WO2000027046A1 - Verfahren und funkstation für die übertragung von vorverzerrten signalen über mehrere funkkanäle - Google Patents

Verfahren und funkstation für die übertragung von vorverzerrten signalen über mehrere funkkanäle Download PDF

Info

Publication number
WO2000027046A1
WO2000027046A1 PCT/DE1999/003329 DE9903329W WO0027046A1 WO 2000027046 A1 WO2000027046 A1 WO 2000027046A1 DE 9903329 W DE9903329 W DE 9903329W WO 0027046 A1 WO0027046 A1 WO 0027046A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio
radio station
signals
station
channel
Prior art date
Application number
PCT/DE1999/003329
Other languages
English (en)
French (fr)
Inventor
Frank Kowalewski
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP99960784A priority Critical patent/EP1125376B1/de
Priority to US09/830,540 priority patent/US7155165B1/en
Priority to DE59906039T priority patent/DE59906039D1/de
Priority to JP2000580315A priority patent/JP4541554B2/ja
Priority to AT99960784T priority patent/ATE243394T1/de
Publication of WO2000027046A1 publication Critical patent/WO2000027046A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/62Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for providing a predistortion of the signal in the transmitter and corresponding correction in the receiver, e.g. for improving the signal/noise ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/7097Direct sequence modulation interference
    • H04B2201/709709Methods of preventing interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission

