WO1999063120A1 - Procede de production d'un acier a haute teneur en silicium, et acier au silicium - Google Patents

Procede de production d'un acier a haute teneur en silicium, et acier au silicium Download PDF

Info

Publication number
WO1999063120A1
WO1999063120A1 PCT/JP1999/002860 JP9902860W WO9963120A1 WO 1999063120 A1 WO1999063120 A1 WO 1999063120A1 JP 9902860 W JP9902860 W JP 9902860W WO 9963120 A1 WO9963120 A1 WO 9963120A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy steel
rolling
sintered body
silicon steel
cold
Prior art date
Application number
PCT/JP1999/002860
Other languages
English (en)
French (fr)
Inventor
Osamu Yamashita
Ken Makita
Masao Noumi
Tsunekazu Saigo
Original Assignee
Sumitomo Special Metals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10165981A external-priority patent/JPH11343518A/ja
Priority claimed from JP19654598A external-priority patent/JP2000017336A/ja
Priority claimed from JP10319525A external-priority patent/JP2000144345A/ja
Application filed by Sumitomo Special Metals Co., Ltd. filed Critical Sumitomo Special Metals Co., Ltd.
Priority to EP99922573A priority Critical patent/EP1026267A4/en
Priority to US09/463,778 priority patent/US6444049B1/en
Priority to KR1020007001009A priority patent/KR100360533B1/ko
Publication of WO1999063120A1 publication Critical patent/WO1999063120A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/162Machining, working after consolidation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing

