WO1999015717A1 - Appareil permettant de tirer un monocristal - Google Patents

Appareil permettant de tirer un monocristal Download PDF

Info

Publication number
WO1999015717A1
WO1999015717A1 PCT/JP1998/004131 JP9804131W WO9915717A1 WO 1999015717 A1 WO1999015717 A1 WO 1999015717A1 JP 9804131 W JP9804131 W JP 9804131W WO 9915717 A1 WO9915717 A1 WO 9915717A1
Authority
WO
WIPO (PCT)
Prior art keywords
seed crystal
single crystal
shaft
gripping member
pulling
Prior art date
Application number
PCT/JP1998/004131
Other languages
English (en)
French (fr)
Inventor
Makoto Kuramoto
Tetsuhiro Iida
Original Assignee
Super Silicon Crystal Research Institute Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP27528497A external-priority patent/JP3400317B2/ja
Priority claimed from JP28291697A external-priority patent/JPH11106281A/ja
Application filed by Super Silicon Crystal Research Institute Corp. filed Critical Super Silicon Crystal Research Institute Corp.
Priority to EP98941859A priority Critical patent/EP0940484A4/en
Priority to KR10-1999-7004568A priority patent/KR100526657B1/ko
Priority to US09/297,678 priority patent/US6228167B1/en
Publication of WO1999015717A1 publication Critical patent/WO1999015717A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10S117/911Seed or rod holders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1072Seed pulling including details of means providing product movement [e.g., shaft guides, servo means]