Definitions

  • the invention is based on a method for the transmission of signals between a first radio station and a second radio station and of radio stations according to the type of the independent claims.
  • a method for the transmission of signals between a base station and several mobile stations via radio channels is already known from the German patent application with the file number 198 18 215, the data of different mobile stations being spread with different codes.
  • a pre-equalization of the signals to be transmitted is carried out in a modulator.
  • the method according to the invention and the radio stations according to the invention with the features of the independent claims have the advantage that the pre-equalized signals are transmitted over several radio channels from a transmitting device of the first radio station to a receiving device of the second radio station. In this way it is ensured that the pre-equalized signals are received at the second radio station without a significant drop in amplitude.
  • a pre-equalized signal is emitted from several antennas of the transmitting device of the first radio station and transmitted via a radio channel to the receiving device of the second radio station, an estimate of an impulse response in the first radio station being determined for each radio channel, and one The signal to be emitted by the respective antenna is pre-equalized as a function of the estimate of the impulse response of the associated radio channel.
  • a precise estimate of the impulse response of the associated radio channel is obtained if an antenna of the second radio station transmits a reference signal via the radio channels to the first radio station and the estimate of the impulse response of the respective radio channel is based on reception of the reference signal via the respective radio channel in the first radio station is derived.
  • Equalization for multi-channel reception of signals from the first radio station in the second radio station is also not necessary if, according to a second embodiment, a pre-equalized signal emitted by the transmitting device of the first radio station is received by several antennas of the receiving device of the second radio station via one radio channel each , being in the first
  • Radio station an estimate of a total impulse response of all radio channels is determined and the signal to be emitted by the first radio station is pre-equalized depending on the estimate of the total impulse response. This way too, for the
  • Pre-equalization of the signal to be emitted by the first radio station takes into account the multi-channel transmission between the first radio station and the second radio station.
  • a precise estimate of the total impulse response is possible by transmitting a reference signal in each case via the associated radio channel from the antennas of the second radio station to the first radio station, the estimate of the total impulse response being derived from a superimposed reception of the reference signals in the first radio station.
  • Pre-equalized signals transmitted from the first radio station to the second radio station then only have to be combined linearly in the second radio station and can subsequently be used without equalization Demodulation can be supplied. This also saves effort in the second radio station.
  • Radio channel is multiplied by a coefficient and that in the linear combination of the received signals formed by the antennas of the receiving device, each received signal is multiplied by the coefficient of the radio channel used for its transmission.
  • Another advantage is that signals are transmitted between the first radio station or the second radio station and further radio stations via further radio channels, the data transmitted by the signals from different radio stations being spread with different codes, and that the pre-equalization in the modulator of the first radio station in Dependency of all different codes and the transmission properties of all radio channels is made. In this way, the pre-equalization can be further improved, so that so-called inter-symbol interference (IST.) Between transmitted data symbols of a radio station and multiple access interference (MAI), i. H. Interference from others
  • Radio stations are taken into account in the pre-equalization, so that even such interference does not require equalization in the second radio station.
  • FIG. 1 shows the general structure of a mobile radio system or a mobile telephone system
  • FIG. 2 shows a block diagram of a first embodiment for a first and a second radio station
  • FIG. 3 shows a second
  • Embodiment for the first and the second radio station and Figure 4 is a timing diagram of the inventive method.
  • the base station 1 is also referred to as the central station and the mobile stations 2, 3 as peripheral stations.
  • the exchange of data between the base station 1 and the mobile stations 2, 3 takes place by radio transmission.
  • the radio transmission from the base station 1 to one of the mobile stations 2, 3 is referred to as a downlink and the data transmission from one of the mobile stations 2, 3 to the base station 1 is referred to as an uplink.
  • FIG. 1 shows a system, shown in FIG. 1, with a central or base station 1 and a plurality of peripheral or mobile stations 2, 3 is to be determined how the data for the different mobile stations 2, 3 are modulated so that they can be detected separately in the receivers of the different mobile stations 2, 3.
  • the system according to FIG. 1 is a so-called CDMA system (Code Division Multiple Access), in which a common frequency band is available for data transmission, the individual radio channels between the base station 1 and the respective mobile stations 2, 3 distinguish in terms of a code with which the signal for the corresponding mobile station 2, 3 is spread.
  • CDMA system Code Division Multiple Access
  • each signal that is to be exchanged between the base station 1 and a specific mobile station 2, 3 is distributed over the entire available spectrum.
  • Each individual information bit to be transmitted is broken down into a large number of small "chips". As a result, the energy of a bit is distributed over the entire frequency spectrum that is available to the CDMA system.
  • a CDMA system is shown in FIG.
  • FIG. 2 in turn shows the first radio station 1 designed as a base station and the second radio station 2 designed as a mobile station.
  • the base station 1 comprises a first antenna 50.
  • the second radio station 2 comprises a third antenna 60 and a fourth antenna 65.
  • the first radio station 1 and the second radio station 2 thus exchange data via a first radio channel 20 and a second radio channel 25.
  • the first radio channel 20 describes a transmission path between the first antenna 50 and the third antenna 60.
  • the second radio channel 25 describes a transmission path between the first antenna 50 and the fourth antenna 65.
  • the first radio station 1 comprises a first modulator 4, which processes the data streams from data sources 70 for transmission via the first radio channel 20 and the second radio channel 25.
  • the first modulator 4 still requires code information which is made available by a code generator 5.
  • code information which is made available by a code generator 5.
  • two arrows from the data sources 70 to the first modulator 4 and two arrows from the code generator 5 to the first modulator 4 are shown in FIG. 2, the two represent different data streams or two different code information. In a real system, a much larger number of data streams and code information are processed simultaneously.
  • the first modulator 4 generates a transmission signal from the data streams and the code information, which is sent to the second radio station 2 and the further radio stations 3. In FIG. 2, only the second radio station 2 is shown as an example as the receiving mobile station.
  • the first radio station 1 generally sends simultaneously to the other radio stations 3 via corresponding radio channels, the respective data of which are also modulated with different codes.
  • the further radio stations 3 are not shown in FIG. 2 for reasons of simplification.
  • the code generator 5 generates codes as a function of selected radio connections to the mobile stations 2, 3.
  • the data to be transmitted with the signals are spread in the first modulator 4 with these codes.
  • a first interference is referred to as ISI (intersymbol interference) and therefore results in the fact that a transmitted radio signal can reach the receiver via several different paths, the arrival times at the receiver being slightly different. It is therefore a disturbance that arises in the radio channel concerned by the fact that signals previously transmitted in time interfere with currently received signals
  • inter-symbol interference Another disruption is caused by the fact that several data streams are transmitted at the same time, which differ only in terms of the code. This interference occurs when the base station 1 is in radio contact with several mobile stations 2, 3 at the same time, which is the normal case in modern mobile telephone systems. It is therefore a disturbance that originates from the signals of different users and is therefore also referred to as MAI (multiple access interference).
  • FIG. 2 also shows the receiving part of the second radio station 2, which is designed as a mobile station and is intended for receiving downlink data via the first radio channel 20 and the second radio channel 25.
  • a first demodulator 7 is provided, which processes the radio signals received via the third antenna 60 and the fourth antenna 65.
  • the first demodulator 7 processes the received signals in order to generate a data stream for a data user 8 therefrom.
  • the transmitted data e.g. B. represent voice information
  • the data user 8 is a voice decoder, other data, for example, a computer or a fax machine.
  • mobile stations have only a single data user 8 and thus also only a single data stream.
  • a first channel estimator 11 is additionally provided in the base station 1, which provides information about the transmission properties of all radio channels between the base station 1 and the mobile stations 2, 3.
  • the first modulator 4 generates a transmission signal which takes into account both the ISI and the MAI.
  • the transmission signal is designed such that each of the mobile stations 2, 3 receives, as far as possible, an interference-free signal when it is received. Both the interference caused by the simultaneous use of several codes and the interference caused by the transmission properties of the individual radio channels are taken into account.
  • the receiver of the data ie the second radio station 2 is then correspondingly simple in FIG.
  • This has the first demodulator 7, which receives the signal from the third antenna 60 and the fourth antenna 65.
  • the code information for the relevant data stream must also be made available to this first demodulator 7 by a further code generator 9, from which the first demodulator 7 then generates the data stream for the data user 8.
  • the second radio station 2 can thus be set up particularly easily.
  • the first channel estimator 11 would then also be connected to the second demodulator 75.
  • the mobile stations 2, 3 have a particularly simple structure, since the ISI and MAI are only taken into account in the base station 1.
  • a corresponding TDD system Time Division Duplex
  • the downlink transmission and the uplink transmission take place in adjacent slots in the same frequency band
  • it is also very easy to add the channel transmission properties by the first channel estimator 11 in the base station 1 obtained by the properties of the respective transmission channels can be determined by evaluating the received uplink data in the base station 1.
  • the corresponding channel impulse response or channel quality can also be transmitted by a data telegram from the corresponding mobile station 2, 3 to the base station 1.
  • the amplitude fluctuations, also referred to as fading, of the signal received in the second radio station 2 result from multipath reception or radio shadowing when the second radio station 2, which is designed as a mobile station, moves, for example in the vicinity of buildings.
  • the transmission takes place between the first radio station 1 and the second one
  • Radio station 2 via the two radio channels 20, 25. This is explained in more detail below with reference to FIG. 2.
  • the first radio channel 20 forms a transmission path between the first antenna 50 and the third antenna 60 and the second radio channel 25 forms a transmission path between the first antenna 50 and the fourth antenna 65. If one of the two transmission paths has an amplitude dip in that transmitted on this transmission path Signal, the signal can still be received via the other of the two transmission links with sufficient amplitude in the second radio station 2.
  • the first radio station 1 further comprises a first transmission / reception device 30, which comprises an antenna switch and optionally transmission / reception amplifier, and a second demodulator 75.
  • the first antenna 50 is a transmission / reception antenna, so that the antenna switch in the first transmission - / Receiving device 30 is used to switch between sending and receiving direction. In the transmission direction, the antenna switch connects the first transmission
  • the antenna switch of the first transmitting / receiving device 30 connects the first antenna 50 to the second demodulator 75, which demodulates received signals and forwards them to one or more data sinks.
  • the received signals fed to the second demodulator 75 are also fed to the first channel estimator 11, which estimates an overall impulse response of the two radio channels 20, 25 between the first radio station 1 and the second radio station 2 determined and forwards this estimate to the first modulator 4.
  • the pre-equalization of the signal to be radiated by the first antenna 50 of the first radio station 1 is then carried out in the first modulator 4 as a function of the estimate of the overall impulse response.
  • the third antenna 60 is connected to a third transceiver 40 and the fourth antenna 65 is connected to a fourth transceiver 45.
  • the third antenna 60 and the fourth antenna 65 are each also designed as a transmission / reception antenna, so that an antenna switch is provided in the third transmission / reception device 40 and in the fourth transmission / reception device 45 in order to switch between the two transmission directions to be able to switch.
  • the second radio station 2 comprises a second modulator 6, which in the
  • Transmission is connected to both the third antenna 60 and the fourth antenna 65 via the respective antenna switch of the third transmitting / receiving device 40 and the fourth transmitting / receiving device 45.
  • the respective antenna switch of the third transmitting / receiving device 40 and the fourth transmitting / receiving device 45 connects the third antenna 60 and the fourth antenna 65 to the first demodulator 7 via a summation element 80.
  • the received signal delivered by the third transceiver 40 is multiplied by a first coefficient c ⁇ and the received signal supplied by the fourth transceiver 45 by a second coefficient C 2 .
  • transmission data supplied to the second modulator 6, after its modulation in the second modulator 6, is multiplied by the first coefficient c ⁇ _ on the one hand and fed to the third antenna 60 via the third transmitting / receiving device 40 and on the other hand by the second coefficient c ⁇ multiplied and fed to the fourth antenna 65 via the fourth transmitting / receiving device 45.
  • Summation element 80 the received signals supplied by third antenna 60 and fourth antenna 65 are linearly combined and then fed to demodulation in first demodulator 7.
  • the first coefficient c ⁇ is assigned to the first radio channel 20 and the second coefficient C 2 to the second radio channel 25.
  • Reference signals can be formed in the second modulator 6 and, after multiplication by the first coefficient c ⁇ or by the second coefficient C 2 , are transmitted to the first radio station 1 via the associated radio channel 20, 25.
  • Estimation of the total impulse response in the first channel estimator 11 is derived from the superimposed reception of the reference signals in the base station 1.
  • the first radio station 1 now also comprises a second antenna 55 in addition to the first antenna 50, whereas the second radio station 2 only comprises the third antenna 60.
  • the first radio channel 20 in FIG. 3 now characterizes the transmission path between the first antenna 50 and the third antenna 60 and the second radio channel 25 characterizes the transmission path between the second antenna 55 and the third antenna 60.
  • the second radio station 2 only the third transceiver 40 required, which in turn comprises an antenna switch for the two possible transmission directions, which on the one hand connects the second modulator 6 to the third antenna 60 and on the other hand the first demodulator 7 to the third antenna 60 depending on the transmission direction.
  • the first radio station 1 now comprises, in addition to the first transmitting / receiving device 30, a second transmitting / receiving device 35, which likewise comprises an antenna switch which connects the second antenna 55 for transmission with the first modulator 4 and for reception with the second demodulator 75 and connects to the first modulator 4 via a second channel estimator 12.
  • the second channel estimator 12 can also be connected to the second demodulator 75, as shown in FIG. 3, in order to eliminate ISI and MAI from received signals.
  • a pre-equalized signal is emitted by the first antenna 50 and the second antenna 55 and sent to the third transmission channel via the first radio channel 20 and the second radio channel 25, respectively.
  • the third antenna 60 of the second radio station 2 generates a reference signal over the two radio channels 20, 25 and the first antenna 50 and the second antenna 55 transmitted to the first radio station 1.
  • the estimate of the impulse response of the first radio channel 20 is then derived from the reception of the reference signal via the first radio channel 20 in the first channel estimator 11 and the estimate of the
  • the impulse response of the second radio channel 25 is derived from the reception of the reference signal via the second radio channel 25 in the second channel estimator 12.
  • the pre-equalization of the signal to be emitted by the first antenna 50 and by the second antenna 55 takes place as a function of all codes currently used in the radio cell of the first radio station 1 and the transmission properties of all radio channels currently used there, which are determined in the two channel estimators 11, 12. This also applies to the exemplary embodiment according to FIG. 2 using only the first antenna 50 for the radiation of signals from the first radio station 1 and using only the first channel estimator 11.
  • both the first radio station 1 and the second radio station 2 are each equipped with two antennas, so that there are four radio channels which enable even better protection against fading.
  • Any number of antennas can also be used in the first radio station 1 and in the second radio station 2, so that any number of radio channels can be set up between the first radio station 1 and the second radio station 2, with an increasing number of radio channels between the first radio station 1 and the second radio station 2, the influence of fading on the signal transmission decreases.
  • the pre-equalization takes place in the mobile stations 2, 3 in a corresponding manner instead of in the base station 1 Way to provide.
  • the multichannel transmission method between the base station 1 and the mobile stations 2, 3, which are referred to below as users, and in which the transmission properties of all radio channels (ISI) and the codes of all radio channels (MAI) are taken into account, is described below using mathematical formulas . These formulas can either be implemented by a corresponding program or corresponding hardware modules that implement these formulas.
  • FIG. 4 shows a chronological sequence in TDD operation with pre-equalization.
  • the second radio station 2 sends reference signals for estimating the transmission properties of the two radio channels 20, 25 to the first radio station 1. This channel estimation is carried out in a second step 105 after receiving the reference signals in the first radio station 1.
  • the signals to be transmitted to the radio station 2 are pre-equalized in a third step 110.
  • the pre-equalized signals are then received by the second radio station 2 in a fourth step 115 and no longer need to be equalized there.
  • the second radio station 2 should represent one of several users.
  • the spread of a data block of the kth user can be written as:
  • the entire block of M data bits is distributed on M-Q chips.
  • the sequence of the chip clock signals of all users results in
  • the signals are linearly pre-equalized after the modulation.
  • Steps of modulation and pre-equalization, treated mathematically separately, are carried out by the first modulator 4.
  • the pre-equalization is described by the matrix P.
  • the transmission signal s results:
  • s reaches the kth user via the two radio channels 20, 25 according to the exemplary embodiment according to FIG. 2.
  • W is the number of chip clock periods over which multipath reception is taken into account.
  • the multipath channel extends the data blocks of the chip clock length M - Q to M - Q + W - 1 chip clocks.
  • the last W - 1 chip card overlays the first W -1 chip card of the next data block.
  • the demodulator of the kth user of the system thus receives the two received signals
  • the matrix D sums the pre-equalized chip clock signals of all users in order to be able to radiate them via an antenna.
  • a suitable demodulator of the kth user according to FIG. 2 can be designed as a simple matched filter 1 , which despreads the received chip clock signal with the CDMA codes of the desired data signal.
  • the M -KxM -QK matrix R H -HD ⁇ -D generally has the rank MK. Therefore, (R H H H -D ⁇ -D) - (R H -H -D ⁇ -D) H is invertible and it exists
  • R H thus delivers the transmitted data symbols d ⁇ and additive noise.
  • the detected signal contains neither ISI nor MAI.
  • H can simply be estimated by the first channel estimator 11 of the first radio station 1.
  • a reference signal p of the kth user sent for channel estimation in the uplink transmission is sent via the third antenna 60 in the form c, • p (k) and via the fourth antenna 65 in the form c 2 -p (k) .
  • the base station 1 therefore receives the corresponding signal
  • the multi-channel Transmission between the base station 1 and each of the mobile stations 2, 3 takes place via two radio channels 20, 25, whereby transmission takes place between the first antenna 50 and the third antenna 60 and between the second antenna 55 and the third antenna 60 according to FIG.
  • the spread of a data block of the k th user can be written as:
  • the signals are linearly pre-equalized after the modulation.
  • the steps of modulation and pre-equalization treated here mathematically separately are carried out by the first modulator 4.
  • the pre-equalization is described by the matrix P.
  • the total signal vector 5 reaches the k th user via the two radio channels 20, 25 according to the exemplary embodiment according to FIG. 3.
  • W is the number of chip clock periods over which multipath reception is taken into account.
  • the multipath channel extends the data blocks of the chip clock length M - Q to MQ + W -1 chip clocks.
  • the last W -1 chip card overlays the first W -1 chip card of the next data block.
  • the demodulator of the kth user of the system receives the signal
  • a suitable demodulator of the k-th user according to FIG. 3 can be designed as a simple "matched filter”, which despreads the received chip clock channel with the CDMA codes of the desired data signal.
  • This "matched filter” receiver (1-finger rake receiver ) to k th user code c (k)
  • n (tn (1,0 +, n (1,2), ..., «( ⁇ M) +, n (A, 2),)
  • R d H -HD DPCD ⁇ ⁇ + R H -n
  • the M-Kx2-MQK matrix R H -HD ⁇ -D generally has the rank MK Therefore, (R H -H -D ⁇ ⁇ D) - (R H -H -D ⁇ -D) H is invertible and it exists
  • R therefore delivers the transmitted data symbols d and additive noise.
  • the detected signal contains neither ISI nor MAI. These disturbances are eliminated by pre-equalization on the transmitter side.
  • H can easily be estimated by the two channel estimators 11, 12 of the first radio station 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Radio Transmission System (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Transmitters (AREA)
  • Radio Relay Systems (AREA)

Abstract

Es werden ein Verfahren und Funkstationen für die Übertragung von Signalen zwischen einer ersten Funkstation (1) und einer zweiten Funkstation (2) vorgeschlagen, bei dem der Einfluss von Amplitudenschwankungen bzw. Fading verringert werden kann. Dabei wird in einem Modulator (4) der ersten Funkstation (1) eine Vorentzerrung der zu übertragenden Signale vorgenommen. Die vorentzerrten Signale werden über mehrere Funkkanäle (20, 25) von der ersten Funkstation (1) an die zweite Funkstation (2) übertragen.

