d'ion sulfure et procede de detection de substance specifique utilisant le premier procede Download PDF

Info

Publication number
WO2000034771A1
WO2000034771A1 PCT/JP1999/006847 JP9906847W WO0034771A1 WO 2000034771 A1 WO2000034771 A1 WO 2000034771A1 JP 9906847 W JP9906847 W JP 9906847W WO 0034771 A1 WO0034771 A1 WO 0034771A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
sulfide
hydrogen sulfide
metal
specific substance
Prior art date
Application number
PCT/JP1999/006847
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Ebinuma
Koji Ushizawa
Original Assignee
Daiichi Pure Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP34700398A external-priority patent/JP4233160B2/ja
Priority claimed from JP08403599A external-priority patent/JP4286371B2/ja
Priority claimed from JP14784899A external-priority patent/JP4044702B2/ja
Application filed by Daiichi Pure Chemicals Co., Ltd. filed Critical Daiichi Pure Chemicals Co., Ltd.
Priority to EP99973327A priority Critical patent/EP1143244B1/en
Priority to AT99973327T priority patent/ATE290207T1/de
Priority to US09/856,790 priority patent/US6969613B1/en
Priority to DE69924017T priority patent/DE69924017T2/de
Publication of WO2000034771A1 publication Critical patent/WO2000034771A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/527Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving lyase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/223Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols
    • G01N31/224Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols for investigating presence of dangerous gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0044Sulphides, e.g. H2S
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/18Sulfur containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/18Sulfur containing
    • Y10T436/182Organic or sulfhydryl containing [e.g., mercaptan, hydrogen, sulfide, etc.]