Definitions

  • the present invention relates to a single crystal pulling apparatus for producing a dislocation-free single crystal of Si (silicon) by a pulling CZ (Czochralski) method.
  • the pressure inside the high pressure tight chamber is reduced to about l O torr and fresh Ar (argon) gas is flown, and a quartz crucible provided below the chamber is provided.
  • the polycrystal inside is heated and melted, the seed crystal is immersed from above in the surface of this melt, and the seed crystal and the quartz crucible are rotated and moved up and down to pull up the seed crystal, thereby lowering the seed crystal
  • a single crystal a so-called ingot
  • the seed crystal was immersed in the surface of the melt in order to remove dislocations generated in the seed crystal by thermal shock when the seed crystal was immersed in the surface of the melt (to eliminate dislocations).
  • a dash (Dash) method is known in which after a neck portion having a smaller diameter than the seed crystal, for example, a diameter of 3 to 4 mm is formed by increasing the pulling speed relatively high, the pulling of the upper cone portion is started. ing.
  • the body portion is formed without forming the above-described “constriction”.
  • the body portion is formed without forming the above-described “constriction”.
  • a method has been proposed in which an “annular constriction” having a larger diameter than the body portion is formed between the upper cone portion and the body portion, and the “circular constriction” is grasped.
  • the single crystal pulling process is very sensitive to external vibrations and is a process that is easy to polycrystallize. Therefore, when pulling up a single crystal, the problem is how to move the own weight of the crystal smoothly and softly from the necking part to a gripping position such as a constriction without giving any disturbance.
  • the temperature inside the pulling furnace is high, heat resistance is required for the gripping mechanism and the like.
  • the incorporation of fine particles (dust) degrades the crystal quality, and must be eliminated as much as possible. None of the conventional techniques clearly solves all of these problems.
  • Japanese Patent Application Laid-Open Nos. Hei 5-270974, Hei 5-270975 and Hei 5-301973 the pulling-up mechanism of the seed crystal and the pulling of the holding device are described. The mechanism consists of different drive sources and there is no disclosure or suggestion on how to operate them synchronously.
  • Japanese Patent Application Laid-Open No. 9-28993 the pulling mechanism of the seed crystal and the pulling of the holding device are described.
  • the lifting mechanism is composed of different drive sources, and it is disclosed that these are operated synchronously or independently.However, in the case of synchronous operation, the control process is complicated, and the equipment required for control is also complicated and high cost. It is.
  • Japanese Patent Publication No. 7-515 a vertical movement mechanism for engaging the gripping device with the constriction of the single crystal is provided on the shaft forming the seed crystal pulling mechanism. There is disclosed a configuration in which the gripping device is pulled up in synchronization with the seed crystal only by controlling the pulling mechanism, but there is no disclosure or suggestion of an effective means for stopping the engaging portion, and the feasibility is not realized.
  • the present invention has been made in view of the above-mentioned conventional problems, and uses a gripper to hold a single crystal being pulled. Prevents the single crystal being pulled from being polycrystallized during gripping.In addition, when pulling the single crystal, the weight of the crystal is smoothly and softly moved from the necking to the gripping position such as necking.
  • An object of the present invention is to realize a single crystal pulling apparatus which can avoid the effects of high temperature and particle mixing with a relatively simple configuration and low cost.
  • the present invention provides a method for controlling the position of a gripping member that engages with an enlarged diameter portion formed below a seed crystal in a vertical direction with respect to a seed crystal holder, and controlling the position in a vertical direction.
  • the gripping member is moved up and down integrally with the seed crystal holder by transmitting the power of the seed crystal pulling means, and each drive mechanism is a vacuum chamber that stores a crucible and a single crystal to be grown. It is located outside.
  • a support as a dish-shaped member for holding the enlarged diameter portion by supporting and mounting the enlarged diameter portion formed below the seed crystal from below is used.
  • the base is vertically controlled with respect to the seed crystal holder, and when the position is not being controlled in the vertical direction, the power of the seed crystal pulling means is transmitted to move the support vertically with the seed crystal holder.
  • the drive mechanism is arranged outside the vacuum chamber that stores the crucible and the single crystal to be grown.
  • Seed crystal pulling means for pulling up the seed crystal by pulling up the seed crystal holder while controlling the speed
  • a diameter formed below the seed crystal by being pulled by the seed crystal pulling means, being rotatable together with the seed crystal holder, and vertically movable with upward and downward movement of the seed crystal holder;
  • a gripping member whose tip can be opened and closed,
  • the position of the gripping member is controlled in the vertical direction with respect to the seed crystal holder, and when the position control in the vertical direction is not performed, the power of the seed crystal pulling means is transmitted to move the gripping member.
  • Crystal holding position control means for moving up and down integrally with the seed crystal holder;
  • a single crystal pulling apparatus comprising: a gripping member opening / closing means, wherein a driving mechanism of each means is located outside a vacuum chamber storing the crucible and a single crystal to be grown.
  • a shaft connected to a seed crystal holder supporting a seed crystal above a crucible capable of holding a molten crystal
  • Seed crystal pulling means for pulling up the seed crystal by pulling up the shaft while controlling the speed
  • a diameter-enlarging portion that is rotatable with the shaft, and is movable in the vertical direction with the vertical movement of the shaft, and is formed below the seed crystal by being pulled by the seed crystal pulling means.
  • a gripping member whose tip can be opened and closed to grip the constriction of the single crystal formed below and / or the lower end of the enlarged diameter portion;
  • the gripping member is vertically controlled with respect to the shaft, and when the above-described vertical position control is not being performed, the power of the seed crystal pulling means is transmitted to move the gripping member to the shaft.
  • Crystal holding position control means for moving up and down integrally with
  • the tip of the gripping member is opened and closed, and when the tip of the gripping member is closed, the constriction and / or the diameter-enlarging portion is gripped so as to grip the lower end of the diameter-enlarging portion.
  • Seed crystal pulling means for pulling up the seed crystal by pulling up the seed crystal holder while controlling the speed
  • the device In order to support the constriction of the single crystal formed below the enlarged portion and / or the lower end of the enlarged diameter portion from below, the device has a through hole through which the constriction passes, and guides the constriction to the through hole.
  • a support base provided with a slit for communicating the through hole with the outer peripheral portion,
  • the position of the support table is controlled in the vertical direction with respect to the position of the seed crystal holder in the vertical direction, and when the position control is not being performed, the power of the seed crystal pulling means is transmitted to move the support table to the seed.
  • Crystal holding position control means for moving up and down integrally with the crystal holder,
  • a single crystal pulling apparatus wherein a driving mechanism of each of the means is located outside a vacuum chamber storing the crucible and a single crystal to be grown.
  • a shaft connected to a seed crystal holder supporting a seed crystal above a crucible capable of holding a molten crystal
  • Rotating means for rotating the shaft; Seed crystal pulling means for pulling up the seed crystal by pulling up the shaft while controlling the speed;
  • a diameter-enlarging portion that is rotatable with the shaft, and is movable in the vertical direction with the vertical movement of the shaft, and is formed below the seed crystal by being pulled by the seed crystal pulling means.
  • a support provided with a slit for communicating the through hole with the outer peripheral portion; and a position control of the support in a vertical direction with respect to a vertical position of the shaft, and when the position is not being controlled.
  • Crystal holding position control means for moving the support base up and down integrally with the shaft by transmitting the power of the seed crystal pulling means;
  • a single crystal pulling apparatus wherein a driving mechanism of each of the means is located outside a vacuum chamber storing the crucible and a single crystal to be grown.
  • the present invention controls the vertical position of a gripping member that engages with the side surface of the enlarged diameter portion formed below the seed crystal with respect to the seed crystal holder, and When the control is not being performed, the gripping member is moved up and down integrally with the seed crystal holder by transmitting the power of the seed crystal pulling means, and each drive mechanism stores a crucible and a single crystal to be grown. It is located outside the vacuum chamber.
  • the seed crystal is pulled up while controlling the speed of the seed crystal holder. Seed crystal pulling means for pulling
  • the seed crystal holder is rotatable together with the seed crystal holder, and is movable up and down with the upward and downward movement of the seed crystal holder.
  • a gripping member whose tip can be opened and closed to grip the side surface of the enlarged diameter portion having a constant diameter formed on the portion;
  • the position of the gripping member is controlled in the vertical direction with respect to the seed crystal holder, and when the position control in the vertical direction is not performed, the power of the seed crystal pulling means is transmitted to move the gripping member.
  • Crystal holding position control means for moving up and down integrally with the seed crystal holder;
  • Gripping member opening and closing means for opening and closing the tip of the gripping member, and moving the tip of the gripping member to the side surface of the enlarged diameter portion so as to grip the side surface of the enlarged diameter portion when the tip end of the gripping member is closed.
  • a single crystal pulling apparatus wherein a driving mechanism of each of the means is located outside a vacuum chamber storing the crucible and a single crystal to be grown.
  • a shaft connected to a seed crystal holder supporting a seed crystal above a crucible capable of holding a molten crystal
  • Seed crystal pulling means for pulling up the seed crystal by pulling up the shaft while controlling the speed
  • a gripping member that can be opened and closed at the tip to grip a side surface of a diameter-enlarging portion having a constant diameter formed thereon; and controlling the position of the gripping member in the up-down direction with respect to the shaft; When the position control of the direction is not under control, the power of the seed crystal pulling means is turned off.
  • Crystal holding position control means for moving the gripping member up and down integrally with the shaft by transmitting the same;
  • Gripping member opening and closing means for opening and closing the tip of the gripping member, and moving the tip of the gripping member to the side surface of the enlarged diameter portion so as to grip the side surface of the enlarged diameter portion when the tip end of the gripping member is closed.
  • a single crystal pulling apparatus is provided, wherein the driving mechanism of each of the above-mentioned means is arranged outside the vacuum chamber for storing the crucible and the single crystal to be grown.
  • FIG. 1 is a partial cross-sectional view schematically showing a first embodiment of a single crystal pulling apparatus according to the present invention.
  • FIG. 2 is a cross-sectional view of one example of a shock absorber provided in the lifting shaft in FIG.
  • FIG. 3 is a cross-sectional view of another example of the shock absorber provided on the lifting shaft in FIG.
  • FIG. 4 is a cross-sectional view of still another example of the shock absorber provided on the lifting shaft in FIG.
  • FIG. 5 is a cross-sectional view taken along line AA ′ in FIG.
  • FIG. 6 is a partial cross-sectional view schematically showing a second embodiment of the single crystal pulling apparatus according to the present invention.
  • FIG. 7 is a partial cross-sectional view schematically showing a third embodiment of the single crystal pulling apparatus according to the present invention.
  • FIG. 8 is a cross-sectional view taken along line BB in FIG. 7, and is a view showing the mode of rotational movement by solid lines and dotted lines.
  • FIG. 9 is a partial sectional view schematically showing a fourth embodiment of the single crystal pulling apparatus according to the present invention.
  • FIG. 10 is a partial cross-sectional view schematically showing a single crystal pulling apparatus according to a fifth embodiment of the present invention.
  • FIG. 11 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 12 is a perspective view showing a relationship between an arm and an air cylinder according to the fifth embodiment.
  • FIG. 13 is a cross-sectional view illustrating a relationship between an air cylinder and a diameter-enlarged portion in the fifth embodiment.
  • FIG. 14 is a partial cross-sectional view schematically showing a sixth embodiment of the single crystal pulling apparatus according to the present invention.
  • FIG. 15 is a partial cross-sectional view schematically showing a single crystal pulling apparatus according to a seventh embodiment of the present invention.
  • FIG. 1 is an explanatory view showing an embodiment of a single crystal pulling apparatus according to the present invention and a pulling process thereof.
  • a seed crystal holder 2 is attached to the tip of a lifting shaft 1
  • a seed crystal 3 is attached to the seed crystal holder 2.
  • the shaft 1 is a stationary part, and is provided in a first structure 24 that can move up and down with respect to a mechanical chamber 18 that forms a vacuum chamber that stores a single crystal 7 to be grown and a quartz crucible 10.
  • the first structure 24, which is rotatably arranged by the motor 28, has a screw portion 26 (nut portion) in which a female screw is provided.
  • the screw portion 26 is a mechanical chamber 1. It is screwed with the male screwed rod 22 that rotates by the first motor 20 attached to 8. Therefore, by the rotation of the first motor 20, the first structure 24 and The module 28 and the shaft 1 attached to it can move up and down with respect to the quartz crucible 10.
  • a shock absorber 60 functioning as a crystal weight moving mechanism is provided so as to transmit the vertical rotation of the shaft 1.
  • the configuration of the shock absorber 60 will be described later. 1st structure 24 4 with male thread
  • the lower end of 32 is fixed, and the mouth 32 with a male screw is screwed into a screw portion 36 in which a female screw provided in the second structure 34 is provided.
  • the male threaded port 32 can be rotated by the second module 30 provided on the second structure 34, and the second structure 34 can be rotated by the rotation. Can be moved up and down.
  • the lower end of the male threaded mouth 42 is fixed to the second structure 34, and the male threaded mouth 42 is fixed.
  • Reference numeral 42 denotes a female screw provided in the third structure 44, which is screwed into a screw portion 46 provided therein.
  • the male threaded rod 42 can be rotated by the third motor 40 provided on the second structure 44, and the rotation causes the third structure 44 to move relative to the second structure 34. Can be moved up and down.
  • the second structure 34 has an extension portion 38A extending downward and a plate portion 38B extending horizontally from the lower end and having a circular hole in the center. Moves up and down integrally with the second structure 34.
  • the third structure 44 has an extension portion 48A extending downward and a plate portion 48B extending horizontally from the lower end and having a circular hole in the center. These move up and down integrally with the third structure 44.
  • Coaxial cylinders 50 and 54 formed coaxially around the outer periphery of the shaft 1 are inserted into central holes of the plate portions 38B and 48B, respectively.
  • the cylinder 50 has its upper flange portion 50A rotatably disposed on the upper surface of the plate portion 38B via a ball bearing 52, while the cylinder 54 has its upper flange portion 54A mounted on a ball bearing. Rotatably arranged on the upper surface of the plate section 48B via the Have been.
  • the outer periphery of the cylinder 50 is rotatable via a ball bearing 57 with respect to a center hole provided at the upper end of the mechanical chamber 18, and the inside of the mechanical chamber 18 is sealed by a seal member 59.
  • the vacuum or inert gas is kept airtight. All the spaces between the shaft 1 and the cylinder 54 and between the cylinder 54 and the cylinder 50 are kept airtight by a sealing member (not shown).
  • the upper end of the gripping arm 12 is rotatably attached to the lower flange portion 50B by a pivot 12A.
  • the lower end of the gripping arm 12 has an L-shape, and its tip constitutes a claw portion 13 for gripping the enlarged diameter portion 5.
  • two gripping arms are shown in the figure, three or more gripping arms can be provided as necessary, and the claws 13 can grip the lower end of the enlarged diameter portion 5 so as to surround the lower end thereof. In the case of a configuration in which the tip of the claw portion 13 is widened and the enlarged diameter portion 5 is held from both sides, even two arms 12 and two claw portions 13 can function sufficiently.
  • a link member 58 is pivotally attached to a lower flange portion 54B by a pivot 58A.
  • the lower end of the link member 58 is pivotally mounted by a pivot 12B near the center of the gripping arm 12 slightly above.
  • all the structural members arranged above the mechanical chamber 18 are outside the vacuum chamber, and therefore, the influence of dust on the inside of the vacuum chamber (mechanical chamber) 18 due to the movement of the movable part. Can be extremely reduced.
  • FIGS. 2, 3, and 4 show different embodiments of the shock absorber 60, respectively, which are indicated by 60A, 60B, and 60C.
  • the upper part of the shaft 1 shown in Fig. 1 is indicated by 1A
  • the lower part is indicated by 1B
  • the upper part 1A of the shaft 1 is indicated by 1A.
  • a box-shaped body 62 having a hole below is provided at the lower end.
  • the upper end of the lower portion 1B of the shaft 1 is provided with a flange portion 1C (1D in FIG.
  • FIG. 4 having a T-shaped cross section, and the flange portion 1C is provided inside the box-shaped body 62. Is retained.
  • a compressed rubber block 64 as an elastic member is disposed between the lower end of the flange portion 1C and the inner bottom surface of the box-shaped body 62.
  • a tension panel (coil spring) 66 as an elastic member is disposed between the upper end of the flange portion 1C and the upper inside surface of the box-shaped body 62.
  • a tension rubber block 68 as an elastic member having both ends embedded therein is arranged inside the flange portion 1D and inside the inside upper wall portion of the box-shaped body 62.
  • FIG. 5 is a cross-sectional view taken along line AA ′ of FIG. 4, and the same applies to FIGS.
  • a groove 63M provided in the cylinder part 63 defining the lower hole of the box-shaped body 62 is provided on a part of the outer periphery of the lower part 1B of the shaft 1 with a shaft.
  • the projections 1 T provided in the directions are engaged to transmit the rotational force, so that the upper portion 1 A and the lower portion 1 B of the shaft 1 are connected to the shock absorbers 60 (60 A, 60 B, 6 B). Synchronous rotation is possible regardless of the presence of 0 C).
  • the single crystal pulling apparatus of FIG. 1 When the single crystal body 7 is manufactured, the pressure inside the mechanical chamber 18 is reduced to about 1 O torr, a fresh Ar (argon) gas is flown, and a quartz crucible 10 provided below the mechanical chamber 18 is provided. The polycrystal inside is heated and melted.
  • the preparation for pulling is completed, first, the first motor 20 is operated, the first structure 24 is lowered, and thus the shaft 1 is pulled down in the figure to move the seed crystal 3 into the quartz crucible 10. The surface of the Si melt 11 was immersed and blended.
  • the arm 12 stands by at a position where the tip does not contact the Si melt 11, and the tip of the gripping arm 12 is open so as not to contact the enlarged diameter portion 5 being pulled up ( Figure 1).
  • the first motor 20 is rotated in the reverse direction as before, the first structure 24 is raised, and the seed crystal 3 is pulled upward at a relatively high speed, thereby forming the seed crystal 3.
  • a small diameter neck portion 4 with a diameter of 3 to 4 mm is formed below, and then the pulling speed is relatively slow to form a large diameter support portion 5 under the neck portion 4.
  • a constriction 6 is formed below the enlarged diameter portion 5, and then the formation of the crystal main body 7 is started.
  • the two cylinders 50, 5 4 include two or more gripping arms 12 for gripping the constricted part 6 below the enlarged diameter part 5 described above, and a link mechanism 58 transmitting power for opening and closing the arm. It is arranged so as to rotate together with the enlarged diameter portion 5 by rotating.
  • the gripping arm 12 is configured to be openable and closable at its distal end to grip the constricted portion 6, and is configured to be vertically movable by a second structure for lifting the constricted portion 6 in a gripped state.
  • the link mechanism 58 for opening and closing the gripping arm 12 and the cylinder 54 connected to the link mechanism 58 can be moved up and down by the third structure 44.
  • the claw 13 at the tip of the gripping arm 12 indicates that the claw 13 has come into contact with the enlarged diameter portion 5 while the claw 13 is being lifted, for example, the cylinder 50, the arm 12, the claw 13 and the claw 13 It is possible to detect the current in the current path formed through the single crystal 7 by connecting the detection circuit.
  • a weight load detection type sensor for detecting that a load of the enlarged diameter portion 5 is applied to the claw portion 13 can be attached to the cylinder 50. It is possible to control the speed at which the arm 12 is pulled up by controlling the second motor that moves the second structure up and down by the detection by the detection circuit and the sensor.
  • the second motor 30 is operated by operating the second motor 30 so that the tip of the gripping arm 12 is positioned below the diameter-enlarged portion 5.
  • the third module 40 is operated to raise the third structure 44 so that the claw portion 13 at the tip of the gripping arm 12 is closed.
  • the claw portion 13 at the tip of the gripping arm 12 enters below the enlarged diameter portion 5.
  • the third motor 40 is stopped, then the second motor 30 is operated, and the closed arm 12 is slightly moved up.
  • the claw portion 13 comes into contact with the constricted portion or the lower end of the enlarged diameter portion 6 in this way, the second motor 30 is immediately stopped. In this state, the claw portion 13 holds the enlarged diameter portion 5. At this stage, it is necessary to smoothly and softly move the single crystal load after the holding so that the crystal main body 7 does not become polycrystalline due to the vibration caused by the holding. In the embodiment of FIG. 1, since the shock absorber 60 is provided on the lifting shaft 1, this movement is performed without impact.
  • the second motor 30 When gripping the enlarged diameter portion 5, the second motor 30 is rotated to raise the cylinder 50, and when the gripping arm 12 is slightly moved, the gripping arm 12 is moved together with the second structure 34. That is, since it is rising together with the first structure 24 and the lifting shaft 1, the speed is set to be higher than the lifting speed of the lifting shaft 1.
  • the second motor 30 stops, and the second structure 34 is fixed to the first structure 24.
  • the third motor 40 was driven so that the claw portion 13 was positioned below the diameter-enlarging portion 5
  • the third motor 40 stopped rotating, and the third structure 44 was stopped. Is fixed to the second structure 34. In this state, the first structure 24, the second structure 34, and the third structure 44 all rise as a single unit only by driving the first motor 20. Therefore, the seed crystal 2 and the claw portions 13 rise at completely the same speed.
  • the detection circuit or the sensor is provided in a portion including the cylinder 50 or the claw portion 13 to which the gripping arm is connected.
  • the detection circuit or the sensor may be provided in the shaft 1 constituting the seed crystal lifting mechanism.
  • gripping arm 1 2 The non-contact type sensor, such as an optical sensor, or a device that combines an image pickup device and an image processing device, detects that the claw portion 13 of the contact portion 13 comes into contact with the enlarged-diameter portion 5, and holds it.
  • the drive timing of the arm 12 may be determined.
  • the second embodiment is a modification of the first embodiment, and differs from the first embodiment in the configuration of the arm for gripping the single crystal enlarged diameter portion 5 and the opening / closing mechanism thereof.
  • the rotation mechanism of the shaft 1 and the rotation mechanism of the arm are different from those of the first embodiment. The following description focuses on these different points.
  • the motor 20 is placed in the mechanical chamber 18 and the rod 22 with the screw is rotated to move the first structure 24 up and down.
  • the lifting shaft 1 is rotatably attached to the first structure 24, and the power of the motor 28A is transmitted to the pulley 28C via the belt 28B to rotate the shaft 1. It has become.
  • the first structure 24 has a threaded port extending downward and a rod 32 rotatably held therein.
  • the first structure 24 is rotated by a motor 30 attached to the second structure 34, thereby achieving the first embodiment.
  • the second structure 34 moves up and down with respect to the first structure 24.
  • a cylinder 33 is rotatably attached to the second structure 34.
  • the cylinder 33 receives power from the motor 31 mounted on the second structure via a belt 31B. 3 rotates.
  • the motor 28 A and the motor 31 are controlled by a synchronous control device (not shown), and the shaft 1 and the cylinder 33 rotate synchronously.
  • the gripping arm 33 corresponds to the gripping arm 12 in the first embodiment, and grips the enlarged diameter portion 5 when the claw portion 13 at the lower end thereof is closed.
  • the number of the holding arms 35 is two in FIG. 6, but can be increased as necessary.
  • the gripping arm 35 is opened and closed by supplying a pressure gas or a pressure liquid to an air cylinder, a hydraulic cylinder, or the like as a drive mechanism (not shown) at the upper portion thereof.
  • the third embodiment is a modification of the first embodiment, and is different from the first embodiment in the configuration for holding the single crystal diameter enlarged portion 5 and the like.
  • the explanation focuses on these differences.
  • the motor 20 is placed in the mechanical chamber 18 and the threaded rod 22 is rotated to move the first structure 24 up and down as in the first embodiment.
  • the lifting shaft 1 is rotatably attached to the first structure 24, and the shaft 1 is rotated by a motor 28 placed on the first structure 24.
  • the rotating substrate 34 A corresponds to the second structure 34 in the first embodiment, the vertical position is always constant with respect to the first structure 24. Is different.
  • the motor board 30 is placed on the rotating board 34 A, and the threaded pad 32 is rotated.
  • the threaded socket 32 is vertically movable with respect to the rotating board 34 A, and the female screw part 3 rotatably held by the support shaft 72 which is rotatably held. Screwed to 6. Accordingly, the support shaft 72 moves up and down with respect to the rotating substrate 34 A and the first structure 24 by rotating the motor 30 attached to the rotating substrate 34 A. I do.
  • the support shaft 72 extends through a rotary table 80 rotatably mounted on a top of the mechanical chamber 18 via a bearing 82 into the inside of the mechanical cultivator 18 and has a lower end thereof. Is a dish-shaped member