Definitions

  • the present invention relates to an improvement in a method for producing a high silicon-containing steel, that is, an Fe-Si alloy steel called silicon steel and a Fe-Si-Al alloy steel called sendust having a Si content of 3 to 10 wt%.
  • the present invention relates to a method for producing a high-silicon-containing steel in which it is difficult to produce a thin sheet by cold rolling, for example, by producing a sintered body or a molten mass having an average crystal grain size of 300 ⁇ or less, A method for producing a rolled silicon steel sheet that is cold-rolled as it is by improving the slipperiness, or for example, producing a thin plate-shaped sintered body composed of a Fey-rich phase and a Si-rich Fe-Si solid solution phase, The present invention relates to a method for producing an ultra-thin sendust sheet by making cold rolling possible by utilizing the excellent ductility of crystal grains of the rich phase, attaching A1 to both surfaces of the sheet after cold rolling and heat-treating the sheet.
  • Background art
  • the average crystal grain size of the molten mass of silicon steel containing less than 3 wt% of Si in Fe is several mm or more, and the plastic deformation by rolling is mainly caused by slip deformation in each crystal grain.
  • Fe-Si-Al alloy which has high magnetic permeability and is excellent as a soft magnetic material, is usually a steel material containing a larger amount of silicon than the silicon steel plate. Because of its hardness, it has been considered difficult to manufacture.
  • an ingot having a lower content of Fe than the required components of Sendust was prepared and then ground, and Fe powder was added to the ground powder to obtain the required composition to make the Fe powder serve as a binder.
  • a method of producing a sendust thin plate having a thickness of about 0.35 mm by repeating rolling, heat treatment, and heat treatment (HH Helms and E. Adams: J. Appl. Phys. 35 (1964) 3) was proposed.
  • sendust crystals with few defects are prepared and cut thinly, or deposited on a required substrate by sputtering to form sendust thin plates.
  • An object of the present invention is to realize rolling of silicon steel having a Si content of 3 wt% or more, which has been considered impossible in the past, and therefore, it is possible to easily reduce the average crystal grain size of the silicon steel sheet before rolling. It is possible to cold roll the rolled material continuously and uniformly without repeating the steps of heat treatment, hot rolling, and annealing of the silicon lump. I have.
  • An object of the present invention is to provide a silicon steel capable of sufficiently increasing the electric resistivity p and reducing eddy current loss without impairing the magnetic properties inherent in the silicon steel.
  • An object of the present invention is to provide a method for producing a sendust thin plate that can obtain a sendust thin plate.
  • the present inventors When rolling a silicon steel sheet having a Si content of 3 wt% or more, the present inventors used a sintered body or a melted thin plate having a refined average crystal grain size as a silicon steel material before rolling to obtain crystal grains. We thought that by significantly improving the slipperiness of the field, cold rolling would be possible. Similarly, by using a sintered body in which a Fe-rich phase remains in a silicon steel material before rolling, plastic deformation is performed using the ductility of crystal grains having a Fe-rich phase. We thought that cold rolling would be possible.
  • the present inventors have conducted various studies on rolled materials of silicon steel having good cold rollability based on the above idea, and focused on the size of the average crystal grain size, and formed a sintered body or melt-quenched. Then, a rolled silicon steel material having an average crystal grain size of 300 ⁇ or less, which is finer than the conventional melt-slow-cooled silicon steel, is prepared and cold-rolled to enable rolling.
  • the effect of miniaturization is effective irrespective of the Si content, and is particularly effective when the content is 3 wt% or more.Furthermore, the thickness of the rolled material is set to 5 mm or less, and the parallelism is set to 0.5 mm or less. It was found that rolling could be performed relatively easily.
  • the inventors focused on the composition in the crystal grains and, unlike the conventional crystal grains of a phase in which Fe and Si were completely dissolved by slow melting and melting, the Fe-rich phase and the Si-rich phase It was found that a mixed silicon phase having an Fe-Si solid solution phase was used to produce a sintered silicon steel sheet with a highly extensible Fe-rich phase remaining, and that this could be rolled by cold rolling. .
  • the inventors of the present invention have proposed that, as a method for producing a sintered body, a gas atomized powder or a water-atomized powder having a predetermined composition is sintered by a powder metallurgy technique to obtain a desired average crystal grain size that has been refined.
  • a powdered metallurgical method is a metallurgical injection molding method, a compacting method, a method of forming a slurry by slip casting and then sintering at a predetermined temperature, or We have found that a method of manufacturing by hot forming such as hot press-plasma sintering can be adopted.
  • the inventors proposed a method of manufacturing a molten thin plate in which molten silicon steel was poured into a water-cooled mold having a small thickness and rapidly cooled in order to minimize the average crystal grain size as much as possible. It was found that the method could be adopted.
  • the average crystal grain size tends to become coarse during annealing after rolling, and the Fe rich phase and Si It has been found that the rich phase can be completely solid-dissolved, and that the coercive force is sharply reduced to obtain a thin rolled silicon steel sheet having excellent magnetic properties.
  • the inventors who have learned the above-described method for producing a rolled silicon steel sheet have confirmed an increase in the electric resistivity p due to the high silicon content. Therefore, we conducted various studies on the added elements for the purpose of materials that can further reduce eddy current loss, and found that La was effective.As a result of further studies, we found that silicon steel could be manufactured by sintering. La oxide power ⁇ Precipitated at crystal grain boundaries, and it was found that the objective was achievable.
  • the present inventors perform, in addition to the above-described sintering method, hot repeated rolling or hot repeated forging of an ingot of a silicon steel containing La. It has been found that this is also possible.
  • FIG. 1 is a graph showing the relationship between the electrical resistivity ⁇ of the sintered silicon steel and the La content when the Si content is 6.5 wt%.
  • FIG. 2 is a graph showing the average crystal grain size of the sintered silicon steel and the relationship between iHc and La content when the Si content is 6.5 wt%.
  • FIG. 3A is a cross-sectional view schematically showing the structure of a La-containing sintered silicon steel according to the present invention before rolling
  • FIG. 3B is a cross-sectional view schematically showing the structure after annealing.
  • the present invention provides powder metallurgy using powder as a starting material, and reduces the average grain size of a plate-shaped sintered body or a quenched steel sheet to 300 ⁇ or less, so that after a slip deformation of a grain boundary, Means to achieve intragranular deformation and enable cold rolling, and a powdered metallurgical method that mixes pure Fe powder and Fe-Si powder in a prescribed ratio by powder metallurgy to produce a sintered body
  • the method is characterized by realizing plastic deformation of the crystal grains by leaving the Fe-rich phase inside, and adopting means that enables cold rolling, and efficiently producing silicon steel sheets with excellent magnetic properties. .
  • the ionic radius of La3 + (1.22 ⁇ ) is larger than the ionic radius of Fe3 + (0.67 ⁇ ) and the ion radius of Si4 + (0.39 ⁇ ). Therefore, it is considered that La hardly forms a solid solution in the matrix of silicon steel, but easily precipitates at the crystal grain boundaries by sintering, and forms La oxide at the grain boundaries.
  • La 3 + ion is a rare earth element ions, because an possesses a magnetic moment, it does not function as magnetic impurities, does not deteriorate the magnetic properties of La-sintered silicon steel. Rather, it was also found that the addition of La contributed to lowering the coercive force because the average crystal grains of the sintered silicon steel were coarsened in the annealing step.
  • La 3 + ion is a rare earth element ion, but does not have magnetic moment, so it does not function as a magnetic impurity and deteriorates the magnetic properties of La sintered silicon steel None. Rather, it was found that the addition of La reduced the coercive force because the average crystal grains of the sintered silicon steel were coarsened in the annealing step.
  • Figure 1 shows the relationship between the La content and the electrical resistivity ⁇ when the Si content is 6.5 wt%. From Fig. 1, it can be seen that La sintered silicon steel exhibits a high electrical resistivity ⁇ of several to nearly ten times higher than that of La-free sintered silicon steel.
  • Figure 2 shows the relationship between La content, average crystal grain size after sintering, and coercivity iHc when the Si content is 6.5 wt%. From FIG. 2, it can be seen that the La-containing silicon steel of the present invention has a larger average particle diameter than the sintered silicon steel without La added, and exhibits excellent magnetic properties.
  • a silicon steel is characterized in that the target silicon steel material has a required composition in which the content of Si in Fe is 3 to 10 wt%.
  • the object of the present invention is to make Si 3 wt% or more, but when it exceeds 10 wt%, the magnetic flux density of the material is significantly reduced. It should be within the range of ⁇ 10wt%.
  • a preferred range of the La content is 0.05 wt% to 2.0 wt%. If the La content is less than 0.05 wt%, the amount of La oxide precipitated at the grain boundaries will be insufficient, and the effect of increasing the electrical resistivity will hardly appear. On the other hand, if the La content exceeds 2.0 wt%, the workability of the silicon steel decreases, and it becomes difficult to produce a silicon steel sheet by cold rolling. From the viewpoint of increasing the electric resistivity or the specific resistance, a more preferable range of the La content is 1.0 wt% to 2.0 wt%. Further, the most preferable range for the La content is 1.2 wt% to 1.5 wt%.
  • the Si content in La-containing silicon steel depends on its magnetic properties.
  • the Si content can be made less than 3.0 wt%.
  • Ti as an impurity element of the silicon steel material.
  • Al and V are added from 0.01 to L: 0 wt%, a rolled silicon steel sheet with good magnetic properties can be obtained, and the added components and the added amount may be appropriately selected according to the application. If the content of Ti, Al, V is less than 0.01 wt%, the effect of grain growth is not sufficient,
  • the content is set in the range of 0.01 to 1.0 ⁇ %.
  • a raw material in the case of a sintered body, a gas atomized powder or a water atomized powder containing the component is suitable, and the average particle size is desirably 10 to 200 ⁇ . If the average particle size is less than ⁇ , the density of the sintered body is improved, but since the powder itself contains a large amount of oxygen, it is liable to cause cracks and cracks during cold rolling and to cause deterioration of magnetic properties. Also.
  • composite powder in which Si powder is mechanically coated on the surface of Fe powder such as reduced iron powder with a mechanofusion system or vice versa, or Si powder coated with Fe powder can be bonded to a carbon powder.
  • a composite powder obtained by recoating iron powder or the like, or a mixed powder obtained by mixing an Fe-Si compound powder and Fe powder can be used.
  • the average particle size of the raw material for sintering exceeds 200 ⁇ , the sintered body tends to become porous and the sintering density decreases, which is also a cause of cracks and cracks during cold rolling. Become. Therefore, the average particle size is most preferably 10 to 200 ⁇ .
  • the oxygen content of the raw material powder used is preferably as small as possible, but is preferably at least 100 ppm or less.
  • a gas atomized powder or a water atomized powder having the above-mentioned predetermined composition is sintered by a powder metallurgy technique.
  • the raw material used is not particularly limited as long as it is blended and dissolved so as to contain the component. Particularly, in order to reduce the average crystal grain size to 300 ⁇ or less, it is preferable to perform rapid cooling as described later.
  • Fe-Si- La was dissolved I ⁇ compound or Fe-Si-La 2 0 3 , performs ingot forging. Thereafter, hot repeatedly rolling or hot repeated forging for the ingot to disperse the La 2 0 3 in the grain boundaries.
  • a brittle fracture-prone component Fe-containing material containing more Si than a desired composition is used as a raw material.
  • a gas atomized powder of a Si compound, or a mixed powder obtained by mixing a powder obtained by roughly pulverizing an ingot having the component into a jet mill and powdered iron bonyl powder in a predetermined ratio is desirable.
  • the case where the amount of Si in the crystal phase of the sintered body exceeds 6.5% is called Si rich, and the case where it does not exceed is called Fe rich.
  • the Fe-Si compound to be used is particularly preferable because the ⁇ -phase Fe 2 Si compound, the ⁇ -phase FeSi compound, and the ⁇ ⁇ ⁇ ⁇ -phase FeSi 2 compound are liable to be brittlely broken.
  • the Si content in the Fe-Si compound SOwi ⁇ Slwt ⁇ is preferable. If the Si content exceeds this range, it becomes very susceptible to oxidation, cracks and cracks are likely to occur during subsequent cold rolling, and causes deterioration in magnetic properties. For the same reason, the La content is preferably set to less than llwt%.
  • the average particle size of the Fe-Si compound powder is less than 3 ⁇ , the powder itself contains a large amount of oxygen, and the sintered body becomes hard and brittle, so that cracks and cracks easily occur during cold rolling and magnetic The characteristics are deteriorated. If the average particle size exceeds ⁇ , the sintered body tends to become porous and the sintering density decreases, which also causes cracks and cracks during cold rolling. Therefore, the average particle size is 3 or more: ⁇ is most desirable.
  • any type of carbonyl iron powder can be used, but a commercially available powder having a particle size of 3 to 10 ⁇ and having as small an oxygen content as possible is desirable.
  • Powder metallurgy can be used for the production of sintered compacts as rolling materials, but sintered compacts such as metal injection molding, compaction molding, slip casting, or hot compacting methods such as hot press-plasma sintering
  • sintered compacts such as metal injection molding, compaction molding, slip casting, or hot compacting methods such as hot press-plasma sintering
  • hot press-plasma sintering The production of a sintered body by using is suitable.
  • metal injection molding, green compaction, and slip cast molding are methods in which a binder is added to silicon steel powder and molding is performed, and after molding, the binder is removed and sintering is performed.
  • the hot forming method the raw material powder is placed in a carbon mold, and the forming and firing are performed simultaneously by applying pressure in a hot state (from 1000 ° C to 300 ° C).
  • silicon steel powder of this component is very easily oxidized because it contains Si, and especially when a binder is used for molding, it is oxidized or carbonized.Therefore, debinding and atmosphere control during sintering Is essential.
  • the oxidized and carbonized sintered body becomes hard and brittle, when cold-rolled, cracks and cracks occur, and the magnetic properties after annealing are significantly reduced.
  • the amount of oxygen and the amount of carbon contained in the sintered body are preferably 4000 ppm or less and 200 ppm or less, respectively, and more preferably 2000 ppm or less and 100 ppm or less, respectively.
  • the sintering temperature varies depending on the composition, average particle size, molding method, etc., but is generally 1100 ° C to 1300 ° C depending on the molding method, such as in an inert gas atmosphere, hydrogen gas atmosphere, or vacuum. However, if deformation during sintering is not prevented as much as possible, it may cause cracks and cracks during cold rolling.
  • the sintered silicon steel containing La has a structure in which La oxide 32 precipitates at the grain boundaries of Fe—Si compound crystal grains 30.
  • the molten silicon steel material is mixed with predetermined components and melted by high frequency, and then the molten silicon steel is poured into a water-cooled thin mold with a thickness of 5 mm or less and rapidly cooled to reduce the fine crystal grain size.
  • a thinner thickness makes it easier to produce a silicon steel material having a fine crystal grain size.
  • the roll diameter and its peripheral speed for cold rolling must be changed according to the thickness before rolling and its parallelism. In other words, if the sheet thickness before rolling is large and the parallelism force is poor, rolling must be performed with a small roll diameter and at a low peripheral speed.
  • the average crystal grain size of the silicon steel is 300 ⁇ or less, and the thickness before rolling is 5 mm or less. If the thickness of the sintered body exceeds 5 mm, rolling stress (tensile stress) is applied only to the surface and no stress is applied inside the sintered body, so cracks occur. The stress applied to the surface and inside becomes uniform, and rolling becomes possible.
  • a silicon steel sheet having a thickness before rolling of 5 mm or less and a parallelism of 0.5 rrmi (for a length of 50 mm) or less has a roll diameter of 80 mm or less and a roll circumference of If the speed is 60 mm / sec or less, cold rolling can be performed without cracks and cracks without an annealing step during cold rolling.
  • silicon steel sheet with an average crystal grain size of less than 5 ⁇ can be manufactured only by powder metallurgy sintering method, which involves lowering the sintering temperature or lowering the molding density. Even with the above method, a sintered body having a high porosity is obtained, so that cracks and cracks always occur during rolling.
  • the Fe-rich phase of the silicon steel sheet disappears and completely forms a solid solution, cracks and cracks occur during rolling regardless of the roll diameter and the roll peripheral speed. If the Si content in Fe exceeds 10% by weight, it is difficult to leave the Fe-rich phase in the silicon steel sheet.Since the solid phase is almost completely dissolved, cracks and cracks always occur during cold rolling. You.
  • the silicon steel sheet rolled by the above-described method of the present invention can be processed by a cutting machine or a punching machine after rolling, so that it can be applied to products of various shapes.
  • the rolled silicon steel sheet according to the present invention has a feature of a directional silicon steel sheet having a (100) plane as a texture unlike a normal directional silicon steel sheet having a (110) plane as a texture.
  • the annealing of the silicon steel sheet according to the present invention is performed to improve the magnetic properties after the completion of the rolling, and furthermore, to completely dissolve the Fe-rich phase and the Si-rich phase and to make the crystal grains coarse.
  • annealing of rolled silicon steel sheets was always performed after rolling several times in order to prevent cracks and cracks during rolling, but in this invention, it becomes an obstacle to domain wall movement. It aims to increase the crystal grain size with the aim of reducing crystal grain boundaries, lowering coercive force, improving magnetic permeability and reducing iron loss.
  • the La sintered silicon steel after annealing had a structure in which more La oxide 32 precipitated at the grain boundaries of the Fe-Si compound crystal grains 30 that had grown before annealing. Have.
  • the annealing temperature depends on the rolling ratio (thickness after rolling / thickness before rolling X 100 (%)) and the average grain size before rolling.
  • the annealing temperature is also affected by the additive and amount of the non-magnetic element.In the present invention in which the average crystal grain size is 300 ⁇ or less, in the case of a rolled steel sheet having a relatively small average crystal grain size and a high rolling ratio, ,
  • a temperature of 1150 to 1250 ° C is suitable, while a rolled steel sheet having a relatively large average crystal grain size and a low rolling reduction has a slightly lower temperature of 1100 to 1200 ° C.
  • the annealing temperature is too high, the crystal grains grow excessively and the steel sheet becomes very brittle, and if the temperature is too low, the magnetic properties do not improve because the grains do not grow. 1100-1250 ° C is the optimum temperature.
  • the average grain size can be grown to about 0.5 to 3 mm by annealing at the above temperature. It was confirmed that the magnetic properties obtained by this annealing were similar to those of ordinary ingots.
  • a silicon steel sheet having an Fe-rich phase 1200 to 1300 ° C is suitable for a rolled steel sheet which is sintered at a low temperature and has a high rolling rate.
