CN107900353A - 一种高温扩散烧结与粉末挤压制备高硅钢带材的方法 - Google Patents

一种高温扩散烧结与粉末挤压制备高硅钢带材的方法 Download PDF

Info

Publication number
CN107900353A
CN107900353A CN201711367252.8A CN201711367252A CN107900353A CN 107900353 A CN107900353 A CN 107900353A CN 201711367252 A CN201711367252 A CN 201711367252A CN 107900353 A CN107900353 A CN 107900353A
Authority
CN
China
Prior art keywords
powder
sintering
silicon steel
high silicon
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201711367252.8A
Other languages
English (en)
Inventor
丁艺
罗丰华
谭永菊
徐雪
白云波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201711367252.8A priority Critical patent/CN107900353A/zh
Publication of CN107900353A publication Critical patent/CN107900353A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/18Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种高温扩散烧结与粉末挤压制备高硅钢带材的方法,选取还原Fe粉与水雾化Fe粉两种工业铁粉,按照4:6~6:4的比例混合,再添加微细的Si粉为原料粉末,形成Fe‑4.5~6.7%Si混合粉体。通过模压成方形坯,再加热到950~1050℃实现Fe相奥氏体化,用挤压比为8~16的变形量热挤压成板坯。然后将粉末挤压板坯在1080~1180℃进行真空或还原气氛保护烧结,使Fe粉颗粒实现冶金结合,再多次冷轧、低温扩散烧结,最后在1280~1350℃真空或还原气氛保护烧结,实现高硅钢的均质合金化,获得含4.5~6.7%Si的0.1~0.5mm厚,密度≥7.39g/cm3的高硅钢带材。

