WO1999011437A1 - Procede et appareil de purification de l'argon - Google Patents

Procede et appareil de purification de l'argon Download PDF

Info

Publication number
WO1999011437A1
WO1999011437A1 PCT/JP1998/003977 JP9803977W WO9911437A1 WO 1999011437 A1 WO1999011437 A1 WO 1999011437A1 JP 9803977 W JP9803977 W JP 9803977W WO 9911437 A1 WO9911437 A1 WO 9911437A1
Authority
WO
WIPO (PCT)
Prior art keywords
argon
gas
argon gas
rectification
tower
Prior art date
Application number
PCT/JP1998/003977
Other languages
English (en)
French (fr)
Inventor
Takao Yamamoto
Naohiko Yamashita
Original Assignee
Air Liquide Japan, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Japan, Ltd. filed Critical Air Liquide Japan, Ltd.
Priority to US09/297,632 priority Critical patent/US6123909A/en
Priority to EP98941722A priority patent/EP0956928A4/en
Publication of WO1999011437A1 publication Critical patent/WO1999011437A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0094Combined chemical and physical processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/028Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
    • F25J3/0285Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40001Methods relating to additional, e.g. intermediate, treatment of process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40052Recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40056Gases other than recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0003Chemical processing
    • C01B2210/0004Chemical processing by oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0003Chemical processing
    • C01B2210/0006Chemical processing by reduction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/0014Physical processing by adsorption in solids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/58Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/30Details about heat insulation or cold insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/42Modularity, pre-fabrication of modules, assembling and erection, horizontal layout, i.e. plot plan, and vertical arrangement of parts of the cryogenic unit, e.g. of the cold box
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a process for purifying argon gas containing impurities and recovering high-purity argon gas, and particularly relates to argon discharged from a single crystal silicon pulling apparatus. It relates to a suitable process for purifying gas.
  • BACKGROUND ART Single-crystal silicon used as a raw material for semiconductor devices is manufactured by the pulling method (Chiyo-Kralski method).
  • the single-crystal silicon pulling device controls the oxygen concentration in the silicon crystal and ensures the purity of the single-crystal silicon to be produced. As a result, a large amount of argon gas is supplied.
  • N 2 nitrogen
  • CO carbon monoxide
  • C_ ⁇ 2 carbon dioxide
  • Argon gas (Ar) is present at 0.93% in air and is generally purified by cryogenic separation of air. For this reason, argon gas is relatively expensive. Therefore, single crystal silicon It is desirable to purify the exhaust gas (argon gas containing impurity gas) discharged from the upper equipment to recover high-purity argon gas and reuse it.
  • An argon gas recovery method including a step of converting into 2 O and CO 2 is disclosed.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide an argon purification method which comprises simple steps and consumes little energy.
  • the argon gas that has passed through the third step After cooling the argon gas that has passed through the third step, it is introduced into a rectification column and rectified using a reflux liquid containing argon as a main component to remove nitrogen, hydrogen, and methane, and to obtain high-purity argon.
  • the argon gas passed through the third step is cooled, most of the argon is liquefied, and the argon gas enriched with hydrogen is separated and removed. Next Then, the liquefied argon is introduced into the rectification column.
  • the rectification section of the rectification tower is composed of an upper section, a middle section, and a lower section, and the liquefied argon is introduced between the upper section and the middle section, and the top of the rectification tower is provided.
  • the rectifier From the rectifier, liquid argon with methane concentrated is separated from the bottom of the rectification column, and the high-purity argon gas is recovered between the middle stage and the lower stage.
  • the argon purifier used in the above process is an argon purifier that purifies an argon gas containing at least nitrogen, carbon monoxide, oxygen and methane to obtain high-purity argon.
  • Air or oxygen is added to the argon gas, and the carbon monoxide contained is oxidized in the presence of a catalyst to convert the carbon monoxide to carbon dioxide.
  • a deoxo tower that introduces argon gas from the carbon monoxide oxidation tower, adds hydrogen, and reacts the contained oxygen and hydrogen under a catalyst to convert the oxygen into water;
  • An adsorption tower for introducing argon gas from the deoxo tower and removing carbon dioxide and water using an adsorbent
  • a main heat exchanger for introducing argon gas discharged from the adsorption tower and cooling the same;
  • the cooled argon discharged from the main heat exchanger is introduced, rectification is performed using a reflux liquid containing argon as a main component, nitrogen, hydrogen, and methane are removed, and high-purity argon gas is removed.
  • a rectification column to be recovered It is characterized by having.
  • a gas-liquid separator is provided between the heat exchanger and the rectification column, and hydrogen-enriched argon gas is separated and removed from the gas-liquid mixture discharged from the heat exchanger. Then, liquid argon is introduced into the rectification column.
  • the rectification section of the rectification tower is composed of an upper section, a middle section, and a lower section, and the liquid argon is introduced between the upper section and the middle section, and from the top of the rectification tower.
  • Argon gas enriched with nitrogen and hydrogen is separated, liquid argon enriched with methane is separated from the bottom of the rectification column, and the high-purity argon gas is recovered from between the middle and lower stages.
  • carbon monoxide having a small difference in boiling point with argon (boiling point: 118.C) from an argon gas containing impurities is first used.
  • 2 ° C) and oxygen (boiling point: 1183 ° C) are removed by converting to carbon dioxide and water, respectively.
  • argon from which carbon monoxide and oxygen had been removed, was introduced into a rectification column, and rectification was performed using a reflux liquid containing argon as a main component, and nitrogen (boiling point:-19 6 ° C) and hydrogen (boiling point: 125 3 ° C) are separated from the top of the rectification tower, and methane (boiling point: —162 ° C), a high boiling point impurity, is separated from the bottom of the rectification tower. To separate. As a result, high-purity argon gas is recovered from the gas phase in the middle stage of the rectification column.
  • the process can be simplified as compared with the conventional method. Furthermore, the amount of oxygen added to the argon gas containing impurities during the process can be suppressed to a small amount as compared with the conventional method. In addition, since an external heat source is not required for the oxidation reaction using a catalyst, the energy consumption of the entire process can be reduced.
  • high-purity liquid argon is supplied from the outside to the rectification column to make up for a part of the cold required in the rectification step. This makes it possible to replenish cold heat from the outside with argon, thereby simplifying the device configuration.
  • FIG. 1 is a flow chart showing an example of an argon purification process according to the present invention.
  • FIG. 2 is a flow chart showing another example of the argon purification process according to the present invention.
  • FIG. 3 is a view for explaining a method of uniting the argon purifying apparatus according to the present invention.
  • FIG. 1 shows an example of a flow sheet of an argon purification method according to the present invention.
  • 10 is a single crystal silicon pulling device (manufacturing device), 30 is a pre-refining unit, 40 is a cooling unit, 50 is a decarburization drying unit, and 60 is main heat.
  • the single-crystal silicon pulling device 10 is supplied with high-purity argon gas (boiling point: 186 ° C) as a shielding gas.
  • argon exhaust gas gas discharged from the single-crystal silicon lifting device 10 by the vacuum pump 12
  • CO, C 0 2 such as a hydrocarbon is included as an impurity.
  • Hydrocarbon is CH 4 as a main with 2 0 vol PPM or less.
  • a dry shinore type of mechanical seesole is used as the vacuum pump 12.
  • the Argon exhaust gas stored in the gas holder 13 is introduced into the pre-refining unit 30 by the compressor 15 via the suction filter unit 14.
  • the flow rate of the argon exhaust gas introduced into the pre-refining unit 30 is set so as to be balanced with the average flow rate of the argon exhaust gas discharged from the single crystal silicon lifting device 10.
  • dust is removed from the argon exhaust gas.
  • the argon exhaust gas is pressurized by the compressor 15 to a pressure of about 3.5 to 9.0 kg / cm 2 G.
  • the value of this pressure is set according to the optimal operating conditions in the subsequent decarburization drying process.
  • the argon exhaust gas leaving the compressor 15 is introduced into the pre-refining unit 30.
  • the pre-refining unit 30 is provided with a carbon monoxide oxidizing tower 31 and a deoxo tower 33, and the deoxo tower 33 has H for oxygen removal from a hydrogen gas source outside the system via a pipe P32. 2 is supplied.
  • Argon exhaust gas is first introduced into the carbon monoxide oxidation tower 31 where C ⁇ is oxidized by the Pd catalyst into CO 2. Then, after H 2 is added, it is introduced into the deoxo tower 33.
  • H2 flow rate is set too high for theoretical requirements It is. For example, about 0.5 to 1.5 vol of the argon exhaust gas flow rate. /. To the extent that they are added in excess.
  • Argon gas exiting the pre-purification facility 30 (hereinafter referred to as “doxo argon gas”) is introduced into the cooling unit 40.
  • the cooling unit 40 includes a water-cooled heat exchanger 41, a separator 43, a heat exchanger 45 having a refrigerator 46, and a water separator 47.
  • Deoxo argon gas was first introduced into the heat exchanger 41, where it was approximately 40. Cool to C. The cooled deoxo argon gas is introduced into the water separator 43, where the condensed water is separated. Next, the deoxo argon gas is cooled to about 10 ° C. in the heat exchanger 45. The cooled deoxo argon gas is introduced into a water separator 47, where the condensed water is further separated.
  • the deoxo argon gas exiting the cooling unit 40 is introduced into the decarburized and dried unit 50.
  • the decarburization drying unit 50 is composed of a pair of adsorption towers 51 and 52 used alternately.
  • the adsorption towers 51 and 52 are filled with packing materials such as alumina and molecular sieve to adsorb H 2 O and CO 2 .
  • H 2 ⁇ and C ⁇ 2 are removed from the deoxo argon gas.
  • the pair of adsorption towers 51 and 52 are operated by using the principle of pressure swing adsorption (PSA) or temperature swing adsorption (TSA). Therefore, a pipe P50 for supplying nitrogen gas is connected for regeneration of the adsorbent.