Definitions

  • the present invention provides a method for simply and sensitively quantifying hydrogen sulfide or sulfide ion in a sample by utilizing a promotion or inhibition reaction of complex formation between a metal ion and a metal indicator by hydrogen sulfide or sulfide ion, And a method for generating hydrogen sulfide from a specific substance in a sample, measuring the hydrogen sulfide or a sulfide ion derived from the hydrogen sulfide by the above-described quantitative method, and quantifying the specific substance simply and with high sensitivity.
  • Background art
  • Sulfur is one of the elements that plays an important role in nature.
  • sulfur-containing amino acids such as cysteine and methionine play a large role as constituents.
  • cysteine and methionine play a large role as constituents.
  • sulfur is taken up in the form of sulfate ions and reduced to sulfide ions, after which cysteine synthesis proceeds, followed by methionine synthesis.
  • methionine is ingested from food through the food chain and metabolized to cysteine in vivo. In this metabolic process, homocystin is produced as an intermediate.
  • Homocysteine is an intermediate metabolite that is almost absent in normal circumstances, but it has been reported that the higher the blood concentration, the higher the incidence of coronary artery disease and stroke. For this reason, the amount of homocysteine in the blood is being recognized as a risk factor that is useful for predicting the occurrence of thromboembolism such as myocardial infarction and cerebral infarction, or atherosclerosis.
  • cysteine is an amino acid produced by the metabolism of methionine, it can serve as an auxiliary index for understanding the cause of homocysteine metabolism abnormality.
  • hydrogen sulfide or sulfide ions derived from hydrogen sulfide is also important as an indicator of environmental pollution such as air pollution and water pollution of rivers. By measuring, the contamination status can be confirmed.
  • one object of the present invention is to provide a simpler and more sensitive method for quantitative determination of hydrogen sulfide or sulfide ion.
  • Another object of the present invention is to generate hydrogen sulfide from a specific substance in a sample, measure the hydrogen sulfide or sulfide ion derived therefrom by the above-described quantitative method, and determine the specific substance in a simple and highly sensitive manner. The purpose is to provide a method for quantitative determination.
  • the present inventors have conducted intensive studies to achieve the above object, and have found that hydrogen sulfide or sulfide ions utilize the action of inhibiting or promoting the color reaction between metal ions and metal indicators to reduce sulfide in the sample. Simple and highly sensitive hydrogen or sulfide ion They have found that they can be quantified, and have completed the present invention.
  • a sample containing hydrogen sulfide or sulfide ion reacts with a metal ion or a compound that releases the metal ion, and forms a color by reacting with the metal ion. It is intended to provide a method for quantifying hydrogen sulfide or sulfide ion, characterized by adding a metal indicator inhibited or promoted by hydrogen sulfide or sulfide ion, and measuring the coloring intensity of the metal indicator.
  • Another object of the present invention is to provide, in a sample containing a specific substance, a component which acts on the specific substance to generate hydrogen sulfide or sulfide ion; a metal ion or a compound which releases the metal ion; A specific substance characterized by reacting with a metal ion to form a color, adding a metal indicator whose color forming reaction is inhibited or promoted by the hydrogen sulfide or sulfide ion, and measuring the color intensity by the metal indicator. It provides a quantification method.
  • hydrogen sulfide or sulfide ion can be quantified simply and highly sensitively by utilizing the promotion or inhibition reaction of the complex formation of a metal ion and a metal indicator by sulfide ion.
  • a sample containing a specific substance is subjected to a component that acts on the specific substance to generate hydrogen sulfide or a sulfide ion. Specific substances in the sample can be determined easily and with high sensitivity.
  • FIG. 1 is a diagram showing the results of quantification of sulfide ions by the color development inhibition method.
  • FIG. 2 is a diagram showing the results of quantification of sulfide ion by the color development promotion method.
  • FIG. 3 is a diagram showing the results of quantification of homocysteine by the color development promoting method.
  • FIG. 4 is a diagram showing the results of quantification of cysteine by the color development promoting method.
  • the method for determining hydrogen sulfide or sulfide ion of the present invention utilizes the action of inhibiting the color reaction between a metal ion and a metal indicator. That is, metal sulfide is generated by bringing hydrogen sulfide or sulfide ion present in the sample into contact with metal ion, and at the same time, the metal ion is reacted with the metal indicator to measure the coloring intensity, thereby obtaining the metal ion. Determine the amount of complex formed by the reaction between carbon and metal indicator.
  • the above-mentioned amount of complex formation is subtracted from the amount of complex formation obtained when the metal ion and the metal indicator are reacted.
  • the amount by which the amount of complex formation is reduced by the property of the metal without complex formation is determined.
  • the amount by which the amount of complex formation has decreased corresponds to the amount of hydrogen sulfide or sulfide ions present in the sample. Therefore, the content of hydrogen sulfide or sulfide ion in the sample can be calculated based on the decrease in the amount of complex formation.
  • the amount of complex formation when the metal ion is reacted with the metal indicator under the same conditions as above except for L where hydrogen sulfide or sulfide ion is not present is calculated by subtracting
  • the increase in the amount of complex formation is determined. This increase in the amount of complex formation was due to the promotion of the reaction between the metal ion and the metal indicator by the hydrogen sulfide or sulfide ion, so that the amount corresponding to the hydrogen sulfide or sulfide ion was Amount. Therefore, the content of hydrogen sulfide or sulfide ion in the sample can be calculated based on the increase in the amount of complex formation.
  • the metal ion is not particularly limited as long as it inhibits or promotes the color reaction between the metal ion and the metal indicator by hydrogen sulfide or sulfide ion.
  • Zinc ion is preferably used as a substance that inhibits the color development reaction, and a divalent or trivalent Iron ions are preferably used.
  • hydrochlorides, sulfates, acetates and the like of the above metals are used, but are not particularly limited as long as they dissolve in an aqueous solution to generate free metal ions.
  • the metal indicator used in the present invention is not particularly limited as long as it is a substance that inhibits or promotes a color reaction with the metal ion by hydrogen sulfide or sulfide ion. Those are preferred, and for example, pyridylazo compounds and nitrosaminophenol compounds are preferably used.
  • pyridylazo compound 2- (5-promo-2-pyridylazo) -1-5- [NN-propyl-N- (3-sulfopropyl) amino] phenol'sodium salt (Trade name: 5Br.PAPS, hereinafter abbreviated as 5Br.PAPS) or 2— (5-nitro-1-pyridylazo) —5— [N—N—propyl—N — (3-Sulfopropyl) amino] phenol'sodium salt (trade name: Nitro'PAPS) is preferably used.
  • Nitrosaminophenol compounds include 2-nitroso-5- [NNN-propyl-N- (3-sulfopropyl) amino] phenol (trade name: N itroso. PS AP), 2-Nitroso 5- [N-ethyl-N- (3-sulfopropyl) amino] phenol (trade name: N itroso 'E SAP) is preferably used. These are water-soluble and have the property of forming a complex with zinc ions, copper ions, cobalt ions, iron ions, and the like, and coloring with high sensitivity. As these metal indicators, those having various characteristics are commercially available, and can be obtained, for example, from Dojin Chemical Laboratory Co., Ltd.
  • the specific substance in the present invention may be any substance capable of producing hydrogen sulfide or sulfide ion by an enzymatic reaction or the like, and preferably includes homocysteine cystine.
  • the component that generates hydrogen sulfide or sulfide ion from the specific substance is an enzyme that acts on homocysteine to generate hydrogen sulfide or sulfide ion (E1 ) Is used.
  • an enzyme that acts on homocysteine to generate hydrogen sulfide or sulfide ion (E1 ) Is used.
  • Examples include L-methionine arylase (enzyme number EC class 4.4.1.11) and 0-acetylhomoserine monolyase (enzyme number EC class 4.2.99). O-Acetyl homoserine-lyase is preferably used.
  • L-methionine lyase decomposes (eliminates) homocystin to generate hydrogen sulfide, but in the presence of a thiol compound, catalyzes the 7-substitution reaction.
  • It is known as an enzyme having. This enzyme can be obtained from a microorganism that produces it, for example, a bacterium belonging to the genus Pseudomonas. Some enzymes are commercially available and can be obtained from, for example, Wako Pure Chemical Industries, Ltd.
