WO1999038624A1 - Installation d'elimination des ordures brutes - Google Patents

Installation d'elimination des ordures brutes Download PDF

Info

Publication number
WO1999038624A1
WO1999038624A1 PCT/JP1998/000382 JP9800382W WO9938624A1 WO 1999038624 A1 WO1999038624 A1 WO 1999038624A1 JP 9800382 W JP9800382 W JP 9800382W WO 9938624 A1 WO9938624 A1 WO 9938624A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
dehumidifier
processing chamber
garbage
exhaust
Prior art date
Application number
PCT/JP1998/000382
Other languages
English (en)
French (fr)
Inventor
Takaharu Nakagawa
Manabu Mizobuchi
Toshiharu Sako
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Priority to KR1020007008296A priority Critical patent/KR100353273B1/ko
Priority to CN98813381A priority patent/CN1093438C/zh
Priority to EP19980901052 priority patent/EP1103313A1/en
Priority to US09/582,643 priority patent/US6569673B1/en
Priority to PCT/JP1998/000382 priority patent/WO1999038624A1/ja
Priority to JP2000529907A priority patent/JP4174969B2/ja
Publication of WO1999038624A1 publication Critical patent/WO1999038624A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/90Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/90Apparatus therefor
    • C05F17/964Constructional parts, e.g. floors, covers or doors
    • C05F17/971Constructional parts, e.g. floors, covers or doors for feeding or discharging materials to be treated; for feeding or discharging other material
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/90Apparatus therefor
    • C05F17/964Constructional parts, e.g. floors, covers or doors
    • C05F17/971Constructional parts, e.g. floors, covers or doors for feeding or discharging materials to be treated; for feeding or discharging other material
    • C05F17/979Constructional parts, e.g. floors, covers or doors for feeding or discharging materials to be treated; for feeding or discharging other material the other material being gaseous
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F9/00Fertilisers from household or town refuse
    • C05F9/02Apparatus for the manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the present invention relates to a treatment device for microbial decomposition of organic waste such as garbage, and particularly requires a large-sized deodorization device for deodorizing air having an unpleasant odor generated by microbial decomposition. It relates to a garbage disposal system that can efficiently decompose microorganisms with little energy without having to perform it.
  • a high-performance purifier is required to remove the odor in a large amount of air supplied by a large exhaust system.
  • an adsorbent is used as a purification device, the adsorbent must be replaced or regenerated frequently.
  • a microbial deodorizer is used as a purifier, a large deodorizer tank must be provided, which causes the problem of increasing the size of the entire processing equipment. Also, O 99/38624
  • Purification equipment using a catalyst does not require frequent replacement of the adsorbent, but it also requires a large amount of energy to heat a large amount of air. Since a large amount of energy is consumed in the exhaust work, there is a demand for the development of a garbage disposal system that operates with less energy without lowering the efficiency of decomposing garbage by microorganisms.
  • Fig. 16 is a diagram schematically showing the garbage disposal system disclosed in Japanese Patent Laid-Open Publication No. 8-2533384.
  • the treatment equipment IF is composed of a treatment room 10F where the biodegradation of the garbage 2F is performed, a heating device 8OF arranged at the bottom of the treatment room, and a processing unit extending from the treatment room to exhaust the odor generated by the microbial decomposition.
  • the control unit 3F controls the dehumidifier 3OF and the blower fan 13F to increase the dehumidification capacity if the humidity detected by the humidity sensor 62F in the processing room is high.
  • the processing chamber can be set to an environment suitable for the biodegradation of garbage.
  • an object of the present invention is to remove odors contained in gas generated by microbial decomposition of garbage and to treat garbage efficiently with a small amount of energy.
  • the garbage disposal apparatus of the present invention has a processing chamber for processing garbage by microbial decomposition, an intake path for supplying air from outside to the processing chamber, and one end connected to the discharge port of the processing chamber. And an exhaust path with an exhaust port at the other end.
  • a dehumidifier for dehumidifying the air sent to the exhaust path is provided in the exhaust path.
  • the dehumidifier has a dehumidifier and a regenerating device for regenerating the dehumidifier by removing moisture adsorbed on the dehumidifier.
  • a circulation path extends from the exhaust path into the processing chamber at a branch located downstream of the dehumidifier.
  • a blower is located upstream of the branch to discharge air with an unpleasant odor generated in the processing chamber through the exhaust path.
  • a deodorizer that removes odor from the air to be exhausted from the exhaust port is located between the dehumidifier and the exhaust port in the exhaust path.
  • An exhaust air volume adjusting member for changing the amount of air returned from the exhaust path to the processing chamber via the circulation path is provided at the branch portion. The air volume adjusting member is controlled by the control unit.
  • the control unit is usually In use, the air flow adjusting member is provided with a part so that a part of the air sent from the dehumidifier is discharged to the outside through the exhaust path, and the remaining air is returned to the processing chamber again through the circulation path. Set to one position. When the moisture adsorbed by the dehumidifier is removed by the regenerator, the control unit sets the air volume adjustment member to the second position so that the circulation path is cut off at the branch.
  • a part of the air discharged from the processing chamber is returned to the processing chamber via the circulation path after the moisture is removed by the dehumidifier, and is again used for microbial decomposition of garbage.
  • the amount of air exhausted to the outside via the air can be reduced. As a result, it is possible to use a small-sized deodorizing device, thereby reducing the size of the entire device and saving the energy required for operating the garbage disposal.
  • a further object of the present invention is to remove the moisture adsorbed on the dehumidifier by heating the dehumidifier, and then quickly cool the dehumidifier to promote the return of the garbage to the decomposing operation. It is to provide a processing device.
  • the control unit sets the air volume adjustment member at the third position where the exhaust path is cut off at the branch.
  • the dehumidifying agent is efficiently cooled by a circulating airflow flowing through a closed path consisting of the processing chamber ⁇ the exhaust path ⁇ the circulation path—the processing chamber. Since the exhaust path to the deodorizer is shut off, the output of the blower fan can be increased to circulate a large amount of air through the closed path, and as a result, the dehumidifier can be cooled quickly.
  • Another object of the present invention is to use a heat exchanger that is not made of a corrosion-resistant material, and to further promote microbial decomposition of garbage by utilizing waste heat of air flowing through an exhaust passage.
  • a garbage disposal device that can 8 24
  • a heat exchanger is provided between the deodorizer in the exhaust path and the exhaust port, and the heat exchanger heats the fresh air passing through the intake path by the waste heat recovered from the air flowing through the exhaust path. I do.
  • moderately warmed air is introduced into the treatment room, which promotes microbial decomposition of garbage.
  • the corrosive gas containing a large amount of water and ammonia is discharged from the processing chamber.
  • the heat exchanger is located downstream of the deodorizer, so that the heat exchanger is not exposed to corrosive gas. . Therefore, there is no need to use heat exchangers made of expensive materials that have corrosion resistance.
  • FIG. 1 is a schematic diagram showing a normal use mode of the garbage processing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a dehumidifier regeneration mode of the garbage disposal apparatus of the first embodiment.
  • Fig. 3 is a schematic diagram showing the cooling mode of the dehumidifier of the garbage disposal device of the first embodiment.
  • FIG. 4 is a schematic diagram of a garbage processing apparatus according to a second embodiment of the present invention.
  • FIG. 5 is a flowchart showing a control system based on the output of the moisture content sensor of the garbage disposal device of the second embodiment.
  • FIG. 6 is a flowchart illustrating a control system based on the output of the first humidity sensor 1 of the garbage disposal device of the second embodiment.
  • FIG. 7 is a flowchart illustrating a control system based on the output of the second humidity sensor 1 of the garbage disposal device of the second embodiment.
  • FIG. 8 is a flowchart showing a control system based on the output of the second monitor sensor of the garbage processing apparatus of the second embodiment.
  • FIG. 9 is a flowchart showing a further control system of the garbage processing apparatus of the second embodiment.
  • FIG. 10 is a flowchart showing another control system of the garbage processing apparatus of the second embodiment.
  • Fig. 11 is a flowchart showing a control system based on the output of the garbage weight sensor of the garbage disposal device of the second embodiment.
  • Fig. 12 is a schematic diagram showing the special control mode of the garbage processing apparatus of the second embodiment when dry garbage is put into the processing chamber.
  • FIG. 13 is a schematic view showing a garbage processing apparatus according to a third embodiment of the present invention.
  • FIG. 14 is a schematic diagram illustrating a normal use mode of the garbage disposal apparatus according to the fourth embodiment of the present invention.
  • FIG. 15 is a schematic view showing a dehumidifier regeneration mode of the garbage disposal apparatus according to the first embodiment of the present invention.
  • Figure 16 is a schematic diagram showing a conventional garbage disposal system.
  • FIG. 1 is a schematic diagram of a garbage processing apparatus 1 according to a first embodiment of the present invention.
  • the garbage processing apparatus 1 has a processing chamber 10 for processing garbage 2 by microbial decomposition, an intake path 20 for introducing fresh air from the outside into the processing chamber through an air inlet of the processing chamber, and a processing chamber. It includes an exhaust path 21 connected to the discharge port 14 of the chamber and having an exhaust port at the other end, and a circulation path 22 for returning the air in the exhaust path to the processing chamber.
  • the processing room 10 is equipped with a garbage stirrer 11, a water content sensor 60 for measuring the water content of the garbage, and air with an unpleasant odor generated by the biodegradation of the garbage.
  • There is a blower fan 13 for sending air to the exhaust path.
  • the stirring device and the moisture content sensor may be omitted.
  • the dehumidifier 30 includes a dehumidifier 31 and a heater 32 as a regenerating means for regenerating the dehumidifier by removing moisture adsorbed on the dehumidifier.
  • solid acids such as silica gel, zeolite and aluminum silicate, calcium chloride and calcium carbonate can be used. These dehumidifiers have the ability to adsorb not only water vapor but also ammonia, which is the main component of odor. In particular, it is preferable to use silica gel which has a high removal rate of ammonia and trimethylamine, which are main components of malodors, in addition to moisture.
  • a dehumidifier using a dehumidifier unlike a dehumidifier that removes and condenses moisture in the air by dehydrating the refrigeration cycle, thermoelectric conversion element, and air, does not generate dew water in which the odorous components are dissolved. There is an advantage that there is no need for an operation of discarding the condensed water. Therefore, there is no problem of putrefaction odor generated from dew condensation water.
  • the circulation path 22 branches off from the exhaust path 21 at a branch section 23 located downstream of the dehumidifier 30 and extends into the processing chamber 10.
  • An air flow adjusting member 40 for changing the amount of air returned from the exhaust path 21 to the processing chamber via the circulation path 22 is provided at the branch portion.
  • an electric damper can be used as the air volume adjusting member.
  • the operation of the air volume adjusting member 40 is controlled by the control unit 3. During normal use of the garbage disposal 1, the control unit 3 discharges a part of the air provided from the dehumidifier 30 to the outside via the exhaust path, and the remaining air is supplied to the circulation path 2.
  • the air volume adjusting member 40 is set to the first position so that the air volume adjusting member 40 is returned to the processing chamber 10 via 2 again.
  • the amount of air introduced into the processing chamber via the intake path is equal to the amount of air discharged outside via the exhaust path 21. Therefore, the first position of the air volume adjusting member 40 is based on the assumption that the amount of air introduced into the processing chamber 10 via the intake path 20 is based on the amount of oxygen necessary to perform microbial decomposition in the processing chamber. It is determined so that the amount of air becomes as follows.