Description

VERFAHREN UND FUNKSTATION FÜR DIE ÜBERTRAGUNG VON VORVERZERRTEN SIGNALEN ÜBER MEHRERE FUNKKANÄLE
Stand der Technik
Die Erfindung geht von einem Verfahren für die Übertragung von Signalen zwischen einer ersten Funkstation und einer zweiten Funkstation und von Funkstationen nach der Gattung der unabhängigen Ansprüche aus .
Aus der Deutschen Patentanmeldung mit dem Aktenzeichen 198 18 215 ist bereits ein Verfahren für die Übertragung von Signalen zwischen einer Basisstation und mehreren Mobilstationen über Funkkanäle bekannt, wobei die Daten unterschiedlicher Mobilstationen mit unterschiedlichen Codes gespreizt werden. In einem Modulator wird eine Vorentzerrung der zu übertragenden Signale vorgenommen.
Werden vorentzerrte Datensignale über einen Mehrwege- Übertragungskanal an einen Empfänger versendet, so können durch starke Fading-Einbrüche Übertragungsfehler auftreten. Unter Fading versteht man dabei Amplitudenschwankungen, die beim Mehrwegeempfang eines übertragenen Signals auftreten können. Vorteile der Erfindung
Das erfindungsgemäße Verfahren und die erfindungsgemäßen Funkstationen mit den Merkmalen der unabhängigen Ansprüche haben demgegenüber den Vorteil, daß die vorentzerrten Signale über mehrere Funkkanäle von einer Sendevorrichtung der ersten Funkstation an eine Empfangsvorrichtung der zweiten Funkstation übertragen werden. Auf diese Weise wird gewährleistet, daß an der zweiten Funkstation der Empfang von vorentzerrten Signalen ohne wesentlichen Amplitudeneinbruch erfolgt.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des
Verfahrens und der Funkstationen gemäß den unabhängigen Ansprüchen möglich.
Besonders vorteilhaft ist es, daß von mehreren Antennen der Sendevorrichtung der ersten Funkstation jeweils ein vorentzerrtes Signal abgestrahlt und über je einen Funkkanal an die Empfangsvorrichtung der zweiten Funkstation übertragen wird, wobei für jeden Funkkanal eine Schätzung einer Impulsantwort in der ersten Funkstation ermittelt wird und wobei eine Vorentzerrung des von der jeweiligen Antenne abzustrahlenden Signals in Abhängigkeit der Schätzung der Impulsantwort des zugehörigen Funkkanals vorgenommen wird. Auf diese Weise wird gewährleistet, daß die Übertragung von Signalen zwischen der ersten Funkstation und der zweiten Funkstation über mehrere Funkkanäle bei der Vorentzerrung berücksichtigt wird. Somit kann auch bei einer Übertragung über mehrere Funkkanäle auf eine Entzerrung der empfangenen Signale in der zweiten Funkstation verzichtet werden, so daß Aufwand in der zweiten Funkstation eingespart wird. Eine genaue Schätzung der Impulsantwort des zugehörigen Funkkanals ergibt sich, wenn von einer Antenne der zweiten Funkstation ein Referenzsignal über die Funkkanäle an die erste Funkstation übertragen wird und die Schätzung der Impulsantwort des jeweiligen Funkkanals aus einem Empfang des Referenzsignals über den jeweiligen Funkkanal in der ersten Funkstation abgeleitet wird.
Eine Entzerrung für einen mehrkanaligen Empfang von Signalen der ersten Funkstation in der zweiten Funkstation ist auch dann nicht erforderlich, wenn gemäß einer zweiten Ausführungsform ein von der Sendevorrichtung der ersten Funkstation abgestrahltes vorentzerrtes Signal über je einen Funkkanal von mehreren Antennen der Empfangsvorrichtung der zweiten Funkstation empfangen wird, wobei in der ersten
Funkstation eine Schätzung einer Gesamtimpulsantwort aller Funkkanäle ermittelt wird und wobei eine Vorentzerrung des von der ersten Funkstation abzustrahlenden Signals in Abhängigkeit der Schätzung der Gesamtimpulsantwort vorgenommen wird. Auch auf diese Weise wird für die
Vorentzerrung des von der ersten Funkstation abzustrahlenden Signals die mehrkanalige Übertragung zwischen der ersten Funkstation und der zweiten Funkstation berücksichtigt.
Eine genaue Schätzung der Gesamtimpulsantwort ist dabei durch Übertragung jeweils eines Referenzsignals über den zugehörigen Funkkanal von den Antennen der zweiten Funkstation an die erste Funkstation möglich, wobei die Schätzung der Gesamtimpulsantwort aus einem überlagerten Empfang der Referenzsignale in der ersten Funkstation abgeleitet wird. Von der ersten Funkstation an die zweite Funkstation übertragene vorentzerrte Signale brauchen dann in der zweiten Funkstation lediglich linear kombiniert zu werden und können ohne Entzerrung anschließend einer Demodulation zugeführt werden. Auch auf diese Weise wird Aufwand in der zweiten Funkstation eingespart.
Besonders vorteilhaft ist es, daß jedes Referenzsignal in Abhängigkeit des für seine Übertragung verwendeten
Funkkanals mit einem Koeffizienten multipliziert wird und daß bei der linearen Kombination der von den Antennen der Empfangsvorrichtung gebildeten Empfangssignale jedes Empfangssignal mit dem Koeffizienten des für seine Übertragung verwendeten Funkkanals multipliziert wird. Durch geeignete Wahl der Koeffizienten läßt sich dabei eine Richtcharakteristik der Antennen der zweiten Funkstation in Richtung zur ersten Funkstation realisieren, so daß eine Übertragung von Signalen zwischen der ersten Funkstation und der zweiten Funkstation auch weniger Sendeleistung erfordert .
Ein weiterer Vorteil besteht darin, daß zwischen der ersten Funkstation oder der zweiten Funkstation und weiteren Funkstationen über weitere Funkkanäle Signale übertragen werden, wobei die mit den Signalen übertragenen Daten unterschiedlicher Funkstationen mit unterschiedlichen Codes gespreizt werden, und daß die Vorentzerrung im Modulator der ersten Funkstation in Abhängigkeit aller unterschiedlicher Codes und der Übertragungseigenschaften aller Funkkanäle vorgenommen wird. Auf diese Weise läßt sich die Vorentzerrung weiter verbessern, so daß auch sogenannte Inter-Symbol-Interferenzen (IST.) zwischen übertragenen Datensymbolen einer Funkstation und Multiple-Access- Interferenzen (MAI) , d. h. Störungen durch andere
Funkstationen, bei der Vorentzerrung berücksichtigt werden, so daß auch solche Störungen keine Entzerrung in der zweiten Funkstation erfordern. Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 den allgemeinen Aufbau eines Mobilfunksystems bzw. eines Mobiltelefonsystems, Figur 2 ein Blockschaltbild einer ersten Ausführungsform für eine erste und eine zweite Funkstation, Figur 3 eine zweite
Ausfuhrungsform für die erste und die zweite Funkstation und Figur 4 einen zeitlichen Ablaufplan des erfindungsgemäßen Verfahrens .
Beschreibung der Ausführungsbeispiele
In der Figur 1 wird schematisch eine Funkzelle eines zellularen Mobiltelefonsystems bzw. Mobilfunksystems mit einer als Basisstation ausgebildeten ersten Funkstation 1, einer als Mobilstation ausgebildeten zweiten Funkstation 2 sowie weiteren ebenfalls als Mobilstationen ausgebildeten Funkstationen 3 dargestellt. Wesentlich an diesem System ist, daß ein Austausch von Daten immer nur zwischen der Basisstation 1 und den Mobilstationen 2, 3 erfolgt und kein direkter Datenaustausch zwischen den Mobilstationen 2, 3 möglich ist. Entsprechend werden die Basisstation 1 auch als Zentralstation und die Mobilstationen 2, 3 als Peripheriestationen bezeichnet. Der Austausch von Daten zwischen der Basisstation 1 und den Mobilstationen 2, 3 erfolgt durch Funkübertragung. Die Funkübertragung von der Basisstation 1 zu einer der Mobilstationen 2, 3 wird dabei als Downlink und die Datenübertragung von einer der Mobilstationen 2, 3 zur Basisstation 1 als Uplink bezeichnet. Bei einem derartigen, in der Figur 1 dargestellten System, mit einer Zentral- oder Basisstation 1 und mehreren Peripherie- oder Mobilstationen 2, 3 ist festzulegen, wie die Daten für die verschiedenen Mobilstationen 2, 3 moduliert werden, damit sie in den Empfängern der verschiedenen Mobilstationen 2, 3 getrennt detektiert werden können. Bei dem System nach Figur 1 handelt es sich um ein sogenanntes CDMA-System (Code Division Multiple Access) , bei dem für die Datenübertragung ein gemeinsames Frequenzband zur Verfügung steht, wobei sich die einzelnen Funkkanäle zwischen der Basisstation 1 und den jeweiligen Mobilstationen 2, 3 hinsichtlich eines Codes unterscheiden, mit dem das Signal für die entsprechende Mobilstation 2, 3 gespreizt wird. Eine solche Codierung ist jedoch nicht erforderlich, wenn neben der Basisstation 1 nur eine einzige Mobilstation 2 , 3 in der Funkzelle vorhanden ist. Im folgenden wird der Fall beschrieben, in dem mehrere Mobilstationen 2, 3 neben der Basisstation 1 in der Funkzelle vorgesehen sind. Durch die Spreizung mit dem Code wird dabei jedes Signal, das zwischen der Basisstation 1 und einer bestimmten Mobilstation 2, 3 ausgetauscht werden soll, über das gesamte zur Verfügung stehende Spektrum verteilt.
Jedes einzelne zu übertragende Informationsbit wird dabei in eine Vielzahl kleiner "Chips" zerlegt. Dadurch wird die Energie eines Bits über das gesamte Frequenzspektrum verteilt, welches dem CDMA-System zur Verfügung steht. In Figur 2 wird ein CDMA-System anhand einer Downlink-