  • the nitrogen gas is supplied by being branched from a nitrogen gas supply line P61.
  • adsorption Nitrogen gas used for the regeneration of the chemical is discharged out of the system via a discharge pipe P51.
  • Deoxo argon gas exiting the decarburization drying unit 50 is introduced into the main heat exchanger 60 at a temperature of about 10 ° C and a pressure of about 6.4 kg / cm 2 G.
  • the composition is, for example, N 2 : 2.0 vol% CH 4: 0.002 vo I%, H 2: 0.5 vo I%, and the rest is argon.
  • the deoxo argon gas is cooled in the main heat exchanger 60 by heat exchange with a refrigerant introduced from the opposite direction. Further, in the main heat exchanger 60, together with the deoxo argon gas, the nitrogen gas (high-pressure circulating nitrogen gas) pressurized by the compressor 23 described later is also cooled.
  • the above-mentioned refrigerant may be a mixed gas (nitrogen rich gas) in which nitrogen gas separated from the top of a rectification column 70 described later is concentrated, or a nitrogen gas (low pressure gas) discharged from an argon condenser 80 described later. Circulating nitrogen gas), and hydrogen rich gas separated in a hydrogen separator 22 described later are used.
  • the deoxyargon gas cooled through the heat exchanger 60 to near its condensation temperature is then introduced into the reboiler 21.
  • the deoxo argon gas is partially liquefied in a reboiler 21 by heat exchange with liquid argon introduced from the bottom 77 of the rectification column, which will be described later, and is also removed from the liquid argon. Release boil gas.
  • Liquefied deoxo argon contains N 2 and CH 4 as impurities and H 2 as a non-condensable gas.
  • the partially liquefied dexargon is then converted to a hydrogen separator 2 is introduced to the In the hydrogen seno, the hydrogen gas enriched in hydrogen (hydrogen rich gas) is separated from the deoxo argon in the hydrogen separator 22.
  • the hydrogen rich gas separated from the top of the hydrogen separator 22 is Then, it is introduced as refrigerant into the main heat exchanger 60 through the pipe P71, where it is heated to room temperature and then returned to the upstream side of the compressor 15 through the pipe P72, The force used to remove O 2 is released into the atmosphere through line P 73.
  • liquefied deoxo argon from which the hydrogen rich gas has been separated is hydrogen separated. ⁇ is taken out from the bottom of the heater 22, is introduced into the expansion valve VI through the pipe P 12, is decompressed there, passes through the pipe P 13, and has a temperature of about 1175 ° C and a pressure of about At 2.2 kg / cm 2 G , it is introduced between the upper part 71 and the middle part 72 of the rectification column 70.
  • the rectification tower 70 is provided with an argon capacitor 80 on the top 76 thereof, and the liquid mainly composed of argon condensed by the argon condenser 80 serves as a reflux liquid in the upper part of the rectification tower. 7 Returned to 1. Furthermore, high-purity liquid argon is supplied from the outside to the upper part 71 of the rectification column. The high-purity liquid argon supplied from the outside plays the role of supplying the cold heat required for the rectification process, and is also used as a part of the reflux liquid.
  • the liquefied deoxoargon introduced into the rectification column 70 flows back down the rectification column 70 while returning from the top 76, and is generated at the reboiler 21 and rises from the bottom 77. Rectified by contact with reboil gas. As a result, at the top 76 of the rectification column, argo containing N 2 and H 2
  • the liquid gas containing concentrated hydrocarbons such as CH 4 which is a high-boiling component, is stored at the bottom 77 of the rectification column. High-purity argon gas is recovered from the gas phase between the middle part 72 and the lower part 73 of the rectification column.
  • Hydrocarbons such as CH 4 are concentrated in the liquid argon collected at the bottom 77 of the rectification tower, for example, about 100 times, and a part of this is conveyed from the bottom 77 of the rectification tower to the pipe P 8. It is discharged out of the system through 1.
  • the argon gas collected at the top 76 of the rectification column contains N 2 and H 2.
  • This argon gas is cooled in an argon condenser 80, and the liquid containing condensed argon as a main component is returned to the upper stage 71 of the rectification column and used as a reflux liquid.
  • N 2 and H 2 are enriched by several tens of times, and this nitrogen rich gas passes through the pipe P 41 to the main heat exchanger 60. Introduced as refrigerant. After being heated in the main heat exchanger 60, the nitrogen rich gas is discharged out of the system through the pipe P49.
  • the nitrogen gas supplied from the nitrogen gas supply line P61 is introduced into the decarburization drying unit 50 through the piping P50, and is used as the regeneration gas for the adsorption towers 51 and 52 described above. After being used, it is discharged out of the system.
  • liquid argon accumulated at the bottom 77 of the rectification tower is heated to generate refoil gas, and then argon gas accumulated at the top 76 of the rectification tower is cooled to produce a reflux liquid.
  • the working fluid of the circulating gas cycle for Nitrogen is used. That is, the nitrogen gas (high-pressure circulating nitrogen gas) pressurized in the nitrogen circulating compressor 23 passes through the pipe P44 and is introduced into the main heat exchanger 60, where it is cooled. 5 and introduced into the reboiler 21 as the heating side medium.
  • Nitrogen gas is cooled and liquefied by the reboiler 21, then introduced into the expansion valve V 3 through the pipe P 46, decompressed by the expansion valve V 3, and then converted into a refrigerant in the argon condenser 80. Introduced. The liquefied nitrogen is vaporized again by the argon condenser 80 by heat exchange with the gas (Argon gas including N 2 and H 2) accumulated at the top 76 of the rectification column, and the nitrogen gas is vaporized again. Is further introduced into the pressure regulator V 4, and the decompressed nitrogen gas (low-pressure circulating nitrogen gas) passes through the pipe P 47 and is again introduced into the main heat exchanger 60 as a refrigerant. You.
  • a part of the nitrogen gas discharged from the main heat exchanger 60 returns to the pipe P43 and forms a nitrogen circulation line.
  • insufficient nitrogen gas due to leakage from the nitrogen circulation compressor 23, etc. is supplied from the nitrogen gas supply line via the piping P61, valves V6 and P43. Replenished.
  • the high-purity argon gas recovered from the gas phase between the middle stage 72 and the lower stage 73 of the rectification column is connected to the piping! After passing through 314, it is introduced as a refrigerant into the main heat exchanger 60, where it is heated to room temperature. Next, it is introduced into the compressor 24 through the pipe P15, where the pressure is increased, for example, to 7 kg / cm2. Then, it is introduced into the filter unit 25 through the pipe P 16, and after the dust particles are removed in the filter unit 25, The high-purity argon gas is recycled to the single-crystal silicon lifting device 10.
  • a branch pipe P 20 is connected to the pipe P 16 on the downstream side of the compressor 24.
  • the branch pipe P 20 is connected to the main heat exchanger 60 via a branch pipe P 20 and a flow control valve V 5. In the foreground, it is connected to the inlet pipe P 9 for dexalgon gas.
  • This piping route maintains the flow rate of deoxoargon supplied to the rectification column 70 constant, and keeps the flow of the rectification column 70 irrespective of fluctuations in the number of operating single crystal silicon production units 10. Used to keep the operation stable.
  • the high-purity argon gas is supplied from the high-purity liquid argon tank 90 through the pipe P 92.
  • the high-purity liquid argon tank 90 is supplied with high-purity liquid argon from outside.
  • a recovery rate of high purity argon gas (for example, H 2 , 2 C 2 2, ⁇ 2 and CH 4 each having a Sio IPP or less) of about 90 to 97% is realized. .
  • FIG. 2 shows another example of the argon purifying apparatus according to the present invention.
  • liquid argon accumulated at the bottom 77 of the rectification tower was heated to generate refoil gas, and then the argon gas accumulated at the top 76 of the rectification tower was cooled to produce a reflux liquid.
  • Argon is used as the working fluid for the circulating gas cycle (P43 to P47) in place of nitrogen in the apparatus shown in FIG. Therefore, the line for replenishing the working fluid is shown in Fig. 1.
  • a pipe P91 valve and V7 are used, through which argon is supplied from the high-purity liquid argon tank 90.
  • the working pressure of the working fluid in the circulating gas cycle must also be increased.
  • the working pressure can be lower than that of nitrogen gas because the boiling point of argon at normal pressure is about 10 ° C higher than that of nitrogen. Therefore, a general-purpose compressor can be used. Incidentally, if the operating pressure of the rectification column 70 is increased, the compressor 24 for the product argon can be omitted in some cases.
  • the main heat exchanger 60, the rectification column 70, the argon condenser 80, the reboiler 21 and the hydrogen sensor 22 are connected to a common vacuum vessel ( If it is housed in a “cold box” and integrated as a unit, it will increase the heat insulation effect to the outside and improve the energy efficiency of the entire system. it can.
  • a tank for storing the high-purity liquid argon that is supplied to supply the cold heat required for the rectification tower 70 and to supply the shortage of high-purity argon gas is provided. Can contain zero.
  • the preliminary purification unit 30, cooling unit 40, decarburized drying unit 50, etc., together with the compressors 15, 23, 24, are included in another unit.
  • the process of the present invention can be variously modified as needed.
  • the flow chart shown in Fig. 1 corresponds to the case where a dry type such as a mechanical seal is used as the vacuum pump 12; If an oil seal type is used, after the vacuum pump 12 and before the pre-refining unit 60, the weight of pentane (C5 + ) or more among hydrocarbons (CnHm) It is necessary to prevent clogging of the adsorbent in the decarburized dry unit 50 by adding equipment for removing the pollutants.
  • argon purification method of the present invention among impurities contained in argon exhaust gas containing argon as a main component, first, C ⁇ (boiling point: very close to argon (boiling point: 1186 ° C.) one 1 9 2 ° C) changed to C_ ⁇ 2 is oxidized and then, very Kinre same rather boiling in ⁇ Noregon, ⁇ 2 (boiling point: changing an 1 8 3 ° C) in water, both Is removed by a cooling unit and decarburization drying means.
  • the amount of oxygen added to the argon exhaust gas can be reduced to a small amount as compared with the conventional method of oxidizing and removing hydrocarbons such as CH 4. it can. Also, there is no need for heating to promote the reaction. Therefore, according to the argon purification method of the present invention, it is possible to purify the argon exhaust gas with relatively simple steps and with low energy consumption.

