WO1999044228A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO1999044228A1
WO1999044228A1 PCT/JP1999/000892 JP9900892W WO9944228A1 WO 1999044228 A1 WO1999044228 A1 WO 1999044228A1 JP 9900892 W JP9900892 W JP 9900892W WO 9944228 A1 WO9944228 A1 WO 9944228A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
semiconductor device
insulating film
semiconductor chip
protective insulating
Prior art date
Application number
PCT/JP1999/000892
Other languages
English (en)
French (fr)
Inventor
Takakazu Yano
Shigeru Morokawa
Takashi Masuda
Makoto Watanabe
Masayoshi Kikuchi
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Priority to AU26404/99A priority Critical patent/AU2640499A/en
Priority to EP99906490A priority patent/EP1061570B1/en
Priority to JP2000533896A priority patent/JP3442738B2/ja
Priority to BR9908224-1A priority patent/BR9908224A/pt
Priority to DE69934971T priority patent/DE69934971D1/de
Priority to US09/622,837 priority patent/US6583506B1/en
Priority to KR1020007009309A priority patent/KR100350936B1/ko
Publication of WO1999044228A1 publication Critical patent/WO1999044228A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01037Rubidium [Rb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01088Radium [Ra]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor

Definitions

  • the present invention relates to a semiconductor device having a convex terminal suitable for mounting on a circuit board via an anisotropic conductive film.
  • FIGS. 14A to 14D The structure of a convex terminal in such a conventional semiconductor device and a method of manufacturing the same will be briefly described with reference to FIGS. 14A to 14D. Although these figures are cross-sectional views, hatched lines indicating the cross-sections are omitted.
  • FIG. 14D shows a cross section near a convex terminal of the completed semiconductor device.
  • a selective oxidation (LOCOS) film 204 which is a layer necessary for semiconductor device fabrication, is provided on the surface of a silicon wafer 211 cut into semiconductor chips, and an aluminum layer 720 is provided thereon. ing.
  • This aluminum layer 702 is a layer necessary for inputting / outputting a power supply or a signal to / from a wiring and an integrated circuit in a semiconductor device from the outside.
  • a passivation film 703 as an insulating protective film covering the entire surface of the silicon wafer 212 is provided thereon, and an opening 703 a is formed on the aluminum layer 702.
  • a gold bump 7 which is a mushroom-shaped convex terminal through a noble metal film 705 from the aluminum layer 702 in the opening ′ 703 a to the surrounding passivation film 703 through a noble metal film 705. 0 1 is provided.
  • FIG. 14A to FIG. 14C are views showing steps in the process of manufacturing this semiconductor device.
  • a selective oxide film 204 is formed on a silicon wafer 211, and an aluminum layer 720 connected to an internal integrated circuit is formed at a required position thereon.
  • a passivation film 703 is formed to cover the entire surface of the silicon wafer 211 including the aluminum layer 702, and an opening 703a for connecting to the outside is formed on the aluminum layer 702.
  • a noble metal film 705 is formed on the entire surface of the passivation film 703 and the aluminum layer 702, and further selectively ( A photosensitive resist 7 10 is formed (except for the convex terminal forming portion).
  • the noble metal film 705 is a noble metal layer such as an alloy of titanium and tungsten, and serves as an electrode for growing a gold bump 701 formed on the aluminum layer 702 in the next step by electrolytic plating. And a role for improving the connection between the aluminum layer 720 and the gold bump 701.
  • This noble metal film 705 is formed by being laminated on the entire surface in a vacuum device.
  • a gold layer was grown in a portion where the resist 710 was not formed by an electroplating process, and a gold bump 701, which was a mushroom-shaped convex electrode, was formed.
  • FIG. 14D is a cross-sectional view of this state.
  • the convex electrodes of the gold bumps 701 are formed on the silicon wafer 213, and the silicon wafer 213 is cut into a single semiconductor chip to complete the semiconductor device.
  • the silicon wafer 213 is cut into a single semiconductor chip to complete the semiconductor device.
  • the present invention has been made to solve such a problem, and an object of the present invention is to make it possible to easily manufacture a convex electrode of a semiconductor device at low cost and to make the height uniform. I do.
  • the convex terminal is connected to the wiring on the circuit board without fail.
  • the height of the most protruding end face of the semiconductor device can be made sufficiently higher than the protruding face of any other part of the semiconductor device, and the effective area of the end face must be wide enough to capture a plurality of conductive particles. Also aim. Disclosure of the invention
  • the present invention relates to a semiconductor device having a convex terminal for inputting / outputting a power supply or a signal to / from a semiconductor chip on which an integrated circuit is formed. At least the uppermost portion is formed by sputtering, and is made of a conductor electrically connected to the integrated circuit, and the height of the most protruding end face from the surface of the semiconductor chip is any other portion. And the end face of the convex terminal is covered with a conductive film for preventing surface oxidation.
  • the conductive film for preventing the surface oxidation is preferably a conductive oxide film such as an indium tin oxide (IT ⁇ ) film which is a transparent conductive film or a noble metal film.
  • IT ⁇ indium tin oxide
  • the semiconductor device includes: a first conductor electrically connected to an internal integrated circuit on a surface of a semiconductor chip; and a first conductor covering the first conductor and the surface of the semiconductor chip.
  • a protective insulating film having an opening formed thereon; and a second conductor formed on the protective insulating film by sputtering and electrically connected to the first conductor through the opening.
  • the convex terminal can be formed by the first conductor and the second conductor, and a conductive oxide film or a noble metal film covering the upper surface of the second conductor. Both the first conductor and the second conductor can be formed of aluminum.
  • a first conductor electrically connected to an internal integrated circuit on the surface of the semiconductor chip, the first conductor and the surface of the semiconductor chip are covered, and an opening is formed on the first conductor.
  • a third conductor which is formed by sputtering and is electrically connected to the second conductor through an opening of the second protective insulating film.
  • the convex terminal is connected to the first conductor,
  • the semiconductor consisting of the second conductor and the third conductor and having the most protruding end face of the semiconductor It is preferable to form the chip so that the height from the surface of the chip is higher than the protruding surface of any other part.
  • the first conductor, the second conductor, and the third conductor can be formed of aluminum.
  • the most protruding end face of the convex terminal is covered with a conductive film for preventing surface oxidation, that is, a conductive oxide film or a noble metal film.
  • the present invention also provides a semiconductor layer on which an integrated circuit is formed, a polysilicon layer used for wiring and a gate of a transistor, an insulating layer covering the polysilicon layer, and a wiring conductor layer formed on the insulating layer.
  • a semiconductor device having a convex terminal for inputting / outputting a power supply or a signal to / from the integrated circuit is configured as follows.
  • a polysilicon film and an insulating film made of the same material as the polysilicon layer and the insulating layer are provided on a portion of the surface of the semiconductor chip where a convex terminal is to be formed, and the polysilicon film and the insulating film are covered.
  • a first conductor electrically connected is formed from the same material as the wiring conductor layer by sputtering, and the first conductor and the wiring conductor layer and the first conductor are connected to each other.
  • the convex terminal is constituted by the polysilicon film and the insulating film, and the first conductor and the second conductor, and the height of the most protruding end surface from the surface of the semiconductor chip is increased. However, it is formed so as to be higher than the protruding surface of any other part.
  • both the first conductor and the second conductor can be formed of aluminum.
  • the most protruding end face of the convex terminal is covered with a conductive film for preventing surface oxidation, that is, a conductive oxide film or a noble metal film.
  • the protruding terminal is constituted by the first conductor and a second conductor which is electrically connected to the first conductor through an opening formed in a protective insulating film covering the first conductor,
  • the thickness of the lower region of the second conductor of the protective insulating film larger than that of the other regions, the height of the convex terminal can be increased.
  • the present invention also provides a semiconductor chip having an integrated circuit formed thereon, comprising a convex terminal for inputting / outputting a power supply or a signal to / from the integrated circuit, and a substrate via an anisotropic conductive film containing a large number of conductive particles.
  • the semiconductor device mounted above is configured as follows.
  • the anisotropic conductive film is composed of a conductor and a second conductor, and the height of the most protruding end face from the surface of the semiconductor chip is included in the anisotropic conductive film more than the highest protruding face of other portions.
  • the conductive particles are formed so as to be higher than the diameter error of a large number of conductive particles.
  • the maximum opening dimension of the through hole formed in the protective insulating film is included in the anisotropic conductive film. It is desirable that the diameter be within 1.5 times the minimum diameter of a large number of conductive particles.
  • the through hole formed in the protective insulating film may be formed in any one of a square, a rectangle, a polygon, a circle, and an ellipse, or a plurality of holes having different shapes may be formed. Good.
  • the second conductor By forming the second conductor in a region wider than a range in which a step is formed in the protective insulating film due to the step of the first conductor, the most protruding end face of the convex terminal is formed.
  • the effective area can be increased.
  • FIG. 1 is a sectional view showing the vicinity of a convex terminal having a two-layer aluminum structure showing a first embodiment of a semiconductor device according to the present invention.
  • 2A to 2F are cross-sectional views showing a process for manufacturing a convex terminal of the semiconductor device.
  • FIG. 3 is a sectional view showing the vicinity of a convex terminal having a three-layer aluminum structure showing a second embodiment of the semiconductor device according to the present invention.
  • 4A to 4F are cross-sectional views showing a process for manufacturing a convex terminal of the semiconductor device.
  • FIG. 5 is a sectional view showing the vicinity of a convex terminal having a polysilicon layer and a two-layer aluminum structure showing a third embodiment of a semiconductor device according to the present invention.
  • 6A to 6D are cross-sectional views showing a process for manufacturing a convex terminal of the semiconductor device.
  • FIG. 7 is a cross-sectional view showing the vicinity of a convex terminal formed by a thick passivation film, showing a fourth embodiment of the semiconductor device according to the present invention.
  • FIGS. 8A to 8D are manufacturing process diagrams of the convex terminal of the semiconductor device.
  • 9A to 9D are cross-sectional views showing a surface treatment step of the convex terminal in the fifth embodiment of the semiconductor device according to the present invention.
  • FIG. 10 is a fragmentary cross-sectional view showing an example of the structure of a semiconductor device according to the present invention mounted on a circuit board.
  • FIG. 11 is a plan view of the convex terminal and the protective insulating film shown in FIG.
  • FIG. 12 is a diagram corresponding to a plan view and a cross-sectional view near a convex terminal in a sixth embodiment of a semiconductor device according to the present invention.
  • FIG. 13 is a diagram corresponding to a plan view and a cross-sectional view near a convex terminal in a semiconductor device according to a seventh embodiment of the present invention.
  • FIG. 14A to FIG. 14D are cross-sectional views showing a manufacturing process and a structure of a convex terminal in a conventional semiconductor device.