Description

一种高温扩散烧结与粉末挤压制备高硅钢带材的方法
技术领域
本发明属于金属材料的制备与加工领域,具体涉及高硅钢薄带材的粉末冶金烧结、热挤压和轧制变形的方法。
技术背景
软磁性材料的剩磁与矫顽磁力都很小,即磁滞回线很窄,它与基本磁化曲线几乎重合,主要用于电感线圈、变压器、继电器和电机的铁心。Fe-Si合金最大磁导率随Si含量发生变化,分别在Si的质量百分比(以下同)为2%和6.5%附近出现了两个最大磁导率的峰值,分别达到10000和25000。Fe-Si合金的最大磁导率在软磁材料中并没有绝对优势,如坡莫合金的最大磁导率可以达到200000。然而Si<4.5%的Fe-Si合金薄板制造成本低,因此硅钢片又称为电工钢片或硅钢薄片,是一种非常重要的磁性材料。
而Si>4.5%时,Fe-Si合金在540℃温度以下会发生B2有序相的共析分解反应,生成α-Fe无序相和DO3有序相,使得合金变脆而难以变形。
对于Si含量在4.5~6.7%之间的铁硅系合金,一般称为高硅钢,其中硅含量6.5%的高硅钢最为重要。其原因在于Fe-Si合金晶粒沿<100>方向的磁致伸缩系数随Si含量增加而减小,在约6.3%时基本消失,而<111>方向的磁致伸缩系数随Si含量增加而增加,在约6.1%时与<100>方向的磁致伸缩系数相等,使得高硅钢在较高频率工作时表现出优异的低铁损特性。
正常运行的变压器会发生持续均匀的“嗡嗡”声,这是由于交流电流经过变压器绕组时,在铁芯中间产生了周期性变化的交变磁通,引起铁芯磁致伸缩而震动发出的声音。大量或者大型的铁芯在震动时发出的声音不但造成了能量的损耗,还造成了噪音污染。特别是在航天器、潜艇和导弹等军事航空领域,Fe-Si系合金扮演着极为重要的角色。20世纪60年代末,Si含量6.5%的合金作为变压器材料出现在阿波罗11号飞船上,完成人类首次登月壮举。可见,高硅钢是一种性能优良的降耗、降噪的环保型软磁材料。
相比于其他合金,高硅钢的研究和开发过程相对比较漫长。20世纪20年代末A.Schulze首次研究发现,硅含量6.5%的铁硅系合金具有磁致伸缩系数几乎为零的特性。20世纪80年代,K.I.Arail教授等发现高硅钢相比于传统Si含量低的合金在交流动态磁场中具有更低铁损以及更高的磁导率。此后数十年间,为了克服高硅钢的脆性,在制备技术方面出现了很多尝试。如包套或控温的特殊轧制方法、快速凝固法、化学气相沉积法(CVD法)、等离子体化学气相沉积法(PCVD法)、热浸渗一扩散退火方法、粉末冶金法、微量合金化改性等各种方法。
其中CVD是比较成功的例子。1988年日本NKK公司采用CVD技术第一次生产出了厚度为0.1~0.5mm,宽度为400mm的无取向6.5%Si钢片。20世纪90年代初期,全球第一条商用能够实现连续渗硅的CVD生产线被研制出来,生产的产品尺寸可以达到0.1~0.3mm×600mm。
CVD的原理为:在特定温度条件下,含硅气体(SiCl4)会与硅钢带发生反应生成Fe-Si化合物,而借助升高的炉温向合金内部扩散,最终使合金达到所需含量。虽然己运用此项技术实现小规模的工业化生产,但其规模和产量都远远无法满足国际软磁材料市场的需求,而且这种制备方法工艺过程十分复杂,能耗和成本高,作业环境及其恶劣,不能满足环保要求。
高硅钢是“钢铁艺术品”,其制备技术时时处处都是最先进的钢铁制造技术,并且是研制和开发的热点。对6.5%Si高硅钢而言,其优异的磁学性能和广阔的应用前景更是吸引着科技工作者进行大量的研究和开发工作。制备工艺的发展和成熟以及能否经济有效地生产,是6.5%Si高硅钢走向商业化广泛应用的关键,也一直是研究工作的重点。一旦摸索出简单、经济、有效、成熟的制备工艺,就将会产生巨大的经济效益和社会效益。
发明内容
本发明的目的是提供一种高温扩散烧结与粉末挤压制备高硅钢带材的方法,针对4.5~6.7%Si含量的Fe-Si合金薄带材难以成形的问题,以工业纯Fe粉与微细的单质Si粉均匀混合,添加成形剂后模压成挤压生坯,再采用粉末热挤压方法制备出一定厚度的板坯,利用热挤压的大变形作用使得挤压坯密度提高、组织细化,并在热扩散作用下实现部分合金化,形成塑性变形能力的贫Si的α-Fe晶粒和脆性高Si相的多相组织。后续经过多道次冷轧-烧结后获得薄板,最后采用高温扩散烧结获得均质单相高硅钢带材。