Description

明 細 書 アルゴン精製方法及び装置 技術分野 本発明は、 不純物を含むアルゴンガスを精製して高純度の アルゴンガスを回収するプロセスに係り 、 特に、 単結晶シリ コ ン引上装置から排出されるアルゴンガスを精製する際に好 適なプロセスに関する。 背景技術 半導体素子の原料と して使用される単結晶シ リ コ ンは、 引 上法 (チヨ ク ラルスキー法) によ り製造される。 単結晶シリ コン引上装置 (製造装置) では、 シ リ コ ン結晶中の酸素濃度 を制御し、 製造される単結晶シ リ コ ンの純度を確保するため に、 チャ ンバ内にシール ドガス と してアルゴンガスが大量に 供給される。 単結晶シリ コン引上装置から排出されるァルゴ ンガス中には、 不純物と して、 窒素 (N 2 ) 、 酸素 (0 2 ) 一酸化炭素 ( C O ) 、 二酸化炭素 ( C〇 2 ) などの他に、 メ タ ン ( C H 4 ) 、 その他の炭化水素が含まれている。
アルゴンガス ( A r ) は、 空気中に 0 . 9 3 %存在し、 一 般的に空気の深冷分離によって精製される。 このため、 アル ゴンガスは比較的、 高価である。 従って、 単結晶シリ コン引 上装置から排出される排出ガス (不純物ガスを含むアルゴン ガス) を精製して高純度のアルゴンガスを回収し、 これを再 利用する こ とが望ま しい。
不純物ガスを含むアルゴンガスを精製して、 高純度のアル ゴンガスを回収する方法について、 各種のプロ セ スが公表さ れている。 例えば、 特開昭 6 3 — 1 8 9 7 7 4号、 特開平 1 — 2 3 0 9 7 5号、 特開平 2 — 2 7 2 2 8 8号及び特開平 5 — 2 5 6 5 7 0号の各公開公報には、 C〇、 C〇 2、 H 2 〇 等の不純物を吸着によ り除去した後、 深冷分離や触媒による 精製を行い、 精製アルゴンガスを得る方法が開示されている。 また、 特開平 2 — 2 8 2 6 8 2号、 特開平 3 — 3 9 8 8 6号、 特公平 4 一 1 2 3 9 3号及び特公平 5 — 2 9 8 3 4 号の各公 報には、 C Oや H 2、 炭化水素等の不純物を触媒を用いて H
2 O及び C O 2 に変換する工程を含むアルゴンガス回収方法 が開示されている。
と ころで、 上記の各文献に記載されているアルゴンガスの 精製方法では、 不純物と して含まれている炭化水素を触媒を 用いて酸化して H 2 Oや C O 2等に変換し、 除去している。 こ の過程で、 反応の促進のために過剰量の〇 2が添加される。 即ち、 アルゴンガスに対して更に〇 2が添加され、 添加され た O 2の内の相当量が、 炭化水素を除去した後に残される。 こ の〇 2 をアルゴンガスから除去するため、 通常、 0 2 を H 2 と反応させて H 2 0に変えて除去する方法が採用される。 触媒を用いた酸化反応の際、 外部からの熱源が必要となるの で、 上記の各方法は、 エネルギー効率の面からも満足すべき 方法とは言えない。
発明の開示
本発明は、 以上の様な状況に鑑みて成されたものであり 、 本発明の目的は、 簡便な工程から成り 、 且つエネルギー消費 量が少ないアルゴン精製方法を提供する こ とにある。
本発明のアルゴン精製方法は、
少なく と も、 窒素、 一酸化炭素、 酸素及びメ タ ンを含有す るアルゴンガスを精製して高純度アルゴンを得るアルゴン精 製方法であって、
前記アルゴンガスに空気又は酸素を添加し、 含有される一 酸化炭素を触媒下で酸化して二酸化炭素に変える第一工程と . 第一工程を経たアルゴンガスに水素を添加し、 含有される 酸素と水素とを触媒下で反応させて水に変える第二工程と、 第二工程を経たアルゴンガスから、 吸着剤を用いて二酸化 炭素及び水を除去する第三工程と、
第三工程を経たアルゴンガスを冷却した後、 精留塔に導入 し、 アルゴンを主成分とする還流液を用いて精留を行って、 窒素、 水素、 メ タ ンを除去し、 高純度アルゴンガスを回収す る第四工程と、
を備えたこ とを特徴とする。
好ま しく は、 前記第四工程において、 先ず、 第三工程を経 たアルゴンガスを冷却し、 ァルゴンの大部分を液化する と と もに、 水素が濃縮されたアルゴンガスを分離して除去し、 次 いで、 液化されたアルゴンを精留塔に導入する。
好ま しく は、 前記精留塔の精留部は、 上段部、 中段部、 下 段部から構成され、 前記液化されたアルゴンを上段部と中段 部の間に導入し、 前記精留塔の頂部から窒素及び水素が濃縮 されたアルゴンガスを分離し、 前記精留塔の底部からメ タ ン が濃縮された液体アルゴンを分離し、 前記高純度アルゴンガ スを中段部と下段部の間から回収する。
また、 上記のプロセスに使用されるアルゴン精製装置は、 少なく と も、 窒素、 一酸化炭素、 酸素及びメ タンを含有す るアルゴンガスを精製して高純度アルゴンを得るアルゴン精 製装置であって、
前記アルゴンガスに空気又は酸素を添加し、 含有される一 酸化炭素を触媒下で酸化して二酸化炭素に変える一酸化炭素 酸化塔と、
前記一酸化炭素酸化塔から出たアルゴンガスを導入し、 水 素を添加して、 含有される酸素と水素とを触媒下で反応させ て水に変えるデォキ ソ塔、
前記デォキソ塔から出たアルゴンガスを導入し、 吸着剤を 用いて二酸化炭素及び水を除去する吸着塔と、
前記吸着塔から出たアルゴンガスを導入し、 これを冷却す る主熱交換器と、
前記主熱交換器から出た冷却されたアルゴンを導入し、 ァ ルゴンを主成分とする還流液を用いて精留を行い、 窒素、 水 素、 メ タ ンを除去し、 高純度アルゴンガスを回収する精留塔 と、 を備えたこ とを特徴とする。
好ま しく は、 前記熱交換器と前記精留塔との間に気液分離 器を設け、 前記熱交換器から出た気液混合物から、 水素が濃 縮されたアルゴンガスを分離して除去し、 液体アルゴンを前 記精留塔に導入する。
好ま しく は、 前記精留塔の精留部は、 上段部、 中段部、 下 段部から構成され、 前記液体アルゴンは、 上段部と中段部の 間に導入され、 前記精留塔の頂部から窒素及び水素が濃縮さ れたアルゴンガスが分離され、 前記精留塔の底部からメ タン が濃縮された液体ァルゴンが分離され、 前記高純度ァルゴン ガスは、 中段部と下段部の間から回収される。
本発明のアルゴン精製方法によれば、 不純物を含有するァ ノレゴンガスか ら、 先ず、 アルゴン (沸点 : 一 1 8 6 。C ) と の 間で沸点の差が小さい一酸化炭素 (沸点 : 一 1 9 2 °C ) 及び 酸素 (沸点 : 一 1 8 3 °C ) を、 それぞれ二酸化炭素及び水に 変えて除去する。 次に、 一酸化炭素及び酸素が除去されたァ ルゴンを精留塔に導入し、 アルゴンを主成分とする還流液を 用いて精留を行い、 低沸点不純物である窒素 (沸点 : ー 1 9 6 °C ) 及び水素 (沸点 : 一 2 5 3 °C ) を精留塔の頂部から分 離し、 高沸点不純物であるメ タン (沸点 : — 1 6 2 °C ) を精 留塔の底部から分離する。 この結果、 精留塔の中段の気相中 から高純度アルゴンガスが回収される。