  • FIGS. 1 and 2A to 2F [First Embodiment: FIGS. 1 and 2A to 2F]
  • FIG. 1 is a cross-sectional view showing only the vicinity of a convex terminal of a first embodiment of a semiconductor device according to the present invention.
  • a selective oxidation (LOCOS) film 204 is formed on the surface of a semiconductor chip 100.
  • This selective oxide film 204 is an oxide layer on the surface of the silicon wafer before being cut into semiconductor chips, is formed by heat treatment, and is a necessary layer for semiconductor device fabrication.
  • the semiconductor chip 100 is formed with an integrated circuit including a large number of active elements such as transistors, passive elements such as capacitors and resistors, and wiring connecting them. .
  • a first aluminum layer 202 as a first conductor serving as an electrode pad for externally inputting and outputting a power supply and a signal is formed on the selective oxide film 204.
  • the aluminum layer 212 is an aluminum layer for wiring in a semiconductor device, and is formed together with the first aluminum layer 202 by being deposited in a vacuum device. Paper (Rule 91) Putter jung. These aluminum layers 202, 212 have a thickness typically on the order of 1 micron ( ⁇ m).
  • the polysilicon layer 205 is a wiring of a semiconductor device, and is formed by depositing with a vacuum device, and usually has a thickness of about 0.5 micron (; um).
  • the insulating layer 210 is an insulating film formed on the polysilicon layer 205, and is formed by heat-treating the polysilicon layer 205, and usually has a thickness of about 0.5 micron ( ⁇ ). It is.
  • the passivation film 203 is a protective insulating film formed for the purpose of protecting elements in the semiconductor device.
  • the passivation film 203 is formed by depositing the film in a vacuum device, and has a thickness of about 0.8 micron ( ⁇ ).
  • the passivation film 203 has an opening 203a formed on the first aluminum layer 202.
  • the second aluminum bump 201 is a conductor that forms the convex terminal 200, is formed by sputtering in an opening 203 a of the passivation film 203 in a vacuum device, and the first aluminum bump 201 passes through the opening 203 a. It is electrically connected to the aluminum layer 202 and has a thickness of about 2 microns ( ⁇ ).
  • the height of the most protruding end face 200 a of the convex terminal (bump) 200 from the surface of the semiconductor chip 100 is the thickness of the first aluminum layer 202, the thickness of the passivation film 203, and the second aluminum bump 20.
  • the thickness of the passivation film 203, the polysilicon layer 205, the insulating layer 210, and the aluminum layer 212, which are the protruding surfaces of other parts, is obtained by adding the thickness of It is higher by the dimension indicated by H in Fig. 1 than the added value.
  • the height difference H is at least about 1 micron (m).
  • 2A to 2F are cross-sectional views of the vicinity of an opening of the passivation film 203 showing a step of forming a convex terminal of the semiconductor device shown in FIG. 1, but diagonal lines showing cross sections are omitted. I have.
  • FIG. 2A shows a selective oxidation (LOCOS) film 204 and an unillustrated integrated circuit formed on a silicon wafer 211, and a passivation film having an aluminum first layer 202 and an opening 203a.
  • LOC selective oxidation
  • the oxide layer formed on the opening 203a of the first aluminum layer 202 is removed by argon atoms in a vacuum device such as a sputtering device in a vacuum device such as a sputtering device.
  • FIG. 2B shows a state in which a transparent conductive film 207 that is a conductive film for preventing surface oxidation is formed on the entire surface of the second aluminum layer 214.
  • the transparent conductive film 207 can be formed of indium tin oxide (ITO), but a noble metal such as gold, copper titanium, tantalum, or the like may be used as a conductive film for preventing surface oxidation.
  • a photosensitive resist 208 is applied to the entire surface of the second aluminum layer 214 on which the transparent conductive film 207 is formed, and is exposed by a metal mask.
  • a photosensitive resist 208 is applied to the entire surface of the second aluminum layer 214 on which the transparent conductive film 207 is formed, and is exposed by a metal mask.
  • FIG. 2E etching is performed by a vacuum etching apparatus, and as shown in FIG. 2E, the transparent conductive film 207 and the second aluminum layer 214 are patterned and A second aluminum bump 201, which is a conductor, is formed. Thereafter, a state in which the resist 208 is removed is shown in FIG. 2F. Then, by cutting the silicon substrate 2 13 into 100 for each semiconductor chip, the semiconductor device having the convex terminals 200 shown in FIG. 1 is completed.
  • This structure of the convex terminal 200 of the semiconductor device is a structure that can be easily formed during a normal semiconductor device manufacturing process.
  • a conductor such as gold, copper, titanium, or tantalum may be used instead of aluminum as the first and second conductors in this embodiment.
  • FIG. 3 is a view similar to FIG. 1 showing a second embodiment of the semiconductor device according to the present invention, and portions corresponding to FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • a third aluminum bump 3 1 4 is further added on the structure shown in FIG. 1 for the purpose of increasing the height difference H of the convex terminal 200 from the semiconductor device shown in FIG. Are provided to form the convex terminal 200.
  • a second aluminum bump 301 as a second conductor is provided on the passivation film 203 and the opening 203 a, and the opening is formed on the second aluminum bump 301.
  • the second passivation film 313 provided with the portion 313a is formed on the passivation film 203.
  • a third aluminum bump 314 is provided on the second passivation film 313 through the opening 313a to be electrically connected to the second aluminum bump 301 to form a convex terminal 200. ing.
  • the height of the most protruding end face 200 a of the convex terminal (bump) 200 is determined by the thickness of the first aluminum layer 202, the thickness of the passivation film 203, It is a value obtained by adding the thickness of the aluminum bump 301, the thickness of the second passivation film 313, and the thickness of the third aluminum bump 314.
  • the height of the protruding surface of the wiring portion is determined by the passivation film 203, the polysilicon layer 205, the insulating layer 210, the aluminum layer 212, and the passivation film 203. This is a value obtained by adding the thickness of the second passivation film 3 13, and the height difference H is larger than that of the semiconductor device shown in FIG.
  • This structure is formed by forming the second passivation film 3 13 and the third aluminum bump 3 14 on the second aluminum bump 301 in the same process as the process shown in the first embodiment. can get.
  • FIG. 4A to FIG. 4F are views showing the steps of manufacturing the convex terminal of the semiconductor device of this embodiment.
  • FIG. 4A is a view showing a cross-sectional structure manufactured by a process similar to the process described in the first embodiment, in which the second aluminum bump 201 in the first embodiment is replaced. A thinner second aluminum bump 301 is formed. This is for the purpose of stress relaxation and cost reduction of the aluminum thin film.
  • FIG. 4B shows a state in which a second passivation film 313 which is a protective insulating film is laminated on the entire surface of the state shown in FIG. 4A.
  • the second passivation film 3 13 is made of the same material as the passivation film 203 and has almost the same thickness.
  • a photoresist 802 is applied on the entire surface of the second passivation film 313, and as shown in FIG. 4C, an opening is formed in the convex terminal forming portion on the second aluminum bump 301. Putter jungle to form 80 2 a.
  • the second passivation film 3 13 is etched away using the photoresist 82 as a mask, and the portion inside the opening 800 a is removed by etching. An opening 3 13 a is formed.
  • a third aluminum layer 805 is formed on the entire surface of the second passivation film 313 including the inside of the opening 313a, and a photoresist 804 is applied to form a convex terminal.
  • the third aluminum layer 805 When forming the third aluminum layer 805, an oxide film is formed on the surface of the second aluminum bump 301 exposed in the opening 313a of the second passivation film 313 Therefore, it is preferable to remove the oxide film by back-sputtering in a vacuum.
  • the third aluminum layer 805 is etched to form a third aluminum bump 314 as shown in FIG. 4F, and the convex terminal 200 is formed. Complete. Thereafter, the silicon wafer 211 is cut and divided into individual semiconductor chips 100, whereby the semiconductor device shown in FIG. 3 is completed. W 2
  • the structure of the convex terminal 200 of this embodiment is also a structure that can be easily formed during a normal semiconductor device manufacturing process.
  • the most protruding end face 200a of the convex terminal 200 that is, the upper surface of the third aluminum bump 314 is formed on the upper surface of the third aluminum bump 314 as a conductive film for preventing oxidation, for example, by ITO. It is preferable to form a bright conductive film or a noble metal film such as gold.
  • first, second, and third conductors or only the third aluminum bump 314 may be a conductor such as gold, copper, titanium, or tantalum.
  • the height of the convex terminal can be further increased by laminating the conductor layers by repeating the same steps as the fourth and fifth layers by the same method.
  • FIG. 5 is a sectional view similar to FIG. 1 showing a third embodiment of the semiconductor device according to the present invention, and portions corresponding to FIG. 1 are denoted by the same reference numerals. Description is omitted.
  • the height of the convex terminal is increased by using a polysilicon layer used for a wiring and a gate of a transistor in a semiconductor device and an insulating layer thereover.
  • the polysilicon layer under the bump 413 is sputtered in a vacuum device when the polysilicon layer 205 is formed of the same material as the polysilicon layer 205 used for the wiring in the semiconductor device and the gate of the transistor. It is formed at the same time by depositing by, for example, and usually has a thickness of about 0.5 micron ( ⁇ ).
  • the under bump insulating layer 4 1 2 is an insulating layer formed on the under bump polysilicon layer 4 1 3 Corrected paper (Rule 91) This is a film, and is usually formed to a thickness of about 0.5 micron ( ⁇ m) by heat-treating the polysilicon layer 4 13 under the bump, simultaneously with the insulating layer 210 on the polysilicon layer 205. Is done.
  • the first aluminum layer 402 is also formed by sputtering in a vacuum device at the same time as the aluminum layer 212 for wiring in a semiconductor device, and usually has a thickness of about 1 micron (/ zm). is there.
  • the passivation film 4 0 3 is a protecting insulating film formed for the purpose of protecting the elements in the semiconductor device, is formed by deposition by vacuum apparatus, there is usually 0.8 microns (mu m) thickness on the order of .
  • the second aluminum bump 401 is a conductor for forming the convex terminal 200, and is also formed by being deposited by sputtering in a vacuum device, and has a thickness of about 2 microns (m). is there.
  • the openings 4003a of the passivation film 403 are used to establish electrical continuity between the first aluminum layer 402, which is a conductor, and the second aluminum bumps 401, which are used for connection to the outside. Opening.
  • the height of the most protruding end face 200 a of the convex terminal 200 in this embodiment is the thickness of the first aluminum layer 402, the thickness of the passivation film 403, and the height of the second aluminum bump 400. It is a value obtained by adding the thickness of 1, the thickness of the polysilicon layer 4 13 under the bump, and the thickness of the insulating layer 4 12 under the bump.
  • the height of the protruding surface of the wiring portion is a value obtained by adding the thicknesses of the polysilicon layer 205, the insulating layer 210, the aluminum layer 212, and the passivation film 403. The difference H is obtained.
  • the structure of this semiconductor device is such that in the manufacturing process of the semiconductor device, in the process of forming the polysilicon layer used as the gate and wiring of the transistor, the bump-forming polysilicon layer 413 and the bump If the lower insulating layer 4 1 2 is formed, the second aluminum bump 4 0 1 is formed in the same process as described in the first embodiment.
  • 6A to 6D are cross-sectional views showing steps of forming a convex terminal in the semiconductor device of this embodiment.
  • FIG. 6A is a diagram showing a cross-sectional structure of a portion manufactured in a normal semiconductor device manufacturing process.