  • a slightly lower temperature of 1150-1250 ° C is suitable for low rolled steel sheets.
  • the annealing temperature is too high, the crystal grains grow excessively and the steel sheet becomes very brittle.On the other hand, if the temperature is too low, the Fe-rich phase and the Si-rich phase do not form a solid solution and The above temperature is the optimum temperature because the magnetic properties do not improve because the grains do not grow.
  • the Fe-rich phase and the Si-rich phase completely dissolve, and the average crystal grain size can grow to about 0.5 to 3 mm. It has been confirmed that the magnetic properties obtained by this annealing are similar to those of ordinary ingots.
  • the annealing temperature is also affected by the La content and the Si content.
  • silicon steel sintered at a relatively low temperature for example, 1000 to 1100 ° C
  • a preferable range of the annealing temperature is 1200 to 1300 ° C.
  • a preferable annealing temperature range is 1150 to 1250 ° C. C. If the annealing temperature is too high, the crystal grains grow abnormally, and the silicon steel becomes very brittle. Conversely, if the annealing temperature is too low, the precipitation of La oxide and the growth of crystal grains become insufficient, so that the electrical resistivity ⁇ and the magnetic properties are not sufficiently improved.
  • the annealing time is appropriately selected, for example, within a range of 1 to 5 hours.
  • the electrical resistivity p of La-containing silicon steel is several times to nearly 10 times that of the case without La.
  • the grain grows to an average grain size of about 0.5 to 3 mm.
  • the magnetic properties of La-containing silicon steel are similar to those of ordinary ingots.
  • the rolled silicon steel sheet can be cut, punched, etc., and can be manufactured in various shapes according to various uses, so that it has low cost, high characteristics and high dimensional accuracy.
  • a silicon steel plate can be manufactured.
  • the rolled silicon steel sheet of the present invention is characterized by having a higher magnetic permeability and a higher magnetic flux density than a non-oriented silicon steel sheet, because it is a grain-oriented silicon steel sheet having a texture of 100%.
  • the rolled silicon steel sheet, La-containing sintered silicon steel and forged silicon steel according to the present invention are widely used for various uses of existing soft magnetic materials. For example, it is used not only for magnetic material pieces (pole pieces) that form the ends of electromagnets or permanent magnets, but also for applications such as MRI shock materials, transformers, motors, and yokes. 12
  • the content of Si in Fe is 8.3 to 11.7 wt% and the content of A1 is 0 to 2 wt%.
  • the raw material powder as described above, Fe powder and Fe-Si powder, a mixed powder in which Fe powder and Fe-Si-Al powder are blended at a predetermined ratio, or an Fe-Si compound having a predetermined composition, There is a method using Fe-Si-Al compound powder.
  • the mixed powder raw material examples include a gas atomized powder of an Fe-Si compound containing a larger amount of Si than a desired composition and easily brittle, or a powder obtained by pulverizing an ingot having the component and jet milling the powder and carbonyl iron. Powder mixed with powder at a predetermined ratio, or gas atomized powder of Fe-Si-Al compound containing more Si than desired composition, and a small amount of A1 added to a brittle fracture-prone component, or an ingot containing this component It is desirable to use a mixed powder in which powder obtained by grinding and jet milling and carbonyl iron powder are blended in a predetermined ratio.
  • the Fe-Si- (Al) compound to be used a ⁇ -phase Fe 2 Si compound, an ⁇ -phase FeSi compound, and a ⁇ -phase FeSi 2 compound are preferable because they are liable to brittle fracture.
  • the Si content in the Fe-Si compound is preferably from 20 wt% to 51 wt%. If the Si content is out of this range, it becomes very susceptible to oxidation and causes deterioration of magnetic properties.
  • the A1 content in the Fe-Si compound is preferably 0 to 6.0 wt%. If the A1 content is out of this range, cracks and cracks are liable to occur during cold rolling, and at the same time, oxidation is further liable to occur, resulting in deterioration of magnetic properties.
  • the average particle size of the powder of the Fe-Si compound or the Fe-Si-Al compound is most preferably in the range of 3 ⁇ to 100 ⁇ . If the average particle size is less than 3 ⁇ , the powder itself tends to contain a large amount of oxygen, and the magnetic properties are deteriorated. On the other hand, if it exceeds ⁇ , the sintered body tends to become porous and the sintering density decreases, which causes cracks and cracks during cold rolling.
  • the manufacturing conditions for the silicon steel before rolling the sintered body or the molten steel are as described above, and the rolling conditions are also the same.
  • A1 is diffused by a vacuum evaporation method, a sputter method, a CVD method, or the like, and is adhered to a predetermined composition to form a film.
  • the deposition and deposition amount of A1 may be appropriately determined so that the final components after diffusion are Al: 2 to 6 wt%, Si: 8 to llwt%, and the balance Fe.
  • the above adhesion and film formation conditions vary depending on the thickness, composition, and vapor deposition method of the rolled silicon steel sheet, but A1 is easier to diffuse evenly when directly deposited on a silicon steel sheet whose surface has been cleaned after cold rolling. There is a feature that the magnetic properties are also easily improved. In other words, the crystal grain size after rolling is smaller than the crystal grain size after annealing, and the residual crystal strain is large, so that A1 easily diffuses at the grain boundary.
  • the rolled silicon steel sheet of the present invention has the characteristic of a grain-oriented silicon steel sheet having a texture of (100), unlike a normal grain-oriented silicon steel sheet having a texture of (110). Since it is not a dense surface, it has the advantage that intracrystalline diffusion is also likely to occur during heat treatment after vapor deposition.
  • the annealing of the silicon steel sheet provided with A1 according to the present invention is performed, for example, in order to diffuse and infiltrate the deposited A1 into the inside of the steel sheet to produce a sendust thin sheet having a composition as uniform as possible.
  • the heat treatment temperature for annealing must be appropriately selected according to the composition of the silicon steel sheet, the amount of A1 deposited, and the average crystal grain size before rolling. This temperature should be set as low as 1000 ⁇ : 100 ° C for heat treatment in vacuum, and set to a slightly higher temperature of 1100 ⁇ 1200 ° C for heat treatment in an inert gas atmosphere. After the A1 has diffused and penetrated, a heat treatment step that is continuous with the A1 impregnation heat treatment, in which the temperature is increased to 1200 to 1300 ° C. to increase the crystal grain size, is suitable.
  • the annealing temperature is too high in a vacuum, A1 will evaporate from the steel sheet and it will be difficult to diffuse and infiltrate. If the temperature after A1 diffusion is too high, crystal grains will grow abnormally If the temperature is too low, on the other hand, if the temperature is too low, grain growth will not occur and the magnetic properties will not improve, so the above temperature range is the optimum temperature.
  • the average grain size can be grown to about 0.5 to 3 mm by annealing at the above temperature. It has been confirmed that the magnetic properties of the sendust thin plate obtained by this annealing are similar to those of ordinary ingots.
  • Fe powder and Fe-Si powder are used as starting materials, or a mixed powder or a powder of a desired composition in which Fe powder and Fe-Si-Al powder are blended in a predetermined ratio is used, and then expanded after sintering Cold-rolling became possible by producing a thin plate with a thickness of 5 mm or less in which the ductile Fe-rich phase remained.
  • A1 is adhered to both surfaces of the rolled silicon steel sheet, a film is formed, and heat treatment is performed to diffuse A1 and coarsen crystal grains. It was confirmed that a sendust thin plate with almost the same magnetic properties as the sawn timber could be produced.
  • the rolled silicon steel sheet can be cut and punched after rolling, and sendust thin sheet products of various shapes can be manufactured according to various applications. It has the advantage that a sendust thin plate with dimensional accuracy can be manufactured.
  • a gas atomized powder of silicon steel having the components and average particle sizes shown in Table 1 was used as a raw material powder for the sintered silicon steel sheet.
  • a PVA (polyvinyl alcohol) binder, water, and a plasticizer are added to each raw material powder in the amounts shown in Table 2 to form a slurry, and the slurry is heated with nitrogen gas using a completely sealed spray drier with nitrogen gas.
  • the granulation was performed at a temperature of 100 ° C and an outlet temperature of 40 ° C.
  • the granulated powder having an average particle size of about ⁇ was compacted by a compression press at a pressure of 2 ton / cm 2 into a shape as shown in Table 3, and then degassed in vacuum and hydrogen as shown in Table 3.
  • Table 4 shows the residual oxygen content, residual carbon content, average crystal grain size, and relative density of the obtained sintered body.
  • the sintered body with the dimensions shown in Table 4 was rolled on a two-stage roll of 60 ⁇ .
  • the molten silicon steel with the components shown in Table 1 was melted at a high frequency, poured into a water-cooled 5 mm thin steel plate, and rapidly cooled to produce a 50 X 50 X 5 mm steel plate.
  • Table 4 shows the residual oxygen content, residual carbon content, average crystal grain size, and relative density of the obtained steel sheet.
  • a 50X50mm steel plate Prior to cold rolling, a 50X50mm steel plate was prepared using a surface grinder to remove surface irregularities on both sides to prevent slippage and cracks during rolling. Table 7 shows the rolling state after that. In the rolling state in the table, ⁇ indicates good, and X indicates occurrence of slippage on the entire surface.
  • ingots were prepared by high-frequency melting to obtain Fe-Si compounds with the components shown in Table 9 and then coarsely ground and jet milled to obtain an average as shown in Table 1.
  • a powder having a particle size was produced.
  • Carbonyl iron powder having the components and average particle size shown in Table 9 was used as the iron powder.
  • the Fe-Si compound powder and the carponyl iron powder were blended at the ratio shown in Table 10, and then mixed with a V cone.
  • a PVA (polyvinyl alcohol) binder, water, and a plasticizer are added to each mixed powder in the amounts shown in Table 11 to form a slurry, and the slurry is heated with nitrogen gas using a completely hermetic spray dryer with nitrogen gas. Granulation was performed with the inlet temperature set to 100 ° C and the outlet temperature set to 40 ° C.
  • the granulated powder having an average particle size of about ⁇ is compacted with a compression press at a pressure of 2 ton / cm 2 into a shape as shown in Table 3, and then subjected to debinding as shown in Table 12 in vacuum and hydrogen. Sintering was performed at the sintering temperature to obtain a sintered body having the dimensions shown in Table 5.
  • Table 5 shows the content of the iron-rich phase, the amount of residual oxygen, the amount of residual carbon, the average crystal grain size, and the relative density of the obtained sintered body.
  • the content of the iron-rich phase was relatively evaluated based on the characteristic maximum X-ray diffraction intensity of the FeSi compound and the (110) diffraction intensity ratio of silicon steel having a body-centered cubic structure (bcc).
  • the sintered body with the dimensions shown in Table 13 was rolled on a two-stage roll of 60 ⁇ ,
  • Table 14 shows the rolling state. In the rolling state in Table 6, indicates very good, ⁇ indicates good, ⁇ indicates occurrence of crack on the end face of the rolled sheet, and X indicates occurrence of crack on the entire surface.
  • Fe-Si-La compound powder having the components and average particle size shown in Table 16 was used as the raw material powder for La sintered silicon steel.
  • the Fe-Si-La compound powder is first melted by high-frequency melting of the Fe-Si compound and La shown in Table 1 to produce an alloy ingot, and then assembling and pulverizing the ingot, followed by jet mill pulverization. It was produced by this.
  • Carbon iron powder having the components and average particle size shown in Table 16 was used as the Fe powder. Note that ⁇ , ⁇ , and ⁇ ⁇ in the column of compounds in Table 16 indicate the types of crystal phases of the FeSi compound.
  • the Fe-Si-La compound powder and the Fe powder were mixed at the ratio shown in Table 17, and then mixed with a V cone.
  • the raw materials Nos. 8 and 9 in Table 17 do not contain La and are used in Comparative Examples.
  • PVA polyvinyl alcohol
  • water and a plasticizer were added to the obtained mixed powders in the amounts shown in Table 11 to form a slurry.
  • This slurry was granulated with nitrogen gas under the conditions of a hot air inlet temperature of 100 OOt and an outlet temperature of 75 ° C, using a completely sealed spray dryer device.
  • the average particle size of the granulated powder was about 80 ⁇ .
  • Table 18 shows the dimensions of the compact. Thereafter, sintering was performed in vacuum and in hydrogen under the binder removal conditions and sintering temperature conditions shown in Table 18 to obtain sintered bodies having the dimensions shown in Table 19.
  • Table 19 shows the residual oxygen content, residual carbon content, average crystal grain size and relative density of the sintered body.
  • Table 20 shows the evaluation results of the rolling state, the annealing temperature, the average crystal grain size of the rolled silicon steel sheet, the DC magnetic properties, the DC electrical resistivity p, and the measured density. The symbols in the column of the rolling state are the same as in Example 1.
  • Table 20 shows the results of the property evaluation of the ingots of silicon steel with a Si content of 3.0 wt% and the ingots of silicon steel with a Si content of 6.5 wt% as comparative examples.
  • Table 16 shows the results of the property evaluation of the ingots of silicon steel with a Si content of 3.0 wt% and the ingots of silicon steel with a Si content of 6.5 wt% as comparative examples.
  • ⁇ , ⁇ , ⁇ in parentheses in the compound column indicate the crystal phase of the Fe-Si compound.
  • Raw material composition (wt) La content Fe-Si-La compound powder mixed with iron powder
  • Annealing temperature is the optimal heat treatment temperature
  • the components shown in Table 21 and carbonyl iron powder having an average particle size were used as the iron powder. After mixing the Fe-Si alloy or the Fe-Si-Al compound and the iron bonyl iron powder in the ratio shown in Table 22, they were mixed with a V cone.
  • a gas atomized powder having the components and the average particle size shown in Table 23 was used as the powder having the desired composition.
  • a PVA (polyvinyl alcohol) binder, water, and a plasticizer were added to each raw material powder in the amounts shown in Table 24 to form a slurry, and the slurry was heated with nitrogen gas using a completely hermetic spray dryer with nitrogen gas. The granulation was carried out at a temperature of 100 ° C and an outlet temperature of 40 ° C.
  • the granulated powder having an average particle size of about 80 ⁇ is pressed with a compression press into a shape as shown in Table 25 at a pressure of 2 ton / cm 2 , and then, in a vacuum, debinding and sintering temperature as shown in Table 25 The sintering was performed to obtain a sintered body having the dimensions shown in Table 26.
  • Table 27 shows the parallelism, residual oxygen content, residual carbon content, average crystal grain size, and relative density of the obtained sintered body.
  • the sintered body with the dimensions shown in Table 28 was first cold rolled to a rolling reduction of 50% at a roll peripheral speed of 60 mm / sec using a two-stage roll with an outer diameter of 60 mm, and then the same with a four-stage roll of outer diameter 20 ⁇ Cold rolling was performed at the roll peripheral speed to the thickness shown in Table 8.
  • Table 29 shows the rolling state.
  • Example 5 After rolling, after punching out a ring of 20 ⁇ A10 ⁇ , A1 was vacuum-deposited on both sides of the steel sheet at the thickness shown in Table 30 and heat treated at the annealing temperature shown in Table 30 to measure the DC magnetic properties. Table 30 shows the results.
  • the rolling conditions in Table 29 are the same as in Example 1.
  • the molten silicon steel with the components shown in Table 3 was melted by high frequency, poured into a water-cooled 5 mm-thick steel plate, and rapidly cooled to produce a 50X50X5mm steel plate and a gradually cooled steel plate without water cooling.
  • Table 6 shows the residual oxygen content, residual carbon content, average crystal grain size, and relative density of the obtained steel sheet.
  • Table 10 shows the magnetic properties of ordinary ingots of Fe-6.5Si and Sendust alloy as comparative examples of magnetic properties.
  • Raw material composition Fe-Si-Al compound powder and iron powder compounding weight Fe-Si-Al compound powder and iron powder compounding weight
  • the parallelism indicates the amount of warpage for a length of 50 mm.
  • Example No. 19 represents a molten steel sheet that was gradually cooled without water cooling.
  • Example 21 9.6 5.4 32000 1.09 0.03
  • Example 6
  • the components shown in Table 31 and carbonyl iron powder having an average particle size were used as the iron powder. After mixing the Fe-Si alloy or the Fe-Si-Al compound and the iron bonyl iron powder at the ratios shown in Table 32, they were mixed with a V cone.
  • a gas atomized powder having the components and the average particle size shown in Table 24 was used as the powder having the desired composition.
  • PVA polyvinyl alcohol
  • water and plasticizer are added to each raw material powder in the amounts shown in Table 33 to form a slurry, and the slurry is heated to the hot air inlet temperature with nitrogen gas using a completely closed spray dryer.
  • the granulation was carried out at a temperature of 100 ° C and an outlet temperature of 40 ° C.
  • the granulated powder having an average particle size of about 80 ⁇ is compacted by a compression press into a shape as shown in Table 34 at a pressure of 2 tonA: m2, and then, in a vacuum, debinding and sintering temperature as shown in Table 34
  • the sintering was performed to obtain a sintered body having the dimensions shown in Table 36.
  • Table 36 shows the parallelism, iron-rich phase content, residual oxygen content, residual carbon content, average crystal grain size, and relative density of the obtained sintered body.
  • the content of this iron-rich phase was relatively evaluated based on the characteristic maximum X-ray diffraction intensity of the FeSi compound and the (110) diffraction intensity ratio of silicon steel having a body-centered cubic structure (bcc).
  • a sintered body having the dimensions shown in Table 37 was cold-rolled to a rolling reduction of 50% at a peripheral speed of 60 mm / sec in a two-stage nozzle with an outer diameter of 60 mm.
  • cold rolling was performed at the same roll peripheral speed to the thickness shown in Table 37.
  • Table 38 shows the rolling state.
  • Table 39 shows the magnetic properties of ordinary ingots of Fe-6.5Si and Sendust alloy.
  • ⁇ , ⁇ , and ⁇ in parentheses in the compound indicate the crystal phase of the Fe-Si compound.
  • the production method according to the present invention is based on powder metallurgy using powder as a starting material, and by setting the average crystal grain size of a plate-shaped sintered body or a quenched steel sheet to 300 ⁇ or less, a crystal grain boundary is obtained. After the sliding deformation, cold rolling is possible because of the intragranular deformation, and the powder mixture of pure Fe powder and Fe-Si powder mixed in a predetermined ratio by powder metallurgy.
  • the average crystal grain size is refined, or the iron powder and the Fe-Si compound powder are mixed at a predetermined ratio so that the Fe-rich phase remains during sintering, and the thickness before rolling is reduced.
  • the present invention provides a high electrical resistivity of several to about 10 times as high as that of the steel without adding La by adding La to silicon steel and precipitating La oxide at crystal grain boundaries. Particularly, it is possible to provide particularly preferable characteristics as a material of a member that needs to have low eddy current loss even in an alternating magnetic field having a high frequency, such as a magnetic core of a high-frequency transformer.
  • the present invention utilizes the rolled silicon steel sheet of the present invention that enables cold rolling, deposits A1 on both sides of the thin sheet after rolling, and diffuses and penetrates A1 to the inside of the thin sheet by heat treatment.
  • Sendust thin plates with the same excellent magnetic properties can be obtained, and extremely thin sendust plates can be easily mass-produced. The use of this sendust thin plate will expand dramatically over a wide range of areas, such as trans-shock materials. It is expected to be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

