WO1999033560A1 - Catalyseur de purification de gaz d'echappement, son procede de production et procede de purification de gaz d'echappement - Google Patents

Catalyseur de purification de gaz d'echappement, son procede de production et procede de purification de gaz d'echappement Download PDF

Info

Publication number
WO1999033560A1
WO1999033560A1 PCT/JP1998/005791 JP9805791W WO9933560A1 WO 1999033560 A1 WO1999033560 A1 WO 1999033560A1 JP 9805791 W JP9805791 W JP 9805791W WO 9933560 A1 WO9933560 A1 WO 9933560A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
nox
rutile
carrier
nox storage
Prior art date
Application number
PCT/JP1998/005791
Other languages
English (en)
French (fr)
Inventor
Yoriko Hasegawa
Mareo Kimura
Naoki Takahashi
Hiromasa Suzuki
Riemi Muramoto
Kazuaki Sobue
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Kabushiki Kaisha Toyota Chuo Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Chuo Kenkyusho filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US09/581,938 priority Critical patent/US6649133B1/en
Priority to CA002316185A priority patent/CA2316185C/en
Priority to DE69839225T priority patent/DE69839225T2/de
Priority to EP98961462A priority patent/EP1064998B1/en
Priority to JP2000526297A priority patent/JP3523843B2/ja
Publication of WO1999033560A1 publication Critical patent/WO1999033560A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purifying catalyst, a method for producing the same, and an exhaust gas purifying method.
  • the present invention relates to an exhaust gas purifying catalyst, a method for producing the same, and an exhaust gas purifying method using the catalyst. More specifically, the present invention relates to a method for oxidizing carbon monoxide (CO) and hydrocarbons (HC) contained in exhaust gas. The present invention relates to a catalyst capable of efficiently purifying nitrogen oxides (NOx) in exhaust gas containing an excess amount of oxygen, a production method thereof, and an exhaust gas purification method.
  • NOx nitrogen oxides
  • an exhaust gas purifying catalyst of an automobile a three-way catalyst for purifying exhaust gas by performing oxidation of CO and HC and N0 X of reduction and at the same time is used.
  • a catalyst for example, a catalyst in which a supporting layer made of alumina is formed on a heat-resistant carrier such as cordierite and the supporting layer supports a catalytic noble metal such as Pt, Pd, and Rh is widely known. I have.
  • the purification performance of such an exhaust gas purifying catalyst varies greatly depending on the air-fuel ratio (A / F) of the engine.
  • a / F air-fuel ratio
  • the amount of oxygen in the exhaust gas increases, and the oxidation reaction for purifying CO and HC is active, while the reduction reaction for purifying NOx is inactive.
  • the rich side where the air-fuel ratio is small that is, on the rich side where the fuel concentration is high, the amount of oxygen in the exhaust gas decreases, and the oxidation reaction becomes inactive but the reduction reaction becomes active.
  • a NOx storage-reduction type catalyst in which an alkaline earth metal and Pt are supported on a porous carrier such as alumina has been proposed (JP-A-5-317652). According to this catalyst, NOx is absorbed by the alkaline earth metal as a NOx storage material, Since it is purified by reacting with W gas, it has excellent NOx purification performance even on the lean side.
  • the catalysts disclosed in JP ⁇ 5 317 652 for example, barium supported on a carrier as such carbonate, it the NOx by reacting with NOx to generate barium nitrate (Ba (N0 3) 2) It is believed to occlude.
  • NOx storage reduction catalyst by controlling the air-fuel ratio in a pulsed manner from the lean side to the stoichiometric to rich side, NOx is stored in the NOx storage material on the lean side.
  • the stored NOx is released on the stoichiometric to rich side, and is purified by reacting with reducing components such as HC and CO by the catalytic action of Pt. Therefore, NOx emission is also suppressed on the lean side, so that a high NOx purification ability as a whole is developed.
  • the NOx purification reaction in the NOx storage reduction catalyst is performed in the following manner: the first step of oxidizing NO in exhaust gas to form NOx, the second step of storing NOx on the NOx storage material, and the release of NOx from the NOx storage material. It is known that the process consists of the third step of reducing NOx on the catalyst.
  • the sulfur contained in the fuel (S) is included S0 2 produced by combustion, it is SOx, such as 3 is oxidized S0 by the catalytic metal in an oxygen-rich atmosphere. It was clarified that this easily became sulfuric acid due to the water vapor contained in the exhaust gas, and these reacted with barium and the like to generate sulfites and sulfates, thereby causing poisoning and degradation of the NOx storage material. This phenomenon is called sulfur poisoning.
  • a porous carrier such as alumina has a property of easily absorbing SOx, so that there is a problem that the above-mentioned sulfur poisoning is promoted.
  • the above catalyst has a problem that the NOx purification ability gradually decreases during use. .
  • titania (Ti0 2) is does not absorb S0 2, it is recalled that the use of Ti0 2 support experiment was conducted. As a result, S0 2 flows to the downstream as it is not absorbed into Ti0 2, only in direct contact with the noble metal catalyst ingredient S0 2, it became clear that the degree of sulfur poisoning since only be oxidized less. However ⁇ 0 low initial activity is 2 carrier, after the durability It was also revealed that there was a fatal problem that the purification performance of NOx remained low.
  • Japanese Patent Publication No. Hei 6-327945 proposes to use a carrier in which a composite oxide such as a Ba—Ce composite oxide or a Ba—Ce—Nb composite oxide is mixed with alumina or the like.
  • a composite oxide such as a Ba—Ce composite oxide or a Ba—Ce—Nb composite oxide
  • JP-A-8-99034 Ti0 2 - A1 2 0 3, Zr0 2 -Al 2 0 3 and Si0 2 - ⁇ 1 2 ⁇ 3 from using at least one composite support is proposed to be selected I have.
  • the use of the carrier mixed with the composite oxide or the use of the composite carrier as described above makes it possible to suppress sulfur poisoning of the occluding material, and to improve the purification ability after durability.
  • the present invention has been made in view of such circumstances, and has as its main object to ⁇ further suppress sulfur poisoning of an occluding material, and to maintain a high purification rate even after use at a high temperature. I do. Disclosure of the invention
  • the feature of the exhaust gas purifying catalyst of the present invention that solves the above-mentioned problems is that a carrier containing rutile titania and at least one kind selected from alkali metals, alkaline earth metals and rare earth elements are supported on the carrier. And a precious metal supported on the carrier.
  • a feature of the method for producing an exhaust gas purifying catalyst of the present invention is that a rutile type titania source is brought into contact with an occluding material source of at least one kind selected from an alkali metal, an alkali earth metal and a rare earth element.
  • Heat treatment at L 000 ° C to form a composite oxide powder of rutile-type titania and a heat storage material; mixing of the composite oxide powder and alumina powder to form a carrier powder; And a supporting step of supporting the noble metal on the carrier powder.
  • the exhaust gas purification method of the present invention is characterized in that a carrier containing rutile titania, and an occlusion material made of at least one selected from alkali metals, alkaline earth metals and rare earth elements and supported on the carrier, And a noble metal supported on the carrier,
  • the exhaust gas purifying catalyst is disposed in the exhaust gas in an oxygen-excess atmosphere burned at an air / fuel ratio A / F (air / fuel) of 18 or more, and ozone in the exhaust gas is occluded by the occlusion material. It is to reduce and purify by periodically changing the fuel ratio from stoichiometric to excessive fuel to release NO stored in the storage material.
  • FIG. 1 is a graph showing the results of a heated desorption test for the exhaust gas purifying catalysts of Example 3 and Comparative Example 1, and showing the relationship between temperature and the amount of desorbed sulfur.
  • Titania (Ti0 2) is reacted with NOx-absorbing material, least also form part of the complex oxide (such as BaTi0 3).
  • the composite oxide produced by reaction of the analyst evening Ti0 2 and NO storage material one peptidase type is the coarse particles to produce by using the Ti 0 2 rutile the particle size of the composite oxide of ti0 2 and NOx storage material that is extremely fine revealed.
  • the NOx occluding material in the composite oxide has a small particle size and a large specific surface area even if it is subjected to sulfur coating. It is considered that decomposition is promoted and the NOx storage material quickly recovers its NOx storage function. Therefore, the catalyst has excellent sulfur poisoning resistance and can maintain a high NOx purification rate even after use at high temperatures.
  • the Ti0 2 analyst evening one peptidase type is slow decomposition reaction of sulfates or sulfites, the decomposition reaction of the sulfate and sulfite in the low-temperature region is inferior to the rutile type.
