WO1999029763A1 - Verfahren zur herstellung einer membran zum betrieb von brennstoffzellen und elektrolyseuren - Google Patents

Verfahren zur herstellung einer membran zum betrieb von brennstoffzellen und elektrolyseuren Download PDF

Info

Publication number
WO1999029763A1
WO1999029763A1 PCT/EP1998/007919 EP9807919W WO9929763A1 WO 1999029763 A1 WO1999029763 A1 WO 1999029763A1 EP 9807919 W EP9807919 W EP 9807919W WO 9929763 A1 WO9929763 A1 WO 9929763A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
sulfonated
membrane
formula
membrane according
Prior art date
Application number
PCT/EP1998/007919
Other languages
English (en)
French (fr)
Inventor
Thomas Soczka-Guth
Jochen Baurmeister
Georg Frank
Rüdiger KNAUF
Original Assignee
Axiva Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7851063&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999029763(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Axiva Gmbh filed Critical Axiva Gmbh
Priority to CA002313317A priority Critical patent/CA2313317C/en
Priority to JP2000524348A priority patent/JP2001525471A/ja
Priority to DE59808394T priority patent/DE59808394D1/de
Priority to EP98965772A priority patent/EP1040155B2/de
Priority to US09/555,973 priority patent/US6355149B1/en
Publication of WO1999029763A1 publication Critical patent/WO1999029763A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/522Aromatic polyethers
    • B01D71/5222Polyetherketone, polyetheretherketone, or polyaryletherketone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to membranes made from sulfonated polyether ether ketones
  • Per or partially fluorinated sulfonic acid group-bearing polymers are sufficiently known from the literature. Membranes made of these polymers that are suitable for electrochemical purposes should have good membrane stabilities, sufficient chemical stability under the operating conditions of fuel cells and electrolysers and high values for proton conductivity (AE Steck in Materials For Fuel Cell Systems I, Proc. Int. Symp. On New Materials for Fuel Cell Systems, O. Savadogo, PR Roberge, TN souroglu, Montreal 1 995, pp. 74-94).
  • membranes made from these polymers are expensive due to the necessary fluorination steps for the monomer and are also difficult to process. With fluorinated materials e.g. thin membranes ( ⁇ 50 ⁇ m) cannot be produced or only with great effort, which makes water management in these membranes more difficult. The recycling of the polymers is difficult or even impossible due to the difficult handling of these substances, especially because of their poor solubility.
  • the object of the present invention is therefore to make membranes from sulfonated
  • the membranes according to the invention are an inexpensive and environmentally friendly replacement for membranes made of fluorinated materials.
  • the present invention thus relates to membranes which are particularly suitable for use in polymer electrolyte fuel cells or electrolyzers containing a sulfonated aromatic polyether ether ketone of the general formula (I)
  • the ion exchange equivalent (IEC) of the sulfonated polyether ether ketone is in the range from 1.35 to 1.95 mmol (-SO 3 H) / g (polymer), preferably in the range from 1.50 to 1.75 mmol (-SO 3 H) / g (polymer) and the membranes have a long-term stability of at least 1,000 hours at an operating voltage of 0.4 V to 1.1 V.
  • the molecular weight of the polymer used is an important parameter.
  • the sulfonation of the parent polymer and the associated conversion into a charge-bearing polyelectrolyte leads to partial de-cleavage (see Vollmert, Molecular Heterogeneties in Polymers and Association of Macromolecules, IUPAC Symposium Marienbad, Pure and Appl. Chem. 43, 1 83-205, 1 975 and M. Hoffmann, The interlocking of thread molecules and their influence on the properties of polymers, Prog. Colloid. Pol. Sei. .66, 73- 86, 1 979) of the polymer due to the mutual repulsion of the charge centers on the polymer backbone.
  • the membranes according to the invention contain sulfonated polymers with a
  • Molecular weight Mw in the range from 50,000 g / mol to 310,000 g / mol, preferably 1 000 000 to 240 000 g / mol (determined in NMP (N-methylpyrollidone), 0.05% lithium chloride additive, 60 ° C., PS calibration , Waters column by GPC). Molecular weights that are too small are manifested by insufficient mechanical properties of the membranes; too large molecular weights require large sulfonation
  • the polymers used to produce the membranes according to the invention have, in the dry state, an elastic modulus (E modulus) greater than or equal to 1,300 N / mm 2 and an elongation at break in the dry state after four hours of storage in a climatic cabinet at 23 ° C. and 50% rel.
  • E modulus elastic modulus
  • the modulus of elasticity of the membranes When wet, the modulus of elasticity of the membranes must not drop below 1 00 N / mm 2 in order to ensure a minimum strength of the membrane or membrane electrode unit even when moistened.
  • the degree of sulfonation means the proportion of sulfonated repeat units in relation to the total number of repeat units.
  • the ion exchange equivalent (I.E.C) which is expressed in millimoles of sulfonic acid groups per gram of polymer, is proportional to this value.
  • the reciprocal of the I.E.C. is called the equivalent weight and usually in grams
  • Polymer indicated per mole of sulfonic acid groups The I.E.C. is calculated from the ratio of carbon to sulfur determined by elemental analysis.
  • Polyetheretherketones which are suitable for the membranes according to the invention, have an ion exchange equivalent of the sulfonated polyetherketone
  • the membrane swells strongly to be expected in contact with water. This swelling behavior severely affects the membrane-electrode assembly (strength mentioned in the wet state). If the degree of sulfonation is above the specified upper limit, the polymer synthesized in contact with water is not mechanically stable enough or is already completely or partially - especially at temperatures above
  • the sulfonated polymers used for the membranes according to the invention measured in contact with pure water, have a proton conductivity of> 3x1 0 "3 S / cm, preferably> 2x1 0 " 2 S / cm, in particular up to 300 mS / cm, at room temperature.
  • the solution is cooled again to 5 ° C. and slowly poured onto ice water.
  • the product is washed sulfate-free with deionized water (test with BaCI 2 solution), dried in a vacuum drying cabinet and ground.
  • the degree of sulfonation is calculated by elemental analysis from the carbon / sulfur ratio.
  • the ground, dry polymer (particle size approx. 80 ⁇ m, water content ⁇ 0.5%) is quickly introduced into the appropriate amount of NMP and dissolved under inert gas at 80 ° C with intensive stirring, so that an approx. 1 8% solution is obtained .
  • the hot solution is filtered through a polypropylene fleece with an average mesh size of 1 ⁇ m and knocked out on glass plates on the same day and dried overnight in a dust-free convection oven at 80 ° C under normal pressure. The films are removed dry from the glass plate.
  • Life test sPEEK a membrane with a sulfonation degree of 50% and a thickness of 40 microns on 4300 h when operating with H 2/0 2 at 50 ° C, pressureless.
  • the drop in performance at 2700 hours and 3330 hours is due to the fact that the gas supply failed twice when the test was carried out. After renewed gas supply, the fuel cell delivered the same output as before.
  • the polyether ketones listed were measured using a fuel cell (operating conditions: cell temperature 45 ° C, normal pressure up to max. 0.2 bar overpressure, humidification on the air side, self-made electrode with 0.2-0.3 mg Pt / cm 2 ).
  • Proton conductivity data and mechanical properties are measured in water at 23 ° C (proton conductivity measured with a 4-pole arrangement at a frequency between 30 and 3000 Hz, phase angle between -1 and + 1 Hz).
  • the molecular weight data given in Table 2) apply.
  • Pretreatment of the membrane to measure the proton conductivity soak at 40 ° C for 30 minutes in 5% nitric acid and then with distilled
  • Pretreatment of the membrane to measure the mechanical properties soak at 40 ° C for 30 minutes in 5% nitric acid and then with dist. Wash water. At 23 ° C and 50% rel. Dry air humidity for 4 h and soak at 23 ° C for 30 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyethers (AREA)
  • Conductive Materials (AREA)