  • 0-Acetylhomoserine-lyase is known as an enzyme having an amino acid synthesizing action (for example, an action of producing homocystin from 0-acetylhomoserine and hydrogen sulfide and producing methionine from methylthiol). (See Enzyme Handbook, supervised by Maruo et al., Asakura Shoten, 1982).
  • the present inventors have newly found a catalytic action to generate hydrogen sulfide by an a-substitution reaction when 0-acetyl homoserine lyase is allowed to act on homocystin in the presence of a thiol compound (Japanese Patent Application Hei 1 0—3 4 7 0 0 3).
  • Substrate specificity It acts on L-homocysteine and L-methionine. L-cysteine reacts slightly as a substitution reaction.
  • the component that generates hydrogen sulfide or sulfide ion from the specific substance is an enzyme that acts on cysteine to generate hydrogen sulfide or sulfide ion (E2 ) Is used.
  • an enzyme for example, 0-acetylserine-lyase, ⁇ -cyanoalanine synthase, cysteine lyase, and the like, particularly 0-acetylserine-lyase, are preferably used.
  • 0-Acetylserine-lyase is known as an enzyme having a cysteine synthesizing action (an action of producing cysteine from 0-acetylserine and hydrogen sulfide).
  • the present inventors have newly found a catalytic action to produce hydrogen sulfide by 5-substitution reaction when 0-acetylsylserine is allowed to act on cysteine in the presence of a thiol compound (Japanese Patent Application Japanese Patent Application Publication No. Hei 11-184350). This effect is specific to cysteine.
  • o-Acetylserine-lyase is obtained from microorganisms producing it (eg, Burnell et al., Biochim. Biophys.
  • the physicochemical properties of 0-acetylserine lyase obtained from spinach according to the method described are as follows. In the following physicochemical properties, items other than the molecular weight were obtained by the present inventors.
  • -;-3-cyanoalanine synthase has a catalytic effect of producing hydrogen sulfide by a 5-substitution reaction when it acts on cysteine in the presence of cyanide; and cystin lyase is present in the presence of sulfite ion. It is known that when it acts on cysteine, it has a catalytic action to generate hydrogen sulfide by a 3-substitution reaction.
  • the thiol compound used in the present invention is not particularly limited as long as it can perform a substitution reaction, such as methanethiol, 2-mercaptoethanol, dithiothreitol, thioglycerol, and cysteamine. Examples include mercaptoethanol and cysteamine.
  • reaction in the method for measuring hydrogen sulfide or sulfide ion of the present invention can be represented by the following chemical formula 1 and chemical formula 2 when expressed by formulas.
  • Reaction D metal ion + sulfide ion + metal indicator
  • reaction A indicates that in the absence of a sulfide ion, a metal ion (for example, a zinc ion) and a metal indicator (for example, a pyridylazo compound) rapidly form a complex to form a color. .
  • a metal ion for example, a zinc ion
  • a metal indicator for example, a pyridylazo compound
  • reaction B a metal ion (eg, zinc ion) and a sulfide ion are brought into contact in advance to generate a metal sulfide (eg, zinc sulfide), so that the generated compound (zinc sulfide) is complexed with the metal indicator. Can not be formed, and the coloring value decreases accordingly. Therefore, the hydrogen sulfide or sulfide ion can be measured by calculating the decrease in the coloring value.
  • a metal ion eg, zinc ion
  • a sulfide ion eg, zinc sulfide
  • a combination of a metal ion that reacts with a sulfide ion to form a stable metal sulfide and a metal indicator that quickly forms a complex with the metal ion examples include a combination of a zinc ion and a pyridylazo compound.
  • a measurement method using the principle of the above chemical formula 1 is referred to as a color inhibition method.
  • the reaction C is, for example, a neutral to weakly alkaline (pH 7.0 to 9.0)
  • Metal ions eg, iron ions
  • gold in a suitable buffer A state in which the formation of a complex between the metal ion and the metal indicator is inhibited by the coexistence of a genus indicator (for example, a pyridylazo compound or a nitrosaminophenol compound) and color development does not occur.
  • a genus indicator for example, a pyridylazo compound or a nitrosaminophenol compound
  • Reaction D shows that when sulfide ions are added under such conditions, the complex formation is promoted according to the sulfide ion concentration, and the color development value is increased accordingly. Therefore, hydrogen sulfide or sulfide ion can be measured by calculating the amount of increase in the coloring value.
  • a combination of a metal ion and a metal indicator include a combination of an iron ion with a pyridylazo compound or a nitrosoaminophenol compound.
  • a measuring method using the principle of the above chemical formula 2 is referred to as a color development promoting method.
  • reaction mechanism of the above-described color development accelerating method is inferred by a combination of an iron ion and a pyridylazo compound, it can be considered as follows.
  • divalent and trivalent iron ions can be co-existed in a neutral to weakly alkaline (pH 7.0 to 9.0) buffer solution in advance.
  • the reaction with the metal indicator is inhibited by the formation of a complex by the iron ions themselves in the solution.
  • divalent iron ions under the above conditions, in addition to complex formation, they are susceptible to oxidation by oxygen, and as a result, they are considered to be present as trivalent iron ions.
  • trivalent iron ions When sulfide ions are added to and coexist with the iron ions in this state, trivalent iron ions are reduced to divalent iron ions by the reducing power of the sulfide ions, so that the iron ions can react with the pyridylazo compound, resulting in color development. Is considered to be recognized.
  • some metal indicators do not easily form a complex with trivalent iron ions. It is believed that the principle can be applied.
  • a metal ion that can be reacted with a metal indicator by being reduced by a sulfide ion does not react with a metal indicator by, for example, setting a solution of the metal ion under appropriate conditions.
  • a sulfide ion is added to change the state from the non-reactive state to the reactive state and react with the metal indicator.
  • the color development accelerating method of the present invention can be achieved by combining the above-mentioned metal ions with an appropriate metal indicator.
  • the reaction in the measuring method can be represented by the following chemical formula 3 when expressed by a formula.
  • reaction E is caused by the action of an enzyme (E 1) (eg, o-acetyl homoserine monolyase) that catalyzes the action of generating a hydrogen sulfide by acting on homocysteine to generate hydrogen sulfide.
  • an enzyme (E 2) eg, o-acetyl homoserine monolyase
  • Reaction F also shows that an enzyme (E 2) (0-acetylserine monolyase), which catalyzes the action of generating sulfide by acting on cystine, is caused to generate hydrogen sulfide.
  • homocysteine and cysteine can be quantified by measuring the generated hydrogen sulfide using the reaction represented by the above chemical formula 1 or chemical formula 2.
  • Example 1 Quantitative determination of sulfide ion by color development inhibition method
  • sample The following were used as samples and reagents. sample:
  • the first reagent 9001 was added to 50 ⁇ l of the sample, left at room temperature for 5 minutes, and then the second reagent 501 was added and left at room temperature for 5 minutes. Thereafter, the absorbance of the reaction solution was measured at a wavelength of 550 nm.
  • Figure 1 shows the results.
  • the first reagent 600 ⁇ 1 was added to sample 201, left at 37 ° C for 10 minutes, and then the second reagent 1601 was added and left at 37 ° C for 5 minutes. Further, the third reagent 201 was added thereto, left at room temperature for 5 minutes, and the absorbance of the reaction solution was measured at a wavelength of 550 nm.
  • Figure 2 shows the results.
  • E 1 used for the determination of homocystin
  • GCS Bacillus
  • titer used was the value indicated by the manufacturer.
  • 0-acetylserine-lyase from spinach was used as the enzyme (E 2) used for cystine determination.
  • 0-Acetylserine monolyase was prepared according to the method of Yamaguchi et al. (Biochim. Biophys. Acta 1251; 91-98 (1995)).
  • an enzyme of about 4.0000 units was prepared and used after extraction from 2 kg of spinach leaves, ion exchange chromatography, hydrophobic chromatography, and gel filtration chromatography.
  • the titer was measured by the method described in the literature.
  • o-Acetyl homoserine-lyase (UNITICA) 3 u / m 1
  • EDT A (pH 7.0) 200 mM
  • the first reagent 600 ⁇ 1 was added to the sample 201, left at 37 ° C for 10 minutes, and then the second reagent 160/1 was added and left at 37 ° C for 5 minutes. Further, the third reagent 20/1 was added thereto, left at room temperature for 5 minutes, and the absorbance of the reaction solution was measured at a wavelength of 550 nm.
  • Figure 4 shows the results.
  • hydrogen sulfide or sulfide ions in a sample can be easily and sensitively quantified.
  • the specific substance in the sample can be determined simply and with high sensitivity. Therefore, it can be used for a method for quantifying homocysteine, cysteine and the like in a biological sample, for example.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • General Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