  • the dispersibility of the noble metal was better in the rutile type than in the anazygose type, and it was clear that the degree of sulfur poisoning was lower in the rutile type than in the anazygose type for unknown reasons.
  • Te the month is set to be used rutile Ti0 2.
  • the support structure carrying a NOx-absorbing material to rutile Ti0 2 initially there may be no composite oxide of rutile Ti0 2 and NOx-absorbing material. However, such as during or endurance test during use as a catalyst for purifying an exhaust gas, a composite oxide of rutile-type Ti 0 2 and NOx-absorbing material on at least a portion is generated. Also, preformed rutile Ti0 2
  • the carrier can also contain a composite oxide of NOx storage W and NOx storage W. In this case, all of the carrier may be formed from a composite oxide of rutile Ti0 2 and NOx-absorbing material, the carrier comprising a composite oxide of part Ruchi Le type Ti0 2 and NOx-absorbing material You can also.
  • the particle size of the rutile Ti0 2 is preferably in the range of 15 ⁇ lOOnm. Particles of the composite oxide to react the entire particles and the NOx storage material is less than the particle size of the rutile Ti0 2 is 15nm are coarsened, degradation of the NOx storage material which receives the sulfur poisoning is inhibited. Also the particle size of the rutile Ti0 2 exceeds 1 OOnm, since the generation of the composite oxide of the NOx storage material is reduced, degradation of the NOx storage material which receives the sulfur poisoning becomes difficult. Therefore, outside of the above range, the NOx purification rate after use decreases at high temperatures in any case.
  • the composite oxide of rutile-type titania and the NOx storage material may be present in at least a part of the rutile-type titania and the NOx storage material, or the entirety of the rutile-type titania and the NOx storage material as a composite oxide. Is also good.
  • a composite oxide of rutile Ti0 2 and NOx-absorbing material is brought into contact with the rutile Ti0 2 source and NOx storage material source 500 to: L000 be done by heat treating ° C shall it can. If the temperature is lower than 500 ° C, it is difficult to form a composite oxide. If the temperature is higher than 1000 ° C, grain growth occurs in the formed composite oxide and the NOx purification rate decreases. It is particularly preferable to heat-treat at 600 to 800 ° C for 1 to 3 hours. This heat treatment may be performed during the production of the catalyst, or may be performed by the heat of the exhaust gas when used as an exhaust gas purifying catalyst.
  • the rutile Ti0 2 source may be a rutile Ti0 2 itself can also be used Ti compound as a rutile Ti0 2 Ri by the above heat treatment.
  • various compounds such as sodium salt, nitrate, and hydroxide of at least one element selected from alkali metals, alkaline earth metals, and rare earth elements can be used.
  • the carrier of the catalyst for purification of exhaust gas of the present invention alumina, silica, Jirukonia, silica - can include a porous material having excellent gas adsorption property such as alumina, and these porous bodies and rutile Ti0 2 Are desirably used as a mixture. This further improves purification performance.
  • NOx storage material is desirably supported on Ruchi Le type Ti0 2. This makes it easier to form a composite oxide. Therefore, the sulfur poisoning of the NOx storage material can be further suppressed.
  • the NOx storage material is at least one selected from the group consisting of alkali metals, alkaline earth metals and rare earth elements.
  • alkali metals include lithium, sodium, potassium, rubidium, cesium, and francium.
  • Alkaline earth metals refer to Group II elements of the periodic table, and include barium, beryllium, magnesium, calcium, and strontium.
  • the rare earth element include scandium, yttrium, lanthanum, cerium, praseodymium, and neodymium.
  • the noble metal one or more of Pt, Rh and Pd can be used.
  • the supported amount is preferably from 0.1 to 20.0 g, particularly preferably from 0.5 to 10.0 g, per 120 g of the carrier.
  • the amount is preferably 0.01 to 10 g, particularly preferably 0.05 to 5.0 g, per 100 g of the carrier.
  • the NOx-absorbing material and the rutile Ti0 2 were mixed with at least part composite oxide by heating above 500 ° C, mixing them like alumina Then, it can be manufactured by supporting a noble metal.
  • the rutile-type Ti0 2 carrying the NOx storage material can be prepared by mixing the like and alumina supporting the noble metal.
  • the composite oxide can be formed by the heat of the exhaust gas during use.
  • the sulfur poisoning of the NOx storage material during use at high temperatures is suppressed due to its excellent sulfur poisoning resistance. Rate can be secured.
  • the exhaust gas purifying catalyst can be produced stably and reliably.
  • the exhaust gas purifying catalyst of the present invention NOx in the exhaust gas is stored in the NOx storage material by contact with the exhaust gas in the lean atmosphere, and the air-fuel ratio is periodically changed from stoichiometric to excessive fuel to make the exhaust gas atmosphere stoichiometric to rich. Then, NOx stored in the NOx storage material is released and reduced by HC and CO in exhaust gas on precious metals.
  • Example 2 The resulting catalyst powder was compacted to obtain a pellet catalyst having a size of 0.5 to 1.0 thighs.
  • a bullet catalyst of Example 2 was prepared in the same manner as in Example 1, except that the molar ratio Ba / Ti was changed to 3/7. Note where the Ba supported Ti0 2 powder was analyzed by X-ray diffraction, BaTi 0 3 and rutile Ti (and BaC0 3 beaks were observed.
  • Example 3 was repeated in the same manner as in Example 1 except that the molar ratio Ba / Ti was changed to 5 to 5.
  • a let catalyst was prepared. Note where the Ba supported Ti0 2 powder was analyzed by X-ray diffraction, peaks of BaTi 0 3 and rutile Ti0 2 and BaC0 3 were observed.
  • a bullet catalyst of Example 4 was prepared in the same manner as in Example 1, except that the molar ratio Ba / Ti was changed to 7/3. Note where the Ba supported Ti0 2 powder was analyzed by X-ray diffraction, peaks of BaTi 0 3 and rutile Ti0 2 and BaC0 3 were observed.
  • Example 5 The pellets of Example 5 were prepared in the same manner as in Example 1 except that a mixed aqueous solution of barium acetate and acetic acid steam was used instead of the aqueous solution of barium acetate, and the molar ratio BaZK / Ti was 4/1/5. A catalyst was prepared. Note When the Ba / K supported Ti0 2 powder was analyzed by X-ray diffraction, BaTi0 3 and rutile Ti0 2 and BaC0 3 beaks were observed.
  • rutile Ti0 2 powder 100 g of particle size 35 nm, and a ⁇ -A1 2 0 3 100 g were uniformly mixed in a ball mill, so immersed containing a predetermined amount of barium acetate aqueous solution of predetermined concentration obtained carrier powder After drying, it was fired in the air at 650 ° C. for 3 hours.
  • the amount of Ba supported is 0.2 mol per 100 g of the carrier.
  • Ba supported powder thus obtained was analyzed by X-ray diffraction, peaks of Ba Ti0 3 and rutile Ti0 2 and BaC0 3 were observed.
  • the Ba-supported powder was impregnated with a predetermined amount of an aqueous solution of dinitrodiamineplatinate at a predetermined concentration, dried, and baked at 300 ° C. for 1 hour in the air.
  • the carried amount of Pt is 2% by weight in terms of metal Pt.
  • Example 1 was repeated except that the rutile type Ti02 powder having a particle size of 35 nm was replaced with an anase type Ti (h powder having a particle size of 18 nm and the molar ratio of Ba-supported Ti (powder was changed to 5Z5. in the 1 Similarly was prepared pellet catalyst of Comparative example 1. Note that where the Ba supported Ti (powder was analyzed by X-ray diffraction, BaTi0 3 and Ana evening one peptidase type Ti0 2 and BaC0 3 beaks observed was done.
  • An endurance test was conducted for circulation, and then the NOx purification rate (NOx purification rate after the endurance test) was measured in the same manner as the above initial NOx purification rate. Table 1 shows the results.
  • Example 3 For the catalysts of Example 3 and Comparative Example 1, the dispersibility of Pt was investigated both at the initial stage and after the durability test by the CO adsorption method. Also, the particle size of the supported Pt was measured by microscopic observation both at the initial stage and after the endurance test. Table 2 shows the results.
  • Example 3 The catalysts of Example 3 and Comparative Example 1 were examined for the desorption behavior of attached sulfur. A thermal desorption test of sulfur was conducted. Fig. 1 shows the results.
  • FIG. 1 shows that the catalyst of Example 3 can release sulfur from a low temperature of about 300 ° C. Therefore, it is considered that the catalysts of each example exhibited higher NOx purification rates after the durability test than the catalysts of the comparative examples because sulfur poisoning was suppressed as compared with the catalysts of the comparative examples. . Also the sulfur poisoning is suppressed, the particle size of the BaTi0 3 is considered because because sulfate was a fine is summer easily decomposed. Accordingly from Table 1, the particle size of BaTi 0 3 it can be seen that it is preferably in the range of 15 to 25 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