Abstract

Membran für den Einsatz in Polymerelektrolyt-Brennstoffzellen oder Elektrolyseuren enthaltend ein sulfoniertes aromatisches Polyetheretherketon der allgemeinen Formel (I), dadurch gekennzeichnet, dass das Ionen-Austausch-Äquivalent (I.E.C.) des sulfonierten Polyetheretherketons im Bereich von 1,35 bis 1,95 mmol (-SO3H)/g(Polymer) liegt, und dass die Membran bei einer Betriebsspannung von 0,4 bis 1,1V eine Langzeitstabilität von mindestens 1000 Stunden aufweist.

Description

Beschreibung
Verfahren zur Herstellung einer Membran zum Betrieb von Brennstoffzellen und
Elektrolyseuren
Gegenstand der Erfindung sind Membranen aus sulfonierten Polyetheretherketonen
(sPEEK.. die auf Grund einer besonderen Kombination verschiedener Parameter insbesondere für den Einsatz in Brennstoffzellen oder Elektrolyseuren tauglich sind.
Per- oder teilf lourierte Sulfonsäuregruppen-tragende Polymere sind aus der Literatur hinreichend bekannt. Für elektrochemische Zwecke geeignete Membranen aus diesen Polymeren sollen gute Membranstabilitäten, ausreichende chemische Stabili- tat unter den Betriebsbedingungen von Brennstoffzellen und Elektrolyseuren und hohe Werten für die Protonenleitfähigkeit aufweisen (A. E. Steck in Materials For Fuel Cell Systems I, Proc. Int. Symp. On New Materials for Fuel Cell Systems, O. Savadogo, P.R. Roberge, T.N. Veziroglu, Montreal 1 995, S. 74-94). Allerdings sind Membranen aus diesen Polymeren durch die notwendigen Fluorie- rungsschritte bei dem Monomeren teuer und lassen sich zudem nur schwer verarbeiten. Dadurch können bei fluorierten Materialien z.B. nicht oder nur mit großem Aufwand dünne Membranen ( < 50 μm) hergestellt werden, wodurch das Wassermanagement in diesen Membranen erschwert wird. Eine Wiederverwertung der Polymere ist durch die schwierige Handhabung dieser Stoffe, besonders durch deren Schwerlöslichkeit, erschwert oder gar unmöglich.
Die Herstellung sulfonierter Polyetheretherketone wird z.B. in EP-A- 0 008 895 und EP-A-0 575 807 wie auch in Polymer, Vol. 35, 1 994, Seite 5491 -5497 beschrieben.
Die Verwendung von Polyetherketonen in Brennstoffzellen wird z.B. in WO 96/29359 beschrieben. Konkrete Hinweise, welche der beschriebenen Polyetheretherketone unter Brennstoffzellenbedingungen überhaupt tauglich und somit wirtschaftlich interessant sind, werden im Stand der Technik allerdings nicht gegeben.
Auch wird in der aktuellen Literatur häufig immer noch die Einsetzbarkeit nicht- perfluorierter Materialien bestritten. Bisher lagen die Betriebsdauern, die mit solchen Materialien in Brennstoffzellen erreicht werden konnten bei maximal 600 Stunden ( A. E. Steck in "New Materials For Fuel Cell Systems 1 ", Proc. Of the 1 st Intern. Symp. On New Materials For Fuel Cell Systems, Montreal 1 995, S. 82).
Aufgabe der vorliegenden Erfindung ist es daher, Membranen aus sulfonierten
Polyetheretherketonen zur Verfügung zu stellen, die auf Grund ihrer chemischen und physikalischen Eigenschaften und ihrer hohen Langzeitstabilität für den Einsatz in Brennstoffzellen besonders geeignet sind. Ferner stellen die erfindungsgemäßen Membranen einen preiswerten und umweltfreundlichen Ersatz zu Membranen aus fluorierten Materialien.
Die vorliegende Erfindung betrifft somit Membranen, die sich insbesondere für den Einsatz in Polymerelektrolyt-Brennstoffzellen oder Elektrolyseuren eignet, enthaltend ein sulfoniertes aromatisches Polyetheretherketon der allgemeinen Formel (I)
Figure imgf000004_0001
SPEEK mit x+y=1
dadurch gekennzeichnet, daß das lonen-Austausch-Äquivalent (I.E.C.) des sulfonierten Polyetheretherketons im Bereich von 1 ,35 bis 1 ,95 mmol (-SO3H)/ g (Polymer), vorzugsweise im Bereich von 1 ,50 bis 1 ,75 mmol (-SO3H)/ g (Polymer), liegt und die Membranen bei einer Betriebspannung von 0.4 V bis 1 , 1 V eine Langzeitstabilität von mindestens 1 000 Stunden aufweist.
Überraschend wurde gefunden, daß für sulfonierte Polyetherketone, die für die Anwendung in elektrochemischen Zellen, wie z.B. Brennstoffzellen oder Elektrolysezellen, geeignet sein sollen, hinsichtlich verschiedener chemischer und physikalischer Parameter, wie z.B. das Molekulargewicht oder den Sulfonierungs- grad, sehr enge Grenzen eingehalten werden müssen.