  • the air volume adjusting member 40 By controlling the air volume adjusting member 40, the amount of exhaust air from the garbage disposal device 1 can be significantly reduced.
  • the air volume adjusting member 40 is also controlled by the output from the content sensor 60 disposed in the processing chamber 10.
  • the control unit 3 controls the circulation path 22 to be cut off at the branch 23.
  • a moisture sensor (not shown) that detects the amount of water adsorbed on the silica gel and outputs a first control signal to the control unit 3 when the amount of adsorbed water exceeds a predetermined amount of water.
  • the control unit 3 is provided with an ammonia sensor (not shown) that detects the amount of ammonia adsorbed on the force gel and outputs a second control signal to the control unit 3 when the amount of adsorbed ammonia exceeds a predetermined amount of ammonia. Starts the heater 32 based on one of the first control signal and the second control signal, sets the air volume adjusting member 40 to the second position, and starts the regeneration operation. It is also possible to use only a moisture sensor without using an ammonia sensor.
  • a deodorizing device 50 for removing odor from air that is to be discharged to the outside via the exhaust path is provided downstream of the dehumidifying device 30 in the exhaust path 21. Have been.
  • the deodorizing device 50 is arranged downstream of the branch portion 23. Most of the air sent from the dehumidifier is sent to the circulation path, and the amount of air discharged to the outside is small. Therefore, the garbage disposal of the present invention does not require a large-sized deodorizer, and as a result, The size and energy saving of the entire waste disposal system can be improved.
  • An additional deodorizer for deodorizing small amounts of odor components other than N-type odor components such as ammonia / trimethylamine, for example, sulfur compounds, etc., on the exhaust path 2 It may be provided between the first dehumidifier 30 and the branch portion 23. It is particularly preferable to use activated carbon as an adsorbent in the additional deodorizer.
  • the deodorizer 50 used in this embodiment is composed of an oxidation catalyst 51 supporting a noble metal on an oxide such as alumina and a heater 52.
  • deodorizers such as adsorbents, ozone decomposers, and microbial deodorizers, or deodorizers that combine them may be used. It is preferable to use platinum, rhodium or palladium as the noble metal. Since the odor components not removed by the dehumidifier 30 are removed by the deodorizer before being discharged to the outside, the generation of odors around the garbage disposal device can be prevented.
  • the control unit 3 controls the blower fan 13 so as to supply a large amount of air containing steam and odors such as ammonia generated in the processing chamber to the dehumidifier 30. Further, the control unit 3 sets the air volume adjusting member 40 to the first position, thereby discharging a part of the air from which the water vapor and the ammonia have been removed by the dehumidifier 30 through the exhaust path 21. Most of the remaining air is transferred to the processing chamber 10 via the circulation path 22. / 38 24
  • the control unit 3 controls the heater 52 so that the catalyst 51 of the deodorizing device 50 is heated to the normal operating temperature.
  • offensive odor components in the air exhausted to the outside via the exhaust path 21 are removed by the deodorizer.
  • Ammonia and trimethylamine among the offensive odor components have already been removed by the dehumidifier 30 so that the burden on the deodorizer can be reduced.
  • the control unit 3 sets the air volume adjusting member 40 to the second position so as to substantially cut off the circulation path 22 from the exhaust path 21. Further, the control unit 3 starts energizing the heater 32 of the dehumidifier 30. The water vapor and ammonia removed from the dehumidifier 31 are sent to the deodorizing device 50 without returning to the reprocessing chamber 10 because the circulation path 22 is blocked. The control unit 3 heats the heater 152 of the deodorizer to a high temperature in order to operate the deodorizer 50 at full capacity.
  • a small deodorizer is used in the garbage disposal device of this embodiment, and if a large amount of air is sent, it may not be sufficiently deodorized.
  • the output of the blowing fan 13 is controlled to be smaller than the blowing amount in the normal processing mode.
  • the adsorbed ammonia is removed at a high concentration in the early stage of the regenerating operation, it is preferable to keep the catalyst temperature of the deodorizer 50 at the maximum allowable temperature.
  • the concentration of ammonia removed from the dehumidifier 31 decreases with the progress of the regeneration operation. If the catalyst temperature of the deodorizer 50 is reduced accordingly, the energy required for the regeneration operation is saved. be able to.
  • the heating of the heater 32 of the dehumidifier may be controlled so that ammonia is removed at a uniform concentration from 31.
  • a humidity sensor 61 that measures the humidity in the air sent from the dehumidifier 30 is provided in the exhaust path 21, and the control unit 3 has detected the humidity below a predetermined value. At this time, it is determined that the regeneration work has been completed, and the power supply to the heater 32 is stopped.
  • the cooling mode of the dehumidifier 31 is for cooling the dehumidifier heated in the regeneration mode so that moisture and ammonia can be adsorbed again. Either the first cooling mode or the second cooling mode shown below is used. Can be done by
  • the blower fan 13 maintains the blower volume in the regeneration mode. While the temperature of the dehumidifier 31 is high, ammonia in the air sent from the processing chamber is not removed by the dehumidifier. Therefore, in order to increase the deodorizing ability of the deodorizing device 50, it is preferable to heat the catalyst 51 at a higher temperature than in the normal use mode and at a lower temperature than in the regeneration mode. In addition, since the adsorption capacity of the ammonia recovers as the temperature of the dehumidifying agent 31 decreases, the catalyst heating temperature in the deodorizer 50 should be controlled so as to gradually decrease.
  • the control unit 3 switches the branch unit 23 so that all the air passing through the dehumidifier 30 is returned to the processing chamber 10 again through the circulation path 22. Then, the air volume adjusting member 40 is set at the third position where the exhaust path 21 is shut off. A large amount of air from the blower fan 13 is circulated through the closed loop consisting of the processing chamber 10 ⁇ exhaust path 21-(dehumidifier 30) ⁇ circulation path 22 ⁇ processing chamber 10 to cool the dehumidifier. Do it. At this time, it is not necessary to heat the catalyst 51 in the deodorizer 50. Absent.
  • This second cooling mode is preferable because the dehumidifier can be cooled quickly.
  • the control unit 3 controls the air flow adjusting member. To the third position as shown in Figure 3. Since the stirrer 11 is operated in this state, even if the concentration of the odorous component rises rapidly, the air containing the odor will remain in the second cooling mode until the adsorbent 31 has sufficiently adsorbed and removed ammonia. Will circulate in the same closed loop as formed in.
  • the control unit 3 controls the blower fan 13 and the air volume adjusting member 40 based on the output from the moisture content sensor 60 provided in the processing chamber 10 as follows. ing.
  • the control unit 3 increases the output of the blower fan 13 and keeps the amount of air exhausted to the outside through the exhaust path 21 substantially constant.
  • the degree of opening of the air volume adjusting member 40 to the exhaust path is reduced so as to allow the air flow adjusting member 40 to lean. In other words, in order to increase the amount of air flowing through the circulation path, the degree of opening of the air volume adjustment member 40 with respect to the circulation path 22 is increased.
  • the output of the blower fan 13 is reduced to prevent abnormal drying of the garbage.
  • a humidity sensor may be provided in the processing chamber ⁇ in addition to the moisture content sensor, and the above-described blower fan 13 and the air volume adjusting member 40 may be controlled based on the humidity value in the processing chamber detected by the humidity sensor.
  • the weight of garbage in the processing room It is also possible to provide a sensor and control the blower fan 13 and the air volume adjusting member 40 based on the weight value of the garbage detected by the sensor.
  • FIG. 4 is a schematic diagram of a garbage processing apparatus according to a second embodiment of the present invention.
  • This garbage processing apparatus 1B is substantially the same as the garbage processing apparatus of the first embodiment except for the following features. Therefore, the description of the same configuration and operation as in the first embodiment is omitted, and the suffix '' ⁇ 'is added after the reference number in the figure.
  • a timer (not shown) for outputting a control signal to the control unit 3 ⁇ when the cumulative use time of the dehumidifying apparatus 30 3 reaches a predetermined time is provided.
  • the control unit sets the exhaust air volume adjusting member 40 ⁇ to the second position where the circulation path 22 ⁇ is substantially cut off from the exhaust path 21 ⁇ and sets the dehumidifier 31 ⁇ .
  • the time to start the regeneration mode can be calculated based on the amount of water and ammonia that can be estimated from the maximum weight of the garbage input, and the saturated adsorption amount of the dehumidifier 31B.
  • the timing of the regeneration of the dehumidifier 31 ⁇ can be modified by adopting the following system. It should be noted that the system described below can also be used in the garbage disposal device of the first embodiment if necessary.
  • This garbage processing unit 1 ⁇ detects the moisture content of the garbage 2 ⁇ in the treatment room 10 ⁇ and outputs a control signal to the control unit 3 ⁇ when the moisture content in the treatment room is out of the predetermined range.
  • Moisture content sensor 60 ⁇ detects humidity in processing chamber The first humidity sensor that outputs a control signal to the control unit when the humidity inside the processing chamber deviates from the predetermined humidity range, the humidity in the air that has passed through the dehumidifying device and the detected humidity is detected.
  • the second humidity sensor 63 B which outputs a control signal to the control unit when the temperature is out of the predetermined humidity range, detects the ammonia concentration in the processing chamber, and sends the control signal to the control unit when the ammonia concentration in the processing chamber is out of the predetermined range.
  • the first ammonia sensor 6 4 B which outputs a control signal, outputs a control signal to the control unit when the detected ammonia concentration is out of a predetermined range, and detects the ammonia concentration in the air passing through the dehumidifier.
  • B. Detects the concentration of ammonia contained in the air after passing through the deodorizer, and sends a control signal to the control unit when the detected ammonia concentration exceeds the specified ammonia concentration.
  • the third ammonia sensor 66B which outputs the garbage
  • the weight sensor 67B which measures the weight of the garbage placed in the processing chamber and outputs a control signal to the control unit when the measured weight deviates from a predetermined range. Equipped.
  • the dehumidifier when the water content of the garbage in the treatment chamber is equal to or higher than the predetermined water content, the dehumidifier is used for the time calculated by the control unit 3B based on the output value from the water content sensor 60B. Regeneration time is advanced. On the other hand, if the water content of the garbage is below the predetermined range, the regeneration of the dehumidifier is delayed by the time calculated by the control unit 3B based on the output value from the water content sensor. Thereby, the processing of garbage can be performed efficiently.
  • a pH sensor that measures the pH of garbage may be used instead of the moisture content sensor.
  • the dehumidifier when the humidity in the processing chamber 10B is higher than the predetermined humidity range, the dehumidifier is used for the time calculated by the control unit 3B based on the output value from the first humidity sensor 62B. Playback is hastened. Meanwhile, the processing room If the humidity in the inside is below the specified humidity range, the regeneration of the dehumidifier is delayed by the time calculated by the control unit 3B based on the output value from the first humidity sensor. In addition, the regeneration time of the dehumidifier may be corrected by using the first ammonia sensor 164B as in the case of the first humidity sensor.
  • the regeneration time of the dehumidifier is advanced by the time calculated by the control unit 3B based on the output value from the weight sensor 65B, and If the weight of the dehumidifier is below the predetermined range, the regeneration of the dehumidifier may be delayed by the time calculated by the control unit 3B based on the output value from the weight sensor.