明細書
排ガス浄化用触媒とその製造方法及び排ガス浄化方法 技術分野
本発明は排ガス浄化用触媒とその製造方法及びその触媒を用いた排ガス浄化方 法に関し、 詳しくは、 排ガス中に含まれる一酸化炭素 (CO) や炭化水素 (HC) を 酸化するのに必要な量より過剰な酸素が含まれている排気ガス中の、 窒素酸化物 (NOx ) を効率よく浄化できる触媒とその製造方法及び排ガス浄化方法に関する。 背景技術
従来より、 自動車の排ガス浄化用触媒として、 CO及び HCの酸化と N0X の還元と を同時に行って排気ガスを浄化する三元触媒が用いられている。 このような触媒 としては、 例えばコージェライ トなどの耐熱性担体にァ-アルミナからなる担持 層を形成し、 その担持層に Pt, Pd,Rhなどの触媒貴金属を担持させたものが広く知 られている。
ところで、 このような排ガス浄化用触媒の浄化性能は、 エンジンの空燃比 (A / F ) によって大きく異なる。 すなわち、 空燃比の大きい、 つまり燃料濃度が希 薄なリーン側では排ガス中の酸素量が多くなり、 COや HCを浄化する酸化反応が活 発である反面 NOx を浄化する還元反応が不活発になる。 逆に空燃比の小さい、 つ まり燃料濃度が高いリツチ側では排ガス中の酸素量が少なくなり、 酸化反応は不 活発となるが還元反応は活発になる。
一方、 自動車の走行において、 市街地走行の場合には加速 ·減速が頻繁に行わ れ、 空燃比はス トィキ (理論空燃比) 近傍からリッチ状態までの範囲内で頻繁に 変化する。 このような走行における低燃費化の要請に応えるには、 なるべく酸素 過剰の混合気を供給するリーン側での運転が必要となる。 したがってリーン側に おいても NOx を十分に浄化できる触媒の開発が望まれている。
そこでアルカリ土類金属と Ptをアルミナなどの多孔質担体に担持した、 NOx 吸 蔵還元型の触媒が提案されている (特開平 5-317652号など) 。 この触媒によれば、 NOx は NOx 吸蔵材としてのアルカリ土類金属に吸収され、 それが HCなどの還元性 W ガスと反応して浄化されるため、 リーン側においても NOx の浄化性能に優れてい る。
特閧平 5- 317652号に開示された触媒では、 例えばバリウムが炭酸塩などとして 担体に担持され、 それが NOx と反応して硝酸バリウム(Ba( N03 ) 2 )を生成すること で NOx を吸蔵するものと考えられている。
つまり上記の NOx 吸蔵還元型触媒では、 空燃比をリーン側からパルス状にスト ィキ〜リヅチ側となるように制御することにより、 リ一ン側では NOx が NOx 吸蔵 材に吸蔵される。 そして吸蔵された NOx はストィキ〜リッチ側で放出され、 Ptの 触媒作用により HCや COなどの還元性成分と反応して浄化される。 したがって、 リ —ン側においても NOx の排出が抑制されるので、 全体としても高い NOx 浄化能が 発現する。
なお、 NOx 吸蔵還元型触媒における NOx の浄化反応は、 排ガス中の NOを酸化し て NOx とする第 1ステップと、 NOx 吸蔵材上に NOx を吸蔵する第 2ステップと、 NOx 吸蔵材から放出された NOx を触媒上で還元する第 3ステップとからなること がわかっている。
ところが排ガス中には、 燃料中に含まれる硫黄 ( S ) が燃焼して生成した S02 が含まれ、 それが酸素過剰雰囲気中で触媒金属により酸化されて S03 などの SOx となる。 そしてこれが排ガス中に含まれる水蒸気により容易に硫酸となり、 これ らがバリウムなどと反応して亜硫酸塩や硫酸塩が生成し、 これにより NOx 吸蔵材 が被毒劣化することが明らかとなった。 この現象は硫黄被毒と称されている。 ま た、 アルミナなどの多孔質担体は SOx を吸収しやすいという性質があることから、 上記硫黄被毒が促進されるという問題がある。
そして、 このように NOx 吸蔵材が亜硫酸塩や硫酸塩となると、 もはや NOx を吸 蔵することができなくなり、 その結果上記触媒では、 使用中に NOx 浄化能が次第 に低下するという不具合があった。
また、 チタニア(Ti02 )は S02 を吸収しないので、 Ti02担体を用いることが想起 され実験が行われた。 その結果、 S02 は Ti02には吸収されずそのまま下流に流れ、 触媒貴金属と直接接触した S02 のみが酸化されるだけであるので硫黄被毒の程度 は少ないことが明らかとなった。 ところが Π02担体では初期活性が低く、 耐久後 の NOx の浄化性能も低いままであるという致命的な不具合があることも明らかと なった。
そこで特閧平 6-327945号公報には、 Ba— Ce複合酸化物, Ba— Ce— Nb複合酸化物 などの複合酸化物をアルミナなどに混合した担体を用いることが提案されている。 また特開平 8-99034号公報には、 Ti02— A1203 , Zr02 -Al 203 及び Si02— Α12 θ 3 から選ばれる少なくとも 1種の複合担体を用いることが提案されている。 このよ うに複合酸化物を混合した担体を用いたり、 複合担体を用いることにより、 ΝΟχ 吸蔵材の硫黄被毒を抑制することができ、 耐久後の ΝΟχ 浄化能が向上する。
しかしながら近年の高速走行の増加、 エンジン性能の向上、 排ガス規制などに 伴う排ガス温度の高温化により、 排ガス浄化用触媒にはさらなる耐熱性の向上が 求められている。
本発明はこのような事情に鑑みてなされたものであり、 ΝΟχ 吸蔵材の硫黄被毒 を一層抑制でき、 高温での使用後にも高い ΝΟχ 浄化率が維持できるようにするこ とを主たる目的とする。 発明の開示