一酸化炭素及び酸素は、 アルゴン と の間で沸点の差が小さ いので、 精留塔を用いて分離する場合には多く の精留段を必 要とする。 本発明のアルゴン精製方法によれば、 一酸化炭素 及び酸素を、 それぞれ二酸化炭素及び水に変えて除去してい るので、 それらを比較的容易に除去するこ とができ る。 更に、 メ タンを除去するために、 従来の様なメ タンを触媒下で酸化 する方法に代えて、 精留塔を用いて分離している。 アルゴン と メ タ ンの間で沸点の差が大きいので、 精留塔を用いて比較 的容易にメ タンを分離するこ とができる。
以上の結果、 本発明のアルゴン精製方法によれば、 従来の 方法と比較してプロセスを簡略化するこ とができ る。 更に、 プロセスの途中で不純物を含有するアルゴンガスに添加され る酸素の量を、 従来の方法と比較して少量に抑える こ とがで き る。 また、 触媒を用いた酸化反応の際、 外部からの熱源を 必要と しないので、 プロセス全体のエネルギー消費を低減す る こ とができる。
なお、 好ま しく は、 前記精留塔に外部から高純度液体ァル ゴンを供給する こ と によって、 精留工程において必要と され る冷熱の一部を補う。 これによつて、 外部からの冷熱の補給 をアルゴンで行う こ とができるので、 装置構成を単純化する こ とができる。 図面の簡単な説明
図 1 は、 本発明に基づく アルゴン精製プロセスの一例を示 すフ ローシ一 ト。
図 2は、 本発明に基づく アルゴン精製プロセスの他の例を 示すフローシ一 ト。 図 3 は、 本発明に基づく アルゴン精製装置をュニッ トする 方法を説明する図。 発明を実施するための最良の形態 図 1 に、 本発明に基づく アルゴン精製方法のフローシー ト の一例を示す。
図中、 1 0 は単結晶シ リ コ ン引上装置 (製造装置) 、 3 0 は予備精製ユニッ ト、 4 0 は冷却ユニ ッ ト、 5 0 は除炭乾燥 ユニッ ト、 6 0 は主熱交換器、 7 0 は精留塔、 8 0 はァルゴ ンコンデンサ、 9 0は高純度アルゴンタンク を表す。
単結晶シ リ コ ン引上装置 1 0 には、 シール ドガス と して高 純度アルゴンガス (沸点一 1 8 6 °C ) が供給される。 単結 晶シ リ コ ン引上装置 1 0から真空ポンプ 1 2 によって排出さ れたガス (以下、 「アルゴン排ガス」 と呼ぶ) の中には、 粉 じんの他、 H 2、 N 2 > 〇 2、 C O、 C 0 2、 炭化水素など が不純物と して含まれている。 炭化水素は、 2 0 v o l P P M 以下で主と して C H 4である。 なお、 この例では、 真空ボン プ 1 2 と してメ カ二カルシーゾレの ドライ シ一ノレタイプのもの が使用される。 なお、 図 1 では、 簡略化のため、 単結晶シリ コン引上装置 1 0及び真空ポンプ 1 2 を、 それぞれ 1 台づっ しか図示していないが、 実際には複数の装置が並列に配置さ れる e これらの単結晶シ リ コ ン引上装置 1 0から排出される ァルゴン排ガスは、 その量が単結晶シ リ コ ン引上装置 1 0の 運転台数などに応じて変化するので、 一旦、 ガスホルダ 1 3 に収容される。
ガスホルダ 1 3 に収容されたァルゴン排ガスは、 サク シ ョ ンフ ィ ルタュニ ッ ト 1 4 を介 して、 コ ンプレ ッサ 1 5 によつ て予備精製ユニッ ト 3 0 に導入される。 なお、 予備精製ュニ ッ ト 3 0 に導入されるアルゴン排ガスの流量は、 単結晶シ リ コ ン引上装置 1 0から排出されるアルゴン排ガスの平均流量 とバラ ンスする様に設定される。 サク シ ョ ンフィ ルタュニ ッ ト 1 4 において、 アルゴン排ガスから塵埃が取り除かれる。 後続の酸化工程で要求される酸素量を補うため、 サク ショ ン フィルタュニッ ト 1 4 から出たアルゴン排ガスに、 配管!3 3
1 を介して微量の空気が添加される。 アルゴン排ガスは、 コ ンプレ ッサ 1 5 で 3 . 5 〜 9 . 0 k g / c m 2 G程度の圧力 に昇圧される。 なお、 この圧力の値は、 後続の除炭乾燥工程 における最適な運転条件に応じて設定される。
コ ンプレ ッサ 1 5 を出たアルゴン排ガスは、 予備精製ュニ ッ ト 3 0 に導入される。 予備精製ュニッ ト 3 0 は、 一酸化炭 素酸化塔 3 1 及びデォキソ塔 3 3 を備え、 デォキ ソ塔 3 3 に は系外の水素ガスソースから配管 P 3 2 を介して脱酸素用の H 2が供給される。 ァルゴン排ガスは、 先ず、 一酸化炭素酸 化塔 3 1 に導入され、 P d触媒によって C〇が酸化されて C O 2 に変わる。 次いで、 H 2が添加された後、 デォキソ塔 3 3 に導入される。 デォキソ塔 3 3 では、 P d触媒によって〇 2 と H 2 との反応が促進され、 〇 2が H 2 〇に変わる - なお、 デォキ ソ塔 3 3 において◦ 2 をほぼ完全に除去すべく 、 添加 される H 2の流量は、 理論上の所要量に対して過剰に設定さ れる。 例えば、 アルゴン排ガス流量の約 0 . 5 〜 1 · 5 v o l 。/。程度、 過剰に添加される。
予備精製設備 3 0 を出たアルゴンガス (以下、 「デォキソ アルゴンガス」 と呼ぶ) は、 冷却ユニ ッ ト 4 0 に導入される。 冷却ュュッ ト 4 0 は、 水冷式の熱交換器 4 1 、 セパレ一タ 4 3 、 冷凍機 4 6 を備えた熱交換器 4 5 、 水セパレ一タ 4 7 か ら構成される。 デォキソアルゴンガスは、 先ず、 熱交換器 4 1 に導入され約 4 0 。Cまで冷却される。 冷却されたデォキソ アルゴンガスは、 水セパレ一タ 4 3 に導入され、 凝縮した水 分が分離される。 次いで、 デォキソアルゴンガスは、 熱交換 器 4 5 で約 1 0 °Cまで冷却される。 冷却されたデォキソアル ゴンガスは、 水セパレ一タ 4 7 に導入され、 凝縮した水分が 更に分離される。
冷却ュニッ ト 4 0 を出たデォキソアルゴンガスは、 除炭乾 燥ュニッ ト 5 0 に導入される。 除炭乾燥ュニッ ト 5 0は、 交 互に使用される一対の吸着塔 5 1 及び 5 2から構成される。 吸着塔 5 1 及び 5 2 には、 H 2 O及び C O 2 を吸着するため、 アルミナ及びモレキュラーシ一ブ等の充填物が充填されてい る。 除炭乾燥ユニッ ト 5 0 において、 デォキソアルゴンガス 中から H 2 〇及び C〇 2が除去される。