明細書
高シリコン含有鋼の製造方法と珪素鋼 技術分野
この発明は、 高シリコン含有鋼、 すなわち Siの含有量が 3~10wt%の珪素鋼 と呼ばれる Fe-Si合金鋼やセンダストと呼ばれる Fe-Si-Al合金鋼の製造方法の 改良に関する。 詳しくは、 冷間庄延による薄板の製造が困難な高シリコン含有 鋼の製造方法に関し、 例えば、 300μιη以下の平均結晶粒径を有する焼結体ある いは溶解塊を作製し、 結晶粒界の滑り性を向上させることにより、 そのまま冷 間圧延する圧延珪素鋼板の製造方法、 又例えば Fe yツチな相と Siリツチな Fe- Si固溶体相からなる薄板状の焼結体を作製して、 Feリツチ相の結晶粒の優れた 展延性を利用して冷間庄延を可能にし、 冷間圧延後の薄板両面に A1を付着させ て熱処理し極薄のセンダスト薄板を得る製造方法に関する。 背景技術
現在、 変圧器や回転機の鉄芯、 磁気シールド材、 電磁石などの種々用途に広 く利用される圧延珪素鋼板のほとんどは、 Fe中の Si含有量 3wt%以下の珪素塊 に熱処理、 熱間圧延、 焼き鈍しの工程を繰り返し施して製造されている。 珪素鋼の透磁率は、 Si含有量が 6wt%程度のとき最大となること力知られて いるが、 Fe中に Siを 3wt%以上含有する珪素鋼板の圧延は、 従来から圧延時の ヮレ発生により困難とされてきた。
一般に、 Fe中に 3wt%以下の Siを含有する珪素鋼の溶解塊の平均結晶粒径は 数 mm以上あリ、 圧延による塑性変形は主に各結晶粒内のすべリ変形によって 起きている。
しかし、 Si含有量が 3wt%を超える場合には、 結晶粒そのものが非常に硬く また脆くなるために、 数 mm以上の平均結晶粒径を有する珪素鋼の溶解塊で は、 熱間圧延あるいは冷間圧延を問わず圧延時にヒビ、 ヮレが発生しやすくな リ、 圧延自体ほとんど不可能であった。
このため、 Mn,Ni等の磁性不純物を添加して溶解塊の平均結晶粒径を微細化 して圧延する方法 (K.Narita and M.Enokizono: IEEE. Trans. Magn.
14(1978)258)も提案されたが、 これらの磁性不純物が珪素鋼板の磁気特性を低 下させるという問題があリ、 汎用されるには至らなかった。
Fe中に Siを 3wt%含有する溶解塊を従来工程で圧延後、 CVD(Chemical Vapor Deposition)法により Siを含浸させて、 所望の組成を有する珪素鋼板、 例えば Si含有量 6.5wt%の珪素鋼板を作製する方法 (Y.Takada, M.Abe,
S.Masuda and J.Inagaki: J.Appl. Phys. 64(1988)5367.)も提案、 実施されてい るが、 CVD法に多大の工程を要してコストが高く、 その用途は自ずと限定さ れている状況である。
また、 珪素鋼において、 Siの含有量を増加させると、 珪素鋼の電気抵抗率 p が増大し、 渦電流損の低減に有効であり、 高周波領域で使用可能な軟磁性材料 として好ましいが、 前述の加工性の問題から実用化されていない。
一方、 透磁率が高く軟質磁性材料としてすぐれた Fe-Si-Al合金 (センダスト) は、 通常、 前記珪素鋼板より多量のシリコンを含有する鋼材料であり、 その薄 板の製造も、 非常に脆くかつ硬いことから、 従来より製造困難であるとされて きた。
このためにセンダストの所要成分よリ Feが少ない含有量のィンゴットを作製 した後、 粉碎し、 該粉碎粉に Fe粉を添加して所要組成にして該 Fe粉にバイン ダ一の役目をさせて、 圧延、 熱処理を繰り返して、 厚みが 0.35mm程度のセン ダスト薄板を製造する方法 (H.H.Helms and E.Adams:J.Appl.Phys.35(1964)3) が提案された。
上記の粉末冶金を用いた方法は、 添加元素の拡散が不十分なために、 磁気特 性を低下させるという問題があリ、 汎用されるには至らなかつた。 このために、 欠陥の少ないセンダストの結晶を作製し、 これを薄く切断加工 したり、 スパッタ一法により所要基板上に蒸着させてセンダスト薄板となし、
VTR用磁気へッドとしてその優れた機能を利用している。
すなわち、 従来は、 製造に際して多大の手間を要して量産が困難なため、 セ ンダスト薄板の生産量は非常に少なく、 また用途が限られているのが現状であ る。 発明の開示
この発明は、 従来不可能であるとされていた Si含有量が 3wt%以上の珪素鋼 の圧延を実現することを目的とし、 そのため、 簡単に圧延前の珪素鋼板の平均 結晶粒径を微細化することが可能で、 珪素塊を熱処理、 熱間圧延、 焼き鈍しの 工程を繰り返すことなく、 圧延素材をそのまま連続で均一に冷間圧延できる、 圧延珪素鋼板の製造方法と圧延素材の提供を目的としている。
この発明は、 珪素鋼本来の磁気特性を損なうことなく、 電気抵抗率 pを充分 に増加させ、 渦電流損を減少させることが可能な珪素鋼の提供を目的としてい る。
この発明は、 センダスト薄板が製造困難で積層鉄心などを構成することがで きなかった現状に鑑み、 冷間庄延によリセンダスト薄板の作製が可能であり、 しかも非常に優れた磁気特性を有するセンダスト薄板が得られる、 センダスト 薄板製造方法の提供を目的としている。
発明者らは、 Si含有量が 3wt%以上の珪素鋼板の圧延に際し、 圧延前の珪素 鋼素材に、 微細化された平均結晶粒径を有する焼結体もしくは溶解薄板を使用 して、 結晶粒界の滑り性を著しく向上させることにより、 冷間圧延が可能にな ると考えた。 同様に、 圧延前の珪素鋼素材に、 Feリッチな相を残存させた焼結体を使用し て、 Feリッチな相を有する結晶粒の展延性を利用して塑性変形させることによ リ、 冷間圧延が可能になると考えた。
発明者らは、 上記の着想を基に冷間圧延性の良好な珪素鋼の圧延素材につい て種々検討した結果、 平均結晶粒径のサイズに着目し、 焼結体としたりあるい は溶融急冷して、 従来の溶融徐冷した珪素鋼よリも微細化した平均結晶粒径が 300μπι以下の珪素鋼の圧延素材を作製し、 これを冷間圧延することにより圧延 が可能となること、 また微細化の効果は Si含有量にかかわらず有効であり、 特 に 3wt%以上の場合に効果的であること、 さらには、 圧延素材の板厚を 5mm以 下とし、 平行度を 0.5mm以下とすることによつて比較的容易に圧延できるこ とを知見した。
発明者らは、 同様に、 結晶粒内の組成に着目し、 従来の溶融徐冷して Feと Si が完全に固溶した相の結晶粒と違って、 Fe uツチな相と Siリツチな Fe-Si固溶 体相を有する混合相で、 展延性に富んだ Feリツチ相を残存させた焼結珪素鋼板 を作製し、 これを冷間圧延することにより圧延が可能であることを知見した。 また、 発明者らは、 焼結体の製造方法として、 所定の組成を有するガスアト マイズ粉あるいは水ァトマイズ粉を粉末冶金的手法で焼結することにより、 微 細化した所望の平均結晶粒径を有する焼結体が作製可能であり、 粉末冶金的手 法としては、 金属射出成形、 圧粉成形、 スラリー状にして流し込むスリップ キャスト成形等で成形した後、 所定の温度で焼結する方法、 またはホットプレ スゃプラズマ焼結等の熱間成形法により作製する方法が採用できることを知見 した。
さらに、 発明者らは、 溶解薄板の作製方法としては、 平均結晶粒径をできる だけ微細化するために、 溶融珪素鋼を錡込み厚みの薄い水冷式の踌型に流し込 んで急速に冷却する方法が採用できることを知見した。 また、 発明者らは、 圧延素材の組成として、 予め Ti,Al,V等を少量添加して おくと、 圧延後の焼き鈍し時に平均結晶粒径が粗大化しやすく、 また、 Feリツ チ相と Siリッチ相を完全に固溶させることが可能で、 保磁力力急激に低下して 磁気特性の優れた薄板の圧延珪素鋼板が得られることを知見した。
上記の圧延珪素鋼板の製造方法を知見した発明者らは、 高シリコン含有にと もない電気抵抗率 pの増大を確認した。 そこでさらに渦電流損の低減が可能な 材料を目的に、 添加元素について種々検討したところ、 Laが有効であること を知見し、 さらに検討を加えた結果、 珪素鋼を焼結法にて作製すると Laの酸 化物力 ^結晶粒界に析出し、 目的が達成可能であることを知見した。
また、 発明者らは、 Laの酸化物を結晶粒界に析出させる方法として、 前記 焼結法の他、 Laを含有する珪素鋼のインゴットを熱間繰り返し圧延または熱 間繰リ返し鍛造を行うことによつても可能であることを知見した。
さらに、 上記の圧延珪素鋼板の製造方法を知見した発明者らは、 微細な平均 結晶粒径を有する珪素鋼の焼結体あるいは溶解塊からなる素材を冷間圧延して 得た珪素鋼板、 あるいは Feリッチな相を残存させた焼結体を使用し、 その Fe リツチな相を有する結晶粒の展延性を利用して冷間圧延して得た珪素鋼板の両 面に、 A1を種々の条件で蒸着させた後、 熱処理することにより、 その表面から A1が内部まで拡散し、 また透磁率も珪素鋼板に比べて飛躍的に向上して磁気特 性の優れたセンダスト薄板が得られることを知見し、 この発明を完成した。 図面の説明
図 1は、 Si含有量が 6.5wt%の場合における焼結珪素鋼の電気抵抗率 βと La含 有量との関係を示すグラフである。
図 2は、 Si含有量が 6.5wt%の場合における焼結珪素鋼の平均結晶粒径および iHcと La含有量との関係を示すグラフである。 図 3Aはこの発明による La含有焼結珪素鋼の圧延前の構造を模式的に示す断 面面であり、 図 3Bは、 焼き鈍し後の構造を模式的に示す断面図である。 発明を実施するための最良の形態
この発明は、 出発原料として粉末を用いて粉末冶金的に作製し、 板状の焼結 体あるいは急冷鋼板の平均結晶粒径を 300μπι以下にすることにより、 結晶粒界 のすベリ変形の後、 粒内すベリ変形を実現し、 冷間圧延を可能にした手段、 ま た、 純 Fe粉末と Fe-Si粉末を所定の割合で配合した混合粉を粉末冶金的手法で 作製し、 焼結体中に Feリッチ相を残存させることにより、 該結晶粒の塑性変形 を実現し、 冷間圧延を可能にした手段を採用し、 磁気特性の優れた珪素鋼板を 効率よく製造することを特徴としている。
Laを添加した珪素鋼粉末を焼結した焼結珪素鋼は、 La酸化物 (La203、 非化 学量論的な La酸化物も含む)が結晶粒界に析出した組織を有し、 この結晶粒界 相は、 絶縁性の高い La酸化物から形成されており、 その結果、 La焼結珪素鋼 の電気抵抗率 pは従来の珪素鋼よリも増大する。
La3 +のイオン半径 (1.22オングストローム)は、 Fe3 +のイオン半径 (0.67オン グストローム)や Si4+のィォン半径 (0.39ォングスト口一ム)と比べて大き 、。 このため、 Laは珪素鋼のマトリックスにほとんど固溶せず、 焼結によって結 晶粒界に容易に析出し、 粒界で La酸化物を形成するものと考えられる。
La3 +イオンは希土類元素イオンでありながら、 磁気モーメントを保有しな いため、 磁性不純物として機能せず、 La焼結珪素鋼の磁気特性を劣化させる ことがない。 むしろ、 Laの添加は、 焼き鈍し工程で焼結珪素鋼の平均結晶粒 を粗大化するため、 保磁力を低下することに寄与することもわかった。
La3 +ィォンは希土類元素ィオンであリながら、 磁気モ一メントを保有しな いため、 磁性不純物として機能せず、 La焼結珪素鋼の磁気特性を劣化させる ことがない。 むしろ、 Laの添加は、 焼き鈍し工程で焼結珪素鋼の平均結晶粒 を粗大化するため、 保磁力を低下することもわかった。
図 1は、 Si含有量が 6.5wt%の場合における、 La含有量と電気抵抗率 βとの関 係を示している。 図 1より、 La焼結珪素鋼は、 La無添加の焼結珪素鋼と比較し て、 数倍から 10倍近くのレベルの高い電気抵抗率 βを示すことがわかる。
図 2は、 Si含有量が 6.5wt%の場合における、 La含有量と焼結後の平均結晶粒 径および保磁力 iHcの関係を示している。 図 2より、 この発明の La含有珪素鋼 は、 La無添加の焼結珪素鋼よリも大きな平均粒径を有し、 優れた磁気特性を 示していることがわかる。
Fe-Si合金の使用原料
この発明において、 対象とする珪素鋼の素材の成分としては、 Fe中の Siの含 有量が 3~10wt%の所要組成からなることを特徴とする珪素鋼である。 すなわ ち、 従来、 Siの含有量が 3wt%以上では圧延できないため、 本願発明の対象を Siが 3wt%以上とするが、 10wt%を超えると材料の磁束密度の低下が著しい、 よって、 3~10wt%の範囲とする。
La含有量の好ましい範囲は 0.05wt%〜2.0wt%である。 La含有量が 0.05wt% 未満では、 粒界に析出する La酸化物の量が不充分となり、 電気抵抗率の増加 効果がほとんど現れない。 また、 La含有量が 2.0wt%を越えると珪素鋼の加工 性が低下するため、 冷間圧延によって珪素鋼板を作製することが困難になる。 電気抵抗率または比抵抗を大きくするという観点から、 La含有量のより好ま しい範囲は 1.0wt%〜2.0wt¾ ある。 さらに、 La含有量として最も好ましい範 囲は、 1.2wt%〜1.5wt%である。
La含有珪素鋼における Si含有量は、 磁気特性を目的とすれば
3.0wt%〜10wt%、 さらに好ましくは 5.0wt%~8.0wt%である。 電気抵抗率 pの 高い珪素鋼を得ることを目的に Si含有量を 3.0wt%未満とすることも可能であ る。 この発明において、 冷間圧延後の焼き鈍し時の結晶粒径の粒成長を促進する ために、 あるいは Feリッチ相と Siリッチ相を完全に固溶させるために、 珪素鋼 素材の不純物元素として Ti,Al,Vを 0.01〜: L.0wt%添加すると、 磁気特性の良好 な圧延珪素鋼板が得られ、 添加成分、 添加量は用途に応じて適宜選定するとよ い。 Ti,Al,Vの含有量は、 0.01wt%未満では粒成長の効果が十分でなく、
1.0wt%を超えると磁気特性が低下するため、 0.01~1.0 ^%の範囲とする。 かかる原料は、 焼結体の場合には該成分を含有したガスアトマイズ粉もしく は水ァトマイズ粉が適しておリ、 その平均粒度は 10~200μπιが望ましい。 平均 粒度が ΙΟμπι未満では焼結体の密度は向上するが、 粉末自体に多量の酸素を含 有するので、 冷間圧延時にヒビ、 ヮレ発生の原因になりやすく、 且つ磁気特性 の劣化の原因にもなる。
また、 還元鉄粉などの Fe粉末の表面に Si粉末をメカノフユ一ジョンシステム などで機械的に被覆させた複合粉末あるいはその逆の複合粉末や、 Fe粉末に被 覆したした Si粉末に力一ボニル鉄粉などを再被覆した複合粉末、 さらには、 Fe-Si化合物粉末と Fe粉末を混合した混合粉も採用できる。
また、 焼結用原料の平均粒度が 200μπιを超える場合は、 焼結体がポ一ラスに なりやすく焼結密度が低下するので、 これも冷間圧延時のヒビ、 ヮレ発生の原 因になる。 従って平均粒度は 10~200μπιが最も望ましい。 また使用する原料粉 末の含有酸素量は、 少なければ少ないほど良いが、 少なくとも lOOOppm以下 が望ましい。
この発明において、 微細化した所望の平均結晶粒径を有する焼結体を作製す る方法として、 上記の所定の組成を有するガスアトマイズ粉あるいは水アトマ ィズ粉などを粉末冶金的手法で焼結する。
溶解塊からなる素材を作製する場合には、 該成分を含有するように配合、 溶 解すれば、 使用原料としては特に制限はない。 特に平均結晶粒径を 300μπι以下 にするには後述のごとく急冷するとよい。 また、 Laを含有させるには、 Fe-Si- Laィ匕合物または Fe-Si-La203を溶解し、 インゴット鍛造を行う。 その後、 その インゴットに対して熱間繰り返し圧延または熱間繰り返し鍛造を行い、 粒界に La203を分散させる。
この発明において、 Feリツチな相と Siリツチな Fe-Si固溶体相からなる焼結 体を得るために、 原料としては、 所望組成よりも多くの Siを含有した、 脆性破 壊しやすい成分の Fe-Si化合物のガスアトマイズ粉末、 あるいは該成分を有す るインゴットを粗粉砕してジェットミル粉砕した粉末と力一ボニル鉄粉を所定 の割合で配合した混合粉末が望ましい。 なお、 前記焼結体の結晶相における Si 量が 6.5%を超える場合を Siリツチ、 超えない場合を Feリツチという。
また、 使用する Fe-Si化合物としては、 β相の Fe2Si化合物や ε相の FeSi化合 物、 さらに ζ β相の FeSi2化合物が脆性破壊しやすいので特に好ましい。
Fe-Si化合物中の Si含有量としては、 SOwi^ Slwt^が好ましい。 Si含有量 がこの範囲を超えると非常に酸化しやすくなリ、 後の冷間圧延時にヒビ、 ヮレ を起こしやすくなリ、 また磁気特性の劣化を引き起こす。 同様理由から La含 有量は llwt%未満に設定されることが好ましレ、。
Fe-Si化合物粉末の平均粒度が 3μπι未満では、 粉末自体に多量の酸素を含有 し、 焼結体が硬くまた脆くなるので、 冷間圧延時にヒビ、 ヮレが発生しやすく なつたり、 また磁気特性が劣化したりする。 また平均粒度力 ΟΟμιηを超える場 合は、 焼結体がポーラスになりやすく焼結密度が低下するので、 これも冷間庄 延時のヒビ、 ヮレ発生の原因になる。 したがって平均粒度は 3〜: ΙΟΟμπιが最も 望ましい。
一方、 カーボニル鉄粉は、 いずれのものも採用できるが、 市販の 3~10μιηの 粒径を有し、 できるだけ酸素含有量の少ない粉末が望ましい。 いずれにしても Fe粉と Fe-Si化合物粉の混合粉末の含有酸素量は、 少なければ少ないほど良い が、 少なくとも 3000ppm以下が望ましい。 圧延前の珪素鋼
圧延素材としての焼結体の作製には、 粉末冶金的手法が採用できるが、 金属 射出成形、 圧粉成形、 スリップキャスト法等による焼結体あるいはホットプレ スゃプラズマ焼結等の熱間成形法による焼結体の作製が適している。
具体的には、 金属射出成形、 圧粉成形、 スリップキャスト成形は、 珪素鋼粉 末にバインダーを添加し成形する方法であり、 成形後、 脱バインダー、 焼結を 行って作成する方法である。 また、 熱間成形法は、 炭素金型の中に原料粉末を 入れ、 熱間中 (1000°C〜: L300°C)で圧力をかけて成形と焼成を同時に行う方法で ある。
一般に、 当該成分の珪素鋼粉末は、 Siを含有するために非常に酸化し易く、 また成形用にバインダーを使用すると特に酸化したり、 炭化したりするので、 脱バインダーと焼結時の雰囲気制御は不可欠である。 また、 酸化や炭化した焼 結体は硬く、 脆くなるので、 冷間圧延すると、 ヒビ、 ヮレが発生すると同時に 焼き鈍し後の磁気特性も著しく低下する。 このために焼結体中に含まれる酸素 量と炭素量は、 それぞれ 4000ppm以下、 200ppm以下が好ましく、 さらにはそ れぞれ 2000ppm以下、 lOOppm以下が好ましい。
焼結温度は、 組成、 平均粒度、 成形方法等によって異なるが、 一般的には 1100°Cから 1300°Cの温度で不活性ガス雰囲気中、 水素ガス雰囲気中、 真空中 等、 成形方法に応じて適宜選定されるが、 可能な限り焼結時の変形を防止しな ければ、 冷間圧延時のヒビ、 ヮレ発生の原因になる。
特に、 焼結後に展延性に富んだ Feリッチ相を残存させるために、 本来の焼結 温度よりやや低い温度で焼結させることが重要である。 また、 Laを含有して 電気抵抗率 pをより増加させるためには、 通常の珪珪素鋼に対する焼結温度よ リも 100°C程度低い温度で焼結させることが好ましい。 焼結時には、 できるか ぎり焼結時の変形を防止し、 50mm長さに対する平行度を 0.5mm以下に抑えな ければ、 冷間圧延時のヒビ、 ヮレ発生の原因になる。 Laを含有した焼結珪素鋼は、 図 3Aに示すように、 Fe-Si化合物結晶粒 30の粒 界に La酸化物 32が析出した構造を有している。
一方、 溶解珪素鋼素材は、 所定の成分で配合して高周波溶解した後、 水冷式 の錡込み厚みが 5mm以下の薄 、錡型に溶解珪素鋼を流し込み、 急冷して微細 な結晶粒径を有する珪素鋼板となすものであり、 特に厚みを薄くした方が微細 な結晶粒径の珪素鋼素材を作製しやすくなる。
圧延
珪素鋼は、 一般の金属と比べて硬くて脆い性質があるために、 冷間圧延用の ロール径とその周速度は、 圧延前の板厚とその平行度によって変える必要があ る。 つまり圧延前の板厚が厚く、 平行度力悪ければ、 小さいロール径で、 しか も低周速度で圧延しなければならない。
し力、し、 逆に板厚が薄く、 平行度さえよければ、 この条件はかなり緩和され る。 特に熱間圧延の場合には、 珪素鋼板は塑性変形しやすくなるので、 ロール 径と周速度の条件は、 冷間圧延に比べて大幅に緩和される。 冷間圧延前に熱間 圧延をすることは有効であるが、 最終的には冷間圧延を行わなければ、 薄板の 圧延は不可能となる。 表面層が酸化し磁気特性が劣化するためである。
この発明において、 珪素鋼の平均結晶粒径が 300μπι以下とし、 圧延前の板厚 を 5mm以下とする。 焼結体の厚みが 5mmを超える場合には、 表面のみに圧延 応力 (引っ張り応力)がかかり、 焼結体の内部には応力がかからないため、 割れ が発生するが、 5mm以下の場合には、 表面と内部にかかる応力が均一化して 圧延が可能となる。
この発明において、 Feリッチ相を含有する珪素鋼板の場合、 圧延前の板厚が 5mm以下で平行度 0.5rrmi(50mmの長さに対する)以下の珪素鋼板では、 ロール 径は 80mm以下で、 ロール周速度 60mm/sec以下の条件であれば、 冷間圧延の 際に焼き鈍し工程を入れずに、 ヒビ、 ヮレカ ¾3きずに冷間圧延できる。 W