Einen wesentlichen Parameter stellt das Molekulargewicht des verwendeten Poly- meres dar. Durch die Sulfonierung des Stammpolymeren und die damit verbundene Überführung in einen Ladung tragenenden Polyelektrolyten kommt es zu einer teilweisen Entknäulung (s. B. Vollmert, Molecular Heterogeneties in Polymers and Association of Macromolecules, IUPAC Symposium Marienbad, Pure and Appl. Chem. 43, 1 83-205, 1 975 und M. Hoffmann, Die Verhakung von Fadenmolekülen und ihr Einfluß auf die Eigenschaften von Polymeren, Prog. Colloid. Pol. Sei. .66, 73-86, 1 979) des Polymeren durch die gegenseitige Abstoßung der Ladungszentren am Polymerrückrat.
Die erfindungsgemäßen Membranen enthalten sulfonierte Polymere mit einem
Molekulargewicht Mw im Bereich von 50 000 g/mol bis 310 000 g/mol, vorzugsweise 1 00 000 bis 240 000 g/mol (bestimmt in NMP (N-Methylpyrollidon), 0.05 % Lithiumchlorid-Zusatz, 60 °C, PS-Eichung, Waters-Säule durch GPC). Zu kleine Molekulargewichte äußern sich in ungenügenden mechanischen Eigenschaften der Membranen; zu große Molekulargewichte erfordern bei der Sulfonierung große
Verdünnungen, um die Viskosität in einem geeignetem Rahmen zu halten. Große Verdünnungen sind wegen des erhöhten Schwefelsäureverbrauches unwirtschaftlich (siehe auch Vergleichsbeispiel mit Mw = 390 000 Tabelle 2) . Bei Polymeren mit zu hohen Molekulargewichten muß die Konzentration vor der Sulfonierung drastisch gesenkt werden, da sich die Lösungen ansonsten nicht weiterverarbeiten lassen. Die zur Herstellung der erfindungsgemäßen Membranen eingesetzten Polymere weisen im trocknen Zustand ein Elastizitäts-Modul (E-Modul) größer gleich 1 300 N/mm2 und eine Bruchdehnung im trocknem Zustand nach vierstündiger Aufbewahrung im Klimaschrank bei 23 °C und 50 % rel. Luftfeuchte von _>_ 20% (Dicke 40 μm), bevorzugt _>_ 70%, insbesondere bis zu 1 50 % auf. Aufgrund des hohen E-Moduls im trocknen Zustand besitzen die erfindungsgemäßen Membranen eine ausreichende Bruchdehnung, was ein wichtiges Kriterium für eine gute Weiter- verarbeitbarkeit darstellt.
Im nassen Zustand darf das E-Modul der Membranen nicht unter 1 00 N/mm2 sinken, um auch im befeuchteten Zustand eine Mindestfestigkeit der Membran bzw. Membran-Elektroden-Einheit sicherzustellen.
Ein weiteres wichtiges Kriterium, das erfüllt sein muß, um erfindungsgemäß besonders leistungsfähige Membranen zu erhalten, ist der Sulfonierungrad der
Polymere. Unter Sulfonierungsgrad versteht man den Anteil der sulfonierten Wiederholungseinheiten im Verhältnis zur Gesamtanzahl der Wiederholungseinheiten. Diesem Wert proportional ist das lonen-Austausch-Äquivalent ( I.E.C), das in Millimol Sulfonsäuregruppen pro Gramm Polymer ausgedrückt wird. Der Kehrwert des I.E.C. wird als Äquivalentgewicht bezeichnet und üblicherweise in Gramm
Polymer pro Mol Sulfonsäuregruppen angegeben. Der I.E.C. wird aus dem durch Eiementaranalyse bestimmten Verhältnis von Kohlenstoff zu Schwefel errechnet.
Polyetheretherketone, die sich für die erfindungsgemäßen Membranen eignen, besitzen ein lonen-Austausch-Äquivalent des sulfonierten Polyetherketons im
Bereich von 1 ,35 bis 1 ,95, insbesondere von 1 ,50 bis 1 ,75 mmol (- SO3H)/g(Polymer).
Ist der I.E.C. -Wert höher, so können sich eine Vielzahl von Problemen ergeben. Bei einem Sulfonierunsgrad, der nur unwesentlich über dem Optimum des angegebenen Sulfonierunggrades liegt, ist bereits mit einer starken Quellung der Membran bei Kontakt mit Wasser zu rechnen. Dieses Quellverhalten beeinträchtigt den Membran-Elektrodenverbund stark (s.o. angesprochene Festigkeit im nassen Zustand). Liegt der Sulfonierungsgrad über der angegebenen Obergrenze, so ist das synthetisierte Polymer in Kontakt mit Wasser mechanisch nicht beständig genug oder sogar bereits ganz oder teilweise - besonders bei Temperaturen oberhalb von
50 °C wasserlöslich, was sich auch in einem E-Modul unter 100 N/mm2 zeigt.
