WO1999010939A2 - A method of manufacturing a field-effect transistor substantially consisting of organic materials - Google Patents
A method of manufacturing a field-effect transistor substantially consisting of organic materials Download PDFInfo
- Publication number
- WO1999010939A2 WO1999010939A2 PCT/IB1998/001144 IB9801144W WO9910939A2 WO 1999010939 A2 WO1999010939 A2 WO 1999010939A2 IB 9801144 W IB9801144 W IB 9801144W WO 9910939 A2 WO9910939 A2 WO 9910939A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- organic
- electrically insulating
- electrode layer
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/468—Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/464—Lateral top-gate IGFETs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
Definitions
- a method of manufacturing a field-effect transistor substantially consisting of organic materials is a method of manufacturing a field-effect transistor substantially consisting of organic materials.
- the invention relates to a method of manufacturing a field-effect transistor substantially consisting of organic materials.
- the invention also relates to a field-effect transistor substantially consisting of organic materials.
- the invention further relates to an integrated circuit (IC) comprising such a field-effect transistor (FET).
- IC integrated circuit
- FET field-effect transistor
- An integrated circuit comprising field-effect transistors substantially consisting of organic materials, in short organic field-effect transistors, is well suited for those electronic applications where using an integrated circuit manufactured using silicon technology would be prohibitively expensive. Examples include electronic bar codes.
- each individual field-effect transistor must be operated in a saturated regime, which is the regime where the channel transconductance exceeds the channel conductance.
- a method of the type mentioned in the opening paragraph, which provides an organic FET satisfying said condition for voltage amplification is known from an article by Gamier et al. published in Science, vol. 265 (1994), pp. 1684-1686.
- a 1.5 ⁇ m thick polyester film is framed and is printed on both sides with a graphite- filled polymer ink, so as to form a 10 ⁇ m thick gate electrode on the one side and a source and drain electrode on the other side.
- a 40 nm semiconducting sexithiophene layer is then deposited using flash evaporation.
- a disadvantage of the known method is that the organic FETs provided by the method satisfy the condition for voltage amplification only at rather high (negative) source drain voltages. Typically, the difference is 30 V or higher. For many electronic applications, such as battery operated applications, such a voltage is too high. Also, the method is not very practical, not least because it involves framing and printing on a layer of only 1.5 ⁇ m. Such a thin film is very fragile and easily ruptures while being handled, leading to a defective device.
- An object of the invention is, inter alia, to provide a novel method of manufacturing a field-effect transistor substantially consisting of organic materials. The novel method should enable, in a practical manner, the manufacture of an organic FET satisfying the condition of voltage amplification at a source drain voltage difference significantly less than 30 V, in particular less than 10 V.
- the object of the invention is achieved by a method of manufacturing a field-effect transistor substantially consisting of organic materials on a substrate surface, said method comprising the steps of: - providing an electrically insulating substrate surface,
- the invention is based on the insight that a very thin electrically insulating layer, that is a layer having a thickness of 0.3 ⁇ m or less, is required if an organic FET is to satisfy the condition of voltage amplification at a source drain voltage difference of less than 10 V. It is further based on the insight that such a thin insulating layer can only be obtained in a practical manner if (in contrast to the known method in which the insulating layer is used as a substrate for depositing the electrodes) the thin insulating layer is supported by a substrate throughout the manufacture of the FET. Most conveniently, the insulating layer is applied to a surface which is substantially planar.
- the first electrode layer in the form of a patchwork pattern of electrically insulating and conducting areas provides a substantially planar surface (the difference in thickness between the insulating and conducting areas being 0.05 ⁇ m or less).
- the method in accordance with the invention is simple and cost effective.
- the first and second electrode layer, as well as the insulating and semiconducting layer, can be, and preferably are, all applied from solution using coating techniques known per se, such as spin-coating, dip-coating, spray-coating, curtain-coating, silkscreen-printing. offset-printing, Langmuir Blodgett and the doctor blade technique.
- the field-effect transistor obtained by employing the method in accordance with the invention operates in the usual manner.
- the semiconducting layer comprises an area, the channel, which interconnects the source and the drain electrode.
- the gate electrode is electrically insulated from the channel by means of the insulating layer and overlaps the channel. If a voltage is applied between the source and drain electrode, a current, i.e.
- the source drain current will flow through the channel.