12
この発明において、 さらに珪素鋼板の板厚が lmm以下になれば、 ロール径 の更に小さいロールで圧延した方が、 圧延効率と厚み寸法精度が向上し、 しか もヒビ、 ヮレも発生しにくくなる傾向がある。
圧延前の珪素鋼の平均結晶粒径が 300μπιを超える場合には、 ロール径とロー ル周速度に関係なく、 圧延時にヒビ、 ヮレが発生する。 また平均結晶粒径 5μπι 未満の珪素鋼板の作製は、 粉末冶金的な焼結法でのみ作製可能であり、 それは 焼結温度を下げるか、 成形密度を下げて焼結する方法であるが、 いずれの方法 でも気孔率の高い焼結体になるので、 圧延時に必ずヒビ、 ヮレが発生する。 特に、 珪素鋼板の Feリッチ相が無くなって完全に固溶した場合には、 ロール 径とロール周速度に関係なく、 圧延時にヒビ、 ヮレが発生する。 また Fe中の Si 含有量が 10wt%を超える場合には、 珪素鋼板に Feリツチ相を残存させるのが 難しくなリ、 ほとんど固溶するために、 冷間圧延時に必ずヒビ、 ヮレが発生す る。
また、 上記のこの発明方法で圧延した珪素鋼板は、 圧延後に切断機、 打抜機 による加工が可能であるために、 種々の形状の製品対応が可能である。
この発明による圧延珪素鋼板は、 通常の (110)面を集合組織とする方向性珪 素鋼板とは違って、 (100)面を集合組織とする方向性珪素鋼板の特徴を有す る。
焼き鈍し
この発明による珪素鋼板の焼き鈍しは、 圧延完了後の磁気特性向上のため に、 さらには Feリッチ相と Siリッチ相を完全に固溶させると同時に、 結晶粒を 粗大化させるために行うものである。 すなわち、 従来では、 圧延珪素鋼板の焼 き鈍しは、 圧延時のヒビ、 ヮレ防止のために、 何回か圧延した後に必ず行われ ているが、 この発明では、 磁壁移動の障害となる結晶粒界を減らし、 保磁力を 低下させて透磁率の向上と鉄損の低下を目的に、 結晶粒径の粗大化を狙ったも のである。 なお、 焼き鈍し後の La焼結珪素鋼は、 図 3Bに示すようように、 焼き鈍し前 よリも成長した Fe-Si化合物結晶粒 30の粒界に La酸化物 32がよリ多く析出した 構造を有している。
この焼き鈍しの温度は、 圧延率 (圧延後の板厚/圧延前の板厚 X 100(%))と圧延 前の平均結晶粒径によって変わる。 また、 焼き鈍しの温度は、 非磁性元素の添 加物と添加量によっても影響される力 平均結晶粒径が 300μπι以下のこの発明 において、 比較的小さな平均結晶粒径で圧延率の高い圧延鋼板では、
1150~1250°Cが適しておリ、 逆に比較的大きな平均結晶粒径で圧延率の低い 圧延鋼板では、 1100~ 1200°Cの僅かに低 、温度が適している。
この焼き鈍し温度が高すぎると、 結晶粒が異常粒成長しすぎて鋼板が非常に 脆くくなリ、 逆に温度が低すぎると、 粒成長しないために磁気特性が向上しな くなるので、 上記 1100~1250°Cが最適温度である。 上記温度での焼き鈍しに よって平均結晶粒径は、 約 0.5〜3mmにまで成長させることができる。 この焼 き鈍しによつて磁気特性は、 通常の溶製材に近い特性が得られることを確認し た。
また、 Feリッチ相を有する珪素鋼板の場合で、 低い温度で焼結し圧延率の高 い圧延鋼板では、 1200~1300°Cが適しており、 逆に高い温度で焼結した鋼板 で圧延率の低い圧延鋼板では、 1150~1250°Cの僅かに低い温度が適してい る。
この焼き鈍し温度が高過ぎると、 結晶粒が異常粒成長しすぎて鋼板が非常に 脆くなリ、 逆に温度が低過ぎると、 Feリッチ相と Siリッチ相が固溶せずに、 ま た結晶粒も成長しないために、 磁気特性が向上しなくなるので、 上記温度が最 適温度である。
上記温度での焼き鈍しによって Feリツチ相と Siリツチ相が完全に固溶し、 そ の平均結晶粒径は、 約 0.5〜3mmにまで成長させることができる。 この焼き鈍 しによつて磁気特性は、 通常の溶製材に近い特性が得られることを確認した。 また、 焼き鈍しの温度は、 La含有量および Si含有量によっても影響される。 比較的に低い温度 (例えば、 1000~1100°C)で焼結した珪素鋼を、 70〜90%程度 の圧延率で圧延する場合、 焼き鈍し温度の好ましい範囲は、 1200〜1300°Cで ある。 一方、 比較的に高い温度 (例えば、 1150〜1250°C)で焼結した珪素鋼を、 50~70%程度の圧延率で圧延する場合、 焼き鈍し温度の好まし ヽ範囲は、 1150~1250°Cである。 焼き鈍しの温度が高すぎると結晶粒が異常成長するた め、 珪素鋼が非常に脆くなる。 逆に、 焼き鈍しの温度が低すぎると、 La酸化 物の析出や結晶粒の成長が不十分となるために、 電気抵抗率 βおよび磁気特性 が充分に改善されない。 焼き鈍しの時間は、 例えば 1~5時間の範囲内で適宜選 択される。
焼き鈍しによつて La酸化物の析出と結晶粒の成長とが同時に充分に行われ るため、 La含有珪素鋼の電気抵抗率 pは La無添加の場合と比べて数倍〜 10倍近 くのレベルにまで増加し、 結晶粒は平均粒径約 0.5〜3mmにまで成長する。 ま た、 La含有珪素鋼の磁気特性は、 通常の溶製材に近い特性となる。
また、 この発明において、 圧延後の珪素鋼板は、 切断、 打抜等の加工が可能 であり、 各種用途に応じて種々の形状の製品が作製できるので、 低コストで高 特性、 高寸法精度の珪素鋼板の作製が可能である利点を有する。
さらに、 この発明の圧延珪素鋼板は、 (100湎を集合組織とする方向性珪素 鋼板であるために、 無方向性珪素鋼板に比べて透磁率と磁束密度が大きいとい う特徴も有する。
この発明による圧延珪素鋼板、 La含有焼結珪素鋼及び鍛造珪素鋼は、 既存 の軟磁性材料が持つ種々の用途に広く用いられる。 例えば、 電磁石または永久 磁石の端部を形成する磁性材料片 (ポールピース)に使用される他、 MRI用ョ一 ク材、 トランス、 モータ、 ヨーク等の用途にも好適に使用される。 12
15
Fe-Si-Al合金
この発明において、 素材の珪素鋼の成分としては、 Fe中の Siの含有量が 8.3~11.7wt%で、 A1の含有量が 0~2wt%の所要組成からなることが望まし い。 該使用原料粉末としては、 前述のごとく、 Fe粉末と Fe-Si粉末あるいは Fe 粉末と Fe-Si-Al粉末を所定の割合で配合した混合粉、 もしくは所定の組成を有 する Fe-Si化合物や Fe-Si-Al化合物粉末を使用する方法がある。
該混合粉末原料としては、 所望組成よりも多くの Siを含有した、 脆性破壊し やすい成分の Fe-Si化合物のガスアトマイズ粉末もしくは該成分を有するイン ゴットを粉砕してジェットミル粉碎した粉末とカーボニル鉄粉を所定の割合で 配合した混合粉末、 あるいは所望組成よりも多くの Siを含有した、 脆性破壊し やすい成分に A1を微量添加した Fe-Si-Al化合物のガスアトマイズ粉末もしくは 該成分を有するインゴットを粉砕してジェットミル粉砕した粉末とカーボニル 鉄粉を所定の割合で配合した混合粉末が望ましい。
また使用する Fe-Si-(Al)化合物としては、 β相の Fe2Si化合物や ε相の FeSi化 合物、 さらに ζβ相の FeSi2化合物が脆性破壊しやすいので、 好ましい。 Fe-Si化 合物中の Si含有量としては、 20wt%~51wt%が好ましい。 Si含有量がこの範囲 外となると、 非常に酸化しやすくなリ、 磁気特性の劣化を引き起こす。 また Fe-Si化合物中の A1含有量としては、 0~6.0wt%が好ましい。 A1含有量がこの 範囲外となると、 冷間圧延時にヒビ、 ヮレが発生しやすくなると同時に、 更に 酸化しやすくなるので、 磁気特性の劣化を招く。
Fe-Si化合物や Fe-Si-Al化合物の粉末の平均粒度は 3μπι~100μιηの範囲が最 も望ましく、 平均粒度が 3μπι未満では、 粉末自体に多量の酸素を含有しやすく なり、 磁気特性が劣化し、 また ΙΟΟμπιを超える場合は、 焼結体がポーラスにな りやすく焼結密度が低下するので、 冷間圧延時にヒビ、 ヮレ発生の原因にな る。 以上の使用原料を用いて、 焼結体または溶解鋼の圧延前の珪素鋼の製造条件 は、 前述のとおりであり、 また、 圧延条件も同様である。
得られた Fe-Si合金からなる圧延珪素鋼板に A1含浸させる方法は、 A1を真空 蒸着法、 スパッター法、 CVD法等により、 拡散後所定の組成になるように付 着、 成膜する。 A1の付着、 成膜量は、 拡散後の最終成分が Al:2〜6wt%、 Si:8~llwt%, 残部 Feとなるように適宜決定するとよい。
上記の付着、 成膜条件は、 圧延珪素鋼板の板厚、 組成、 蒸着方法によって異 なるが、 冷間圧延後表面を清浄にした珪素鋼板に直接蒸着した方が A1は均一に 拡散しやすく、 磁気特性も向上しやすい特徴がある。 つまり、 圧延後の結晶粒 径は焼き鈍し後の結晶粒径に比べて小さく、 また残留結晶歪みが大きいため に、 A1が粒界拡散し易いということである。
さらにこの発明の圧延珪素鋼板は、 通常の (110湎を集合組織とする方向性 珪素鋼板とは違って、 (100湎を集合組織とする方向性珪素鋼板の特徴を有 し、 圧延面が最密面ではないので、 蒸着後の熱処理時に結晶粒内拡散も起こし 易い利点もある。
この発明による A1を着設した珪素鋼板の焼き鈍しは、 例えば蒸着した A1を 鋼板内部まで拡散浸透させ、 できるかぎり均一組成のセンダスト薄板を作製す るために行うものである。
焼き鈍しの熱処理温度は、 珪素鋼板の組成と A1の付着量、 さらに圧延前の平 均結晶粒径によって適宜選定する必要がある。 この温度は、 真空中で熱処理す る場合には、 1000〜: L100°Cと低く設定し、 不活性ガス雰囲気中で熱処理する 場合には、 1100~1200°Cの僅かに高い温度に設定し、 A1が拡散浸透した後 に、 1200~1300°Cの温度に昇温して結晶粒径を粗大化させるような、 A1含浸 熱処理と連続する熱処理工程が適している。
真空中ではこの焼き鈍し温度が高過ぎると、 A1が鋼板から蒸発して拡散浸透 し難くなる。 A1が拡散した後の温度が高過ぎると、 結晶粒が異常粒成長しすぎ て鋼板が非常に脆くなリ、 逆に温度が低過ぎると、 粒成長しないために、 磁気 特性が向上しなくなるので、 上記温度範囲が最適温度である。 上記温度での焼 き鈍しによつて平均結晶粒径は、 約 0.5~3mmにまで成長させることができ る。 この焼き鈍しによってセンダスト薄板の磁気特性は、 通常の溶製材に近い 特性が得られることを確認した。
従来、 センダスト合金は、 硬くて脆いことにより、 圧延困難で薄板状のシー ト材を作製することは不可能とされてきた。 しかし、 この発明では、 出発原料 として Fe粉と Fe-Si粉末ある 、は Fe粉と Fe-Si-Al粉末を所定の割合で配合した 混合粉もしくは所望組成の粉末を用いて、 焼結後に展延性に富んだ Feリツチ相 を残存させた薄板を 5mm以下の厚みで作製することにより、 冷間圧延が可能 になった。
さらにこの発明では、 前記圧延珪素鋼板の両面に A1を付着、 成膜した後、 熱 処理して A1の拡散と結晶粒の粗大化を図ることにより、 センダスト薄板として の磁気特性は、 従来の溶製材とほぼ同等になり、 磁気特性の優れたセンダスト 薄板が作製できることを確認した。
また、 素材の圧延珪素鋼板は、 圧延後の切断、 打抜等の加工が可能であり、 各種用途に応じて種々の形状のセンダスト薄板の製品が作製できるので、 低コ ストで高特性、 高寸法精度のセンダスト薄板の作製が可能である利点を有す る。
実 施 例
実施例 1
焼結珪素鋼板の原料粉末として、 表 1に示すような成分と平均粒度の珪素鋼 のガスアトマイズ粉末を使用した。 各原料粉末に表 2に示すような添加量で PVA (ポリビニールアルコール)バインダー、 水、 可塑剤を添加し、 スラリー状 となし、 該スラリーを完全密閉型スプレードライヤー装置により窒素ガスで熱 風入口温度 100°C、 出口温度 40°Cに設定して造粒を行った。 次いで、 平均粒径約 ΙΟΟμπιの該造粒粉を圧縮プレス機で圧力 2ton/cm2で表 3 に示すような形状に圧粉成形した後、 真空中と水素中で表 3に示すような脱バ インダー、 焼結温度で焼結を行い、 表 4に示す寸法の焼結体を得た。 得られた 焼結体の残留酸素量、 残留炭素量、 平均結晶粒径、 相対密度を表 4に示す。 表 4に示す寸法の焼結体をまず 60πιπιφの 2段ロールで、 ロール周速度
60mm/secで圧延率 50%まで冷間圧延した後、 さらに 20ππηφの 4段ロールによ リ同一ロール周速度で 0.10mmまで冷間圧延した。 その圧延状態を表 5に示 す。
また圧延後、 20ππηφΧ ΐ0ππηφΧ 0.1ιηιη1;のリングを打ち抜いて、 表 5に示 すような焼き鈍し温度で熱処理をした後、 直流磁気特性と周波数 5kHzでの鉄 損を測定した。 その結果を表 5に示す。 表 5中の圧延状態で、 ◎は非常に良好、 〇は良好、 △は圧延板の端面にヒビ発生、 Xは全面にヮレ発生を表す。
実施例 2
表 1に示すような成分の溶融珪素鋼を高周波溶解した後、 水冷型の铸込み厚 み 5mmの薄板状の錡型に流し込み、 急冷して 50 X 50 X 5mmの鋼板を作製し た。 また、 比較のため水冷せずに徐冷した鋼板を作製した。 得られた鋼板の残 留酸素量、 残留炭素量、 平均結晶粒径、 相対密度を表 4に示す。
冷間圧延前に、 圧延時のヮレ、 ヒビ防止のために、 50X 50mmの両面をサー フェイスグラインダ一で表面の凹凸を除去した鋼板を準備した。 その後の圧延 状態を表 7に示す。 同表中の圧延状態で、 〇は良好、 Xは全面にヮレ発生を表 す。
実施例 1と同一冷間圧延条件で圧延した後、 表 6に示す焼き鈍し温度で熱処理 をした後、 直流磁気特性と周波数 5kHzでの鉄損を測定した。 その結果を水冷 せずに作製した溶製材の磁気特性と比較して表 8に示す。 サン Si含有量 平均粉末 微量成分 (wt%) プル
残留 0,C 金厲兀
No. (wt%) (μπι) 0 C 元素名 添加量
1 3.0 40 0.031 0.025 無 粉末 2 6.5 30 0.043 0.025
原料 3 6.5 30 0.052 0.029 V 0.02
4 6.5 30 0.065 0.030 A1 0.5
5 6.5 30 0.070 0.032 Ti 1.00
6 10.0 140 0.027 0.013 Al 0.5 溶解原料 7 6.5 0.004 0.001 Al 0.5
バインダー添加量 ポリマー 可塑剤 水 実施例 1 ポリビニールアルコール グリセリン 水
:1.0wt% :0.1 wt% :54wt% 表 3
JNO. サンプ 欣 体、T<S 脱バインダー条件 焼結条件
雰囲気 度 時間 雰囲気 温度 時間
No. (mm) ΓΟ (H) rc) (H)
1 1 60X60X1.2 真空 500 2 真空 1200 3
2 1 60X60X5.8 真空 500 2 真空 1200 3
3 1 60X60X11.8
実 真空 500 2 苜
具 in 1200 3
4 2 60X60X1.2 真空 500 2 苜 1200 3 施 5 3 60X60X1.2 真空 500 2 苜
具 1200 3
6 4 60X60X1.2 真空 500 2 真空 1200 3 例 7 5 60X60X1.2 真空 500 2 真空 1200 3
8 4 60X60X1.2 水素 500 2 水素 1200 3
1 9 4 60X60X5.8 真空 500 2 真空 1200 3
10 4 60X60X11.8 首 * 500 2 真空 1200 3
11 4 60X60X5.8 真空 500 2 真空 1050 3
12 4 60X60X5.8 真空 500 2 真空 1300 3
13 6 60X60X5.8 真空 500 2 真空 1150 3
Figure imgf000023_0001
No.サンプル圧延状態 焼き鈍し温度 平均結晶粒径 No. (°C)X3H (μπι)
1 1 ◎ 1250 900
2 1 ◎ 1250 1100
3 1 Δ 1250 1500
4 2 ◎ 1260 1000 施 5 3 ◎ 1220 1200 p
D 4 l UU 1 UU 例 7 5 ◎ 1180 1400
8 4 ◎ 1200 1600
1 9 4 ◎ 1230 1800
10 4 Δ 1260 2000
11 4 X
12 4 X
13 6 〇 1250 2300
s/66一d22/66 OM 1
0u
Figure imgf000025_0001
表 7
Figure imgf000026_0001
No. 磁気特性と鉄損 相対密度 μπι Bs(T) iHc(Oe) n(W/kg) (%)
14
15 16000 1.18 0.1717 14 100 例
2 16
実施例 2
焼結珪素鋼板の原料粉末として、 表 9に示すような成分の Fe-Si化合物になる ように高周波溶解してインゴットを作製した後、 粗粉砕、 ジェットミル粉砕し て表 1に示すような平均粒度の粉末を作製した。 また鉄粉末として表 9に示すよ うな成分と平均粒度のカーボニル鉄粉を使用した。
Fe-Si化合物粉末とカーポニル鉄粉を表 10に示すような割合で配合した後、 Vコーンで混合した。 各混合粉末に表 11に示すような添加量で PVA (ポリビニ ルアルコール)バインダー、 水、 可塑剤を添加し、 スラリー状となし、 該スラ リ一を完全密閉型スプレードライヤー装置により窒素ガスで熱風入口温度 100°C、 出口温度 40°Cに設定して造粒を行った。
平均粒径約 ΙΟΟμιηの該造粒粉を圧縮プレス機で圧力 2ton/cm2で表 3に示すよ うな形状に圧粉成形した後、 真空中と水素中で表 12に示すような脱バイン ダー、 焼結温度で焼結を行って表 5に示す寸法の焼結体を得た。 得られた焼結 体の鉄リッチ相の含有率、 残留酸素量、 残留炭素量、 平均結晶粒径、 相対密度 を表 5に示す。 この鉄リッチ相の含有率は、 FeSi化合物の特有の最大 X線回折 強度と体心立方構造 (bcc)を有する珪素鋼の (110)回折強度比で相対評価した。 表 13に示す寸法の焼結体をまず 60ππηφの 2段ロールで、 ロール周速度
60mm/secで圧延率 50%まで冷間圧延した後、 さらに 20πιπιφの 4段口ールによ リ同一ロール周速度で 0.10mmまで冷間圧延した。 その圧延状態を表 14に示 す。 表 6中の圧延状態で、 ◎は非常に良好、 〇は良好、 △は圧延板の端面にヒ ビ発生、 Xは全面にヮレ発生を表す。
また、 圧延後、 20ιηιηφΧ ΐ0πιιηφΧ0.1ππη1;のリングを打ち抜いて表 14に示 すような焼き鈍し温度で熱処理をした後、 直流磁気特性と周波数 5kHzでの鉄 損を測定した。 その結果を表 15に示す。 磁気特性の比較例として、 Fe-6.5Siの 溶製材の磁気特性を表 15に示す。 平均 微量成分 (wt%) 素原料 Si含有量 化合物
粉末
粒度 残留 0,C 金 兀桌 No. (wt )
(pm) 0 C 元素名 添加量
1 20.1 Fe2Si(P) 6.4 0.040 0.007 ノ"、
FeSi 2 33.5 FeSi(e) 4.8 0.060 0.013
化合物 3 33.5 FeSi(e) 4.9 0.060 0.014 V 0.10 粉末 4 33.5 FeSi(e) 4.8 0.065 0.015 A1 2.60
5 33.5 FeSi(e) 4.8 0.080 0.018 Ti 5.10
6 50.1 FeSi2 P) 3.5 0.092 0.025 Al 3.85
Fe粉末 7 Fe 5.8 0.240 0.023 ハ、、
表 10
Figure imgf000029_0001
表 11 バインダー添加量
ポリマー 可塑剤 水 実施例 2 ポリビニールアルコール グリセリン 水
:0.5wt% :0.1wt% :54 t%
Figure imgf000030_0001
s/66fcv一l::£ζιε9/66 OA -
Figure imgf000031_0001
表 14
No. 原料 圧延状態 焼き鈍し温度 平均結晶粒径 No. COX3H (μηι)
1 1 ◎ 1200 1000
2 1 〇 1250 1200
3 1 X - 一
4 2 ◎ 1260 1100 実 5 3 ◎ 1220 1300
6 4 ◎ 1200 1900 験 7 5 X ― -
8 5 X - - 例 9 5 ◎ 1200 1800
10 6 ◎ 1200 1700
1 11 6 ◎ 1200 1600
12 7 ◎ 1280 2000
13 3 〇 1250 1800
14 3 X
15 8 ◎ 1220 2300
16 8 〇 1250 2500 比
較 Fe-6.5Si 溶製材 3600 例 表 15
丄 U. 磁気特性と鉄損 (η) 禾日 Ψ
No. Bs(T) iHc(Oe) (w/k ) (%)
1 1 9000 1.41 0.35 21 100
2 1 11000 1.43 0.32 18 100
3 1 一 - ~
4 2 10000 1.24 0.21 18 100
5 3 13000 1.23 0.19 16 100
6 4 16000 1.21 0.16 14 100 施 7 5
8 5 - - - - • 例 9 5 17000 1.21 0.16 14 100
10 6 16000 1.21 0.16 14 100
2 11 6 15000 1.21 0.17 15 100