なお、 一対の吸着塔 5 1 及び 5 2は、 圧力スイ ング吸着 ( P S A ) あるいは温度スイ ング吸着 ( T S A ) の原理を利用 して運転される。 このため、 吸着剤の再生用に窒素ガス供給 用の配管 P 5 0 が接続されている。 なお、 この窒素ガスは、 窒素ガス供給ライ ン P 6 1 から分岐されて供給される。 吸着 剤の再生に使用された窒素ガスは、 排出用の配管 P 5 1 を介 して系外に排出される。
除炭乾燥ュニッ ト 5 0 を出たデォキソアルゴンガスは、 温 度約 1 0 °C、 圧力約 6. 4 k g / c m 2 Gで、 主熱交換器 6 0 に導入される。 その組成は、 例えば、 N 2 : 2. 0 vol % C H 4 : 0 . 0 0 2 vo I %、 H 2 : 0. 5 vo I %で、 残り は アルゴンである。
デォキソアルゴンガスは、 主熱交換器 6 0 において、 反対 方向から導入される冷媒との熱交換によって冷却される。 ま た、 主熱交換器 6 0 において、 デォキソアルゴンガスと と も に、 後述のコンプレ ッサ 2 3 で昇圧された窒素ガス (高圧循 環窒素ガス) の冷却も行われる。 なお、 上記の冷媒と しては、 後述の精留塔 7 0の頂部から分離された窒素ガスが濃縮され た混合ガス (窒素リ ッチガス) 、 後述のアルゴンコンデンサ 8 0から出た窒素ガス (低圧循環窒素ガス) 、 及び後述の水 素セパ レータ 2 2 において分離された水素リ ツチガス、 など が使用される。
熱交換器 6 0 を経てその凝縮温度の近く まで冷却されたデ ォキソアルゴンガスは、 次に、 リ ボイ ラ 2 1 に導入される。 デォキソアルゴンガスは、 リ ボイ ラ 2 1 で、 後述の精留塔の 底部 7 7から導入された液体アルゴン と の熱交換によって部 分的に液化される と と もに、 液体ァルゴンから リ ボイルガス を放出させる。 液化デォキソアルゴンには、 不純物と して N 2 、 C H 4が含まれる他、 非凝縮ガス と して H 2が混在する。 部分的に液化されたデォキソァルゴンは、 次に、 水素セパ レータ 2 2 に導入される。 水素セノ、" レータ 2 2で、 デォキソ アルゴンか ら H 2が濃縮された混合ガス (水素リ ツチガス) が分離される。 水素セパ レ一タ 2 2 の頂部よ り分離された水 素 リ ツチガスは、 配管 P 7 1 を通って主熱交換器 6 0 に冷媒 と して導入され、 そこで常温まで加熱された後、 配管 P 7 2 を通って前述の圧縮機 1 5の上流側へ戻され、 O 2の除去の ために使用される力 、 あるレ、は、 配管 P 7 3 を通って大気中 へ放出される。 一方、 水素リ ッチガスが分離された液化デォ キ ソアルゴンは、 水素セパ レ—タ 2 2 の底部から取り 出され、 配管 P 1 2 を通って膨張弁 V I に導入され、 そこで減圧され た後、 配管 P 1 3 を通って、 温度約— 1 7 5 °C、 圧力約 2 . 2 k g / c m 2 Gで、 精留塔 7 0の上段部 7 1 と 中段部 7 2 の間へ導入される。
精留塔 7 0 は、 その頂部 7 6 の上にアルゴンコ ンデンサ 8 0 を備えており 、 アルゴンコンデンサ 8 0 によって凝縮され たアルゴンを主成分とする液体が還流液と して精留塔の上段 部 7 1 に戻される。 更に、 精留塔の上段部 7 1 には、 外部か らも高純度液体アルゴンが供給される。 この外部から供給さ れる高純度液体アルゴンは、 精留プロ セス に必要と される冷 熱を補給する役割を担う と と もに、 還流液の一部と しても使 用される。 精留塔 7 0 に導入された液化デォキソアルゴンは、 精留塔 7 0 の中を流れ下り ながら、 頂部 7 6から流れ下る還 流液、 及びリ ボイ ラ 2 1 において発生して底部 7 7から上昇 する リ ボイルガス と接触して精留される。 その結果、 精留塔 の頂部 7 6 には低沸点成分である N 2及び H 2 を含むァルゴ ンガスが溜ま り 、 精留塔の底部 7 7 には高沸点成分である C H 4 などの炭化水素類が濃縮された液体ァルゴンが溜まる。 精留塔の中段部 7 2 と下段部 7 3 との間の気相部分から高純 度アルゴンガスが回収される。
精留塔の底部 7 7 に溜まった液体ァルゴンには C H 4 など の炭化水素が、 例えば 1 0 0倍程度に濃縮されており 、 この 一部は、 精留塔の底部 7 7から配管 P 8 1 を通って系外に排 出される。
一方、 精留塔の頂部 7 6 に溜まったアルゴンガス中には、 N 2及び H 2が含まれている。 このアルゴンガスは、 ァルゴ ンコ ンデンサ 8 0 において冷却され、 凝縮したアルゴンを主 成分とする液体は精留塔の上段 7 1 に戻され、 還流液と して 使用される。 残り の非凝縮ガス (窒素 リ ッチガス) 中には、 N 2及び H 2が数十倍に濃縮されており 、 この窒素リ ツチガ スは、 配管 P 4 1 を通って主熱交換器 6 0 へ冷媒と して導入 される。 この窒素リ ッチガスは、 主熱交換器 6 0 で昇温され た後、 配管 P 4 9 を通って系外に排出される。
窒素ガス供給ライ ン P 6 1 から供給された窒素ガスは、 配 管 P 5 0 を通って除炭乾燥ュニッ ト 5 0 に導入され、 前述の 吸着塔 5 1 、 5 2 の再生用ガスと して使用された後、 系外に 排出される。
この装置においては、 精留塔の底部 7 7 に溜まった液体ァ ルゴンを加熱して リ ボイルガスを発生させ、 次いで、 精留塔 の頂部 7 6 に溜まったアルゴンガスを冷却して還流液を生成 するための循環ガスサイ クルの作業流体と して、 以下の様に 窒素が使用されている。 即ち、 窒素循環コンプレッサ 2 3 に おいて昇圧された窒素ガス (高圧循環窒素ガス) は、 配管 P 4 4 を通って、 主熱交換器 6 0 に導入され、 そこで冷却され た後、 配管 P 4 5 を通って リ ボイ ラ 2 1 に加熱側媒体と して 導入される。 窒素ガスはリ ボイ ラ 2 1 で冷却されて液化され、 次いで、 配管 P 4 6 を通って膨張弁 V 3 に導入され、 膨張弁 V 3 で減圧された後、 アルゴンコンデンサ 8 0 に冷媒と して 導入される。 液化された窒素は、 アルゴンコ ンデンサ 8 0で、 精留塔の頂部 7 6 に溜まったガス ( N 2及び H 2 を含むアル ゴンガス) との熱交換によって、 再度、 気化し、 気化した窒 素ガスは、 更に、 圧力調整 V 4 に導入され、 ここで減圧され た窒素ガス (低圧循環窒素ガス) は、 配管 P 4 7 を通って、 再度、 主熱交換器 6 0 に冷媒と して導入される。 主熱交換器 6 0から出た窒素ガスの一部は配管 P 4 3 に戻り 、 窒素の循 環ライ ンを構成する。 なお、 上記の窒素の循環ライ ンで、 窒 素循環コンプレッサ 2 3 からの漏れなどによ り不足する窒素 ガスは、 窒素ガス供給ライ ンから配管 P 6 1 、 弁 V 6及び P 4 3 を介して補給される。