本发明是通过以下技术方案实现的:选取还原Fe粉与水雾化Fe粉两种工业铁粉,按照4:6~6:4的比例混合,形成工业纯Fe粉基础原料,再添加微细的Si粉为原料粉末,形成Fe-4.5~6.7%Si混合粉体。通过合适的粘接剂、分散剂将微细的Si粉在混合过程中粘附到还原铁粉表面或填充铁粉的孔隙中。由于工业纯Fe粉为具有高压缩性的粗大颗粒,在混合粉中占有较大的体积比,添加Si粉后不显著降低其塑性变形能力,可以通过模压成方形坯。再加热到950~1050℃实现Fe相奥氏体化,用挤压比为8~16的变形量热挤压成板坯。然后将粉末挤压板坯在1080~1180℃温度范围进行真空或还原气氛保护烧结,使Fe粉颗粒实现冶金结合,而Si与Fe实现部分合金化,形成致密的、具有塑性变形能力贫Si的α-Fe晶粒和脆性高Si相的多相组织高硅钢坯料。后续通过多次冷轧、低温扩散烧结,板坯的密度升高、板厚度减少,Si的合金化程度也不断提高。最后在1280~1350℃温度范围内真空或还原气氛保护烧结,在热扩散的帮助下实现高硅钢的均质合金化,获得含4.5~6.7%Si的0.1~0.5mm厚,密度≥7.39g/cm3的高硅钢带材。
本发明方法具体包括如下步骤:
(1)原材料粉末准备
采用-100目还原铁粉,还原Fe粉中Fe≥98.5%,其余为Si、Mn、P、S等杂质,中粒径位于75~106μm;采用-100目水雾化铁粉,水雾化Fe粉中Fe≥99.0%,其余为Si、Mn、P、S等杂质,中粒径位于45~150μm。将还原Fe粉和水雾化Fe粉按照4:6~6:4的质量比配制,采用锥形混料机、V形混料机或滚筒式混料机混合形成工业纯Fe粉基础原料,混合时间为2~6h,混合过程中可按照200~500ml/吨的比例加入少量无水乙醇。
用粒径≤3μm的单质Si粉,纯度大于97%,主要含Fe、Al、Ca等杂质。
还原铁粉是一种广泛使用的工业铁粉,具有不规则的多孔形貌,利于储藏、粘附微细硅粉,并且后续粉末挤压过程中也容易实现粉末的相互咬合而提高压坯的强度,有利于粉末挤压工艺的稳定。水雾化Fe粉也是一种广泛使用的工业铁粉,具有近球形形貌,杂质含量低于还原Fe粉,具有更高的可压缩性和流动性,有利于粉末挤压工艺过程粉末的均匀流动,水雾化Fe粉中低的杂质含量对高硅钢的软磁特性有利。将还原Fe粉与水雾化Fe粉两种工业铁粉,按照4:6~6:4的比例混合,形成工业纯Fe粉基础原料,有利于发挥两种纯铁粉各自的优势,在工业生产铁基零件也是比较常见的方法。
单质Si的性质很脆,很容易通过机械破碎工艺细化。选取粒径<3μm的单质硅有利于后续均匀化扩散烧结的实现;并且细小的Si在坯料中形成的孔隙、脆性界面也细小,起到组织细化的强韧化作用,有利于提高后续的坯料韧性,在挤压、轧制致密化过程中不易造成开裂。但Si很容易吸附氧,在粉末表面形成SiO2薄膜,因此在Si粉的制备、储存和转移过程中,以及后续混料、加热、粉末热挤压过程中应采用惰性气体保护,所使用的工具也必须预先采取脱水、干燥处理。
在控制氧含量的前提下,其他Al、Ca、Mn等杂质对合金磁性能的影响不大,过程中引入其他合金元素的可能性也不大。
(2)粉末混合
按照Fe-4.5~6.7%Si的比例,称取预混好的工业纯Fe粉和微细Si粉;在惰性保护气氛下采用锥形混料机、V形混料机或滚筒式混料机等低能量混合机混合,混合速度和时间视混合均匀性而定,应尽量减轻Fe粉在混合过程中发生加工硬化。混合时添加适量的非水溶性成形剂,如纤维素、石蜡微粉、硬酯酸锌等,以及少量的油脂、无水乙醇等,起到钝化Si粉、粘接Fe-Si粉、增强粉末流动性和压坯强度的作用。除无水乙醇等挥发性溶剂外,成形剂的添加量总量不超过0.8%。
(3)粉末挤压