- a gate voltage By applying a gate voltage, an electric field is established across the semiconducting layer which will, depending on the polarity of both the gate voltage and the charge carriers, modify the free charge carrier distribution in the channel, thereby changing the resistivity of the channel and the source drain current. If the source drain voltage is increased while the gate voltage is kept constant, the source drain current will begin to saturate and at some point the condition of voltage amplification, i.e. the channel transconductance exceeding the channel conductance, is satisfied.
- the first electrode layer comprises electrically insulating and conducting areas, which may be of any convenient shape.
- the source and drain electrode are accommodated by separate conducting areas. In order to increase the channel width, thus allowing more current between source and drain, the source and drain electrode are preferably interdigitated.
- the sheet resistance of the insulating areas needs to be as high as possible.
- a suitable sheet resistance exceeds 10 10 ⁇ /square, or better 10 12 ⁇ /square or better still 10 13 ⁇ /square.
- the specific conductivity of the conducting areas of the electrode layer is chosen such that the source drain current is substantially determined by the resistivity of the channel.
- a suitable specific conductivity of the conducting areas is 0.1 S/cm or better 1 S/cm or better still more than 10 S/cm.
- Applying the patchwork patterned first electrode layer is for example done by applying a semiconducting polymer in an insulating state from solution, applying and patterning a photoresist layer photolithographically and introducing conducting areas by selective indiffusion of a dopant which converts locally the polymer from its insulating to a conducting state.
- the patchwork patterned first electrode layer is applied without using the elaborate technique of photolithography.
- the organic first electrode is applied by performing the method steps of
- a radiation-sensitive layer comprising an electrically conducting polyaniline and a photochemical radical initiator.
- a layer may be rendered radiation insensitive by a simple heat treatment at for example 110 °C. This property is very advantageous if an IC is to be manufactured, especially if multi level interconnects are required, for it allows the second (and any further) electrode layer to be patchwork patterned employing the same radiation-sensitive composition and method steps without the pattern of the first electrode layer being affected by the radiation employed in providing said second electrode layer.
- Suitable semiconducting layers comprise organic compounds having an extensive conjugated system of double and/or triple bonds such as conjugated polymers (in the context of the invention, the term polymer includes oligomer) and fused (heterosubstituted) polycyclic hydrocarbons. Examples include polypyrroles, polyphenylenes, polythiophenes, polyphenylenevinylenes, poly(di)acetylenes, polyfuranes and polyanilines. As known by those skilled in the art, such compounds may be rendered semiconducting by doping with an oxidizing agent, reducing agent and/or (Bronsted) acid. It may happen that the method of preparing the semiconducting compound is such that the compound is obtained in the semiconducting state without explicitly adding a dopant, in which case the compound is said to be unintentionally doped.
- the semiconducting layer may swell or even dissolve into the subsequent layer before the solvent is removed, thus ruining the definition of the interface.
- an insoluble semiconducting compound obtainable from a soluble precursor compound. Examples of such compounds, viz. a polythienylenevinylene and a pentacene, are described in a publication by Brown et al. in Science, vol. 270, (1995), pp. 972-974.
- an organic electrically insulating layer is applied which electrically insulates the gate electrode from the semiconducting layer.
- the electrically insulating layer preferably has a high capacitance so as to induce a large current between source and drain using a low gate voltage which is accomplished by using a material with a large dielectric constant and/or a small layer thickness.
- the thickness of the insulating layer is preferably more than 0.05 ⁇ m.
- a preferred embodiment of the method in accordance with the invention is therefore characterized in that the organic electrically insulating layer comprises a cross-linked polymer.
- a cross-linkable polymer which has been found very effective is a polyvinylphenol. It can be cross-linked by adding a cross-linking agent such as hexamethoxymethylenemelamine and heating.
- the organic FET is completed by applying a second electrode layer accommodating a gate electrode.
- the insulating layer already being in place, the (variation in) layer thickness and the deposition process is less critical.
- the second electrode layer can be suitably applied using the method disclosed in the article by Garnier et al. cited hereinabove, that is, printing of a graphite filled polymer ink.
- a method of manufacturing the organic FET which is more economical and allows a higher resolution, results if the second electrode is applied in the same manner as the first electrode layer.
- the method involves providing an electrically insulating substrate surface.
- the surface should be planar and smooth.
- Suitable substrates are ceramics, glass, silica or, preferably, (laminated) polymer foils such as polystyrene, polyamide, polyamide and polyester foils. If a first electrode layer comprising conductive polyaniline and a photochemical radical initiator is applied, the substrate surface preferably comprises (cross- linked) polyvinylphenol or polyvinylalcohol.