  • the polysilicon layer 413 under the bump, the insulating layer 412 under the bump, and the first aluminum layer 402 are the polysilicon layers necessary for the wiring and the gate of the transistor in the semiconductor device, respectively.
  • the layer 205, the insulating layer 210, and the aluminum layer 212 are formed at the same time in the step of forming.
  • FIG. 6B shows that the surface of the first aluminum layer 402 exposed in the opening 400 a of the passivation film 403 was back-sputtered in a vacuum to remove an oxide film. Thereafter, a cross-sectional structure when the second aluminum layer 700 is laminated by sputtering is shown.
  • FIG. 6C shows a state in which a photoresist 72 is applied on the second aluminum layer 701 in FIG. 6B, and puttering is performed so as to leave only the convex terminal forming portion.
  • the second aluminum layer 701 is etched to form a second aluminum bump 401 as shown in FIG. 6D, and the convex terminal 200 is formed. Is configured.
  • the silicon wafer 210 is cut and divided into individual semiconductor chips 100, whereby the semiconductor device having the convex terminals 200 shown in FIG. 5 is completed.
  • the process of forming the convex terminals in this embodiment is the same as the process of manufacturing a normal semiconductor device, there is no need to separately perform the step of forming the convex terminals after dividing into semiconductor chips.
  • both or only the second conductor is made of a conductor such as gold, copper, titanium, or tantalum.
  • a conductive film for preventing oxidation such as a transparent conductive film may be formed on the most protruding end face 200 a of the convex terminal 200.
  • FIGS. 7 and 8A to 8D are identical to each other.
  • FIG. 7 is a view showing a structure near a convex terminal of a semiconductor device according to a fourth embodiment of the present invention, and portions corresponding to those in FIG. 1 are denoted by the same reference numerals. Is omitted.
  • the passivation film 91 which is a protective insulating film formed for protecting elements in the semiconductor device, has a thickness of about 0.8 micron ( ⁇ ) in a normal region.
  • the thickness is doubled to 1.6 ⁇ m ( ⁇ ⁇ ), and the height of the convex terminal 200 is increased. I have.
  • the second aluminum bump 904 is a conductor for forming the convex terminal 200.
  • This second aluminum bump 904 is formed by depositing by sputtering in a vacuum apparatus, and has a thickness of about 1 ⁇ m ⁇ .
  • the opening 901 b of the passivation film 901 is an opening for connecting the first aluminum layer 202, which is a conductor, to the second aluminum bump 904.
  • the height of the most protruding end face 200 a of the convex terminal 200 of this semiconductor device is determined by the thickness of the first aluminum layer 202 and the area under the bump of the passivation film 91. This value is the sum of the thickness of 9 O la and the thickness of the second aluminum bump 904.
  • the height of the protruding surface of the wiring portion is determined by adding the thickness of the normal region of the passivation film 901, the thickness of the polysilicon layer 205, the thickness of the insulating layer 210, and the thickness of the aluminum layer 212.
  • the height difference H is about 0.8 microns ( ⁇ ).
  • FIGS. 8A to 8D are diagrams showing steps of forming a convex terminal of the semiconductor device according to the fourth embodiment. Corrected form (Rule 91)
  • FIG. 8A is a cross-sectional view showing a structure of a portion manufactured in a normal semiconductor device manufacturing process.
  • a polysilicon layer 205, an insulating layer 210, and an aluminum layer 212 for wiring required for a semiconductor device and a gate of a transistor are formed.
  • a passivation film 901 for circuit protection is formed with a thickness of 1.8 microns ( ⁇ ), which is twice the normal thickness.
  • the second aluminum layer 1003 is formed on the entire surface by sputtering, and a photoresist 1002 is applied thereon, and patterning is performed so as to leave only the protruding terminal formation portion.
  • the second aluminum layer 1003 is etched to form a second aluminum bump 904 as shown in FIG. 8C.
  • the second aluminum bump 9 0 4 as a mask the PI apparatus using a mixed gas of CF 4 and ⁇ 2, a passivation film 9 0 1 is dry-etched. At this time, the power supply is reduced so that the second aluminum bumps 904 are not etched.
  • the thickness of the passivation film 901 is reduced to half except for the region 9 O la under the second aluminum bump 904. Etch to a degree.
  • the silicon wafer 2 13 is cut and divided into individual semiconductor chips 100, whereby the semiconductor device having the convex terminals 200 shown in FIG. 7 is completed.
  • the step of forming the convex terminal is performed in a normal
  • both or only the second conductor is formed by a conductor such as gold, copper, titanium, and tantalum. Is also good.
  • a conductive film for preventing oxidation such as a transparent conductive film may be formed on the most protruding end face 200 a of the convex terminal 200.
  • FIGS. 9A to 9D [Fifth Embodiment: FIGS. 9A to 9D]
  • a structure of a fifth embodiment and a surface treatment step thereof for preventing an increase in contact resistance due to surface oxidation of a convex terminal of a semiconductor device according to the present invention will be described with reference to FIGS. 9A to 9D. .
  • FIG. 9A shows a semiconductor device in which a first aluminum layer 202 and a second aluminum bump 201 are formed on a silicon wafer 211 as in the above embodiments.
  • a transparent conductive film 501 of ITO is continuously laminated on the entire surface by the same sputtering device.
  • 1 shows a cross-sectional view when formed.
  • FIG. 9B is a cross-sectional view showing a state where the photoresist 510 is applied to the entire surface and is patterned by exposure using a metal mask.
  • the transparent conductive film 501 is etched with a liquid such as ordinary acid, and as shown in FIG. 9C, the transparent conductive film 501 other than the convex terminal forming region is etched. The film 501 is removed.
  • the upper surface and the periphery of the second aluminum bump 201 forming the uppermost portion of the second aluminum bump 201 are completely covered by the transparent conductive film 501, and the surface of the second aluminum bump 201 is oxidized to increase the conduction resistance. Is prevented.
  • Forming the transparent conductive film on at least the most protruding end face of the convex terminal as described above can be applied to any of the second to fourth embodiments.
  • a metal film of gold, copper titanium, tantalum, or the like may be formed as a conductive film for preventing oxidation so as to cover the end surface of the convex terminal.
  • a semiconductor device having a convex terminal having a uniform height and a sufficient difference in height can be manufactured at low cost.
  • FIGS. 10 and 11 [Sixth embodiment: FIGS. 10 and 11]
  • FIGS. 10 and 11 illustrate an example in which the above-described semiconductor device of the third embodiment of the present invention is mounted on a glass substrate of a liquid crystal display panel.
  • FIG. 11 is a plan view of the convex terminal 200 and its surroundings, and
  • FIG. 10 is a cross-sectional view along the line AA in FIG.
  • the semiconductor chip 100 on which the convex terminals 200 are formed is mounted on the substrate 101 with an anisotropic conductive film (ACF) 110 interposed therebetween.
  • ACF anisotropic conductive film
  • the substrate 101 is not limited to a glass substrate but may be a circuit substrate such as a PCB.
  • an electrode 102 is formed of a transparent conductive film (ITO or the like) or a copper foil.
  • a large number of conductive particles 1 1 1 1 are dispersed in the AC F.
  • the semiconductor chip 100 is positioned and pressed against the substrate 101 with the AC F interposed therebetween, the semiconductor chip 100 is heated while being pressed.
  • the conductive particles 1 1 1 1 1 1 are sandwiched between them and deformed so as to be slightly crushed to electrically connect them.
  • Corrected form (Rule 91)
  • the minimum diameter of the conductive particles 111 is D s and the maximum diameter is DM
  • the difference in height between the most protruding end face of the convex terminal 200 of the semiconductor device and the other protruding surface is the minimum diameter. It is desirable to set the difference between D s and the maximum diameter DM (error in the diameter of the conductive particles) or more.
  • the second aluminum bump 401 is an aluminum layer that is the center of the convex terminal 200.
  • the height is higher by H than the height of the wiring portion, which is the next higher surface of the semiconductor device. If this height difference is small, the largest diameter conductive particles 111 are sandwiched between the electrode 102 and the wiring portion, so that the electrode 102 and the second aluminum bump 410 have the smallest diameter. The connection cannot be established via the conductive particles 1 1 1.
  • the height of the second aluminum bump 401 is formed so as to be larger than the difference between the maximum conductive particle diameter and the minimum particle diameter.
  • the minimum conductive particle diameter is 3 / Xm and the maximum conductive particle diameter is 5m
  • the height difference H is made larger than the difference 2 / m, and the electrode 102 and the second The aluminum bump 401 is connected.
  • FIG. 12 is a plan view in the case where the bump shape is an octagon and a cross-sectional view taken along the line BB.
  • Ra corresponds to the diameter of the step formed by the second aluminum bump 401.
  • Rb indicates the diameter of the step due to the thickness of the polysilicon layer 413 and the step formed by the insulating layer 412 below the bumps.
  • Rc indicates the diameter of the step caused by the step formed by the first aluminum layer 402.
  • h1 is the square passivation opening and h2 is the rectangular passivated corrected form (Rule 91)
  • H3 is the opening of the circular passivation.
  • the PV diameter a is the length of one side of the opening h1
  • the PV diameter b is the shortest diameter of the opening h2
  • the PV diameter c is the length of the opening h3.
  • the PV diameter a and the PV diameter c are smaller than 1.5 times the minimum conductive particle diameter Ds in FIG. At worst, only one conductive particle can enter any of the PV openings.
  • the opening h 2 having a ⁇ V diameter b is a rectangle smaller than 4.5 ⁇ m X 4.5 m.
  • the shape of the PV opening may be a circle or an ellipse. In that case, the major axis (diameter in the case of a circle) should be shorter than 1.5 times the minimum conductive particle diameter Ds.
  • the effective connection area is increased by an amount corresponding to the narrower PV opening, and the connection with the electrode on the substrate becomes easier. That is, the area required for the convex electrode is smaller than that of the conventional structure.
  • Normal conductive particles are 2 to 5 ⁇ m, so the area of the PV opening is 3 / z m x 3! 77.5 ⁇ m X 7.5 ⁇ or less, but it has been experimentally confirmed that the lower first aluminum layer 402 can be connected with low resistance.
  • a convex upper electrode was fabricated using a polysilicon layer used for wiring and a transistor gate in an integrated circuit and an insulating layer thereover according to Japanese Patent Application No. 10-43140. This is an example, but the same applies to other structures in Japanese Patent Application No. 10-43031.
  • FIG. 13 is a cross-sectional view and a plan view when the bump shape is an octagon.
  • the upper part is a plan view of the present embodiment.
  • the diameter ra indicates the thickness of the polysilicon layer 4 13 under the bump and the diameter of the step formed by the insulating layer 4 12 under the bump.
  • the diameter rb corresponds to the diameter of the step formed by the first aluminum bump 405.
  • the diameter rc indicates the diameter of the step caused by the passivation opening 203a.
  • the second aluminum bump 405 is formed so as to cover all steps formed for bump formation. For this reason, the area of the effective connection region 405a is increased as compared with the conventional case, and the integrated circuit and the electrode on the substrate are easily connected. That is, the area required for the convex electrode can be made narrower than in the conventional structure.
  • the structure in which the second aluminum bumps 405 cover all the steps is shown, but a structure in which only the first step is covered may be adopted. That is, the object is achieved by adopting a structure that covers the first step from the highest position of the second aluminum bump 405.
  • the semiconductor device according to the present invention is to securely connect the electrodes on the substrate at ACF mounting, it can be inexpensively manufactured integrated circuit comprising a structurally stable convex terminal c