  • FIG. 8 is a cross-sectional view taken along a line BB ′ in FIG.
  • the support 70 is provided with a through hole 73 at the center as shown in FIG. 8, and the through hole 73 communicates with the outer peripheral portion through a slit 74 penetrating therethrough.
  • the support shaft 72 can be rotated by about 90 degrees by the motor 40 attached to the motor support 41, so that the support 70 moves from the non-holding position shown by a solid line in FIG. Can be rotated and moved to the holding position indicated by.
  • the slit 74 is designed to be larger than the diameter of the single crystal below the planned enlarged diameter portion 5, and the support 70 can enter below the enlarged diameter portion 5 through the slit 74.
  • the rotating board 34A is provided with a balance weight 90 together with its adjusting screw 82, and the rotating table 80 is provided with sealing members 84, 86, 88. I have.
  • the lifting shaft 1 is provided with a shock absorber 60 as in the first embodiment.
  • the third embodiment of FIG. 7 operates as follows. As in the first embodiment, when the preparation for lifting is completed, first, the first motor 20 is driven to lower the first structure 24, and thus the shaft 1 is lowered downward in the figure. The seed crystal 3 is immersed in the surface of the Si melt 11 in the quartz crucible 10 to be familiarized. At this time, the support 70 stands by at a position where the tip does not contact the Si melt 11, and the support 70 does not contact the enlarged diameter portion 5 during the pulling, so that the support 70 does not contact the enlarged diameter portion 5 as shown in FIG. It is in the support position.
  • the first motor 20 is rotated in the reverse direction as before, the first structure 24 is raised, and the seed crystal 3 is pulled upward at a relatively high speed, thereby forming the seed crystal 3.
  • a small diameter neck portion 4 with a diameter of 3 to 4 mm is formed below, and then the pulling speed is made relatively slow to form an enlarged diameter portion 5 for support under the neck portion 4.
  • the constriction 6 below the enlarged diameter part 5 and then start the formation of the crystal body part 7.
  • the motor 30 is rotated to a height at which the support 70 is located below the enlarged diameter portion 5. Thereafter, by rotating the motor 40, the support shaft 72 is rotated to the position indicated by the dotted line in FIG. 8 so that the support 70 is located immediately below the enlarged diameter portion 5. Next, the motor 30 is further rotated to raise the support 70 to a speed higher than the lifting speed of the lifting shaft 1. When the support 70 holds the lower end of the enlarged diameter portion 5, the motor 30 is stopped. After that, the first structure 24 and the rotating substrate 34 A rise as a body by the motor 20, so that the seed crystal 2 and the support 70 rise at completely the same speed. It will be.
  • the fourth embodiment is a modification of the third embodiment.
  • the rotary substrate 34 A and the rotary table 80 of the third embodiment are integrated, and can be vertically expanded and contracted instead of the mechanical chamber 18.
  • the third embodiment is different from the third embodiment in that, for example, a low velocity chamber 18 A is used. The explanation focuses on these different points.
  • the motor 20 is placed on a stationary member (not shown), and the screwed port 22 is rotated to move the first structure 24 up and down, which is almost the same as in the first embodiment.
  • the first structure 24 mainly includes three members 24 A, 24 B, and 24 C, and has two screw portions 26, an L-shaped portion 24 A, and a plurality of fixed shafts 24. It is connected to substrate 24C via B.
  • the lifting shaft 1 is rotatably mounted on the substrate 24 C of the first structure 24, and the shaft 1 is rotated by a motor 28 mounted on the substrate 24 C. I have.
  • the rotary table 80 that is integrally connected to the shaft 1 and rotates together with the shaft 1 (the rotary board 34A and the rotary table 80 of the third embodiment are attached). ).
  • the rotary table 80 always moves up and down with respect to the first structure 24. The position is constant.
  • a motor 30 is placed on the turntable 80, and the screw-type port 32 is rotated.
  • the threaded mouth 32 is vertically movable with respect to the rotary table 80, and the support member 72 is rotatably held by the support shaft 72. Is screwed into. Accordingly, when the motor 30 attached to the turntable 80 rotates, the support shaft 72 moves up and down with respect to the turntable 80 and the first structure 24.
  • the turntable 80 is rotatably mounted on the upper part of the L-shaped member 24 A of the first structure 24 via a bearing 8.
  • the support shaft 72 extends into the bellows chamber 18A via the rotary table 80, and a support 70, which is a dish-shaped member, is attached to the lower end thereof.
  • the configuration of the support 70 is the same as that of the third embodiment, and the description is omitted.
  • a balance weight 90 is provided on a rotary table 80 together with its adjusting screw 82, and seal members 84, 86, 88 are provided in the same manner as in the third embodiment. Is provided. Further, the lifting shaft 1 is provided with a shock absorber 60 as in the first embodiment.
  • the fourth embodiment in FIG. 9 operates as follows.
  • the first motor 20 is driven to lower the first structure 24, and thus the shaft 1 is lowered downward in the figure.
  • the seed crystal 3 is immersed in the surface of the Si melt 11 in the quartz crucible 10 to be familiarized.
  • the support 70 waits at a position where the tip does not contact the Si melt 11, and the support 70 does not contact the enlarged diameter portion 5 during the pulling, so that the support 70 does not contact the enlarged diameter portion 5 in FIG. It is in the support position.
  • the first motor 20 is rotated in the reverse direction as before, the first structure 24 is raised, and the seed crystal 3 is pulled upward at a relatively high speed, thereby forming the seed crystal 3.
  • a small diameter neck portion 4 with a diameter of 3 to 4 mm is formed below, and then the pulling speed is relatively slow to form a large diameter support portion 5 under the neck portion 4.
  • the motor 30 is rotated to a height at which the support 70 is located below the enlarged diameter portion 5.
  • the motor 40 is rotated to rotate the support shaft 72 to the position indicated by the dotted line in FIG. 8 so that the support 70 is located immediately below the enlarged diameter portion 5.
  • the motor 30 is further rotated to raise the support 70 to a speed higher than the lifting speed of the lifting shaft 1.
  • the first structure 24 and the rotating substrate 34 A rise as a body by the motor 20, so that the seed crystal 2 and the support 70 rise at completely the same speed. It will be.
  • the rotating substrate 34 A and the rotating table 80 of the third embodiment can be used in common. Height can be reduced to a smaller dimension as compared with the third embodiment.
  • FIG. 10 is an explanatory view showing a fifth embodiment of the single crystal pulling apparatus according to the present invention and a pulling step thereof.
  • a seed crystal holder 2 is attached to the tip of the lifting shaft 1
  • a seed crystal 3 is attached to the seed crystal holder 2.
  • the pulling shaft 1 constitutes a vacuum chamber for storing the single crystal 7 to be grown and the quartz crucible 10 and has a disk-shaped first structure 24 that can move up and down with respect to the mechanical chamber 18 as a stationary part. It is rotatably arranged by the motor 28 provided in the city. In other words, the illustration of the model is omitted.
  • the pull-up shaft 1 is rotated via a pulley 27, a pulley, a belt 26, and a pulley 27 attached to the pull-up shaft 1.
  • This pulling shaft 1 is for pulling up so-called dislocation-free, and is also called a dislocation-free axis.
  • the first structure 24 has a not-shown screw portion (nut portion) in which a female screw is provided.
  • the screw portion is a first module 2 attached to the mechanical chamber 18. It is screwed with 22 A (ball screw), which is a male threaded port that rotates by 0. Therefore, by the rotation of the first motor 20, the first structure 24, the motor 28 and the shaft 1 attached thereto can move up and down with respect to the quartz crucible 10.
  • the lifting shaft 1 is rotatably supported on the first structure 24 via a bearing 24B.
  • the first structure 24 has an externally threaded rod 32 A (ball screw) and the upper end of a guide rod 32 B fixed to the first structural body 24.
  • a female screw provided on the structure 34 is screwed into a screw part (not shown) provided inside.
  • the male threaded mouth 32A can be rotated by the second module 30 provided on the second structure 34, and the rotation causes the second structure 34 to become the first structure. It can move up and down with respect to 24.
  • the second structure 34 is provided with a compressed gas introduction part 36.
  • the compressed gas introduction section 36 is in contact with the outer periphery of the lifting shaft 1 via a bearing 36B, and receives compressed gas supplied from a pump (not shown).
  • the second structure 34 is in contact with the outer periphery of a cylinder 50 coaxially arranged around the lifting shaft 1 via a bearing 34B.
  • the male threaded rod 32A and the guide rod 32B each extend downward from the second structure 34, and their lower ends are fixed to the third structure 40.
  • the third structure 40 is in contact with the outer periphery of the cylinder 50 via a bearing 40B. Therefore, the cylinder 50 has the second structure 34 and the third structure It is rotatable with respect to the structure 40.
  • the third structure 40 is provided with an annular plate 42 that reinforces itself and holds the bearing 40B.
  • FIG. 11 is a cross-sectional view taken along line II-II ′ in FIG.
  • the cylinder 50 has a double structure, and has an annular passage 50 P for guiding the compressed gas introduced from the compressed gas introduction section 36. That is, the cylinder 50 has an inner cylinder 50B and an outer cylinder 50A, which are arranged coaxially with the lifting shaft 1. A projection 1A extending in the axial direction is provided on the outer periphery of the lifting shaft 1, while a concave portion 50C for receiving the projection 1A is provided on the inner periphery of the inner cylinder 50B. I have. Therefore, the cylinder 50 can be rotated synchronously by the rotation of the lifting shaft 1. The lifting shaft 1 is exposed from the lower end of the cylinder 50. In the vicinity of the lower end of the cylinder 50, two arms 12A and 12B extending downward are attached.
  • the cylinder 50 is rotatable with respect to the mechanical chamber 18 via a ball bearing 18B, and the inside of the mechanical chamber 18 is kept air-tight or vacuum-tight by a sealing member 59. It is. The space between the lifting shaft 1 and the cylinder 50 is also kept airtight by a sealing member (not shown).
  • FIG. 10 shows two air cylinders 14 A and 14 B, as shown in FIG. 12, a ring-shaped member 16 attached to the lower ends of the gripping arms 12 A and 12 B is shown in FIG.
  • Four air cylinders 14A to 14D can be provided radially.
  • the shaft of the biston 52 of each air cylinder 14A to 14D is Radial direction (radial direction) and horizontal direction (perpendicular to the single crystal pulling direction) Direction).
  • All the mechanisms and members arranged in the upper part of the mechanical chamber 18 are outside the vacuum chamber, so that the effect of dust on the inside of the vacuum chamber (mechanical chamber) 18 due to the movement of the movable part is extremely small. can do.
  • FIG. 13 is a schematic sectional view showing the structure of the air cylinder 14B.
  • the air cylinder 14 B has a bistable 52 that can move vertically with respect to the fixed support 53, and a head 56 is attached to the tip of the piston 52, and is connected to the outer edge of the holding part.
  • the outer edge of the pad 56 is connected by a bellows 54 to define a piston chamber 57.
  • the bellows 54 is in a contracted state when the gas pressure is not applied to the biston chamber 57 due to its own contracting force.
  • a contact member 58 that can contact the side surface of the enlarged diameter portion 5 is attached.
  • the compressed gas supplied through the annular passage 50 P of the cylinder 50 and the inner space (not shown) of the gripping arms 12 A and 12 B is guided to the bistable chamber 57 in the fixed support portion 53.
  • a communication hole 55 is provided.
  • the plurality of contact members 58 that open and close with the enlarged diameter portion 5 are open and closed, and the gripping arms 12 A and 12 B themselves do not move in the radial direction of the enlarged diameter portion 5. .
  • the first motor 20 is driven to lower the first structure 24, and thus the pulling shaft 1, which is a dislocation-free axis, is pulled down in the figure to thereby lower the seed crystal.
  • Table 3 for Si melt 1 in quartz crucible 10 Let it immerse into the surface and blend in.
  • the gripping arms 12A and 12B wait at a position where the air cylinders 14A to 14D at the tip do not contact the Si melt 11 and the air cylinders 14A to 14B.
  • the contact member 58 of D is open so as not to contact the enlarged diameter portion 5 during the raising of the bow I (FIG. 10 shows a closed state).
  • the first motor 20 is rotated in the reverse direction to the above, the first structure 24 is raised, and the seed crystal 3 is pulled upward at a relatively high speed, whereby the seed crystal 3 Form a small diameter neck (dash neck) 4 with a diameter of 3 to 4 mm below.
  • the pulling speed is made relatively slow, and the enlarged diameter portion 5 for support is formed under the neck portion 4 over a predetermined length. After that, the pulling speed is made relatively slow, and a single portion under the enlarged diameter portion 5 is formed.
  • the formation of the crystal body 7 is started.
  • the contact member 58 grips the side surface of the enlarged diameter portion 5 so as to sandwich the side surface from the four radial directions.
  • the contact member 58 grips the side surface of the enlarged diameter portion 5 when the load of the single crystal 7 applied to the pulling shaft 1 becomes about 100 kg.
  • the air cylinders 14A to 14D rotate together with the enlarged diameter portion 5 when the gripping arms 12A and 12B are rotated by the cylinder 50.
  • the gripping arms 12A and 12B are configured to be vertically movable by a second structure 34 in order to pull up the enlarged diameter portion 5 in a gripping state.
  • the grip of the side surface of the enlarged diameter portion 5 by the air cylinders 14A to 14D will be described in detail.
  • the second mode is set so that the contact members 58 of the air cylinders 14A to 14D are located on the side surfaces of the enlarged diameter portion 5.
  • the second structure 34 is lowered, and the second motor 30 is stopped at a predetermined position.
  • the piston 52 moves, the bellows 54 expand, and the contact member 58 changes in diameter.
  • the side of the enlarged portion 5 is gripped so as to be sandwiched from four directions in the radial direction.
  • the contact member 58 is in a state of sandwiching the side surface of the enlarged diameter portion 5 from four directions.
  • a valve (not shown) closes, and the pressurized state, that is, the grip state is maintained.
  • the first motor 20 is operated, and the first structure 24 and the second structure 34 are pulled up integrally, so that the lifting shaft 1 and the contact member 58 are pulled up synchronously. -Go.
  • a buffer device (not shown) composed of a panel or the like in the middle of the lifting shaft 1 because this movement is performed without an impact.
  • the second motor 30 is stopped, and the second structure 34 is It is fixed to the first structure 24.
  • the first structure 24 and the second structure 34 rise as a single body only by driving with the first motor 20. Therefore, the seed crystal 3 and the contact member 58 rise at completely the same speed.
  • the speed control in the first mode 20 can be automatically controlled using the observation of the diameter of the single crystal 7 to be grown and the temperature measurement result of the melt 11.
  • a member for gripping the lifting shaft 1 and the enlarged diameter portion 5, which are the dislocation-free shaft, that is, the cylinder 50, the contact member 58, and the like are integrated into a single drive. Since the source is pulled up by the first motor 20, the pulling speed only needs to be controlled for the dislocation-free axis, the control is simple, and the weight of the single crystal can be easily moved. Dislocation can be realized. This function is common to the following embodiments. is there.
  • a decrease in the gas pressure and a decrease in the gripping force of the enlarged diameter portion 5 may lead to a single crystal falling accident.
  • a valve is provided in the compressed gas passage, and When the pressure state, that is, the state in which the piston 52 in FIG. 13 closes the contact member 58, it is preferable that the valve be automatically closed to continue the gripping force of a predetermined value or more.
  • the seed crystal holder 2 is attached to the tip of the lifting shaft 1, and the seed crystal 3 is attached to the seed crystal holder 2.
  • the shaft 1 is rotatably arranged by a motor 28 provided on a first structure 24 which can move up and down with respect to a mechanical chamber 18 which is a stationary part.
  • the first structure 24 has a screw portion 25 (nut portion) in which a female screw is provided, and the screw portion 25 is attached to the mechanical chamber 18. It is screwed with the mouth 22 with a male screw that rotates. Therefore, by the rotation of the first motor 20, the first structure 24, the motor 28 and the shaft 1 attached thereto can move up and down with respect to the quartz crucible 10.
  • the lower end of the male threaded port 32 is fixed to the first structure 24, and the female thread provided in the second structure 34 is internally provided for the male threaded port 32. Screwed into the threaded part 3 3.
  • the male threaded mouth 32 can be rotated by the second module 30 provided by the mounting member 31 on the second structure 34, and the second structure 34 is rotated by the rotation.
  • One structure 24 can be moved up and down with respect to 4.
  • the second structure 34 has an extension 35 extending downward and a plate 37 extending horizontally from the lower end of the extension 35, and these are integrated with the second structure 34. It moves up and down.
  • the flange 50 F of the cylinder 50 is mounted on the upper surface of the plate 3 7 It is rotatably supported via 7B.
  • the cylinder 50 has a double structure for guiding the compressed gas similarly to the cylinder 50 of the fifth embodiment, and is arranged coaxially with the lifting shaft 1. Further, as in the fifth embodiment, the cylinder 50 rotates in synchronization with the rotation of the lifting shaft 1 by the structure of FIG. Below the cylinder 50, similarly to the fifth embodiment, gripping arms 12A and 12B and air cylinders 14A to 14D attached to the ends thereof are provided.
  • the cylinder 50 is rotatable with respect to the mechanical chamber 18 via a ball bearing (not shown), and the interior of the mechanical chamber 18 is sealed with a vacuum or inert gas by a sealing member 59 in an airtight manner. Will be kept.
  • the space between the shaft 1 and the cylinder 50 is kept airtight by a sealing member (not shown).
  • the operation of the single crystal pulling apparatus of FIG. 14 will be described focusing on points different from the first embodiment.
  • the first motor 20 is operated to start the first structure.
  • the body 24 is lowered, and the lifting shaft 1 is lowered downward in the figure, so that the seed crystal 3 is immersed in the surface of the Si melt 11 in the quartz crucible 10 to be blended.
  • the arms 12A and 12B wait at a position where the air cylinders 14A to 14D at the end do not contact the Si melt 11 and the air cylinders 14A to 14D It is open so that it does not come into contact with the enlarged diameter part 5 during pulling (the state shown in Fig. 14). Then, after a lapse of a predetermined time, the first motor 20 is rotated in the reverse direction as before, the first structure 24 is raised, and the seed crystal 3 is pulled upward at a relatively high speed, whereby the seed crystal 3 is moved downward. After forming a small diameter neck portion 4 with a diameter of 3 to 4 mm, the pulling speed is made relatively slow, and a large diameter portion 5 for supporting is formed under the neck portion 4 over a predetermined length. Relatively late Then, the formation of the crystal main body 7 is started.
  • the second motor 30 When the enlarged diameter portion 5 rises to a predetermined height, the second motor 30 is operated so that the contact member gripping arm 58 of the air cylinders 14A to 14D is located near the side surface of the enlarged diameter portion 5. Then, the second structure 34 is lowered to stop the second motor 30 at a predetermined position. Next, the pump 62 is operated to feed the compressed gas into the air cylinders 14A to 14D, and the contact member 58 is closed to hold the enlarged diameter portion 5 from the side. In FIG. 14, the compressed gas is guided from the pump 62 to the gas passage 50 P of the cylinder 50 via the valve 64 and the pipe 66. In this state, the contact member 58 holds the enlarged diameter portion 5. Then, by rotating the first motor 20, the first structural body 24 and the second structural body 34 are integrally raised, so that the lifting shaft 1 and the contact member 58 are simultaneously raised. . Note that the valve 64 automatically closes to maintain the pressure as described in the fifth embodiment.
  • a seventh embodiment of the single crystal pulling apparatus of the present invention will be described with reference to FIG.
  • the seventh embodiment is a modification of the sixth embodiment.
  • a seed crystal holder 2 is attached to the tip of the lifting shaft 1, and a seed crystal 3 is attached to the seed crystal holder 2.
  • the shaft 1 is rotatably arranged by a motor 28 provided in a first structure 24 which can move up and down with respect to a mechanical chamber 18 which is a stationary part.
  • the first structure 24 has a screw portion 24 A (nut portion) in which a female screw is provided, and the screw portion 24 A is attached to the mechanical chamber 18. It is screwed with a rod 22 A with external thread that rotates by 20 o'clock overnight.
  • Reference numeral 22B denotes a guide rod, which is slidable via a slider 24B. Attached to.
  • the lifting shaft 1 extends downward from the first structure 24, but the second structure 34 is fixed to the outer periphery of the lifting shaft 1.
  • the second structure 34 is provided with a second motor 30 for rotating the mouth 32 with an external thread.
  • the crystal holding portion shaft 60 is slidably supported by the second structure 34 via the slider 38.
  • a nut member 32 A that is screwed to the rod 32 with a male thread is fixed to the crystal support shaft 60.
  • a balance weight 44 is attached to the second structure 34 via the support base 42 and the balance weight position adjusting member 43.
  • the lifting shaft 1 and the crystal support shaft 60 are arranged in parallel and extend through the rotating plate 46 into the mechanical chamber 18.
  • the rotating plate 46 is rotatably supported on the mechanical chamber 18 via a bearing 46B.
  • 18S, 46S, and 60S are sealing members.
  • a plurality of air cylinders 14A and 14B are attached to the lower end of the crystal support shaft 60.
  • the structure of these air cylinders 14A and 14B is essentially the same as that of the first and sixth embodiments, and four air cylinders 14 are arranged radially as shown in FIG. A to 14D are provided.
  • the crystal supporting shaft 60 is not coaxial with the pulling shaft 1, but rotates around the lifting shaft 1, and the crystal supporting shaft 60 has a hollow structure.
  • the hollow portion forms a compressed air flow passage 60C, and the compressed air flow passage 60C has a structure for supplying compressed air to each of the air cylinders 14A and 14B. Since the crystal support shaft 60 rotates together with the second structure 34, that is, with the pull-up shaft 1, the contact members 58 at the tips of the air cylinders 14A and 14B are connected to the enlarged diameter portion 5. It will rotate synchronously.
  • the operation of the single crystal pulling apparatus of FIG. 15 differs from that of the second embodiment. This will be mainly described.
  • the first motor 20 is operated to start the first structure.
  • the body 24 is lowered, and then the shaft 1 is pulled down in the figure, so that the seed crystal 3 is immersed in the surface of the Si melt 11 in the quartz crucible 10 to be blended.
  • the crystal support shaft 60 stands by at a position where the air cylinders 14A to 14D do not come into contact with the Si melt 11 and the contact member 58 is a part of the enlarged diameter part being pulled up. Open so as not to touch 5.
  • the first crystal 20 is rotated in the reverse direction to the above, the first structure 24 is raised, and the seed crystal 3 is pulled upward at a relatively high speed.
  • a small neck 4 with a diameter of 3 to 4 mm is formed underneath.
  • the pulling speed is relatively slow to start the formation of the crystal main body 7.
  • the second motor 30 is moved so that the contact member gripping arm 58 of the air cylinders 14A to 14D is located near the side surface of the enlarged diameter portion 5.
  • the second structure 34 By driving, the second structure 34 is lowered, and the second motor 30 is stopped at a predetermined position. Next, the compressed gas is sent to the air cylinders 14A to 14D, and the contact member 58 is closed to hold the enlarged diameter portion 5 from the side. In this state, the contact member 58 holds the enlarged diameter portion 5. After that, by rotating the first motor 20, the first structure 24 and the second structure 34 are integrally raised, so that the lifting shaft 1 and the contact member 58 are synchronized. To rise.
  • the timing for lowering the second structure 34 is determined visually by operating the air cylinders 14A to 14D.
  • the diameter of the single crystal is imaged with a camera, etc. It can be determined and controlled automatically. Alternatively, after the timing is determined by such automatic control, visual confirmation by the operator can be used together. Also, by detecting the contact of the contact member 58 with the enlarged diameter portion 5 with an optical sensor, or by using the air cylinders 14A to 14D and the members connected thereto as a current path, Contact with the enlarged diameter part 5 can also be detected.
  • the side surface of the enlarged diameter portion 5 of the single crystal is gripped by the air cylinder, but a gas other than air can be used.
  • the same effect can be obtained not only by gas pressure driving but also by using a hydraulic driving device.
  • the structure for synchronously rotating the pull-up shaft 1 and the contact member 58 is shown.
  • the present invention is not limited to these, and a combination of a gear, a belt, and a pulley is used. Can also be used. Industrial applicability
  • the mechanism for pulling up the seed crystal is used. Power is transmitted to the mechanism that grasps or supports the enlarged diameter part, and the mechanism that grasps or supports the seed crystal and the enlarged diameter part is raised by a single pulling drive source, so control is simple. In addition, stable construction can be realized at low cost with a simple structure. In addition, by providing a buffering device in the pulling shaft, smooth and soft movement of the single crystal when moving from the lifting shaft of its own weight to the holding or supporting mechanism becomes possible. The use of a bellows chamber further simplifies the structure and can reduce the overall height of the single crystal pulling apparatus.
  • the detection circuit or sensor detects that the gripping member has touched the enlarged diameter portion of the single crystal being pulled, or that it is in such a positional relationship as to make contact, and automatically grips the constriction. Can be grasped. Therefore, large-diameter and heavy-weight single crystals can be safely and reliably pulled up without any trouble in determining the timing of gripping the enlarged diameter portion.
  • the mechanism for gripping the side surface of the enlarged diameter portion of the single crystal formed below the seed crystal once grips the enlarged diameter portion
  • power for pulling up the seed crystal is provided. Is transmitted to the mechanism that grips the enlarged diameter part, and the mechanism that grips the seed crystal and the enlarged diameter part is raised by a single pulling drive source for the dislocation-free axis, so control is simple.
  • the self-weight of the single crystal can be moved smoothly and softly, and stable pulling can be realized at low cost without a complicated structure.
  • each drive mechanism is arranged outside the vacuum chamber, it is not affected by high temperature, and the problem of particles entering the vacuum chamber can be avoided. Further, by providing a buffering device in the pulling shaft, smoother and softer movement of the single crystal when moving its own weight becomes possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