- a preferred embodiment of the method in accordance with the invention is the method according to Claim 5.
- This method has been found particularly suitable in that each time a subsequent layer is applied from solution, swelling or dissolution of the preceding layer does not occur.
- the method moreover allows FETs having a channel length as small as 1 to 2 ⁇ m to be produced in a reliable and practical manner.
- a field-effect transistor manufactured using the method in accordance the invention is operated for a long time (for minutes to hours) at high source drain voltage differences, there is a risk that the performance of the FET deteriorates to the extent that it does no longer satisfy the condition for voltage amplification at voltages below 10 V.
- a preferred embodiment of the method in accordance with the invention is characterized in that before the semiconducting layer is applied, the electrically insulating areas of the first electrode layer are removed, thereby forming a first electrode layer demonstrating a relief pattern of conducting areas.
- the first electrode layer comprises polyaniline
- removal can be achieved, for example, by dissolving selectively the electrically insulating areas in N- methylpyrrolidone.
- the presence of a relief pattern does not lead to a dramatic increase in leakage current or short circuits between the source (drain) and gate electrode. At least this is found to be the case if the thickness of the first electrode layer is chosen to be smaller than the thickness of the insulating layer.
- a relief pattern satisfying this criterion provides a surface which is more or less planar from the viewpoint of the capability of said surface to serve as a substrate surface onto which a very thin insulating layer can be applied in a practical manner.
- the FET obtained by employing (preferred embodiments of) the method in accordance with the invention is a top gate field-effect transistor.
- the method in accordance with the invention is simply modified in that the gate electrode is accommodated by the first and the source and drain electrodes are accommodated by the second electrode layer, and the semiconducting and electrically insulating layer are applied in reverse order.
- Yet another bottom gate FET is obtained if the method of manufacturing the bottom gate FET is modified in that the second electrode and semiconducting layer are applied in reverse order.
- the invention also relates to a field-effect transistor substantially consisting of organic materials, that is a field-effect transistor comprising a stack of: an organic first electrode layer accommodating a source and drain electrode and demonstrating a relief pattern of electrically conducting areas, an organic semiconducting layer, an organic electrically insulating layer, and an organic second electrode layer accommodating a gate electrode.
- the field-effect transistor is therefore characterized in that the thickness of the electrically insulating layer is greater than the thickness of the first and/or second electrode layer and less than 0.3 ⁇ m. It is clear that applying a 0.3 ⁇ m layer on a 0.3 ⁇ m topography results in an insulating layer which is neither planar nor planarized. Surprisingly, the use of planarised insulating layers appears to be superfluous.
- Short circuits are substantially absent if the surface defined by the first and/or second electrode layer has a topography smaller than the layer thickness of the insulating layer to be applied to that surface.
- the insulating layer should have a thickness less than 0.3 ⁇ m. Since the insulating layer may be far from planar, the layer thickness is defined as the thickness that would have been obtained if, using the same method, it had been applied onto a planar surface.
- JP-A- 1-259563 a field-effect transistor substantially consisting of organic materials is disclosed.
- Said document does not disclose a method of manufacturing such a device, let alone a practical method producing a field-effect transistor which satisfies the condition for voltage amplification below a source drain voltage of 10 V.
- the known field-effect transistor does not have a patchwork patterned electrode layer and the thickness of the planarized insulating layer is not specified.
- the invention also relates to an integrated circuit comprising a field-effect transistor in accordance with the invention or a field-effect transistor obtainable by a method in accordance with the invention.
- Changing the pattern of the first and second electrode layer is all that needs to be done if not just one but a plurality of organic FETs is to be produced on a single substrate surface.
- Fig. 1 schematically shows a transparent plan view of a field-effect transistor manufactured using the method in accordance with the invention
- Fig. 2 schematically shows a cross-sectional view taken on the line I-I in Fig. 1, and
- Fig. 3 shows a graph of the relationship between the source drain voltage V sd (in V) and the source drain current I sd (in nA) at specified gate voltages V (in V) of a field-effect transistor manufactured using the method in accordance with the invention when subjected to a source drain voltage sweep from 0 to -10 V and back.
- Fig. 1 schematically shows (not drawn to scale) a transparent plan view of a (part of a) field-effect transistor 1 manufactured using the method in accordance with the invention.