采用模压成型方法制备出方形压坯,压坯密度为6.35~6.52g/cm3;采用方形挤压筒,挤压比为8~16,采用硬质合金模具,用机油和玻璃粉做润滑剂,挤压前将模压方坯在氮气保护作用下加热到950~1050℃,保温2~4h,挤压筒和挤压模在400~600℃预热保温1~2h,实施热挤压,热挤压后板坯的密度为6.80~7.12g/cm3
(4)烧结
将热挤压板放置在表面涂覆了MgO微粉的支撑板上,放置到烧结炉中。采用2~5℃/min的升温速度,升温至1080~1180℃保温烧结2~4h。烧结坯密度为7.22~7.34g/cm3。与挤压坯密度相比,密度略有降低。
烧结温度过低,不利于Fe粉颗粒的冶金结合和Si元素热扩散;而烧结温度过高则会造成Si元素快速扩散,造成晶粒硬度过高、脆化,后续轧制变形难以实现。
采取还原性、惰性气体保护烧结。烧结时可采用W、Mo、耐热钢等做为支撑板(或称烧舟),也可以采用刚玉、氧化锆等陶瓷板,但金属板导热性好,而利于均匀烧结。
烧结后形成含有第二相的粗大晶粒组织。X-射线衍射物相鉴定为非均质Fe(Si)相,体心立方的几个特征峰有明显的分裂现象,说明存在Si固溶度不同的2种Fe相,其中必有一种Fe相中的Si含量低,具有塑性变形能力。
(5)冷轧-烧结致密化
将上述烧结板坯逐步冷轧-烧结减薄,单道次压下量≤8%,经多道次轧制到总压下率达到30~45%后,再在烧结炉中于1080~1180℃保温烧结0.5~2h。多次冷轧-烧结后,板料的厚度达到0.1~0.5mm,密度达到7.38~7.49g/cm3
由于坯料中存在可变形的Fe相,板坯可以承受冷轧变形。但板坯中也存在较多的高Si相,其性能较脆,故每道次的轧下量不能高于8%,累积总压下率达到30~45%,大约需要8~20道次。
由于存在的硬脆相,必须采取在1080~1180℃保温再次真空烧结或还原性保护气氛烧结,以实现冷轧过程中产生孔隙闭合和裂纹的修复,以及一定程度的Si元素均匀化扩散。每次烧结后的累积压下量达到30~45%后,需要重新烧结1次,从2.5~5.0mm的热挤压板料轧制到0.1~0.5mm,大约需要重新烧结6~10次。
(6)均匀化高温烧结
最后在1280~1350℃温度范围内真空或还原性保护气氛烧结1~4h,在热扩散的作用下,实现Si的均匀化,形成单相合金,获得均质高硅钢。致密化烧结后板料的厚度几乎不变,为0.1~0.5mm,密度略有降低,达到7.39~7.50g/cm3
步骤(1)混合过程中按200~500ml/吨的比例加入无水乙醇。
步骤(1)中粒径≤10μm的单质硅粉由高能球磨或冲旋法获取。
步骤(2)所述的低能量混合机是锥形混料机、V形混料机或滚筒式混料机。
步骤(2)混合时添纤维素、石蜡微粉或硬酯酸锌非水溶性成形剂,成形剂的添加量总量不超过混合粉末总质量的0.8%,同时添加油脂和无水乙醇做钝化剂,起钝化高Si铁粉、粘接Fe-Si粉、增强粉末流动性和压坯强度的作用,钝化剂的添加量总量不超过混合粉末总质量的2%。
步骤(3)中采用40×120mm的方形挤压筒,挤压模为5~2.5mm×120mm,对应挤压比分别为8~16;采用硬质合金模具,用机油和玻璃粉做润滑剂,采用300吨压机实施热挤压,热挤压后板坯的密度为7.37~7.49g/cm3,三点弯曲试验表现出塑性,弯曲强度为118~256MPa。
步骤(4)所述的支撑板采用钼板、W板、耐热钢、刚玉或氧化锆陶瓷板。
高温烧结时可以叠合放置烧结板料,但层间必须铺设MgO粉,可采用W、Mo和陶瓷烧舟。但板料必须平铺放置,可在板料上放置平板重物,防止烧结过程中变形。
高硅钢的磁性性能除了Si含量以外,晶粒度、晶粒取向、C等元素的含量等也会有较大的影响,后续可通过湿氢退火、常化处理等手段加以控制。
本发明实质是通过在具有良好塑性的大体积比例的工业纯Fe粉中添加了低体积比例的单质微细Si粉,形成Fe-4.5~6.7%Si混合粉体。采用热挤压获得高密度、高均匀性板坯。该板坯Si元素合金化程度低,其显微组织由高塑性性Fe相和脆性富Si相组成,具有高的冷变形能力,可通过多道次冷轧和烧结,提高组织均匀性和致密性,再高温扩散烧结,实现Si的均匀化,从而获得高质量的高硅钢带材。该方法通过工艺和装备设计,实现工艺过程自动化、连续化生产,可大批量生产0.1~0.5mm厚,密度≥7.39g/cm3的高硅钢带材。