Übertragung näher erläutert . Die Figur 2 zeigt wiederum die als Basisstation ausgebildete erste Funkstation 1 und die als Mobilstation ausgebildete zweite Funkstation 2. Die Basisstation 1 umfaßt dabei eine erste Antenne 50. Die zweite Funkstation 2 umfaßt eine dritte Antenne 60 und eine vierte Antenne 65. Die erste Funkstation 1 und die zweite Funkstation 2 tauschen somit Daten über einen ersten Funkkanal 20 und einen zweiten Funkkanal 25 aus. Der erste Funkkanal 20 beschreibt dabei eine Übertragungsstrecke zwischen der ersten Antenne 50 und der dritten Antenne 60. Der zweite Funkkanal 25 beschreibt eine Übertragungsstrecke zwischen der ersten Antenne 50 und der vierten Antenne 65. Die erste Funkstation 1 umfaßt einen ersten Modulator 4, der die Datenströme von Datenquellen 70 für die Übertragung über den ersten Funkkanal 20 und den zweiten Funkkanal 25 aufbereitet . Dazu benötigt der erste Modulator 4 noch Codeinformationen, die von einem Codegenerator 5 zur Verfügung gestellt werden.- Exemplarisch werden in der Figur 2 zwei Pfeile von den Datenquellen 70 zum ersten Modulator 4 und zwei Pfeile vom Codegenerator 5 zum ersten Modulator 4 gezeigt, die zwei unterschiedliche Datenströme bzw. zwei unterschiedliche Codeinformationen repräsentieren. In einem realen System wird eine wesentlich größere Anzahl von Datenströmen und Codeinformationen gleichzeitig verarbeitet. Der erste Modulator 4 erzeugt aus den Datenströmen und den Codeinformationen ein Sendesignal, welches der zweiten Funkstation 2 und den weiteren Funkstationen 3 zugesendet wird. In Figur 2 wird exemplarisch nur die zweite Funkstation 2 als empfangende Mobilstation dargestellt. Wäre nur die zweite Funkstation 2 als empfangende Mobilstation in der Funkzelle zur Versorgung mit einem einzigen Datenstrom vorgesehen, so würde in der ersten Funkstation 1 nur eine Codeinformation benötigt. Die erste Funkstation 1 sendet jedoch in der Regel gleichzeitig über entsprechende Funkkanäle auch zu den weiteren Funkstationen 3, deren jeweilige Daten ebenfalls mit verschiedenen Codes moduliert sind. Die weiteren Funkstationen 3 werden aus Vereinfachungsgründen in Figur 2 nicht dargestellt.
Der Codegenerator 5 erzeugt Codes in Abhängigkeit von gewählten Funkverbindungen zu den Mobilstationen 2, 3. Die mit den Signalen zu übertragenden Daten werden im ersten Modulator 4 mit diesen Codes gespreizt. Bei der Übertragung zwischen der ersten Funkstation 1 und der zweiten Funkstation 2 treten nun eine Vielzahl von Störungen auf. Eine erste Störung wird dabei als ISI (Intersymbolinterferenz) bezeichnet und resultiert daher, daß ein ausgesandtes Funksignal über mehrere verschiedene Pfade zum Empfänger gelangen kann, wobei sich die Ankunftszeiten beim Empfänger geringfügig unterscheiden. Es handelt sich somit um eine Störung, die in dem betreffenden Funkkanal dadurch entsteht, daß zeitlich vorhergehend ausgesandte Signale aktuell empfangene Signale stören
(daher: Inter-Symbol-Interferenz) . Eine weitere Störung erfolgt dadurch, daß mehrere Datenströme gleichzeitig übertragen werden, die sich nur hinsichtlich des Codes unterscheiden. Diese Störung tritt auf, wenn die Basisstation 1 mit mehreren Mobilstationen 2, 3 gleichzeitig in Funkkontakt steht, was bei modernen Mobiltelefonsystemen den Regelfall darstellt. Es handelt sich somit um eine Störung, die von den Signalen unterschiedlicher Benutzer ausgeht und die daher auch als MAI (multiple access interference) bezeichnet wird.
Figur 2 zeigt auch den Empfangsteil der als Mobilstation ausgebildeten zweiten Funkstation 2, die zum Empfang von Downlink-Daten über den ersten Funkkanal 20 und den zweiten Funkkanal 25 bestimmt ist. Dafür ist ein erster Demodulator 7 vorgesehen, der die über die dritte Antenne 60 und die vierte Antenne 65 empfangenen Funksignale verarbeitet. Der erste Demodulator 7 verarbeitet die empfangenen Signale, um daraus einen Datenstrom für einen Datennutzer 8 zu erzeugen. Wenn die übertragenen Daten z. B. Sprachinformationen darstellen, handelt es sich bei dem Datennutzer 8 um einen Sprachdecoder, bei anderen Daten beispielsweise um einen Rechner oder um ein Fax-Gerät. In der Regel weisen Mobilstationen nur einen einzigen Datennutzer 8 und somit auch nur einen einzigen Datenstrom auf. Bei völlig ungestörter Übertragung über den ersten Funkkanal 20 und den zweiten Funkkanal 25 brauchte der erste Demodulator 7 zur Demodulation nur die Codeinformation der zu detektierenden Daten für den Datennutzer 8 zu kennen. Aufgrund der oben beschriebenen Störungen ist dies jedoch nicht ausreichend. Daher ist in der Basisstation 1 zusätzlich noch ein erster Kanalschätzer 11 vorgesehen, der Informationen über die Übertragungseigenschaften aller Funkkanäle zwischen der Basisstation 1 und den Mobilstationen 2, 3 zur Verfügung stellt. Der erste Modulator 4 erzeugt dabei ein Sendesignal, welches sowohl die ISI als auch die MAI berücksichtigt. Dabei ist das Sendesignal jeweils so ausgelegt, daß jede der Mobilstationen 2, 3 beim Empfang, soweit dies möglich ist, ein störungsfreies Signal erhält. Dabei werden sowohl die Störungen, die durch die gleichzeitige Verwendung mehrerer Codes entstehen, als auch die Störungen, die durch die Übertragungseigenschaften der einzelnen Funkkanäle entstehen, berücksichtigt. Entsprechend einfach ist dann in Figur 2 der Empfänger der Daten, d. h. die zweite Funkstation 2 aufgebaut. Diese weist den ersten Demodulator 7 auf, der das Signal der dritten Antenne 60 und der vierten Antenne 65 erhält. Diesem ersten Demodulator 7 muß noch die Codeinformation für den betreffenden Datenstrom von einem weiteren Codegenerator 9 zur Verfügung gestellt werden, woraus dann der erste Demodulator 7 den Datenstrom für den Datennutzer 8 erzeugt. Die zweite Funkstation 2 läßt sich somit besonders einfach aufbauen.
In Figur 2 wurde dargestellt, daß bei der Downlink- Übertragung vorteilhafterweise alle Störungen der Funkkanäle 20, 25 in der sendenden Station, bei Downlink-Übertragung also in der Basisstation 1, berücksichtigt werden. Der Downlink-Teil der zweiten Funkstation 2 und der weiteren Funkstationen 3 kann daher besonders einfach aufgebaut sein. Um diese Mobilstationen 2, 3 auch für den Uplink-Pfad, d. h. für das Senden von Daten von der jeweiligen Mobilstation 2, 3 zur Basisstation 1 einfach zu halten, könnte für diese Übertragung ein Verfahren gemäß dem Artikel von A. Klein, G. K. Kaleh und P.W. Beier: "Zero forcing and minimum mean - Square - error equalization for multi user detection in code - division - multiple - access Channels" IEEE Trans. Vehic. Tech. Bd. 45 (1996), S. 276 - 287 verwendet werden, bei dem die Berücksichtigung der ISI und der MAI in der empfangenden Station, d. h. wieder in der Basisstation 1 erfolgt. Dazu wäre dann der erste Kanalschätzer 11 zusätzlich mit dem zweiten Demodulator 75 verbunden. Es wird auf diese Weise ein System möglich, bei dem die Mobilstationen 2, 3 besonders einfach aufgebaut sind, da die Berücksichtigung von ISI und MAI ausschließlich in der Basisstation 1 erfolgt. In einem entsprechenden TDD-System (Time Division Duplex) , bei dem die Downlink-Übertragung und die Uplink- Übertragung in benachbarten Slots im gleichen Frequenzband stattfindet, ist es auch sehr einfach möglich, die Kanalübertragungseigenschaften durch den ersten Kanalschätzer 11 in der Basisstation 1 zu erhalten, indem die Eigenschaften der jeweiligen Übertragungskanäle durch Auswertung der empfangenen Uplink-Daten in der Basisstation 1 ermittelt werden können. Weiterhin kann die entsprechende Kanalimpulsantwort bzw. Kanalqualität auch durch ein Datentelegramm von der entsprechenden Mobilstation 2, 3 an die Basisstation 1 übermittelt werden.
Wird für die Übertragung von der ersten Funkstation 1 zur zweiten Funkstation 2 nur ein einziger Funkkanal verwendet, so kann es trotz der Vorentzerrung des zu übertragenden
Signals in der ersten Funkstation 1 zu Amplitudeneinbrüchen des entsprechenden EmpfangsSignals bei der zweiten Funkstation 2 kommen. Die auch als Fading bezeichneten Amplitudenschwankungen des in der zweiten Funkstation 2 empfangenen Signals resultieren dabei aus Mehrwegeempfang oder Funkabschattungen bei Bewegung der als Mobilstation ausgebildeten zweiten Funkstation 2 beispielsweise in der Nähe von Gebäuden. Um den Amplitudenschwankungen aufgrund von Mehrwegeempfang vorzubeugen, erfolgt die Übertragung zwischen der ersten Funkstation 1 und der zweiten
Funkstation 2 über die zwei Funkkanäle 20, 25. Dies wird im folgenden anhand von Figur 2 näher erläutert . Der erste Funkkanal 20 bildet dabei eine Übertragungsstrecke zwischen der ersten Antenne 50 und der dritten Antenne 60 und der zweite Funkkanal 25 bildet eine Übertragungsstrecke zwischen der ersten Antenne 50 und der vierten Antenne 65. Tritt auf einer der beiden Übertragungsstrecken ein Amplitudeneinbruch des auf dieser Übertragungsstrecke übertragenen Signals ein, so kann das Signal noch über die andere der beiden Übertragungsstrecken mit ausreichender Amplitude in der zweiten Funkstation 2 empfangen werden.