Mit zunehmenden Sulfonierungsgrad steigt allerdings die wesentlichste Kenngröße einer protonenleitenden Membran, die Protonenleitfähigkeit, kontinuierlich an, was sich in einer höheren Leistung (W/cm2) einer höher sulfonierten Membran widerspiegelt. Daher ist es besonders schwierig ein gutes Gleichgewicht zwischen einem möglichst hohen Sulfonierungsgrad, ohne, daß das enthaltene Polymer (mit Wasser) eine zu hohe Löslichkeit und eine zu kleine mechanische Festigkeit aufweist, und einer möglichst hohen Protonenleitfähigkeit zu finden. Bereits ein I.E.C. von 1 .30 spiegelt sich in einer sehr geringen Leistung der Brennstoffzelle wieder
(siehe erstes Beispiel in Tabelle 1 ).
Die für die erfindungsgemäßen Membranen verwendeten sulfonierten Polymere besitzen, in Kontakt mit reinem Wasser gemessen, bei Raumtemperatur eine Protonenleitfähigkeit von > 3x1 0"3 S/cm, vorzugsweise > 2x1 0"2 S/cm, insbesondere bis zu 300 mS/cm.
Mit den erfindungsgemäßen Membranen, enthaltend sulfonierte aromatische Polyetherketone der Formel (l), lassen sich Betriebsdauern von mindestens 1 000 Stunden, insbesondere von _>_ 3000 Stunden, vorzugsweise L≥ 4000 Stunden, problemlos auch mit einem nicht-perfluorierten Material realisieren. Beispiele:
1 ) Herstellung des sulfonierten Polymeren
30 g getrocknetes Polyetherketon werden in 420 g konzentrierter Schwefelsäure bei etwa 5 °C unter intensivem Rühren mit einer Zahnscheibe eingetragen. Danach läßt man noch 30 Minuten weiterrühren und erhöht dann die Temperatur innerhalb von 45 Minuten bis auf 50°C.
Sobald der gewünschte Sulfonierungsgrad erreicht wird kühlt man die Lösung wieder bis auf 5 °C ab und gießt sie langsam auf Eiswasser. Das Produkt wird mit entsalztem Wasser sulfatfrei (Test mit BaCI2-Lösung) gewaschen, im Vaku- umtrockenschrank getrocknet und gemahlen. Der Sulfonierungsgrad wird durch Elementaranalyse aus dem Kohlenstoff/Schwefelverhältnis errechnet.
2) Herstellung der Filme
Das gemahlene, trockene Polymer (Korngröße ca. 80 μm, Wassergehalt < 0.5 %) wird schnell in die entsprechende Menge NMP eingebracht und unter Inertgas bei 80°C unter Intensivem Rühren gelöst, so daß eine ca. 1 8 %ige Lösung ent- steht.
Die nach heiße Lösung wird über ein Polypropylen-Vlies mit einer mittleren Maschenweite von 1 μm filtriert und noch am selben Tag auf Glasplatten ausgera- kelt und in einem Staubfreien Umluftofen bei 80°C unter Normaldruck über Nacht getrocknet. Die Filme werden trocken von der Glasplatte abgezogen.
Abbildungen 1 bis 5
Lebensdauertest einer sPEEK Membran mit einem Sulfonierungsgrad von 50% und einer Dicke von 40 μm über 4300 h beim Betrieb mit H2/02 bei 50°C, druck- los. Der Leistungsabfall bei 2700 Stunden und 3330 Stunden beruht auf dem Umstand, daß es bei der Versuchsdurchführung zweimal zu einem Ausfall der Gaszufuhr kam. Nach erneuter Gaszufuhr lieferte die Brennstoffzelle die gleiche Leistung wie zuvor.
Tabelle 1 : Leistungsdaten für sPEEK
Die aufgeführten Polyetherketone wurden mit Hilfe einer Brennstoffzelle (Betriebsbedingungen: Zelltemperatur 45°C, Normaldruck bis max. 0,2 bar Überdruck, Befeuchtung an der Luftseite, selbst hergestellte Elektrode mit 0,2-0,3 mg Pt / cm2) vermessen.
Figure imgf000009_0001
Tabelle 2:
Reißfestigkeiten , E-Modul einer trockenen Folie (bei 23 °C, 50 % Luftfeuchte) und zugehörige Molekulargewichte nach PC in NMP
Figure imgf000009_0002
Tabelle 3:
Protonenleitfähigkeitsdaten und mechanische Eigenschaften werden in Wasser bei 23 °C gemessen (Protonenleitfähigkeit gemessen mit einer 4-Pol-Anordnung bei einer Frequenz zwischen 30 und 3000 Hz, Phasenlage zwischen -1 und + 1 Hz). Es gelten die unter Tabelle 2) genannten Molekulargewichtsdaten.
Vorbehandlung der Membran zur Messung der Protonenleitfähigkeit: bei 40°C für 30 Minuten in 5 %iger Salpetersäure einlegen und danach mit destilliertem
Wasser waschen.
Vorbehandlung der Membran zur Messung der mechanischen Eigenschaften: bei 40°C für 30 Minuten in 5 %iger Salpetersäure einlegen und danach mit dest. Wasser waschen. Bei 23°C und 50 % rel. Luftfeuchte 4 h trocknen und 30 Minuten bei 23°C wässern.
Figure imgf000010_0001
k. A. keine Angaben vorhanden