  • the control unit 3B operates the blower fan 13B to reduce the dehumidifying capacity of the dehumidifier 30B. Lower the output of B. As a result, it is possible to prevent garbage in the processing chamber from drying too much and causing abnormal fermentation.
  • the humidity in the air that has passed through the dehumidifier is above the specified humidity range, and the humidity value detected by the first humidity sensor 62B and the humidity value detected by the second humidity sensor are used. If the calculated humidity removal rate is below the predetermined range, the control unit 3B immediately shifts to the dehumidifier 31B regeneration mode. When the humidity removal rate is equal to or more than the predetermined range, the mode returns to the normal use mode.
  • the control unit 3B reduces the deodorizing capability of the deodorizing device 50B by using the catalyst 51B. Reduce the heating temperature.
  • the ammonia concentration in the air that has passed through the dehumidifier is above a predetermined concentration range, the ammonia concentration value detected by the first ammonia sensor 64 B and the ammonia concentration value detected by the second ammonia sensor 1 If the ammonia removal rate calculated using is below the specified range, 624
  • the control unit 3B immediately shifts to the dehumidifier 31B regeneration mode. If the ammonia removal rate is above the predetermined range, the mode returns to the normal use mode.
  • the first ammonia sensor 64B monitors the ammonia concentration generated in the processing chamber as needed, and when the ammonia concentration in the processing chamber suddenly rises for some reason and the detected concentration exceeds a predetermined value, the control unit 3B Cuts off the airflow to the outside through the deodorizing device 50B, so that the air volume adjusting member 40B shuts off the exhaust path 21B, so that the amount of air exhausted through the exhaust port decreases. It is preferable to cope with the abnormal ammonia concentration by reducing the output of the blower fan 13B or increasing the deodorizing capacity of the deodorizing device 50B. In particular, it is preferable to control the air flow regulating member 4 OB from the viewpoint of preventing leakage of ammonia to the outside.
  • the transition time of the dehumidifier 31 B to the regeneration mode is determined based on the output value from the second humidity sensor 63 B.
  • the control unit 3B is configured to control the first humidity (that is, the humidity on the upstream side of the dehumidifier 30B) detected by the first humidity sensor and the second humidity sensor 63
  • the difference from the second humidity detected by B is calculated to estimate the amount of water adsorbed by the adsorbent.
  • the mode shifts to the regeneration mode of the dehumidifier 31B.
  • This control is preferable because it is possible to shift to the regeneration mode before the adsorption capacity of the dehumidifier 31 B is substantially lost.
  • the completion of the regeneration operation can be accurately known based on the outputs from the first and second humidity sensors. That is, when the difference between the first humidity and the second humidity becomes zero, it is determined that the removal of moisture from the dehumidifier is completed, and the heater 32B of the dehumidifier 30B is stopped, and the heater 32B is stopped. Move to cooling mode Run. Note that the first ammonia sensor 64B and the second ammonia sensor may be used to correct the transition time of the dehumidifier to the regeneration mode in the same manner as described above.
  • a safety system is provided to prevent accidental discharge of air containing bad smell from the food waste treatment apparatus 1B of the present embodiment. That is, whether the weight of the garbage 2B is above the predetermined weight range, the output from the moisture content detection device indicating that the water content of the garbage is above the predetermined range has continued for a certain period of time, If the output indicating that the ammonia concentration detected by the ammonia sensor 64B or the second ammonia sensor 65B is above the predetermined range continues for a certain period of time, the control unit 3B will operate the catalyst 51 of the deodorizer 50B. Raise the heating temperature of B to increase the deodorizing ability. When the ammonia concentration detected by the third ammonia sensor 66B is still above the predetermined range, the catalyst temperature is further increased.
  • FIG. 10 shows a flowchart of the above safety system based on the output from the weight sensor 65B.
  • a sensor that detects odor components other than ammonia may be used instead.
  • the operation control of the deodorizer 50B in the regeneration mode of the dehumidifier 31B of the garbage disposal apparatus 1B of the present embodiment is performed as follows. That is, as shown in Fig. 11, when the ammonia concentration detected by the first ammonia sensor 64B and the ammonia concentration detected by the second ammonia sensor 65B become substantially equal, the regeneration of the dehumidifier 31B is started. Transition to cooling mode is completed. On the other hand, the second ammonia sensor W 99/38624
  • the control unit 3 B sets the heating temperature of the catalyst 51 B to the allowable limit temperature. To increase. As a result, if the ammonia concentration detected by the third ammonia sensor 16 B is lower than the predetermined value, the regeneration operation is continued as it is. Conversely, if the ammonia concentration is higher than the predetermined value, the heater 3 2 Lower the heating temperature of B to reduce the rate of desorption of ammonia from the dehumidifier. It is also possible to perform the same control of the deodorizer as above using a sensor that detects the concentration of odor components other than ammonia.
  • the catalyst 51 B in the deodorizer of the garbage disposal unit 1 B must be replaced after being used for a long time. Even if an adsorbent is used in the deodorizer, it must be replaced if the adsorbent reaches the end of its life.
  • the catalyst replacement time can be determined as follows. That is, the control unit 3B calculates the ammonia removal rate using the ammonia concentration value detected by the second ammonia sensor 65B and the ammonia concentration value detected by the third ammonia sensor 66B, When the value becomes smaller than the predetermined value, the user of the garbage disposal device 1B is notified that the catalyst needs to be replaced, for example, by turning on an indicator light.
  • the control unit 3B adjusts the air volume based on the output of the moisture content sensor 60B or the first humidity sensor 16B, which indicates that the garbage is too dry.
  • the exhaust path 21B is shut off by the member 4OB. After that, the regeneration mode of the dehumidifier 3 1 B is started and the water that has been twenty four
  • the garbage disposal device of the present embodiment is equipped with various sensors, but some of these sensors can be optionally omitted if necessary.
  • FIG. 13 is a schematic diagram of a garbage processing apparatus according to a third embodiment of the present invention.
  • This garbage processing apparatus 1C is substantially the same as the garbage processing apparatus of the first embodiment except for the following features. Therefore, the description of the same configuration and operation as in the first embodiment is omitted, and the suffix "C" is added after the reference number in the figure.
  • a heat exchanger 70C is provided downstream of the deodorizing apparatus 50C. C is provided.
  • the waste heat recovered by the heat exchanger heats fresh air passing through the intake path 20C.
  • moderately heated air is introduced into the treatment chamber 10 C, which promotes the biodegradation of garbage.
  • the heat exchanger 70 ⁇ is connected to the dehumidifier 30 (0 and the downstream side of the deodorizer 50 C).
  • the heat exchanger is not exposed to corrosive gas because it is located in the garbage disposal system of this embodiment, even if it is not a heat exchanger using expensive corrosion-resistant materials. To do Can be. In this way, it is possible to provide a practical garbage disposal system that minimizes the cost increase of the entire system and saves energy by utilizing waste heat.
  • FIGS. 14 and 15 are schematic diagrams of a garbage processing apparatus according to a fourth embodiment of the present invention.
  • This garbage processing unit 1D is connected to a processing chamber 10D for processing garbage by microbial decomposition and a discharge port 14D of the processing chamber, and an exhaust path 21D having an exhaust port at the other end. Is provided.
  • the exhaust path 21D ⁇ is provided with a blower fan 13D for discharging air containing unpleasant odors generated by microbial decomposition of garbage through the exhaust path.
  • the intake passage 20D is connected to the exhaust passage at a first branch portion 24D located upstream of the blower fan 13D.
  • a dehumidifier 30D is arranged downstream of the blower fan 13 in the exhaust path.
  • the dehumidifier 30D includes a dehumidifier 31D and a heater 32D for removing moisture adsorbed on the dehumidifier to regenerate the dehumidifier.
  • the dehumidifier the one described in the first embodiment can be used.
  • a circulation path 22D extends from the exhaust path 21D into the processing chamber 10D at the second branching section 23D located downstream of the dehumidifier 30D.
  • the deodorizing device 50D is disposed in the exhaust path 21D between the dehumidifying device 30D and the second branch portion 23D.
  • the deodorizing device 50D the one described in the first embodiment can be used.
  • a first airflow adjusting member 41D is provided in the first branch portion 24D.
  • a second air volume adjusting member 40D is provided in the second branch portion 23D. The first and second air volume adjusting members 40 are controlled by the control unit 3D.
  • the control unit 3D works so that air sent from the processing chamber 10D to the exhaust path 21D is mixed with fresh air supplied through the intake path 20D.
  • a part of the air dehumidified by the dehumidifier 30D is exhausted through the exhaust path 21D, and most of the remaining air is returned to the processing chamber 10D via the circulation path 22D.
  • the second air flow adjusting member 40D is set to the open position so that it is returned to. Further, the control unit 3D heats the catalyst of the deodorizer 50D.
  • the deodorizing capacity of the deodorizer 50 D can be kept low.
  • the air sent through the intake path 20D is supplied to the dehumidifier 30D before being sent to the processing chamber. This is excellent in that it can prevent the humid outside air from being directly introduced into the processing chamber and increasing the humidity inside the processing chamber 10D.
  • the control unit 3 D In order to introduce air only from 20 D to the exhaust path 21 D, the first air volume adjusting member 41 D is set to a closed position where the communication between the processing chamber and the exhaust path is substantially cut off. So at the same time, the second air volume adjusting member 40D is set to the closed position so that the circulation path 22D is substantially cut off from the exhaust path 21D at the second branch 23D. In addition, the control unit 3D heats the heater 32D of the dehumidifier to remove the adsorbed moisture and moisture from the dehumidifier 31D.
  • the water vapor and ammonia components removed from the dehumidifier 31 D are not returned to the processing chamber again because the circulation path 22 D is blocked. Also, since the communication between the processing chamber 1 OD and the exhaust path 21 D is blocked by the first air volume adjusting member 41 D, the air containing steam and foul odor sent from the processing chamber at the time of the regeneration is removed. Without using, the regeneration time of the dehumidifier 31D is reduced by using the fresh air introduced through the suction path, so that the regeneration time can be reduced.
  • the deodorizer 50D In the regeneration mode, all air containing odor components such as ammonia removed from the dehumidifier 31D is sent to the deodorizer, so the deodorizer 50D is used to remove high-concentration ammonia. Capacity needs to be improved. Therefore, when the deodorizing device 50D is composed of a catalyst and a heater, it is preferable to heat the heater to the maximum allowable temperature.
  • the exhaust path 21D is provided with a humidity sensor (not shown) that measures the humidity in the air coming out of the dehumidifier 30D, and when the measured humidity falls below a specified value. It is controlled by the control unit 3D so that the power supply to the heater 32D of the dehumidifier is stopped.
  • the mode shifts to the dehumidifier cooling mode.
  • This cooling mode is performed while maintaining the closed position of the first and second air volume adjusting members (41D, 40D) in the regeneration mode described above. Since water vapor and ammonia have already been removed from the dehumidifier 31 D and fresh air only flows into the deodorizer 50 D, a deodorizer must be installed. No need to activate. A large amount of fresh air is introduced into the exhaust path 21D via the intake path 20D by the blower fan 13D, thereby quickly cooling the dehumidifying material 31D. Since the treatment room is sealed, there is no fear of odor leakage in the cooling mode. As described above, a practical food waste treatment apparatus can be provided which can stably decompose food waste regardless of the humidity of the outside air and can smoothly regenerate and cool the dehumidifier.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treating Waste Gases (AREA)
  • Fertilizers (AREA)