Die erste Funkstation 1 umfaßt weiterhin eine erste Sende- /Empfangsvorrichtung 30, die einen Antennenschalter und gegebenenfalls Sende-/Empfangsverstärker umfaßt, und einen zweiten Demodulator 75. Die erste Antenne 50 ist eine Sende- /Empfangsantenne, so daß der Antennenschalter in der ersten Sende-/Empfangsvorrichtung 30 zur Umschaltung zwischen Sende- und Empfangsrichtung dient. In der Senderichtung verbindet der Antennenschalter der ersten Sende-
/Empfangsvorrichtung 30 den ersten Modulator 4 mit der ersten Antenne 50. In der Empfangsrichtung verbindet der Antennenschalter der ersten Sende-/Empfangsvorrichtung 30 die erste Antenne 50 mit dem zweiten Demodulator 75, der empfangene Signale demoduliert und an eine oder mehrere Datensenken weiterleitet. Die dem zweiten Demodulator 75 zugeführten empfangenen Signale werden außerdem dem ersten Kanalschätzer 11 zugeführt, der eine Schätzung einer Gesamtimpulsantwort der beiden Funkkanäle 20, 25 zwischen der ersten Funkstation 1 und der zweiten Funkstation 2 ermittelt und diese Schätzung an den ersten Modulator 4 weiterleitet. Die Vorentzerrung des von der ersten Antenne 50 der ersten Funkstation 1 abzustrahlenden Signals wird dann im ersten Modulator 4 in Abhängigkeit der Schätzung der Gesamtimpulsantwort vorgenommen. In der zweiten Funkstation 2 ist die dritte Antenne 60 mit einer dritten Sende- /Empfangsvorrichtung 40 und die vierte Antenne 65 mit einer vierten Sende-/Empfangsvorrichtung 45 verbunden. Die dritte Antenne 60 und die vierte Antenne 65 sind dabei ebenfalls jeweils als Sende-/Empfangsantenne ausgebildet, so daß in der dritten Sende-/Empfangsvorrichtung 40 und in der vierten Sende-/Empfangsvorrichtung 45 jeweils ein Antennenschalter vorgesehen ist, um zwischen den beiden Übertragungsrichtungen umschalten zu können. Die zweite Funkstation 2 umfaßt einen zweiten Modulator 6, der im
Sendefall über den jeweiligen Antennenschalter der dritten Sende-/Empfangsvorrichtung 40 und der vierten Sende- /Empfangsvorrichtung 45 sowohl mit der dritten Antenne 60 als auch mit der vierten Antenne 65 verbunden wird. Im Empfangsfall verbindet der jeweilige Antennenschalter der dritten Sende-/Empfangsvorrichtung 40 und der vierten Sende- /Empfangsvorrichtung 45 die dritte Antenne 60 und die vierte Antenne 65 über ein Summationsglied 80 mit dem ersten Demodulator 7. Vor der Summation der beiden Empfangssignale durch das Summationsglied 80 wird das von der dritten Sende- /Empfangsvorrichtung 40 gelieferte Empfangssignal mit einem ersten Koeffizienten c^ und das von der vierten Sende- /Empfangsvorrichtung 45 gelieferte Empfangssignal mit einem zweiten Koeffizienten C2 multipliziert. Umgekehrt werden im Sendefall dem zweiten Modulator 6 zugeführte Sendedaten nach ihrer Modulation im zweiten Modulator 6 einerseits mit dem ersten Koeffizienten cη_ multipliziert und über die dritte Sende-/Empfangsvorrichtung 40 der dritten Antenne 60 zugeführt und andererseits mit dem zweiten Koeffizienten c^ multipliziert und über die vierte Sende-/Empfangsvorrichtung 45 der vierten Antenne 65 zugeführt.
Durch entsprechende Wahl der Koeffizienten cη_, c-2 läßt sich eine Richtwirkung oder Richtcharakteristik der von der dritten Antenne 60 und der vierten Antenne 65 abzustrahlenden bzw. zu empfangenden Signale realisieren, die vorteilhafterweise auf die erste Funkstation 1 ausgerichtet ist. Auch auf diese Weise kann Signaleinbrüchen durch Fading entgegengewirkt werden. Über das
Summationsglied 80 werden die von der dritten Antenne 60 und der vierten Antenne 65 gelieferten Empfangssignale linear kombiniert und anschließend der Demodulation im ersten Demodulator 7 zugeführt. Der erste Koeffizient c^ ist dabei dem ersten Funkkanal 20 und der zweite Koeffizient C2 dem zweiten Funkkanal 25 zugeordnet. Im zweiten Modulator 6 können Referenzsignale gebildet werden, die nach Multiplikation mit dem ersten Koeffizienten c^ bzw. mit dem zweiten Koeffizienten C2 über den zugehörigen Funkkanal 20, 25 an die erste Funkstation 1 übertragen werden. Die
Schätzung der Gesamtimpulsantwort im ersten Kanalschätzer 11 wird dabei aus dem überlagerten Empfang der Referenzsignale in der Basisstation 1 abgeleitet.
In Figur 3 kennzeichnen gleiche Bezugszeichen gleiche
Elemente wie in Figur 2. Im Unterschied zu Figur 2 umfaßt nun die erste Funkstation 1 neben der ersten Antenne 50 auch eine zweite Antenne 55, wohingegen die zweite Funkstation 2 nur die dritte Antenne 60 umfaßt. Der erste Funkkanal 20 charakterisiert in Figur 3 nun die Übertragungsstrecke zwischen der ersten Antenne 50 und der dritten Antenne 60 und der zweite Funkkanal 25 charakterisiert die Übertragungsstrecke zwischen der zweiten Antenne 55 und der dritten Antenne 60. Somit ist gemäß Figur 3 in der zweiten Funkstation 2 nur die dritte Sende-/Empfangsvorrichtung 40 erforderlich, die wiederum für die beiden möglichen Übertragungsrichtungen einen Antennenschalter umfaßt, der einerseits den zweiten Modulator 6 mit der dritten Antenne 60 und andererseits den ersten Demodulator 7 mit der dritten Antenne 60 in Abhängigkeit der Übertragungsrichtung verbindet. Die erste Funkstation 1 hingegen umfaßt nun neben der ersten Sende-/Empfangsvorrichtung 30 eine zweite Sende- /Empfangsvorrichtung 35, die ebenfalls einen Antennenschalter umfaßt, der die zweite Antenne 55 zum Senden mit dem ersten Modulator 4 und zum Empfangen mit dem zweiten Demodulator 75 und über einen zweiten Kanalschätzer 12 wiederum mit dem ersten Modulator 4 verbindet. Der zweite Kanalschätzer 12 kann zusätzlich wie in Figur 3 dargestellt ebenfalls mit dem zweiten Demodulator 75 verbunden sein, um ISI und MAI von empfangenen Signalen zu eliminieren.
Auf diese Weise wird von der ersten Antenne 50 und von der zweiten Antenne 55 jeweils ein vorentzerrtes Signal abgestrahlt und über den ersten Funkkanal 20 bzw. über den zweiten Funkkanal 25 an die dritte Sende-
/Empfangsvorrichtung 40 übertragen, wobei für den ersten Funkkanal 20 eine Schätzung seiner Impulsantwort im ersten Kanalschätzer 11 und für den zweiten Funkkanal 25 eine Schätzung seiner Impulsantwort im zweiten Kanalschätzer 12 ermittelt wird. Die Vorentzerrung des von der ersten Antenne 50 abzustrahlenden Signals wird dann in Abhängigkeit der Schätzung der Impulsantwort des ersten Funkkanals 20 und der Schätzung der Impulsantwort des zweiten Funkkanals 25 im ersten Modulator 4 vorgenommen und die Vorentzerrung des von der zweiten Antenne 55 abzustrahlenden Signals wird in Abhängigkeit der Schätzung der Impulsantwort des ersten Funkkanals 20 und der Schätzung der Impulsantwort des zweiten Funkkanals 25 im ersten Modulator 4 vorgenommen. Dabei wird von der dritten Antenne 60 der zweiten Funkstation 2 ein Referenzsignal über die beiden Funkkanäle 20, 25 und die erste Antenne 50 und die zweite Antenne 55 an die erste Funkstation 1 übertragen. Die Schätzung der Impulsantwort des ersten Funkkanals 20 wird dann aus dem Empfang des Referenzsignals über den ersten Funkkanal 20 im ersten Kanalschätzer 11 abgeleitet und die Schätzung der
Impulsantwort des zweiten Funkkanals 25 wird aus dem Empfang des Referenzsignals über den zweiten Funkkanal 25 im zweiten Kanalschätzer 12 abgeleitet.
Die Vorentzerrung des von der ersten Antenne 50 und von der zweiten Antenne 55 abzustrahlenden Signals erfolgt in Abhängigkeit aller in der Funkzelle der ersten Funkstation 1 aktuell verwendeten Codes und der Übertragungseigenschaften aller dort aktuell verwendeten Funkkanäle, die in den beiden Kanalschätzern 11, 12 ermittelt werden. Dies gilt auch für das Ausführungsbeispiel gemäß Figur 2 unter Verwendung nur der ersten Antenne 50 für die Abstrahlung von Signalen von der ersten Funkstation 1 und unter Verwendung nur des ersten Kanalschätzers 11.
Es kann auch vorgesehen sein, sowohl die erste Funkstation 1 als auch die zweite Funkstation 2 mit jeweils zwei Antennen auszustatten, so daß sich vier Funkkanäle ergeben, die einen noch besseren Schutz gegen Fading ermöglichen. In der ersten Funkstation 1 und in der zweiten Funkstation 2 können auch beliebig mehr Antennen verwendet werden, so daß eine beliebige Anzahl von Funkkanälen zwischen der ersten Funkstation 1 und der zweiten Funkstation 2 eingerichtet werden kann, wobei mit zunehmender Anzahl von Funkkanälen zwischen der ersten Funkstation 1 und der zweiten Funkstation 2 der Einfluß von Fading auf die Signalübertragung abnimmt.
Es kann auch vorgesehen sein, die Vorentzerrung statt in der Basisstation 1 in den Mobilstationen 2, 3 in entsprechender Weise vorzusehen. Das mehrkanalige Übertragungsverfahren zwischen der Basisstation 1 und den Mobilstationen 2, 3, die im folgenden als Nutzer bezeichnet werden, und bei dem die Übertragungseigenschaften aller Funkkanäle (ISI) und die Codes aller Funkkanäle (MAI) berücksichtigt werden, wird im folgenden durch mathematische Formeln beschrieben. Diese Formeln können entweder durch ein entsprechendes Programm oder entsprechende Hardwarebausteine, die diese Formeln implementieren, realisiert werden.