明 細 書 単結晶引上げ装置 技術分野
本発明は、 引上げ C Z ( Czochralski ) 法により S i (シリコン) の 無転位の単結晶を製造するための単結晶引上げ装置に関する。 背景技術
一般に、 引上げ C Z法による単結晶製造装置では、 高耐圧気密チャン バ内を l O torr 程度に減圧して新鮮な A r (アルゴン) ガスを流すと ともに、 チャンバ内の下方に設けられた石英るつぼ内の多結晶を加熱し て溶融し、 この融液の表面に種結晶を上から浸漬し、 種結晶と石英るつ ぼを回転、 上下移動させながら種結晶を引き上げることにより、 種結晶 の下に上端が突出した円錐形の上部コーン部と、 円筒形のボディー部と 下端が突出した円錐形の下部コーン部より成る単結晶 (いわゆるインゴ ッ ト) を成長させるように構成されている。
また、 この成長方法として、 種結晶を融液の表面に浸漬したときの熱 衝撃により種結晶に発生する転位を除去 (無転位化) するために、 種結 晶を融液の表面に浸漬した後、 引上げ速度を比較的速くすることにより 種結晶より小径の、例えば直径が 3〜4 m mのネック部を形成した後に、 上記の上部コーン部の引上げを開始するダッシュ(Dash)法が知られてい る。
さらに、 この小径のネック部を介しては、 大径、 大重量 ( 1 5 0〜 2 0 0 k g以上) の単結晶を引き上げることができないので、 例えば特公 平 5— 6 5 4 7 7号公報に示されるように Dash 法により小径のネック 部を形成した後、 引上げ速度を比較的遅く して大径を形成し、 次いで引 上げ速度を比較的速く して小径を形成することにより 「球状のくびれ」 を形成し、 このくびれを把持具で把持することにより大径、 高重量の単 結晶を引き上げる方法が提案されている。 また、 くびれを把持する従来 の装置としては、 上記公報の他に、 例えば特公平 7— 1 0 3 0 0 0号公 報、 特公平 7 - 5 1 5号公報に示されているものがある。
また、 他の従来例としては、 例えば特開平 5— 2 7 0 9 7 4号公報、 特開平 7 - 1 7 2 9 8 1号公報に示されるように上記 「くびれ」 を形成 しないでボディー部をそのまま把持する方法や、 特開昭 6 3— 2 5 2 9 9 1号公報、 特開平 5— 2 7 0 9 7 5号公報に示されるように上記 「球 状のくびれ」 の代わりに、 上部コーン部とボディー部の間にボディー部 より径が大きい 「環状のくびれ」 を形成し、 この 「環状のくびれ」 を把 持する方法が提案されている。
しかしながら、 単結晶の引上げプロセスは外部からの振動に非常に敏 感で、 容易に多結晶化しやすい工程である。 したがって、 単結晶の引上 げに際し、 外乱を与えることなく、 かつ結晶の自重をネッキング部から くびれなどの把持位置にいかにスムーズかつソフ トに移動させるかとい う点が問題となっている。 また、 引上げ炉内は高温であるので、 把持機 構などに耐熱性が求められ、 さらに微小なパーティクル (粉塵) の混入 は結晶品質を劣化させるので極力排除しなけらばならない。 従来の技術 ではこれらの問題全てを明確に解決しているものはない。 特開平 5— 2 7 0 9 7 4号公報、 特開平 5— 2 7 0 9 7 5号公報、 特開平 5— 3 0 1 7 9 3号公報では、 種結晶の引上げ機構と把持装置の引上げ機構は異な る駆動源からなり、 これらをどのように同期運転するかの開示あるいは 示唆がない。
特開平 9 - 2 8 9 3号公報では、 種結晶の引上げ機構と把持装置の引 上げ機構は異なる駆動源からなり、 これらは同期運転あるいは独立して 運転される旨の開示があるが、 同期運転の場合その制御工程が複雑であ り、 制御に要する装置も複雑かつ高コス トである。 さらに、 特公平 7— 5 1 5号公報では、 把持装置を単結晶のくびれに係合させるための上下 動機構が種結晶の引上げ機構を形成するシャフ トに設けられ、 係合後は 種結晶の引上げ機構の制御のみで把持装置をも種結晶と同期して引上げ る構成が開示されてはいるが、 係合部を停止させるための有効な手段に ついての開示や示唆がなく、 実現性に乏しいと言わざるを得ない。 また、 特公平 7— 5 1 5号公報及び特開平 7 - 1 7 2 9 8 1号公報では、 駆動 機構などの金属同士が接触するネジ部や機械駆動部を高温の引上げ炉内 に配置しているので、 耐熱対策が困難であったり、 高温下において機械 的機構が十分に機能しないことがあるなどの不具合があるのみならず、 機械的接触部分から発生するパーティクルによる悪影響を受けやすく単 結晶の引上げが阻害されることがあるという問題点がある。
また、 特開平 9 - 2 8 9 3号公報では、 駆動機構をすベて真空チャン バの外部に配置し、 高温下の環境及び引上げ炉内へのパーティクルの混 入の問題を回避し、 かつ種結晶の引上げ速度と把持機構の引上げ速度を 同期制御することにより、 上記従来の問題点をすベて同時に解決しょう との試みがなされている。 しかし、 この同期制御は、 種結晶の引上げ用 ワイヤを巻き取るワイヤドラムと把持手段が連結された引上げドライブ の 2つの引上げ速度を相互に調整することで実現しているものであり、 制御機構と制御プロセスが複雑で装置の設計、 製造のコス 卜が高くまた 保守を容易に行うことが困難であるという問題がある。 発明の開示
本発明は上記従来の問題点に鑑み、 引上げ中の単結晶を把持具により 把持するときに引上げ中の単結晶が多結晶化することを防止することが でき、 また、 単結晶の引上げに際し、 結晶の自重をネッキング部から く びれなどの把持位置にスムーズかつソフ トに移動させることができ、 か つ高温下の影響及びパーティクル混入の問題を回避した単結晶引上げ装 置を比較的簡単な構成と低コス トで実現することを目的とする。
本発明は上記目的を達成するために、 種結晶の下方に形成される径拡 大部に係合する把持部材を種結晶ホルダに対して上下方向に位置制御し、 かつ上下方向の位置制御中以外のときは、 種結晶引上げ手段の動力を伝 達することにより把持部材を種結晶ホルダと一体的に上下動させるよう 構成するとともに、 各駆動機構をルツボ及び成長させる単結晶を格納す る真空チャンバの外部に配置している。
本発明の他の態様では、 種結晶の下方に形成される径拡大部を下方か ら支持して載置することにより径拡大部を保持する皿状部材としての支 持台を用い、この支持台を種結晶ホルダに対して上下方向に位置制御し、 かつ上下方向の位置制御中以外のときは、 種結晶引上げ手段の動力を伝 達することにより支持台を種結晶ホルダと一体的に上下動させるよう構 成するとともに、 各駆動機構をルツボ及び成長させる単結晶を格納する 真空チャンバの外部に配置している。
すなわち本発明によれば、 溶融結晶を保持可能なルツボの上方で種結 晶を支持する種結晶ホルダを回転させる回転手段と、
前記種結晶ホルダを速度制御しつつ引き上げることにより前記種結晶 を引き上げる種結晶引上げ手段と、
前記種結晶ホルダと共に回転可能で、 かつ前記種結晶ホルダの上下方 向の移動に伴って上下方向に移動可能であって、 前記種結晶引上げ手段 による引上げにより前記種結晶の下方に形成される径拡大部の下に形成 される単結晶のくびれ及び/又は前記径拡大部の下端を把持するために 先端が開閉可能な把持部材と、
前記把持部材を前記種結晶ホルダに対して上下方向に位置制御し、 か つ前記上下方向の位置制御中以外のときは、 前記種結晶引上げ手段の動 力を伝達することにより前記把持部材を前記種結晶ホルダと一体的に上 下動させる結晶保持位置制御手段と、
前記把持部材の先端を開閉させ、 前記把持部材の先端が閉じたとき前 記くびれ及び/又は前記径拡大部の下端を把持するよう前記径拡大部の 下方部分に前記把持部材の先端を移動させる把持部材開閉手段とを、 有し、 前記各手段の駆動機構が前記ルツボ及び成長させる単結晶を格 納する真空チャンバの外部に位置する単結晶引上げ装置が提供される。
また本発明によれば、 溶融結晶を保持可能なルツボの上方で種結晶を 支持する種結晶ホルダに連結されたシャフ トと、
前記シャフ トを回転させる回転手段と、
前記シャフ トを速度制御しつつ引き上げることにより前記種結晶を引 き上げる種結晶引上げ手段と、
前記シャフ トと共に回転可能で、 かつ前記シャフ 卜の上下方向の移動 に伴って上下方向に移動可能であって、 前記種結晶引上げ手段による引 上げにより前記種結晶の下方に形成される径拡大部の下に形成される単 結晶のくびれ及び/又は前記径拡大部の下端を把持するために先端が開 閉可能な把持部材と、
前記把持部材を前記シャフ 卜に対して上下方向に位置制御し、 かつ前 記上下方向の位置制御中以外のときは、 前記種結晶引上げ手段の動力を 伝達することにより前記把持部材を前記シャフ トと一体的に上下動させ る結晶保持位置制御手段と、
前記把持部材の先端を開閉させ、 前記把持部材の先端が閉じたとき前 記くびれ及び/又は前記径拡大部の下端を把持するよう前記径拡大部の 下方部分に前記把持部材の先端を移動させる把持部材開閉手段とを、 有し、 前記各手段の駆動機構が前記ルヅボ及び成長させる単結晶を格 納真空チャンバの外部に位置する単結晶引上げ装置が提供される。
また本発明によれば、 溶融結晶を保持可能なルツボの上方で種結晶を 支持する種結晶ホルダを回転させる回転手段と、
前記種結晶ホルダを速度制御しつつ引き上げることにより前記種結晶 を引き上げる種結晶引上げ手段と、
前記種結晶ホルダと共に回転可能で、 かつ前記種結晶ホルダの上下方 向の移動に伴って上下方向に移動可能であって、 前記種結晶引上げ手段 による引上げにより前記種結晶の下方に形成される径拡大部の下に形成 される単結晶のくびれ及び/又は前記径拡大部の下端を下方から支持す るために、 前記くびれを通す貫通孔を有し、 かつ前記くびれを前記貫通 孔に導くために前記貫通孔を外周部と連通させるスリ ッ 卜が設けられた 支持台と、
前記支持台を前記種結晶ホルダの上下方向位置に対して上下方向に位 置制御し、 かつ位置制御中以外のときは、 前記種結晶引上げ手段の動力 を伝達することにより前記支持台を前記種結晶ホルダと一体的に上下動 させる結晶保持位置制御手段と、
前記支持台を前記くびれ及び/又は前記径拡大部の下端を支持しない 第 1の位置と前記くびれ及び/又は前記径拡大部の下端を支持する第 2 の位置との間で移動させる支持台移動手段とを、
有し、 前記各手段の駆動機構が前記ルツボ及び成長させる単結晶を格 納する真空チャンバの外部に位置する単結晶引上げ装置が提供される。
また本発明によれば、 溶融結晶を保持可能なルツボの上方で種結晶を 支持する種結晶ホルダに連結されたシャフ トと、
前記シャフ トを回転させる回転手段と、 前記シャフ トを速度制御しつつ引き上げることにより前記種結晶を引 き上げる種結晶引上げ手段と、
前記シャフ トと共に回転可能で、 かつ前記シャフ 卜の上下方向の移動 に伴って上下方向に移動可能であって、 前記種結晶引上げ手段による引 上げにより前記種結晶の下方に形成される径拡大部の下に形成される単 結晶のくびれ及び/又は前記径拡大部の下端を下方から支持するために、 前記くびれを通す貫通孔を有し、 かつ前記くびれを前記貫通孔に導くた めに前記貫通孔を外周部と連通させるスリ ッ トが設けられた支持台と、 前記支持台を前記シャフ 卜の上下方向位置に対して上下方向に位置制 御し、 かつ位置制御中以外のときは、 前記種結晶引上げ手段の動力を伝 達することにより前記支持台を前記シャフ トと一体的に上下動させる結 晶保持位置制御手段と、
前記支持台を前記くびれ及び/又は前記径拡大部の下端を支持しない 第 1の位置と前記くびれ及び/又は前記径拡大部の下端を支持する第 2 の位置との間で移動させる支持台移動手段とを、
有し、 前記各手段の駆動機構が前記ルツボ及び成長させる単結晶を格 納する真空チャンバの外部に位置する単結晶引上げ装置が提供される。
さらに本発明は上記目的を達成するために、 種結晶の下方に形成され る径拡大部の側面に係合する把持部材を種結晶ホルダに対して上下方向 に位置制御し、 かつ上下方向の位置制御中以外のときは、 種結晶引上げ 手段の動力を伝達することにより把持部材を種結晶ホルダと一体的に上 下動させるよう構成するとともに、 各駆動機構をルツボ及び成長させる 単結晶を格納する真空チャンバの外部に配置している。
すなわち本発明によれば、 溶融結晶を保持可能なルツボの上方で種結 晶を支持する種結晶ホルダを回転させる回転手段と、
前記種結晶ホルダを速度制御しつつ引き上げることにより前記種結晶 を引き上げる種結晶引上げ手段と、
前記種結晶ホルダと共に回転可能で、 かつ前記種結晶ホルダの上下方 向の移動に伴って上下方向に移動可能であって、 前記種結晶引上げ手段 による引上げにより前記種結晶の下方でかつ、 直胴部の上に形成される 一定の径を有する径拡大部の側面を把持するために先端が開閉可能な把 持部材と、
前記把持部材を前記種結晶ホルダに対して上下方向に位置制御し、 か つ前記上下方向の位置制御中以外のときは、 前記種結晶引上げ手段の動 力を伝達することにより前記把持部材を前記種結晶ホルダと一体的に上 下動させる結晶保持位置制御手段と、
前記把持部材の先端を開閉させ、 前記把持部材の先端が閉じたとき前 記径拡大部の側面を把持するよう前記径拡大部の側面に前記把持部材の 先端を移動させる把持部材開閉手段とを、
有し、 前記各手段の駆動機構が前記ルツボ及び成長させる単結晶を格 納する真空チャンバの外部に位置する単結晶引上げ装置が提供される。
また本発明によれば、 溶融結晶を保持可能なルツボの上方で種結晶を 支持する種結晶ホルダに連結されたシャフ トと、
前記シャフ トを回転させる回転手段と、
前記シャフ トを速度制御しつつ引き上げることにより前記種結晶を引 き上げる種結晶引上げ手段と、
前記シャフ トと共に回転可能で、 かつ前記シャフ トの上下方向の移動 に伴って上下方向に移動可能であって、 前記種結晶引上げ手段による引 上げにより前記種結晶の下方でかつ、 直胴部の上に形成される一定の径 を有する径拡大部の側面を把持するために先端が開閉可能な把持部材と、 前記把持部材を前記シャフ トに対して上下方向に位置制御し、 かつ前 記上下方向の位置制御中以外のときは、 前記種結晶引上げ手段の動力を 伝達することにより前記把持部材を前記シャフ トと一体的に上下動させ る結晶保持位置制御手段と、
前記把持部材の先端を開閉させ、 前記把持部材の先端が閉じたとき前 記径拡大部の側面を把持するよう前記径拡大部の側面に前記把持部材の 先端を移動させる把持部材開閉手段とを、
有し、 前記各手段の駆動機構が前記ルヅボ及び成長させる単結晶を格 納真空チャンバの外部に位置する単結晶引上げ装置が提供される。 図面の簡単な説明
上記発明の目的や特徴は、 以下の内容の添付図面に沿って説明される 実施の形態によりさらに明らかとなるであろう。
図 1は、 本発明に係る単結晶引上げ装置の第 1実施形態を模式的に示 す部分断面図である。
図 2は、 図 1中の引上げシャフ トに設けられた緩衝装置の 1例の断面 図である。
図 3は、 図 1中の引上げシャフ 卜に設けられた緩衝装置の他の例の断 面図である。
図 4は、 図 1中の引上げシャフ トに設けられた緩衝装置の更に他の例 の断面図である。
図 5は、 図 4中の A— A ' 線での断面図である。
図 6は、 本発明に係る単結晶引上げ装置の第 2実施形態を模式的に示 す部分断面図である。
図 7は、 本発明に係る単結晶引上げ装置の第 3実施形態を模式的に示 す部分断面図である。
図 8は、 図 7中の B— B, 線での断面図であり、 実線と点線で回転移 動の態様を示す図である。 図 9は、 本発明に係る単結晶引上げ装置の第 4実施形態を模式的に示 す部分断面図である。
図 1 0は、 本発明に係る単結晶引上げ装置の第 5実施形態を模式的に 示す部分断面図である。
図 1 1は、 図 1 0中の I I— I I, 線での断面図である。
図 1 2は、 第 5実施形態におけるアームとエアシリンダの関係を示す 斜視図である。
図 1 3は、 第 5実施形態におけるエアシリンダと径拡大部との関係を 示す断面図である。
図 1 4は、 本発明に係る単結晶引上げ装置の第 6実施形態を模式的に 示す部分断面図である。
図 1 5は、 本発明に係る単結晶引上げ装置の第 7実施形態を模式的に 示す部分断面図である。 発明を実施するための最良の形態