上記課題を解決する本発明の排ガス浄化用触媒の特徴は、 ルチル型チタニアを 含む担体と、 アルカリ金属, アルカリ土類金属及び希土類元素から選ばれる少な くとも一種よりなり該担体に担持された ΝΟχ 吸蔵材と、 該担体に担持された貴金 属と、 を含んでなることにある。
本発明の排ガス浄化用触媒の製造方法の特徴は、 ルチル型チタニア源とアル力 リ金属, アル力リ土類金属及び希土類元素から選ばれる少なくとも一種よりなる ΝΟχ 吸蔵材源とを接触させ 500〜: L 000°Cで熱処理してルチル型チタニアと ΝΟχ 吸 蔵材との複合酸化物粉末を形成する熱処理工程と、 該複合酸化物粉末とアルミナ 粉末とを混合して担体粉末とする混合工程と、 該担体粉末に貴金属を担持する担 持工程と、 からなることにある。
さらに本発明の排ガス浄化方法の特徴は、 ルチル型チタニアを含む担体と、 ァ ルカリ金属, アル力リ土類金属及び希土類元素から選ばれる少なくとも一種より なり該担体に担持された ΝΟχ 吸蔵材と、 該担体に担持された貴金属と、 を含んで なる排ガス浄化用触媒を、 空燃比 A / F (空気/燃料) が 18以上で燃焼された酸 素過剰雰囲気の排ガス中に配置して該排ガス中の ΝΟχ を該 ΝΟχ 吸蔵材に吸蔵し、 空燃比を定期的にス トイキ〜燃料過剰に変動させて該 ΝΟχ 吸蔵材に吸蔵された NO を放出させて還元浄化することにある。 図面の簡単な説明
第 1図は実施例 3と比較例 1の排ガス浄化用触媒についての昇温脱離試験の 結果を示し、 温度と脱離した硫黄量との関係を示すグラフである。 発明を実施するための最良の形態
チタニア(Ti02 )は NOx 吸蔵材と反応し、 少なく とも一部に複合酸化物 (BaTi03 など) を形成する。 そして本発明者らの研究によれば、 アナ夕一ゼ型の Ti02と NO 吸蔵材との反応により生成する複合酸化物は粗大粒子となるが、 ルチル型の Ti 02を用いれば生成する Ti02と NOx 吸蔵材との複合酸化物の粒径がきわめて微細と なることが明らかとなった。
そしてこのような複合酸化物を担体として用いれば、 複合酸化物中の NOx 吸蔵 材が硫黄被 ¾を受けてもその粒径が微細で比表面積が大きいため、 低温において も硫酸塩や亜硫酸塩の分解が促進され、 NOx 吸蔵材が速やかにその NOx 吸蔵機能 を回復すると考えられる。 したがってその触媒は耐硫黄被毒性に優れ、 高温で使 用後にも高い NOx 浄化率を維持することができる。
一方、 アナ夕一ゼ型の Ti02では、 硫酸塩や亜硫酸塩の分解反応が緩慢であり、 低温域での硫酸塩や亜硫酸塩の分解反応はルチル型に比べて劣る。 また貴金属の 分散性もルチル型の方がアナ夕ーゼ型より優れ、 理由は不明であるが硫黄被毒の 程度もルチル型の方がアナ夕一ゼ型より少ないことが明らかとなった。 したがつ て本発明ではルチル型 Ti02を用いることとしている。
なお、 ルチル型 Ti02に NOx 吸蔵材を担持した構造の担体では、 初期にはルチル 型 Ti02と NOx 吸蔵材との複合酸化物は存在しない場合がある。 しかし排ガス浄化 用触媒として 用中にあるいは耐久試験時などに、 少なくとも一部にルチル型 Ti 02と NOx 吸蔵材との複合酸化物が生成する。 また、 予め形成されたルチル型 Ti02 と NOx 吸蔵 Wとの複合酸化物を担体に含むこともできる。 この場合、 担体の全て をルチル型 Ti02と NOx 吸蔵材との複合酸化物から形成してもよいし、 一部にルチ ル型 Ti02と NOx 吸蔵材との複合酸化物を含む担体とすることもできる。
ルチル型 Ti02の粒径は、 15〜 lOOnmの範囲が好ましい。 ルチル型 Ti02の粒径が 15nm未満では粒子全体と NOx 吸蔵材が反応するため複合酸化物の粒子が粗大化し、 硫黄被毒を受けた NOx 吸蔵材の分解が阻害される。 またルチル型 Ti02の粒径が 1 OOnmを超えると、 NOx 吸蔵材との複合酸化物の生成量が減少するため、 硫黄被毒 を受けた NOx 吸蔵材の分解が困難となる。 したがって上記範囲を外れると、 いず れの場合も高温で使用後の NOx 浄化率が低下する。
ルチル型チタニアと NOx 吸蔵材の複合酸化物は、 ルチル型チタニアと NOx 吸蔵 材の少なくとも一部に存在していてもよいし、 ルチル型チタニアと NOx 吸蔵材の 全体を複合 ¾'ί匕物としてもよい。
ルチル型 Ti02と NOx 吸蔵材との複合酸化物を積極的に形成するには、 ルチル型 Ti02源と NOx 吸蔵材源とを接触させ 500〜: L000°Cで熱処理することで行うことが できる。 この温度が 500°C未満では複合酸化物の生成が困難であり、 1000°Cを超 えると形成された複合酸化物に粒成長が生じて NOx 浄化率が低下する。 600〜 8 00°Cで 1〜3時間熱処理するのが特に好ましい。 なお、 この熱処理は触媒製造時 に行ってもよいし、 排ガス浄化用触媒として使用時に排ガスの熱によって行うこ ともできる。
ルチル型 Ti02源としては、 ルチル型 Ti02そのものでもよいし、 上記熱処理によ りルチル型 Ti02となる Ti化合物を用いることもできる。 また NOx 吸蔵材源として は、 アルカリ金属, アルカリ土類金属及び希土類元素から選ばれる少なく とも一 種の元素の ¾塩、 硝酸塩、 水酸化物などの各種化合物を用いることができる。 なお本発明の排ガス浄化用触媒の担体には、 アルミナ、 シリカ、 ジルコニァ、 シリカ—アルミナなどのガス吸着性に優れた多孔質体を含むことができ、 これら の多孔質体とルチル型 Ti02とを混合して用いることが望ましい。 これにより浄化 性能が一層向上する。