附图说明
图1为本发明实施例1的粉末挤压后坯料的三点弯曲曲线;
图2为本发明实施例2的粉末挤压-冷轧-烧结后金相组织;
图3为本发明实施例2的粉末挤压-冷轧-烧结后XRD衍射曲线;
图4为本发明实施例4的粉末挤压-冷轧-高温烧结后XRD衍射曲线。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步的详细说明。
实施例1
将-100目的还原Fe粉和-100目的水雾化Fe粉按照4:6的质量比配制,采用滚筒式混料机混合形成工业纯Fe粉原料,混合时间为2h,混合过程中按照200ml/吨的比例加入无水乙醇。
将预混合好的工业纯Fe粉与粒径≤3μm的单质Si粉按照93.3:6.7的比例混合,形成Fe-6.7%Si的混合粉末。混合时添加原料总量0.6%的石蜡微粉,0.1%的机油。无水乙醇按照200ml/吨的量添加。采用V形混料机将上述粉末混合4h。
采用模压成型方法制备出方形压坯,压坯的长、宽分别为120mm和80mm,高度为40mm,采用表面压力为600MPa的压力压制,压机总输出压力为576吨。获得的压坯密度为6.35g/cm3
采用40×120mm的方形挤压筒,挤压模分别为5×120mm,对应挤压比为8。挤压前将模压方坯在氮气保护作用下加热到950℃,保温4h。挤压筒和挤压模在600℃预热保温2h。采用300吨压机实施热挤压,热挤压后板坯的密度为6.80g/cm3,三点弯曲试验表现出塑性,见图1,弯曲强度为118MPa。
采用2℃/min的升温速度,升温至1080℃保温烧结2h。烧结坯密度为7.22g/cm3。烧结后形成含有第二相的粗大晶粒组织。
将上述烧结板坯逐步冷轧-烧结减薄,单道次压下量≤8%,经多道次轧制到总压下率达到30~45%后,再在烧结炉中于1080℃保温烧结2h。具体压下-退火制度为:5mm→3.5mm→2.4mm→1.6mm→1.02mm→0.71mm→0.49mm,即经6次冷轧和5次烧结后,板料的厚度达到0.49mm,密度达到7.38g/cm3
最后在1350℃温度真空烧结1h,在热扩散的作用下,实现Si的均匀化,形成单相合金,获得均质高硅钢。致密化烧结后板料的厚度几乎不变,为0.49mm,密度达到7.39g/cm3
实施例2
将-100目的还原Fe粉和-100目的水雾化Fe粉按照5:6的质量比配制,采用滚筒式混料机混合形成工业纯Fe粉原料,混合时间为3h,混合过程中按照400ml/吨的比例加入无水乙醇。
将预混合好的工业纯Fe粉与粒径≤3μm的单质Si粉按照95.5:4.5的比例混合,形成Fe-4.5%Si的混合粉末。混合时添加原料总量0.7%的硬脂酸锌,0.1%的机油。无水乙醇按照400ml/吨的量添加。采用滚筒式混料机将上述粉末混合6h。
采用模压成型方法制备出方形压坯,压坯的长、宽分别为120mm和80mm,高度为40mm,采用表面压力为600MPa的压力压制,压机总输出压力为576吨。获得的压坯密度为6.52g/cm3
采用40×120mm的方形挤压筒,挤压模为2.5×120mm,对应挤压比为16。挤压前将模压方坯在氮气保护作用下加热到1050℃,保温2h。挤压筒和挤压模在600℃预热保温2h。采用300吨压机实施热挤压,热挤压后板坯的密度为7.12g/cm3,三点弯曲试验表现出塑性,弯曲强度为256MPa。
采用2℃/min的升温速度,升温至1180℃保温烧结2h。烧结坯密度为7.34g/cm3。烧结后形成含有第二相的粗大晶粒组织,见图2。X-射线衍射物相鉴定为非均质Fe(Si)相,如图3所见,体心立方的几个特征峰有明显的分裂现象,说明存在Si固溶度不同的2种Fe相,其中必有一种Fe相中的Si含量低,具有塑性变形能力。