Figur 4 zeigt einen zeitlichen Abiauf bei TDD-Betrieb mit Vorentzerrung. Bei einem ersten Schritt 100 sendet die zweite Funkstation 2 Referenzsignale zur Schätzung der Übertragungseigenschaften der beiden Funkkanäle 20, 25 an die erste Funkstation 1. Diese KanalSchätzung wird bei einem zweiten Schritt 105 nach Empfang der Refernzsignale in der ersten Funkstation 1 durchgeführt. Anschließend findet im ersten Modulator 4 der ersten Funkstation 1 eine Vorentzerrung der an die Funkstation 2 zu übertragenden Signale in einem dritten Schritt 110 statt. Die vorentzerrten Signale werden dann von der zweiten Funkstation 2 in einem vierten Schritt 115 empfangen und brauchen dort nicht mehr entzerrt zu werden.
Als erstes Beispiel soll dabei die zweikanalige Übertragung zwischen der ersten Antenne 50 und der dritten Antenne 60 bzw. der vierten Antenne 65 gemäß Figur 2 beschrieben werden. Dabei soll die zweite Funkstation 2 einen von mehreren Nutzern darstellen.
Es sei ein zeitdiskretes Mehrfachübertragungssystem mit blockweiser Übertragung vorausgesetzt. Sei d(k) = (d(k ,... ,d(k) M ) , k = l,... , K der Vektor der M zu übertragenden Datensymbole eines Datenblocks des :-ten Nutzers, d = (dm ,...,d κ ) bezeichnet die Zusammenfassung aller zu übertragender Datensymbole. Jedem der K Nutzer sei ein CDMA-Code c(k) = (c(k ,... , c(k) Q ) , k = l,... , K , der Länge Q zugeordnet. Durch Spreizung der zu übertragenden Datenbits mit den CDMA-Codes, wird jedes Bit auf Q sogenannte Chips verteilt. Eine Chiptaktperiode beträgt dabei genau γ~. der
Bittaktperiode. Mit der Code-Matrix
Figure imgf000019_0001
(k) T , ( c = transponierter Vektor c
des k -ten Nutzers, läßt sich die Spreizung eines Datenblocks des k -ten Nutzers schreiben als:
c (*) <*) '
Der gesamte Block von M Datenbits wird dabei auf M - Q Chips verteilt. Die Aneinanderreihung der Chiptaktsignale sämtlicher Nutzer ergibt sich zu
C - d τ
wobei die Matrix
Figure imgf000019_0002
die Code-Matrizen aller Nutzer zusammenfaßt.
Die Signale werden nach der Modulation erfindungsgemäß linear vorentzerrt. In den Figuren 2 und 3 werden die hier - li
mathematisch getrennt behandelten Schritte der Modulation und Vorentzerrung durch den ersten Modulator 4 vorgenommen. Die Vorentzerrung sei durch die Matrix P beschrieben. Es resultiert das Sendesignal s :
sτ = P- C- dτ
s erreicht den k -ten Nutzer über die zwei Funkkanäle 20, 25 gemäß dem Ausführungsbeispiel nach Figur 2. Seien durch h :.(*•'') . = (h (*,'/) ,...,hw (*.'/) ), k=\,...,K, 1 =1, 2 , die Impulsantworten der beiden Funkkanäle 20, 25 zum k -ten Nutzer bezüglich der Chiptaktfrequenz gegeben. W ist die Anzahl der Chiptaktperioden über die ein Mehrwegeempfang berücksichtigt wird. Durch den Mehrwegkanal werden die Datenblöcke der Chiptaktlänge M - Q auf M - Q + W - 1 Chiptakte ausgedehnt. Die letzen W - 1 Chipkarte überlagern dabei die ersten W -1 Chipkarte des nächsten Datenblocks . Der Demodulator des k - ten Nutzers empfängt außer dem Mehrwegesignal je Funkkanal 20, 25 i.a. additives Rauschen nikJ) =(nikJ ,... kJ)M-Q+ w-ι ),k =l,...,K 1=1,2 der Länge M - Q + W - l . Mit den Matrizen
Figure imgf000020_0001
Figure imgf000021_0001
erhält der Demodulator des k — ten Nutzers des Systems also die beiden EmpfangsSignale
(U)' = H (*,/) D P C dτ +n{kJ) l=\,2,k=\,...,K
Hierbei summiert die Matrix D die vorentzerrten Chiptaktsignale aller Nutzer, um sie über eine Antenne abstrahlen zu können.
Die beiden Empfangssignale r ' ,1=1,2, k=l,...,K werden durch das Summationsglied 80 zunächst linear kombiniert zu
<*) (*.D (*,2)
Ein geeigneter Demodulator des k - ten Nutzers entsprechend Figur 2 kann als einfaches 'matched filter1 ausgebildet sein, welches das empfangene Chiptaktsignal mit den CDMA- Codes des gewünschten Datensignals entspreizt. Dieser 'matched filter ' -Empfänger (1-Finger-Rake-Empfänger) zum k — ten Nutzercode c (k)
Figure imgf000022_0001
demoduliert die linear kombinierten Empfangssignale zu
;(*r :Rw" -r(*)r
.<*)' = konjugiert komplexe transponierte Matrix R (*>
Mit den Zusammenfassungen
Figure imgf000022_0002
•«(U) +,c2-n(1,2),...,c, -n(A:,i) +, c2 -n(Λ:,2K
Figure imgf000022_0003
)
erhält man als Gesamtvektor aller demodulierter Signale: d = R" -H-Dτ -D-P-C-dτ + RH -nτ
Die M -KxM -Q K Matrix RH -H-Dτ-D hat i.a. den Rang M-K . Daher ist (RH ■ H -Dτ -D) -(RH -H -Dτ -D)H invertierbar und es existiert
P = (R" -H-Dτ -D)H -(C-dτ)H
Figure imgf000023_0001
Mit dieser Wahl wird
".T d =dτ+RH
RH liefert also die gesendeten Datensymbole d τ und additives Rauschen. Trotz Verwendung eines sehr einfachen Empfängers enthält das detektierte Signal weder ISI noch MAI . Diese Störungen werden senderseitig durch Vorentzerrung beseitigt .
H kann einfach durch den ersten Kanalschätzer 11 der ersten Funkstation 1 geschätzt werden.
Ein zur KanalSchätzung in der Uplink-Übertragung gesendetes Referenzsignal p des k — ten Nutzers wird über die dritte Antenne 60 in der Form c , • p (k) und über die vierte Antenne 65 in der Form c2-p(k) versendet. Die Basisstation 1 empfängt daher das entsprechende Signal
H *-'> -cx-p <*> + H<*'2> -c2 ■ p (k = cx -H •£ (k) + c2 -H<*'2) -p k) und schätzt die Gesamtimpulsantwort beider Funkkanäle 20, 25 des
&-ten Nutzers zu h(k) = c]-h(k'n + c2-h(k'2)
Als zweites soll das Verfahren zur Signalübertragung zwischen der Basisstation 1 und den Mobilstationen 2, 3 gemäß Figur 3 beschrieben werden, wobei die mehrkanalige Übertragung zwischen der Basisstation 1 und jeder der Mobilstationen 2, 3 über jeweils zwei Funkkanäle 20, 25 erfolgt, wobei zwischen der ersten Antenne 50 und der dritten Antenne 60 sowie zwischen der zweiten Antenne 55 und der dritten Antenne 60 gemäß Figur 3 übertragen wird.
Es sei wiederum ein zeitdiskretes Mehrfachubertragungssystem mit blockweiser Übertragung vorausgesetzt. Sei d{k) = (d{k ,... ,d(k) M ) , k = \,... ,K der Vektor der M zu übertragenden Datensymbole eines Datenblocks des k -teτι Nutzers, d = (d_m ,...,d K) ) bezeichnet die Zusammenfassung aller zu übertragender Datensymbole. Jedem der K Nutzer sei ein CDMA-Code c(k) = (c(k ,...,cw Q) , k = l,...,K , der Länge Q zugeordnet. Durch Spreizung der zu übertragenden Datenbits mit den CDMA-Codes, wird jedes Bit auf Q sogenannte Chips verteilt. Eine Chiptaktperiode beträgt dabei genau T der
Bittaktperiode. Mit der Code-Matrix
Figure imgf000024_0001
c (k ) T = transponi • erter Ve iktor c (k)
des &-ten Nutzers, läßt sich die Spreizung eines Datenblocks des k -ten Nutzers schreiben als:
C (*) (k) >
Der gesamte Block von M Datenbits wird dabei auf M - Q Chips verteilt. Die Aneinanderreihung der Chiptaktsignale sämtlicher Nutzer ergibt sich zu C- d1
wobei die Matrix
Figure imgf000025_0001
die Code-Matrizen aller Nutzer zusammenfaßt.
Die Signale werden nach der Modulation erfindungsgemäß linear vorentzerrt. In den Figuren 2 und 3 werden die hier mathematisch getrennt behandelten Schritte der Modulation und Vorentzerrung durch den ersten Modulator 4 vorgenommen. Die Vorentzerrung sei durch die Matrix P beschrieben.
Die resultierenden Sendesignale Ä(), /=1,2 der ersten Antenne 50 und der zweiten Antenne 55 seien in einem
Gesamtsignalvektor s = ( s (i) (2) zusammengefaßt mit:
P - C - d
Der Gesamtsignalvektor 5 erreicht den k -ten Nutzer über die zwei Funkkanäle 20, 25 gemäß dem Ausführungsbeispiel nach Figur 3. Seien durch h(kJ) = (hx (kJ) ,...,hw {kJ)), k=\,...,K, 1=1,2 die Impulsantworten der beiden Funkkanäle 20, 25 zum k -ten Nutzer bezüglich der Chiptaktfrequenz gegeben. W ist die Anzahl der Chiptaktperioden über die ein Mehrwegeempfang berücksichtigt wird. Durch den Mehrwegkanal werden die Datenblöcke der Chiptaktlänge M - Q auf M Q + W -1 Chiptakte ausgedehnt. Die letzen W -1 Chipkarte überlagern dabei die ersten W -1 Chipkarte des nächsten Datenblocks. Der Demodulator des k -ten Nutzers empfängt außer dem Mehrwegesignal je Funkkanal 20, 25 i.a. das additive Rauschen nk,)
Figure imgf000026_0001
1=1,2 der Länge M-Q + W-1. Mit den Matrizen
Figure imgf000026_0002
erhält der Demodulator des k — ten Nutzers des Systems das Signal
(k)' (A,2)
(H (*,0 H ) -D-P-C-d τ+n (k,\)' + n (*,2)'
Ein geeigneter Demodulator des k -ten Nutzers entsprechend Figur 3 kann als einfaches "matched filter' ausgebildet sein, welches das empfangene Chiptaktkanal mit den CDMA- Codes des gewünschten Datensignals entspreizt. Dieser 'matched filter' -Empfänger (1-Finger-Rake-Empfänger) zum k ten Nutzercode c (k)
Figure imgf000027_0001
demoduliert das Empfangssignal zu
-Ak)'
R (k)' •r (k)'
,(*>' = konjugiert komplexe transponierte Matrix R (*)
Mit den Zusammenfassungen
Figure imgf000027_0002
Figure imgf000027_0003
n = ( tn(1,0 +,n(1,2),...,«(ΛM) +,n(A,2), )
erhält man als Gesamtvektor aller demodulierter Signale
d = RH -H-Dτ D-P-C-dτ + RH -n
Die M-Kx2-M-Q-K -Matrix RH -H-Dτ-D hat i.a den Rang M-K Daher ist (RH -H -Dτ ■ D) -(RH -H -Dτ -D)H invertierbar und es existiert
P = (RH -H-Dτ -D)H -\(R" -H-Dτ -D)-(RH - H ■ Dτ -D)HV -dτ
Figure imgf000028_0001
Mit dieser Wahl wird
dT =dτ+RH-nτ
R liefert also die gesendeten Datensymbole d und additives Rauschen. Trotz Verwendung eines sehr einfachen Empfängers enthält das detektierte Signal weder ISI noch MAI . Diese Störungen werden senderseitig durch Vorentzerrung beseitigt.
H kann einfach durch die beiden Kanalschätzer 11, 12 der ersten Funkstation 1 geschätzt werden.