Description

明 細 書 半 導 体 装 置
技 術 分 野
この発明は、 回路基板上に異方性導電膜を介して実装するのに適した凸状端子を 備えた半導体装置に関する。 背 景 技 術
近年、 回路基板に電気的及び機械的に接続可能な凸状端子 (バンプ) を備えた、 表面実装用の半導体装置が多用されるようになっている。
このような従来の半導体装置における凸状端子の構造およびその製造方法を、 第 1 4 A図乃至第 1 4 D図によって、 簡単に説明する。 なお、 これらの図は断面図で あるが、 断面を示す斜線は省略している。
第 1 4 D図は完成した半導体装置の凸状端子付近の断面を示す。
半導体チップに切り分けられるシリ コンウェハ 2 1 3の表面に、 半導体装置作製 上必要な層である選択酸化 (L O C O S ) 膜 2 0 4が設けられ、 その上にアルミ二 ゥム層 7 0 2が設けられている。 このアルミニウム層 7 0 2は半導体装置内の配線 および集積回路に外部から電源または信号を入出力するために必要な層である。 その上にシリ コンウェハ 2 1 3の全面を覆う絶縁保護膜であるパッシベ一ション 膜 7 0 3が設けられ、 そのアルミニウム層 7 0 2上に開口部 7 0 3 aが形成されて いる。 その開口部' 7 0 3 a内のアルミニウム層 7 0 2からその周辺のパッシベーシ ョン膜 7 0 3上に亘つて貴金属膜 7 0 5を介して、 マッシュルーム状の凸状端子で ある金バンプ 7 0 1が設けられている。
この図では、 1個の凸状端子のみを示しているが、 実際の半導体チップには、 多 数の凸状端子が設けられている。
第 1 4 A図から第 1 4 C図はこの半導体装置の製造途中の工程を示す図である。 第 1 4 A図に示すように、 シリコンウェハ 2 1 3上に、 選択酸化膜 2 0 4を形成 し、 その上の所要位置に、 内部の集積回路に接続されるアルミニウム層 7 0 2を形 成する。 そのアルミニウム層 7 0 2上を含むシリコンウェハ 2 1 3の全面を覆うパ ッシベーション膜 7 0 3を形成し、 そのアルミニウム層 7 0 2上に外部との接続を とるための開口部 7 0 3 aを形成する。
そして、 第 1 4 B図に示すように、 パッシベ一シヨン膜 7 0 3上およびアルミ二 ゥム層 7 0 2上の全面に貴金属膜 7 0 5を形成し、 さらにその上に選択的に (凸状 端子形成部を除いて) 感光性のレジス ト 7 1 0を形成する。
貴金属膜 7 0 5はチタンとタングステンの合金などの貴金属層であり、 アルミ二 ゥム層 7 0 2上に次の工程で形成される金バンプ 7 0 1を電解メツキ成長させるた めの電極としての役割と、 アルミニウム層 7 0 2と金バンプ 7 0 1の接続を良好に するための役割をもつ。
この貴金属膜 7 0 5は、 真空装置内で全面に積層して形成させる。
つぎに、 第 1 4 C図に示すように、 電解メツキ工程によってレジス ト 7 1 0が形 成されていない部分に金層を成長させ、 マッシュルーム状の凸状電極である金バン プ 7 0 1を形成する。
そして、 レジス ト 7 1 0を除去した後、 金バンプ 7 0 1をマスク として貴金属層 7 0 5を金バンプ 7 0 1の下側の部分のみを残して除去する。 第 1 4 D図はこの状 態の断面図である。
このような工程を経て、 シリコンウェハ 2 1 3上に金バンプ 7 0 1の凸状電極が 形成され、 そのシリ コンウェハ 2 1 3を単体の半導体チップに切断して、 半導体装 置を完成していた。
しかしながら、 このような従来の凸状端子を備えた半導体装置では、 凸状端子作 製のために工程管理が困難であるメツキ工程を採用しているため、 凸状端子の高さ が不均一になりやすい上に、 凸状端子の材料に高価な金を使用するためコス ト高と なっていた。
この発明は、 このような問題を解決するためになされたものであり、 半導体装置 の凸状電極を簡単に低価格で作製でき、 且つその高さを均一にできるようにするこ とを目的とする。
また、 このような半導体装置を、 異方性導電膜を介して回路基板に実装したとき、 凸状端子が回路基板上の配線と確実に電気的に接続できるようにするため、 凸状端 子の最も突出した端面の高さを半導体装置の他のいずれの部位の突出面よりも充分 に高くでき、 またその端面の有効面積を複数の導電粒子を捕獲できるように広くと れるようにすることも目的とする。 発 明 の 開 示
この発明上記の目的を達成するため、 集積回路を形成した半導体チップの表面に、 該集積回路に電源または信号を入出力するための凸状端子を備えた半導体装置にお いて、 その凸状端子が、 少なくともその最上部がスパッタリングにより形成され、 集積回路と電気的に接続された導電体からなり、 その最も突出した端面の上記半導 体チップの表面からの高さが、 他のいずれの部位の突出面よりも高く、 該凸状端子 の上記端面が表面酸化を防止する導電膜で被覆されているものである。
その表面酸化を防止する導電膜は、 透明導電膜である酸化インジウム錫 ( I T〇) 膜等の導電酸化膜又は貴金属膜とするとよい。
この半導体装置は、 半導体チップの表面に、 内部の集積回路と電気的に接続され た第 1の導電体と、 その第 1の導電体および前記半導体チップの表面を覆い、 上記 第 1の導電体上に開口部を形成した保護絶縁膜と、 該保護絶縁膜上にスパッタリン グによって形成されて、 上記開口部を通して上記第 1の導電体と導通する第 2の導 電体とを設け、 上記凸状端子を、 上記第 1の導電体および第 2の導電体と、 その第 2の導電体の上面を被覆する導電酸化膜又は貴金属膜とによって形成することがで さる。 上記第 1の導電体と第 2の導電体は、 いずれもアルミニウムによって形成するこ とができる。
また、 半導体チップの表面に、 内部の集積回路と電気的に接続された第 1の導電 体と、 その第 1の導電体および半導体チップの表面を覆い、 第 1の導電体上に開口 部を形成した第 1の保護絶縁膜と、 その第 1の保護絶縁膜上にスパッタリングによ つて形成され、 該第 1の保護絶縁膜の開口部を通して第 1の導電体と導通する第 2 の導電体と、 該第 2の導電体および上記第 1の保護絶縁膜の表面を覆い、 第 2の導 電体上に開口部を形成した第 2の保護絶縁膜と、 その第 2の保護絶縁膜上にスパッ タリングによって形成され、 該第 2の保護絶縁膜の開口部を通して上記第 2の導電 体と導通する第 3の導電体とを設け、 上記凸状端子を、 上記第 1の導電体, 第 2の 導電体, および第 3の導電体によって構成し、 その最も突出した端面の上記半導体 チップの表面からの高さが、 他のいずれの部位の突出面よりも高くなるように形成 するとよい。
この場合も、 上記第 1の導電体, 第 2の導電体, およぴ第 3の導電体を、 いずれ もアルミニウムによって形成することができる。
また、 上記凸状端子の最も突出した端面を、 表面酸化を防止する導電膜、 すなわ ち導電酸化膜又は貴金属膜で被覆するのが望ましい。
この発明はまた、 集積回路を形成した半導体チップの表面に、 配線と トランジス タのゲートに使われるポリシリコン層とその上を覆う絶縁層および該絶縁層上に形 成される配線用導電体層と、 上記該集積回路に電源または信号を入出力するための 凸状端子とを備えた半導体装置を次のように構成する。
上記半導体チップの表面の凸状端子を形成する部位に、 上記ポリシリ コン層と絶 縁層と同じ材料からなるポリシリ コン膜と絶縁膜を設け、 その絶縁膜を覆い、 上記 配線用導電体層と電気的に接続される第 1の導電体を該配線用導電体層と同じ材料 でスパッタリングによって形成し、 その第 1の導電体と配線用導電体層および上記 半導体チップの表面を覆い、 上記第 1の導電体上に開口部を設けた保護絶縁膜を形 成し、 その保護絶縁膜上に、 上記開口部を通して上記第 1の導電体と導通する第 2 の導電体をスパックリングによって形成する。
そして、 上記凸状端子を、 上記ポリシリコン膜と絶縁膜および上記第 1の導電体 と第 2の導電体とによって構成し、 その最も突出した端面の前記半導体チップの表 面からの高さが、 他のいずれの部位の突出面よりも高くなるように形成する。
この場合も、 上記第 1の導電体と第 2の導電体は、 いずれもアルミニウムによつ て形成することができる。
また、 上記凸状端子の最も突出した端面を、 表面酸化を防止する導電膜、 すなわ ち導電酸化膜又は貴金属膜で被覆するのが望ましい。
上記凸状端子を、 上記第 1の導電体と、 その上を覆う保護絶緣膜に形成された開 口部を通して上記第 1の導電体と導通する第 2の導電体とによって構成する場合、 上記保護絶縁膜の第 2の導電体の下部領域の膜厚を他の領域の膜厚より厚く形成す ることにより、 凸状端子の高さを高くすることができる。
この発明はまた、 集積回路を形成した半導体チップの表面に、 該集積回路に電源 または信号を入出力するための凸状端子を備え、 多数の導電粒子を含む異方性導電 膜を介して基板上に実装される半導体装置を、 次のように構成する。
上記半導体チップの表面に、 上記集積回路と電気的に接続された第 1の導電体と、 該第 1の導電体および上記半導体チップの表面を覆い、 第 1の導電体上に透孔を形 成した保護絶縁膜と、 その保護絶縁膜上にスパッタリングによって形成され、 前記 透孔を通して前記第 1の導電体と接続する第 2の導電体とを設け、 上記凸状端子を、 上記第 1の導電体と第 2の導電体によって構成し、 その最も突出した端面の上記半 導体チップの表面からの高さが、 他の部位の最も高い突出面よりも、 上記異方性導 電膜に含まれる多数の導電粒子の径の誤差以上高くなるように形成する。
その保護絶縁膜に形成される透孔の最大開口寸法を、 上記異方性導電膜に含まれ る多数の導電粒子の最小径の 1 . 5倍以内にするのが望ましい。
さらに、 上記保護絶縁膜に形成される透孔を、 正方形, 長方形, 多角形, 円形, および楕円形のうちのいずれかの形状にするか、 あるいはこれら異なる形状の透孔 を複数形成してもよい。
上記第 2の導電体を、 上記第 1の導電体の段差に起因して上記保護絶縁膜に段差 が形成される範囲より広い領域に形成することにより、 凸状端子の最も突出した端 面の有効面積を大きくすることができる。 図面の簡単な説明
第 1図は、 この発明による半導体装置の第 1の実施形態を示す 2層アルミニウム 構造の凸状端子付近の断面図である。
第 2 A図乃至第 2 F図は、 その半導体装置の凸状端子の作製工程を示す断面図で ある。