将上述烧结板坯逐步冷轧-烧结减薄,单道次压下量≤8%,经多道次轧制到总压下率达到30~45%后,再在烧结炉中于1180℃保温烧结0.5h。多次冷轧-烧结后,板料的厚度达到0.1mm,密度达到7.43g/cm3。具体冷轧-烧结制度为:2.5mm→1.85mm→1.39mm→1.15mm→0.89mm→0.65mm→0.39mm→0.25mm→0.17mm→0.13mm→0.10mm,即经10次冷轧和9次烧结后,板料的厚度达到0.10mm,密度达到7.49g/cm3
最后在1280℃温度真空烧结4h,形成Si含量为4.5%的单相均质高硅钢,厚度为0.1mm,密度达到7.50g/cm3
实施例3
将-100目的还原Fe粉和-100目的水雾化Fe粉按照6:4的质量比配制,采用滚筒式混料机混合形成工业纯Fe粉原料,混合时间为4h,混合过程中按照500ml/吨的比例加入无水乙醇。
将预混合好的工业纯Fe粉与粒径≤3μm的单质Si粉按照93.5:6.5的比例混合,形成Fe-6.5%Si的混合粉末。混合时添加原料总量0.4%的石蜡微粉,0.2%的甲基纤维素,0.1%的机油。无水乙醇按照400ml/吨的量添加。采用滚筒式混料机将上述粉末混合6h。
采用模压成型方法制备出方形压坯,压坯的长、宽分别为120mm和80mm,高度为40mm,采用表面压力为600MPa的压力压制,压机总输出压力为576吨。获得的压坯密度为6.38g/cm3
采用40×120mm的方形挤压筒,挤压模为4×120mm,对应挤压比为10。挤压前将模压方坯在氮气保护作用下加热到1000℃,保温3h。挤压筒和挤压模在600℃预热保温2h。采用300吨压机实施热挤压,热挤压后板坯的密度为6.82g/cm3,弯曲强度为140MPa。
采用3℃/min的升温速度,升温至1150℃保温烧结2h。烧结坯密度为7.24g/cm3
将上述烧结板坯逐步冷轧-烧结减薄,具体冷轧-烧结制度为:4.0mm→2.8mm→2.0mm→1.40mm→1.08mm→0.70mm→0.45mm→0.27mm,即经7次冷轧和6次烧结后,板料的厚度达到0.27mm,密度达到7.39g/cm3
上述冷轧带坯在1320℃真空烧结2h,获得厚度约为0.27mm,密度为7.40g/cm3,Si含量为6.5%的单相均质高硅钢。
实施例4
将-100目的还原Fe粉和-100目的水雾化Fe粉按照5:5的质量比配制,采用滚筒式混料机混合形成工业纯Fe粉原料,混合时间为6h,混合过程中按照500ml/吨的比例加入无水乙醇。
将预混合好的工业纯Fe粉与粒径≤3μm的单质Si粉按照94.2:5.8的比例混合,形成Fe-5.8%Si的混合粉末。混合时添加原料总量0.6%的石蜡微粉,0.2%的机油。无水乙醇按照400ml/吨的量添加。采用滚筒式混料机将上述粉末混合3h。
采用模压成型方法制备出方形压坯,压坯的长、宽分别为120mm和80mm,高度为40mm,采用表面压力为600MPa的压力压制,压机总输出压力为576吨。获得的压坯密度为6.40g/cm3
采用40×120mm的方形挤压筒,挤压模分别为3.2×120mm,对应挤压比为12.5。挤压前将模压方坯在氮气保护作用下加热到1020℃,保温4h。挤压筒和挤压模在600℃预热保温2h。采用300吨压机实施热挤压,热挤压后板坯的密度为6.84g/cm3,弯曲强度为156MPa。
采用4℃/min的升温速度,升温至1120℃保温烧结2h。烧结坯密度为7.25g/cm3
将上述烧结板坯逐步冷轧-烧结减薄,单道次压下量≤8%,经多道次轧制到总压下率达到30~45%后,再在烧结炉中于1120℃保温烧结1h。多次冷轧-烧结后,板料的厚度达到0.22mm,密度达到7.43g/cm3。具体冷轧-烧结制度为:3.2mm→2.4mm→2.0mm→1.3mm→0.96mm→0.72mm→0.46mm→0.32mm→0.21mm,即经9次冷轧和8次烧结后,板料的厚度达到0.21mm,密度达到7.40g/cm3
上述冷轧带坯在1300℃真空烧结2h,获得厚度约为0.22mm,密度为7.41g/cm3,Si含量为5.8%,其最终板材的XRD分析图见图3,为单相均质高硅钢。