Description

明細書 生ごみ処理装置 技術分野
本発明は, 生ごみ等の有機性廃棄物を微生物分解するための処 理装置に関するものであり, 特に微生物分解で発生する不快な臭気を 有する空気を脱臭するのに大型の脱臭装置を必要とすることなく, 少 ないエネルギーで微生物分解を効率良く行なえる生ごみ処理装置に関 するものである。
背景技術
従来より生ごみ等の水分を含んだ有機性廃棄物を微生物分解に より処理する装置が知られている。 この種の処理装置においては, 生 ごみの微生物分解過程で発生するガスを処理室から排気する際にそれ に含まれる水蒸気量が飽和水蒸気量以上であると結露してしまうので, 微生物分解を効率良く行なうために高排気量を有する大型の排気装置 が必要とされている。 また, 微生物分解過程では不快な臭気も発生す るので, これらを除去するための脱臭装置を排気経路に設ける必要が ある。
しかしながら, 前途したように大型の排気装置により供給され る大量の空気中の悪臭を除去するためには高性能の浄化装置が必要に なる。 例えば, 浄化装置として吸着剤を使用すると吸着剤を頻繁に交 換あるいは再生しなければならないという不具合が生じる。 浄化装置 として微生物脱臭装置等を使用する場合は, 大きな脱臭槽を設ける必 要があり, 処理装置全体を大型化してしまうという問題がある。 また, O 99/38624
触媒を使用した浄化装置では, 吸着剤を頻繁に交換する作業は必要な いが, やはり装置全体が大型化し, 何よりも大量の空気を加熱するた めに多大なエネルギーが必要になる, さらにこれらの排気作業におい ても多大なエネルギーが消費されるため, 微生物による生ごみの分解 効率を下げることなくより少ないエネルギーで作動する生ごみ処理シ ステムの開発が望まれている。
例えば, 図 1 6は日本公開特許公報 8 - 2 5 3 3 8 4号の生ごみ 処理装置を摸式的に示した図である。 この処理装置 I Fは, 生ごみ 2 Fの微生物分解が行なわれる処理室 1 0 F, 処理室の底部に配置され る加熱装置 8 O F , 微生物分解により発生した悪臭を排気するため処 理室から延出する排気経路 2 1 F , 分岐部 2 3 Fで排気経路から分岐 し処理室に到る循環経路 2 2 F, 循環経路に供給される空気の除湿を 行なうために循環経路内に設けられる除湿装置 3 O F , 外部から新鮮 な空気を取り入れるため循環経路内の除湿装置の上流側に設けられる 吸気経路 2 0 F , 除湿装置の下流側に設けられる送風ファン 1 3 F, 処理室内に配置される湿度センサー 6 2 F , および除湿装置および送 風ファンの動作を制御する制御ュニット 3 Fを含む。
送風フアン 1 3 Fを駆動させることにより処理室内の空気の一 部が循環経路 2 2 Fに送られ, それに含まれる水分が除湿装置 3 0 F で除去された後再び処理室に返送される。 制御ユニッ ト 3 Fは, 処理 室内の湿度センサー 6 2 Fによって検出された湿度が高ければ除湿能 力を上げるように除湿装置 3 O Fや送風ファン 1 3 Fを制御する。 結 果的に, 処理室内を生ごみの微生物分解に適した環境に設定できる。
しかしながら, この処理装置 1 Fにおいては排気経路 2 1 Fを 介して外部に排出される空気中の臭気成分に対して十分な注意が払わ れていない。 また, 循環経路 2 2 Fに送られてくる空気中の水蒸気を 除湿装置 3 0 Fで結露させることにより除去しているので, 結露した 水が溜まれば排水口 3 3 Fを介して廃てなければならない。 水溶性の 悪臭成分が結露水に溶け込み強力な悪臭を放つことがあり, 作業が面 倒であることに加えて処理装置周辺の環境を悪化させる可能性がある。
このように, 生ごみ等の有機性廃棄物を微生物分解により処理 するシステムにおいてはさらなる改善の余地が残されている。
発明の開示
上記問題点を改善するため, 本発明の目的は, 生ごみの微生物 分解で発生するガスに含まれる悪臭を除去するとともに, 少ないエネ ルギ一で効率よく生ごみの微生物分解を行なえる生ごみ処理装置を提 供することである。 すなわち, 本発明の生ごみ処理装置は, 微生物分 解により生ごみを処理するための処理室, 外部から空気を処理室に供 給するための吸気経路, および一端が処理室の吐出口に接続され, 他 端に排気口を有する排気経路を含む。 排気経路に送られてくる空気の 除湿を行なうための除湿装置が排気経路内に設けられる。 除湿装置は 除湿剤と除湿剤に吸着された水分を除去して除湿剤を再生する再生装 置を有する。 除湿装置の下流側に位置する分岐部で排気経路から処理 室内に循環経路が延出している。 処理室で発生する不快な臭気を有す る空気を排気経路を介して排出するために分岐部よりも上流側に送風 装置が配置される。 排気口から排出されるべき空気から臭気を除去す る脱臭装置が排気経路内の除湿装置と排気口の間に配置される。 排気 経路から循環経路を介して処理室に返送される空気の量を変えるため の排気風量調節部材が分岐部に設けられる。 風量調節部材は制御ュ ニットによって制御される。 制御ユニットは, 生ごみ処理装置の通常 使用時において除湿装置から送られてくる空気の一部が排気経路を介 して外部に排出され, その残りの空気が循環経路を介して再び処理室 に返送されるように風量調節部材を第 1ポジションにセッ トする。 ま た, 除湿剤に吸着された水分を再生装置によって除去する時, 制御ュ ニットは, 分岐部で循環経路が遮断されるように風量調節部材を第 2 ポジションにセットする。 本発明においては, 処理室から排出される 空気の一部が除湿装置で水分が除去された後に循環経路を介して処理 室に返送され再び生ごみの微生物分解に利用されるので, 排気経路を 介して外部に排出される空気量を減らすことができる。 その結果, 小 型の脱臭装置の使用が可能となって装置全体の小型化が図れるととも に, 生ごみ処理装置の作動に必要なエネルギーを節約することができ る。
本発明のさらなる目的は, 除湿剤の加熱によって除湿剤に吸着 された水分を除去した後, 除湿剤の冷却を速やかに行って生ごみの分 解作業への復帰を促進することができる生ごみ処理装置を提供するこ とである。 すなわち, 制御ユニットは, 除湿剤の再生作業が完了した 後, 分岐部で排気経路を遮断する第 3ポジションに風量調節部材を セットする。 除湿剤は処理室→排気経路→循環経路—処理室でなる閉 じた経路を流れる循環空気流によって効率よく冷却される。 脱臭装置 に向かう排気経路が遮断されているので, 送風ファンの出力を上げて 大風量を閉じた経路内に循環させることができ, 結果として除湿剤の 冷却を速やかに行なうことができる。
本発明の別の目的は, 耐腐食性の材料で作成されていなレ、熱交 換器を使用でき, 排気経路を流れる空気の廃熱を利用して生ごみの微 生物分解をより一層促進することができる生ごみ処理装置を提供する 8 24
ことである。 すなわち, 排気経路内の脱臭装置と排気口の間に熱交換 器が設けられており, 熱交換器によって排気経路を流れる空気から回 収した廃熱によって吸気経路を通過する新鮮な空気を加温する。 その 結果, 処理室には適度に暖められた空気が導入されて生ごみの微生物 分解が促進される。 ところで, 多量の水分とアンモニアを含む腐蝕性 ガスが処理室から排出される力 熱交換器は脱臭装置の下流側に配置 されているので, 熱交換器が腐蝕性のガスにさらされることがない。 したがって, 耐腐食性を有する高価な材料で製造されている熱交換器 を使用する必要がない。
本発明のさらなる特徴およびそれがもたらす効果は, 添付され た図面を参照しながら以下に詳細に記載される。 。
図面の簡単な説明
図 1は, 本発明の第 1実施例の生ごみ処理装置の通常使用モードを示 す慨略図である。
図 2は, 第 1実施例の生ごみ処理装置の除湿剤の再生モードを示す慨 略図である。
図 3は, 第 1実施例の生ごみ処理装置の除湿剤の冷却モードを示す慨 略図である。
図 4は, 本発明の第 2実施例の生ごみ処理装置の慨略図である。 図 5は, 第 2実施例の生ごみ処理装置の含水率センサーの出力に基づ く制御システムを示すフロ一チヤ一ト図である。
図 6は, 第 2実施例の生ごみ処理装置の第 1湿度センサ一の出力に基 づく制御システムを示すフローチヤ一ト図である。
図 7は, 第 2実施例の生ごみ処理装置の第 2湿度センサ一の出力に基 づく制御システムを示すフローチャート図である。 図 8は, 第 2実施例の生ごみ処理装置の第 2了ンモニァセンサ一の出 力に基づく制御システムを示すフローチヤ一ト図である。
図 9は, 第 2実施例の生ごみ処理装置のさらなる制御システムを示す フローチヤ一ト図である。
図 1 0は, 第 2実施例の生ごみ処理装置の別の制御システムを示すフ ローチャート図である。
図 1 1は, 第 2実施例の生ごみ処理装置の生ごみの重量センサーの出 力に基づく制御システムを示すフローチヤ一ト図である。
図 1 2は, 処理室に乾燥した生ごみが投入された時の第 2実施例の生 ごみ処理装置の特殊制御モードを示す慨略図である。
図 1 3は, 本発明の第 3実施例の生ごみ処理装置を示す慨略図である。 図 1 4は, 本発明の第 4実施例の生ごみ処理装置の通常使用モードを 示す慨略図である。
図 1 5は, 本発明の第 1実施例の生ごみ処理装置の除湿剤の再生モー ドを示す慨略図である。
図 1 6は, 従来技術の生ごみ処理装置を示す慨略図である。
発明を実施するための最良の形態
以下に本発明を図示の実施例に基づいて詳細に説明する。
第 1実施例
図 1に本発明の第 1実施例の生ごみ処理装置 1の概略図を示す。 この生ごみ処理装置 1は, 微生物分解により生ごみ 2を処理する処理室 1 0, 処理室の空気取入口を介して外部から新鮮な空気を処理室に導入 するための吸気経路 2 0, 処理室の吐出口 1 4に接続され, 他端に排気 口を有する排気経路 2 1, および排気経路内の空気を処理室に返送する ための循環経路 2 2を含む。 処理室 1 0には, 生ごみの撹袢装置 1 1, 生ごみの含水率を測定 するための含水率センサー 6 0, 生ごみの微生物分解により発生する不 快な臭気を有する空気を処理室から排気経路に送るための送風ファン 1 3がある。 尚, 撹祥装置および含水率センサーを省略しても良い。
処理室 1 0から供給される空気の除湿を行なうための除湿装置 3