以下、 図面を参照して本発明の実施の形態を説明する。 図 1は本発明 に係る単結晶引上げ装置の一実施形態及びその引上げ工程を示す説明図 である。 図 1において、 引上げシャフ ト 1の先端には種結晶ホルダ 2が 取り付けられ、 種結晶ホルダ 2には種結晶 3が取り付けられる。 シャフ ト 1は静止部分であり、 かつ成長させる単結晶 7と石英ルツボ 1 0を格 納する真空室を構成するメカニカルチャンバ 1 8に対して上下動可能な 第 1構造体 2 4に設けられたモータ 2 8により回転可能に配されている c 第 1構造体 2 4は雌ネジが内部に設けられているネジ部 2 6 (ナッ ト 部) を有し、 このネジ部 2 6はメカニカルチャンバ 1 8に取り付けられ ている第 1モー夕 2 0により回転する雄ネジ付きロッ ド 2 2と螺合して いる。 したがって、 第 1モー夕 2 0の回転により、 第 1構造体 2 4及び、 これに取り付けられているモ一夕 2 8とシャフ ト 1は石英ルヅボ 1 0に 対して上下に移動可能である。
シャフ ト 1の途中には結晶重量移動機構として機能する緩衝装置 6 0 が、 シャフ ト 1の上下の回転を伝達する形で設けられている。 緩衝装置 6 0の構成については後述する。 第 1構造体 2 4には雄ネジ付き口ッ ド
3 2の下端が固定されていて、 雄ネジ付き口ッ ド 3 2は第 2構造体 3 4 に設けられている雌ネジが内部に設けられているネジ部 3 6に螺合して いる。 雄ネジ付き口ッ ド 3 2は第 2構造体 3 4に設けられている第 2モ —夕 3 0により回転可能であり、 その回転により、 第 2構造体 3 4は第 1構造体 2 4に対して上下に移動可能である。 さらに、 第 2構造体 3 4 には雄ネジ付き口ッ ド 4 2の下端が固定されていて、 雄ネジ付き口ッ ド
4 2は第 3構造体 4 4に設けられている雌ネジが内部に設けられている ネジ部 4 6に螺合している。 雄ネジ付きロッ ド 4 2は第 2構造体 4 4に 設けられている第 3モー夕 4 0により回転可能であり、その回転により、 第 3構造体 4 4は第 2構造体 3 4に対して上下に移動可能である。
第 2構造体 3 4は下方に伸長して配される伸長部 3 8 Aと、 その下端 から水平方向に伸長して配され、 中央に円形孔を有する板部 3 8 Bを有 し、 これらは第 2構造体 3 4と一体となって上下動するものである。 ま た、 第 3構造体 4 4は下方に伸長して配される伸長部 4 8 Aと、 その下 端から水平方向に伸長して配され、 中央に円形孔を有する板部 4 8 Bを 有し、 これらは第 3構造体 4 4と一体となって上下動するものである。 板部 3 8 B、 4 8 Bの中央孔にはそれそれシャフ ト 1の外周に同軸で形 成された同軸シリンダ 5 0、 5 4が挿入されている。 シリンダ 5 0はそ の上部フランジ部 5 0 Aがボールベアリング 5 2を介して板部 3 8 Bの 上面に回転可能に配され、 一方、 シリンダ 5 4はその上部フランジ部 5 4 Aがボールべァリング 5 6を介して板部 4 8 Bの上面に回転可能に配 されている。 シリンダ 5 0の外周部はメカニカルチヤンバ 1 8の上端に 設けられている中央孔に対してボールベアリング 5 7を介して回動可能 とされ、 かつシール部材 5 9にてメカニカルチャンバ 1 8の内部は真空 あるいは不活性ガスが気密に保たれる。 なお、 シャフ ト 1 とシリンダ 5 4、 シリンダ 5 4とシリンダ 5 0の間の空間もすベて図示省略のシール 部材により気密に保たれる。
シリンダ 5 0の下方には、 その下方フランジ部 5 0 Bに把持アーム 1 2の上端がビボッ ト 1 2 Aにて回動可能に取り付けられている。 把持ァ —ム 1 2の下端は L字の形状となって、 その先端は径拡大部 5を把持す る爪部 1 3を構成する。 把持アームは図では 2つが示されているが、 必 要に応じて 3個以上設けることができ、 その爪部 1 3にて径拡大部 5の 下端を周囲から囲むよう把持することができる。 なお、 爪部 1 3の先端 を広げて、 径拡大部 5を両側から保持する構成の場合は、 アーム 1 2及 びその爪部 1 3は 2つでも十分に機能できる。シリンダ 5 4の下方には、 その下方フランジ部 5 4 Bにリンク部材 5 8の上端がピボッ ト 5 8 Aに て回動可能に取り付けられている。 リンク部材 5 8の下端は把持アーム 1 2の中央よりやや上方付近にピボッ ト 1 2 Bにて回動可能に取り付け られている。 なお、 メカニカルチャンバ 1 8の上部に配されている各機 構ゃ部材はすべて、 真空チャンバ外であり、 よって、 可動部の運動によ る真空チャンバ (メカニカルチャンバ) 1 8内への粉塵の影響を極めて 少なくすることができる。
シャフ ト 1の途中に設けられている緩衝装置 6 0の構成について図 2 〜 5によって説明する。 図 2、 図 3、 図 4はそれそれ緩衝装置 6 0の異 なる実施の形態を示すもので、 これらを 6 0 A、 6 0 B、 6 0 Cで示す。 まず図 2〜図 4の共通の構成として、 図 1で示されているシャフ ト 1の 上方部分を 1 A、 下方部分を 1 Bで示し、 シャフ ト 1の上方部分 1 Aの 下端には下方に穴のある箱状体 6 2が設けられている。 シャフ ト 1の下 方部分 1 Bの上端には断面が T字状のフランジ部 1 C (図 4では 1 D ) が設けられていて、 このフランジ部 1 Cは箱状体 6 2の内部に保持され ている。 図 2の構成ではフランジ部 1 Cの下端と箱状体 6 2の内部底面 との間に弾性部材としての圧縮ゴムブロック 6 4が配されている。 図 3 の構成ではフランジ部 1 Cの上端と箱状体 6 2の内部上面との間に弾性 部材としての引張りパネ (コイルスプリング) 6 6が配されている。 図 4の構成ではフランジ部 1 Dの内部と箱状体 6 2の内部上面壁部の内部 にそれそれ両端が埋め込まれた弾性部材としての引張りゴムプロック 6 8が配されている。 図 5は図 4の A— A ' 線での断面図であり、 図 2、 図 3についても同様である。 図 5に示されるように、 箱状体 6 2の下方 の穴を画定しているシリンダ部 6 3に設けられた溝 6 3 Mにシャフ ト 1 の下方部分 1 Bの外周の一部に軸方向に設けられた突起 1 Tが係合して、 回転力が伝達され、 よって、 シャフ ト 1の上方部分 1 Aと下方部分 1 B は緩衝装置 6 0 ( 6 0 A、 6 0 B、 6 0 C ) の存在にかかわらず同期回 転が可能である。
次に図 1の単結晶引上げ装置の動作について説明する。 単結晶本体 7 を製造する場合、 メカニカルチャンバ 1 8内を 1 O torr 程度に減圧し て新鮮な A r (アルゴン) ガスを流すとともに、 メカニカルチャンバ 1 8内の下方に設けられた石英ルツボ 1 0内の多結晶を加熱して溶融する。 引上げの準備が完了すると、 まず、 第 1モータ 2 0を運転して、 第 1構 造体 2 4を下降させ、 よってシャフ ト 1を図中下方に引き下げて種結晶 3を石英るつぼ 1 0内の S i融液 1 1の表面に対して浸潰させてなじま せる。 このとき、 アーム 1 2は先端が S i融液 1 1に接触しない位置に 待機し、 また、 把持アーム 1 2の先端は、 引上げ中の径拡大部 5に接触 しないように開'いている (図 1の状態)。 次いで所定時間経過後に第 1モー夕 2 0を先程とは逆回転させて、 第 1構造体 2 4を上昇させ、 種結晶 3を比較的速い速度で上方に引き上げ ることにより、 種結晶 3の下に直径が 3〜 4 m mの小径のネック部 4を 形成させ、 次いで引上げ速度を比較的遅く してネック部 4の下に支持用 の径拡大部 5を形成した後、 引上げ速度を比較的速く して、 径拡大部 5 の下にくびれ部 6を形成させ、 次いで結晶本体部分 7の形成を開始させ る。
前述の径拡大部 5の下のくびれ部 6を把持するための 2以上の把持ァ ーム 1 2 と、 その開閉のための動力を伝達するリンク機構 5 8が 2つの シリンダ 5 0、 5 4により回転することにより、 径拡大部 5と共に回転 するように配置されている。 把持アーム 1 2はその先端がくびれ部 6を 把持するために開閉可能であるとともに、 把持状態でくびれ部 6を引き 上げるために第 2構造体により上下移動可能に構成されている。 また、 把持アーム 1 2を開閉させるリンク機構 5 8とその接続されているシリ ンダ 5 4は第 3構造体 4 4により上下移動可能である。 また、 把持ァ一 ム 1 2の先端の爪部 1 3は、 爪部 1 3が引上げ中の径拡大部 5が接触し たことを、 例えばシリンダ 5 0、 アーム 1 2、 爪部 1 3、 単結晶 7を介 して構成される電流路における電流を検出回路を接続して検出すること が可能である。 また、 爪部 1 3に径拡大部 5の荷重がかかったことを検 出するための重量負荷検知方式センサをシリンダ 5 0に取り付けること ができる。 かかる検出回路やセンサによる検出により、 第 2構造体を上 下に移動させる第 2モー夕を制御して、 アーム 1 2を引き上げる速度を 制御することが可能である。
この引上げ中に、 径拡大部 5が所定の高さまで上昇すると、 把持ァー ム 1 2の先端が径拡大部 5の下方に位置するように、 第 2モー夕 3 0を 運転して第 2構造体 3 4を下降させて所定位置で第 2モー夕 3 0を停止 する。 次いで、 把持アーム 1 2の先端の爪部 1 3が閉じるように第 3モ 一夕 4 0を運転して第 3構造体 4 4を上昇させる。 その結果、 把持ァ一 ム 1 2の先端の爪部 1 3は径拡大部 5の下方に入り込む。 この状態で第 3モー夕 4 0を停止し、 次いで第 2モ一夕 3 0を運転し、 閉じた状態の アーム 1 2を微動上昇させる。 こうして爪部 1 3がくびれ部又は径拡大 部 6の下端に接触したら、 第 2モー夕 3 0を直ちに停止する。 この状態 で爪部 1 3は径拡大部 5を把持している。 この段階で、 結晶本体部分 7 がこの把持による振動などにより多結晶化しないように、 把持後の単結 晶荷重の移動をスムーズかつソフ トに実行する必要がある。 図 1の実施 の形態では、 緩衝装置 6 0が引上げシャフ ト 1に設けられているので、 この移動が衝撃を伴わずに行われる。
なお、 径拡大部 5の把持に際し、 第 2モ一夕 3 0を回転させてシリン ダ 5 0を上昇させ、 把持アーム 1 2を微動させるに際し、 把持アーム 1 2は第 2構造体 3 4と共に、 すなわち第 1構造体 2 4並びに引上げシャ フ ト 1 とと共に上昇しているので、 引上げシャフ ト 1の上昇速度より速 い速度とする。 こう して把持アーム 1 2の爪部 1 3が径拡大部 5を把持 すると、 第 2モータ 3 0は停止し、 第 2構造体 3 4は第 1構造体 2 4に 対して固定される。 なお、 これに先立ち爪部 1 3が径拡大部 5の下方に 位置するよう第 3モー夕 4 0が運転された後、 第 3モー夕 4 0は回転を 停止し、 第 3構造体 4 4は第 2構造体 3 4に対して固定されている。 こ の状態で、 第 1モ一夕 2 0による駆動のみで第 1構造体 2 4、 第 2構造 体 3 4、 第 3構造体 4 4がすべて一体となって上昇する。 したがって、 種結晶 2と爪部 1 3は完全に同一の速度にて上昇することとなる。
なお、 上記実施形態では、 検出回路あるいはセンサを把持アームの接 続されるシリンダ 5 0あるいは爪部 1 3を含む部分に設けたが、 種結晶 昇降機構を構成するシャフ ト 1側に設けたり、 さらに、 把持アーム 1 2 の爪部 1 3が径拡大部 5に接触する位置関係にあることを、 非接触型の センサである、 光センサや、 撮像装置と画像処理装置を組み合わせた装 置などで検出して、 把持アーム 1 2の駆動タイ ミングを決定するように してもよい。
次に図 6により本発明の単結晶引上げ装置の第 2実施の形態について 説明する。 第 2実施の形態は第 1実施の形態の変形例であり、 単結晶の 径拡大部 5を把持するアームの構成及びその開閉機構が第 1の実施の形 態と異なる。 また、 シャフ ト 1の回転機構、 アームの回転機構も第 1の 実施の形態とは異なる。 これらの異なる点を中心に説明する。 モ一夕 2 0はメカニカルチャンバ 1 8に載置され、 ネジ付きロッ ド 2 2を回転さ せて第 1構造体 2 4を上下動させる点は第 1実施の形態と同様である。 引上げシャフ ト 1は第 1構造体 2 4に回動可能に取り付けられ、 モー夕 2 8 Aの動力をベルト 2 8 Bを介してプーリ 2 8 Cに伝達して、 シャフ ト 1が回転する構成となっている。 第 1構造体 2 4には下方に伸長する ネジ付き口、ソ ド 3 2が回転可能に保持され、 第 2構造体 3 4に取り付け られたモータ 3 0により回転することにより、 第 1実施の形態と同様に 第 2構造体 3 4が第 1構造体 2 4に対して上下動する。 第 2構造体 3 4 にはシリンダ 3 3が回転可能に取り付けられていて、 第 2構造体に載置 されたモー夕 3 1からの動力をベルト 3 1 Bを介して受けることにより、 シリンダ 3 3が回転する。 モ一夕 2 8 Aとモ一夕 3 1は図示省略の同期 制御装置により制御され、 シャフ ト 1 とシリンダ 3 3が同期回転する。
シリンダ 3 3の内部には、 シャフ ト 1に対してその半径方向に移動可 能な複数の把持アーム 3 5が保持されている。 把持アーム 3 3は第 1の 実施の形態における把持アーム 1 2に対応するものであり、 その下方先 端の爪部 1 3が閉じたとき径拡大部 5を把持するものである。 また、 把 持アーム 3 5は図 6では 2本であるが、必要により増加することができ、 また爪部を広くすることも第 1の実施の形態と同様に可能である。 把持 アーム 3 5はその上部ある図示省略の駆動機構としてのエア一シリンダ 又は油圧シリンダなどに圧力ガスあるいは圧力液体を供給することによ り、 開閉する。
次に図 7により本発明の単結晶引上げ装置の第 3実施の形態について 説明する。 第 3実施の形態は第 1実施の形態の変形例であり、 単結晶の 径拡大部 5を保持する構成などが第 1の実施の形態と異なる。 これらの 異なる点を中心に説明する。 モー夕 2 0はメカニカルチャンバ 1 8に載 置され、 ネジ付きロッ ド 2 2を回転させて第 1構造体 2 4を上下動させ る点は第 1実施の形態と同様である。 引上げシャフ ト 1は第 1構造体 2 4に回動可能に取り付けられ、 第 1構造体 2 4に載置されたモ一夕 2 8 によりシャフ ト 1が回転する構成となっている。 第 1構造体 2 4の下方 には、 シャフ ト 1に固定されて、 シャフ ト 1 と共に回転する回転基板 3 4 Aが設けられている。 この回転基板 3 4 Aは第 1の実施の形態におけ る第 2構造体 3 4に対応するとも考えられるが、 第 1構造体 2 4に対し ては常に上下方向位置は一定である点で異なっている。
回転基板 3 4 Aにはモー夕 3 0が載置され、 ネジ付き口ッ ド 3 2を回 転させる構成となっている。 ネジ付き口ッ ド 3 2は回転基板 3 4 Aに対 して上下方向に移動可能であり、 かつ回転可能に保持された支持体シャ フ ト 7 2に回転可能に保持された雌ネジ部 3 6に螺合している。 したが つて、 回転基板 3 4 Aに取り付けられたモ一夕 3 0が回転することによ り、 支持体シャフ ト 7 2が回転基板 3 4 A並びに第 1構造体 2 4に対し て上下動する。
支持体シャフ ト 7 2はメカニカルチャンバ 1 8の上部にベアリング 8 2を介して回転可能に取り付けられている回転テーブル 8 0を介してメ 力二カルチヤンバ 1 8の内部に伸長していて、 その下端には皿状部材で ある支持体 7 0が取り付けられている。 図 8は図 7中の B— B ' での断 面図である。 支持体 7 0は図 8に示すように中央に貫通孔 7 3が設けら れ、 この貫通孔 7 3は貫通するスリ ッ ト 7 4を介して外周部と連通して いる。 支持体シャフ ト 7 2はモー夕支持部 4 1に取り付けられたモー夕 4 0により約 9 0度にわたって回転可能であり、 よって、 支持体 7 0は 図 8に実線で示す非保持位置から点線で示す保持位置までの間を回転し て移動できる。 スリ ッ ト 7 4は予定される径拡大部 5の下方の単結晶の 径より大きく設計され、 スリ ッ ト 7 4を介して支持体 7 0が径拡大部 5 の下方に入り込むことができる。