Claims (8)

1.一种高温扩散烧结与粉末挤压制备高硅钢带材的方法,其特征在于包括如下步骤:
(1)原材料粉末准备
采用-100目还原铁粉,还原Fe粉中Fe≥98.5%,其余为Si、Mn、P、S和其他不可避免的杂质;采用-100目水雾化铁粉,水雾化Fe粉中Fe≥99.0%,其余为Si、Mn、P、S和其他不可避免的杂质,将还原Fe粉和水雾化Fe粉按照4:6~6:4的质量比配制,采用锥形混料机、V形混料机或滚筒式混料机混合形成工业纯Fe粉基础原料,混合时间为2~6h;
粒径≤3μm的单质Si粉,纯度大于97%,主要含Fe、Al和Ca及其他不可避免的杂质;
(2)粉末混合
按照Fe-4.5~6.7%Si的比例,称取预混好的工业纯Fe粉和单质Si粉;在惰性保护气氛下采用低能量混合机混合;
(3)粉末挤压
采用模压成型方法制备出方形压坯,压坯密度为6.35~6.52g/cm3;采用方形挤压筒,挤压比为8~16,采用硬质合金模具,用机油和玻璃粉做润滑剂,挤压前将模压方坯在氮气保护作用下加热到950~1050℃,保温2~4h,挤压筒和挤压模在400~600℃预热保温1~2h,实施热挤压,热挤压后板坯的密度为6.80~7.12g/cm3
(4)烧结
将热挤压板放置在表面涂覆了MgO微粉的支撑板上,放置到烧结炉中,采用2~5℃/min的升温速度,升温至1080~1180℃保温烧结2~4h,烧结坯密度为7.22~7.34g/cm3
(5)冷轧-烧结致密化
将上述烧结板坯逐步冷轧-烧结减薄,单道次压下量≤8%,经多道次轧制到总压下率达到30~45%后,再在烧结炉中于1080~1180℃保温烧结0.5~2h,多次冷轧-烧结后,板料的厚度达到0.1~0.5mm,密度达到7.38~7.49g/cm3
(6)均匀化高温烧结
在1280~1350℃温度范围内真空或还原性保护气氛烧结1~4h,在热扩散的作用下,实现Si的均匀化,形成单相合金,获得均质高硅钢,致密化烧结后板料的厚度为0.1~0.5mm,密度达到7.39~7.50g/cm3
2.如权利要求1所述的高温扩散烧结与粉末挤压制备高硅钢带材的方法,其特征在于:粒径≤3μm的单质Si粉由高能球磨或冲旋法获取。
3.如权利要求1所述的高温扩散烧结与粉末挤压制备高硅钢带材的方法,其特征在于:所述的低能量混合机是锥形混料机、V形混料机或滚筒式混料机。
4.如权利要求2所述的高温扩散烧结与粉末挤压制备高硅钢带材的方法,其特征在于:步骤(1)混合过程中按200~500ml/吨的比例加入无水乙醇。
5.如权利要求2所述的高温扩散烧结与粉末挤压制备高硅钢带材的方法,其特征在于:步骤(2)混合时添纤维素、石蜡微粉或硬酯酸锌非水溶性成形剂,成形剂的添加量总量不超过混合粉末总质量的0.8%,同时添加油脂和无水乙醇做钝化剂,起钝化Si粉、粘接Fe-Si粉、增强粉末流动性和压坯强度的作用,钝化剂的添加量总量不超过混合粉末总质量的2%。
6.如权利要求1所述的高温扩散烧结与粉末挤压制备高硅钢带材的方法,其特征在于:步骤(3)中采用40×120mm的方形挤压筒,挤压模为5~2.5mm×120mm,对应挤压比分别为8~16;采用硬质合金模具,用机油和玻璃粉做润滑剂,采用300吨压机实施热挤压,三点弯曲试验表现出塑性,弯曲强度为118~256MPa。
7.如权利要求1所述的高温扩散烧结与粉末挤压制备高硅钢带材的方法,其特征在于:步骤(4)所述的支撑板采用钼板、W板、耐热钢、刚玉或氧化锆陶瓷板。
8.如权利要求1所述的高温扩散烧结与粉末挤压制备高硅钢带材的方法,其特征在于:步骤(6)所述的高温烧结时,叠合放置烧结板料,层间铺设MgO粉,板料平铺放置,在板料上放置平板重物,防止烧结过程中变形。
CN201711367252.8A 2017-12-18 2017-12-18 一种高温扩散烧结与粉末挤压制备高硅钢带材的方法 Withdrawn CN107900353A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711367252.8A CN107900353A (zh) 2017-12-18 2017-12-18 一种高温扩散烧结与粉末挤压制备高硅钢带材的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711367252.8A CN107900353A (zh) 2017-12-18 2017-12-18 一种高温扩散烧结与粉末挤压制备高硅钢带材的方法