0が排気経路 2 1内に設けられている。 除湿装置 3 0は除湿剤 3 1 と除 湿剤に吸着された水分を除去して除湿剤を再生するための再生手段とし てヒ一ター 3 2を含む。 除湿剤 3 1としては, シリカゲル, ゼォライ ト, ケィ酸アルミニウム等の固体酸, 塩化カルシウムあるいは炭酸カルシゥ ムを使用できる。 これらの除湿剤は, 水蒸気だけでなく臭気の主成分で あるアンモニアも吸着する能力を兼ね備えている。 特に, 水分に加えて 悪臭の主成分であるアンモニアおよびトリメチルァミンの高い除去率を 有するシリカゲルの使用が好ましい。 除湿剤を使用した除湿装置は, 冷 凍サイクル, 熱電変換素子, 空気中の水分を結露させて除去する除湿装 置とは異なり, 悪臭成分が溶けこんだ結露水が発生することがなく溜 まった結露水を捨てる作業を必要としない利点がある。 したがって, 結 露水から発生する腐敗臭の問題もない。
循環経路 2 2は, 除湿装置 3 0の下流側に位置する分岐部 2 3で 排気経路 2 1から分岐し, 処理室 1 0内に延出している。 排気経路 2 1 から循環経路 2 2を介して処理室に返送される空気の量を変えるための 風量調節部材 4 0が分岐部に設けられている。 風量調節部材としては, 例えば, 電動式ダンパーを使用することができる。 風量調節部材 4 0の 動作は制御ュニット 3によって制御される。 制御ュニット 3は, 生ごみ 処理装置 1の通常使用時において, 除湿装置 3 0から提供される空気の 一部が排気経路を介して外部に排出され, その残りの空気が循環経路 2 2を介して再び処理室 1 0に返送されるように風量調節部材 4 0を第 1 ポジションにセットする。 吸気経路を介して処理室に導入される空気量 は, 排気経路 2 1を介して外部に排出される空気量に等しい。 したがつ て, 風量調節部材 4 0の第 1ポジションは, 吸気経路 2 0を介して処理 室 1 0に導入される空気量が, 処理室で微生物分解を行なうのに必要な 酸素量から想定した空気量となるように決定される。 この風量調整部材 4 0の制御によって生ごみ処理装置 1の排気量を大幅に低減できる。 尚, 本実施例の処理装置においては, 後述されるように, 風量調整部材 4 0 は, 処理室 1 0に配置されている含 率センサー 6 0からの出力によつ ても制御される。
一方, 除湿剤 3 1に吸着された水分およびアンモニアを除去する ため除湿剤をヒーター 3 2で加熱する再生作業において, 制御ュニット 3は, 循環経路 2 2が分岐部 2 3で遮断されるように風量調節部材 4 0 を第 2ポジションにセットする。 本実施例においては, シリカゲルに吸 着される水分量を検出し, 吸着水分量が所定の水分量を越える時に制御 ユニット 3に第 1制御信号を出力する水分量センサー(図示せず)とシリ 力ゲルに吸着されるアンモニア量を検出し, 吸着アンモニア量が所定の アンモニア量を越える時に制御ュニット 3に第 2制御信号を出力するァ ンモニァセンサー(図示せず)が設けられており, 制御ュニッ トは第 1制 御信号および第 2制御信号のいずれか一方に基づいてヒーター 3 2を作 動させるとともに風量調節部材 4 0を第 2ポジションにセットして再生 作業を開始する。 尚, アンモニアセンサーを使用せず, 水分量センサー のみを使用することも可能である。
排気経路を介して外部に排出されるべき空気から臭気を除去する ための脱臭装置 5 0が, 排気経路 2 1内の除湿装置 3 0の下流側に設け られている。 本実施例においては, 脱臭装置 5 0は分岐部 2 3の下流側 に配置されている。 除湿装置から送られてくる空気の大部分は循環経路 に送られ, 外部に排出される空気量は少量であるので, 本発明の生ごみ 処理装置に大型の脱臭装置は必要なく, 結果として生ごみ処理装置全体 の小型化および省エネ化が図れる。 尚, アンモニアゃトリメチルァミン のような N系の臭気成分以外の少量の臭気成分, 例えば, 硫黄化合物等 の S系の臭気成分を脱臭するための追加脱臭装置(図示せず)を排気経路 2 1の除湿装置 3 0と分岐部 2 3との間に設けても良い。 追加脱臭装置 には吸着剤として活性炭を使用することが特に好ましい。
本実施例で使用されている脱臭装置 5 0は, 貴金属をアルミナ等 の酸化物に担持した酸化触媒 5 1とヒーター 5 2で構成されている。 し かしながら, 吸着剤, オゾン分解装置, 微生物脱臭装置等の脱臭装置, あるいはそれらを組み合わせた脱臭装置を使用しても良い。 貴金属とし て白金, ロジウムあるいはパラジウムを使用することが好ましい。 除湿 装置 3 0により除去されなかった悪臭成分は, この脱臭装置により外部 に排出される前に除去されるので, 生ごみ処理装置の周辺での悪臭の発 生を防止できる。
次に, 本実施例の生ごみ処理装置 1の動作について説明する。 まず, 生ごみ 2の微生物分解を実施する通常使用モードを図 1 を参照して説明する。 制御ユニット 3は, 処理室内で発生する水蒸気 とァンモニァ等の臭気を含む空気を大風量で除湿装置 3 0に供給する ように送風ファン 1 3を制御する。 また, 制御ユニッ ト 3は風量調節 部材 4 0を第 1ポジションにセットし, それにより除湿装置 3 0で水 蒸気およびアンモニアが除去された空気の一部を排気経路 2 1を介し て排出し, 残りの大部分の空気を循環経路 2 2を介して処理室 1 0に /38 24
10 返送する。 制御ュニット 3は, 脱臭装置 5 0の触媒 5 1が通常操作温 度に加熱されるようにヒーター 5 2を制御する。 その結果, 排気経路 2 1を介して外部に排出される空気中の悪臭成分は脱臭装置により除 去される。 悪臭成分のうちアンモニアおよびトリメチルァミンはすで に除湿装置 3 0で除去されているので脱臭装置への負担を少なくでき る。
次に除湿剤 3 1から吸着された水分およびァンモニァ等を除去 するための除湿剤の再生モードを図 2を参照して説明する。 制御ュ ニット 3は, 循環経路 2 2を排気経路 2 1から実質的に遮断するよう に風量調節部材 4 0を第 2ポジションにセットする。 さらに, 制御ュ ニット 3は, 除湿装置 3 0のヒーター 3 2への通電を開始する。 除湿 剤 3 1から除去された水蒸気およびアンモニアは, 循環経路 2 2が遮 断されているので再ぴ処理室 1 0にもどされることなくすべて脱臭装 置 5 0に送られる。 制御ユニット 3は, 脱臭装置 5 0をフル稼動する ため脱臭装置のヒータ一 5 2を高温に加熱する。
本実施例の生ごみ処理装置には小型の脱臭装置が使用されてお り, 大風量の空気が送られてくると十分に脱臭されない可能性がある ので, 制御ュ-ッ ト 3は除湿剤の再生モードにおいては送風ファン 1 3の出力を通常処理モードの送風量よりも少なくするように制御して いる。 また, 再生作業の初期においては, 吸着されていたアンモニア が高濃度で除去されてくるので, 脱臭装置 5 0の触媒温度を許容限度 の最高温度にしておくことが好ましい。 さらに, 再生作業の進行とと もに除湿剤 3 1から除去されるアンモニアの濃度は減少するので, そ れに伴って脱臭装置 5 0の触媒温度を低下させると再生作業にかかる エネルギーを節約することができる。 また, その代わりとして除湿剤 W 8624
1 1
3 1からアンモニアが均一な濃度で除去されるように除湿装置のヒー ター 3 2の加熱を制御してもよい。 尚, 除湿装置 3 0から送られてく る空気中の湿度を測定する湿度センサ一 6 1が排気経路 2 1内に設け られており, 制御ュニット 3は検出された湿度が所定値以下になった 時に再生作業が完了したと判断してヒーター 3 2への通電を停止する。
除湿剤 3 1の冷却モードは, 再び水分およびアンモニアを吸着 できるように再生モードにおいて加熱された除湿剤を冷却するための ものであり, 以下に示す第 1冷却モードと第 2冷却モードのいずれか によって行なうことができる。
第 1冷却モードにおいては, 図 2に示すように, 風量調節部材
4 0は第 2ポジションに保持され, 送風ファン 1 3は再生モードにお ける送風量が維持される。 除湿剤 3 1の温度が高い間は処理室から送 られてくる空気中のアンモニアは除湿剤によって除去されない。 した がって, 脱臭装置 5 0の脱臭能力を上げるため通常使用モードにおけ るよりも高温に且再生モードにおけるよりも低温に触媒 5 1を加熱す ることが好ましい。 また, 除湿剤 3 1の温度の低下に伴ってアンモニ ァの吸着能力が回復してくるので, 脱臭装置 5 0における触媒加熱温 度を徐々に下げるように制御すると良い。
第 2冷却モードにおいて, 制御ュニット 3は図 3に示すように 除湿装置 3 0を通過するすべての空気が循環経路 2 2を介して再び処 理室 1 0に返送されるように分岐部 2 3で排気経路 2 1を遮断する第 3ポジションに風量調節部材 4 0をセッ 卜する。 送風ファン 1 3によ る大風量の空気を処理室 1 0→排気経路 2 1—(除湿装置 3 0 )→循環 経路 2 2→処理室 1 0でなる閉ループに循環させて除湿剤の冷却を行 なう。 この時, 脱臭装置 5 0において触媒 5 1の加熱を行なう必要は ない。 この第 2冷却モードは, 除湿剤の冷却を速やかに行える点で好 ましい。
本実施例の生ごみ処理装置 1において, 処理室 1 0内に放置さ れている生ごみ 2を撹袢装置 1 1により撹袢すると, アンモニアを含 む臭気成分が多量に放出される場合がある。 したがって, 制御ュニッ ト 3は, 除湿装置 3 0から供給されるすべての空気が循環経路 2 2を 介して再ぴ処理室 1 0に返送されるように撹袢装置を始動させる直前 に風量調節部材を図 3に示すように第 3ポジションにセットする。 こ の状態で撹袢装置 1 1を作動させるので, 臭気成分の濃度が急激に上 昇しても吸着剤 3 1によりアンモニアが十分に吸着除去されるまで悪 臭を含む空気は第 2冷却モードにおいて形成されるのと同じ閉ループ を循環することになる。