- Fig. 2 schematically shows (not drawn to scale) the field-effect transistor 1 in a cross-sectional view taken on the line I-I in Fig. 1.
- the field-effect transistor 1 comprises an electrically insulating substrate 2 on which is provided an organic first electrode layer 3 demonstrating a patchwork pattern of electrically insulating areas 31 and conducting areas 32 and 33.
- the conductive area 32 accommodates the source and the area 33 the drain electrode.
- the organic semiconducting layer 4 comprises a channel 41 (drawn so as to indicate the definition of channel length and width), of which the channel length L is indicated by reference number 411 and the channel width W by reference number 412. Covering the layer 4 and thus the channel 41 is the organic electrically insulating layer 5. It electrically insulates the gate electrode from the channel 41 , said gate electrode being accommodated by the electrically conducting area 62 of the second electrode layer 6.
- the layer 6 is a layer demonstrating a patchwork pattern of electrically insulating areas 61 and conducting areas 62.
- the field- effect transistor 1 may be manufactured as follows: A) preparation of a conducting polyaniline solution
- Emeraldine base polyaniline (Neste) (0.7 g, 7.7 mmol) and camphor sulphonic acid (Janssen) (0.8 g, 3.4 mmol) are ground together with a mortar and pestle in a nitrogen-filled glove box.
- the mixture is split in two and placed in two 30 ml polyethylene bottles each containing 30 g m-cresol and three agate balls (0.9 mm diameter). These are placed in a shaker (Retsch MM2) operating at full speed for 14 to 18 hours.
- the contents of the bottles are combined and then sonified for 5 minutes.
- the mixture is cooled to room temperature and then the sonification process is repeated. This mixture is then centrifuged at 12500 rpm for 2 hours.
- the conducting polyaniline solution thus obtained is pipetted off leaving any solids at the bottom of the centrifuge tubes.
- a quantity of 10.0 g (0.028 mol) 2.5-thienylenedimethylene- bis(tetrahydrothiophenium chloride) (supplier Syncom BV, Groningen, The Netherlands) is dissolved in 100 ml of a 2/1 v/v mixture of methanol and demineralised water and cooled to -22 T in a nitrogen environment. Pentane (120 ml) is added and then sodium hydroxide (1.07 g, 0.0268 mol) dissolved in 100 ml of a 2/1 v/v mixture of methanol and demineralised water and cooled to -22 °C is added instantaneously to the stirred monomer solution kept at -22 °C.
- a 65 ⁇ polyamide foil (supplier Sellotape) is secured on a 3 inch silicon wafer.
- the photochemical radical initiator 1-hydroxycyclohexyl phenyl ketone (tradename Irgacure 184, Ciba Geigy) is added 6 g of the conducting polyaniline solution prepared under A. After mixing well and sonifying twice for 1 min and cooling in between, the radiation-sensitive solution thus obtained is cooled and filtered (Millex FA, 1 ⁇ m). A radiation-sensitive layer is then formed by spin-coating (3 s/500 rpm, 7 s/2000 rpm) 1 ml of the radiation-sensitive solution on the polyvinylphenol coated surface of the substrate 2, and drying on a hotplate (2 min at 90 °C).
- the wafer is placed in a Karl Suss MJB3 aligner equipped with a 500 W Xe lamp and flushed with nitrogen for 3 min.
- the radiation-sensitive layer is irradiated via the mask with deep UV light (60 s, 20 mW/cm 2 at 240 nm), thereby forming a first electrode layer 3 demonstrating a patchwork pattern of irradiated areas 31 and non- irradiated areas 32 and 33.
- the wafer is then heated on a hotplate (3 min at 110°C, 1 min at 150°C) so as to remove the unreacted photochemical radical initiator.
- the layer 3 is now insensitive to the deep UV light used in the irradiation and substantially planar, the thickness of the irradiated areas being 0.25 ⁇ m, and of the non-irradiated areas 0.22 ⁇ m.
- the sheet resistance of the area 31 is 4 x 10 13 ⁇ /square (conductivity 10 "9 S/cm), of the areas 32 and 33 it is 760 ⁇ /square (conductivity 60 S/cm).
- 3 ml precursor polythienylenevinylene solution prepared under B is spin-coated (3 s/500 rpm, 7 s/1000 rpm) on the layer 3.