12 7 17000 1.22 0.15 13 100
13 3 16000 1.21 0.15 14 100
14 3
15 8 10000 1.00 0.19 20 100
16 8 11000 1.00 0.18 22 100 比 100 較 Fe-6.5Si 16000 1.22 0.14 14 100 例 100 実施例 3
La焼結珪素鋼の原料粉末として、 表 16に示す成分および平均粒度を有する Fe-Si-La化合物粉末を用いた。 この Fe-Si-La化合物粉末は、 まず、 表 1に示す Fe-Si化合物と Laとを高周波溶解によって溶融し、 合金インゴットを作製した 後、 そのインゴットを組粉砕し、 次いでジェットミル粉砕をすることによって 作製した。 Fe粉末としては、 表 16に示す成分および平均粒度を有するカーボ ニル鉄粉末を用いた。 なお、 表 16の化合物の欄に示す β、 ε、 および ζβは FeSi 化合物の結晶相の種類を示している。
次に、 Fe-Si-La化合物粉末と Fe粉未とを表 17に示す割合で配合した後、 Vコーンで混合した。 なお、 表 17の原料 No.8および 9は、 Laを含有せず、 比較 例に用いられる。
得られた各混合粉末に対して表 11に示す添加量で PVA (ポリビニルアルコ一 ル)バインダー、 水および可塑剤を添加し、 スラリーを形成した。 このスラ リ一を完全密封型スプレ一ドライャ一装置を用 、て熱風入口温度 lOOt;、 出口 温度 75°Cの設定条件のもと窒素ガスによって造粒を行った。 造粒粉の平均粒径 は約 80μιηであった。
次に、 前記造粒粉を圧縮プレス機を用いて圧力 2ton/cm2で圧粉成形した。 成 形体の寸法を表 18に示す。 その後、 真空中および水素中において表 18に示す 脱バインダー条件、 および焼結温度条件で焼結を行い、 表 19に示す寸法の焼結 体を得た。 焼結体の残留酸素量、 残留炭素量、 平均結晶粒径および相対密度を 表 19に示す。 表 20には、 圧延状態の評価結果、 焼き鈍し温度、 圧延珪素鋼板 の平均結晶粒径、 直流磁気特性、 直流電気抵抗率 p、 および測定密度を示す。 圧延状態の欄の記号は実施例 1と同様である。
表 20には、 Si含有量 3.0wt%の珪素鋼の溶製材、 および Si含有量 6.5wt%の珪 素鋼の溶製材についての特性評価結果を比較例として記載している。 表 16
Figure imgf000035_0001
注)化合物欄の( )内の β、 ε、 ζβは、 Fe-Si化合物の結晶相を表す。
表 17
原料 組成 ( wt ) La含有量 Fe-Si-La化合物粉末を鉄粉粉の配合重量
No. Fe Si (wt%) 泰^ ^No Fp-Si-Laiwt%) Fe(wt%)
1 Q Ό q n u.1 1 14.9 85.1
2 93.5 6.5 0.05 2 19.4 80.6 施 3 93.5 6.5 0.50 3 19.4 80.6 例 4 93.5 6.5 1.0 4 19.4 80.6
3 5 93.5 6.5 2.0 5 19.4 80.6
6 93.5 6.5 2.4 6 19.4 80.6
7 90 10 0.77 7 20.0 80.0 比 8 97 3 0.0 8 14.9 85.1 較
例 9 93.5 6.5 0.0 9 19.4 80.6
Figure imgf000037_0001
»18 σ¾ o 05 00 IO IO LTD
Figure imgf000038_0001
表 20 焼結体の冷間圧延状態と焼き鈍し後の磁気特性
Figure imgf000039_0001
注)焼き鈍し温度は、 最適熱処理温度である 実施例 4
焼結珪素鋼板の原料粉末として、 表 21に示すような成分の Fe-Si化合物と Fe- Si-Al化合物になるように高周波溶解してィンゴットを作製した後、 粗粉砕、 ジェットミル粉砕して表 21に示すような平均粒度の粉末を作製した。
また、 鉄粉末として表 21に示すような成分と平均粒度のカーボニル鉄粉を使 用した。 Fe-Siィ匕合物あるいは Fe-Si-Al化合物と力一ボニル鉄粉を表 22に示す ような割合で配合した後、 Vコーンで混合した。
さらに所望組成の粉末としては、 表 23に示すような成分と平均粒度のガスァ トマイズ粉末を使用した。 各原料粉末に表 24に示すような添加量で PVA (ポリ ビニールアルコール)バインダー、 水、 可塑剤を添加し、 スラリー状となし、 該スラリーを完全密閉型スプレードライヤー装置により窒素ガスで熱風入口温 度 100°C、 出口温度 40°Cに設定して造粒を行った。
平均粒径約 80μπιの該造粒粉を圧縮プレス機で圧力 2ton/cm2で表 25に示すよ うな形状に圧粉成形した後、 真空中で表 25に示すような脱バインダー、 焼結温 度で焼結を行って表 26に示す寸法の焼結体を得た。 得られた焼結体の平行度、 残留酸素量、 残留炭素量、 平均結晶粒径、 相対密度を表 27に示す。
表 28に示す寸法の焼結体をまず外径 60mmの 2段ロールで、 ロール周速度 60mm/secで圧延率 50%まで冷間圧延した後、 さらに外径 20φの 4段ロールによ り同一ロール周速度で表 8に示す厚みまで冷間圧延した。 その圧延状態を表 29 に示す。
また圧延後、 20φΧ 10φのリングを打ち抜いた後、 鋼板の両面に A1を表 30に 示す厚みで真空蒸着し、 表 30に示すような焼き鈍し温度で熱処理をして直流磁 気特性を測定した。 その結果を表 30に示す。 表 29中の圧延状態は実施例 1と同 等である。 実施例 5
表 3に示すような成分の溶融珪素鋼を高周波溶解した後、 水冷した厚み 5mm の薄板状の錡型に流し込み、 急冷して 50X50X5mmの鋼板と水冷せずに徐冷 した鋼板を作製した。 得られた鋼板の残留酸素量、 残留炭素量、 平均結晶粒 径、 相対密度を表 6に示す。
冷間圧延前に、 圧延時のヮレ、 ヒビ防止のために、 50X 50mmの両面をサ一 フェイスグラインダーで表面の凹凸を除去した鋼板 (実施例 Νο.18、 19)と研磨 をしない鋼板 (実施例 No.17)を準備した。 実施例 1と同一冷間圧延条件で表 8に 示す厚みまで圧延した結果を表 8に示す。
また圧延後、 20φΧ 10φのリングを打ち抜いた後、 鋼板の両面に A1を表 9に 示す厚みで真空蒸着し、 表 9に示すような焼き鈍し温度で熱処理をして直流磁 気特性を測定した。 その結果を水冷せずに作製した溶製材の磁気特性と比較し て表 10に示す。
磁気特性の比較例として通常の Fe-6.5Siとセンダスト合金の溶製材の磁気特 性を表 10に示す。
表 21
Figure imgf000042_0001
注)ィ匕合物中の()内の β,ε,ζβは Fe-Si化合物の結晶相を表す。 表 22
原料 組成 Fe-Si-Al化合物粉末と鉄粉の配合重量
(wt%) (wt%)
No. Fe Si Al 素原料 No Fe-Si-Al(wt ) Fe(wt%)
1 91.7 8.3 0.0 1 41.3 58.7 施 2 90.0 10.0 0.0 1 29.9 70.1 例 3 88.3 11.7 0.0 2 34.9 65.1
4 4 89.4 10.0 0.6 3 29.9 70.1
5 88.2 10.0 1.8 4 29.9 70.1
6 89.8 10.0 0.2 5 20.0 80.0 表 23
Figure imgf000043_0001
表 24
バインダー添加量 ポリマー 可塑剤 水 実施例 4 ポリビニールアルコール グリセリン 水
:0.5wt% :0.1wt :54wt%
Figure imgf000044_0001
表 26
Figure imgf000045_0001
注 1)平行度は長さ 50mmに対するそり量を表す。
注 2)実施例 No.18,19はサ一フヱイス研磨後の平行度を表す。 注 3)実施例 No.19は水冷せずに徐冷した溶解鋼板を表す。
Figure imgf000046_0001
表 28
サンプル 圧延後の厚 相対密度 圧延状態
(ΟίΛ
Vi U. I U. xniii \ f )
1 1 0.1 100 ◎
2 2 0.1 100 ◎
3 2 0.9 100 〇 実 4 2 0.9 - Δ
5 3 0.1 100 ◎
6 4 0.1 100 ◎ 施 7 5 0.1 100 ◎
8 5 0.1 100 ◎
9 6 0.1 100 ◎
1 1 Λ
グ U 丄 u I Λ u.1 1 ΛΛ
丄 リ
1丄 1 Q
丄 o Ι 丄 X
12 9 0.1 100 ◎
4 13 10 0.1 100 ◎
14 10 0.9 100 〇
15 10 0.9 Δ
16 11 0.1 X
17 12 0.9 Δ 施
18 12 0.9 100
例 ◎ 5 19 12 0.9 X 表 29
サンプル 圧延後 A1蒸着 焼き鈍し条件 の厚 膜厚
r£ i
拡散温度 k成長温度 " U. U. 雰囲気
(mm) (μπι) V ^ . 1J V c V /S Χ、)
1 1 0.1 6 真空 1050 1250
2 2 0.1 6 Ar 1100 1250
3 2 0.9 10 Ar 1150 1300 実 4 2 - - -
5 3 0.1 6 Ar 1100 1250
6 4 0.1 5 真空 1050 1250 施 7 5 0.1 10 Ar 1150 1300
8 5 - -
9 6 0.1 5 真空 1100 1250 例 10 7 0.1 6 Ar 1150 1250
11 8
12 9 0.1 7 Ar 1150 1250
4 13 10 0.1 8 苜 1100 1300
14 10 0.9 5 首 1100 1250
15 10
16 11
17 12
例 18 12 0.6 10 Ar 1150 1300
5 19 12
比 20
例 21 表 30
平均結晶 Si Al成分 磁気特性 粒径
/ 、
" U. (mm) Si(wt%) Al(wt%) μι Bs(T) iHc(Oe)
1 1.5 8.0 2.1 4500 1.31 0.09
2 1.3 9.7 2.1 4 j700 1.14 0.09
3 2.1 10.0 0.4 3200 1.28 0.13
4
5 1.5 9.7 2.1 4000 1.24 0.10
6 1.8 9.8 2.4 5700 1.18 0.09 施 7 2.4 9.6 5.4 28000 1.09 0.03
8 - - - - - -
9 1.7 9.9 2.0 4700 1.20 0.08 例 10 1.7 ο.υ ん丄 ¾ouu 1 o i
丄,<3丄 Π HQ
1 1
12 1.8 11.0 2.4 5000 1.17 0.08
4 13 2.8 9.7 4.9 18000 1.10 0.04
14 1.6 9.9 2.4 5200 1.18 0.07
15
16
17
例 18 2.5 9.8 2.1 4800 1.11 0.08
5 19
比 20 6.5 3000 1.22 0.14 較
例 21 9.6 5.4 32000 1.09 0.03 実施例 6
焼結珪素鋼板の原料粉末として、 表 31に示すような成分の Fe-Si化合物と Fe- Si-Al化合物になるように高周波溶解してインゴットを作製した後、 粗粉砕、 ジェットミル粉碎して表 31に示すような平均粒度の粉末を作製した。
また、 鉄粉末として表 31に示すような成分と平均粒度のカーボニル鉄粉を使 用した。 Fe-Siィ匕合物あるいは Fe-Si-Al化合物と力一ボニル鉄粉を表 32に示す ような割合で配合した後、 Vコーンで混合した。
さらに所望組成の粉末としては、 表 24に示すような成分と平均粒度のガスァ トマイズ粉末を使用した。 各原料粉末に表 33に示すような添加量で PVA (ポリ ビニールアルコール)バインダー、 水、 可塑剤を添加し、 スラリー状となし、 該スラリーを完全密閉型スプレードライヤー装置により窒素ガスで熱風入口温 度 100°C、 出口温度 40°Cに設定して造粒を行った。
平均粒径約 80μπιの該造粒粉を圧縮プレス機で圧力 2tonA:m2で表 34に示すよ うな形状に圧粉成形した後、 真空中で表 34に示すような脱バインダー、 焼結温 度で焼結を行って表 36に示す寸法の焼結体を得た。 得られた焼結体の平行度、 鉄リッチ相の含有率、 残留酸素量、 残留炭素量、 平均結晶粒径、 相対密度を表 36に示す。 この鉄リッチ相の含有率は、 FeSi化合物の特有の最大 X線回折強度 と体心立方構造 (bcc)を有する珪素鋼の (110)回折強度比で相対評価した。
表 37に示す寸法の焼結体をまず外径 60mmの 2段口一ルで、 口一ル周速度 60mm/secで圧延率 50%まで冷間圧延した後、 さらに外径 20φの 4段ロールによ り同一ロール周速度で表 37に示す厚みまで冷間圧延した。 その圧延状態を表 38に示す。
また圧延後、 20φΧ10φのリングを打ち抜いた後、 鋼板の両面に Α 表 39に 示す厚みで真空蒸着し、 表 39に示すような焼き鈍し温度で熱処理をして直流磁 気特性を測定した結果を表 39に示す。 表 39中の圧延状態は実施例 1と同等であ る。 磁気特性の比較例として通常の Fe-6.5Siとセンダスト合金の溶製材の磁気 特性を表 39に示す。
表 31
Figure imgf000051_0001
注)化合物中の()内の β,ε,ζβは Fe-Si化合物の結晶相を表す。
表 32
Figure imgf000052_0001
表 33
原料 Si含有量 Al含有量 平均粉末粒度 残留 o,c量
(wt%)
No. (wt ) (wt%) (μπι) 0 C 粉末原料 7 8.3 0.0 25 0.067 0.027
8 10.0 0.0 30 0.089 0.027
9 11.7 0.0 28 0.103 0.030
10 10.0 2.0 30 0.120 0.033
11 10.0 3.0 30 0.150 0.045 溶解原料 12 10.0 1.0 0.004 0.001 表 34
サンプル 成形体寸法 脱バインダ一条件 焼結条件
N 温度 時間 温度 時間
No. i 囲 芬
0. mm) 芬
(°C) (H) CC) (H)
1 1 60X60X1.2 真空 500 2 真空 1150 3
2 2 60X60X1.2 真空 500 2 真空 1150 3
3 2 60X60X5.8 真空 500 2 首
具 id 1150 3 実 4 2 60X60X11.8 首
具≤c 500 2 真空 1100 3
5 3 60X60X1.2 真空 500 2 首
具 in 1100 3
6 4 60X60X1.2 真空 500 2 真空 1100 3 施 7 5 60X60X1.2 真空 500 2 真空 1100 3
8 5 60X60X1.2 真空 500 2 水素 1200 3
9 6 60X60X1.2 真空 500 2 水素 1100 3 例 10 7 60X60X1.2 真空 500 2 真空 1150 3
11 8 60X60X1.2 真空 500 2 水素 1150 3
12 9 60X60X1.2 真空 500 2 具 1150 3
6 13 10 60X60X1.2 真空 500 2 真空 1150 3
14 10 60X60X5.8 真空 500 2 真空 1150 3
15 10 60X60X11.8 真空 500 2 真空 1150 3
16 11 60X60X1.2 首 500 2 真空 1150 3 表 35
Figure imgf000054_0001
1)平行度は長さ 50mmに対するそり量を表す。 表 36
残留酸素 ·炭素量 (wt%) 平均結晶粒径 X線回析 相対密度
0 C ν^ ·1" 強度比 ( V%)
1 0.1500 0.007 51 0.010 93
2 0.1600 0.006 58 0.010 93
3 0.1700 0.007 46 0.010 93 実 4 0.1600 0.008 41 0.012 90
5 0.1600 0.008 62 0.014 90
6 0.1700 0.009 60 0.012 91 施 7 0.1800 0.009 65 0.010 91
8 0.0850 0.001 350 0.001 94
9 0.0810 0.001 63 0.012 90 例 10 0.1800 0.012 70 0.008 92
11 0.0750 0.001 68 0.007 93
6 12 0.1900 0.007 71 0.008 92
13 0.3000 0.007 74 0.006 93
14 0.1800 0.007 62 0.008 92
15 0.1900 0.007 64 0.007 92
16 0.1800 0.006 85 0.007 93 表 37
サンプル 圧延後の厚 相対密度 圧延状態
JNo. JNo. (.mm)
1 1 0.1 100 ◎
2 2 0.1 100 ◎
3 2 0.9 100 〇
4 2 0.9 - Δ
5 3 0.1 100 @
6 4 0.1 100 ◎ 施 7 5 0.1 100 ◎
8 5 0.1 100 ◎
9 6 0.1 100 ◎ 例 10 7 0.1 100 〇
11 8 0.1 X
12 9 0.1 100 ◎
6 13 10 0.1 100 ◎
14 10 0.9 100 〇
15 10 0.9 Δ
16 11 0.1 X 表 38
サンプル 圧延後 Al蒸着 焼き鈍し条件 の厚 膜厚
拡散温度 粒成長温度
No. No. 雰囲気
(mm) (μπα) CC X3H) CC X3H)
1
丄 1 U.丄 D 真空 1050 1250
Δ Δ U. c
上 Ό Ar 1100 1250 o q Δ Λ u. Qy 1 Λ Ar 1150 1300 実 4 Δ
c Q
O Λ
b Ar 1100 1250
6 4 0.1 5 真空 1050 1250 施 7 5 0.1 10 Ar 1150 1300
8 5 0.1 10 真空 1150 1300
9 6 0.1 5 具首 in 1100 1250 例 10 7 0.1 6 Ar 1150 1250
11 8
12 9 0.1 7 Ar 1150 1250
6 13 10 0.1 8 言 1100 1300
14 10 0.9 5 真空 1100 1250
15 10
16 11
表 39
平均結晶 Si,Al成分 磁気特性 粒径 丄 N O. (mm) Si(wt%) Al(wt%) μι Bs(T) iHc(Oe)
1 1.6 八 八
8.0 2.1 4500 1.31 0.09
2 1.4 八
9.7 2.0 4500 1.14 0.10
3 2.4 10.0 0.4 3200 1.28 0.13
4
5 1.6 11.0 2.1 2800 1.18 0.15
6 1.7 9.8 2.4 5800 1.18 0.09 施 7 2.6 9.6 5.4 28000 1.09 0.03
8 -
9 1.5 9.9 2.0 4700 1.20 0.08 例 10 1.5 8.0 2.1 4500 1.31 0.09
11
12 2.0 11.0 2.4 5000 1.17 0.08
6 13 3.1 9.7 5.0 17000 1.10 0.03
14 1.7 9.9 2.4 5200 1.18 0.07
15
16
比 20 6.5 3000 1.22 0.14 較
例 21 9.6 5.4 32000 1.09 0.03
産業上の利用可能性
従来、 Fe中に Siを 3wt%以上含有する珪素鋼は、 一般に平均結晶粒径が数 mmと大きいために、 冷間圧延は不可能とされてきた。 しかし、 この発明によ る製造方法は、 出発原料として粉末を用いて粉末冶金的に作製し、 板状の焼結 体あるいは急冷鋼板の平均結晶粒径を 300μιη以下にすることにより、 結晶粒界 のすベリ変形の後、 粒内すベリ変形が起こるために、 冷間圧延が可能になり、 また、 純 Fe粉末と Fe-Si粉末を所定の割合で配合した混合粉を粉末冶金的手法 で作製し、 焼結体中に Feリッチ相を残存させることにより、 該結晶粒の塑性変 形を利用して冷間圧延が可能になり、 さらに予め Ti,V,Al等の非磁性金属元素 を僅かに添加すると、 焼き鈍し時に結晶粒の粒成長を促進させることができ、 薄い鋼板の磁気特性は従来の溶製材とほぼ同等になリ、 磁気特性の優れた珪素 鋼板が作製できることが明らかになった。
この発明による圧延珪素鋼板は、 平均結晶粒径を微細化し、 あるいは鉄粉と Fe-Si化合物粉末を所定の割合で混合して、 焼結時に Feリツチ相を残存させ、 圧延前の板厚を薄くし、 且つ平行度を上げることにより、 冷間圧延と打抜き加 ェが可能となり、 しかも方向性をもつので、 焼き鈍し後、 通常の溶製材と同等 の優れた磁気特性を有する特徴がある。 従って、 今後、 卜ランスやヨーク材 等、 広範囲にわたってその用途を拡大することができる。
また、 この発明は、 珪素鋼に Laを添加して結晶粒界に Laの酸化物を析出さ せることにより、 添加しないものに比較して数倍から 10倍近くのレベルの高い 電気抵抗率を発現させることができ、 特に、 高周波トランスの磁芯など、 周波 数の高い交番磁界に対しても渦電流損失の低いことが必要な部材の材料として 特に好ましい特性を提供できる。
さらにこの発明は、 冷間圧延を可能にしたこの発明の圧延珪素鋼板を利用 し、 圧延後該薄板の両面に A1を蒸着した後、 熱処理によって A1を該薄板の内 部まで拡散浸透させると同時に結晶粒径を粗大化させることにより、 溶製材と 同等の優れた磁気特性を有するセンダスト薄板が得られ、 極めて薄いセンダス ト板が容易に量産できるもので、 このセンダスト薄板はトランスゃョ一ク材 等、 広範囲にわたってその用途は飛躍的に拡大するものと予想される。