第 3図は、 この発明による半導体装置の第 2の実施形態を示す 3層アルミニウム 構造の凸状端子付近の断面図である。
第 4 A図乃至第 4 F図は、 その半導体装置の凸状端子の作製工程を示す断面図で ある。
第 5図は、 この発明による半導体装置の第 3の実施形態を示すポリシリコン層と 2層アルミニウム構造の凸状端子付近の断面図である。
第 6 A図乃至第 6 D図は、 その半導体装置の凸状端子の作製工程を示す断面図で ある。
第 7図は、 この発明による半導体装置の第 4の実施形態を示す厚膜パッシベーシ ョン膜による凸状端子付近の断面図である。
第 8 A図乃至第 8 D図は、 その半導体装置の凸状端子の作製工程図である。 第 9 A図乃至第 9 D図は、 この発明による半導体装置の第 5の実施形態における 凸状端子の表面処理工程を示す断面図である。 第 1 0図は、 この発明による半導体装置の回路基板への実装例構造の例を示す要 部断面図である。
第 1 1図は、 第 1 0図に示した凸状端子および保護絶縁膜の平面図である。
第 1 2図は、 この発明による半導体装置の第 6の実施形態における凸状端子付近 の平面図と断面図を対応させた図である。
第 1 3図は、 この発明による半導体装置の第 7の実施形態における凸状端子付近 の平面図と断面図を対応させた図である。
第 1 4 A図乃至第 1 4 D図は、 従来の半導体装置における凸状端子の製作工程お よび構造を示す断面図である。 発明を実施するための最良の形態
この発明をより詳細に説明するために、 この発明の好ましい実施の形態を図面を 用いて説明する。
〔第 1の実施形態 :第 1図および第 2 A図から第 2 F図〕
第 1図は、 この発明による半導体装置の第 1の実施形態の凸状端子付近のみを示 す断面図である。
この半導体装置は、 半導体チップ 1 0 0の表面に選択酸化 (L O C O S ) 膜 2 0 4が形成されている。 この選択酸化膜 2 0 4は半導体チップに切断する前のシリコ ンウェハの表面の酸化層であり熱処理することによって形成され、 半導体装置作製 上必要な層である。 なお、 この半導体チップ 1 0 0には、 図示を省略しているが、 多数のトランジスタ等の能動素子及びコンデンサゃ抵抗等の受動素子とそれらを接 続する配線からなる集積回路が形成されている。
選択酸化膜 2 0 4上には、 外部から電源や信号の入出力をするための電極パッ ド となる第 1の導電体である第 1アルミニウム層 2 0 2が形成されている。 アルミ二 ゥム層 2 1 2は、 半導体装置内の配線のためのアルミニウム層であり、 第 1アルミ 二ゥム層 2 0 2とともに、 真空装置で堆積させることによって同時に形成された後. 訂正された用紙 (規則 91) パターユングされる。 これらのアルミニウム層 202, 2 1 2は、 通常 1 ミクロン (μ m) 程度の厚さを有する。
ポリシリコン層 20 5は半導体装置の配線であり、 真空装置で堆積させることに よって形成され、 通常 0. 5ミクロン (; um) 程度の厚さがある。
絶縁層 2 1 0は、 ポリシリ コン層 20 5の上に形成される絶縁膜であり、 ポリシ リコン層 20 5を熱処理することによって形成され、 通常 0. 5 ミクロン (μπι) 程度の厚さの層である。
パッシベーション膜 20 3は、 半導体装置内の素子を保護する目的で形成された 保護絶縁膜である。
このパッシベ一ション膜 203は、 真空装置内で堆積させることによって形成さ れ、 通常 0. 8ミクロン (μπι) 程度の厚さがある。 このパッシベ一シヨン膜 20 3には、 第 1アルミニウム層 20 2上に開口部 203 aが形成されている。
第 2アルミニウムバンプ 20 1は、 凸状端子 200を形成する導電体であり、 パ ッシベーション膜 20 3の開口部 20 3 aに真空装置内でスパッタリングによって 形成され、 その開口部 20 3 aを通して第 1のアルミニウム層 20 2と導通してお り、 2ミクロン (μπι) 程度の厚さがある。
凸状端子 (バンプ) 200の最も突出した端面 200 aの半導体チップ 1 00の 表面からの高さは、 第 1アルミニウム層 20 2の厚さと、 パッシベーシヨン膜 20 3の厚さと、 第 2アルミニウムバンプ 20 1の厚さとを加えた値となり、 他の部位 の突出面となるパッシベ一シヨン膜 20 3と、 ポリシリ コン層 20 5と、 絶縁層 2 1 0と、 アルミニウム層 2 1 2との厚さを加えた値より、 第 1図に Hで示す寸法だ け高くなる。 この高さの差 Hは、 少なく とも 1 ミクロン ( m) 程度となる。 第 2 A図乃至第 2 F図は、 第 1図に示した半導体装置の凸状端子作成工程を示す パッシベーシヨン膜 20 3の開口部付近の断面図であるが、 断面を示す斜線は省略 している。
訂正された用紙 (規則 91) 第 2 A図は、 シリ コンウェハ 2 1 3に選択酸化 (L O C O S ) 膜 2 0 4および図 示しない集積回路を作成し、 第 1アルミニウム層 2 0 2および開口部 2 0 3 aを有 するパッシベーション膜 2 0 3を形成した後、 スパッタリング等の真空装置中のァ ルゴン原子によって、 第 1アルミニウム層 2 0 2の開口部 2 0 3 a上に形成されて いる酸化層を、 スパッタリング等の真空装置中のアルゴン原子によって取り除く処 理 (パックスパッタ処理) をした後、 連続的にスパッタリ ング装置によって全面に 第 2アルミニウム層 2 1 4を形成した状態を示す。
第 2 B図は、 その第 2アルミニウム層 2 1 4の全面に表面酸化を防止する導電膜 である透明導電膜 2 0 7を形成した状態を示す。 この透明導電膜 2 0 7は、 酸化ィ ンジゥム錫 ( I T O ) によって形成できるが、 表面酸化を防止する導電膜として、 金などの貴金属や、 銅チタン, タンタルなどを用いてもよい。
そして、 第 2 C図に示すように、 この透明導電膜 2 0 7を形成した第 2アルミ二 ゥム層 2 1 4の全面に感光性のレジスト 2 0 8を塗布し、 メタルマスクによる露光 によってパターエングすると第 2 D図に示す状態になる。
そして、 このレジス ト 2 0 8をマスクにして真空エッチング装置によってエッチ ングして、 第 2 E図に示すように透明導電膜 2 0 7と第 2アルミニウム層 2 1 4を パターユングし、 第 2の導電体である第 2アルミニウムバンプ 2 0 1を形成する。 その後、 レジスト 2 0 8を取り除いた状態を第 2 F図に示す。 そして、 シリコン ゥヱハ 2 1 3を切断して個々の半導体チップに 1 0 0にすれば、 第 1図に示した凸 状端子 2 0 0を備えた半導体装置が完成する。
この、 半導体装置の凸状端子 2 0 0の構造は、 通常の半導体装置の製造工程中で 容易に形成できる構造である。
ここで、 この実施形態における第 1およぴ第 2の導電体であるアルミニゥムに代 えて、 金, 銅, チタン, タンタル等の導電体を使用してもよい。
〔第 2の実施形態:第 3図および第 4 A図乃至第 4 F図〕 訂正された用紙 (規則 91) 第 3図はこの発明による半導体装置の第 2の実施形態を示す第 1図と同様な図で あり第 1図と対応する部分には同一の符号を付して、 その説明を省略する。
この実施形態は、 第 1図に示した半導体装置より、 凸状端子 2 0 0の高さの差 H を大きくする目的で、 第 1図に示した構造上にさらに第 3アルミニウムバンプ 3 1 4を設けて凸状端子 2 0 0を構成したものである。
すなわち、 この半導体装置は、 パッシベーシヨン膜 2 0 3および開口部 2 0 3 a 上に、 第 2の導電体である第 2アルミニウムバンプ 3 0 1を設け、 その第 2アルミ ニゥムバンプ 3 0 1上に開口部 3 1 3 aを設けた第 2パッシベ一ション膜 3 1 3を パッシベーション膜 2 0 3上に形成している。
そして、 その第 2パッシベーション膜 3 1 3上にその開口部 3 1 3 aを通して第 2アルミニウムバンプ 3 0 1 と導通する第 3アルミニウムバンプ 3 1 4を設けて、 凸状端子 2 0 0を構成している。
したがって、 この凸状端子 (バンプ) 2 0 0の最も突出した端面 2 0 0 aの高さ は、 第 1アルミニウム層 2 0 2の厚さと、 パッシベ一シヨン膜 2 0 3の厚さと、 第 2アルミニウムバンプ 3 0 1の厚さと、 第 2パッシベーション膜 3 1 3の厚さと、 第 3アルミニウムバンプ 3 1 4の厚さとを加えた値となる。 一方、 配線部の突出面 の高さは、 パッシべ一ション膜 2 0 3とポリシリコン層 2 0 5と絶縁層 2 1 0とァ ルミ二ゥム層 2 1 2とパッシベーション膜 2 0 3と第 2パッシベーション膜 3 1 3 の厚さを加えた値となり、 その高さの差 Hが第 1図に示した半導体装置より大きく なる。
この構造は、 第 1の実施形態に示した工程と同様の工程で、 第 2アルミニウムバ ンプ 3 0 1の上に第 2パッシベーション膜 3 1 3および第 3アルミニウムバンプ 3 1 4を形成することによって得られる。
第 4 A図乃至第 4 F図は、 この実施形態の半導体装置の凸状端子を作製する工程 を示す図である。
訂正された用紙 (規則 91) 第 4 A図は、 前述の第 1の実施形態で説明した工程と同様な工程で作製される断 面構造を示す画、 第 1の実施形態における第 2アルミニウムバンプ 2 0 1に代えて、 それより厚さの薄い第 2アルミニウムバンプ 3 0 1を形成している。 これはアルミ ニゥム薄膜の応力緩和とコス ト削減のためである。
第 4 B図は、 第 4 A図の状態からその全面に保護絶縁膜である第 2パッシベ一シ ヨン膜 3 1 3を積層形成した状態を示す。
この第 2パッシベーション膜 3 1 3は、 パッシベーション膜 2 0 3と同じ材質で 厚さもほぼ同じである。
その後、 その第 2パッシベーション膜 3 1 3上の全面にフォトレジス ト 8 0 2を 塗布し、 第 4 C図に示すように、 第 2アルミニウムバンプ 3 0 1上の凸状端子形成 部に開口部 8 0 2 aを形成するようにパターユングする。
そして、 第 4 D図に示すように、 第 2パッシベーション膜 3 1 3をフォ トレジス ト 8 0 2をマスクとしてその開口部 8 0 2 a内の部分をエッチング除去し、 凸状端 子形成部位に開口部 3 1 3 aを形成する。