- This precursor layer is then heated on a hot plate at 150 °C for 10 min in a nitrogen atmosphere containing HCl gas at a partial pressure of 2.3 x 10 "3 bar, thus converting the precursor layer into a 50 nm thick semiconducting layer 4 comprising a polythienylenevinylene.
- a cross-linkable composition consisting of 4.0 g (0.034 mol) polyvinylphenol (Polysciences Inc. , cat #6527) and 0.65 g (1.66 mmol) hexamethoxymethylenemelamine (Cymel 300 from Cyanamid) dissolved in 36 g propylene glycol methyl ether acetate (Aldrich), is spin-coated (3 s/500 rpm, 27 s/2500rpm) on the layer 4 and dried at 110 °C for 1 min on a hotplate.
- Cross-linking at 125 °C in a nitrogen atmosphere containing 5 % v/v HCl for 5 min affords a 0.27 ⁇ m cross-linked polyvinylphenol electrically insulating layer 5.
- the dielectric constant of the cross-linked polyvinylphenol is 4.78 and its conductivity (at 1 kHz) 4.4 x 10 "1 1 S/cm.
- a second electrode layer 6 is applied on the layer 5.
- the second electrode layer 6 demonstrates a patchwork pattern of irradiated electrically insulating areas 61 and non-irradiated electrically conducting areas 62 (only one area shown), the latter areas accommodating the gate electrodes.
- FET 1 is covered by a 0.5 ⁇ m encapsulation layer obtained by spin-coating (3 s/500 rpm, 7 s/2000 rpm) a filtered (Millex LS 5 ⁇ m) solution of 1.5 g (0.028 mol) polyacrylonitrile (Polysciences Inc. , cat# 3914) in 38.5 g N-methylpyrrolidone and drying at 110 °C for 1 min.
- a solution of 25 g polyvinylidenefluoride (Polysciences Inc, cat #15190) in 25 g N-methylpyrrolidone may be used.
- Fig. 3 shows a graph of the relationship between the source drain voltage V sd (in V) and the source drain current I sd (in nA) at specified gate voltages V g (in V) of a field-effect transistor 1 , manufactured using the method of exemplary embodiment 1 , when subjected to a source drain voltage sweep from 0 to -10 V and back.
- the channel length L equals 2 ⁇ m and the channel width W equals 1 mm.
- the channel transconductance exceeds the channel conductance, thus satisfying the condition for voltage amplification.
- the voltage sweep shows a substantially negligible hysteresis.
- the FET mobility is 10 "4 cm 2 /Vs.
- the method of exemplary embodiment 1 is repeated, with this difference that the patchwork patterned first electrode layer 3 is replaced by an electrode layer demonstrating a relief pattern.
- the relief pattern consists of 0.25 ⁇ m thick gold areas obtained by means of vacuum deposition using a shadow mask. The gold areas which accommodate the source and drain electrode are located such that the channel width is 10 mm and the channel length is 10 ⁇ m.
- the field-effect transistor obtained in this embodiment does not substantially consist of organic materials, and as such is not a FET in accordance with the invention, it does demonstrate that, in accordance with the invention, a FET may satisfy the condition for voltage amplification below 10 V if a relief pattern is used which has a topography (in casu 0.25 ⁇ m) less than the thickness of the insulating layer (in casu 0.27 ⁇ m).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Thin Film Transistor (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP51409999A JP4509228B2 (ja) | 1997-08-22 | 1998-07-27 | 有機材料から成る電界効果トランジスタ及びその製造方法 |
| EP98932464A EP0968537B1 (en) | 1997-08-22 | 1998-07-27 | A method of manufacturing a field-effect transistor substantially consisting of organic materials |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP97202587.8 | 1997-08-22 | ||
| EP97202587 | 1997-08-22 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| WO1999010939A2 true WO1999010939A2 (en) | 1999-03-04 |
| WO1999010939A3 WO1999010939A3 (en) | 1999-06-10 |
| WO1999010939A9 WO1999010939A9 (en) | 2006-05-26 |
Family
ID=8228663