Claims

Patentansprüche:
1 . Membran enthaltend ein sulfoniertes aromatisches Polyetheretherketon der allgemeinen Formel (l)
Figure imgf000011_0001
sPEEK mit x+y=1
dadurch gekennzeichnet, daß das lonen-Austausch-Äquivalent (I.E.C.) des sulfonierten Polyetheretherketons im Bereich von 1 ,35 bis 1 ,95 mmol (-SO3H)/ g (Polymer) liegt, und daß die Membran bei einer Betriebsspannung von 0,4 bis 1 , 1 V eine Langzeitstabilität von mindestens 1 000 Stunden aufweist .
2. Membran nach Anspruch 1 , dadurch gekennzeichnet, daß das Molekulargewicht Mw des sulfonierten Polymers der Formel (I) im Bereich von 50 000 bis 31 0 000 g/mol (bestimmt durch PC: NMP, 0,05% LiCI-Zusatz, 60°C) liegt.
3. Membran nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das sulfonierte Polymer der Formel (I) im Kontakt mit reinem Wasser eine Protonenleitfähigkeit von > 3x1 0"3 S/cm besitzt.
4. Membran nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das E-Modul des Polymers der Formel (I) im trocknen Zustand >
1 300 N/mm ist.
5. Membran nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Bruchdehnung des Polymers der Formel (I) im trocknem Zu- stand nach vierstündiger Aufbewahrung im Klimaschrank bei 23 °C und 50 % rel. Luftfeuchte > 20% ist.
6. Verwendung einer Membran nach mindestens einem der Ansprüche 1 bis 5 für den Einsatz in Brennstoff- oder Elektrolysezellen.
PCT/EP1998/007919 1997-12-08 1998-12-05 Verfahren zur herstellung einer membran zum betrieb von brennstoffzellen und elektrolyseuren WO1999029763A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002313317A CA2313317C (en) 1997-12-08 1998-12-05 Process for producing a membrane for the operation of fuel cells and electrolyzers
JP2000524348A JP2001525471A (ja) 1997-12-08 1998-12-05 燃料電池および電解槽の作動用の膜製造法
DE59808394T DE59808394D1 (de) 1997-12-08 1998-12-05 Verfahren zur herstellung einer membran zum betrieb von brennstoffzellen und elektrolyseuren
EP98965772A EP1040155B2 (de) 1997-12-08 1998-12-05 Verfahren zur herstellung einer membran zum betrieb von brennstoffzellen und elektrolyseuren
US09/555,973 US6355149B1 (en) 1997-12-08 1998-12-05 Method for producing a membrane used to operate fuel cells and electrolyzers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19754305A DE19754305A1 (de) 1997-12-08 1997-12-08 Verfahren zur Herstellung einer Membran zum Betrieb von Brennstoffzellen und Elektrolyseuren
DE19754305.7 1997-12-08

Publications (1)