さらに本実施例において, 制御ユニッ ト 3は, 処理室 1 0に設 けられた含水率センサー 6 0からの出力に基づいて送風ファン 1 3お よび風量調節部材 4 0を以下のように制御している。 制御ユニット 3 は, 検出した生ごみの含水率が所定含水率以上の時, 送風ファン 1 3 の出力を上げるとともに排気経路 2 1を介して外部に排気される空気 量が実質的に一定に保たれるように風量調節部材 4 0の排気経路に对 する開口度を小さくする。 換言すれば, 循環経路を流れる空気量を増 やすために風量調節部材 4 0の循環経路 2 2に対する開口度を大きく するのである。 反対に検出した生ごみの含水率が所定含水率以下の時, 送風ファン 1 3の出力を下げて生ごみの異常乾燥を防ぐ。 尚, 含水率 センサ一以外に処理室內に湿度センサーを設け, それによつて検出さ れる処理室内の湿度値に基づいて上記の送風ファン 1 3及び風量調節 部材 4 0の制御を行なっても良い。 さらに, 処理室内に生ごみの重量 センサーを設け, それによつて検出される生ごみの重量値に基づいて 上記の送風ファン 1 3及び風量調節部材 4 0の制御を行なうことも可 能である。
第 2実施例
図 4に本発明の第 2実施例の生ごみ処理装置の概略図を示す。 この生ごみ処理装置 1 Bは以下の特徴を除いて実質的に第 1実施例の 生ごみ処理装置と同一である。 したがって, 実施例 1 と同一の構成お よび動作についての説明は省略し, 図中においては添え字' ' Β "を参照番 号の後につけて表示する。
本実施例の生ごみ処理装置 1 Βにおいては, 除湿装置 3 0 Βの累 積使用時間が所定時間に達した時に制御ュニット 3 Βに制御信号を出力 するタイマー(図示せず)が設けられ, 制御ュニッ トはその制御信号に基 づいて循環経路 2 2 Βを排気経路 2 1 Βから実質的に遮断する第 2ポジ ションに排気風量調節部材 4 0 Βをセットして除湿剤 3 1 Βの再生を開 始する。 再生モードを開始する時間は, 投入される生ごみの最大重量か ら想定される水分量やアンモニア量, さらに除湿剤 3 1 Bの飽和吸着量 に基づいて計算することができる。 しカゝし, 処理室に放置される生ごみ の種類あるいは発酵状態によってタイマーに前もって設定された時間よ りも早い段階で再生モードを開始することが好ましい場合がある。 除湿 剤 3 1 Βの再生を実施するタイミングは以下のようなシステムの採用に よって修正することができる。 尚, 以下に説明するシステムは必要に応 じて第 1実施例の生ごみ処理装置に採用することも可能である。
この生ごみ処理装置 1 Βには, 処理室 1 0 Β内の生ごみ 2 Βの含 水率を検出し, 処理室内の含水率が所定範囲から外れると制御ュニット 3 Βに制御信号を出力する含水率センサー 6 0 Β, 処理室内の湿度を検 出し, 処理室内の湿度が所定湿度範囲から外れると制御ュニットに制御 信号を出力する第 1湿度センサ一 6 2 B , 除湿装置 3 0 Bを通過した空 気中の湿度を検出し, 検出した湿度が所定湿度範囲から外れると制御ュ ニットに制御信号を出力する第 2湿度センサー 6 3 B , 処理室内のアン モニァ濃度を検出し, 処理室内のアンモニア濃度が所定範囲から外れる と制御ュニットに制御信号を出力する第 1アンモニアセンサー 6 4 B , 除湿装置を通過した空気中のアンモニア濃度を検出し, 検出したアンモ ニァ濃度が所定範囲から外れると制御ュニットに制御信号を出力する第 2アンモニアセンサー 6 5 B , 脱臭装置通過後の空気に含まれるアンモ ニァ濃度を検出し, 検出したアンモニア濃度が所定アンモニア濃度以上 になると制御ュニットに制御信号を出力する第 3アンモニアセンサー 6 6 B , および処理室内に置かれた生ごみの重量を測定し, 測定した重量 が所定範囲から外れると制御ュニッ トに制御信号を出力する重量セン サー 6 7 Bが装備されている。
図 5に示すように, 処理室内の生ごみの含水率が所定含水率以上 の場合, 含水率センサー 6 0 Bからの出力値に基づいて制御ュニッ ト 3 Bにより計算される時間だけ除湿剤の再生時期が早められる。 一方, 生 ごみの含水率が所定範囲以下の場合, 含水率センサーからの出力値に基 づいて制御ユニット 3 Bにより計算される時間だけ除湿剤の再生を遅ら せる。 これにより効率良く生ごみの処理を行なうことができる。 含水率 センサーの代わりに生ごみの p Hを測定する p Hセンサーを使用しても 良い。
図 6に示すように, 処理室 1 0 B内の湿度が所定湿度範囲以上の 場合, 第 1湿度センサー 6 2 Bからの出力値に基づいて制御ュニッ ト 3 Bにより計算される時間だけ除湿剤の再生が早められる。 一方, 処理室 内の湿度が所定湿度範囲以下の場合, 第 1湿度センサーからの出力値に 基づいて制御ュニッ ト 3 Bにより計算される時間だけ除湿剤の再生を遅 らせる。 尚, 第 1アンモニアセンサ一 6 4 Bを使用して, 第 1湿度セン サ一の場合と同様に除湿剤の再生時期を修正しても良 、。
また, 処理室内の生ごみの重量が所定範囲以上の場合, 重量セン サー 6 5 Bからの出力値に基づいて制御ュニッ ト 3 Bにより計算される 時間だけ除湿剤の再生時期が早め, 生ごみの重量が所定範囲以下の場合, 重量センサーからの出力値に基づいて制御ュニット 3 Bにより計算され る時間だけ除湿剤の再生を遅らせるようにしても良い。
図 7に示すように, 第 2湿度センサー 6 3 Bによって検出された 湿度が所定湿度範囲以下の場合, 制御ユニッ ト 3 Bは, 除湿装置 3 0 B の除湿能力を下げるために送風ファン 1 3 Bの出力を下げる。 その結果, 処理室内の生ごみが乾燥しすぎて異常発酵するのを防ぐことができる。 除湿装置を通過した空気中の湿度が所定湿度範囲以上で, 尚且つ第 1湿 度センサー 6 2 Bにより検出された湿度値と第 2湿度センサ一により検 出された湿度値とを使用して計算される湿度除去率が所定範囲以下であ る場合, 制御ユニット 3 Bは直ちに除湿剤 3 1 Bの再生モードに移行す る。 湿度除去率が所定範囲以上である場合は通常使用モードにもどる。
図 8に示すように, 第 2アンモニアセンサー 6 5 Bによって検出 されたアンモニア濃度が所定濃度範囲以下の場合, 制御ユニット 3 Bは 脱臭装置 5 0 Bの脱臭能力を下げるために触媒 5 1 Bの加熱温度を下げ る。 一方, 除湿装置を通過した空気中のアンモニア濃度が所定濃度範囲 以上で, 尚且つ第 1アンモニアセンサー 6 4 Bにより検出されたアンモ ニァ濃度値と第 2アンモニアセンサ一により検出されたアンモニア濃度 値とを使用して計算されるアンモニア除去率が所定範囲以下である場合, 624
16 制御ュニッ ト 3 Bは直ちに除湿剤 3 1 Bの再生モードに移行する。 アン モニァ除去率が所定範囲以上である場合は通常使用モードにもどる。
第 1アンモニアセンサー 6 4 Bは処理室内で発生するアンモニア 濃度を随時監視しており, 何等かの原因で処理室內のアンモニア濃度が 急上昇し検出した濃度が所定値を越えた時, 制御ュニット 3 Bは脱臭装 置 5 0 Bを介して外部に向かう空気流を断っため風量調節部材 4 0 Bで 排気経路 2 1 Bを遮断する力, 排気口を介して排出される空気量が減少 するように送風ファン 1 3 Bの出力を下げる力, あるいは脱臭装置 5 0 Bの脱臭能力を上げるかしてアンモニア濃度の異常に対処することが好 ましい。 特に, 外部へのアンモニアの漏洩を防止する観点から風量調節 部材 4 O Bの制御を行なうことが好ましい。
除湿装置 3 0 Bを通過した空気中の湿度が所定湿度範囲内にある 時, 第 2湿度センサー 6 3 Bからの出力値に基づいて除湿剤 3 1 Bの再 生モードへの移行時期を決定しても良い。 すなわち, 図 9に示すように, 制御ユニット 3 Bは, 第 1湿度センサーにより検出される第 1湿度(すな わち, 除湿装置 3 0 Bの上流側の湿度)と第 2湿度センサー 6 3 Bにより 検出される第 2湿度(すなわち, 除湿装置の下流側における湿度)との差 を計算して吸着剤の水分吸着量を見積る。 見積った吸着量が飽和吸着量 の 9 0 %以上である時に除湿剤 3 1 Bの再生モードに移行するのである。 この制御は, 除湿剤 3 1 Bの吸着能力が実質的になくなる以前に再生 モードに移行することができる点で好ましい。 また, 再生モードに移行 した後, 第 1および第 2湿度センサ一からの出力に基づいて再生作業の 完了を正確に知ることができる。 すなわち, 第 1湿度と第 2湿度との差 がゼロになる時, 除湿剤からの水分の除去が完了したとして除湿装置 3 0 Bのヒーター 3 2 Bへの通電をス トップし, 除湿剤の冷却モードに移 行する。 尚, 第 1アンモニアセンサー 6 4 Bと第 2アンモニアセンサー を使用して, 上記と同様の手法で除湿剤の再生モードへの移行時期を補 正しても良い。
本実施例の生ごみ処理装置 1 Bから悪臭を含む空気が偶発的に排 出されることを防ぐための安全システムが設けられている。 すなわち, 生ごみ 2 Bの重量が所定重量範囲以上であるか, 含水率検出装置からの 生ごみの含水率が所定範囲以上であることを知らせる出力が一定時間継 続しているか, あるいは第 1アンモニアセンサー 6 4 Bあるいは第 2ァ ンモニァセンサー 6 5 Bによって検出されるアンモニア濃度が所定範囲 以上であることを知らせる出力が一定時間継続する場合, 制御ユニット 3 Bは脱臭装置 5 0 Bの触媒 5 1 Bの加熱温度を上げて脱臭能力を増加 させる。 第 3アンモニアセンサー 6 6 Bによって検出されるアンモニア 濃度が依然として所定範囲以上である時, 触媒温度をさらに増加させる。 触媒 5 1 Bの加熱温度が許容限界温度に達しているにもかかわらず状況 の改善がみられない場合, 排気経路 2 1 Bを風量調節部材 4 0 Bで遮断 して脱臭装置 5 0 Bに向かう空気流をストップさせるとともに触媒 5 1 Bの加熱を停止する。 図 1 0に重量センサー 6 5 Bからの出力に基づく 上記の安全システムのフローチャートを示す。 尚, アンモニア以外の臭 気成分を検知するセンサーを代わりに使用しても良い。
本実施例の生ごみ処理装置 1 Bの除湿剤 3 1 Bの再生モード時に おける脱臭装置 5 0 Bの動作制御は以下のように行なわれる。 すなわち, 図 1 1に示すように, 第 1アンモニアセンサー 6 4 Bによって検出され るアンモニア濃度と第 2アンモニアセンサー 6 5 Bによって検出される アンモニア濃度がほぼ等しくなると, 除湿剤 3 1 Bの再生が完了したも のとして冷却モードに移行される。 一方, 第 2アンモニアセンサーによ W 99/38624