また多孔質体とルチル型 Ti02とを混合して担体とした場合、 NOx 吸蔵材はルチ ル型 Ti02に担持することが望ましい。 これにより複合酸化物の生成が一層容易と なり、 NOx 吸蔵材の硫黄被毒を一層抑制することができる。
NOx 吸蔵材としては、 アルカリ金属, アルカリ土類金属及び希土類元素から選 ばれる少なくとも一種であり、 アルカリ金属としてはリチウム、 ナトリウム、 力 リウム、 ルビジウム、 セシウム、 フランシウムが挙げられる。 アルカリ土類金属 とは周期表 Π Α族元素をいい、 バリウム、 ベリ リウム、 マグネシウム、 カルシゥ ム、 ス トロンチウムが挙げられる。 また希土類元素としては、 スカンジウム、 ィ ッ トリウム、 ランタン、 セリウム、 プラセオジム、 ネオジムなどが例示される。
NOx 吸蔵材とル^ル型 Ti02との比率は、 モル比で、 NOx 吸蔵材 /Ti02 == 1 / 9 〜7 / 3の範囲、 特に好ましくは 2 / 8〜 6 / 4の範囲とするのが望ましい。 NO 吸蔵材の量がこの範囲より少なくなると充分な NOx 浄化能が得られず、 NOx 吸 蔵材の量がこの範囲より多くなると担持されている貴金属の表面を NOx 吸蔵材が 覆うため浄化活性が低下する。 また貴金属のシン夕リングが促進されるという不 具合も発生する。
貴金属としては、 Pt, Rh及び Pdの 1種又は複数種を用いることができる。 その 担持量は、 Pt及び Pdの場合は担体 120 gに対して 0. 1〜20. 0 gが好ましく、 0. 5 〜10.0 gが特に好ましい。 また Rhの場合は、 担体 100 gに対して 0.01〜10 gが好 ましく、 0. 05〜5. 0 gが特に好ましい。
本発明の排ガス浄化用触媒を製造するには、 例えば NOx 吸蔵材とルチル型 Ti02 を混合して 500°C以上に加熱することで少なくとも一部を複合酸化物とし、 これ をアルミナなどと混合した後に貴金属を担持することで製造することができる。 また NOx 吸蔵材を担持したルチル型 Ti02と、 貴金属を担持したアルミナなどと を混合して製造することもできる。 この場合は、 使用時の排ガスの熱により複合 酸化物を形成することができる。
そして本発明の排ガス浄化用触媒によれば、 耐硫黄被毒性に優れているため高 温で使用時の NOx 吸蔵材の硫黄被毒が抑制され、 これにより高温での使用後も高 い NOx 浄化率を確保することができる。
また本発明の排ガス浄化用触媒の製造方法によれば、 上記排ガス浄化用触媒を 安定して確実に製造することができる。
そして本発明の排ガス浄化方法では、 本発明の排ガス浄化用触媒が酸素過剰の リーン雰囲気の排ガスと接触することで、 排ガス中の NOx が NOx 吸蔵材に吸蔵さ れ、 空燃比を定期的にス トイキから燃料過剰に変動させさせて排ガス雰囲気をス トイキ〜リッチとすることで、 NOx 吸蔵材に吸蔵されていた NOx が放出され貴金 属上で排ガス中の HC及び COによって還元される。
ところでリーン雰囲気においては、 排ガス中の SOx が NOx 吸蔵材と反応して硫 酸塩や亜硫酸塩が生成する。 しかし NOx 吸蔵材とルチル型 Ti02の少なくとも一部 に複合酸化物が形成され、 その粒径はきわめて微細となっている。 したがって比 表面積が大きいため、 低温においても硫酸塩や亜硫酸塩の分解が促進され、 NOx 吸蔵材が速やかにその NOx 吸蔵機能を回復する。 これにより NOx 吸蔵材の硫黄被 毒が抑制され、 リーンバーンエンジンの排ガス中の NOx を高い浄化率で安定して 浄化することができる。
(実施例)
以下、 実施例及び比較例により本発明を具体的に説明する。
(実施例 1 )
粒径が 35nmのルチル型 Ti02粉末に酢酸バリゥム水溶液を含浸させ、 乾燥後大気 中にて 650°Cで 3時間焼成した。 得られた Ba担持 Ti02粉末のモル比 Ba/Tiは 1 / 9であり、 これを X線回折で分析したところ、 BaTi03とルチル型 Ti02のピークが 観察された。 つまり Baはルチル型 Ti02と複合酸化物を形成して担持されている。 次に上記 Ba担持 Ti02粉末 100 gと、 ァ - A1203 100 gとをボールミルで均一に混 合し、 得られた粉末に所定濃度のジニトロジアミン白金酸塩水溶液の所定量を含 浸し、 乾燥後大気中にて 300°Cで 1時間焼成した。 Ptの担持量は金属 Pt換算で 2 重量%である。
得られた触媒粉末を圧粉成形し、 0.5〜 1.0腿の大きさのペレッ ト触媒を得た。 (実施例 2 )
モル比 Ba/Tiを 3 / 7としたこと以外は実施例 1と同様にして、 実施例 2のべ レッ ト触媒を調製した。 なお Ba担持 Ti02粉末を X線回折で分析したところ、 BaTi 03とルチル型 Ti( と BaC03のビークが観察された。
(実施例 3 )
モル比 Ba/Tiを 5ノ 5としたこと以外は実施例 1と同様にして、 実施例 3のべ レッ ト触媒を調製した。 なお Ba担持 Ti02粉末を X線回折で分析したところ、 BaTi 03とルチル型 Ti02と BaC03のピークが観察された。
(実施例 4 )
モル比 Ba/Tiを 7ノ3としたこと以外は実施例 1と同様にして、 実施例 4のべ レッ ト触媒を調製した。 なお Ba担持 Ti02粉末を X線回折で分析したところ、 BaTi 03とルチル型 Ti02と BaC03のピークが観察された。