精留塔の中段 7 2 と下段 7 3 の間の気相部分から回収され た高純度アルゴンガスは、 配管!3 1 4 を通って主熱交換器 6 0へ冷媒と して導入され、 そこで常温まで昇温される。 次い で、 配管 P 1 5 を通ってコンプレッサ 2 4 に導入され、 そこ で、 例えば 7 k g / c m 2まで昇圧される。 次いで、 配管 P 1 6 を通ってフィルタ一ュニッ ト 2 5 に導入され、 フィルタ —ュニッ ト 2 5 において塵埃パーティ クルが除去された後、 高純度アルゴンガスは、 単結晶シ リ コ ン引上装置 1 0 に再循 環される。
なお、 コンプレッサ 2 4 の下流側の前記配管 P 1 6 には、 分岐配管 P 2 0が接続されており 、 分岐配管 P 2 0及び流量 調整弁 V 5 を介して、 主熱交換器 6 0 の手前で、 デォキソァ ルゴンガスの導入配管 P 9 に接続されている。 この配管経路 は、 精留塔 7 0 に供給されるデォキソアルゴンの流量を一定 に維持して、 単結晶シ リ コ ン製造装置 1 0 の運転台数などの 変動に拘らず、 精留塔 7 0 の運転を安定した状態で継続する ために使用される。
また、 配管 P 1 に循環される高純度アルゴンガスが不足す る部分は、 高純度液体アルゴンタ ンク 9 0から配管 P 9 2 を 通って、 高純度アルゴンガスが補給される。 高純度液体ァル ゴンタンク 9 0 には、 外部から高純度液体ァルゴンが供給さ れる。
以上のプロセスによって、 高純度アルゴンガス (例えば、 H 2 、 2 C〇 2 、 〇 2及び C H 4 の各々 力 S i o I P P 以下) の回収率と して 9 0 〜 9 7 %程度が実現される。
図 2 に、 本発明に基づく アルゴン精製装置の別の例を示す。 この装置では、 精留塔の底部 7 7 に溜まった液体アルゴン を加熱して リ ボイルガスを発生させ、 次いで、 精留塔の頂部 7 6 に溜まったアルゴンガスを冷却して還流液を生成するた めの循環ガスサイ クル ( P 4 3 〜 P 4 7 ) の作業流体と して、 図 1 の装置における窒素の代わり に、 アルゴンが使用される。 そのため、 作業流体を補充するライ ンについて、 図 1 におけ る弁 V 6 に代えて、 配管 P 9 1 弁及び V 7が使用され、 これ らを介 して、 高純度液体アルゴンタ ンク 9 0 からアルゴンの 補給が行われる。
精留塔 7 0 の運転圧力を高く する場合、 循環ガスサイ ク ル の作業流体の作動圧力も高く する必要がある。 作業流体と し てアルゴンを使用する と、 常圧におけるアルゴンの沸点が窒 素よ り も約 1 0 °C高いので、 窒素ガス と比べて低い作動圧力 を使用するこ とができ る。 従って、 汎用的なコンプレッサの 使用が可能になる。 なお、 精留塔 7 0 の運転圧力を上げれば、 場合によ り 、 製品アルゴン用のコンプレッサ 2 4 を省略する こ と もでき る。
なお、 図 3 に示す様に、 主熱交換器 6 0 、 精留塔 7 0 、 ァ ルゴンコンデンサ 8 0 、 リ ボイ ラ 2 1 及び水素セノヽ ° レ一タ 2 2 を、 共通の真空容器 ( 「コール ドボックス」 と呼ばれる) の中に収容して一つのュニ ッ ト と して統合すれば、 外部に対 する断熱効果が高ま り 、 システム全体のエネルギー効率を向 上させる こ とができ る。 なお、 このコ一ル ドボックスの中に、 精留塔 7 0 で必要と される冷熱の補給、 及び高純度アルゴン ガスの不足分の補給のために供給される高純度液体ァルゴン を蓄えるタンク 9 0 を収容する こ と もでき る。 更に、 予備精 製ュニッ ト 3 0 、 冷却ュニッ ト 4 0及び除炭乾燥ュニッ ト 5 0 などを、 コンプレッサ 1 5 、 2 3 、 2 4 と と もに、 他の一 つのュニ ッ ト の中に統合すれば、 システム全体をコ ンパク ト 化するこ とができる。 こ の様にュニ ッ ト化を行えば、 現地ェ 事期間を短縮する こ とができ る。 本発明のプロセスは、 必要に応じて様々な変形が可能であ る。 例えば、 図 1 あるレ、は図 2 に示したフローチャー トは、 真空ポンプ 1 2 と してメ カニカルシール等の ドライ タイプの ものを使用する場合に相当する ものであるが、 真空ポンプ 1 2 と してオイルシールタイプのものを使用する場合、 真空ポ ンプ 1 2 の後、 予備精製ユニッ ト 6 0 の前に、 炭化水素 ( C n H m ) の内、 ペンタン ( C 5 + ) 以上の重質成分を除去す る設備を追加するなどによ り 、 除炭乾燥ュニッ ト 5 0 におけ る吸着剤を閉塞を防止する必要がある。
本発明のアルゴン精製方法によれば、 アルゴンを主成分と するアルゴン排ガスに含まれる不純物の内、 先ず、 沸点がァ ルゴン (沸点 : 一 1 8 6 °C ) に非常に近い C〇 (沸点 : 一 1 9 2 °C ) を酸化して C〇 2に変え、 次いで、 同 じ く 沸点がァ ノレゴンに非常に近レ、〇 2 (沸点 : 一 1 8 3 °C ) を水に変え、 両者を冷却ユニッ ト及び除炭乾燥手段で取り除く 。 その後、 不純物と して主に N 2 (沸点 : 一 1 9 6 °C ) 、 H 2 (沸点 : 一 2 5 3 。C ) 及び C H 4 (沸点 : — 1 6 2。C ) を含むアルゴ ン (デォキソアルゴン) を精留塔に導入して、 N 2 、 H 2及 び C H 4の除去を行う。 アルゴンの沸点と これらの不純物の 沸点との差が大きいので、 精留塔において、 比較的、 容易に アルゴンからこれらの不純物を分離する こ とができ る c
本発明のアルゴン精製方法によれば、 従来の様な C H 4 な どの炭化水素類を酸化して除去する方法と比較して、 アルゴ ン排ガスに添加される酸素の量を少量に抑える こ とができ る。 また、 反応促進のための加熱の必要がない。 従って、 本発明のアルゴン精製方法によれば、 比較的、 簡 便な工程で、 しかも少ないエネルギー消費でアルゴン排ガス の精製を行う こ とができ る。