Publication Number Publication Date
WO1999029763A1 true WO1999029763A1 (de) 1999-06-17

Family

ID=7851063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/007919 WO1999029763A1 (de) 1997-12-08 1998-12-05 Verfahren zur herstellung einer membran zum betrieb von brennstoffzellen und elektrolyseuren

Country Status (6)

Country Link
US (1) US6355149B1 (de)
EP (1) EP1040155B2 (de)
JP (1) JP2001525471A (de)
CA (1) CA2313317C (de)
DE (2) DE19754305A1 (de)
WO (1) WO1999029763A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080294A1 (fr) * 2001-03-30 2002-10-10 Honda Giken Kogyo Kabushiki Kaisha Pile a combustible a polymere solide
WO2002091507A1 (fr) * 2001-05-08 2002-11-14 Ube Industries, Ltd. Electrolyte polymere destine a une pile a combustible a polymere solide et pile a combustible
WO2002101860A1 (fr) * 2001-06-11 2002-12-19 Honda Giken Kogyo Kabushiki Kaisha Structure d'electrode pour pile a combustible en polymere solide, procede de fabrication et pile a combustible en polymere solide
US6828353B1 (en) 1998-09-11 2004-12-07 Victrex Manufacturing Limited Ion-exchange polymers
WO2005056649A1 (ja) 2003-12-09 2005-06-23 Jsr Corporation プロトン伝導膜およびその製造方法
DE10132434B4 (de) * 2000-07-05 2007-12-13 Honda Giken Kogyo K.K. Elektrolytmembran/Elektrodenanordnung einer Festpolymerelektrolyt-Brennstoffzelle
CN100358935C (zh) * 2003-12-30 2008-01-02 吉林大学 磺化聚醚醚酮酮共聚物及其合成方法
US7799465B2 (en) 2001-09-26 2010-09-21 Victrex Manufacturing Limited Cells
WO2017153409A1 (de) * 2016-03-09 2017-09-14 Basf Se Verfahren zur sulfonierung von polymeren