(実施例 5 )
酢酸バリゥム水溶液の代わりに酢酸バリゥムと酢酸力リゥムの混合水溶液を用 い、 モル比 BaZ K /Tiを 4 / 1 / 5としたこと以外は実施例 1と同様にして、 実 施例 5のペレツ ト触媒を調製した。 なお Ba/K担持 Ti02粉末を X線回折で分析した ところ、 BaTi03とルチル型 Ti02と BaC03のビークが観察された。
(実施例 6 )
粒径が 35nmのルチル型 Ti02粉末 100 gと、 ァ -A1203 100 gとをボールミルで 均一に混合し、 得られた担体粉末に所定濃度の酢酸バリウム水溶液の所定量を含 浸させ、 乾燥後大気中にて 650°Cで 3時間焼成した。 Baの担持量は、 担体 100 g に対して 0.2モルである。 得られた Ba担持粉末を X線回折で分析したところ、 Ba Ti03とルチル型 Ti02と BaC03のピークが観察された。
この Ba担持 末に所定濃度のジニトロジアミン白金酸塩水溶液の所定量を含浸 し、 乾燥後大気中にて 300°Cで 1時間焼成した。 Ptの担持量は金属 Pt換算で 2重 量%である。
得られた触媒粉末を圧粉成形し、 0.5〜 1.0mmの大きさのペレッ ト触媒を得た。 (比較例 1 )
粒径が 35nmのルチル型 Ti02粉末の代わりに粒径が 18nmのアナ夕ーゼ型 Ti(h粉末 を用い、 Ba担持 Ti( 粉末のモル比 BaZTiを 5 Z 5としたこと以外は実施例 1と同 様にして、 比較例 1のペレッ ト触媒を調製した。 なお Ba担持 Ti( 粉末を X線回折 で分析したところ、 BaTi03とアナ夕一ゼ型 Ti02と BaC03のビークが観察された。
(比較例 2 )
粒径が 35nmのルチル型 Ti02粉末の代わりに粒径が 18nmのアナ夕一ゼ型 Ti02粉末 を用いたこと以外は実施例 6と同様にして、 比較例 2のペレツ ト触媒を調製した。 なお Ba担持粉末を X線回折で分析したところ、 BaTi03とアナターゼ型 Ti02と BaC 03のピークが観察された。
(試験)
自動車エンジン排ガスを摸した空燃比 A/F = 18と A/F = 14の 2条件のモデ ルガスを、 入りガス温度 300°Cにて 2分間隔で繰り返して上記それそれのペレツ ト触媒に流通させ、 その時の NOx 浄化率 (初期 NOx 浄化率) をそれそれ測定した。 結果を表 1に示す。
また A/F =18相当で S02 を濃度 300ppm含むモデルガスをそれそれのペレツ ト 触媒に 600°Cで 20時間流通させ、 その後 A/F =14相当のモデルガスを 600°Cで 30分間流通させる耐久試験を行い、 その後上記初期 NOx 浄化率と同様にして NOx 浄化率 (耐久試験後 NOx 浄化率) をそれぞれ測定した。 結果を表 1に示す。
【表 1】
Ti02 Ba/K/Ti NOx 浄化率 (%) NOx BaTi03 浄化率 の粒子
$口日日や再;) la 粒径 (nm) モル比 初 期 耐久後 保持率 (50 径 (nm) 実施例 1 ルチル 35 1/0/9 60 54 90 16 実施例 2 ルチル 35 3/0/7 78 64 82 20 実施例 3 ルチル 35 5/0/5 75 66 88 19 実施例 4 ルチル 35 7/0/3 65 48 74 20 実施例 5 ルチル 35 4/1/5 80 68 85 25 比較例 1 アナタ-セ、、 18 5/0/5 74 45 61 37 実施例 6 ルチル 35 72 62 86 19 比較例 2 アナタ-セ、、 18 70 56 80 30
実施例 3と比較例 1の触媒について、 CO吸着法により Ptの分散性を初期と耐久 試験後の両方で調査した。 また顕微鏡観察により、 担持されている Ptの粒径を初 期と耐久試験後の両方で測定した。 結果を表 2に示す。
【表 2】
Figure imgf000013_0001
また実施例と比較例の触媒について、 耐久試験前の初期の状態における BaT i03 の粒径をそれそれ X線回折測定し、 結果を表 1に併せて示す。
さらに実施例 3と比較例 1の触媒について、 A / F = 18相当で硫黄を 50ppm 含 むモデルガスを入りガス温度 550°Cで 2時間流通させる耐久試験を行った。 そし て耐久試験後の硫黄付着量を化学分析にて測定し、 結果を表 3に示す。
【表 3】
Figure imgf000013_0002
また実施例 3と比較例 1の触媒について、 付着した硫黄の脱離挙動を調べるた め、 硫黄の昇温脱離試験を行った。 結果を第 1図に示す。
(評価)
上記表 1より、 実施例 1〜 5の触媒は比較例 1の触媒に比べて NOx 浄化率の保 持率が高く、 耐久試験後の ΝΟχ 浄化性能が高いことがわかる。 また実施例 6と比 較例 2を比較しても同様である。
一方、 表 3より実施例 3の触媒は硫黄の付着量が少なく、 第 1図より実施例 3 の触媒は約 300°C程度の低温から硫黄を放出可能となっていることがわかる。 したがって比較例の触媒に比べて各実施例の触媒が耐久試験後にも高い NOx 浄 化率を示すのは、 比較例の触媒に比べて硫黄被毒が抑制されていることによるも のと考えられる。 また硫黄被毒が抑制されるのは、 BaTi03の粒径が微細であるた め硫酸塩が分解し易くなつているからと考えられる。 したがって表 1より、 BaTi 03の粒径は 15〜25nmの範囲であることが好ましいことがわかる。
さらに表 2より、 実施例の触媒は Ptを微粒子でかつ高分散担持していることも 優れた NOx 浄化性能を示す理由の一つである。