明 細 硫化水素又は硫化物イオンの定量法及びそれを利用した特定物質の定量法 技術分野
本発明は、 硫化水素又は硫化物イオンによる金属イオンと金属指示薬との錯体 形成の促進又は阻害反応を利用することにより、 試料中の硫化水素又は硫化物ィ オンを簡便かつ感度よく定量する方法、 及び試料中の特定物質から硫化水素を発 生させ、 その硫化水素又はそれに由来する硫化物イオンを前記定量法により測定 して、 該特定物質を簡便かつ高感度に定量する方法に関する。 背景技術
硫黄は、 自然界で重要な役割を担う元素の 1つである。 特に含硫アミノ酸であ るシスティンやメチォニンの構成成分としての役割は大きい。 また、 植物と動物 との間で大きな硫黄循環がなされていることも知られている。 植物では硫黄を硫 酸イオンの形で取り込み、 硫化物イオンまで還元した後、 システィン合成が行わ れ、 さらにメチォニン合成へと続く。 動物では食物連鎖によりメチォニンを食物 から摂取し、 生体内でシスティンに代謝される。 この代謝過程で中間体としてホ モシスティンが生成される。
ホモシスティンは、 正常時にはほとんど存在しない中間代謝物であるが、 その 血液中濃度が高値となると、 冠動脈疾患や脳卒中の発生率が高くなるという報告 がなされている。 このため、 血液中のホモシスティン量が、 心筋梗塞や脳梗塞な どの血栓塞栓症、 あるいは動脈硬化症の発生を予知するのに役立つリスクファク ターとして認められつつある。
また、 システィンは、 メチォニンの代謝により生成するアミノ酸であることか ら、 ホモシスティン代謝異常の原因把握の補助的な指標とも成り得る。
更に、 ホモシスティン又はシスティンに作用して分解又は置換を行い、 硫化水 素を生成する作用をもつ酵素も知られている。 しかしな力 ら、 このような酵素を 利用してホモシスティン又はシスティンを定量しょうとしても、 発生した硫化水 素を簡便かつ感度よく測定する方法がないため、 上記酵素をホモシスティン又は システィンの定量に用いる実用的な方法は未だ見出されていない。
一方、 硫化水素又はそれに由来する硫化物イオンは、 大気汚染や河川の水質汚 染など環境汚染の指標としても重要なものであり、 それらの試料中の硫化水素又 はそれに由来する硫化物ィォンを測定することで汚染状況を確認できる。
硫化水素又はそれに由来する硫化物イオンの従来の測定方法は、 例えば、 発色 化合物を利用した方法として、 2 , 2 ' —ジピリジルジスルファイ ド (Svenson, Anal. Biochem. , 107; 51 - 55 ( 1980) ) や、 ニトロプルシッ ドナトリウムを用 いる方法、 強酸性下で、 Ν, Ν—ジメチルー Ρ —フヱニレンジァミ ンと、 塩化第 二鉄とを作用させて、 メチレンブルーを生成させ、 青色発色を検出する方法 (メ チレンブルー法) 、 セレニウムを触媒として色素 (トルジンブル一ゃメチレンブ ルー) の退色量及び速度を測定する方法 (Mousavi 等, Bull. Chem. Soc. Jpn, 65; 2770 - 2772 ( 1992) 、 Gokmen 等, Analyst, 119; 703- 708 ( 1994) ) など が知られている。 しかしながら、 いずれの場合も簡便性や感度面で充分な方法と は言い難かった。 発明の開示
したがって、 本発明の 1つの目的は、 より簡便で高感度な、 硫化水素又は硫化 物イオンの定量法を提供することにある。 本発明のもう 1つの目的は、 試料中の 特定物質から硫化水素を発生させ、 その硫化水素又はそれに由来する硫化物ィォ ンを前記定量法により測定して、 該特定物質を簡便で高感度に定量する方法を提 供することにある。
本発明者らは、 上記目的を達成するため、 鋭意研究した結果、 硫化水素又は硫 化物イオンが、 金属イオンと金属指示薬の発色反応を阻害もしくは促進する作用 を利用することにより、 試料中の硫化水素又は硫化物イオンを簡便かつ高感度に 定量できることを見出し、 本発明を完成するに至った。
すなわち、 本発明の 1つは、 硫化水素又は硫化物イオンを含有する試料に、 金 属ィォン又は該金属イオンを遊離する化合物と、 該金属ィォンと反応して発色す ると共に、 その発色反応が前記硫化水素又は硫化物イオンによって阻害もしくは 促進される金属指示薬とを添加し、 該金属指示薬による発色強度を測定すること を特徴とする硫化水素又は硫化物イオンの定量法を提供するものである。
本発明のもう 1つは、 特定物質を含む試料中に、 該特定物質に作用して硫化水 素又は硫化物イオンを発生させる成分と、 金属イオン又は該金属イオンを遊離す る化合物と、 該金属イオンと反応して発色すると共に、 その発色反応が前記硫化 水素又は硫化物イオンによって阻害もしくは促進される金属指示薬とを添加し、 該金属指示薬による発色強度を測定することを特徴とする特定物質の定量法を提 供するものである。
本発明によれば、 硫化物イオンによる、 金属イオンと金属指示薬との錯体形成 の促進又は阻害反応を利用することにより、 簡便かつ感度よく硫化水素又は硫化 物イオンを定量することができる。 また、 特定物質を含む試料中に、 該特定物質 に作用して硫化水素又は硫化物イオンを発生させる成分を作用させて生成した硫 化水素を、 上記反応を利用して測定することにより、 試料中の特定物質を簡便か つ感度よく定量することができる。 図面の簡単な説明
図 1は、 発色阻害法による硫化物イオンの定量結果を示す図である。
図 2は、 発色促進法による硫化物ィオンの定量結果を示す図である。
図 3は、 発色促進法によるホモシスティンの定量結果を示す図である。
図 4は、 発色促進法によるシスティンの定量結果を示す図である。 発明を実施するための最良の形態
本発明の硫化水素又は硫化物イオンの定量法において、 硫化水素又は硫化物ィ オンが、 金属イオンと金属指示薬との発色反応を阻害する作用を利用する場合に ついて説明すると、 次の通りである。 すなわち、 試料中に存在する硫化水素又は 硫化物ィォンと金属ィォンとを接触させて硫化金属を生成させると共に、 金属ィ オンと金属指示薬とを反応させてその発色強度を測定することにより、 金属ィォ ンと金属指示薬との反応による錯体生成量を求める。 そして、 硫化水素又は硫化 物ィォンが存在しなし、以外は上記と同じ条件下で、 金属イオンと金属指示薬とを 反応させた場合の錯体生成量から、 上記錯体生成量を差し引くことにより、 上記 硫化金属が錯体生成を起こさな 、性質により錯体生成量が減少した量を求める。 この錯体生成量が減少した量は、 試料中に存在する硫化水素又は硫化物イオンに 相応した量となる。 したがって、 上記錯体生成量の減少量に基づいて、 試料中の 硫化水素又は硫化物イオンの含量を算出することができる。
また、 硫化水素又は硫化物イオンが、 金属イオンと金属指示薬との発色反応を 促進する作用を利用する場合について説明すると、 次の通りである。 すなわち、 硫化水素又は硫化物イオンを含有する試料中に、 金属イオンと金属指示薬とを添 加し反応させて、 その発色強度を測定することにより、 金属イオンと金属指示薬 との反応による錯体生成量を求める。 そして、 この錯体生成量から、 硫化水素又 は硫化物ィォンが存在しな L、以外は上記と同じ条件下で、 金属イオンと金属指示 薬とを反応させた場合の錯体生成量を差し引くことにより、 錯体生成量の増加量 を求める。 この錯体生成量の増加量は、 硫化水素又は硫化物イオンが、 金属ィォ ンと金属指示薬との反応を促進することによってもたらされたものであるから、 硫化水素又は硫化物イオンに相応した量となる。 したがって、 この錯体生成量の 増加量に基づいて、 試料中の硫化水素又は硫化物イオンの含量を算出することが できる。
本発明において、 金属イオンは、 硫化水素又は硫化物イオンによって金属ィォ ンと金属指示薬の発色反応を阻害もしくは促進するものであれば特に限定されな いが、 金属イオンと金属指示薬との発色反応を阻害するものとしては、 亜鉛ィォ ンが好ましく使用され、 上記発色反応を促進するものとしては、 2価又は 3価の 鉄イオンが好ましく使用される。 具体的には、 上記金属の塩酸塩、 硫酸塩、 酢酸 塩などが使用されるが、 水溶液に溶解して遊離の金属イオンを生成するものであ れば特に制限されない。
本発明で用いられる金属指示薬としては、 硫化水素又は硫化物イオンによって 上記金属イオンとの発色反応を阻害もしくは促進される物質であれば特に限定さ れないが、 その錯体形成時の発色感度が高いものが好ましく、 例えばピリジルァ ゾ化合物や、 ニトロソァミノフエノール化合物などが好ましく利用される。 さら に具体的には、 ピリジルァゾ化合物としては、 2— ( 5—プロモー 2—ピリジル ァゾ) 一 5— [N— N—プロピル— N— (3—スルフォプロピル) ァミノ] フエ ノール 'ナトリウム塩 (商品名 : 5 B r . P AP S、 以下、 5 B r . P AP Sと 略記する) や、 2— ( 5—ニトロ一 2—ピリジルァゾ) — 5— [N— N—プロピ ル— N— ( 3—スルフォプロピル) ァミノ ] フヱノール ' ナトリウム塩 (商品 名 : N i t r o ' PAP S) が好ましく用いられる。 また、 ニトロソァミノフエ ノール化合物としては、 2—ニトロソ一 5— [N— N—プロピル一 N— (3—ス ルフォプロピル) ァミノ ] フエノ一ル (商品名 : N i t r o s o . P S AP) や、 2—二トロソー 5— [N—ェチルー N— (3—スルフォプロピル) ァミノ] フエ ノール (商品名 : N i t r o s o ' E SAP) が好ましく用いられる。 これらは、 水溶性であり、 亜鉛イオン、 銅イオン、 コバルトイオン、 鉄イオンなどと錯体を 形成して、 高感度に発色する性質を有する。 これらの金属指示薬としては、 様々 な特徴を持ったものが市販されており、 例えば株式会社同仁化学研究所より入手 できる。