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4802354B2 (ja) * 1999-12-27 2011-10-26 住友化学株式会社 高分子電解質およびその製造方法
WO2001070857A2 (en) * 2000-03-22 2001-09-27 Victrex Manufacturing Limited Ion-exchange materials
US7022426B2 (en) * 2000-09-22 2006-04-04 Honda Giken Kogyo Kabushiki Kaisha Solid polymer fuel cell
JP2004536419A (ja) * 2000-11-30 2004-12-02 エムティーアイ・マイクロフューエル・セルズ・インコーポレイテッド 燃料電池膜および一体化されたガス分離を有するシステム
NL1017412C2 (nl) * 2001-02-21 2002-08-22 Tno Werkwijze voor het tegen biologische aangroei beschermen van oppervlakken.
JP4221164B2 (ja) * 2001-03-30 2009-02-12 本田技研工業株式会社 固体高分子型燃料電池
JP4517272B2 (ja) * 2002-01-24 2010-08-04 東洋紡績株式会社 光架橋性高分子固体電解質、架橋高分子固体電解質膜及びその製造方法
KR100977234B1 (ko) * 2002-05-13 2010-08-23 더 유니버시티 오브 노스 플로리다 보드 오브 트러스티즈 술폰화된 공중합체
US7354679B2 (en) * 2002-05-13 2008-04-08 Polyfuel, Inc. Ion conductive random copolymers
CN1669169A (zh) * 2002-05-13 2005-09-14 复合燃料公司 离子导电嵌段共聚物
JP2006506472A (ja) * 2002-05-13 2006-02-23 ポリフューエル・インコーポレイテッド スルホン化コポリマー
US6989034B2 (en) 2002-05-31 2006-01-24 Ethicon, Inc. Attachment of absorbable tissue scaffolds to fixation devices
US6630265B1 (en) 2002-08-13 2003-10-07 Hoku Scientific, Inc. Composite electrolyte for fuel cells
WO2004029132A1 (en) * 2002-09-25 2004-04-08 National Research Council Of Canada Proton exchange membrane materials based on sulfonated poly(phthalazinones)
US20040175598A1 (en) * 2002-12-02 2004-09-09 Bliven David C. Fuel cell power supply for portable computing device and method for fuel cell power control
US6962959B2 (en) * 2003-08-28 2005-11-08 Hoku Scientific, Inc. Composite electrolyte with crosslinking agents
US20050053821A1 (en) * 2003-09-08 2005-03-10 Jang Bor Z. Self-moisturizing proton exchange membrane, membrane-electrode assembly and fuel cell
TWI543202B (zh) * 2005-02-15 2016-07-21 東麗股份有限公司 高分子電解質材料、高分子電解質零件、膜電極複合體、高分子電解質型燃料電池及高分子電解質膜
JP5250935B2 (ja) * 2005-02-15 2013-07-31 東レ株式会社 高分子電解質材料、ならびにそれを用いた高分子電解質部品、膜電極複合体および高分子電解質型燃料電池
JP5261877B2 (ja) * 2005-07-29 2013-08-14 東レ株式会社 高分子電解質成型体の製造方法
JP5549712B2 (ja) * 2005-07-29 2014-07-16 東レ株式会社 高分子電解質材料、高分子電解質部品、膜電極複合体および高分子電解質型燃料電池
US7993791B2 (en) * 2005-10-26 2011-08-09 Nanotek Instruments, Inc. Self-humidifying proton exchange membrane, membrane-electrode assembly, and fuel cell
US8178590B2 (en) * 2006-05-31 2012-05-15 Sumitomo Chemical Company, Limited Block copolymer and use thereof
WO2008030198A1 (en) * 2006-09-07 2008-03-13 Nanyang Technological University Electrode composite material
JP4586794B2 (ja) 2006-11-07 2010-11-24 トヨタ自動車株式会社 固体高分子電解質並びにその製造方法及びこれを用いた燃料電池用膜・電極接合体
JP2009161610A (ja) * 2007-12-28 2009-07-23 Toyota Motor Corp 固体高分子電解質材料及び当該固体高分子電解質材料の製造方法
CN102639614A (zh) * 2009-12-04 2012-08-15 北京普能世纪科技有限公司 聚合物共混质子交换膜及其制备方法
JP5655878B2 (ja) * 2013-02-21 2015-01-21 東レ株式会社 高分子電解質膜、膜電極複合体および高分子電解質型燃料電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008895A1 (de) 1978-09-05 1980-03-19 Imperial Chemical Industries Plc Sulfonierte Polyarylätherketone und Verfahren zu ihrer Herstellung
DE3321860A1 (de) * 1983-06-16 1984-12-20 Forschungsinstitut Berghof Gmbh, 7412 Eningen Integralasymmetrische, loesungsmittelbstaendige ulrafiltrationsmembran aus partiell sulfoniertem, aromatischem polyetheretherketon
DE3402471A1 (de) * 1984-01-25 1985-08-01 Forschungsinstitut Berghof Gmbh, 7412 Eningen Kationanaustauschermembran und herstellungsverfahren
EP0417908A2 (de) * 1989-09-15 1991-03-20 Imperial Chemical Industries Plc Membran
EP0575807A1 (de) 1992-06-11 1993-12-29 Hoechst Aktiengesellschaft Sulphonierte Polyetherketonen
WO1996029359A1 (de) 1995-03-20 1996-09-26 Hoechst Aktiengesellschaft Polymerelektrolyte und verfahren zu ihrer herstellung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4211266C2 (de) 1992-04-03 1996-12-19 Fraunhofer Ges Forschung Nicht-poröse, flächige oder faserförmige Polymergebilde mit hydrophiler Oberfläche und deren Verwendung als Membranen für die Dialyse oder Elektrodialyse
SG73410A1 (en) 1992-06-13 2000-06-20 Hoechst Ag Polymer electrolyte membrane and process for the production thereof
DE4422158A1 (de) 1994-06-24 1996-01-04 Hoechst Ag Homogene Polymerlegierungen auf der Basis von sulfonierten, aromatischen Polyetherketonen
US6090895A (en) * 1998-05-22 2000-07-18 3M Innovative Properties Co., Crosslinked ion conductive membranes
DE10207411A1 (de) 2002-02-21 2003-09-04 Daimler Chrysler Ag Verfahren zur Herstellung von Kompositmembranen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008895A1 (de) 1978-09-05 1980-03-19 Imperial Chemical Industries Plc Sulfonierte Polyarylätherketone und Verfahren zu ihrer Herstellung
DE3321860A1 (de) * 1983-06-16 1984-12-20 Forschungsinstitut Berghof Gmbh, 7412 Eningen Integralasymmetrische, loesungsmittelbstaendige ulrafiltrationsmembran aus partiell sulfoniertem, aromatischem polyetheretherketon
DE3402471A1 (de) * 1984-01-25 1985-08-01 Forschungsinstitut Berghof Gmbh, 7412 Eningen Kationanaustauschermembran und herstellungsverfahren
EP0417908A2 (de) * 1989-09-15 1991-03-20 Imperial Chemical Industries Plc Membran
EP0575807A1 (de) 1992-06-11 1993-12-29 Hoechst Aktiengesellschaft Sulphonierte Polyetherketonen
WO1996029359A1 (de) 1995-03-20 1996-09-26 Hoechst Aktiengesellschaft Polymerelektrolyte und verfahren zu ihrer herstellung

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. E. STECK ET AL., MATERIALS FOR FUEL CELL SYSTEMS I, PROC. INT. SYMP. ON NEW MATERIALS FOR FUEL CELL SYSTEMS, 1995, pages 74 - 94
A. E. STECK: "New Materials For Fuel Cell Systems 1", PROC. OF THE 1ST INTERN. SYMP. ON NEW MATERIALS FOR FUEL CELL SYSTEMS, 1995, pages 82
M. HOFFMANN: "Die Verhakung von Fadenmolekülen und ihr Einfluß auf die Eigenschaften von Polymeren", PROG. COLLOID. POL. SCI., vol. 66
POLYMER, vol. 35, 1994, pages 5491 - 5497
VOLLMERT: "Pure and Appl. Chem.", vol. 43, 1975, IUPAC SYMPOSIUM MARIENBAD, article "Molecular Heterogeneties in Polymers and Association of Macromolecules", pages: 183 - 205