Claims

請求の範囲
1 . ルチル型チタニアを含む担体と、 アルカリ金属, アルカリ土類金属及び希土 類元素から選ばれる少なく とも一種よりなり該担体に担持された N0X 吸蔵材と、 該担体に担持された貴金属と、 を含んでなることを特徴とする排ガス浄化用触媒。
2 . 前記ルチル型チタニアの粒径は 15〜 lOOnmであることを特徴とする請求の範 囲 1に記載の排ガス浄化用触媒。
3 . 前記ルチル型チタニアと前記 NOx 吸蔵材の少なくとも一部は複合酸化物を構 成していることを特徴とする請求の範囲 1に記載の排ガス浄化用触媒。
4 . 前記複合酸化物の粒径は 15~25nmであることを特徴とする請求の範囲 3に記 載の排ガス浄化用触媒。
5 . 前記 NOx 吸蔵材と前記ルチル型チタニアとは、 NOx 吸蔵材 /ルチル型チタ二 ァ= 1 / 9〜7ノ3のモル比で含まれていることを特徴とする請求の範囲 1又は 3に記載の排ガス浄化用触媒。
6 . ルチル型チタニア源と、 アルカリ金属, アルカリ土類金属及び希土類元素か ら選ばれる少なくとも一種よりなる NOx 吸蔵材源とを接触させ 500〜1000°Cで熱 処理してルチル型チタニアと NOx 吸蔵材との複合酸化物粉末を形成する熱処理ェ 程と、
該複合酸化物粉末とアルミナ粉末とを混合して担体粉末とする混合工程と、 該担体粉末に貴金属を担持する担持工程と、 からなることを特徴とする排ガス 浄化用触媒の製造方法。
7 . 前記熱処理工程は 600〜 800°Cの温度で 1〜3時間加熱することを特徴とす る請求の範囲 6に記載の排ガス浄化用触媒の製造方法。
8 . ルチル型チタニアを含む担体と、 アルカリ金属、 アルカリ土類金属及び希土 類元素から選ばれる少なく とも一種よりなり該担体に担持された NOx 吸蔵材と、 該担体に担持された貴金属と、 を含んでなる排ガス浄化用触媒を、
空燃比 A / F (空気/燃料) が 18以上で燃焼された酸素過剰雰囲気の排ガス中 に配置して該排ガス中の NOx を該 NOx 吸蔵材に吸蔵し、 空燃比を定期的にストイ キから燃料過剰に変動させて該 NOx 吸蔵材に吸蔵された NOx を放出させて還元浄 化することを特徴とする排ガス浄化方法。
PCT/JP1998/005791 1997-12-26 1998-12-22 Catalyseur de purification de gaz d'echappement, son procede de production et procede de purification de gaz d'echappement WO1999033560A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/581,938 US6649133B1 (en) 1997-12-26 1998-12-22 Catalyst for purifying exhaust gas, process for producing the same, and method for purifying exhaust gas
CA002316185A CA2316185C (en) 1997-12-26 1998-12-22 Catalyst for purifying exhaust gas, process for producing the same, and method for purifying exhaust gas
DE69839225T DE69839225T2 (de) 1997-12-26 1998-12-22 Verfahren zur herstellung eines katalysators zur reinigung von abgasen
EP98961462A EP1064998B1 (en) 1997-12-26 1998-12-22 Process for producing a catalyst for purifying exhaust gas
JP2000526297A JP3523843B2 (ja) 1997-12-26 1998-12-22 排ガス浄化用触媒とその製造方法及び排ガス浄化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP35969097 1997-12-26
JP9/359690 1997-12-26

Publications (1)

Publication Number Publication Date
WO1999033560A1 true WO1999033560A1 (fr) 1999-07-08

Family

ID=18465800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005791 WO1999033560A1 (fr) 1997-12-26 1998-12-22 Catalyseur de purification de gaz d'echappement, son procede de production et procede de purification de gaz d'echappement

Country Status (7)