さらに、 この開口部 3 1 3 a内を含む第 2パッシベーション膜 3 1 3上の全面に、 第 3アルミニウム層 8 0 5を形成し、 フォ トレジス ト 8 0 4を塗布して、 凸状端子 形成部位にのみ残るようにパターユングすると、 第 4 E図に示す状態になる。
その第 3アルミニウム層 8 0 5を形成する際、 第 2パッシベーション膜 3 1 3の 開口部 3 1 3 a内に露出している第 2アルミニウムバンプ 3 0 1の表面に酸化膜が 形成されていることがあるので、 真空中でバックスパッタ処理して、 その酸化膜を 除去するのが望ましい。
そして、 そのフォ トレジス ト 8 0 4をマスクとして、 第 3アルミニウム層 8 0 5 をエッチングし、 第 4 F図に示すように第 3アルミニウムバンプ 3 1 4を形成し、 凸状端子 2 0 0を完成する。 その後、 このシリ コンゥヱハ 2 1 3を切断して、 個々 の半導体チップ 1 0 0に分割することにより、 第 3図に示した半導体装置が完成す W 2
1 2
る。
この実施形態の凸状端子 2 0 0の構造も、 通常の半導体装置の製造工程中で容易 に形成できる構造である。
ここで、 この実施形態においては、 第 1, 第 2, 第 3の導電体としてアルミユウ ムを使用したので、 安価に製造できるが、 凸状端子の端面が酸化すると、 回路基板 への実装時に、 回路基板側との電気的接続抵抗が高くなる。 そのため、 前述の実施 形態と同様に、 凸状端子 2 0 0の最も突出した端面 2 0 0 a、 すなわち第 3アルミ ニゥムバンプ 3 1 4の上面に、 酸化防止用の導電膜として、 例えば I T Oによる透 明導電膜や、 金等の貴金属膜を形成しておく とよい。
なお、 これらの第 1, 第 2 , 第 3の導電体の全部、 あるいは第 3アルミニウムバ ンプ 3 1 4のみを、 金, 銅, チタン, タンタル等の導電体にしてもよい。
また、 同じ手法で第 4層, 第 5層と同じ工程の繰り返しによって導電体層を積層 することによって、 凸状端子の高さをさらに高くすることもできる。
〔第 3の実施形態:第 5図および第 6 A図乃至第 6 D図〕
第 5図は、 この発明による半導体装置の第 3の実施形態を示す第 1図と同様な断 面図であり、 第 1図と対応する部分には同一の符号を付してあり、 それらの説明は 省略する。
この実施形態は、 半導体装置中の配線と トランジスタのゲートに使われるポリシ リコン層とその上の絶縁層を利用して、 凸状端子の高さを高くするようにしたもの である。
バンプ下ポリシリコン層 4 1 3は、 半導体装置内の配線と トランジスタのゲート に使われるポリシリコン層 2 0 5と同じ材料によって、 ポリシリコン層 2 0 5が形 成される時に真空装置内でスパッタリング等によって堆積させることによって、 同 時に形成され、 通常 0 . 5ミクロン (μ πι) 程度の厚さがある。
バンプ下絶縁層 4 1 2は、 バンプ下ポリシリコン層 4 1 3の上に形成される絶縁 訂正された用紙 (規則 91) 膜であり、 バンプ下ポリシリコン層 4 1 3を熱処理することによって通常 0 . 5ミ クロン (μ m) 程度の厚さで、 ポリシリ コン層 2 0 5上の絶縁層 2 1 0と同時に形 成される。
第 1アルミニウム層 4 0 2も、 半導体装置内の配線のためのアルミニウム層 2 1 2と同時に、 真空装置内でスパッタリングによって堆積させることにより形成され、 通常 1 ミクロン (/z m) 程度の厚さがある。
パッシベーション膜 4 0 3は、 半導体装置内の素子を保護する目的で形成された 保護絶縁膜であり、 真空装置によって堆積されて形成され、 通常 0 . 8ミクロン ( μ m) 程度の厚さがある。
第 2アルミニウムバンプ 4 0 1は、 凸状端子 2 0 0を形成するための導電体であ り、 やはり真空装置内でスパッタリングによって堆積させることにより形成され、 2 ミクロン ( m) 程度の厚さがある。
パッシベ一ション膜 4 0 3の開口部 4 0 3 aは、 導電体である第 1アルミニウム 層 4 0 2と、 外部との接続をとるための第 2アルミニウムバンプ 4 0 1 との導通を とるための開口である。
この実施形態における凸状端子 2 0 0の最も突出した端面 2 0 0 aの高さは、 第 1アルミニウム層 4 0 2の厚さと、 パッシベーシヨン膜 4 0 3の厚さと、 第 2アル ミニゥムバンプ 4 0 1の厚さと、 バンプ下ポリシリコン層 4 1 3の厚さと、 バンプ 下絶縁層 4 1 2の厚さとを加えた値となる。 一方配線部の突出面の高さは、 ポリシ リコン層 2 0 5と、 絶縁層 2 1 0と、 アルミニウム層 2 1 2と、 パッシベーション 膜 4 0 3の各厚さを加えた値となり、 その高さの差 Hが得られる。
この半導体装置の構造は、 半導体装置の製造工程上、 トランジスタのゲートや配 線として使われるポリシリコン層の形成工程において、 凸状端子の形成位置にもバ ンプ下ポリシリコン層 4 1 3およびバンプ下絶縁層 4 1 2を形成しておけば、 第 1 の実施の形態で説明したのと同様な工程で、 第 2アルミニウムバンプ 4 0 1を形成
訂正された用紙 (規則 91) することができる。
第 6 A図乃至第 6 D図は、 この実施形態の半導体装置における凸状端子を作成す る工程を示す断面図である。
第 6 A図は、 通常の半導体装置の作成工程で作製される部分の断面構造を示す図 である。
ここで、 バンプ下ポリシリ コン層 4 1 3、 バンプ下絶縁層 4 1 2、 および第 1ァ ルミ二ゥム層 4 0 2は、 それぞれ半導体装置内での配線やトランジスタのゲートに 必要なポリシリ コン層 2 0 5、 絶縁層 2 1 0、 およびアルミニウム層 2 1 2が形成 される工程において同時に形成される。
第 6 B図は、 パッシベ一ション膜 4 0 3の開口部 4 0 3 a内に露出する第 1アル ミニゥム層 4 0 2の表面を、 真空中にてバックスパッタ処理して、 酸化膜除去した 後、 第 2アルミニウム層 7 0 1をスパッタリングによって積層したときの断面構造 を示す。
第 6 C図は、 第 6 B図の第 2アルミニウム層 7 0 1上にフォトレジス ト 7 0 2を 塗布して、 凸状端子形成部にのみ残すようにパターユングした状態を示す。
そして、 そのフォトレジス ト 7 0 2をマスクにして、 第 2アルミニウム層 7 0 1 をエッチングし、 第 6 D図に示すように第 2アルミニウムバンプ 4 0 1を形成し、 凸状端子 2 0 0を構成する。
その後、 このシリ コンゥヱハ 2 1 3を切断して、 個々の半導体チップ 1 0 0に分 割することにより、 第 5図に示した凸状端子 2 0 0を備えた半導体装置が完成する。
このように、 この実施形態における凸状端子の作成工程は、 通常の半導体装置 の製造工程と同じであるので、 半導体チップに分割した後に凸状端子を形成するェ 程を別に行なう必要がなくなる。
ここで、 この実施形態における第 1 , 第 2の導電体であるアルミニウムに代えて、 その両方あるいは第 2の導電体のみを、 金, 銅, チタン, タンタル等の導電体によ
訂正された用紙 (規則 91) つて形成してもよい。
また、 凸状端子 2 0 0の最も突出した端面 2 0 0 aに透明導電膜等の酸化防止用 の導電膜を形成するとよい。
〔第 4の実施形態 :第 7図および第 8 A図乃至第 8 D図〕
第 7図は、 この発明による半導体装置の第 4の実施形態の凸状端子付近の構造を 示す図であり、 第 1図と対応する部分には同一の符号を付してあり、 それらの説明 は省略する。
この実施形態においては、 半導体装置内の素子を保護するために形成される保護 絶縁膜であるパッシベーシヨン膜 9 0 1を、 通常領域では 0 . 8 ミクロン (μ πι ) 程度の厚さであるが、 第 2アルミニウムバンプ 9 0 4の下側になるバンプ下領域 9 0 l aでは 2倍の 1 . 6ミクロン (μ πι ) の厚さに形成し、 凸状端子 2 0 0の高さ を高く している。
第 2アルミニウムバンプ 9 0 4は、 凸状端子 2 0 0を形成するための導電体であ る。 この第 2アルミニウムバンプ 9 0 4は、 真空装置内でスパッタリングにより堆 積させることによって形成され、 1 ミクロン μ π 程度の厚さがある。
パッシベ—ション膜 9 0 1の開口部 9 0 1 bは、 導電体である第 1アルミニウム 層 2 0 2と第 2アルミニウムバンプ 9 0 4との接続をとるための開口である。 この半導体装置の凸状端子 2 0 0の最も突出した端面 2 0 0 aの高さは、 第 1ァ ルミ二ゥム層 2 0 2の厚さと、 パッシベ一ション膜 9 0 1のバンプ下領域 9 O l a の厚さと、 第 2アルミニウムバンプ 9 0 4の厚さとを加えた値になる。 一方、 配線 部の突出面の高さは、 パッシベーシヨン膜 9 0 1の通常領域の厚さと、 ポリシリコ ン層 2 0 5と絶縁層 2 1 0の厚さと、 アルミニウム層 2 1 2の厚さとを加えた値と なり、 その高さの差 Hは、 0 . 8ミクロン (μ πι) 程度となる。
第 8 Α図乃至第 8 D図は、 この第 4の実施形態の半導体装置の凸状端子を作成す る工程を示す図である。 訂正された用紙 (規則 91) 第 8 A図は、 通常の半導体装置製造工程で作製される部分の構造を示す断面図で ある。
シリ コンゥヱハ 2 1 3上に、 半導体装置に必要な配線やトランジスタのゲートの ためのポリシリ コン層 2 0 5 , 絶縁層 2 1 0およびアルミニウム層 2 1 2が形成さ れている。
さらに、 回路保護のためのパッシベーシヨン膜 9 0 1が、 通常の 2倍の膜厚であ る 1 . 8 ミクロン (μ πι) の厚さで形成されている。
このパッシベーション膜 9 0 1の開口部 9 0 1 b内に露出している第 1アルミ二 ゥム層 2 0 2の表面を、 真空中にてバックスパッタ処理した後、 第 8 B図に示すよ うに、 全面に第 2アルミニウム層 1 0 0 3をスパッタリングによって積層形成し、 その上にフォ トレジス ト 1 0 0 2を塗布し、 凸状端子形成部位のみを残すようにパ ターニングする。
そして、 そのフォトレジス ト 1 0 0 2をマスクにして、 第 2アルミニウム層 1 0 0 3をエッチングし、 第 8 C図に示すように第 2アルミニウムバンプ 9 0 4を形成 する。