本発明における特定物質とは、 酵素反応などによって硫化水素又は硫化物ィォ ンが生成されるものであればいずれでもよく、 好ましくはホモシスティンゃシス ティンなどが挙げられる。
特定物質をホモシスティンとした場合、 特定物質から硫化水素又は硫化物ィォ ンを発生させる成分としては、 ホモシスティンに作用して硫化水素又は硫化物ィ オンを生成する作用を有する酵素 (E 1 ) が用いられる。 このような酵素として は、 例えば L —メチォニンアーリァ一ゼ (酵素番号 E Cクラス 4 . 4 . 1 . 1 1 ) や、 0—ァセチルホモセリ ン一リア一ゼ (酵素番号 E Cクラス 4 . 2 . 9 9 ) などが挙げられる力く、 特に o—ァセチルホモセリ ン—リアーゼが好ましく用 いられる。
L —メチォニンァ―リァ一ゼは、 チオール化合物非存在下ではホモシスティン に対して分解 (脱離) 作用を示して硫化水素を発生するが、 チオール化合物存在 下では 7—置換反応を触媒する作用を有する酵素として知られている。 この酵素 は、 それを産生する微生物、 例えばシユードモナス属の細菌から得ることができ るが、 市販されているものもあり、 例えば和光純薬株式会社等から入手すること ができる。
また、 0—ァセチルホモセリ ン—リア一ゼは、 アミノ酸合成作用 (例えば、 0 —ァセチルホモセリ ンと硫化水素からはホモシスティンが、 メ夕ンチオールから はメチォニンが生成する作用) を有する酵素として知られている ( 「酵素ハンド ブック」 、 丸尾ら監修、 朝倉書店、 1 9 8 2年参照) 。 本発明者らは、 0 —ァセ チルホモセリンーリァ一ゼをチオール化合物存在下でホモシスティンに作用させ ると、 ァ—置換反応により硫化水素を生成する触媒作用を新たに見出した (特願 平 1 0— 3 4 7 0 0 3号) 。
0ーァセチルホモセリン—リァ一ゼは、 それを産生する様々な微生物が知られ ており (例えば、 Ozaki等, J. Biochem 91; 1163— 1171 ( 1982) 、 Yamagata, J. Biochem 96 ; 1511— 1523 w984リ 、 Brzywczy , Acta. Biochiraica. Polonica 40 ( 3) ; 421— 428 ( 1993 ) 参照) 、 これらの微生物を培養することにより得る ことができるが、 市販されているものもあり、 例えばュニチカ株式会社等から入 手できる。 これらの酵素 (E 1 ) は、 ホモシスティンに強く反応するとともに、 システィンにも若干作用して硫化水素を生成する作用を有する。
ュニチカ株式会社製のバチルス属由来の 0—ァセチルホモセリン—リァ一ゼ (商品名 「G C S」 ) の理化学的性質は次の通りである。 なお、 下記理化学的性 質のうち、 分子量以外の項目は、 本発明者らにより求めたものである。 <理化学的性質〉
1 ) 作用 : L一ホモシスティンとチオール化合物のァ置換反応を触媒し、 硫化水 素及びチオール化合物置換ホモシスティンを生成する。 また、 L一メチォニンと チオール化合物の置換反応を触媒し、 メタンチオール及びチオール化合物置換ホ モシスティンを生成する。
2 ) 基質特異性: L—ホモシスティン、 L一メチォニンに作用する。 また、 L— システィンには 置換反応として若干反応する。
3 ) 分子量: 1 8 0, 0 0 0 (ゲル濾過法)
4 ) 至適 p H : 8 . 5〜 9 . 0
5 ) K m : 0 . 9 m M ( L—ホモシスティン)
また、 特定物質をシスティンとした場合、 特定物質から硫化水素又は硫化物ィ オンを発生させる成分としては、 システィンに作用して硫化水素又は硫化物ィォ ンを生成する作用を有する酵素 (E 2 ) が用いられる。 このような酵素としては、 例えば、 0—ァセチルセリン一リアーゼや、 ^—シァノアラニンシンタ一ゼや、 システィンリア一ゼなどが挙げられる力、 特に 0 —ァセチルセリン—リアーゼが 好ましく用いられる。
0 _ァセチルセリ ン—リア一ゼは、 システィン合成作用 (0 —ァセチルセリ ン と硫化水素からシスティンを生成する作用) を有する酵素として知られている。 本発明者らは、 0 —ァセチルセリンーリア一ゼをチオール化合物存在下でシステ ィンに作用させると、 ;5—置換反応により硫化水素を生成する触媒作用を新たに 見出した (特願平 1 1 一 8 4 0 3 5号公報) 。 この作用はシスティンに特異的で ある。 o —ァセチルセリ ン—リアーゼは、 それを産生する微生物 (例えば、 Burnell 等, Biochim. Biophys. Acta 481 ; 246 - 265 ( 1977 ) 、 Nagasaw 等, Methods Enzymol 143; 474 - 478 ( 1987) ) や植物 (例えば、 Droux 等, Arch. . Biochem. Biophys. 295 ( 2 ) ; 379 - 390 ( 1992 ) 、 Yamaguchi 等, Biochim. Biophys. Acta 1251; 91 - 98 ( 1995) ) 等より得ることができる。
例えば、 Yamaguchi 等, Biochim. Biophys. Acta 1251 ; 91 - 98 ( 1995) に記 載された方法により、 ホウレンソゥから得た 0—ァセチルセリ ンーリア一ゼの理 化学的性質は次の通りである。 なお、 下記理化学的性質のうち、 分子量以外の項 目は、 本発明者らにより求めたものである。
< o—ァセチルセリ ン—リァ一ゼの理化学的性質〉
1 ) 作用 : L一システィンとチオール化合物の ^置換反応を触媒し、 硫化水素及 びチオール化合物置換システィンを生成する。
2 ) 基質特異性: L —システィンに特異的に作用する。
3 ) 分子量: 6 3 , 0 0 0 (ゲル濾過法)
4 ) 至適 p H : 9 . 0〜: I 1 . 0
5 ) K m : 0 . 2 7 m M ( L —システィン)
—方、 ;3—シァノアラニンシンターゼは、 シアン存在下でシスティンに作用さ せると ;5—置換反応により硫化水素を生成する触媒作用を示し、 また、 システィ ンリア一ゼは、 亜硫酸イオン存在下で、 システィンに作用させると ;3—置換反応 により硫化水素を生成する触媒作用を有することが知られている。
なお、 本発明で用いられるチオール化合物は、 メタンチオール、 2—メルカプ トエタノール、 ジチオスレィ トール、 チォグリセロール、 システアミンなど、 置 換反応が行えるものであれば特に制限なく、 好適なものとしては、 2—メルカプ 卜エタノールやシステアミンが挙げられる。
本発明の硫化水素もしくは硫化物イオンの測定方法における反応を式で示すと 下記化学式 1及び化学式 2のように表すことができる。
<化学式 1 〉 反応 A: 金属イオン + 金属指示薬 ' ~► 錯体形成 (発色)
(亜鉛) (ピリジルァゾ化合物) 反応 B : 金属イオン + 硫化物イオン
(亜鉛) (硫化水素)
一► 硫化金属 + 金属指示薬 (阻害)一►錯体形成 (X )
(硫化亜鉛) (ピリジルァゾ化合物) <化学式 2 >
反応 C : 金属イオン + 金属指示薬 — (反応しない) 錯体形成 (X )
(鉄) (ピリジルァゾ化合物又は
ニトロソァミノフエノ一ル化合物) 反応 D : 金属イオン + 硫化物イオン + 金属指示薬
(鉄) (硫化水素) (ピリジルァゾ化合物又は
ニトロソァミノ
フエノール化合物)
(反応促進) >-錯体形成 (発色)
上記化学式 1において、 反応 Aは、 硫化物イオン非存在下において、 金属ィォ ン (例えば、 亜鉛イオン) と金属指示薬 (例えば、 ピリジルァゾ化合物) は速や かに錯体を形成し発色することを示す。
そして、 反応 Bは金属イオン (例えば、 亜鉛イオン) と硫化物イオンを予め接 触させて硫化金属 (例えば、 硫化亜鉛) を生成させることにより、 生成した化合 物 (硫化亜鉛) が金属指示薬と錯体を形成できなくなり、 その分の発色値が減少 することを示す。 したがって、 その発色値の減少分を算出することにより、 硫化 水素もしくは硫化物イオンを測定することができる。
すなわち上記化学式 1においては、 硫化物イオンと反応して安定な硫化金属を 形成する金属イオンと、 該金属イオンと速やかに錯体を形成する金属指示薬の組 合せを選択することが重要である。 このような金属イオンと金属指示薬との組合 せとしては、 例えば亜鉛イオンとピリジルァゾ化合物との組合せが挙げられる。 以下の説明において、 上記化学式 1の原理を用いた測定方法を発色阻害法という また、 上記化学式 2において、 反応 Cは、 例えば予め中性〜弱アルカリ性 (p H 7 . 0〜 9 . 0 ) の適当な緩衝液中に、 金属イオン (例えば、 鉄イオン) と金 属指示薬 (例えば、 ピリジルァゾ化合物又はニトロソァミノフエノール化合物) を共存させることなどにより、 該金属イオンと金属指示薬との錯体形成が阻害さ れて発色が起こらない状態を示す。