Country Link
US (1) US6649133B1 (ja)
EP (1) EP1064998B1 (ja)
JP (1) JP3523843B2 (ja)
CA (1) CA2316185C (ja)
DE (1) DE69839225T2 (ja)
ES (1) ES2299221T3 (ja)
WO (1) WO1999033560A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002066153A1 (fr) * 2001-02-19 2002-08-29 Toyota Jidosha Kabushiki Kaisha Catalyseur de generation d'hydrogene et catalyseur de purification de gaz d'echappement
FR2827796B1 (fr) * 2001-07-25 2004-08-20 Inst Francais Du Petrole Materiau pour l'elimination des oxydes d'azote avec structure en feuillets
US8910468B2 (en) * 2009-02-04 2014-12-16 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment catalyst, exhaust gas treatment method, and exhaust gas treatment apparatus
CN110075832B (zh) * 2019-04-12 2022-02-15 济南大学 一种NOx存储还原催化剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127444A (en) * 1981-01-30 1982-08-07 Matsushita Electric Ind Co Ltd Catalyst for gas purification and its manufacture
JPS62256757A (ja) * 1986-01-28 1987-11-09 松下電器産業株式会社 耐熱衝撃性セラミツクスの製造法
JPH07256105A (ja) * 1994-03-23 1995-10-09 Babcock Hitachi Kk 排ガス浄化用触媒
JPH08192051A (ja) * 1995-01-13 1996-07-30 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒
JPH0985053A (ja) * 1995-09-21 1997-03-31 Riken Corp 排ガス浄化材及び排ガス浄化方法
JPH10211431A (ja) * 1997-01-30 1998-08-11 Toyota Motor Corp ディーゼル排ガス用酸化触媒

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126446A (en) 1980-03-11 1981-10-03 Matsushita Electric Ind Co Ltd Production of catalytic body for purification of waste gas
US4350613A (en) * 1980-03-11 1982-09-21 Matsushita Electric Industrial Company, Limited Catalyst for purifying exhaust gases and method for manufacturing same
JPH07114961B2 (ja) 1988-12-26 1995-12-13 松下電器産業株式会社 排ガス浄化用触媒の製造法
JP3224054B2 (ja) 1993-05-27 2001-10-29 トヨタ自動車株式会社 排気ガス浄化方法
JP4098835B2 (ja) * 1993-12-07 2008-06-11 トヨタ自動車株式会社 排気ガス浄化用触媒
JP3664182B2 (ja) 1994-12-19 2005-06-22 トヨタ自動車株式会社 高耐熱性排ガス浄化用触媒とその製造方法
JP3770416B2 (ja) 1995-12-26 2006-04-26 トヨタ自動車株式会社 排ガス浄化用触媒の製造方法
JP3589383B2 (ja) 1997-09-02 2004-11-17 トヨタ自動車株式会社 排ガス浄化用触媒
JP3772478B2 (ja) 1997-07-17 2006-05-10 株式会社日立製作所 内燃機関の排ガス浄化触媒の再生方法
JP3789231B2 (ja) 1998-06-30 2006-06-21 トヨタ自動車株式会社 排ガス浄化用触媒

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127444A (en) * 1981-01-30 1982-08-07 Matsushita Electric Ind Co Ltd Catalyst for gas purification and its manufacture
JPS62256757A (ja) * 1986-01-28 1987-11-09 松下電器産業株式会社 耐熱衝撃性セラミツクスの製造法
JPH07256105A (ja) * 1994-03-23 1995-10-09 Babcock Hitachi Kk 排ガス浄化用触媒
JPH08192051A (ja) * 1995-01-13 1996-07-30 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒
JPH0985053A (ja) * 1995-09-21 1997-03-31 Riken Corp 排ガス浄化材及び排ガス浄化方法
JPH10211431A (ja) * 1997-01-30 1998-08-11 Toyota Motor Corp ディーゼル排ガス用酸化触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1064998A4 *

Also Published As

Publication number Publication date
CA2316185C (en) 2004-08-10
CA2316185A1 (en) 1999-07-08
EP1064998A4 (en) 2001-09-26
US6649133B1 (en) 2003-11-18
DE69839225T2 (de) 2009-03-05
EP1064998B1 (en) 2008-03-05
ES2299221T3 (es) 2008-05-16
DE69839225D1 (de) 2008-04-17
EP1064998A1 (en) 2001-01-03
JP3523843B2 (ja) 2004-04-26

Similar Documents

Publication Publication Date Title
JP3741303B2 (ja) 排ガス浄化用触媒
JP3494147B2 (ja) 排ガス浄化用触媒とその製造方法及び排ガス浄化方法
JP4012320B2 (ja) 希薄燃焼エンジン用排気ガス浄化用触媒
WO2002066155A1 (fr) Catalyseur de clarification de gaz d'échappement
JPWO2002062468A1 (ja) 排ガス浄化触媒及び該触媒を備えた内燃機関
JPH08117601A (ja) 排ガス浄化用触媒及び排ガス浄化方法
JP3789231B2 (ja) 排ガス浄化用触媒
JP3640130B2 (ja) 排ガス浄化用触媒及びその製造方法
JP2002143683A (ja) 排気ガス浄化用触媒及びその製造方法
JP3567708B2 (ja) 排ガス浄化用触媒
JP3378096B2 (ja) 排ガス浄化用触媒
JP2001009279A (ja) 排ガス浄化用触媒とその製造方法及び排ガス浄化方法
WO1999033560A1 (fr) Catalyseur de purification de gaz d'echappement, son procede de production et procede de purification de gaz d'echappement
JPH08281116A (ja) 排ガス浄化用触媒
JP4304559B2 (ja) 水素生成用触媒と排ガス浄化用触媒及び排ガス浄化方法
JP3800200B2 (ja) 排ガス浄化方法及び排ガス浄化用触媒
JP2001038211A (ja) 排ガス浄化用触媒および排ガス浄化方法
JP3551346B2 (ja) 排ガス浄化装置
JP4135698B2 (ja) 硫黄酸化物吸収材の製造方法
JP2003305363A (ja) 触媒担体及び排ガス浄化用触媒
JP3897483B2 (ja) 排ガス浄化用触媒とその製造方法及び排ガス浄化方法
JP4822049B2 (ja) 排ガス浄化用触媒、及びそれを用いた排ガス浄化方法
JP2006043637A (ja) 排ガス浄化用触媒
JP2000325787A (ja) 排ガス浄化用触媒の製造方法
JP3812791B2 (ja) 排ガス浄化用触媒及び排ガス浄化方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2316185

Country of ref document: CA

Ref country code: CA

Ref document number: 2316185

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1998961462

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09581938

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998961462

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998961462

Country of ref document: EP