Publications (1)

Publication Number Publication Date
CN107900353A true CN107900353A (zh) 2018-04-13

Family

ID=61869208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711367252.8A Withdrawn CN107900353A (zh) 2017-12-18 2017-12-18 一种高温扩散烧结与粉末挤压制备高硅钢带材的方法

Country Status (1)

Country Link
CN (1) CN107900353A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192186A (ja) * 1998-12-25 2000-07-11 Daido Steel Co Ltd 軟磁性合金シ―トの製造方法およびこのシ―トから得た磁心部材
CN1273611A (zh) * 1998-05-29 2000-11-15 住友特殊金属株式会社 高硅钢的制造方法和硅钢
CN1528921A (zh) * 2003-09-25 2004-09-15 武汉理工大学 一种高硅硅钢板材的热处理和多次冷轧加工方法
CN102658367A (zh) * 2012-05-16 2012-09-12 上海大学 稳恒磁场下粉末烧结法制备高硅硅钢片的方法及其装置
CN106808159A (zh) * 2015-11-27 2017-06-09 安徽中龙节能科技有限公司 一种高硅硅钢片的制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1273611A (zh) * 1998-05-29 2000-11-15 住友特殊金属株式会社 高硅钢的制造方法和硅钢
JP2000192186A (ja) * 1998-12-25 2000-07-11 Daido Steel Co Ltd 軟磁性合金シ―トの製造方法およびこのシ―トから得た磁心部材
CN1528921A (zh) * 2003-09-25 2004-09-15 武汉理工大学 一种高硅硅钢板材的热处理和多次冷轧加工方法
CN102658367A (zh) * 2012-05-16 2012-09-12 上海大学 稳恒磁场下粉末烧结法制备高硅硅钢片的方法及其装置
CN106808159A (zh) * 2015-11-27 2017-06-09 安徽中龙节能科技有限公司 一种高硅硅钢片的制作方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
傅祖铸: "《有色金属板带材生产》", 1 April 2009, 中南大学出版社 *
员文杰: "粉末轧制法制备高硅硅钢片的工艺及过程原理的研究", 《中国博士学位论文全文数据库工程科技Ⅰ辑》 *
员文杰等: "粉末轧制法制备Fe-6.5%Si硅钢片的研究", 《粉末冶金技术》 *
周勇: "铁、硅复合粉末的轧制成型与后续热处理", 《中国优秀博硕士学位论文全文数据库 (硕士) 工程科技Ⅰ辑》 *
张翔: "粉末冶金法制备高硅硅钢片的轧制和热处理工艺研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
李然: "粉末压延技术制备高硅铁硅合金", 《中国优秀博硕士学位论文全文数据库 (硕士) 工程科技Ⅰ辑》 *
莱内尔: "《粉末冶金原理和应用》", 30 November 1989, 冶金工业出版社 *

Similar Documents

Publication Publication Date Title
CN107900345A (zh) 一种高硅钢薄带材的粉末热等静压制造方法
CN107829036A (zh) 一种高硅钢薄带材的粉末热压烧结制造方法
CN108097961A (zh) 一种高温扩散烧结与粉末热等静压制备高硅钢带材的方法
CN108097965A (zh) 一种高硅钢薄带材的粉末挤压制造方法
CN107900347A (zh) 一种粉末热锻与高温扩散烧结制备高硅钢带材的方法
CN107999757A (zh) 一种粉末热压烧结制备单相Fe-6.5%Si硅钢的方法
CN107971494A (zh) 一种粉末热压烧结制备Fe-6.5%Si软磁材料薄带材的方法
CN107900354A (zh) 一种粉末挤压制备高硅钢薄带材的方法
CN107900348A (zh) 一种粉末热锻制备单相Fe‑6.5%Si硅钢的方法
CN107900349A (zh) 一种粉末热锻制备Fe‑6.5%Si软磁材料薄带材的方法
CN107983962A (zh) 一种粉末轧制制备单相Fe-6.5%Si硅钢的方法
CN108097966A (zh) 一种高温扩散烧结与粉末温轧制备高硅钢带材的方法
CN107900346A (zh) 一种粉末热等静压制备高硅钢薄带材的方法
CN108080641A (zh) 一种Fe-6.5%Si软磁材料薄带材的粉末轧制制备方法
CN108044106A (zh) 一种粉末热等静压与高温扩散烧结制备高硅钢带材的方法
CN107900353A (zh) 一种高温扩散烧结与粉末挤压制备高硅钢带材的方法
CN108044107A (zh) 一种Fe-6.5%Si软磁材料薄带材的粉末热等静压制备方法
CN107855532A (zh) 一种粉末热压烧结制备高硅钢薄带材的方法
CN107971495A (zh) 一种粉末热等静压制备Fe-6.5%Si软磁材料薄带材的方法
CN108044100A (zh) 一种粉末轧制制备Fe-6.5%Si软磁材料薄带材的方法
CN107999768A (zh) 一种粉末挤压与高温扩散烧结制备高硅钢带材的方法
CN107999767A (zh) 一种粉末挤压与扩散烧结制备Fe-6.5%Si带材的方法
CN108044097A (zh) 一种粉末挤压制备单相Fe-6.5%Si硅钢的方法
CN108044094A (zh) 一种Fe-6.5%Si软磁材料薄带材的粉末挤压制备方法
CN107952964A (zh) 一种粉末挤压制备Fe-6.5%Si软磁材料薄带材的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20180413

WW01 Invention patent application withdrawn after publication