そして、 反応 Dは、 そのような条件下で硫化物イオンを添加すると、 その錯体 形成が硫化物イオン濃度に応じて促進され、 その分の発色値が増加することを示 す。 したがって、 その発色値の増加量分を算出することにより、 硫化水素もしく は硫化物ィォンを測定することができる。
すなわち、 上記化学式 2においては、 金属イオンと金属指示薬が錯体を形成し にくい条件にすることが重要である。 このような金属イオンと金属指示薬との組 合せとしては、 例えば鉄イオンと、 ピリジルァゾ化合物又はニトロソァミノフエ ノール化合物との組合せが挙げられる。 以下の説明において、 上記化学式 2の原 理を用いた測定方法を発色促進法という。
上記発色促進法の反応機序を鉄イオンとピリジルァゾ化合物の組合せにて推察 すると、 次のように考えることができる。
鉄イオンは、 水溶液中でアクア錯体ゃヒドロキソ錯体など様々な形で存在し、 それは p H条件などの要因により大きく影響されることが知られている。 また、 高アル力リ条件下では水酸化物として沈殿形成も行われる。 本測定系における鉄 イオンとピリジルァゾ化合物の組合せでは、 2価及び 3価の鉄イオンを予め中性 から弱アルカリ性 (p H 7 . 0〜 9 . 0 ) の適当な緩衝液中に共存させることで、 溶液中で鉄イオン自体が錯体を形成することにより金属指示薬 (ピリジルァゾ化 合物) との反応が阻害されると考えられる。 特に 2価の鉄イオンの場合、 上記条 件下では錯体形成のほかに酸素による酸化を受けやすく、 その結果 3価の鉄ィォ ンとして存在しているものと考えられる。 そして、 この状態の鉄イオンに硫化物 イオンが添加共存されると、 硫化物イオンの還元力により 3価の鉄イオンが 2価 の鉄イオンに還元されてピリジルァゾ化合物と反応可能な状態となり、 発色が認 められるものと考えられる。 また、 金属指示薬によっては 3価の鉄イオンと錯体 を形成しにくいものもあり、 この場合には上述した p H範囲外でもこの促進反応 原理を適用することができると考えられる。
すなわち、 本発明の発色促進法は、 まず、 硫化物イオンにより還元を受けて金 属指示薬と反応可能になる金属イオンを、 例えば金属イオンの溶液を適当な条件 とすることで金属指示薬と反応しない状態にする。 そして、 硫化物イオンを添加 することによって、 その反応しない状態から反応可能な状態にして、 金属指示薬 と反応させる方法である。
したがって、 本発明の発色促進法は上述したような金属イオンと適当な金属指 示薬とを組合わせることにより達成される。
また、 本発明の特定物質をホモシスティン及びシスティンとした場合の測定方 法における反応を式で示すと下記化学式 3のように表すことができる。
ぐ化学式 3 >
D f'^ E : ホモシスティン (酵奉 ( F 1、 ) 硫化水素 反応 F : システィン (酵素 (E 2 ) ) 硫化水素
上記化学式 3において、 反応 Eは、 ホモシスティンに作用して硫化水素を生成 する作用を触媒する酵素 (E 1 ) (例えば、 o —ァセチルホモセリ ン一リア一 ゼ) を作用させて硫化水素を生成させることを示す。 また、 反応 Fは、 システィ ンに作用して硫化水素を生成する作用を触媒する酵素 (E 2 ) ( 0—ァセチルセ リン一リアーゼ) を作用させて硫化水素を生成させることを示す。 そして、 生成 した硫化水素を、 上記化学式 1又は化学式 2に示す反応を利用して測定すること により、 ホモシスティン及びシスティンを定量することができる。
以下、 実施例を挙げて本発明をさらに詳細に説明するが、 本発明はこれに限定 されるものではない。
実施例 1 (発色阻害法による硫化物イオンの定量)
試料及び試薬として以下のものを用いた。 試料:
硫化物イオンとして、 硫化ナトリゥム (和光純薬社製) を 0〜 1 0 0 M含む水 溶液。
第一試薬:
トリス緩衝液 (p H 8. 5 ) l O O mM
塩化亜鉛 1 0 M
第二試薬:
5 B r · P AP S (同仁化学研究所社製) 1 mM
試料 5 0 μ 1に第一試薬 9 0 0 1を加え、 室温で 5分間放置後、 第二試薬 5 0 1を加えて室温で 5分間放置した。 その後、 5 5 0 nmの波長で反応溶液の 吸光度を測定した。 その結果を図 1に示す。
図 1の結果から、 硫化物イオンの濃度に応じて吸光度の減少が認められ、 その 関係は定量的であることが分かった。 この結果から、 金属イオンと金属指示薬と の錯体形成の阻害反応を利用することで、 硫化物イオンを測定できることが分か つた。
実施例 2 (発色促進法による硫化物イオンの定量)
試料及び試薬として以下のものを用いた。
試料:
硫化物イオンとして、 硫化ナトリウム (和光純薬社製) を 0〜 1 0 0 M含む水 溶液。
第一試薬:
トリス緩衝液 (p H 8. 0 ) l O O mM
塩化第一鉄 3 3. S βΜ
2—メルカプトエタノール 4 mM
第二試薬:
5 B r · P AP S (同仁化学研究所社製) 0. 2 5 mM
第三試薬: ED TA ( p H 7. 0 ) 2 0 0 mM
試料 2 0 1 に第一試薬 6 0 0 ^ 1を加え、 3 7 °Cで 1 0分間放置後、 第二試 薬 1 6 0 1を加えて 3 7°Cで 5分間放置した。 さらに、 第三試薬 2 0 1を加 え室温にて 5分間放置後、 5 5 0 nmの波長で反応溶液の吸光度を測定した。 そ の結果を図 2に示す。
図 2の結果から、 硫化物イオンの濃度に応じて吸光度の増加が認められ、 その 関係は定量的であることが分かった。 この結果から、 金属イオンと金属指示薬と の錯体形成の促進反応を利用することで、 硫化物ィォンを測定できることが分か つた。
以下の実施例では、 ホモシスティンの定量に用いる酵素 (E 1 ) として、 バチ ルス属由来の o—ァセチルホモセリンーリァ一ゼ (商品名 「G C S」 、 ュニチカ 株式会社製、 以下に記載した力価はメーカ一表示値による) を使用し、 システィ ン定量に用いる酵素 (E 2 ) として、 0 —ァセチルセリン—リアーゼ (ホウレン ソゥ由来) を使用した。
なお、 0 -ァセチルセリン一リア一ゼは、 山口等の方法 (Biochim. Biophys. Acta 1251; 91一 98 (1995) ) に基づいて調製した。
具体的には、 ホウレンソゥ葉 2 k gから抽出、 イオン交換クロマト、 疎水クロ マト及びゲル濾過クロマトの工程を経て、 約 4, 0 0 0単位の酵素を調製して用 いた。 なお、 力価は、 同文献に記載の方法により測定した。
実施例 3 (発色促進法によるホモシスティンの定量)
試料及び試薬として以下のものを用いた。
試料:
L一ホモシスチン (シグマ社製) を 0〜5 0 M含む水溶液 (L一ホモシスティン としては、 0〜 1 0 0 M) 。
第一試薬:
トリス緩衝液 ( p H 8. 0 ) 1 0 0 mM
塩化第一鉄 3 3. 3 Μ 2—メルカプトエタノール 4mM
oーァセチルホモセリンーリァ一ゼ (ュニチカ社製) 3 u/m 1
第二試薬:
5 B r · P AP S (同仁化学研究所社製) 0. 25 mM
第三試薬:
E D T A ( ρ H 7. 0) 2 00 mM
試料 20 // 1に第一試薬 600 1を加え、 37 °Cで 10分間放置後、 第二試 薬 1 60 ^ 1を加えて 37°Cで 5分間放置した。 さらに、 第三試薬 20 1を加 え、 室温にて 5分間放置後、 550 nmの波長で反応溶液の吸光度測定した。 そ の結果を図 3に示す。
図 3の結果から、 ホモシスティン濃度に応じて吸光度の増加が認められ、 その 関係は定量的であることが分かった。 この結果から、 金属イオンと金属指示薬と の錯体形成の促進反応を利用することで、 ホモシスティンを測定できることが分 かった。
実施例 4 (発色促進法によるシスティンの定量)
試料及び試薬として以下のものを用いた。
試料:
L—システィン (シグマ社) を 0〜 500 M含む水溶液。
第一試薬:
トリス緩衝液 (pH 8. 0) 1 00 mM
塩化第一鉄 33. 3 μ Μ
2—メルカプトエタノール 4mM
0—ァセチルセリンーリァ一ゼ (ホウレン草由来) 6 u/m 1
第二試薬:
5 B r · P AP S (同仁化学研究所社製) 0. 25mM
第三試薬:
EDT A (pH 7. 0) 200 mM 試料 2 0 1に第一試薬 6 0 0 ^ 1を加え、 3 7 °Cで 1 0分間放置後、 第二試 薬 1 6 0 / 1を加えて 3 7 °Cで 5分間放置した。 さらに、 第三試薬 2 0 / 1を加 え室温にて 5分間放置後、 5 5 0 n mの波長で反応溶液の吸光度を測定した。 そ の結果を図 4に示す。
図 4の結果から、 システィン濃度に応じて吸光度の増加が認められ、 その関係 は定量的であることが分かった。 この結果から、 金属イオンと金属指示薬との錯 体形成の促進反応を利用することで、 システィンを測定できることが分かった。 産業上の利用可能性
以上のように、 本発明によれば、 試料中の硫化水素又は硫化物イオンを簡便か つ感度よく定量することができ、 また、 特定物質を含む試料中に、 該特定物質に 作用して硫化水素又は硫化物イオンを発生させる成分を作用させて生成した硫化 水素を、 上記定量法で測定することにより、 試料中の特定物質を簡便かつ感度よ く定量することができる。 したがって、 例えば生体試料中のホモシスティン、 シ スティンなどの定量法に利用することができる。