その後、 第 2アルミニウムバンプ 9 0 4をマスクにして、 C F 4と〇2の混合ガス を用いた P I装置によって、 パッシベーション膜 9 0 1をドライエッチングする。 その際、 第 2アルミニウムバンプ 9 0 4がエッチングされないように、 電力の供給 を少なくする。
このドライエッチングによって、 第 8 D図に示すように、 パッシベ一シヨン膜 9 0 1を、 第 2アルミニウムバンプ 9 0 4の下側になっている領域 9 O l aを除いて、 その膜厚が半分程度になるようにエッチングする。
その後、 シリコンゥヱハ 2 1 3を切断して個々の半導体チップ 1 0 0に分割すれ ば、 第 7図に示した凸状端子 2 0 0を備えた半導体装置が完成する。
この実施形態によっても、 上記の通りその凸状端子の作成工程が通常の半導体装
訂正された用紙 (規則 91) 置の作製工程と同じであるので、 半導体チップに分割した後に凸状端子を形成する 必要がない。 すなわち、 この半導体装置は、 その凸状端子を通常の半導体装置の製 造工程中で容易に形成できる。
ここで、 この実施形態における第 1 , 第 2の導電体であるアルミニウムに代えて、 その両方あるいは第 2の導電体のみを、 金, 銅, チタン, タンタル等の導電体によ つて形成してもよい。
また、 凸状端子 2 0 0の最も突出した端面 2 0 0 aに透明導電膜等の酸化防止用 の導電膜を形成するとよい。
〔第 5の実施形態: 第 9 A図乃至第 9 D図〕
この発明による半導体装置の凸状端子の表面酸化による接触抵抗の上昇を防ぐよ うにした、 第 5の実施形態の構造とその表面処理工程を、 第 9 A図乃至第 9 D図に よって説明する。
この実施形態においては、 凸状端子の表面を透明導電膜で被覆するようにした場 合の処理工程を示す。
第 9 A図は、 前述の各実施形態のようにして、 シリコンウェハ 2 1 3上に第 1ァ ルミ二ゥム層 2 0 2と第 2アルミニウムバンプ 2 0 1を形成した半導体装置に対し て、 真空装置中においてバックスパッタリング処理を行って、 第 2アルミニウムパ ンプ 2 0 1の表面を清浄にした後、 連続的に同じスパッタリング装置によって、 そ の全面に I T Oによる透明導電膜 5 0 1を積層して形成したときの断面図を示す。 第 9 B図は、 フォトレジス ト 5 1 0を全面に塗布し、 メタルマスクによる露光に よってパターユングしたときの断面図を示す。
そして、 そのフォトレジス ト 5 1 0をマスクとして、 通常の酸などの液によって 透明導電膜 5 0 1をエッチングして、 第 9 C図に示すように、 凸状端子形成領域以 外の透明導電膜 5 0 1を除去する。
そして、 フォトレジス ト 5 1 0を除去すると、 第 9 D図に示すように、 凸状端子 丁正された用紙 (規則 91) W 9/44228
18
の最上部を構成する第 2アルミニウムバンプ 201の上面および周囲が、 透明導電 膜 501によって完全に覆われた状態になり、 第 2アルミニウムバンプ 201の表 面が酸化して、 導通抵抗が增加することが防止される。
このように凸状端子の少なく とも最も突出する端面に透明導電膜を形成するのは、 第 2乃至第 4のいずれの実施形態にも適用できる。
I TOによる透明導電膜に代えて、 金, 銅チタン, タンタル等の金属膜を酸化防 止用の導電膜として、 凸状端子の端面を被覆するように形成してもよい。
この発明によれば、 高さが均一で且つ充分な高さの差を有する凸状端子を備えた 半導体装置を安価に作製できる。
〔第 6の実施形態:第 10図及び第 1 1図〕
次に、 この発明による半導体装置を異方性導電膜を用いて回路基板に実装する場 合の実施形態について説明する。
第 10図及び第 1 1図は、 前述したこの発明の第 3実施形態の半導体装置を、 液 晶表示パネルのガラス基板上に実装する場合の例によって説明する。 第 1 1図は凸 状端子 200とその周囲の平面図であり、 第 10図は第 1 1図の A— A線に沿う断 面図である。
凸状端子 200が形成された半導体チップ 100を、 基板 101に異方性導電膜 (ACF) 1 10を介在させて実装する。
基板 101はガラス基板に限らず PCB等の回路基板でもよい。 その基板 101 の表面に、 電極 102が透明導電膜 ( I TO等) あるいは銅箔などによって形成さ れている。
AC F中には多数の導電粒子 1 1 1を分散しており、 その AC Fを挟んで、 基板 101に対して半導体チップ 100を位置決めして押圧しながら加熱すると、 電極 102と ώ状端子 200との間に導電粒子 1 1 1が挟持され、 若干潰れるように変 形して、 両者を電気的に接続する。 訂正された用紙 (規則 91) 導電粒子 1 1 1の最小径を D s, 最大径を DM としたとき、 半導体装置の凸状端 子 2 0 0の最突出した端面と他の突出面との高さの差が、 最小径 D s と最大径 DM の差 (導電粒子の径の誤差) 以上にするのが望ましい。
第 2アルミニウムバンプ 4 0 1は凸状端子 2 0 0の中心となるアルミ層である。 その高さは、 この半導体装置の次に高い面である配線部分の高さより Hだけ高い。 この高さの差が小さいと最大径の導電粒子 1 1 1が電極 1 0 2と配線部との間に挟 まれるため、 電極 1 0 2と第 2アルミニウムバンプ 4 0 1 とは最小径の導電粒子 1 1 1を介しては接続できなくなる。
一方、 凸状端子 2 0 0の高さを高くするためには、 第 2アルミニウムバンプ 4 0 1の積層時間およびエッチング時間が長くなりコス ト高となるばかりではなく、 形 成後の応力によるクラックやひずみにつながる。 すなわち、 必要最低限のバンプ高 さにすることは重要である。
本実施例では第 2アルミニウムバンプ 4 0 1の高さが最大導電粒子径と最小粒子 径の差より大きくなるように形成している。 すなわち、 最小導電粒子径が 3 /X mで あり最大導電粒子径が 5 mであった場合、 高さの差 Hをその差である 2 / mより 大きく して必ず電極 1 0 2と第 2アルミニウムバンプ 4 0 1を接続させる。
〔第 7の実施形態:第 1 2図)
次に、 パッシベーシヨン開口を工夫することによって接続有効領域を広げた場合 の実施例を示す。 第 1 2図はそのバンプ形状が八角形の場合の平面図とその B— B 線に沿う断面図である。
図中、 上部に描かれているのは本実施例の平面図である。 R aは第 2アルミニゥ ムバンプ 4 0 1の形成する段差の径に相当する。 R bは凸状端子がポリシリ コン層 4 1 3の厚みとバンプ下絶縁層 4 1 2の形成する段差に起因する段差の径を示す。 R cは第 1アルミニウム層 4 0 2の形成する段差に起因する段差の径を示す。 h 1は正方形のパッシベーションの開口部分であり、 h 2は長方形のパッシベー 訂正された用紙 (規則 91) シヨンの開口部分であり、 h 3は円形のパッシベーシヨンの開口部分である。 P V 径 aは開口 h 1の 1辺の長さであり、 P V径 bは開口 h 2の最も短い径であり、 P V径 cは開口 h 3径の長さである。
P V径 aおよび P V径 cは第 1 0図の最小導電粒子径 D sの 1 . 5倍より小さレ、。 いずれの P V開口部にも導電粒子は最悪でもひとつしか入り込まない。
P V径 bの開口 h 2のような長方形の場合は長辺の長さを最小導電粒子径 D sの 1 . 5倍より小さくすれば最小導電粒子が 1つしか入り込むことはない。 例えば最 小導電粒子径 D s力 S 3 μ mであった場合は Ρ V径 bの開口 h 2は 4 . 5 μ m X 4 . 5 mより小さな長方形とする。 また、 図示はしていないが P V開口の形状は円でも良いし楕円でも良い。 その場 合は長軸 (円の場合は直径) が最小導電粒子径 D sの 1 . 5倍より短くする。
この発明によって P V開口部が狭くなった分だけ接続有効領域は広くなり基板上 の電極と接続しやすくなる。 すなわち、 従来の構造に比べて凸型電極に要する領域 が狭くて済む。
通常の導電粒子は 2〜 5 μ mであるので P V開口部の領域は 3 /z m x 3 !〜 7 . 5 ζ m X 7 . 5 μ πι以下となるが、 下部の第 1アルミニウム層 4 0 2とは低抵抗に て接続できることは実験的に確認されている。
なお、 従来の領域は従来例で示した構造によって形成されている領域であるので ここでは説明を割愛する。 また、 本実施例は特願平 1 0— 4 3 1 4 0号による集積 回路中の配線と トランジスタゲ一トに使われるポリシリコン層とその上の絶縁層を 用いて凸上電極を作製した例であるが、 特願平 1 0— 4 3 1 4 0号における他の構 造においても同様である。
〔第 8の実施形態:第 1 3図〕
次に、 第 2アルミニウムバンプ 4 0 5の領域を大きく とることによって接続有効
訂正された用紙 (規則 91 ) 領域を広げた場合の実施例を示す。 第 1 3図はバンプ形状が八角形の場合の断面図 と平面図である。 図中、 上部に描かれているのは本実施例の平面図である。 径 r aはバンプ下ポリシリコン層 4 1 3の厚みとバンプ下絶縁層 4 1 2の形成する段差 の径を示す。 径 r bは第 1アルミニウムバンプ 4 0 5の形成する段差の径に相当す る。 径 r cはパッシベーション開口部 2 0 3 aに起因する段差の径を示す。
第 2アルミニウムバンプ 4 0 5はバンプ形成のためできあがった全ての段差を覆 う形で形成されている。 このため従来に比べて接続有効領域 4 0 5 aの面積が広く なり集積回路と基板上の電極は接続しやすくなる。 すなわち、 従来の構造に比べて 凸型電極に要する領域が狭くできる。
本実施例では第 2アルミニウムバンプ 4 0 5が全ての段差を覆う構造を示したが、 もちろん一段目の段差のみを覆う構造をとつてもよい。 すなわち、 第 2アルミニゥ ムバンプ 4 0 5の最も高い位置から最初の段差を覆う構造をとれば目的は達成され る。
以上の実施の形態 1、 実施の形態 2および実施の形態 3を組み合わせれば接続有 効領域が広がり、 A C F実装するための確実で信頼性のある凸型電極となる。 産業上の利用可能性
以上のように、 この発明による半導体装置は、 A C F実装において基板上の電極 を確実に接続し、 構造的に安定した凸状端子を備える集積回路を安価に作製できる c
訂正された用紙 (規則 91)