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969755B2 (en) 1998-09-11 2005-11-29 Victrex Manufacturing Limited Ion-exchange polymers
US6828353B1 (en) 1998-09-11 2004-12-07 Victrex Manufacturing Limited Ion-exchange polymers
DE10132434B4 (de) * 2000-07-05 2007-12-13 Honda Giken Kogyo K.K. Elektrolytmembran/Elektrodenanordnung einer Festpolymerelektrolyt-Brennstoffzelle
WO2002080294A1 (fr) * 2001-03-30 2002-10-10 Honda Giken Kogyo Kabushiki Kaisha Pile a combustible a polymere solide
US7258941B2 (en) 2001-05-08 2007-08-21 Ube Industries, Ltd. Polymer electrolyte for solid polymer type fuel cell and fuel cell
WO2002091507A1 (fr) * 2001-05-08 2002-11-14 Ube Industries, Ltd. Electrolyte polymere destine a une pile a combustible a polymere solide et pile a combustible
WO2002101860A1 (fr) * 2001-06-11 2002-12-19 Honda Giken Kogyo Kabushiki Kaisha Structure d'electrode pour pile a combustible en polymere solide, procede de fabrication et pile a combustible en polymere solide
US7494733B2 (en) 2001-06-11 2009-02-24 Honda Giken Kogyo Kabushiki Kaisha Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
US7799465B2 (en) 2001-09-26 2010-09-21 Victrex Manufacturing Limited Cells
WO2005056649A1 (ja) 2003-12-09 2005-06-23 Jsr Corporation プロトン伝導膜およびその製造方法
US8058365B2 (en) 2003-12-09 2011-11-15 Jsr Corporation Proton conducting membrane and process for producing the same
CN100358935C (zh) * 2003-12-30 2008-01-02 吉林大学 磺化聚醚醚酮酮共聚物及其合成方法
WO2017153409A1 (de) * 2016-03-09 2017-09-14 Basf Se Verfahren zur sulfonierung von polymeren

Also Published As

Publication number Publication date
DE19754305A1 (de) 1999-06-10
EP1040155B2 (de) 2010-12-01
CA2313317A1 (en) 1999-06-17
DE59808394D1 (de) 2003-06-18
CA2313317C (en) 2008-07-29
EP1040155B1 (de) 2003-05-14
JP2001525471A (ja) 2001-12-11
EP1040155A1 (de) 2000-10-04
US6355149B1 (en) 2002-03-12

Similar Documents

Publication Publication Date Title
EP1040155B1 (de) Verfahren zur herstellung einer membran zum betrieb von brennstoffzellen und elektrolyseuren
EP0574791B1 (de) Polymerelektrolyt-Membran und Verfahren zu ihrer Herstellung
DE102006019414B4 (de) Blockcopolymere mit Säuregruppen
DE60020915T2 (de) Polymere Kompositmembran und Verfahren zu ihrer Herstellung
DE60214166T2 (de) Polymerelektrolyt für eine brennstoffzelle des festpolymertyps und brennstoffzelle
EP2443172B1 (de) Aromatische polyethersulfon-blockcopolymere
EP1971635B1 (de) Protonenleitende polymermembran
DE60225232T2 (de) Verfahren zur Herstellung einer Polymerelektrolytmembran
EP2009728B1 (de) Verfahren zur Herstellung eines sulfonierten Poly(1,3,4-oxadiazol)-Polymers
WO2000027513A2 (de) Polymerzusammensetzung, membran enthaltend diese, verfahren zu deren herstellung und deren verwendung
EP1165216B1 (de) Verwendung von aromatischen polymeren in brennstoffzellen oder in hochleistungskondensatoren
DE602004009047T2 (de) Vernetztes ionenleitendes harz und damit hergestellte ionenleitende polymermembranen, bindemittel und brennstoffzellen
DE19535086B4 (de) Verwendung von polymeren Festkörperelektrolyten sowie Verfahren zu deren Herstellung
DE10148131B4 (de) Verfahren zur Herstellung eines Polymers, Polymer und protonenleitfähige Membran für elektrochemische Anwendungen
WO1997011099A9 (de) Polymere festkörperelektrolyte auf basis funktionalisierter copoly(m-phenylen)e
DE102006019678B4 (de) Triblockcopolymere mit Säuregruppen
EP1124625B1 (de) Membranen, enthaltend sulfoniertes polyetherketon und weiteres polymer, verfahren zu deren herstellung und deren verwendung
DE102013215135B4 (de) PPS-Elektrodenverstärkungsmaterial/Rissminderer
DE60307614T2 (de) Polyelektrolytmembran, Verfahren zur Produktion und Brennstoffzelle enthaltend diese Polyelektrolytmembran
DE602004008754T2 (de) Ionenleitfähige polymermaterialien
DE102013216706A1 (de) Polyolefin-PFCB-Ionomer
DE102021003228A1 (de) Neuartige phosphonierte nichtfluorierte und teilfluorierte Arylpolymere aus sulfonierten Arylpolymeren und neuartige polymere Perfluorphosphonsäuren aus polymeren Perfluorsulfonsäuren, deren Herstellungsverfahren und Anwendung in Elektromembrananwendungen
DE102021127887A1 (de) Einzelionenpolymerelektrolyt-molekulardesign

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998965772

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2313317

Country of ref document: CA

Ref country code: CA

Ref document number: 2313317

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09555973

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998965772

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998965772

Country of ref document: EP