Claims

請 求 の 範 囲
1 . 硫化水素又は硫化物イオンを含有する試料に、 金属イオン又は該金属ィォ ンを遊離する化合物と、 該金属イオンと反応して発色すると共に、 その発色反応 が前記硫化水素又は硫化物ィオンによって阻害もしくは促進される金属指示薬と を添加し、 該金属指示薬による発色強度を測定することを特徴とする硫化水素又 は硫化物イオンの定量法。
2 . 前記金属イオンが、 亜鉛イオン又は鉄イオンである請求項 1記載の硫化水 素又は硫化物イオンの定量法。
3 . 前記金属指示薬が、 ピリジルァゾ化合物又はニトロソアミノフヱノール化 合物である請求項 1記載の硫化水素又は硫化物イオンの定量法。
4 . 特定物質を含む試料中に、 該特定物質に作用して硫化水素又は硫化物ィォ ンを発生させる成分と、 金属イオン又は該金属イオンを遊離する化合物と、 該金 属イオンと反応して発色すると共に、 その発色反応が前記硫化水素又は硫化物ィ オンによって阻害もしくは促進される金属指示薬とを添加し、 該金属指示薬によ る発色強度を測定することを特徴とする特定物質の定量法。
5 . 前記金属イオンが、 亜鉛イオン又は鉄イオンである請求項 4記載の特定物 質の定量法。
6 . 前記金属指示薬が、 ピリジルァゾ化合物又は二トロソァミノフエノ一ル化 合物である請求項 4記載の特定物質の定量法。
7 . 前記特定物質がホモシスティンであり、 前記特定物質に作用して硫化水素 又は硫化物イオンを発生させる成分が、 ホモシスティンに作用して硫化水素を生 成する作用を有する酵素 (E 1 ) である請求項 4記載の特定物質の定量法。
8 . 前記酵素 (E 1 ) が、 チオール化合物の存在下で、 ホモシスティンに対し て置換反応を触媒するものである請求項 7記載の特定物質の定量法。
9 . 前記酵素 (E 1 ) が、 o —ァセチルホモセリン—リア一ゼである請求項 8 記載の特定物質の定量法。
1 0. 前記チオール化合物が、 メタンチオール、 2—メルカプトエタノール、 ジ チオスレイ ト一ル、 チォグリセロール、 システアミ ンからなる群より選ばれた 1 つである請求項 8記載の特定物質の定量法。
1 1. 前記特定物質がシスティンであり、 前記特定物質に作用して硫化水素又は 硫化物イオンを発生させる成分が、 システィンに作用して硫化水素を生成する作 用を有する酵素 (E 2) である請求項 4記載の特定物質の定量法。
12. 前記酵素 (E 2) が、 チオール化合物の存在下、 システィンに対して置換 反応を触媒するものである請求項 1 1記載の特定物質の定量法。
13. 前記酵素 (E 2) が、 o—ァセチルセリン—リア一ゼである請求項 12記 載の特定物質の定量法。
14. 前記チオール化合物が、 メタンチオール、 2—メルカプトエタノール、 ジ チオスレィ トール、 チォグリセロール、 システアミ ンからなる群より選ばれた 1 つである請求項 1 2記載の特定物質の定量法。
PCT/JP1999/006847 1998-12-07 1999-12-07 Procede de detection d'hydrogene sulfure ou d'ion sulfure et procede de detection de substance specifique utilisant le premier procede WO2000034771A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP99973327A EP1143244B1 (en) 1998-12-07 1999-12-07 Method for determination of hydrogen sulfide or sulfide ion and method for determination of specific substance utilizing said method
AT99973327T ATE290207T1 (de) 1998-12-07 1999-12-07 Verfahren zur bestimmung von schwefelwasserstoff oder von sulfidionen und verfahren zur bestimmung gewisser substanzen mit hilfe dieses verfahrens
US09/856,790 US6969613B1 (en) 1998-12-07 1999-12-07 Method for determination of hydrogen sulfide or sulfide ion and method for determination of specific substance utilizing said method
DE69924017T DE69924017T2 (de) 1998-12-07 1999-12-07 Verfahren zur bestimmung von schwefelwasserstoff oder von sulfidionen und verfahren zur bestimmung gewisser substanzen mit hilfe dieses verfahrens

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP10/347003 1998-12-07
JP34700398A JP4233160B2 (ja) 1998-12-07 1998-12-07 ホモシステインの定量法
JP08403599A JP4286371B2 (ja) 1999-03-26 1999-03-26 ホモシステインの定量法
JP11/84035 1999-03-26
JP14784899A JP4044702B2 (ja) 1999-05-27 1999-05-27 硫化水素又は硫化物イオンの定量法及びそれを利用した特定物質の定量法
JP11/147848 1999-05-27

Publications (1)