図 7において、 回転基板 3 4 Aにはバランスウェイ ト 9 0が、 その調 整ネジ 8 2 と共に設けられ、 また、 回転テーブル 8 0にはシール部材 8 4、 8 6、 8 8が設けられている。 また、 引上げシャフ ト 1には第 1実 施の形態同様、 緩衝装置 6 0が設けられている。
図 7の第 3実施の形態は次のように動作する。第 1の実施の形態同様、 引上げの準備が完了すると、 まず、 第 1モー夕 2 0を運転して、 第 1構 造体 2 4を下降させ、 よってシャフ ト 1を図中下方に引き下げて種結晶 3を石英るつぼ 1 0内の S i融液 1 1の表面に対して浸漬させてなじま せる。 このとき、 支持体 7 0は先端が S i融液 1 1に接触しない位置に 待機し、 また、 支持体 7 0は、 引上げ中の径拡大部 5に接触しないよう に図 8の実線の非支持位置にある。
次いで所定時間経過後に第 1モー夕 2 0を先程とは逆回転させて、 第 1構造体 2 4を上昇させ、 種結晶 3を比較的速い速度で上方に引き上げ ることにより、 種結晶 3の下に直径が 3 ~ 4 mmの小径のネック部 4を 形成させ、 次いで引上げ速度を比較的遅く してネック部 4の下に支持用 の径拡大部 5を形成した後、 引上げ速度を比較的速く して、 径拡大部 5 の下にくびれ部 6を形成させ、 次いで結晶本体部分 7の形成を開始させ る o
次いでモー夕 3 0を回転させて支持体 7 0が径拡大部 5の下方に位置 する高さとする。 その後、 モ一夕 4 0を回転させて、 支持体シャフ ト 7 2を図 8の点線の位置まで回転させ、 支持体 7 0が径拡大部 5の真下に 位置するようにする。 次にモー夕 3 0を更に回転させて支持体 7 0を上 昇させ、 引上げシャフ ト 1の上昇速度より速い速度とする。 こうして支 持体 7 0が径拡大部 5の下端を保持すると、 モー夕 3 0を停止する。 そ の後は、 モー夕 2 0により第 1構造体 2 4と回転基板 3 4 Aがー体とな つて上昇するので、 種結晶 2 と支持体 7 0は完全に同一の速度にて上昇 することとなる。
次に図 9により本発明の単結晶引上げ装置の第 4実施の形態について 説明する。 第 4実施の形態は第 3実施の形態の変形例であり、 第 3実施 の形態における回転基板 3 4 Aと回転テーブル 8 0を一体化し、 メカ二 カルチャンバ 1 8の代りに上下方向に伸縮自在なベロ一チャンバ 1 8 A を用いた点などが第 3の実施の形態と異なる。 これらの異なる点を中心 に説明する。 モータ 2 0は図示省略の静止部材に載置され、 ネジ付き口 ッ ド 2 2を回転させて第 1構造体 2 4を上下動させる点は第 1実施の形 態とほぼ同様である。 但し、 第 1構造体 2 4は主として 3つの部材 2 4 A、 2 4 B、 2 4 Cからなり、 ネジ部 2 6を 2つ有する、 L字状部 2 4 A複数の固定シャフ ト 2 4 Bを介して基板 2 4 Cに接続されている。 引 上げシャフ ト 1は第 1構造体 2 4の基板 2 4 Cに回動可能に取り付けら れ、 基板 2 4 Cに載置されたモータ 2 8によりシャフ ト 1が回転する構 成となっている。 基板 2 4 Cの下方には、 シャフ ト 1 と一体的に接続さ れて、 シャフ ト 1 と共に回転する回転テーブル 8 0 (第 3の実施の形態 の回転基板 3 4 Aと回転テーブル 8 0を兼用したもの) が設けられてい る。 この回転テーブル 8 0は、 第 1構造体 2 4に対しては常に上下方向 位置は一定である。
回転テーブル 8 0にはモー夕 3 0が載置され、 ネジ付き口ヅ ド 3 2を 回転させる構成となっている。 ネジ付き口ッ ド 3 2は回転テ一ブル 8 0 に対して上下方向に移動可能であり、 かつ回転可能に保持された支持体 シャフ ト 7 2に回転可能に保持された雌ネジ部 3 6に螺合している。 し たがって、 回転テーブル 8 0に取り付けられたモ一夕 3 0が回転するこ とにより、 支持体シャフ ト 7 2が回転テーブル 8 0並びに第 1構造体 2 4に対して上下動する。 回転テーブル 8 0は第 1構造体 2 4の L字部材 2 4 Aの上部にベアリング 8 を介して回転可能に取り付けられている。 支持体シャフ ト 7 2は回転テーブル 8 0を介してべローチヤンバ 1 8 Aの内部に伸長していて、 その下端には皿状部材である支持体 7 0が取 り付けられている。 支持体 7 0の構成は第 3実施の形態と同一であり、 説明は省略する。
モー夕 4 0により支持体シャフ ト Ί 2が図 8の矢印で示すように回転 することにより支持体 7 0が径拡大部 5の下方に入り込むことができる。 図 9において、 回転テーブル 8 0にはバランスウェイ ト 9 0が、 その調 整ネジ 8 2 と共に設けられ、 また、 シ一ル部材 8 4、 8 6、 8 8が第 3 実施の形態と同様に設けられている。 また、 引上げシャフ ト 1には第 1 実施の形態同様、 緩衝装置 6 0が設けられている。
図 9の第 4実施の形態は次のように動作する。第 3の実施の形態同様、 引上げの準備が完了すると、 まず、 第 1モー夕 2 0を運転して、 第 1構 造体 2 4を下降させ、 よってシャフ ト 1を図中下方に引き下げて種結晶 3を石英るつぼ 1 0内の S i融液 1 1の表面に対して浸漬させてなじま せる。 このとき、 支持体 7 0は先端が S i融液 1 1に接触しない位置に 待機し、 また、 支持体 7 0は、 引上げ中の径拡大部 5に接触しないよう に図 8の実線の非支持位置にある。 次いで所定時間経過後に第 1モー夕 2 0を先程とは逆回転させて、 第 1構造体 2 4を上昇させ、 種結晶 3を比較的速い速度で上方に引き上げ ることにより、 種結晶 3の下に直径が 3〜 4 m mの小径のネック部 4を 形成させ、 次いで引上げ速度を比較的遅く してネック部 4の下に支持用 の径拡大部 5を形成した後、 引上げ速度を比較的速く して、 径拡大部 5 の下にくびれ部 6を形成させ、 次いで結晶本体部分 7の形成を開始させ る o
次いでモ一夕 3 0を回転させて支持体 7 0が径拡大部 5の下方に位置 する高さとする。 その後、 モータ 4 0を回転させて、 支持体シャフ ト 7 2を図 8の点線の位置まで回転させ、 支持体 7 0が径拡大部 5の真下に 位置するようにする。 次にモー夕 3 0を更に回転させて支持体 7 0を上 昇させ、 引上げシャフ ト 1の上昇速度より速い速度とする。 こう して支 持体 7 0が径拡大部 5の下端を保持すると、 モータ 3 0を停止する。 そ の後は、 モー夕 2 0により第 1構造体 2 4と回転基板 3 4 Aがー体とな つて上昇するので、 種結晶 2 と支持体 7 0は完全に同一の速度にて上昇 することとなる。 第 4実施の形態は、 ベローチャンバ 1 8 Aを用いるこ とにより、 第 3実施の形態の回転基板 3 4 Aと回転テーブル 8 0を兼用 することを可能としており、 よって、 単結晶引上げ装置全体の高さを第 3実施の形態に比較して少ない寸法に抑えることができる。
図 1 0は本発明に係る単結晶引上げ装置の第 5実施形態及びその引上 げ工程を示す説明図である。 図 1 0において、 引上げシャフ ト 1の先端 には種結晶ホルダ 2が取り付けられ、 種結晶ホルダ 2には種結晶 3が取 り付けられる。 引上げシャフ ト 1は成長させる単結晶 7と石英ルヅボ 1 0を格納する真空室を構成し、 かつ静止部分であるメカニカルチャンバ 1 8に対して上下動可能な円板状の第 1構造体 2 4に設けられたモー夕 2 8により回転可能に配されている。 すなわち、 モ一夕 2 8は図示省略 のプーリ、 ベルト 2 6、 引上げシャフ ト 1に取り付けられたプーリ 2 7 を介して引上げシャフ ト 1を回転させる構造となっている。 この引上げ シャフ ト 1は、 いわゆる無転位化のための引上げを行うもので、 無転位 化軸ともいわれる。 第 1構造体 2 4は雌ネジが内部に設けられている図 示省略のネジ部 (ナッ ト部) を有し、 このネジ部はメカニカルチャンバ 1 8に取り付けられている第 1モ一夕 2 0により回転する雄ネジ付き口 ッ ド 2 2 A (ボールネジ) と螺合している。 したがって、 第 1モー夕 2 0の回転により、 第 1構造体 2 4及び、 これに取り付けられているモー 夕 2 8とシャフ ト 1は石英ルツボ 1 0に対して上下に移動可能である。 なお、 引上げシャフ ト 1は第 1構造体 2 4に対してベアリング 2 4 Bを 介して回転可能に支持されている。
第 1構造体 2 4には雄ネジ付きロッ ド 3 2 A (ボールネジ) とガイ ド ロッ ド 3 2 Bの上端が固定されていて、 雄ネジ付き口ッ ド 3 2 Aは円板 状第 2構造体 3 4に設けられている雌ネジが内部に設けられている図示 省略のネジ部に螺合している。 雄ネジ付き口ッ ド 3 2 Aは第 2構造体 3 4に設けられている第 2モ一夕 3 0により回転可能であり、 その回転に より、第 2構造体 3 4は第 1構造体 2 4に対して上下に移動可能である。 さらに、 第 2構造体 3 4には圧縮ガス導入部 3 6が設けられている。 圧 縮ガス導入部 3 6はベアリング 3 6 Bを介して引上げシャフ ト 1の外周 に接していて、図示省略のポンプから供給される圧縮ガスを受け入れる。 また、 第 2構造体 3 4はべァリング 3 4 Bを介して引上げシャフ ト 1の 周囲に同軸で配されているシリンダ 5 0の外周に接している。 雄ネジ付 きロッ ド 3 2 Aとガイ ドロッ ド 3 2 Bは、 それそれ第 2構造体 3 4から 下方に伸長して、 それらの下端は第 3構造体 4 0に固定されている。 ま た、 第 3構造体 4 0はシリンダ 5 0の外周に対してべァリング 4 0 Bを 介して接している。 したがって、 シリンダ 5 0は第 2構造体 3 4と第 3 構造体 4 0に対して回転可能である。 第 3構造体 4 0には、 それ自体を 補強し、かつべァリング 4 0 Bを保持する環状板 4 2が設けられている。 図 1 1は、 図 1 0中の線 I I— I I ' での断面図である。 シリンダ 5 0は二重構造であり、 圧縮ガス導入部 3 6から導入される圧縮ガスを導 く環状通路 5 0 Pを有している。 すなわち、 シリンダ 5 0は内シリンダ 5 0 Bと外シリンダ 5 0 Aを有し、 これらは、 引上げシャフ ト 1に同軸 に配されている。 また、 引上げシャフ ト 1の外周には軸方向に伸長する 突起 1 Aが設けられ、 一方、 内シリンダ 5 0 Bの内周部には、 この突起 1 Aを受入れる凹部 5 0 Cが設けられている。 よって、 引上げシャフ ト 1の回転により、 シリンダ 5 0は同期回転可能である。 シリンダ 5 0の 下端からは引上げシャフ ト 1が露出している。 また、 シリンダ 5 0の下 端近傍には、 下方に伸長する 2本のアーム 1 2 A、 1 2 Bが取り付けら れている。 シリンダ 5 0はボールベアリング 1 8 Bを介してメカニカル チャンバ 1 8に対して回動可能とされ、 かつシール部材 5 9にてメカ二 カルチャンバ 1 8の内部は真空あるいは不活性ガスが気密に保たれる。 なお、 引上げシャフ ト 1 とシリンダ 5 0の間の空間もすベて図示省略の シール部材により気密に保たれる。
把持アーム 1 2 A、 1 2 Bの下端は、 それそれ L字の形状となって、 その先端には径拡大部 5の側面を把持するエアシリンダ 1 4 A、 1 4 B が取り付けられている。 図 1 0では 2つのエアシリンダ 1 4 A、 1 4 B が示されているが、 図 1 2に示すように把持アーム 1 2 A、 1 2 Bの下 端に取り付けられたリング状部材 1 6に放射状に 4つのエアシリンダ 1 4 A〜 1 4 Dを設けることができる。 なお、 複数のエアシリンダ 1 4 A 〜 1 4 Dをリング状部材 1 6により放射方向に配置して固定することに より、各エアシリンダ 1 4 A〜 1 4 Dのビス トン 5 2の軸は放射方向(半 径方向) に配置され、 かつ水平方向 (単結晶の引き上げ方向に垂直な方 向) に配置されることとなる。 かかるリング状部材 1 6を用いることに より、 ピス トン 5 2による水平方向の反作用が補償される。
把持アームは図 1 0では 2つが示されているが、 必要に応じて 3個以 上設けることができる。 メカニカルチャンバ 1 8の上部に配されている 各機構ゃ部材はすべて、 真空チャンバ外であり、 よって、 可動部の運動 による真空チャンバ (メカニカルチャンバ) 1 8内への粉塵の影響を極 めて少なくすることができる。
図 1 3はエアシリンダ 1 4 Bの構造を示す模式的断面図である。 エア シリンダ 1 4 Bは固定支持部 5 3に対して垂直に移動可能なビス トン 5 2を有し、 ピス トン 5 2の先端にはヘッ ド 5 6が取り付けられ、 保持部 の外縁部とへッ ド 5 6の外縁部はべローズ 5 4により接続されてピス ト ン室 5 7が画定されている。ベロ一ズ 5 4は、 それ自体の収縮力により、 ガス圧がビス トン室 5 7に加わらない状態では、 縮んだ状態である。 へ ッ ド 5 6の先端には径拡大部 5の側面に接触可能な接触部材 5 8が取り 付けられている。固定支持部 5 3にはシリンダ 5 0の環状通路 5 0 Pと、 把持アーム 1 2 A、 1 2 Bの図示省略の内部空間を通って供給される圧 縮ガスをビス トン室 5 7に導く連通孔 5 5が設けられている。 なお、 径 拡大部 5に体して開閉するのは、 複数の接触部材 5 8であって、 把持ァ ーム 1 2 A、 1 2 B自体は径拡大部 5半径方向に移動するものではない。 次に図 1 0の単結晶引上げ装置の動作について説明する。 単結晶本体 7を製造する場合、 メカニカルチャンバ 1 8内を 1 0 torr 程度に減圧 して新鮮な A r (アルゴン) ガスを流すとともに、 メカニカルチャンバ 1 8内の下方に設けられた石英ルツボ 1 0内の多結晶を加熱して溶融す る。 引上げの準備が完了すると、 まず、 第 1モー夕 2 0を運転して、 第 1構造体 2 4を下降させ、 よって無転位化軸である引上げシャフ ト 1を 図中下方に引き下げて種結晶 3を石英るつぼ 1 0内の S i融液 1 1の表 面に対して浸潰させてなじませる。 このとき、 把持アーム 1 2 A、 1 2 Bは先端のエアシリンダ 1 4 A〜 1 4 Dが S i融液 1 1に接触しない位 置に待機し、 また、 エアシリンダ 1 4 A〜 1 4 Dの接触部材 5 8は、 弓 I 上げ中の径拡大部 5に接触しないように開いている (図 1 0は閉じた状 態を示している)。 次いで所定時間経過後に第 1モー夕 2 0を先程と は逆回転させて、 第 1構造体 2 4を上昇させ、 種結晶 3を比較的速い速 度で上方に引き上げることにより、 種結晶 3の下に直径が 3〜4 m mの 小径のネック部 (ダッシュネック) 4を形成させる。 次いで引上げ速度 を比較的遅く してネック部 4の下に支持用の径拡大部 5を所定長さにわ たって形成した後、 引上げ速度を比較的遅く して、 径拡大部 5の下に単 結晶本体部分 7の形成を開始させる。