Claims

Ansprüche
1.Verfahren für die Übertragung von Signalen zwischen einer ersten Funkstation (1) und einer zweiten Funkstation (2) , wobei in einem Modulator (4) der ersten Funkstation (1) eine Vorentzerrung der zu übertragenden Signale vorgenommen wird, dadurch gekennzeichnet, daß die vorentzerrten Signale über mehrere Funkkanäle (20, 25) von der ersten Funkstation (1) an die zweite Funkstation (2) übertragen werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß von mehreren Antennen (50, 55) der ersten Funkstation (1) jeweils ein vorentzerrtes Signal abgestrahlt und über je einen Funkkanal (20, 25) an die zweite Funkstation (2) übertragen wird, wobei für jeden Funkkanal (20, 25) eine Schätzung einer Impulsantwort in der ersten Funkstation (1) ermittelt wird und wobei eine Vorentzerrung des von der jeweiligen Antenne (50, 55) abzustrahlenden Signals in Abhängigkeit der Schätzung der Impulsantworten der Funkkanäle (20, 25) vorgenommen wird.
3.Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß von einer Antenne (60) der zweiten Funkstation (2) ein Referenzsignal über die Funkkanäle (20, 25) an die erste Funkstation (1) übertragen wird und daß die Schätzung der Impulsantwort des jeweiligen Funkkanals (20, 25) aus einem Empfang des Referenzsignals über den jeweiligen Funkkanal (20, 25) in der ersten Funkstation (1) abgeleitet wird.
4. Verfahren nach Anspruch 1 , 2 oder 3 , dadurch gekennzeichnet, daß von mehreren Antennen (60, 65) der zweiten Funkstation (2) ein von der ersten Funkstation (1) abgestrahltes vorentzerrtes Signal über je einen Funkkanal (20, 25) empfangen wird, wobei in der ersten Funkstation (1) eine Schätzung einer Gesamtimpulsantwort aller Funkkanäle (20, 25) ermittelt wird und wobei eine Vorentzerrung des von der ersten Funkstation (1) abzustrahlenden Signals in Abhängigkeit der Schätzung der Gesamtimpulsantwort vorgenommen wird, und daß die von den Antennen (60, 65) der zweiten Funkstation (2) gebildeten Empfangssignale linear kombiniert und anschließend einer Demodulation zugeführt werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß von den Antennen (60, 65) der zweiten Funkstation (2) jeweils ein Referenzsignal über den zugehörigen Funkkanal (20, 25) an die erste Funkstation (1) übertragen wird und daß die Schätzung der Gesamtimpulsantwort aus einem überlagerten Empfang der Referenzsignale in der ersten Funkstation (1) abgeleitet wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß jedes Referenzsignal in Abhängigkeit des für seine Übertragung verwendeten Funkkanals (20, 25) mit einem Koeffizienten multipliziert wird und daß bei der linearen Kombination der von den Antennen (60, 65) der zweiten Funkstation (2) empfangenen Signale jedes empfangene Signal mit dem Koeffizienten des für seine Übertragung verwendeten Funkkanals (20, 25) multipliziert wird.
7. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß zwischen der ersten Funkstation (1) oder der zweiten Funkstation (2) und weiteren Funkstationen (3) über weitere Funkkanäle Signale übertragen werden, wobei die mit den Signalen übertragenen Daten unterschiedlicher Funkstationen mit unterschiedlichen Codes gespreizt werden, und daß die Vorentzerrung im Modulator (4) der ersten Funkstation (1) in Abhängigkeit aller unterschiedlicher Codes und der Übertragungseigenschaften aller Funkkanäle vorgenommen wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Übertragungseigenschaften der Funkkanäle aus Datenübertragungen der zweiten Funkstation (2) und der weiteren Funkstationen (3) an die erste Funkstation (1) ermittelt werden.
9. Funkstation (1) mit einem Modulator (4), wobei im Modulator (4) eine Vorentzerrung von zu übertragenden Signalen erfolgt, dadurch gekennzeichnet, daß mindestens zwei Antennen (50, 55) vorgesehen sind, von denen eine Abstrahlung der vorentzerrten Signale über jeweils einen Funkkanal (20, 25) zu einer weiteren Funkstation (2) erfolgt .
10. Funkstation (1) nach Anspruch 9, dadurch gekennzeichnet, daß mindestens ein Kanalschätzer (11, 12) vorgesehen ist, der für jeden Funkkanal (20, 25) eine Schätzung seiner Impulsantwort ermittelt und daß die Vorentzerrung des von der jeweiligen Antenne (50, 55) abzustrahlenden Signals in Abhängigkeit der Schätzungen der Funkkanäle (20, 25) erfolgt.
11. Funkstation (1) nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß ein Codegenerator (5) vorgesehen ist, der die mit den Signalen übertragenen Daten mit einem Code spreizt, wobei der Codegenerator (5) den Code in
Abhängigkeit einer gewählten Funkverbindung ermittelt, und daß die Vorentzerrung des von der jeweiligen Antenne (50, 55) abzustrahlenden Signals in Abhängigkeit aller aktuell verwendeten Codes und der Übertragungseigenschaften aller aktuell verwendeten Funkkanäle erfolgt.
12. Funkstation (2) mit mindestens zwei Antennen (60, 65), dadurch gekennzeichnet, daß die Funkstation (2) mittels der mindestens zwei Antennen (60, 65) vorentzerrte Signale über jeweils einen Funkkanal (20, 25) empfängt.
13. Funkstation (2) nach Anspruch 12, dadurch gekennzeichnet, daß eine Linearkombination der über die mindestens zwei Antennen (60, 65) empfangenen Signale in der Funkstation (2) erfolgt, wobei die empfangenen Signale in
Abhängigkeit der überlagerten Übertragungseigenschaften der entsprechenden Funkkanäle (20, 25) vorentzerrt sind, und daß die Linearkombination einem Demodulator (7) zugeführt ist.
PCT/DE1999/003329 1998-10-30 1999-10-16 Verfahren und funkstation für die übertragung von vorverzerrten signalen über mehrere funkkanäle WO2000027046A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP99960784A EP1125376B1 (de) 1998-10-30 1999-10-16 Verfahren und funkstation für die übertragung von vorverzerrten signalen über mehrere funkkanäle
US09/830,540 US7155165B1 (en) 1998-10-30 1999-10-16 Method and radio station for the transmission of predistored signals via several radio channels
DE59906039T DE59906039D1 (de) 1998-10-30 1999-10-16 Verfahren und funkstation für die übertragung von vorverzerrten signalen über mehrere funkkanäle
JP2000580315A JP4541554B2 (ja) 1998-10-30 1999-10-16 第1の無線局と第2の無線局との間の信号の伝送のための方法及び無線局
AT99960784T ATE243394T1 (de) 1998-10-30 1999-10-16 Verfahren und funkstation für die übertragung von vorverzerrten signalen über mehrere funkkanäle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19850279.6 1998-10-30
DE19850279A DE19850279B4 (de) 1998-10-30 1998-10-30 Verfahren für die Übertragung von Signalen zwischen einer ersten Funkstation und einer zweiten Funkstation und Funkstation

Publications (1)

Publication Number Publication Date
WO2000027046A1 true WO2000027046A1 (de) 2000-05-11

Family

ID=7886291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/003329 WO2000027046A1 (de) 1998-10-30 1999-10-16 Verfahren und funkstation für die übertragung von vorverzerrten signalen über mehrere funkkanäle

Country Status (6)

Country Link
US (1) US7155165B1 (de)
EP (2) EP1320200B1 (de)
JP (3) JP4541554B2 (de)
AT (2) ATE243394T1 (de)
DE (3) DE19850279B4 (de)
WO (1) WO2000027046A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1341319A1 (de) * 2002-02-21 2003-09-03 Lucent Technologies Inc. Datenverarbeitungsverfahren und korrespondierende Basisstation mit mehreren Antennen
JP2004511190A (ja) * 2000-10-13 2004-04-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング データ伝送方法
DE10122643B4 (de) * 2001-05-10 2012-07-12 Siemens Ag Bestimmung des Detektionszeitpunkts vorentzerrter Datensignale
US8914080B2 (en) 2009-02-04 2014-12-16 Intel Mobile Communications GmbH Determining device, method for determining of transmitting parameter, energy transmitting device and method for wirelessly transmitting energy