Publication Number Publication Date
WO2000034771A1 true WO2000034771A1 (fr) 2000-06-15

Family

ID=27304422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006847 WO2000034771A1 (fr) 1998-12-07 1999-12-07 Procede de detection d'hydrogene sulfure ou d'ion sulfure et procede de detection de substance specifique utilisant le premier procede

Country Status (8)

Country Link
US (1) US6969613B1 (ja)
EP (1) EP1143244B1 (ja)
KR (1) KR100639059B1 (ja)
CN (1) CN1178061C (ja)
AT (1) ATE290207T1 (ja)
DE (1) DE69924017T2 (ja)
TW (1) TW546475B (ja)
WO (1) WO2000034771A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002802A1 (fr) * 2000-06-30 2002-01-10 Azwell Inc. Procede de mesure d'homocysteine totale
WO2004074477A1 (ja) * 2003-02-19 2004-09-02 Alfresa Pharma Corporation ホモシステインの測定方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244620B2 (en) * 2003-12-24 2007-07-17 Daiichi Pure Chemicals Co., Ltd. Method for quantitatively determining a reducing substance and a reagent for quantitative determination
US7198890B2 (en) 2004-01-13 2007-04-03 Daiichi Pure Chemicals Co., Ltd. Method for quantitatively determining homocysteine and a reagent for quantitative determination of homocysteine
US9422160B1 (en) 2005-10-28 2016-08-23 Element One, Inc. Method of making a hydrogen sensing pigment
CN101101264B (zh) * 2007-07-26 2010-04-14 四川大学 海水中硫化物的自动分析方法
WO2009070760A1 (en) * 2007-11-26 2009-06-04 Element One, Inc. Hydrogen sulfide indicating pigments
GB201713017D0 (en) * 2017-08-14 2017-09-27 Innospec Ltd Kit and method
CN109632677B (zh) * 2019-02-20 2022-01-07 深圳锦秀大唐环保科技有限公司 用于分光光度法测定的吸收剂及其制备方法
CN113125432A (zh) * 2019-12-30 2021-07-16 财团法人工业技术研究院 以金属离子溶液检测硫化物含量的方法
TWI766341B (zh) * 2019-12-30 2022-06-01 財團法人工業技術研究院 以金屬離子溶液檢測硫化物含量的方法
CN111518564A (zh) * 2020-06-24 2020-08-11 代彦霞 一种用于降低土壤中迁移态铅离子的材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499494A (en) * 1978-01-23 1979-08-06 Nippon Yuka Kougiyou Kk Preparation of test paper for measuring sulfuric ion
JPS63247656A (ja) * 1987-02-03 1988-10-14 マイルス・インコーポレーテッド チオール化合物を検出するのに有用な分析試薬、及びそれを用いた検出方法
JPH06160368A (ja) * 1992-11-18 1994-06-07 Idemitsu Kosan Co Ltd 硫黄分の分析方法及びその装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4174202A (en) * 1977-11-28 1979-11-13 The Dow Chemical Company Kit and method for testing liquids for hydrogen sulfide content
ES2153376T3 (es) * 1991-12-25 2001-03-01 Iatron Lab Metodo de ensayo de metales presentes en una muestra biologica, y reactivo para el mismo.
EP0584568A1 (en) * 1992-08-25 1994-03-02 Eastman Kodak Company System of detecting and measuring sulfides in a sample
GB9617683D0 (en) * 1996-08-23 1996-10-02 Univ Glasgow Homocysteine desulphurase
US5985540A (en) * 1997-07-24 1999-11-16 Anticancer, Inc. High specificity homocysteine assays for biological samples
US6107100A (en) * 1998-04-30 2000-08-22 Metaquant Trust Compounds and methods for determination of thiols

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499494A (en) * 1978-01-23 1979-08-06 Nippon Yuka Kougiyou Kk Preparation of test paper for measuring sulfuric ion
JPS63247656A (ja) * 1987-02-03 1988-10-14 マイルス・インコーポレーテッド チオール化合物を検出するのに有用な分析試薬、及びそれを用いた検出方法
JPH06160368A (ja) * 1992-11-18 1994-06-07 Idemitsu Kosan Co Ltd 硫黄分の分析方法及びその装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002802A1 (fr) * 2000-06-30 2002-01-10 Azwell Inc. Procede de mesure d'homocysteine totale
WO2004074477A1 (ja) * 2003-02-19 2004-09-02 Alfresa Pharma Corporation ホモシステインの測定方法

Also Published As

Publication number Publication date
KR100639059B1 (ko) 2006-10-27
ATE290207T1 (de) 2005-03-15
US6969613B1 (en) 2005-11-29
TW546475B (en) 2003-08-11
CN1329720A (zh) 2002-01-02
DE69924017D1 (de) 2005-04-07
EP1143244A1 (en) 2001-10-10
CN1178061C (zh) 2004-12-01
DE69924017T2 (de) 2005-09-08
KR20010101130A (ko) 2001-11-14
EP1143244A4 (en) 2002-09-18
EP1143244B1 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
WO2000034771A1 (fr) Procede de detection d&#39;hydrogene sulfure ou d&#39;ion sulfure et procede de detection de substance specifique utilisant le premier procede
Ikeda et al. Quantitative determination of polysulfide in albumins, plasma proteins and biological fluid samples using a novel combined assays approach
CN107356591A (zh) 一种基于仿酶纳米材料的无酶一锅葡萄糖显色检测方法
AU673793B1 (en) Ascorbate resistant detection of hydrogen peroxide
Zhang et al. Colorimetric copper (Ⅱ) ions detection in aqueous solution based on the system of 3′ 3′ 5′ 5′-tetramethylbenzidine and AgNPs in the presence of Na2S2O3
JP4044702B2 (ja) 硫化水素又は硫化物イオンの定量法及びそれを利用した特定物質の定量法
EP1295947B1 (en) Method of measuring total homocysteine
WO1993012254A1 (en) Highly sensitive determination of d-3-hydroxybutyric acid or acetoacetic acid and composition therefor
JP4257568B2 (ja) 生体成分の測定方法およびそれに用いる試薬組成物
JP4233160B2 (ja) ホモシステインの定量法
JP4286371B2 (ja) ホモシステインの定量法
Chamaraja et al. Enzymatic method and its validation for the micromolar assay of glucose in human serum samples
JP4319545B2 (ja) 総システインアッセイ
NL8004080A (nl) Methode voor het bepalen van transaminases, alsmede een daarmee verband houdende diagnostische uitrusting.
JP4731733B2 (ja) システイン共存試料中のホモシステインの測定法
JPS61247963A (ja) アンモニアを反応生成物とする生体物質の定量方法
JP4228047B2 (ja) L−システインの測定方法及び測定用試薬
JPH0635966B2 (ja) チオール化合物を検出するのに有用な分析試薬、及びそれを用いた検出方法
JP2761768B2 (ja) Nadhの定量法及びそれを用いた胆汁酸の定量法
Baker Disulfide inhibition of copper-catalyzed oxidation of ascorbic acid: spectrophotometric evidence for accumulation of a stable complex
JP3034988B2 (ja) イソクエン酸またはα−ケトグルタル酸の高感度定量法および定量用組成物
JPH07265097A (ja) 鉄の定量方法
JP3227486B2 (ja) 銅の測定方法
JP3971967B2 (ja) 還元性物質の定量方法及び定量用試薬
JP3023700B2 (ja) L―リンゴ酸又はオギザロ酢酸の高感度定量法及び定量用組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99814144.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09856790

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020017007016

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999973327

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999973327

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017007016

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999973327

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017007016

Country of ref document: KR