前述の径拡大部 5の側面を把持するためのエアシリンダ 1 4 A〜 1 4 Dに圧縮ガス導入部 3 6、 シリンダ 5 0の環状通路 5 0 P、 把持アーム 1 2 A、 1 2 B内にある図示省略の通路を介して圧縮ガスを供給するこ とにより、 接触部材 5 8が径拡大部 5の側面を放射方向の 4方向から挟 み込むように把持する。 接触部材 5 8が径拡大部 5の側面を把持するの は、 引上げシャフ ト 1にかかる単結晶 7の荷重が 1 0 0 k g程度となつ たときである。 把持アーム 1 2 A、 1 2 Bがシリンダ 5 0により回転す ることにより、 エアシリンダ 1 4 A〜 1 4 Dは径拡大部 5 と共に回転す る。 また、 把持アーム 1 2 A、 1 2 Bは、 把持状態で径拡大部 5を引き 上げるために第 2構造体 3 4により上下移動可能に構成されている。 上記エアシリンダ 1 4 A〜 1 4 Dによる径拡大部 5の側面の把持につ いて詳しく説明する。 引上げシャフ ト 1の引上げにより径拡大部 5が所 定の高さまで上昇すると、 エアシリンダ 1 4 A〜 1 4 Dの接触部材 5 8 が径拡大部 5の側面に位置するように、 第 2モー夕 3 0を運転して第 2 構造体 3 4を下降させて所定位置で第 2モー夕 3 0を停止する。次いで、 径拡大部 5の側面を把持するためのエアシリンダ 1 4 A〜 1 4 Dに圧縮 ガスを供給することにより、 ピス トン 5 2が移動して、 ベローズ 5 4が 伸び、 接触部材 5 8が径拡大部 5の側面を放射方向の 4方向から挟み込 むように把持する。 その結果、 接触部材 5 8は径拡大部 5の側面を 4方 向から挟み込んだ状態となる。 ガス圧が所定となると、 図示省略のバル ブが閉じ、 加圧状態、 すなわち把持状態が維持される。 この状態で第 1 モー夕 2 0を運転し、 第 1構造体 2 4、 第 2構造体 3 4を一体的に引き 上げることにより、 引上げシャフ ト 1 と接触部材 5 8を同期して引き上 -げる。 この段階で、 結晶本体部分 7がこの把持による振動などにより多 結晶化しないように、 把持後の単結晶荷重の移動をスムーズかつソフ ト に実行する必要がある。 なお、 パネなどで構成される図示省略の緩衝装 置を引上げシャフ ト 1の途中に設けることは、 この移動が衝撃を伴わず に行われるので好ましい。
上記説明からわかるように、 エアシリンダ 1 4 A〜 1 4 Dの駆動によ り径拡大部 5が把持された状態では、 第 2モー夕 3 0は停止し、 第 2構 造体 3 4は第 1構造体 2 4に対して固定される。 この状態で、 第 1モー 夕 2 0による駆動のみで第 1構造体 2 4と第 2構造体 3 4がー体となつ て上昇する。 したがって、 種結晶 3と接触部材 5 8は完全に同一の速度 にて上昇することとなる。 第 1モー夕 2 0の速度制御は成長させる単結 晶 7の直径の観測ゃ融液 1 1の温度測定結果などを用いて自動制御する ことができる。 換言すれば、 本実施形態では無転位化軸である引上げシ ャフ ト 1 と径拡大部 5を把持する部材、 すなわちシリンダ 5 0、 接触部 材 5 8などが一体となって単一の駆動源、 すなわち第 1モー夕 2 0によ り引き上げられるので、 引上げ速度の制御は、 無転位化軸のみについて 行えばよく、 制御が簡単で、 かつ容易に単結晶の自重を移動させて、 無 転位化を実現することができる。 この機能は以下の実施形態にも共通で ある。 なお、 停電時などに、 ガス圧が低下して、 径拡大部 5の把持力が 弱まることは単結晶の落下事故につながる可能性があるので、 圧縮ガス の通路にバルブを設け、 一旦、 加圧状態、 すなわち、 図 1 3のピス トン 5 2が接触部材 5 8を閉じた状態となると、 このバルブが自動的に閉じ て、 所定値以上の把持力を継続する構成とすることが好ましい。
次に図 1 4により本発明の単結晶引上げ装置の第 6実施形態について 説明する。 第 6実施形態は第 5実施形態の変形例である。 図 1 4におい て、 引上げシャフ ト 1の先端には種結晶ホルダ 2が取り付けられ、 種結 晶ホルダ 2には種結晶 3が取り付けられている点などは第 5実施形態と 同様である。 シャフ ト 1は、 静止部分であるメカニカルチヤンバ 1 8に 対して上下動可能な第 1構造体 2 4に設けられたモー夕 2 8により回転 可能に配されている。 第 1構造体 2 4は雌ネジが内部に設けられている ネジ部 2 5 (ナッ ト部) を有し、 このネジ部 2 5はメカニカルチャンバ 1 8に取り付けられている第 1モー夕 2 0により回転する雄ネジ付き口 ッ ド 2 2と螺合している。 したがって、 第 1モー夕 2 0の回転により、 第 1構造体 2 4及び、 これに取り付けられているモータ 2 8とシャフ ト 1は石英ルツボ 1 0に対して上下に移動可能である。
第 1構造体 2 4には雄ネジ付き口ッ ド 3 2の下端が固定されていて、 雄ネジ付き口ッ ド 3 2は第 2構造体 3 4に設けられている雌ネジが内部 に設けられているネジ部 3 3に螺合している。 雄ネジ付き口ッ ド 3 2は 第 2構造体 3 4に取り付け部材 3 1により設けられている第 2モ一夕 3 0により回転可能であり、 その回転により、 第 2構造体 3 4は第 1構造 体 2 4に対して上下に移動可能である。 さらに、 第 2構造体 3 4は下方 に伸長する伸長部 3 5 と、 伸長部 3 5の下端から水平に伸長する板部 3 7を有し、 これらは第 2構造体 3 4と一体となって上下動するものであ る。 板部 3 7の上面にはシリンダ 5 0のフランジ 5 0 Fがベアリング 3 7 Bを介して回動可能に支持されている。 シリンダ 5 0は、 上記フラン ジ 5 0 Fを除き、 第 5実施形態のシリンダ 5 0と同様、 圧縮ガスを導く 二重構造となっていて、 引上げシャフ ト 1に同軸に配されている。 また、 シリンダ 5 0は第 5実施形態同様、 図 1 1の構造により引上げシャフ ト 1の回転に同期して回転する。 シリンダ 5 0の下方には、 第 5実施形態 同様、 把持アーム 1 2 A、 1 2 Bと、 その先端に取り付けられたエアシ リンダ 1 4 A〜 1 4 Dが設けられている。
シリンダ 5 0は図示省略のボールベアリングを介してメ力二カルチヤ ンバ 1 8に対して回動可能とされ、 かつシール部材 5 9にてメカニカル チャンバ 1 8の内部は真空あるいは不活性ガスが気密に保たれる。なお、 シャフ ト 1 とシリンダ 5 0の間の空間もすベて図示省略のシール部材に より気密に保たれる。
次に図 1 4の単結晶引上げ装置の動作について第 1の実施形態と異な る点を中心に説明する。 メカニカルチャンバ 1 8内の下方に設けられた 石英ルツボ 1 0内の多結晶を加熱して溶融し、 引上げの準備が完了する と、 まず、 第 1モー夕 2 0を運転して、 第 1構造体 2 4を下降させ、 よ つて引上げシャフ ト 1を図中下方に引き下げて種結晶 3を石英るつぼ 1 0内の S i融液 1 1の表面に対して浸潰させてなじませる。 このとき、 アーム 1 2 A、 1 2 Bは先端のエアシリンダ 1 4 A〜 1 4 Dが S i融液 1 1に接触しない位置に待機し、 また、エアシリンダ 1 4 A〜 1 4 Dは、 引上げ中の径拡大部 5に接触しないように開いている (図 1 4の状態)。 次いで所定時間経過後に第 1モータ 2 0を先程とは逆回転させて、 第 1構造体 2 4を上昇させ、 種結晶 3を比較的速い速度で上方に引き上げ ることにより、 種結晶 3の下に直径が 3〜4 m mの小径のネック部 4を 形成させ、 次いで引上げ速度を比較的遅く してネック部 4の下に支持用 の径拡大部 5を所定長にわたって形成した後、 引上げ速度を比較的遅く て、 結晶本体部分 7の形成を開始させる。
径拡大部 5が所定の高さまで上昇すると、 エアシリンダ 1 4 A〜 1 4 Dの接触部材把持アーム 5 8が径拡大部 5の側面近傍に位置するように、 第 2モー夕 3 0を運転して第 2構造体 3 4を下降させて所定位置で第 2 モー夕 3 0を停止する。 次いで、 ポンプ 6 2を運転して圧縮ガスをエア シリンダ 1 4 A〜 1 4 Dに送り込み、 接触部材 5 8が閉じて径拡大部 5 を側面から保持するようにする。 図 1 4中、 ポンプ 6 2から圧縮ガスは バルブ 6 4と配管 6 6を介してシリンダ 5 0のガス通路 5 0 Pに導かれ る。 この状態で接触部材 5 8は径拡大部 5を把持している。 その後、 第 1モー夕 2 0を回転させることにより、 第 1構造体 2 4と第 2構造体 3 4は一体的に上昇し、 よって引上げシャフ ト 1 と接触部材 5 8は同期し て上昇する。 なお、 バルブ 6 4は第 5実施形態で説明したように自動的 に閉じることにより圧力を維持するものである。
次に図 1 5により本発明の単結晶引上げ装置の第 7実施形態について 説明する。 第 7実施形態は第 6実施形態の変形例である。 図 1 5におい て、 引上げシャフ ト 1の先端には種結晶ホルダ 2が取り付けられ、 種結 晶ホルダ 2には種結晶 3が取り付けられている点などは第 6実施形態と 同様である。 シャフ ト 1は、 静止部分であるメカニカルチャンバ 1 8に 対して上下動可能な第 1構造体 2 4に設けられたモー夕 2 8により回転 可能に配されている。 第 1構造体 2 4は雌ネジが内部に設けられている ネジ部 2 4 A (ナッ ト部) を有し、 このネジ部 2 4 Aはメカニカルチヤ ンバ 1 8に取り付けられている第 1モ一夕 2 0により回転する雄ネジ付 きロッ ド 2 2 Aと螺合している。 したがって、 第 1モー夕 2 0の回転に より、 第 1構造体 2 4及び、 これに取り付けられているモー夕 2 8とシ ャフ ト 1は石英ルツボ 1 0に対して上下に移動可能である。 2 2 Bはガ イ ドロッ ドであり、 スライダ 2 4 Bを介して摺動可能に第 1構造体 2 4 に取り付けられている。
第 1構造体 2 4から引上げシャフ ト 1が下方に伸長しているが、 引上 げシャフ ト 1の外周には第 2構造体 3 4が固定されている。 第 2構造体 3 4は雄ネジ付き口ッ ド 3 2を回転させる第 2モー夕 3 0が取り付けら れている。 また、 結晶保持部シャフ ト 6 0がスライダ 3 8を介して摺動 可能に第 2構造体 3 4に支持されている。 結晶支持シャフ ト 6 0には雄 ネジ付きロッ ド 3 2に螺合するナツ ト部材 3 2 Aが固定されている。 第 2構造体 3 4にはバランスウェイ ト 4 4が支持台 4 2、 バランスウェイ ト位置調整部材 4 3を介して第 2構造体 3 4に取り付けられている。 引上げシャフ ト 1 と結晶支持シャフ ト 6 0は平行に配され、 回転板 4 6を貫通してメカニカルチヤンバ 1 8内へ伸長している。 回転板 4 6は ベアリング 4 6 Bを介してメカニカルチャンバ 1 8の上に回転可能に支 持されている。 1 8 S、 4 6 S、 6 0 Sはそれそれシール部材である。 結晶支持シャフ ト 6 0の下端には複数のエアシリンダ 1 4 A、 1 4 Bが 取り付けられている。 これらのエアシリンダ 1 4 A、 1 4 Bの構造は、 本質的に第 1及び第 6実施形態のものと同様であり、 図 1 2に示すよう に放射状に配された 4つのエアシリンダ 1 4 A ~ 1 4 Dが設けられてい る。 第 7実施形態では、 結晶支持シャフ ト 6 0が引上げシャフ ト 1 とは 同軸ではなく、 引上げシャフ ト 1の周囲を回転するものであり、 また結 晶支持シャフ ト 6 0が中空構造で、 その中空部が圧縮空気流路 6 0 Cを 形成し、 この圧縮空気流路 6 0 Cが各エアシリンダ 1 4 A、 1 4 Bに圧 縮空気を供給する構造となっている。 なお、 結晶支持シャフ ト 6 0は第 2構造体 3 4と共に、すなわち引上げシャフ ト 1 とともに回転するので、 各エアシリンダ 1 4 A、 1 4 Bの先端の接触部材 5 8は径拡大部 5 と同 期回転することとなる。
次に図 1 5の単結晶引上げ装置の動作について第 2の実施形態と異な る点を中心に説明する。 メカニカルチャンバ 1 8内の下方に設けられた 石英ルツボ 1 0内の多結晶を加熱して溶融し、 引上げの準備が完了する と、 まず、 第 1モー夕 2 0を運転して、 第 1構造体 2 4を下降させ、 よ つてシャフ ト 1を図中下方に引き下げて種結晶 3を石英るつぼ 1 0内の S i融液 1 1の表面に対して浸潰させてなじませる。 このとき、 結晶支 持シャフ ト 6 0はエアシリンダ 1 4 A〜 1 4 Dが S i融液 1 1に接触し ない位置に待機し、 また、 接触部材 5 8は、 引上げ中の径拡大部 5に接 触しないように開いている。
次いで所定時間経過後に第 1モ一夕 2 0を先程とは逆回転させて、 第 1構造体 2 4を上昇させ、 種結晶 3を比較的速い速度で上方に引き上げ ることにより、 種結晶 3の下に直径が 3〜 4 mmの小径のネック部 4を 形成させる。 次いで引上げ速度を比較的遅く してネック部 4の下に支持 用の径拡大部 5を所定長にわたって形成した後、 引上げ速度を比較的遅 くて、 結晶本体部分 7の形成を開始させる。 径拡大部 5が所定の高さ まで上昇すると、 エアシリンダ 1 4 A〜 1 4 Dの接触部材把持アーム 5 8が径拡大部 5の側面近傍に位置するように、 第 2モー夕 3 0を運転し て第 2構造体 3 4を下降させて、所定位置で第 2モータ 3 0を停止する。 次いで、 圧縮ガスをエアシリンダ 1 4 A〜 1 4 Dに送り込み、 接触部材 5 8が閉じて径拡大部 5を側面から保持するようにする。 この状態で接 触部材 5 8は径拡大部 5を把持している。 その後、 第 1モ一夕 2 0を回 転させることにより、 第 1構造体 2 4と第 2構造体 3 4は一体的に上昇 し、 よって引上げシャフ ト 1 と接触部材 5 8は同期して上昇する。
上記第 5ないし第 7実施形態において、 第 2構造体 3 4を下降させる タイ ミングゃエアシリンダ 1 4 A〜 1 4 Dを作動させるタイ ミングの決 定は、 目視によることもできるが、 例えば C C Dカメラなどで単結晶の 径を撮像し、 出力信号を画像処理することによりこれらのタイ ミングを 決定して自動的に制御することが可能である。 あるいは、 かかる自動制 御にてタイ ミングを決定してから、 操作員による目視確認を併用するこ ともできる。 また、 接触部材 5 8が径拡大部 5に接触したことを光セン ザで検出したり、 あるいは、 エアシリンダ 1 4 A ~ 1 4 Dとこれに接続 された部材を電流経路として用いることにより、 径拡大部 5との接触を 検出することもできる。
上記第 5ないし第 7実施形態では、 エアシリンダを用いて単結晶の径 拡大部 5の側面を把持しているが、 空気以外のガスを用いることができ る。 また、 ガス圧駆動のみならず、 油圧駆動装置を用いても同様の効果 を得ることができる。 また、 上記第 5ないし第 7実施形態では、 引上げ シャフ ト 1 と接触部材 5 8が同期回転するための構成が示されているが、 これらに限らず、 ギヤやベルトとプーリなどを組み合わせたものを用い ることもできる。 産業上の利用可能性
以上説明したように本発明によれば、 種結晶の下に形成される単結晶 の径拡大部を把持あるいは支持する機構が一端径拡大部を把持あるいは 支持した後は、 種結晶の引上げのための動力を径拡大部を把持あるいは 支持する機構に伝達し、 単一の引上げ駆動源により、 種結晶と径拡大部 を把持あるいは支持する機構を上昇させるようにしているので、 制御が 簡単であり、 かつ構成が複雑でなく低コス 卜で安定した引上げを実現す ることができる。 また、 引上げシャフ トに緩衝装置を設けることにより、 単結晶の自重の引上げシャフ 卜から把持あるいは支持機構への移動の際 スムーズかつソフ トな移動が可能となる。 また、 ベローチャンバを用い ることにより、 更に構成が簡単となり、 かつ単結晶引上げ装置全体の高 さを低く抑えることができる。 また、 引上げ中の単結晶の径拡大部に把持部材が接触したこと、 ある いは接触するような位置関係にあることを検出回路やセンサにより検出 して、 くびれを把持することにより、 自動的に把持することができる。 よって、径拡大部の把持のタイ ミングの決定に人手を煩わすことがなく、 大径、 大重量の単結晶を安全 ·確実に引き上げることができる。
また本発明の他の態様によれば、 種結晶の下に形成される単結晶の径 拡大部の側面を把持する機構が一端径拡大部を把持した後は、 種結晶の 引上げのための動力を径拡大部を把持する機構に伝達し、 無転位化軸用 の単一の引上げ駆動源により、 種結晶と径拡大部を把持する機構を上昇 させるようにしているので、 制御が簡単であり、 単結晶の自重の移動が スムーズかつソフ トに行え、 かつ構成が複雑でなく低コス トで安定した 引上げを実現することができる。 また、 各駆動機構を真空チャンバの外 部に配置したので、 高温下の影響を受けることがなく、 かつ真空チャン バ内へのパーティクル混入の問題を回避することができる。 さらに、 引 上げシャフ トに緩衝装置を設けることにより、単結晶の自重の移動の際、 よりスムーズかつソフ トな移動が可能となる。