18 り検出されたアンモニア濃度が除湿装置 3 0 Bの上流側のアンモニア濃 度と等しくなく, かつそれが所定値以上である場合, 制御ユニット 3 B は触媒 5 1 Bの加熱温度を許容限界温度まで増加させる。 その結果, 第 3アンモニアセンサ一 6 6 Bにより検出されたアンモニア濃度が所定値 以下であればそのまま再生作業を続けるが, 反対に所定値以上である場 合は除湿装置 3 0 Bのヒーター 3 2 Bの加熱温度を下げて除湿剤からの アンモニアの脱着速度を低下させる。 アンモニア以外の臭気成分濃度を 検出するセンサーを使用して脱臭装置の上記と同様の制御を行なうこと も可能である。
生ごみ処理装置 1 Bの脱臭装置の触媒 5 1 Bは長時間使用された 後交換されなければならない。 また, 脱臭装置に吸着剤を使用した場合 においても, 吸着剤の寿命がくれば交換しなければならない。 触媒の交 換時期は次のようにして判定できる。 すなわち, 制御ユニッ ト 3 Bは, 第 2アンモニアセンサー 6 5 Bによって検出されるアンモニア濃度値と 第 3アンモニアセンサー 6 6 Bによって検出されるアンモニア濃度値と を使用してアンモニア除去率を計算し, それが所定値よりも小さくなつ た時に触媒の交換が必要であることを生ごみ処理装置 1 Bの利用者に表 示灯を点灯させる等して知らせる。
また, 特殊な場合として, 処理室 1 0 Bに投入される生ごみが乾 燥しすぎている場合は微生物分解に必要な水分を捕給する必要があるの で以下のような制御を実施することが好ましい。 すなわち, 図 1 2に示 すように, 制御ユニット 3 Bは, 生ごみが乾燥しすぎていることを示す 含水率センサー 6 0 Bあるいは第 1湿度センサ一 6 2 Bの出力に基づい て風量調整部材 4 O Bによって排気経路 2 1 Bを遮断する。 その後, 除 湿剤 3 1 Bの再生モードを開始して除湿剤にそれまで吸着されていた水 24
19 分を循環経路 2 2 Bを介して処理室内に返送する。 その結果, 微生物分 解を行なうのに最低限必要な水分を処理室内の生ごみに提供することが できる。 含水率センサーあるいは第 1湿度センサの出力が所定範囲内に 入った時点で実施例 1で説明したのと同じ生ごみの通常使用モードが実 施される。
上記のように, 本実施例の生ごみ処理装置には種々のセンサー が装備されているが, 必要に応じてこれらのセンサ一の幾つかを任意 に省略することも可能である。
第 3実施例
図 1 3に本発明の第 3実施例の生ごみ処理装置の概略図を示す。 この生ごみ処理装置 1 Cは以下の特徴を除いて実質的に第 1実施例の生 ごみ処理装置と同一である。 したがって, 実施例 1と同一の構成および 動作については説明は省略し, 図中においては添え字" C ' 'を参照番号の後 につけて表示してある。
この実施例の生ごみ処理装置 1 Cには, 排気経路 2 1 Cを介して 外部に排気されるべき空気から廃熱を回収するため脱臭装置 5 0 Cの下 流側に熱交換器 7 0 Cが設けられている。 熱交換器によって回収された 廃熱によって吸気経路 2 0 Cを通過する新鮮な空気を加温している。 結 果として, 処理室 1 0 Cには適度に暖められた空気が導入されるので生 ごみの微生物分解が促進される。
ところで, 処理室 1 0 Cからは多量の水分とアンモニア等の腐蝕 性ガスを含む空気が排出されるが, 熱交換器 7 0〇は除湿装置3 0 ( ぉ よび脱臭装置 5 0 Cの下流側に配置されているので, 熱交換器が腐蝕性 ガスにさらされない。 したがって, 耐腐食性を有する高価な材料を使用 している熱交換器でなくても本実施例の生ごみ処理装置に利用すること ができる。 このように, 装置全体のコス トの上昇を最小限に抑えるとと もに, 廃熱利用によるエネルギー節約をもたらす実用的な生ごみ処理装 置を提供できる。
第 4実施例
図 1 4および図 1 5に本発明の第 4実施例の生ごみ処理装置の 概略図を示す。 この生ごみ処理装置 1 Dは, 微生物分解により生ごみ を処理するための処理室 1 0 D, および処理室の吐出口 1 4 Dに接続 され, 他端に排気口を有する排気経路 2 1 Dが設けられている。 排気 経路 2 1 D內には生ごみの微生物分解により発生する不快な臭気を含 有する空気を排気経路を介して排出するための送風ファン 1 3 Dが設 けられている。 外部からの新鮮な空気を排気経路 2 1 Dに導入するた め吸気経路 2 0 Dが送風ファン 1 3 Dの上流側に位置する第 1分岐部 2 4 Dで排気経路に接続されている。 送風ファン 1 3 Dから送られて くる空気を除湿するため除湿装置 3 0 Dが排気経路内の送風ファン 1 3の下流側に配置されている。 除湿装置 3 0 Dは除湿剤 3 1 Dと除湿 剤に吸着された水分を除去して除湿剤を再生するためのヒーター 3 2 Dを含む。 除湿装置としては第 1実施例において説明したものを使用 できる。
除湿装置 3 0 Dの下流側に位置する第 2分岐部 2 3 Dで排気経 路 2 1 Dから処理室 1 0 D内に循環経路 2 2 Dが延出している。 本実 施例において, 脱臭装置 5 0 Dは除湿装置 3 0 Dと第 2分岐部 2 3 D との間の排気経路 2 1 D内に配置されている。 脱臭装置 5 0 Dとして は第 1実施例において説明したものを使用できる。 吸気経路 2 0 Dか ら導入される新鮮な空気の量を変えるために第 1分岐部 2 4 Dに第 1 風量調節部材 4 1 Dが設けられている。 また, 循環経路 2 2 Dを介し て処理室 1 0 Dに返送される空気の量を変えるため第 2分岐部 2 3 D に第 2風量調節部材 4 0 Dが設けられている。 第 1および第 2風量調 節部材 4 0は制御ュニット 3 Dによって制御される。
次に, 本実施例の生ごみ処理装置 1 Dの動作について説明する。 生ごみの微生物分解を実施する通常使用モードにおいては, 図
1 4に示すように, 制御ユニット 3 Dは, 処理室 1 0 Dから排気経路 2 1 Dに送られる空気が吸気経路 2 0 Dを介して供給される新鮮な空 気と混合されるように第 1風量調節部材 4 1 Dを開ポジションにセッ トする。 それと同時に, 除湿装置 3 0 Dで除湿された空気の一部が排 気経路 2 1 Dを介して排出され, 残りの大部分の空気が循環経路 2 2 Dを介して再び処理室 1 0 Dに返送されるように第 2風量調節部材 4 0 Dを開ポジションにセットする。 さらに制御ユニット 3 Dは, 脱臭 装置 5 0 Dの触媒を加熱する。 悪臭成分の主成分であるアンモニアの ほとんどはすでに除湿装置 3 0 Dで除去されているので, 脱臭装置 5 0 Dの脱臭能力を低く抑えることができる。 本実施例の生ごみ処理装 置 1 Dにおいては, 外気の湿度が高い場合においても, 吸気経路 2 0 Dを介して送られてくる空気は, 処理室に送られる前に除湿装置 3 0 Dを通過させられるので, 湿った外気がそのまま処理室内に導入され て処理室 1 0 D内の湿度が高くなることを防ぐことができる点で優れ てレヽる。
—方, 除湿装置 3 0 Dの除湿剤 3 1 Dから吸着された水分およ びアンモニア成分を除去するための再生モードにおいては, 図 1 5に 示すように, 制御ユニット 3 Dは, 吸気経路 2 0 Dからのみ空気を排 気経路 2 1 Dに導入するため処理室と排気経路との間の連絡を実質的 に遮断する閉ポジションに第 1風量調節部材 4 1 Dをセットする。 そ れと同時に, 循環経路 2 2 Dが第 2分岐部 2 3 Dで排気経路 2 1 Dか ら実質的に遮断されるように第 2風量調節部材 4 0 Dを閉ポジション にセットする。 さらに, 制御ユニット 3 Dは吸着された水分おょぴァ ンモニァを除湿剤 3 1 Dから除去するため除湿装置のヒーター 3 2 D を加熱する。 除湿剤 3 1 Dから除去された水蒸気およびアンモニア成 分は循環経路 2 2 Dが遮断されているので再び処理室にもどされるこ とはない。 また, 処理室 1 O Dと排気経路 2 1 Dとの間の連絡が第 1 風量調節部材 4 1 Dにより遮断されているので, 再生時に処理室内か ら送られてくる水蒸気および悪臭を含む空気を使用することなく, 吸 気経路を介して導入される新鮮な空気を使用して除湿剤 3 1 Dの再生 が行なわれるので再生時間を短縮することができる。
再生モードにおいては, 除湿剤 3 1 Dから除去されたアンモニ ァ等の臭気成分を含むすべての空気が脱臭装置に送られるため, 高濃 度のアンモニアを除去できるように脱臭装置 5 0 Dの脱臭能力を高め る必要がある。 そのため脱臭装置 5 0 Dが触媒とヒーターで構成され ている場合はヒーターを許容最高温度に加熱することが好ましい。 尚, 排気経路 2 1 Dには除湿装置 3 0 Dから出てくる空気中の湿度を測定 する湿度センサー(図示せず)が設けられており, 測定された湿度が所 定値以下になった時に除湿装置のヒ一ター 3 2 Dへの通電が停止され るように制御ュ-ット 3 Dによって制御されている。
除湿剤 3 1 Dの再生モードが完了した後, 除湿剤の冷却モードに 移行する。 この冷却モードは, 上記した再生モードにおける第 1および 第 2風量調節部材(4 1 D,4 0 D)の閉ポジションを維持しながら行なわ れる。 除湿剤 3 1 Dからはすでに水蒸気及びアンモニアが除去されてお り, 脱臭装置 5 0 Dには新鮮な空気が流れてくるだけなので脱臭装置を 作動させる必要はない。 送風ファン 1 3 Dにより大風量の新鮮な空気を 吸気経路 2 0 Dを介して排気経路 2 1 D内に導入し, それにより除湿材 3 1 Dをすばやく冷却することができる。 処理室は密閉されているので 冷却モードにおける臭気の外部への漏洩の心配はない。 このように, 外 気の湿度に関係することなく安定した生ごみの分解処理を行なうことが でき, 除湿剤の再生および冷却をスムーズに行なうことができる実用的 な生ごみ処理装置を提供できる。
本発明は, 好ましいとされる実施の形態に基づいて説明されてい る。 しかしながら, 本発明の範囲は上記した実施例によって限定される ものではない。 本発明はそれらの実施例の種々の変更および類似の構成 を力バーするものであり, 本発明は特許請求の範囲に基づレ、て解釈され るべきである。