Claims

請求の範囲
1. 平均結晶粒径が 300μπι以下の Fe-Si合金鋼の焼結体を得る工程、 前記 焼結体素材を冷間圧延する工程、 前記冷間圧延材を焼き鈍しする工程を含 む Fe-Si合金鋼の製造方法。
2. 平均結晶粒径が 300μπι以下の Fe-Si合金鋼の溶解塊を得る工程、 前記 溶解塊素材を冷間圧延する工程、 前記冷間圧延材を焼き鈍しする工程を含 む Fe-Si合金鋼の製造方法。
3. 平均結晶粒径が 300μπι以下の La含有の Fe-Si合金鋼の溶解塊を得る 工程、 溶解塊を熱間で繰リ返し圧延または鍛造して Laの酸化物を結晶粒界 に析出させる工程、 前記溶解塊素材を冷間圧延する工程、 前記冷間圧延材 を焼き鈍しする工程を含む Fe-Si合金鋼の製造方法。
4. Feリツチな相と Siリツチな Fe-Si固溶体相を有する焼結体を得るェ 程、 前記焼結体素材を冷間圧延する工程、 前記冷間圧延材を焼き鈍しする 工程を含む Fe-Si合金鋼の製造方法。
5. 焼結体または溶解塊における Siの含有量が 3~10wt%である請求項
1〜請求項 4のいずれかに記載の Fe-Si合金鋼の製造方法。
6. 焼結体または溶解塊に Laを 0.05wt%~2.0wt%含有する請求項 1〜請 求項 5のいずれかに記載の Fe-Si合金鋼の製造方法。
7. 焼結体または溶解塊に Ti,Al,Vを単独もしくは複合で 0.01〜: L.0wt%含 有する請求項 1〜請求項 6のいずれかに記載の Fe-Si合金鋼の製造方法。
8. 焼結体の厚みが 5mm以下である請求項 1または請求項 4に記載の Fe- Si合金鋼の製造方法。
9. 粉末射出成形、 圧粉成形、 スリップキャスト法のいずれかにより成 形して焼結する粉末冶金法、 またはホットプレスまたはプラズマ焼結の熱 間成形法にて作製された焼結体である請求項 8に記載の Fe-Si合金鋼の製造 方法。
10. 溶解塊の厚みが 5mm以下である請求項 2または請求項 3に記載の Fe- Si合金鋼の製造方法。
11. 铸込み厚みが 5mm以下の水冷錡型に溶解 Fe-Si合金鋼を流し込み、 錡造した溶解塊である請求項 10に記載の Fe-Si合金鋼の製造方法。
12. 平均結晶粒径が 300μπι以下の Fe-Si合金鋼の焼結体を得る工程、 前記 焼結体素材を冷間圧延する工程、 冷間圧延材に A1を含浸させる工程、 前記 A1含浸材を焼き鈍しする工程を含む Fe-Si-Al合金鋼の製造方法。
13. 平均結晶粒径が 300μπι以下の Fe-Si合金鋼の溶解塊を得る工程、 前記 溶解塊素材を冷間圧延する工程、 冷間圧延材に A1を含浸させる工程、 前記 A1含浸材を焼き鈍しする工程を含む Fe-Si-Al合金鋼の製造方法。
14. Feリツチな相と Siリツチな Fe-S個溶体相を有する焼結体を得るェ 程、 前記焼結体素材を冷間圧延する工程、 冷間圧延材に A1を含浸させるェ 程、 前記 A1含浸材を焼き鈍しする工程を含む Fe-Si-Al合金鋼の製造方法。
15. 冷間圧延材の両面に A1を被着または成膜した後、 熱処理により A1を 含浸させる請求項 12〜請求項 14のいずれかに記載の Fe-Si-Al合金鋼の製造 方法。
16. 焼結体または溶解塊における Siの含有量が 8.3~11.7wt%である請求 項 12〜請求項 15のいずれかに記載の Fe-Si-Al合金鋼の製造方法。
17. 焼結体または溶解塊に Ti,Vを単独もしくは複合で 0.01~1.0wt%含有 する請求項 12〜請求項 16のいずれかに記載の Fe-Si-Al合金鋼の製造方法。
18. 焼結体の厚みが 5mni以下である請求項 12または請求項 14に記載の Fe-Si-Al合金鋼の製造方法。
19. 溶解塊の厚みが 5mm以下である請求項 13に記載の Fe-Si-Al合金鋼の 製造方法。
20. Siを 3~10wt%含有し、 平均結晶粒径が 300μπι以下の焼結体あるいは 溶解塊からなリ、 厚みカ 1111 1以下である冷間圧延用の Fe-Si合金鋼。
21. Siを 3〜10wt%含有し、 Feリッチな相と Siリッチな Fe-Si固溶体相を 有する焼結体で、 厚みが 5mm以下である冷間圧延用の Fe-Si合金鋼。
22. Laを 0.05wt%~2.0wt%含有する請求項 20または請求項 21に記載の Fe-Si合金鋼。
23. 微量成分として Ti,Al,Vを単独もしくは複合で 0.01~1.0wt%含有する 請求項 20〜請求項 22のいずれかに記載の Fe-Si合金鋼。
24. Laの酸化物を含有する Fe-Si合金鋼。
25. Laの酸化物が結晶粒界に析出している請求項 24に記載の Fe-Si合金 鋼。
26. Laを 0.05wt%~2.0wt%含有する請求項 24または請求項 25に記載の Fe-Si合金鋼。
27. Siの含有量力 〜10wt%である請求項 24〜請求項 26のいずれかに記載 の Fe-Si合金鋼。
PCT/JP1999/002860 1998-05-29 1999-05-28 Procede de production d'un acier a haute teneur en silicium, et acier au silicium WO1999063120A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99922573A EP1026267A4 (en) 1998-05-29 1999-05-28 METHOD FOR PRODUCING HIGH SILICON STEEL AND CORRESPONDING STEEL
US09/463,778 US6444049B1 (en) 1998-05-29 1999-05-28 Method for producing high silicon steel, and silicon steel
KR1020007001009A KR100360533B1 (ko) 1998-05-29 1999-05-28 고실리콘 함유강의 제조 방법과 규소강

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP10165981A JPH11343518A (ja) 1998-05-29 1998-05-29 圧延珪素鋼板の製造方法とその素材
JP10/165982 1998-05-29
JP10/165981 1998-05-29
JP16598298 1998-05-29
JP19654598A JP2000017336A (ja) 1998-06-26 1998-06-26 センダスト薄板の製造方法
JP10/196545 1998-06-26
JP10/319525 1998-11-10
JP10319525A JP2000144345A (ja) 1998-11-10 1998-11-10 珪素鋼およびその製造方法、圧延珪素鋼板の製造方法、ならびに該珪素鋼を備えた電気機器

Publications (1)

Publication Number Publication Date
WO1999063120A1 true WO1999063120A1 (fr) 1999-12-09

Family

ID=27474038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002860 WO1999063120A1 (fr) 1998-05-29 1999-05-28 Procede de production d'un acier a haute teneur en silicium, et acier au silicium

Country Status (5)

Country Link
US (1) US6444049B1 (ja)
EP (1) EP1026267A4 (ja)
KR (1) KR100360533B1 (ja)
CN (1) CN1099468C (ja)
WO (1) WO1999063120A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2141335A1 (en) 2008-07-01 2010-01-06 United Technologies Corporation An inlet air heating system for a gas turbine engine
CN109530675A (zh) * 2018-10-25 2019-03-29 唐竹胜 一种将直接还原铁粉经过短流程热挤压/轧制形成型材的方法