Claims

請 求 の 範 囲
1 . 溶融結晶を保持可能なルツボの上方で種結晶を支持する種結晶 ホルダを回転させる回転手段と、
前記種結晶ホルダを速度制御しつつ引き上げることにより前記種結晶 を引き上げる種結晶引上げ手段と、
前記種結晶ホルダと共に回転可能で、 かつ前記種結晶ホルダの上下方 向の移動に伴って上下方向に移動可能であって、 前記種結晶引上げ手段
、による引上げにより前記種結晶の下方に形成される径拡大部の下に形成 される単結晶のくびれ及び/又は前記径拡大部の下端を把持するために 先端が開閉可能な把持部材と、
前記把持部材を前記種結晶ホルダに対して上下方向に位置制御し、 か つ前記上下方向の位置制御中以外のときは、 前記種結晶引上げ手段の動 力を伝達することにより前記把持部材を前記種結晶ホルダと一体的に上 下動させる結晶保持位置制御手段と、
前記把持部材の先端を開閉させ、 前記把持部材の先端が閉じたとき前 記くびれ及び/又は前記径拡大部の下端を把持するよう前記径拡大部の 下方部分に前記把持部材の先端を移動させる把持部材開閉手段とを、 有し、 前記各手段の駆動機構が前記ルッボ及び成長させる単結晶を格 納する真空チャンバの外部に位置する単結晶引上げ装置。
2 . 溶融結晶を保持可能なルツボの上方で種結晶を支持する種結晶 ホルダに連結されたシャフ トと、
前記シャフ トを回転させる回転手段と、
前記シャフ トを速度制御しつつ引き上げることにより前記種結晶を引 き上げる種結晶引上げ手段と、 前記シャフ トと共に回転可能で、 かつ前記シャフ トの上下方向の移動 に伴って上下方向に移動可能であって、 前記種結晶引上げ手段による引 上げにより前記種結晶の下方に形成される径拡大部の下に形成される単 結晶のくびれ及び/又は前記径拡大部の下端を把持するために先端が開 閉可能な把持部材と、
前記把持部材を前記シャフ トに対して上下方向に位置制御し、 かつ前 記上下方向の位置制御中以外のときは、 前記種結晶引上げ手段の動力を 伝達することにより前記把持部材を前記シャフ トと一体的に上下動させ る結晶保持位置制御手段と、
前記把持部材の先端を開閉させ、 前記把持部材の先端が閉じたとき前 記くびれ及び/又は前記径拡大部の下端を把持するよう前記径拡大部の 下方部分に前記把持部材の先端を移動させる把持部材開閉手段とを、 有し、 前記各手段の駆動機構が前記ルツボ及び成長させる単結晶を格 納真空チャンバの外部に位置する単結晶引上げ装置。
3 . 前記種結晶引上げ手段が前記ルツボの上下方向位置に対して固 定された静止部分に対して上下方向に移動可能な第 1構造体と、 前記第 1構造体を前記静止部分に対して上下方向に駆動する第 1駆動部とを有 し、 かつ前記回転手段が前記第 1構造体に設けられている請求項 1又は 2記載の単結晶引上げ装置。
4 . 前記結晶保持位置制御手段が前記第 1構造体に対して上下方向 に移動可能な第 2構造体と、 前記第 2構造体を前記第 1構造体に対して 上下方向に駆動する第 2駆動部とを有し、 かつ前記把持部材が前記第 2 構造体に連結されている請求項 3記載の単結晶引上げ装置。
5 . 前記把持部材開閉手段が前記第 2構造体に対して上下方向に移 動可能な第 3構造体と、 前記第 3構造体を前記第 2構造体に対して上下 方向に駆動する第 3駆動部とを有し、 かつ前記把持部材を開閉駆動する リンク部が前記第 3構造体に連結されている請求項 4記載の単結晶引上 げ装置。
6 . 前記把持部材開閉手段がガス圧又は油圧により作動するもので ある請求項 1又は 2記載の単結晶引上げ装置。
7 . 溶融結晶を保持可能なルツボの上方で種結晶を支持する種結晶 ホルダを回転させる回転手段と、
前記種結晶ホルダを速度制御しつつ引き上げることにより前記種結晶 を引き上げる種結晶引上げ手段と、
前記種結晶ホルダと共に回転可能で、 かつ前記種結晶ホルダの上下方 向の移動に伴って上下方向に移動可能であって、 前記種結晶引上げ手段 による引上げにより前記種結晶の下方に形成される径拡大部の下に形成 される単結晶のくびれ及び/又は前記径拡大部の下端を下方から支持す るために、 前記くびれを通す貫通孔を有し、 かつ前記くびれを前記貫通 孔に導くために前記貫通孔を外周部と連通させるスリ ッ 卜が設けられた 支持台と、
前記支持台を前記種結晶ホルダの上下方向位置に対して上下方向に位 置制御し、 かつ位置制御中以外のときは、 前記種結晶引上げ手段の動力 を伝達することにより前記支持台を前記種結晶ホルダと一体的に上下動 させる結晶保持位置制御手段と、
前記支持台を前記くびれ及び/又は前記径拡大部の下端を支持しない 第 1の位置と前記くびれ及び/又は前記径拡大部の下端を支持する第 2 の位置との間で移動させる支持台移動手段とを、
有し、 前記各手段の駆動機構が前記ルツボ及び成長させる単結晶を格 納する真空チャンバの外部に位置する単結晶引上げ装置。
8 . 溶融結晶を保持可能なルツボの上方で種結晶を支持する種結晶 ホルダに連結されたシャフ トと、
前記シャフ トを回転させる回転手段と、
前記シャフ トを速度制御しつつ引き上げることにより前記種結晶を引 き上げる種結晶引上げ手段と、
前記シャフ トと共に回転可能で、 かつ前記シャフ 卜の上下方向の移動 に伴って上下方向に移動可能であって、 前記種結晶引上げ手段による引 上げにより前記種結晶の下方に形成される径拡大部の下に形成される単 結晶のくびれ及び/又は前記径拡大部の下端を下方から支持するために、 前記くびれを通す貫通孔を有し、 かつ前記くびれを前記貫通孔に導くた めに前記貫通孔を外周部と連通させるスリ ッ 卜が設けられた支持台と、 前記支持台を前記シャフ 卜の上下方向位置に対して上下方向に位置制 御し、 かつ位置制御中以外のときは、 前記種結晶引上げ手段の動力を伝 達することにより前記支持台を前記シャフ トと一体的に上下動させる結 晶保持位置制御手段と、
前記支持台を前記くびれ及び/又は前記径拡大部の下端を支持しない 第 1の位置と前記くびれ及び/又は前記径拡大部の下端を支持する第 2 の位置との間で移動させる支持台移動手段とを、
有し、 前記各手段の駆動機構が前記ルツボ及び成長させる単結晶を格 納する真空チャンバの外部に位置する単結晶引上げ装置。
9 . 前記種結晶ホルダに加わる荷重を前記シャフ 卜の下方から上方 へ伝達する際、 所定荷重を超えたときに伸長する緩衝装置が前記シャフ トの一部に設けられている請求項 2又は 8記載の単結晶引上げ装置。
1 0 . 前記所定荷重が結晶の重量で 1 5 0 k g未満である請求項 9 記載の単結晶引上げ装置。
1 1 . 前記緩衝装置が圧縮ゴム、 引張りゴム、 圧縮スプリング、 又 は引張りスプリングのいずれか 1つ以上を有する請求項 9記載の単結晶 引上げ装置。
1 2 . 前記種結晶引上げ手段が前記ルツボの上下方向位置に対して 固定された静止部分に対して上下方向に移動可能な第 1構造体と、 前記 第 1構造体を前記静止部分に対して上下方向に駆動する第 1駆動部とを 有し、 かつ前記回転手段が前記第 1構造体に設けられている請求項 7又 は 8記載の単結晶引上げ装置。
1 3 . 前記第 1構造体が前記ルツボの位置に対して上下動するとき、 前記ルツボ上方の室を伸縮可能に画定するべローズに連結されている請 求項 1 2記載の単結晶引上げ装置。
1 4 . 前記結晶保持位置制御手段が前記支持台を前記第 1構造体に 対して上下方向に駆動する第 2駆動部とを有している請求項 1 2記載の 単結晶引上げ装置。
1 5 . 前記支持台移動手段が、 前記支持台を水平方向に回転させる 手段を有する請求項 7又は 8記載の単結晶引上げ装置。
1 6 . 前記第 1構造体の一部にバランスウェイ トを配した請求項 7 又は 8記載の単結晶引上げ装置。
1 7 . 前記シャフ 卜の回転を前記把持部材及び前記把持部材閧閉手 段に伝達して、 これらを同期回転させる手段を更に有する請求項 2記載 の単結晶引上げ装置。
1 8 . 前記同期回転させる手段が前記シャフ ト及びこれと同軸に配 された部材との間に設けられた突起あるいは段差部により前記シャフ ト の回転を前記同軸に配された部材に伝達するものである請求項 1 7記載 の単結晶引上げ装置。
1 9 . 前記同期回転させる手段がギヤ又はベルトとプーリにより構 成されている請求項 1 7記載の単結晶引上げ装置。
2 0 . 前記同期回転させる手段が前記回転手段を構成するモータと、 前記前記把持部材及び前記把持部材開閉手段を回転させる他のモー夕と、 これらのモー夕を電気的に同期回転させるための同期制御手段とを有す る請求項 1 7記載の単結晶引上げ装置。
2 1 . 前記シャフ トの回転を前記支持台に伝達して、 同期回転させ る手段を更に有する請求項 8記載の単結晶引上げ装置。
2 2 . 前記同期回転させる手段が前記結晶保持位置制御手段を前記 シャフ トと一体に回転する部材に取り付ける手段である請求項 2 1記載 の単結晶引上げ装置。
2 3 . 前記把持部材の先端が前記単結晶に接触したことを電流路の 形成により電気的に検出する接触検出手段と、 前記接触検出手段の出力 信号に応じて前記把持部開閉手段を制御する制御手段とを更に有する請 求項 1又は 2記載の単結晶引上げ装置。
2 4 . 前記把持部材の先端に前記単結晶の荷重がかかったことを検 出する荷重検出手段と、 前記荷重検出手段の出力信号に応じて前記把持 部開閉手段を制御する制御手段とを更に有する請求項 1又は 2記載の単 結晶引上げ装置。
2 5 . 溶融結晶を保持可能なルツボの上方で種結晶を支持する種結 晶ホルダを回転させる回転手段と、
前記種結晶ホルダを速度制御しつつ引き上げることにより前記種結晶 を引き上げる種結晶引上げ手段と、
前記種結晶ホルダと共に回転可能で、 かつ前記種結晶ホルダの上下方 向の移動に伴って上下方向に移動可能であって、 前記種結晶引上げ手段 による引上げにより前記種結晶の下方でかつ、 直胴部の上に形成される —定の径を有する径拡大部の側面を把持するために先端が開閉可能な把 持部材と、
前記把持部材を前記種結晶ホルダに対して上下方向に位置制御し、 か つ前記上下方向の位置制御中以外のときは、 前記種結晶引上げ手段の動 力を伝達することにより前記把持部材を前記種結晶ホルダと一体的に上 下動させる結晶保持位置制御手段と、
前記把持部材の先端を開閉させ、 前記把持部材の先端が閉じたとき前 記径拡大部の側面を把持するよう前記径拡大部の側面に前記把持部材の 先端を移動させる把持部材開閉手段とを、
有し、 前記各手段の駆動機構が前記ルツボ及び成長させる単結晶を格 納する真空チャンバの外部に位置する単結晶引上げ装置。
2 6 . 溶融結晶を保持可能なルツボの上方で種結晶を支持する種結 晶ホルダに連結されたシャフ トと、
前記シャフ トを回転させる回転手段と、
前記シャフ トを速度制御しつつ引き上げることにより前記種結晶を引 き上げる種結晶引上げ手段と、
前記シャフ トと共に回転可能で、 かつ前記シャフ トの上下方向の移動 に伴って上下方向に移動可能であって、 前記種結晶引上げ手段による引 上げにより前記種結晶の下方でかつ、 直胴部の上に形成される一定の径 を有する怪拡大部の側面を把持するために先端が開閉可能な把持部材と、 前記把持部材を前記シャフ トに対して上下方向に位置制御し、 かつ前 記上下方向の位置制御中以外のときは、 前記種結晶引上げ手段の動力を 伝達することにより前記把持部材を前記シャフ トと一体的に上下動させ る結晶保持位置制御手段と、
前記把持部材の先端を開閉させ、 前記把持部材の先端が閉じたとき前 記径拡大部の側面を把持するよう前記径拡大部の側面に前記把持部材の 先端を移動させる把持部材開閉手段とを、
有し、 前記各手段の駆動機構が前記ルツボ及び成長させる単結晶を格 納真空チャンバの外部に位置する単結晶引上げ装置。
2 7 . 前記種結晶引上げ手段が前記ルツボの上下方向位置に対して 固定された静止部分に対して上下方向に移動可能な第 1構造体と、 前記 第 1構造体を前記静止部分に対して上下方向に駆動する第 1駆動部とを 有し、 かつ前記回転手段が前記第 1構造体に設けられている請求項 2 5 又は 2 6記載の単結晶引上げ装置。
2 8 . 前記結晶保持位置制御手段が前記第 1構造体に対して上下方 向に移動可能な第 2構造体と、 前記第 2構造体を前記第 1構造体に対し て上下方向に駆動する第 2駆動部とを有し、 かつ前記把持部材が前記第 2構造体に連結されている請求項 2 7記載の単結晶引上げ装置。
2 9 . 前記把持部材開閉手段が前記把持部材を前記径拡大部の半径 方向に移動せしめる駆動装置である請求項 2 8記載の単結晶引上げ装置。
3 0 . 前記駆動装置がガス圧駆動装置又は油圧駆動装置である請求 項 2 9記載の単結晶引上げ装置。
3 1 . 前記駆動装置がガス圧駆動装置であり、 その可動ピス トンが 水平方向に移動するよう前記ガス圧駆動装置が配されている請求項 2 9 記載の単結晶引上げ装置。
3 2 . 前記ガス圧駆動装置が複数設けられ、 前記複数のガス圧駆動 装置がリング状部材により放射方向に配置されて固定されている請求項
2 9記載の単結晶引上げ装置。
3 3 . 前記結晶保持位置制御手段が前記シャフ トと同軸なシリンダ を有する請求項 2 6記載の単結晶引上げ装置。
3 4 . 前記シリンダが二重構造であり、 前記把持部材開閉手段に用 いる圧縮ガスを前記シリンダの内部空間を介して導く構造である請求項 3 3記載の単結晶引上げ装置。
3 5 . 前記結晶保持位置制御手段が前記シャフ トの周囲を回転可能 で、 かつ前記シャフ トに対して略平行に伸長する部材を有する請求項 2 6記載の単結晶引上げ装置。
3 6 . 前記伸長する部材が管状であり、 前記把持部材開閉手段に用 いる圧縮ガスを前記伸長する部材の内部空間を介して導く構造である請 求項 3 5記載の単結晶引上げ装置。
3 7 . 前記第 1構造体の一部にバランスウェイ トを配した請求項 3
5記載の単結晶引上げ装置。
3 8 . 前記シャフ トの回転を前記把持部材に伝達して、 これを同期 回転させる手段を更に有する請求項 2 6記載の単結晶引上げ装置。
3 9 . 前記同期回転させる手段が前記シャフ ト及びこれと同軸に配 された部材との間に設けられた突起あるいは段差部により前記シャフ ト の回転を前記同軸に配された部材に伝達するものである請求項 3 8記載 の単結晶引上げ装置。
4 0 . 前記同期回転させる手段が前記シャフ 卜に固定された前記第 2構造体を有し、 前記結晶保持位置制御手段が前記シャフ トの周囲を回 転可能で、 かつ前記シャフ トに対して略平行に伸長する部材を有し、 前 記伸長する部材が前記第 2構造体に上下方向に移動可能に取り付けられ ている請求項 3 8記載の単結晶引上げ装置。
4 1 . 前記同期回転させる手段がギヤ又はベル卜とプーリにより構 成されている請求項 3 8記載の単結晶引上げ装置。
4 2 . 前記ガス圧駆動装置又は油圧駆動装置から供給されるガス圧 又は油圧が所定値以上となると、 その値を維持すべく自動的に通路を閉 じるバルブを有する請求項 2 9記載の単結晶引上げ装置。
PCT/JP1998/004131 1997-09-22 1998-09-14 Appareil permettant de tirer un monocristal WO1999015717A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98941859A EP0940484A4 (en) 1997-09-22 1998-09-14 APPARATUS FOR DRAWING A SINGLE CRYSTAL
KR10-1999-7004568A KR100526657B1 (ko) 1997-09-22 1998-09-14 단결정 인상 장치
US09/297,678 US6228167B1 (en) 1997-09-22 1998-09-14 Single crystal pulling apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/275284 1997-09-22
JP27528497A JP3400317B2 (ja) 1997-09-22 1997-09-22 単結晶引上げ装置
JP28291697A JPH11106281A (ja) 1997-09-30 1997-09-30 単結晶引上げ装置
JP9/282916 1997-09-30

Publications (1)

Publication Number Publication Date
WO1999015717A1 true WO1999015717A1 (fr) 1999-04-01

Family

ID=26551399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004131 WO1999015717A1 (fr) 1997-09-22 1998-09-14 Appareil permettant de tirer un monocristal

Country Status (5)

Country Link
US (1) US6228167B1 (ja)
EP (1) EP0940484A4 (ja)
KR (1) KR100526657B1 (ja)
TW (1) TW370580B (ja)
WO (1) WO1999015717A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6758901B2 (en) * 2001-03-12 2004-07-06 Crystal Growing Systems Gmbh Crystal support
CN109306519A (zh) * 2018-10-30 2019-02-05 天通银厦新材料有限公司 一种携带备用籽晶的蓝宝石晶体生长炉及其引晶方法
CN113263515A (zh) * 2021-06-18 2021-08-17 宝武集团马钢轨交材料科技有限公司 一种高铁车轮自重式夹取夹具及夹取搬运方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3573021B2 (ja) * 1999-09-29 2004-10-06 三菱住友シリコン株式会社 結晶保持装置
JP2004108434A (ja) * 2002-09-17 2004-04-08 Nikon Corp ショックアブソーバユニット、ショックアブソーバ及びそれを有する露光装置
US7232489B2 (en) * 2005-07-13 2007-06-19 Olivia Webb Crucible or related object holder and method of manufacture
US8347740B2 (en) * 2009-03-31 2013-01-08 Memc Electronic Materials, Inc. Systems for weighing a pulled object having a changing weight
JP5483591B2 (ja) * 2010-10-08 2014-05-07 日鉄住金ファインテック株式会社 単結晶引上装置および坩堝支持装置
KR20120128506A (ko) * 2011-05-17 2012-11-27 엘지이노텍 주식회사 종자정 부착 장치
JP6187486B2 (ja) 2015-01-19 2017-08-30 トヨタ自動車株式会社 単結晶製造装置
CN106757310A (zh) * 2016-12-19 2017-05-31 洛阳金诺机械工程有限公司 一种硅芯拉制装置
RU188056U1 (ru) * 2018-11-20 2019-03-28 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Узел фиксации подвесной системы
CN110528071A (zh) * 2019-10-17 2019-12-03 山东大学 一种晶体生长提拉升降装置及其工作方法
CN113737273B (zh) * 2021-09-23 2022-06-24 安徽光智科技有限公司 球罩窗口的制备装置及制备方法
CN113913919B (zh) * 2021-10-14 2022-07-26 深圳市彦瑞鑫模具塑胶有限公司 一种单晶硅炉
CN114232071B (zh) * 2021-11-23 2023-01-03 浙江晶盛机电股份有限公司 一种单晶炉拉晶装置
CN114836824B (zh) * 2022-03-29 2024-03-29 中环领先(徐州)半导体材料有限公司 籽晶提拉装置、晶体生长设备和籽晶提拉方法
CN114836819B (zh) * 2022-03-29 2023-06-13 中环领先(徐州)半导体材料有限公司 籽晶提拉装置和晶体生长设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH092893A (ja) * 1995-04-21 1997-01-07 Shin Etsu Handotai Co Ltd 単結晶の成長方法及び装置
JPH1081581A (ja) * 1996-09-03 1998-03-31 Sumitomo Sitix Corp 単結晶引上装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288191A (ja) * 1986-06-06 1987-12-15 Kyushu Denshi Kinzoku Kk 単結晶成長方法及びその装置
JPS63252991A (ja) * 1987-04-09 1988-10-20 Mitsubishi Metal Corp 落下防止保持部を有するcz単結晶
DE69112463T2 (de) * 1990-03-30 1996-02-15 Shinetsu Handotai Kk Vorrichtung zur Herstellung von Monokristallen nach dem Czochralski-Verfahren.
JP3402040B2 (ja) * 1995-12-27 2003-04-28 信越半導体株式会社 単結晶保持装置
US5932007A (en) * 1996-06-04 1999-08-03 General Signal Technology Corporation Method and apparatus for securely supporting a growing crystal in a czochralski crystal growth system
JP3528448B2 (ja) * 1996-07-23 2004-05-17 信越半導体株式会社 単結晶の引上げ方法及び装置
JPH10279386A (ja) * 1997-03-31 1998-10-20 Super Silicon Kenkyusho:Kk 単結晶引上げ装置及び単結晶支持機構並びに単結晶引上げ方法
US6042644A (en) * 1997-07-25 2000-03-28 Komatsu Electronic Metals Co., Ltd. Single crystal pulling method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH092893A (ja) * 1995-04-21 1997-01-07 Shin Etsu Handotai Co Ltd 単結晶の成長方法及び装置
JPH1081581A (ja) * 1996-09-03 1998-03-31 Sumitomo Sitix Corp 単結晶引上装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0940484A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6758901B2 (en) * 2001-03-12 2004-07-06 Crystal Growing Systems Gmbh Crystal support
CN109306519A (zh) * 2018-10-30 2019-02-05 天通银厦新材料有限公司 一种携带备用籽晶的蓝宝石晶体生长炉及其引晶方法
CN109306519B (zh) * 2018-10-30 2023-06-06 天通银厦新材料有限公司 一种携带备用籽晶的蓝宝石晶体生长炉及其引晶方法
CN113263515A (zh) * 2021-06-18 2021-08-17 宝武集团马钢轨交材料科技有限公司 一种高铁车轮自重式夹取夹具及夹取搬运方法

Also Published As

Publication number Publication date
EP0940484A1 (en) 1999-09-08
KR100526657B1 (ko) 2005-11-08
TW370580B (en) 1999-09-21
US6228167B1 (en) 2001-05-08
KR20000069103A (ko) 2000-11-25
EP0940484A4 (en) 2004-06-09

Similar Documents

Publication Publication Date Title
WO1999015717A1 (fr) Appareil permettant de tirer un monocristal
US6113686A (en) Single crystal growing method and apparatus
JP3528448B2 (ja) 単結晶の引上げ方法及び装置
JPH03285893A (ja) 結晶引上装置
JPH07172981A (ja) 半導体単結晶の製造装置および製造方法
WO1998010125A1 (fr) Appareil pour tirage de monocristal
JP3400312B2 (ja) 単結晶引上げ装置及び単結晶引上げ方法
JP3478021B2 (ja) 結晶保持装置
JP3400317B2 (ja) 単結晶引上げ装置
JPH11106281A (ja) 単結晶引上げ装置
JP2990658B2 (ja) 単結晶引上装置
KR19980079892A (ko) 단결정 인상장치
JP2000281485A (ja) 単結晶引き上げ装置及び単結晶引き上げ方法
JP2796687B2 (ja) 単結晶製造方法およびその装置
JP3474076B2 (ja) 単結晶引上げ装置
JP2000281487A (ja) 単結晶引き上げ装置及び単結晶引き上げ方法
JP3986622B2 (ja) 単結晶保持装置及び単結晶保持方法
JPH10279386A (ja) 単結晶引上げ装置及び単結晶支持機構並びに単結晶引上げ方法
JPH1192285A (ja) 単結晶成長装置及び単結晶成長方法
JPH10273382A (ja) 半導体単結晶引上炉
JPH10273390A (ja) 半導体単結晶製造装置
JPH1081582A (ja) 単結晶引上装置
JPH10273378A (ja) 単結晶引上げ装置
JP2000281484A (ja) 単結晶引上げ装置及び単結晶引上げ方法並びに単結晶支持用滑車装置
JPH10273387A (ja) 単結晶引上げ方法及び単結晶引上げ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09297678

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998941859

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997004568

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998941859

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997004568

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998941859

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997004568

Country of ref document: KR