Claims

請求の範囲
1 . 以下の構成からなることを特徴とする生ごみ処理装置:
微生物分解により生ごみを処理するための処理室, 処理室は吐出口を有 する ;
外部から新鮮な空気を処理室に供給するための吸気経路;
一端が処理室の吐出口に接続され, 他端に排気口を有する排気経路; 排気経路に送られる前記空気の除湿を行なうために排気経路内に設けら れる除湿手段, 除湿手段は除湿剤と除湿剤に吸着された水分を除 去して除湿剤を再生する再生手段を含む;
前記除湿手段の下流側に位置する分岐部で前記排気経路から上記処理室 內に延出する循環経路;
生ごみの微生物分解により処理室で発生する不快な臭気を有する空気を 排気経路を介して外部に排出するために前記分岐部よりも上流側 に配置される送風手段;
排気経路內の前記除湿手段と排気口の間に設けられ, 排気口から排出さ れるべき空気から臭気を除去する脱臭手段;
排気経路から循環経路を介して処理室に返送される空気の量を変えるた め分岐部に設けられる排気風量調節手段;
前記風量調節手段を制御するための制御手段, 前記制御手段は生ごみ処 理装置の通常使用時において除湿手段から提供される空気の一部 が排気口を介して排出され, その残りの空気が循環経路を介して 再び処理室に返送されるように風量調節手段を第 1ポジションに セットし, 前記除湿剤に吸着された水分を再生手段によって除去 する時, 分岐部で循環経路が遮断されるように風量調節手段を第 ョンにセットする。
2 . 前記除湿剤が固体酸であることを特徴とするクレーム 1の生ごみ処
3 . 前記除湿剤がシリカゲルであることを特徴とするクレーム 1の生, み処理装置。
4 . 前記脱臭手段は, 排気経路內の前記分岐部の下流側に配置されるこ とを特徴とするクレーム 1の生ごみ処理装置。
5 . 除湿剤に吸着される水分量を検出し, 吸着水分量が所定の水分量を 越える時に制御手段に第 1制御信号を出力する第 1検知手段, および除 湿剤に吸着されるアンモニア量を検出し, 吸着アンモニア量が所定のァ ンモニァ量を越える時に制御手段に第 2制御信号を出力する第 2検知手 段が設けられ, 制御手段は第 1制御信号および第 2制御信号のいずれか 一方に基づいて再生手段を作動させることを特徴とするクレーム 1の生 ごみ処理装置。
6 . 除湿剤の累積使用時間が所定時間に達した時に風量調節手段を第 2 ポジションにセットするとともに再生手段を作動させるタイマーを含む ことを特徴とするクレーム 1の生ごみ処理装置。
7 . 処理室内の湿度, 処理室内のアンモニア濃度, 生ごみの含水率, 生 ごみの p H値, 生ごみの重量の中から選択される少なくとも一つのパラ メーターを検出する検知手段を有し, 前記制御手段は検知手段からの出 力に基づいてタイマーの前記所定時間を微調整することを特徴とするク レーム 6の生ごみ処理装置。
8 . 処理室内で発生するある臭気成分の濃度を検出し, 検出した濃度が 所定値を越えた時, 前記制御手段に制御信号を出力する検知手段を有し, 前記制御手段は検知手段からの出力に基づいて除湿手段を通過するすべ ての空気が循環経路を介して再び処理室に返送されるように分岐部で排 気経路を遮断する第 3ポジションに前記風量調節手段をセットすること を特徴とするクレーム 1の生ごみ処理装置。
9 . 前記処理室内の生ごみを撹袢するための撹袢手段を含み, 前記制御 手段は, 撹袢手段が作動している間, 除湿手段を通過するすべての空気 が循環経路を介して再び処理室に返送されるように分岐部で排気経路を 遮断する第 3ポジションに前記風量調節手段をセットすることを特徴と するクレーム 1の生ごみ処理装置。
1 0 . アンモニア以外の臭気を脱臭するための追加脱臭手段を排気経路 內の除湿手段と分岐部分の間に設けることを特徴とするクレーム 4の生 ごみ処理装置。
1 1 . 排気経路内の脱臭手段と排気口の間に設けられる熱交換器を含み, 熱交換器によって排気経路を流れる空気から回収した廃熱を利用して前 記吸気経路を介して処理室に送られる新鮮な空気を加温することを特徴 とするクレーム 1の生ごみ処理装置。
1 2 . 生ごみの含水率, 処理室内の湿度および処理室内の生ごみの重量 の少なくとも一つを検出し, 検出した値が所定値を越えた時, 前記制御 手段に制御信号を出力する検知手段を備え, 前記制御手段は制御信号に 基づいて送風手段の送風量を上げるとともに, 排気口を介して排出され る空気量が所定量になるように排気経路の前記風量調節手段による開口 度を微調整することを特徴とするクレーム 1の生ごみ処理装置。
1 3 . 除湿手段から送られてくる空気中の湿度を測定する湿度センサー を含み, しかるに, 前記制御手段は除湿剤の再生作業において, 湿度セ ンサ一によつて測定された湿度が所定値以下の時に再生手段の動作を停 止することを特徴とするクレーム 1の生ごみ処理装置。
1 4 . 前記制御手段は, 除湿剤に吸着された水分の除去が再生手段によ る除湿剤の加熱によって実施された後, 処理室, 排気経路, および循環 経路により形成される閉じた経路を流れる循環空気流によって除湿剤が 冷却されるように前記分岐部で排気経路を遮断する第 3ポジションに前 記風量調節手段をセッ トすることを特徴とするクレーム 1の生ごみ処理
1 5 . 前記送風手段は排気経路内に設けられ, 前記吸気経路は送風手段 の上流側に設けた追加分岐部で排気経路に接続し, 前記吸気経路から排 気経路に導入される空気の量を変えるために吸気風量調節手段が追加分 岐部に設けられ, 前記制御手段は排気風量調節手段および吸気風量調整 手段を以下のように制御することを特徵とするクレーム 1の生ごみ処理 装置:
生ごみ処理装置の通常使用時において, 処理室から排気経路に提供され る空気に吸気口から供給される空気を混合するために吸気風量調節手段 を開ポジションにセットするとともに, 前記排気風量調節手段を第 1ポ シヨンにセットする, 除湿剤に吸着された水分を再生手段によって除去 する時, 吸気経路からのみ空気を排気経路に導入するため前記吐出口を 閉鎖する閉ポジションに吸気風量調節手段をセットするとともに, 排気 風量調節手段を第 2ポジションにセットする。
PCT/JP1998/000382 1998-01-30 1998-01-30 Installation d'elimination des ordures brutes WO1999038624A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020007008296A KR100353273B1 (ko) 1998-01-30 1998-01-30 음식물 쓰레기 처리장치
CN98813381A CN1093438C (zh) 1998-01-30 1998-01-30 垃圾处理装置
EP19980901052 EP1103313A1 (en) 1998-01-30 1998-01-30 Raw refuse disposal facility
US09/582,643 US6569673B1 (en) 1998-01-30 1998-01-30 Garbage disposing device
PCT/JP1998/000382 WO1999038624A1 (fr) 1998-01-30 1998-01-30 Installation d'elimination des ordures brutes
JP2000529907A JP4174969B2 (ja) 1998-01-30 1998-01-30 生ごみ処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/000382 WO1999038624A1 (fr) 1998-01-30 1998-01-30 Installation d'elimination des ordures brutes

Publications (1)

Publication Number Publication Date
WO1999038624A1 true WO1999038624A1 (fr) 1999-08-05

Family

ID=14207507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000382 WO1999038624A1 (fr) 1998-01-30 1998-01-30 Installation d'elimination des ordures brutes

Country Status (6)

Country Link
US (1) US6569673B1 (ja)
EP (1) EP1103313A1 (ja)
JP (1) JP4174969B2 (ja)
KR (1) KR100353273B1 (ja)
CN (1) CN1093438C (ja)
WO (1) WO1999038624A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313440A (ja) * 2006-05-26 2007-12-06 Canon Electronics Inc 廃棄物処理方法及び廃棄物処理装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441016B1 (ko) * 2002-06-04 2004-07-21 삼성전자주식회사 식기 세척기 및 그 제어방법
EP1550647A1 (de) * 2003-12-19 2005-07-06 Harrer, Ewald Verfahren zum Belüften eines Rotteprozesses sowie Rottebelüftungseinrichtung zur Durchführung dieses Verfahrens
KR200355901Y1 (ko) * 2004-04-19 2004-07-09 주식회사 가이아 교반기
KR100499725B1 (ko) * 2004-12-01 2005-07-05 주식회사 엔유씨전자 음식물쓰레기 처리장치
GB0526267D0 (en) * 2005-12-23 2006-02-01 Underwood Michael F Household material conservation unit
KR100786133B1 (ko) * 2006-07-25 2007-12-18 이건자 미생물을 이용한 음식물쓰레기의 처리방법
WO2008030378A1 (en) * 2006-09-07 2008-03-13 Sifers Don S Method and apparatus for controlling fecal odors
US8524092B2 (en) 2006-12-14 2013-09-03 Carnegie Mellon University Dry adhesives and methods for making dry adhesives
KR100838459B1 (ko) * 2007-11-14 2008-06-16 이관호 음식물 소멸방법
KR100952198B1 (ko) * 2008-01-04 2010-04-09 주식회사 오린 음식물쓰레기 처리기용 필터조립체
KR100954481B1 (ko) * 2008-01-10 2010-04-23 이승용 습도연동제어 열순환 건조장치
US8398909B1 (en) 2008-09-18 2013-03-19 Carnegie Mellon University Dry adhesives and methods of making dry adhesives
KR101046937B1 (ko) * 2009-03-30 2011-07-06 (주)엠오텍 질소발생기를 이용한 건조장치
EP2338842A3 (en) * 2009-12-28 2011-10-26 Woongjin Coway Co., Ltd. Deodorization module
CN102896133B (zh) * 2011-07-26 2015-03-18 上海军剑机电设备有限公司 有机废弃物资源化处理设备
US9726395B2 (en) * 2012-11-20 2017-08-08 Scott David Hammer Air freshening system and method
CN103230921A (zh) * 2013-04-02 2013-08-07 北京施恩德环保科技有限公司 一种发酵装置及其微生物发酵分解处理方法
KR101363287B1 (ko) * 2013-12-19 2014-02-18 해림계전(주) 습기로 인한 누전방지 기능을 갖는 수배전반
CN109976416A (zh) * 2017-12-27 2019-07-05 上海创净生物环保科技有限公司 有机垃圾处理机的环境控制系统和方法
CN108654326A (zh) * 2018-06-20 2018-10-16 南京博酝化工科技有限公司 一种用于高湿度有机废气的分子筛吸附装置
KR102094966B1 (ko) * 2018-11-20 2020-04-24 한국지역난방공사 외부열원을 이용하는 흡착제습식 음식물 건조기
KR102125221B1 (ko) * 2019-07-05 2020-06-22 한국건설기술연구원 음식물 쓰레기 처리장치의 악취 및 에너지 저감 방법
DE102022132528A1 (de) * 2022-12-07 2024-06-13 Dürr Systems Ag Vorrichtung und Verfahren zur Behandlung von Prozessgas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253384A (ja) 1995-03-15 1996-10-01 Toshiba Corp 厨芥処理装置
JPH09239348A (ja) * 1996-03-11 1997-09-16 Taniguchi Kogyo Kk 生ごみ処理装置
JPH09239347A (ja) * 1996-03-11 1997-09-16 Taniguchi Kogyo Kk 生ごみ処理装置
JPH1043726A (ja) * 1996-07-31 1998-02-17 Matsushita Electric Works Ltd 生ゴミ処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038050A (en) * 1974-11-27 1977-07-26 W. R. Grace & Co. Electrical sensing and regenerating system for molecular sieve driers
US4402717A (en) * 1980-05-22 1983-09-06 Daikin Kogyo Co., Ltd. Apparatus for removing moisture and odors
JPS6019490A (ja) * 1983-07-15 1985-01-31 Kubota Ltd 発酵槽の送気方法
JPH07157386A (ja) * 1993-12-01 1995-06-20 Toyo Dynam Kk 有機性廃棄物の処理方法および処理装置
JP2975286B2 (ja) * 1995-05-18 1999-11-10 西岡 富雄 有機廃棄物処理装置
SG52935A1 (en) * 1996-03-25 1998-09-28 Matsushita Electric Works Ltd Garbage disposal apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253384A (ja) 1995-03-15 1996-10-01 Toshiba Corp 厨芥処理装置
JPH09239348A (ja) * 1996-03-11 1997-09-16 Taniguchi Kogyo Kk 生ごみ処理装置
JPH09239347A (ja) * 1996-03-11 1997-09-16 Taniguchi Kogyo Kk 生ごみ処理装置
JPH1043726A (ja) * 1996-07-31 1998-02-17 Matsushita Electric Works Ltd 生ゴミ処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313440A (ja) * 2006-05-26 2007-12-06 Canon Electronics Inc 廃棄物処理方法及び廃棄物処理装置

Also Published As

Publication number Publication date
KR100353273B1 (ko) 2002-09-18
JP4174969B2 (ja) 2008-11-05
EP1103313A1 (en) 2001-05-30
KR20010040456A (ko) 2001-05-15
US6569673B1 (en) 2003-05-27
CN1284016A (zh) 2001-02-14
CN1093438C (zh) 2002-10-30

Similar Documents

Publication Publication Date Title
JP4174969B2 (ja) 生ごみ処理装置
KR100743544B1 (ko) 환경친화적인 음식물쓰레기 처리기의 탈취시스템
JPH10296216A (ja) 生ごみ処理装置
WO2006109670A1 (ja) 滅菌システム
JP3880378B2 (ja) 除湿機
JP2000093933A (ja) 生ごみ処理方法及び装置
JP2007167795A (ja) 排気の脱臭方法及び脱臭装置
JP3012764B2 (ja) 加湿機能付き空気浄化装置
JPH0957061A (ja) 厨芥処理装置の脱臭方法およびその装置
JPH05185060A (ja) 厨芥処理機
JP4215346B2 (ja) 有機物処理装置
KR200391877Y1 (ko) 환경친화적인 탈취시스템
JP2000084340A (ja) ガス処理設備
JP3240844B2 (ja) 厨芥処理装置
JPH0512008B2 (ja)
JP3577443B2 (ja) 室内脱臭機
JP2001153553A (ja) 屋内用厨芥処理機
JP2005131472A (ja) 脱臭装置及びそれを用いた生ごみ処理装置
JP2006288645A (ja) 滅菌システム
JP2001070734A (ja) 空気浄化装置、空気清浄機及び空気調和装置
JP2002126701A (ja) 有機物処理装置
JP2024137424A (ja) ガス浄化装置および粉粒体処理装置
JP3842930B2 (ja) 有機物処理装置
JP2024093747A (ja) 脱臭装置
JP3837352B2 (ja) 有機物処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98813381.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998901052

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09582643

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007008296

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020007008296

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1998901052

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007008296

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998901052

Country of ref document: EP