Claims

請求の範囲
1 . 少なく と も、 窒素、 一酸化炭素、 酸素及びメ タ ンを含 有するアルゴンガスを精製して高純度アルゴンを得るアルゴ ン精製方法であって、
前記アルゴンガス に空気又は酸素を添加し、 含有される一 酸化炭素を触媒下で酸化して二酸化炭素に変える第一工程と、 第一工程を経たアルゴンガスに水素を添加し、 含有される 酸素と水素と を触媒下で反応させて水に変える第二工程と、 第二工程を経たァルゴンガスから、 吸着剤を用いて二酸化 炭素及び水を除去する第三工程と、
第三工程を経たアルゴンガスを冷却した後、 精留塔に導入 し、 アルゴンを主成分とする還流液を用いて精留を行って、 窒素、 水素、 メ タンを除去し、 高純度アルゴンガスを回収す る第四工程と、
を備えたこ とを特徴とするアルゴン精製方法。
2 . 少なく と も、 窒素、 一酸化炭素、 酸素及びメ タ ンを含 有するアルゴンガスを精製して高純度アルゴンを得るアルゴ ン精製方法であって、
前記アルゴンガスに空気又は酸素を添加し、 含有される一 酸化炭素を触媒下で酸化して二酸化炭素に変える第一工程と、 第一工程を経たアルゴンガスに水素を添加し、 含有される 酸素と水素と を触媒下で反応させて水に変える第二工程と、 第二工程を経たアルゴンガスから、 吸着剤を用いて二酸化 炭素及び水を除去する第三工程と、
第三工程を経たアルゴンガスを冷却し、 ァルゴンの大部分 を液化する と と もに、 水素が濃縮されたアルゴンガスを分離 して除去する第四工程と、
前記第四工程において液化されたアルゴンを精留塔に導入 し、 アルゴンを主成分とする還流液を用いて精留を行って、 窒素、 水素、 メ タ ンを除去し、 高純度アルゴンガスを回収す る第五工程と、
を備えたこ と を特徴とするアルゴン精製方法。
3 . 前記精留塔の精留部は、 上段部、 中段部、 下段部から 構成され、 前記液化されたアルゴンを上段部と中段部の間に 導入し、 前記精留塔の頂部から窒素及び水素が濃縮されたァ ルゴンガスを分離し、 前記精留塔の底部からメ タンが濃縮さ れた液体アルゴンを分離し、 前記高純度アルゴンガスを中段 部と下段部の間から回収する こ とを特徴とする請求項 2 に記 載のアルゴン精製方法。
4 . 前記精留塔に外部から高純度液体アルゴンを供給する こ と によって、 精留工程において必要と される冷熱の一部を 補う こ と を特徴とする請求項 1 から請求項 3 のいずれかに記 載のアルゴン精製方法。
5 . 前記精留塔の底部に溜まった液体ァルゴンを加熱して リ ボイルガスを発生させ、 次いで、 前記精留塔の頂部に溜ま つたアルゴンガスを冷却して還流液を生成するための循環ガ スサイ ク ルの作業流体と してアルゴンを使用するこ とを特徴 とする請求項 1 から請求項 3 のいずれかに記載のアルゴン精 製方法。
6 . 少なく と も、 窒素、 一酸化炭素、 酸素及びメ タ ンを含 有するアルゴンガスを精製して高純度アルゴンを得るアルゴ ン精製装置であって、
前記アルゴンガスに空気又は酸素を添加し、 含有される一 酸化炭素を触媒下で酸化して二酸化炭素に変える一酸化炭素 酸化塔と、
前記一酸化炭素酸化塔から出たアルゴンガスを導入し、 水 素を添加して、 含有される酸素と水素と を触媒下で反応させ て水に変えるデォキ ソ塔、
前記デォキソ塔から出たアルゴンガスを導入し、 吸着剤を 用いて二酸化炭素及び水を除去する吸着塔と、
前記吸着塔から出たアルゴンガスを導入し、 これを冷却す る主熱交換器と、
前記主熱交換器から出た冷却されたアルゴンを導入し、 ァ ルゴンを主成分とする還流液を用いて精留を行い、 窒素、 水 素、 メ タ ンを除去し、 高純度アルゴンガスを回収する精留塔 と、
を備えたこ と を特徴とするァルゴン精製装置。
7 . 少なく と も、 窒素、 一酸化炭素、 酸素及びメ タ ンを含 有するアルゴンガスを精製して高純度アルゴンを得るアルゴ ン精製装置であって、
前記アルゴンガス に空気又は酸素を添加し、 含有される一 酸化炭素を触媒下で酸化して二酸化炭素に変える一酸化炭素 酸化塔と、
前記一酸化炭素酸化塔から出たアルゴンガスを導入し、 水 素を添加して、 含有される酸素と水素と を触媒下で反応させ て水に変えるデォキソ塔、
前記デォキソ塔から出たアルゴンガスを導入し、 吸着剤を 用いて二酸化炭素及び水を除去する吸着塔と、
前記吸着塔から出たアルゴンガスを導入し、 これを冷却し てその大部分を液化する主熱交換器と、
前記主熱交換器から出た気液混合物を導入し、 水素が濃縮 されたアルゴンガスと、 液体ァルゴンと に分離する気液分離 器と、
前記気液分離器から出た液体アルゴンを導入し、 アルゴン を主成分とする還流液を用いて精留を行い、 窒素、 水素、 メ タ ンを除去し、 高純度アルゴンガスを回収する精留塔と、 を備えたこ とを特徴とするアルゴン精製装置。
8 . 前記精留塔の精留部は、 上段部、 中段部、 下段部から 構成され、 前記気液分離器から出た液体アルゴンは、 上段部 と中段部の間に導入され、 前記精留塔の頂部から窒素及び水 素が濃縮されたァルゴンガスが分離され、 前記精留塔の底部 か ら メ タ ンが濃縮された液体ァルゴンが分離され、 前記高純 度アルゴンガスは、 中段部と下段部の間から回収されるこ と を特徴とする請求項 7 に記載のアルゴン精製装置。
9 . 高純度液体アルゴンタ ンク を備え、 こ の高純度液体ァ ルゴンタンクから前記精留塔に高純度液体ァルゴンを供給す るこ と によって、 精留工程において必要と される冷熱の一部 を補う こ と を特徴とする請求項 6から請求項 8 のいずれかに 記載のアルゴン精製装置。
1 0 . 前記主熱交換器及び前記精留塔を含む低温部を一体 の断熱容器の中に収容する と と もに、 前記一酸化炭素酸化塔、 前記デォキソ塔及び前記吸着塔を含む常温部を一体の枠組み の中に収容したこ と を特徴とする請求項 6から請求項 8のい ずれかに記載のアルゴン精製装置。
1 1 . 前記主熱交換器、 前記精留塔及び前記高純度液体ァ ルゴンタンク を含む低温部を一体の断熱容器の中に収容する と と もに、 前記一酸化炭素酸化塔、 前記デォキソ塔及び前記 吸着塔を含む常温部を一体の枠組みの中に収容したこ とを特 徴とする請求項 9 に記載のアルゴン精製装置。
PCT/JP1998/003977 1997-09-04 1998-09-04 Procede et appareil de purification de l'argon WO1999011437A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/297,632 US6123909A (en) 1997-09-04 1998-09-04 Method and apparatus for purification of argon
EP98941722A EP0956928A4 (en) 1997-09-04 1998-09-04 ARGON PURIFICATION PROCESS AND APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9239616A JPH1183309A (ja) 1997-09-04 1997-09-04 アルゴン精製方法及び装置
JP9/239616 1997-09-04

Publications (1)

Publication Number Publication Date
WO1999011437A1 true WO1999011437A1 (fr) 1999-03-11

Family

ID=17047387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003977 WO1999011437A1 (fr) 1997-09-04 1998-09-04 Procede et appareil de purification de l'argon

Country Status (7)