Claims

請 求 の 範 囲
1 . 集積回路を形成した半導体チップの表面に、 該集積回路に電源または信号を入 出力するための凸状端子を備えた半導体装置において、
該凸状端子は、 少なく ともその最上部がスパッタリングによって形成され、 前記 集積回路と電気的に接続された導電体からなり、 その最も突出した端面の前記半導 体チップの表面からの高さが、 他のいずれの部位の突出面よりも高く、 該凸状端子 の前記端面が表面酸化を防止する導電膜で被覆されていることを特徴とする半導体
2 . 前記表面酸化を防止する導電膜が、 導電酸化膜又は貴金属膜である請求の範 囲第 1項に記載の半導体装置。
3 . 請求の範囲第 1項に記載の半導体装置において、
前記半導体チップの表面に、
前記集積回路と電気的に接続された第 1の導電体と、
該第 1の導電体および前記半導体チップの表面を覆い、 前記第 1の導電体上に開 口部を形成した保護絶縁膜と、
該保護絶縁膜上にスパッタリングによって形成され、 前記開口部を通して前記第 1の導電体と導通する第 2の導電体と
を設け、
前記凸状端子が、 前記第 1の導電体および前記第 2の導電体と、 該第 2の導電体 の上面を被覆する導電酸化膜又は貴金属膜とによって形成されていることを特徴と する半導体装置。
4 . 前記第 1の導電体と前記第 2の導電体が、 いずれもアルミニウムによって形成 されている請求の範囲第 3項に記載の半導体装置。
5 . 集積回路を形成した半導体チップの表面に、 該集積回路に電源または信号を入 出力するための凸状端子を備えた半導体装置において、
前記半導体チップの表面に、
前記集積回路と電気的に接続された第 1の導電体と、
該第 1の導電体おょぴ前記半導体チップの表面を覆い、 前記第 1の導電体上に開 卩部を形成した第 1の保護絶縁膜と、
該第 1の保護絶縁膜上にスパッタリングによって形成され、 該第 1の保護絶縁膜 の前記開口部を通して前記第 1の導電体と導通する第 2の導電体と、
該第 2の導電体おょぴ前記第 1の保護絶縁膜の表面を覆い、 前記第 2の導電体上 に開口部を形成した第 2の保護絶縁膜と、
該第 2の保護絶縁膜上にスパッタリングによって形成され、 該第 2の保護絶縁膜 の前記開口部を通して前記第 2の導電体と導通する第 3の導電体と
を設け、
前記凸状端子が、 前記第 1の導電体, 第 2の導電体, および第 3の導電体によつ て構成され、 その最も突出した端面の前記半導体チップの表面からの高さが、 他の いずれの部位の突出面よりも高くなるように形成されていることを特徴とする半導 体装置。
6 . 前記第 1の導電体, 第 2の導電体, および第 3の導電体が、 いずれもアルミ二 ゥムによって形成されている請求の範囲第 5項に記載の半導体装置。
7 . 前記凸状端子の前記最も突出した端面が、 表面酸化を防止する導電膜で被覆さ れている請求の範囲第 5項に記載の半導体装置。
8 . 集積回路を形成した半導体チップの表面に、 配線と トランジスタのゲートに使 われるポリシリコン層とその上を覆う絶縁層おょぴ該絶縁層上に形成される配線用 導電体層と、 前記集積回路に電源または信号を入出力するための凸状端子とを備え た半導体装置において、
前記半導体チップの表面の前記 ώ状端子を形成する部位に、 前記ポリシリ コン層 と前記絶縁層と同じ材料からなるポリシリ コン膜と絶縁膜が設けられ、
その絶縁膜を覆い、 前記配線用導電体層と電気的に接続される第 1の導電体が該 配線用導電体層と同じ材料でスパッタリングによって形成され、
該第 1の導電体と配線用導電体層および前記半導体チップの表面を覆い、 前記第 1の導電体上に開口部を設けた保護絶縁膜が形成され、
該保護絶縁膜上に、 前記開口部を通して前記第 1の導電体と導通する第 2の導電 体がスパッタリングによって形成され、
前記凸状端子が、 前記ポリシリコン膜と絶縁膜および前記第 1の導電体と第 2の 導電体とによって構成され、 その最も突出した端面の前記半導体チップの表面から の高さが、 他のいずれの部位の突出面よりも高くなるように形成されていることを 特徴とする半導体装置。
9 . 前記第 1の導電体と第 2の導電体が、 いずれもアルミニウムによって形成され ている請求の範囲第 8項に記載の半導体装置。
1 0 . 前記凸状端子の前記最も突出した端面が、 表面酸化を防止する導電膜で被覆 されている請求の範囲第 8項に記載の半導体装置。
1 1 . 集積回路を形成した半導体チップの表面に、 該集積回路に電源または信号を 入出力するための凸状端子を備えた半導体装置において、
前記半導体チップの表面に、
前記集積回路と電気的に接続された第 1の導電体と、
該第 1の導電体および前記半導体チップの表面を覆い、 前記第 1の導電体上に開 口部を形成した保護絶縁膜と、
該保護絶縁膜上にスパッタリングによって形成され、 前記開口部を通して前記第 1の導電体と導通する第 2の導電体と
を設け、
前記保護絶縁膜は、 前記第 2の導電体の下部領域の膜厚が他の領域の膜厚より厚 く形成されており、
前記凸状端子が、 前記第 1の導電体と第 2の導電体によって構成され、 その最も 突出した端面の前記半導体チップの表面からの高さが、 他のいずれの部位の突出面 よりも高くなるように形成されていることを特徴とする半導体装置。
1 2 . 前記第 1の導電体と第 2の導電体が、 いずれもアルミニウムによって形成さ れている請求の範囲第 1 1項に記載の半導体装置。
1 3 . 前記凸状端子の前記最も突出した端面が、 表面酸化を防止する導電膜で被覆 されている請求の範囲第 1 1項に記載の半導体装置。
1 4 . 集積回路を形成した半導体チップの表面に、 該集積回路に電源または信号を 入出力するための凸状端子を備え、 多数の導電粒子を含む異方性導電膜を介して基 板上に実装される半導体装置において、
前記半導体チップの表面に、
前記集積回路と電気的に接続された第 1の導電体と、
該第 1の導電体および前記半導体チップの表面を覆い、 前記第 1の導電体上に透 孔を形成した保護絶縁膜と、
該保護絶縁膜上にスパッタリングによって形成され、 前記透孔を通して前記第 1 の導電体と接続する第 2の導電体と
を設け、
前記凸状端子が、 前記第 1の導電体と第 2の導電体によって構成され、 その最も 突出した端面の前記半導体チップの表面からの高さが、 他の部位の最も高い突出面 よりも、 前記異方性導電膜に含まれる多数の導電粒子の径の誤差以上高くなるよう に形成されていることを特徴とする半導体装置。
1 5 . 前記保護絶縁膜に形成された透孔の最大開口寸法が、 前記異方性導電膜に含 まれる多数の導電粒子の最小径の 1 . 5倍以内である請求の範囲第 1 4項に記載の 半導体装置。
1 6 . 前記保護絶縁膜に形成された透孔が、 正方形, 長方形, 多角形, 円形, およ び楕円形のうちのいずれかの形状のもの、 又はこれらのうちの複数の形状のものか らなる請求の範囲第 1 4項に記載の半導体装置。
1 7 . 前記第 2の導電体が、 前記第 1の導電体の段差に起因して前記保護絶縁膜に 段差が形成される範囲より広い領域に形成されている請求の範囲第 1 4項に記載の 半導体装置。
1 8 . 前記凸状端子の前記最も突出した端面が、 表面酸化を防止する導電膜で被覆 されている請求の範囲第 1 4項に記載の半導体装置。
PCT/JP1999/000892 1998-02-25 1999-02-25 Semiconductor device WO1999044228A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU26404/99A AU2640499A (en) 1998-02-25 1999-02-25 Semiconductor device
EP99906490A EP1061570B1 (en) 1998-02-25 1999-02-25 Semiconductor device with bumped contacts and manufacturing method thereof
JP2000533896A JP3442738B2 (ja) 1998-02-25 1999-02-25 半導体装置
BR9908224-1A BR9908224A (pt) 1998-02-25 1999-02-25 Dispositivo semicondutor
DE69934971T DE69934971D1 (de) 1998-02-25 1999-02-25 Halbleiteranordnung mit kontakthöckern und verfahren zu ihrer herstellung
US09/622,837 US6583506B1 (en) 1998-02-25 1999-02-25 Semiconductor device
KR1020007009309A KR100350936B1 (ko) 1998-02-25 1999-02-25 반도체 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP4314098 1998-02-25
JP10/43140 1998-02-25
JP10/280747 1998-10-02
JP28074798 1998-10-02

Publications (1)

Publication Number Publication Date
WO1999044228A1 true WO1999044228A1 (en) 1999-09-02

Family

ID=26382892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000892 WO1999044228A1 (en) 1998-02-25 1999-02-25 Semiconductor device

Country Status (9)

Country Link
US (1) US6583506B1 (ja)
EP (1) EP1061570B1 (ja)
JP (1) JP3442738B2 (ja)
KR (1) KR100350936B1 (ja)
CN (1) CN1148794C (ja)
AU (1) AU2640499A (ja)
BR (1) BR9908224A (ja)
DE (1) DE69934971D1 (ja)
WO (1) WO1999044228A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203940A (ja) * 2001-10-25 2003-07-18 Seiko Epson Corp 半導体チップ及び配線基板並びにこれらの製造方法、半導体ウエハ、半導体装置、回路基板並びに電子機器
TWI227556B (en) * 2003-07-15 2005-02-01 Advanced Semiconductor Eng Chip structure
DE102008042107A1 (de) * 2008-09-15 2010-03-18 Robert Bosch Gmbh Elektronisches Bauteil sowie Verfahren zu seiner Herstellung
EP2444999A4 (en) * 2009-06-18 2012-11-14 Rohm Co Ltd SEMICONDUCTOR DEVICE
TW201203403A (en) * 2010-07-12 2012-01-16 Siliconware Precision Industries Co Ltd Semiconductor element and fabrication method thereof
CN103681696A (zh) * 2013-12-24 2014-03-26 京东方科技集团股份有限公司 一种电极引出结构、阵列基板以及显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129648A (ja) * 1995-10-31 1997-05-16 Toshiba Corp 半導体素子およびその実装方法
JPH09330932A (ja) * 1996-06-10 1997-12-22 Matsushita Electric Ind Co Ltd バンプ形成体およびバンプ形成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188438A (en) * 1975-06-02 1980-02-12 National Semiconductor Corporation Antioxidant coating of copper parts for thermal compression gang bonding of semiconductive devices
JPS58115860A (ja) * 1981-12-29 1983-07-09 Fujitsu Ltd 半導体装置
US4661375A (en) 1985-04-22 1987-04-28 At&T Technologies, Inc. Method for increasing the height of solder bumps
US5134460A (en) * 1986-08-11 1992-07-28 International Business Machines Corporation Aluminum bump, reworkable bump, and titanium nitride structure for tab bonding
JPH02285638A (ja) * 1989-04-27 1990-11-22 Toshiba Corp 半導体装置
JP2598328B2 (ja) * 1989-10-17 1997-04-09 三菱電機株式会社 半導体装置およびその製造方法
US5470787A (en) * 1994-05-02 1995-11-28 Motorola, Inc. Semiconductor device solder bump having intrinsic potential for forming an extended eutectic region and method for making and using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129648A (ja) * 1995-10-31 1997-05-16 Toshiba Corp 半導体素子およびその実装方法
JPH09330932A (ja) * 1996-06-10 1997-12-22 Matsushita Electric Ind Co Ltd バンプ形成体およびバンプ形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1061570A4 *

Also Published As

Publication number Publication date
EP1061570B1 (en) 2007-01-24
CN1148794C (zh) 2004-05-05
KR100350936B1 (ko) 2002-08-30
DE69934971D1 (de) 2007-03-15
JP3442738B2 (ja) 2003-09-02
AU2640499A (en) 1999-09-15
CN1291348A (zh) 2001-04-11
KR20010034539A (ko) 2001-04-25
BR9908224A (pt) 2000-10-24
EP1061570A1 (en) 2000-12-20
US6583506B1 (en) 2003-06-24
EP1061570A4 (en) 2002-07-31

Similar Documents

Publication Publication Date Title
JP4611943B2 (ja) 半導体装置
US5707894A (en) Bonding pad structure and method thereof
US20030102551A1 (en) Semiconductor device and method for manufacturing
JP4750926B2 (ja) 半導体装置
JP2007311688A (ja) 電子装置用基板およびその製造方法、並びに電子装置およびその製造方法
JPH06120351A (ja) 半導体装置の製造方法
TWI408775B (zh) 用於形成與積體電路之接觸墊之連接之方法
US5057453A (en) Method for making a semiconductor bump electrode with a skirt
JP6795327B2 (ja) チップコンデンサ
JP3945380B2 (ja) 半導体装置およびその製造方法
JP4447881B2 (ja) インターポーザの製造方法
WO1999044228A1 (en) Semiconductor device
US7183190B2 (en) Semiconductor device and fabrication method therefor
JP3587806B2 (ja) 半導体装置及び製造方法
EP1003209A1 (en) Process for manufacturing semiconductor device
JP5061895B2 (ja) キャパシタ及びそれを内蔵した配線基板
JP3915670B2 (ja) 半導体装置およびその製造方法
JP4747508B2 (ja) 半導体装置
US20030162320A1 (en) Semiconductor device and method for fabricating the same
TWI392070B (zh) 半導體元件暨嵌埋有半導體元件之封裝基板及其製法
JPH03265140A (ja) 半導体装置およびその製造方法
JP4702827B2 (ja) 半導体装置およびその製造方法
JPH03268385A (ja) はんだバンプとその製造方法
JP2003318211A (ja) 半導体装置
JPH04278542A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99803194.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007009309

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09622837

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999906490

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999906490

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020007009309

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007009309

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999906490

Country of ref document: EP