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1252304C (zh) * 2003-11-27 2006-04-19 林栋樑 高硅钢及其制备方法
JP2008546905A (ja) 2005-06-28 2008-12-25 康郎 坂倉 酸素活性化材料、燃焼効率向上材料、植物発育助長材料、好気性微生物活性化材料、動物発育助長・活性化材料、筋肉柔軟化材料及び錆除去・防錆材料並びに酸素活性化方法
US20070003888A1 (en) * 2005-06-29 2007-01-04 Yasuo Sakakura Oxygen activating material, combustion efficiency improving material, oxygen activating method, combustion efficiency improving method
US8101012B2 (en) * 2009-09-11 2012-01-24 Silverbrook Research Pty Ltd Solvent-based ink composition for thermal inkjets comprising pyrrolidinone solvent
CN103252626B (zh) * 2013-05-24 2016-04-20 北京科技大学 一种短流程高成材率制备高硅电工钢带材的方法
CN104183351A (zh) * 2014-08-04 2014-12-03 太仓市武锋金属制品有限公司 一种高性能变压器铁芯片材
CN104493029A (zh) * 2014-11-06 2015-04-08 安徽瑞研新材料技术研究院有限公司 一种Fe-Si-B磁性材料的锻造加工工艺
CN106480365B (zh) * 2015-08-24 2017-12-05 鞍钢股份有限公司 一种高硅高铝无方向性电工钢的制造方法
CN107282928B (zh) * 2017-07-17 2023-05-09 贵州理工学院 磁场下粉末扩散法制备高硅硅钢薄带的方法及装置
CN107999760A (zh) * 2017-12-18 2018-05-08 中南大学 一种扩散烧结与粉末热锻制备Fe-6.5%Si带材的方法
CN108044105A (zh) * 2017-12-18 2018-05-18 中南大学 一种高温扩散烧结与粉末热压烧结制备高硅钢带材的方法
CN107900345A (zh) * 2017-12-18 2018-04-13 中南大学 一种高硅钢薄带材的粉末热等静压制造方法
CN108044099A (zh) * 2017-12-18 2018-05-18 中南大学 一种高温扩散烧结与粉末热锻制备高硅钢带材的方法
CN108044095A (zh) * 2017-12-18 2018-05-18 中南大学 一种扩散烧结与粉末轧制制备Fe-6.5%Si带材的方法
CN107999763A (zh) * 2017-12-18 2018-05-08 中南大学 一种粉末热锻与扩散烧结制备Fe-6.5%Si带材的方法
CN107900350A (zh) * 2017-12-18 2018-04-13 中南大学 一种粉末轧制制备高硅钢薄带材的方法
CN107999764A (zh) * 2017-12-18 2018-05-08 中南大学 一种扩散烧结与粉末温轧制备Fe-6.5%Si带材的方法
CN107900353A (zh) * 2017-12-18 2018-04-13 中南大学 一种高温扩散烧结与粉末挤压制备高硅钢带材的方法
CN107971494A (zh) * 2017-12-18 2018-05-01 中南大学 一种粉末热压烧结制备Fe-6.5%Si软磁材料薄带材的方法
CN108044101A (zh) * 2017-12-18 2018-05-18 中南大学 一种粉末轧制与扩散烧结制备Fe-6.5%Si带材的方法
CN107914017A (zh) * 2017-12-18 2018-04-17 中南大学 一种Fe‑6.5%Si软磁材料薄带材的粉末温轧制备方法
CN108080641A (zh) * 2017-12-18 2018-05-29 中南大学 一种Fe-6.5%Si软磁材料薄带材的粉末轧制制备方法
CN108080640A (zh) * 2017-12-18 2018-05-29 中南大学 一种热等静压与高温烧结制备Fe-6.5%Si薄带材的方法
CN108044096A (zh) * 2017-12-18 2018-05-18 中南大学 一种高温扩散烧结与流延成型制备Fe-6.5%Si带材的方法
CN108057884A (zh) * 2017-12-18 2018-05-22 中南大学 一种高温扩散烧结与粉末轧制制备高硅钢带材的方法
CN107999765A (zh) * 2017-12-18 2018-05-08 中南大学 一种粉末温轧制备Fe-6.5%Si软磁材料薄带材的方法
CN108044097A (zh) * 2017-12-18 2018-05-18 中南大学 一种粉末挤压制备单相Fe-6.5%Si硅钢的方法
CN107900347A (zh) * 2017-12-18 2018-04-13 中南大学 一种粉末热锻与高温扩散烧结制备高硅钢带材的方法
CN108097969A (zh) * 2017-12-18 2018-06-01 中南大学 一种粉末流延成型制备高硅钢薄带材的方法
CN108044108A (zh) * 2017-12-18 2018-05-18 中南大学 一种粉末热压烧结与高温扩散烧结制备高硅钢带材的方法
CN107855532A (zh) * 2017-12-18 2018-03-30 中南大学 一种粉末热压烧结制备高硅钢薄带材的方法
CN108097959A (zh) * 2017-12-18 2018-06-01 中南大学 一种高温扩散烧结与热压烧结制备Fe-6.5%Si带材的方法
CN108044103A (zh) * 2017-12-18 2018-05-18 中南大学 一种粉末温轧与高温扩散烧结制备高硅钢带材的方法
CN107931612A (zh) * 2017-12-18 2018-04-20 中南大学 一种高温烧结与热等静压制备Fe‑6.5%Si薄带材的方法
CN107983962A (zh) * 2017-12-18 2018-05-04 中南大学 一种粉末轧制制备单相Fe-6.5%Si硅钢的方法
CN108044106A (zh) * 2017-12-18 2018-05-18 中南大学 一种粉末热等静压与高温扩散烧结制备高硅钢带材的方法
CN107900357A (zh) * 2017-12-18 2018-04-13 中南大学 一种高温扩散烧结与粉末流延成型制备高硅钢带材的方法
CN107952964A (zh) * 2017-12-18 2018-04-24 中南大学 一种粉末挤压制备Fe-6.5%Si软磁材料薄带材的方法
CN108097966A (zh) * 2017-12-18 2018-06-01 中南大学 一种高温扩散烧结与粉末温轧制备高硅钢带材的方法
CN107829036B (zh) * 2017-12-18 2020-07-10 中南大学 一种高硅钢薄带材的粉末热压烧结制造方法
CN108080624A (zh) * 2017-12-18 2018-05-29 中南大学 一种Fe-6.5%Si软磁材料薄带材的粉末流延成型制备方法
CN107900349A (zh) * 2017-12-18 2018-04-13 中南大学 一种粉末热锻制备Fe‑6.5%Si软磁材料薄带材的方法
CN108097968A (zh) * 2017-12-18 2018-06-01 中南大学 一种粉末流延成型制备单相Fe-6.5%Si硅钢的方法
CN107900355A (zh) * 2017-12-18 2018-04-13 中南大学 一种粉末温轧制备高硅钢薄带材的方法
CN107999762A (zh) * 2017-12-18 2018-05-08 中南大学 一种Fe-6.5%Si软磁材料薄带材的粉末热锻制备方法
CN107971495B (zh) * 2017-12-18 2020-06-02 中南大学 一种粉末热等静压制备Fe-6.5%Si软磁材料薄带材的方法
CN108044104A (zh) * 2017-12-18 2018-05-18 中南大学 一种流延成型与高温扩散烧结制备Fe-6.5%Si带材的方法
CN108015287A (zh) * 2017-12-18 2018-05-11 中南大学 一种热压烧结与高温扩散烧结制备Fe-6.5%Si带材的方法
CN107900356A (zh) * 2017-12-18 2018-04-13 中南大学 一种粉末流延成型与高温扩散烧结制备高硅钢带材的方法
CN108097967B (zh) * 2017-12-18 2020-06-02 中南大学 一种扩散烧结与粉末挤压制备Fe-6.5%Si带材的方法
CN108044107A (zh) * 2017-12-18 2018-05-18 中南大学 一种Fe-6.5%Si软磁材料薄带材的粉末热等静压制备方法
CN107999768A (zh) * 2017-12-18 2018-05-08 中南大学 一种粉末挤压与高温扩散烧结制备高硅钢带材的方法
CN108097963A (zh) * 2017-12-18 2018-06-01 中南大学 一种粉末轧制与高温扩散烧结制备高硅钢带材的方法
CN107999761A (zh) * 2017-12-18 2018-05-08 中南大学 一种高硅钢薄带材的粉末热锻制造方法
CN107999766A (zh) * 2017-12-18 2018-05-08 中南大学 一种粉末温轧与扩散烧结制备Fe-6.5%Si带材的方法
CN108044102A (zh) * 2017-12-18 2018-05-18 中南大学 一种粉末温轧制备单相Fe-6.5%Si硅钢的方法
CN107999757A (zh) * 2017-12-18 2018-05-08 中南大学 一种粉末热压烧结制备单相Fe-6.5%Si硅钢的方法
CN108103390A (zh) * 2017-12-18 2018-06-01 中南大学 一种粉末热等静压制备单相Fe-6.5%Si硅钢的方法
CN108044100B (zh) * 2017-12-18 2020-06-02 中南大学 一种粉末轧制制备Fe-6.5%Si软磁材料薄带材的方法
CN107900354A (zh) * 2017-12-18 2018-04-13 中南大学 一种粉末挤压制备高硅钢薄带材的方法
CN107999758A (zh) * 2017-12-18 2018-05-08 中南大学 一种Fe-6.5%Si软磁材料薄带材的粉末热压烧结制备方法
CN108070777A (zh) * 2017-12-18 2018-05-25 中南大学 一种粉末流延成型制备Fe-6.5%Si软磁材料薄带材的方法
CN107900351A (zh) * 2017-12-18 2018-04-13 中南大学 一种高硅钢薄带材的粉末轧制制造方法
CN108044094A (zh) * 2017-12-18 2018-05-18 中南大学 一种Fe-6.5%Si软磁材料薄带材的粉末挤压制备方法
CN107999767A (zh) * 2017-12-18 2018-05-08 中南大学 一种粉末挤压与扩散烧结制备Fe-6.5%Si带材的方法
CN108097964B (zh) * 2017-12-18 2020-06-02 中南大学 一种高硅钢薄带材的粉末温轧制造方法
CN107900348A (zh) * 2017-12-18 2018-04-13 中南大学 一种粉末热锻制备单相Fe‑6.5%Si硅钢的方法
CN108097965A (zh) * 2017-12-18 2018-06-01 中南大学 一种高硅钢薄带材的粉末挤压制造方法
CN108044098A (zh) * 2017-12-18 2018-05-18 中南大学 一种粉末热锻制备高硅钢薄带材的方法
CN107900346A (zh) * 2017-12-18 2018-04-13 中南大学 一种粉末热等静压制备高硅钢薄带材的方法
CN108097961A (zh) * 2017-12-18 2018-06-01 中南大学 一种高温扩散烧结与粉末热等静压制备高硅钢带材的方法
CN108080623A (zh) * 2017-12-18 2018-05-29 中南大学 一种高硅钢薄带材的粉末流延成型制造方法
CN108172358B (zh) * 2017-12-19 2019-06-04 浙江大学 一种低功耗金属软磁复合材料及其制备方法
CN110629117B (zh) * 2019-10-28 2020-08-04 北航(四川)西部国际创新港科技有限公司 一种磁力兼容的Fe-6.5Si-xRE合金及其制备方法
CN114262840B (zh) * 2020-09-16 2022-09-20 宝山钢铁股份有限公司 一种抗氨腐蚀压力容器用钢板及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153827A (en) * 1976-06-17 1977-12-21 Allegheny Ludlum Ind Inc Production of magnetic silicon steel
JPS5375497A (en) * 1976-12-17 1978-07-04 Nippon Gakki Seizo Kk Fabrication of magnetic material
JPS5449934A (en) * 1977-09-29 1979-04-19 Pioneer Electronic Corp Sendust alloy plate and method of making same
JPS5638452A (en) * 1979-09-03 1981-04-13 Kobe Steel Ltd Corrosion resistant sendust alloy and preparation of the same
JPS60204833A (ja) * 1984-03-29 1985-10-16 Sumitomo Metal Ind Ltd 磁気特性の優れたセンダスト板材の製造方法
JPH0297606A (ja) * 1988-10-03 1990-04-10 Nisshin Steel Co Ltd 帯状金属焼結体の製造方法
JPH03229825A (ja) * 1990-02-03 1991-10-11 Nisshin Steel Co Ltd Fe―Si―Al合金軟磁性薄板の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2856795C2 (de) * 1977-12-30 1984-12-06 Noboru Prof. Sendai Tsuya Verwendung einer Stahlschmelze für ein Verfahren zum Stranggießen eines dünnen Bandes
JPS5565349A (en) * 1978-11-06 1980-05-16 Hiroshi Kimura Magnetic alloy
JPS6179724A (ja) * 1984-09-28 1986-04-23 Nippon Kokan Kk <Nkk> 高珪素鉄合金の薄板製造方法
JPH0325212A (ja) * 1989-06-22 1991-02-04 Omron Corp ガス爆発防止装置
TW198734B (ja) * 1990-12-10 1993-01-21 Kawasaki Steel Co
JP3350285B2 (ja) * 1995-04-24 2002-11-25 新日本製鐵株式会社 表面性状と磁気特性の優れた無方向性電磁鋼板の製造方法
JPH09125212A (ja) * 1995-10-31 1997-05-13 Nkk Corp 加工性に優れた高珪素鋼及びその製造方法
JP3229825B2 (ja) 1996-11-13 2001-11-19 シャープ株式会社 チョッパレギュレータの制御装置、および、それを用いたチョッパレギュレータ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153827A (en) * 1976-06-17 1977-12-21 Allegheny Ludlum Ind Inc Production of magnetic silicon steel
JPS5375497A (en) * 1976-12-17 1978-07-04 Nippon Gakki Seizo Kk Fabrication of magnetic material
JPS5449934A (en) * 1977-09-29 1979-04-19 Pioneer Electronic Corp Sendust alloy plate and method of making same
JPS5638452A (en) * 1979-09-03 1981-04-13 Kobe Steel Ltd Corrosion resistant sendust alloy and preparation of the same
JPS60204833A (ja) * 1984-03-29 1985-10-16 Sumitomo Metal Ind Ltd 磁気特性の優れたセンダスト板材の製造方法
JPH0297606A (ja) * 1988-10-03 1990-04-10 Nisshin Steel Co Ltd 帯状金属焼結体の製造方法
JPH03229825A (ja) * 1990-02-03 1991-10-11 Nisshin Steel Co Ltd Fe―Si―Al合金軟磁性薄板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1026267A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2141335A1 (en) 2008-07-01 2010-01-06 United Technologies Corporation An inlet air heating system for a gas turbine engine
CN109530675A (zh) * 2018-10-25 2019-03-29 唐竹胜 一种将直接还原铁粉经过短流程热挤压/轧制形成型材的方法

Also Published As

Publication number Publication date
KR100360533B1 (ko) 2002-11-13
EP1026267A4 (en) 2004-12-15
EP1026267A1 (en) 2000-08-09
US6444049B1 (en) 2002-09-03
CN1099468C (zh) 2003-01-22
KR20010022427A (ko) 2001-03-15
CN1273611A (zh) 2000-11-15

Similar Documents

Publication Publication Date Title
WO1999063120A1 (fr) Procede de production d&#39;un acier a haute teneur en silicium, et acier au silicium
JP5304907B2 (ja) R−Fe−B系微細結晶高密度磁石
EP2169689B1 (en) R-fe-b type rare earth sintered magnet and process for production of the same
JP5933535B2 (ja) 希土類磁石の製造方法
EP2508279B1 (en) Powder for magnet
JP4873008B2 (ja) R−Fe−B系多孔質磁石およびその製造方法
KR101548274B1 (ko) 희토류 자석의 제조방법
JP5472236B2 (ja) 希土類磁石の製造方法、及び希土類磁石
WO2006112403A1 (ja) 希土類焼結磁石とその製造方法
WO2014190558A1 (zh) 稀土永磁粉、包括其的粘结磁体及应用该粘结磁体的器件
CN111926268A (zh) 板材叠层和制造高磁导率软磁合金的方法
JP4700578B2 (ja) 高抵抗希土類系永久磁石の製造方法
WO1998035364A1 (fr) Procede de fabrication d&#39;un aimant a plaque mince possedant une structure microcristalline
CN104112555A (zh) R-t-b系烧结磁铁
JP5427664B2 (ja) 圧粉磁性体用軟磁性粉末、それを用いた圧粉磁性体および製造方法
KR100973406B1 (ko) 로테이티드 큐브 집합조직의 형성방법 및 이를 이용하여제조된 전기강판
JP2004323972A (ja) 磁束密度の高い無方向性電磁鋼板の製造方法
KR101633611B1 (ko) 자기적 성질이 우수한 고규소 강판 및 그 제조방법
JPH1070023A (ja) 永久磁石とその製造方法
KR20090079056A (ko) 무방향성 전기강판의 제조 방법 및 이를 이용하여 제조된무방향성 전기강판
JP2000144345A (ja) 珪素鋼およびその製造方法、圧延珪素鋼板の製造方法、ならびに該珪素鋼を備えた電気機器
JP2000045025A (ja) 圧延珪素鋼の製造方法
JP2002275505A (ja) 軟磁性成形体の製造方法及び軟磁性成形体
JPH02138706A (ja) 異方性永久磁石
JP2000017336A (ja) センダスト薄板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99801041.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1020007001009

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999922573

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09463778

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999922573

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007001009

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007001009

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999922573

Country of ref document: EP