Country Link
US (1) US6123909A (ja)
EP (1) EP0956928A4 (ja)
JP (1) JPH1183309A (ja)
KR (1) KR20000068908A (ja)
CN (1) CN1237124A (ja)
TW (1) TW453974B (ja)
WO (1) WO1999011437A1 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10014650A1 (de) * 2000-03-24 2001-10-04 Wacker Siltronic Halbleitermat Halbleiterscheibe aus Silicium und Verfahren zur Herstellung der Halbleiterscheibe
KR100879867B1 (ko) * 2002-09-02 2009-01-22 주식회사 포스코 알곤설비의 수소유량 제어방법
US6838066B2 (en) * 2002-09-13 2005-01-04 Air Products And Chemicals, Inc. Process for recovery, purification, and recycle of argon
US6991671B2 (en) * 2002-12-09 2006-01-31 Advanced Technology Materials, Inc. Rectangular parallelepiped fluid storage and dispensing vessel
JP4187599B2 (ja) * 2003-07-03 2008-11-26 東京エレクトロン株式会社 減圧処理装置及び減圧処理方法並びに圧力調整バルブ
US7501009B2 (en) * 2006-03-10 2009-03-10 Air Products And Chemicals, Inc. Combined cryogenic distillation and PSA for argon production
JP4611924B2 (ja) * 2006-03-29 2011-01-12 株式会社日立プラントテクノロジー 水素圧縮機システム
US7645431B2 (en) 2007-10-23 2010-01-12 Air Products And Chemicals, Inc. Purification of noble gases using online regeneration of getter beds
DE102009003350C5 (de) 2009-01-14 2017-02-09 Reicat Gmbh Verfahren und Vorrichtung zur Abtrennung von Argon aus einem Gasgemisch
JP5101540B2 (ja) * 2009-02-03 2012-12-19 住友精化株式会社 アルゴン精製方法およびアルゴン精製装置
JP5134588B2 (ja) * 2009-06-12 2013-01-30 住友精化株式会社 アルゴン精製方法、アルゴン精製装置、目的ガス精製方法、および目的ガス精製装置
DE102009044249B3 (de) * 2009-10-14 2011-06-30 ReiCat GmbH, 63571 Verfahren und Vorrichtung zur Abtrennung von Argon aus einem Gasgemisch
TWI476038B (zh) * 2010-02-10 2015-03-11 Sumitomo Seika Chemicals 氬氣之純化方法及純化裝置
EA023919B1 (ru) * 2010-03-31 2016-07-29 Ортлофф Инджинирс, Лтд. Переработка углеводородного газа
JP5748272B2 (ja) * 2010-07-07 2015-07-15 住友精化株式会社 ヘリウムガスの精製方法および精製装置
JP5683390B2 (ja) * 2010-07-08 2015-03-11 住友精化株式会社 ヘリウムガスの精製方法および精製装置
KR20120046008A (ko) * 2010-10-29 2012-05-09 스미또모 세이까 가부시키가이샤 아르곤 가스의 정제 방법 및 정제 장치
JP2012140254A (ja) * 2010-12-28 2012-07-26 Covalent Materials Corp 不活性ガス回収装置
CN102602899B (zh) * 2011-01-21 2015-04-01 住友精化株式会社 氦气的纯化方法及纯化装置
CN102807199B (zh) * 2011-05-30 2015-04-29 住友精化株式会社 氩气的提纯方法及提纯装置
JP5761751B2 (ja) * 2011-05-30 2015-08-12 住友精化株式会社 アルゴンガスの精製方法および精製装置
WO2013085907A1 (en) * 2011-12-07 2013-06-13 Praxair Technolgy, Inc. Inert gas recovery and recycle for silicon crystal growth pulling process
JP5745434B2 (ja) * 2012-01-31 2015-07-08 住友精化株式会社 アルゴンガスの精製方法および精製装置
CN102583281B (zh) * 2012-03-23 2014-01-29 杭州杭氧股份有限公司 单晶硅生产中氩气回收纯化的方法与装置
JP5896467B2 (ja) * 2012-08-09 2016-03-30 住友精化株式会社 アルゴンガスの精製方法および精製装置
RU2015130628A (ru) * 2012-12-27 2017-01-30 Линде Акциенгезелльшафт Способ и устройство для низкотемпературного разделения воздуха
US9644890B2 (en) 2013-03-01 2017-05-09 Praxair Technology, Inc. Argon production method and apparatus
JP5991330B2 (ja) * 2014-01-29 2016-09-14 信越半導体株式会社 シリコン単結晶製造装置からのアルゴンガス回収精製方法及びアルゴンガス回収精製装置
KR101890531B1 (ko) * 2017-06-19 2018-08-21 주식회사 포스코 액체공기 재활용장치가 구비된 공기분리시스템
CN109506419A (zh) * 2017-09-15 2019-03-22 修国华 用于生产液氩和/或氩气产品的方法和系统
KR102092716B1 (ko) * 2017-12-07 2020-03-24 주식회사 포스코 공기분리설비
DE102018006002B3 (de) * 2018-07-28 2019-11-07 Messer Group Gmbh Verfahren zum Wiederverwerten von Argon
DE102018122312A1 (de) * 2018-09-12 2020-03-12 Air Liquide Deutschland Gmbh Anordnung und Verfahren zum Bereitstellen eines Gases wie eines Zerstäubergases zum Erzeugen eines Pulvers an einem Verwendungsort
CN110207460A (zh) * 2019-07-10 2019-09-06 上海联风能源科技有限公司 一种集成高纯氮和氩气的回收装置及其回收方法
CN114674115B (zh) * 2022-04-02 2023-05-16 珠海森铂低温能源装备有限公司 一种液化天然气bog闪蒸气提取高纯氦的系统与方法
CN116657239B (zh) * 2023-08-01 2023-10-20 上海联风气体有限公司 一种单晶炉氩气回收设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189774A (ja) 1987-01-30 1988-08-05 住友金属工業株式会社 Arガスの回収方法
JPH01230975A (ja) 1988-03-08 1989-09-14 Sumitomo Metal Ind Ltd Arガスの回収方法
JPH02272288A (ja) 1989-04-12 1990-11-07 Sumitomo Metal Ind Ltd アルゴンの回収方法
JPH02282682A (ja) 1989-04-21 1990-11-20 Nippon Sanso Kk アルゴンの回収方法
JPH0339886A (ja) 1989-07-07 1991-02-20 Nippon Sanso Kk アルゴンの回収方法
JPH0412393A (ja) 1990-05-01 1992-01-16 Sharp Corp 液晶表示装置
JPH0529834A (ja) 1991-06-29 1993-02-05 Samsung Electron Co Ltd 超高周波発振器の寄生信号抑制回路
JPH05256570A (ja) 1992-03-12 1993-10-05 Sumitomo Metal Ind Ltd Arガスの回収方法
JPH06194035A (ja) * 1992-09-16 1994-07-15 L'air Liquide 空気精留のような低温処理装置
JPH06347164A (ja) * 1993-06-03 1994-12-20 L'air Liquide 空気精留設備
JPH0972656A (ja) * 1995-09-05 1997-03-18 Teisan Kk アルゴン精製方法及び装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB901580A (en) * 1960-07-04 1962-07-18 Texaco Development Corp Process for the recovery of argon in the production of ammonia synthesis gas
US3181306A (en) * 1961-01-11 1965-05-04 Air Prod & Chem Argon separation
JPS60155881A (ja) * 1984-01-25 1985-08-15 株式会社日立製作所 シリコン炉からのアルゴン回収装置
US4579723A (en) * 1985-03-28 1986-04-01 The Boc Group, Inc. Methods for purifying inert gas streams
US5706674A (en) * 1997-01-17 1998-01-13 Air Products And Chemicals, Inc. Argon recovery from silicon crystal furnace

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189774A (ja) 1987-01-30 1988-08-05 住友金属工業株式会社 Arガスの回収方法
JPH01230975A (ja) 1988-03-08 1989-09-14 Sumitomo Metal Ind Ltd Arガスの回収方法
JPH02272288A (ja) 1989-04-12 1990-11-07 Sumitomo Metal Ind Ltd アルゴンの回収方法
JPH02282682A (ja) 1989-04-21 1990-11-20 Nippon Sanso Kk アルゴンの回収方法
JPH0339886A (ja) 1989-07-07 1991-02-20 Nippon Sanso Kk アルゴンの回収方法
JPH0412393A (ja) 1990-05-01 1992-01-16 Sharp Corp 液晶表示装置
JPH0529834A (ja) 1991-06-29 1993-02-05 Samsung Electron Co Ltd 超高周波発振器の寄生信号抑制回路
JPH05256570A (ja) 1992-03-12 1993-10-05 Sumitomo Metal Ind Ltd Arガスの回収方法
JPH06194035A (ja) * 1992-09-16 1994-07-15 L'air Liquide 空気精留のような低温処理装置
JPH06347164A (ja) * 1993-06-03 1994-12-20 L'air Liquide 空気精留設備
JPH0972656A (ja) * 1995-09-05 1997-03-18 Teisan Kk アルゴン精製方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0956928A4

Also Published As

Publication number Publication date
EP0956928A4 (en) 2001-06-13
JPH1183309A (ja) 1999-03-26
CN1237124A (zh) 1999-12-01
US6123909A (en) 2000-09-26
TW453974B (en) 2001-09-11
KR20000068908A (ko) 2000-11-25
EP0956928A1 (en) 1999-11-17

Similar Documents

Publication Publication Date Title
WO1999011437A1 (fr) Procede et appareil de purification de l'argon
JP3277340B2 (ja) 半導体製造工場向け各種ガスの製造方法及び装置
JP3020842B2 (ja) アルゴン精製方法及び装置
WO1986000694A1 (en) Apparatus for producing high-purity nitrogen gas
JP2000088455A (ja) アルゴンの回収精製方法及び装置
CN110803689A (zh) 一种精馏法去除一氧化碳并集成高纯氮的氩气回收方法和装置
JP3306517B2 (ja) 空気液化分離装置及び方法
JP2636949B2 (ja) 改良された窒素発生器
US20140165648A1 (en) Purification of inert gases to remove trace impurities
JPH1163810A (ja) 低純度酸素の製造方法及び装置
CN212842470U (zh) 一种带循环的单塔低温精馏回收氩气系统
JPH11228116A (ja) アルゴンの回収精製方法及び装置
CN211290725U (zh) 一种集成高纯氮和氩气的回收装置
JPH02282682A (ja) アルゴンの回収方法
CN111637684A (zh) 一种带循环的单塔低温精馏回收氩气系统及方法
JP3325805B2 (ja) 空気分離方法および空気分離装置
JP4242507B2 (ja) 超高純度ガスの製造方法及び製造装置
US20140165649A1 (en) Purification of inert gases to remove trace impurities
CN211290724U (zh) 一种集成高纯氮气和氩气的回收系统
CN211198612U (zh) 一种精馏法去除一氧化碳并集成高纯氮的氩气回收装置
JP3466437B2 (ja) 空気分離装置
JP2955864B2 (ja) 高純度酸素の製造方法
JP2002115965A (ja) レアガスの回収方法
JP2000018813A (ja) 窒素製造方法及び装置
JPH1137643A (ja) 空気分離方法および空気分離装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98801269.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019997003971

Country of ref document: KR

Ref document number: 09297632

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998941722

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 1999 297632

Country of ref document: US

Date of ref document: 19990602

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1998941722

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997003971

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998941722

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019997003971

Country of ref document: KR