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19850279B4 (de) * 1998-10-30 2005-12-22 Robert Bosch Gmbh Verfahren für die Übertragung von Signalen zwischen einer ersten Funkstation und einer zweiten Funkstation und Funkstation
DE19945273B4 (de) * 1999-09-22 2013-04-18 Ipcom Gmbh & Co. Kg Verfahren zur Messung mindestens einer Eigenschaft eines Übertragungskanals und Sende-/Empfangsstationen zur Durchführung des Verfahrens
US20060246910A1 (en) * 2000-05-31 2006-11-02 Jerry Petermann Wireless devices for use with a wireless communications system with articial intelligence-based distributive call routing
WO2003013087A2 (en) * 2001-07-26 2003-02-13 Cambridge Broadband Limited Predistorting of contention signals
JP2003087161A (ja) * 2001-09-06 2003-03-20 Ntt Docomo Inc 無線基地局及び無線通信制御方法
JP3975069B2 (ja) * 2001-10-25 2007-09-12 株式会社エヌ・ティ・ティ・ドコモ 無線基地局及び無線通信制御方法
DE10223564A1 (de) * 2002-05-27 2003-12-11 Siemens Ag Verfahren zur Übertragung von Informationen in einem Funkkommunikationssystem mit Sendestation und Empfangsstationen mit jeweils einer Antenne mit mehreren Antennenelementen und Funkkommunikationssystem
US7519129B2 (en) * 2002-12-12 2009-04-14 Cambridge Broadband Networks Limited Precoding of contention words in a fixed wireless access system
US7903617B2 (en) * 2003-12-03 2011-03-08 Ruey-Wen Liu Method and system for multiuser wireless communications using anti-interference to increase transmission data rate
WO2005057798A2 (en) * 2003-12-03 2005-06-23 Ruey-Wen Liu Method and system for wireless communications using anti-interference to increase channel capacity
KR20050075553A (ko) * 2004-01-15 2005-07-21 삼성전자주식회사 다중반송파 코드분할다중접속 시스템에서의 역방향 파일럿설계 방법
US7701917B2 (en) * 2004-02-05 2010-04-20 Qualcomm Incorporated Channel estimation for a wireless communication system with multiple parallel data streams
JP4416820B2 (ja) * 2004-04-14 2010-02-17 Ut斯達康通信有限公司 分散送信源を基盤とする多重入出力通信方法
KR100678053B1 (ko) * 2006-02-08 2007-02-02 삼성전자주식회사 고정 광대역 무선접속 시스템에서 신호의 왜곡 보상 장치및 방법
KR101222130B1 (ko) * 2008-12-19 2013-01-15 한국전자통신연구원 전치등화기를 이용한 다중입력 다중출력 무선통신 시스템 및 방법
EP2624432A1 (de) 2010-09-30 2013-08-07 Hitachi Automotive Systems, Ltd. Stromwandlervorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2735937A1 (fr) * 1995-06-23 1996-12-27 Thomson Csf Procede de tarage des chaines emission et reception des voies formees par une station de base d'un systeme de radiocommunication entre mobiles
EP0776101A2 (de) * 1995-11-23 1997-05-28 Deutsche Telekom AG Verfahren und Vorrichtung zum bidirektionalen Übertragen von hochratigen Digitalsignalen unter Verwendung von Raumdiversity
GB2313261A (en) * 1996-05-17 1997-11-19 Motorola Ltd Apparatus and Method for Setting Transmitter Antenna Weights
EP0866567A2 (de) * 1997-03-11 1998-09-23 Alcatel Sende-Empfangs-Einheit mit Zweirichtungsentzerrung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2637431B1 (fr) * 1988-09-30 1990-11-09 Labo Electronique Physique Circuit de predistorsion adaptative
US5265122A (en) * 1992-03-19 1993-11-23 Motorola, Inc. Method and apparatus for estimating signal weighting parameters in a diversity receiver
JP3270902B2 (ja) * 1992-09-24 2002-04-02 富士通株式会社 Cdma時分割多重化通信方法
JP3250199B2 (ja) * 1993-03-01 2002-01-28 日本電信電話株式会社 ダイバーシチ受信を行なう一周波時分割双方向無線通信方法およびダイバーシチ受信を行なう一周波時分割双方向無線通信装置
JP3223403B2 (ja) * 1993-10-28 2001-10-29 日本電信電話株式会社 一周波時分割双方向スペクトラム拡散通信方式
WO1997024818A1 (en) * 1995-12-28 1997-07-10 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a portable radiotelephone
US5881108A (en) * 1996-02-22 1999-03-09 Globespan Technologies, Inc. Adaptive pre-equalizer for use in data communications equipment
JP3720141B2 (ja) * 1996-10-01 2005-11-24 松下電器産業株式会社 移動体通信方法およびその装置
US6167039A (en) * 1997-12-17 2000-12-26 Telefonaktiebolget Lm Ericsson Mobile station having plural antenna elements and interference suppression
US6205127B1 (en) * 1998-04-21 2001-03-20 Lucent Technologies, Inc. Wireless telecommunications system that mitigates the effect of multipath fading
US7286590B1 (en) * 1998-04-24 2007-10-23 Robert Bosch Gmbh Method for the transmission of data, and apparatus for the transmission of data
US6373832B1 (en) * 1998-07-02 2002-04-16 Lucent Technologies Inc. Code division multiple access communication with enhanced multipath diversity
US6459740B1 (en) * 1998-09-17 2002-10-01 At&T Wireless Services, Inc. Maximum ratio transmission
US6519456B2 (en) * 1998-10-14 2003-02-11 Qualcomm Incorporated Softer handoff in a base station employing virtual channel elements
DE19850279B4 (de) * 1998-10-30 2005-12-22 Robert Bosch Gmbh Verfahren für die Übertragung von Signalen zwischen einer ersten Funkstation und einer zweiten Funkstation und Funkstation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2735937A1 (fr) * 1995-06-23 1996-12-27 Thomson Csf Procede de tarage des chaines emission et reception des voies formees par une station de base d'un systeme de radiocommunication entre mobiles
EP0776101A2 (de) * 1995-11-23 1997-05-28 Deutsche Telekom AG Verfahren und Vorrichtung zum bidirektionalen Übertragen von hochratigen Digitalsignalen unter Verwendung von Raumdiversity
GB2313261A (en) * 1996-05-17 1997-11-19 Motorola Ltd Apparatus and Method for Setting Transmitter Antenna Weights
EP0866567A2 (de) * 1997-03-11 1998-09-23 Alcatel Sende-Empfangs-Einheit mit Zweirichtungsentzerrung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAPAJIC P B ET AL: "LINEAR ADAPTIVE TRANSMITTER-RECEIVER STRUCTURES FOR ASYNCHRONOUS CDMA SYSTEMS", EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS AND RELATED TECHNOLOGIES,IT,AEI, MILANO, vol. 6, no. 1, 1 January 1995 (1995-01-01), pages 21 - 27, XP000502746, ISSN: 1120-3862 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004511190A (ja) * 2000-10-13 2004-04-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング データ伝送方法
DE10122643B4 (de) * 2001-05-10 2012-07-12 Siemens Ag Bestimmung des Detektionszeitpunkts vorentzerrter Datensignale
EP1341319A1 (de) * 2002-02-21 2003-09-03 Lucent Technologies Inc. Datenverarbeitungsverfahren und korrespondierende Basisstation mit mehreren Antennen
US8914080B2 (en) 2009-02-04 2014-12-16 Intel Mobile Communications GmbH Determining device, method for determining of transmitting parameter, energy transmitting device and method for wirelessly transmitting energy

Also Published As

Publication number Publication date
JP2003530723A (ja) 2003-10-14
JP2010220240A (ja) 2010-09-30
JP4541554B2 (ja) 2010-09-08
DE59906039D1 (de) 2003-07-24
DE19850279A1 (de) 2000-05-11
DE19850279B4 (de) 2005-12-22
EP1125376A1 (de) 2001-08-22
EP1125376B1 (de) 2003-06-18
ATE243394T1 (de) 2003-07-15
JP4733204B2 (ja) 2011-07-27
US7155165B1 (en) 2006-12-26
JP2010045834A (ja) 2010-02-25
EP1320200A1 (de) 2003-06-18
EP1320200B1 (de) 2005-07-13
JP4669569B2 (ja) 2011-04-13
DE59912278D1 (de) 2005-08-18
ATE299625T1 (de) 2005-07-15

Similar Documents

Publication Publication Date Title
EP1320200B1 (de) Verfahren für die Übertragung von Signalen zwischen einer ersten und zweiten Funkstation und Funkstation
EP1262031B1 (de) Datenübertragungsverfahren und -system mit sendeantennen-diversität
DE60118896T2 (de) Mehrbenutzerdetektion unter verwendung einer adaptiven kombination von gleichzeitiger erfassung und sequentieler interferenzunterdrückung
DE19803188B4 (de) Verfahren und Basisstation zur Datenübertragung in einem Funk-Kommunikationssystem
DE112006001299B4 (de) Verfahren zum Verringern der Störung bei einem Funksystem
DE10026077A1 (de) Strahlformungsverfahren
DE10051144C2 (de) Verfahren zur Verbesserung einer Kanalabschätzung in einem Funk-Kommunikationssystem
DE60214886T2 (de) Parameterschätzung für adaptives antennensystem
DE19818215C2 (de) Verfahren für die Übertragung von Daten und Vorrichtung für die Übertragung von Daten
DE60123282T2 (de) Übertragen eines digitalen signals
DE10350362B4 (de) Verfahren zum Vorhersagen eines Kanalkoeffizienten
DE19961594B4 (de) Verfahren für die Übertragung von Datensignalen zwischen einer Sendestation und mehreren Empfangsstationen, Sendestation und Empfangsstation
DE19901877B4 (de) Verfahren zum Gewinnen von Informationen über Störungen im Empfänger eines Nachrichtenübertragungssystems
DE60200137T2 (de) Verfahren und Vorrichtung zur Signalverarbeitung in einem Spreizspektrum Funkkommunikationsempfänger
EP1133834B1 (de) Verfahren zum steuern von speicherzugriffen bei &#34;rake&#34;-empfängern mit &#34;early-late tracking&#34; in telekommunikationssystemen
WO2002019542A2 (de) Verfahren sowie vorrichtung zur vorentzerrung von funkkanälen
WO1999020011A1 (de) Verfahren und funkstation zur datenübertragung
EP1327342B1 (de) Aus mehreren zeitlich zurückliegenden kanalschätzungen vorhergesagte kanalschätzung zur vorentzerrung
DE10131207B4 (de) Vorentzerrung von Synchronisationssignalen
DE10115583B4 (de) Verfahren und Vorrichtung zur Bildung eines Ähnlichkeitsmaßesund Kanalschätzung mittels Ähnlichkeitsmaß
DE10122643B4 (de) Bestimmung des Detektionszeitpunkts vorentzerrter Datensignale
WO2002019541A2 (de) Verfahren sowie vorrichtung zur vorentzerrung von funkkanälen
EP1276246A1 (de) Verfahren und Vorrichtungen zur Synthese von gleichzeitiger Erfassung und gleichzeitiger Übertragen für den Downlink-kanal in einem CDMA Mobilfunknetz
EP1011232A2 (de) Verfahren zur Kanalschätzung
DE10107167A1 (de) Verfahren zur Kapazitätserhöhung von Funknetzen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999960784

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09830540

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 580315

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1999960784

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999960784

Country of ref document: EP