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB1998/001144 Ceased WO1999010939A2 (en) | 1997-08-22 | 1998-07-27 | A method of manufacturing a field-effect transistor substantially consisting of organic materials |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US6429450B1 (enExample) |
| EP (1) | EP0968537B1 (enExample) |
| JP (1) | JP4509228B2 (enExample) |
| WO (1) | WO1999010939A2 (enExample) |
Cited By (53)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000065670A1 (en) * | 1999-04-28 | 2000-11-02 | E.I. Du Pont De Nemours And Company | Flexible organic electronic device with improved resistance to oxygen and moisture degradation |
| WO2001017041A1 (en) * | 1999-08-31 | 2001-03-08 | E Ink Corporation | Method for forming a patterned semiconductor film |
| EP1085319A1 (en) * | 1999-09-13 | 2001-03-21 | Interuniversitair Micro-Elektronica Centrum Vzw | A device for detecting an analyte in a sample based on organic materials |
| EP1085320A1 (en) * | 1999-09-13 | 2001-03-21 | Interuniversitair Micro-Elektronica Centrum Vzw | A device for detecting an analyte in a sample based on organic materials |
| WO2001027998A1 (en) * | 1999-10-11 | 2001-04-19 | Koninklijke Philips Electronics N.V. | Integrated circuit |
| JP2001147215A (ja) * | 1999-09-13 | 2001-05-29 | Interuniv Micro Electronica Centrum Vzw | 有機材料に基づいてサンプル中の被分析物を検出するための装置 |
| WO2001047043A1 (en) * | 1999-12-21 | 2001-06-28 | Plastic Logic Limited | Solution processed devices |
| WO2001047045A1 (en) * | 1999-12-21 | 2001-06-28 | Plastic Logic Limited | Solution processing |
| WO2001047044A2 (en) | 1999-12-21 | 2001-06-28 | Plastic Logic Limited | Forming interconnects |
| DE10043204A1 (de) * | 2000-09-01 | 2002-04-04 | Siemens Ag | Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte Schaltung |
| DE10057502A1 (de) * | 2000-11-20 | 2002-05-29 | Siemens Ag | Organischer Feld-Effekt-Transistor |
| DE10061297A1 (de) * | 2000-12-08 | 2002-06-27 | Siemens Ag | Organischer Feld-Effekt-Transistor, Verfahren zur Sturkturierung eines OFETs und integrierte Schaltung |
| WO2002071505A1 (en) * | 2001-03-07 | 2002-09-12 | Acreo Ab | Electrochemical device |
| WO2002071139A1 (en) * | 2001-03-07 | 2002-09-12 | Acreo Ab | Electrochemical pixel device |
| JP2003502874A (ja) * | 1999-06-21 | 2003-01-21 | ケンブリッジ ユニバーシティ テクニカル サービシズ リミティド | 有機tft用の配列されたポリマー |
| JP2003509869A (ja) * | 1999-09-10 | 2003-03-11 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | ポリ−3,4−アルケンジオキシチオフェン(pedot)およびポリスチレンスルホン酸(pss)に基づく導電構造 |
| US6545291B1 (en) | 1999-08-31 | 2003-04-08 | E Ink Corporation | Transistor design for use in the construction of an electronically driven display |
| JP2003208110A (ja) * | 2001-11-09 | 2003-07-25 | Semiconductor Energy Lab Co Ltd | 発光装置 |
| WO2003074627A1 (en) * | 2002-03-07 | 2003-09-12 | Acreo Ab | Electrochemical device |
| WO2004055919A2 (en) | 2002-12-14 | 2004-07-01 | Plastic Logic Limited | Electronic devices |
| WO2004068267A3 (en) * | 2003-01-28 | 2004-09-16 | Koninkl Philips Electronics Nv | Electronic device |
| WO2005027216A2 (en) | 2003-09-12 | 2005-03-24 | Plastic Logic Limited | Electronic devices |
| US6903958B2 (en) | 2000-09-13 | 2005-06-07 | Siemens Aktiengesellschaft | Method of writing to an organic memory |
| EP1564827A1 (en) * | 2004-02-10 | 2005-08-17 | Université Libre De Bruxelles | Method for the manufacturing of multilayer mesogenic components |
| US7012306B2 (en) | 2001-03-07 | 2006-03-14 | Acreo Ab | Electrochemical device |
| WO2006061658A1 (en) | 2004-12-06 | 2006-06-15 | Plastic Logic Limited | Electrode patterning |
| WO2006106321A1 (en) | 2005-04-05 | 2006-10-12 | Plastic Logic Limited | Patterning metal layers |
| EP1752480A1 (en) * | 2005-08-12 | 2007-02-14 | Merck Patent GmbH | Polymerizable dielectric material |
| CN1304897C (zh) * | 2002-03-07 | 2007-03-14 | 阿克里奥公司 | 电化学器件 |
| WO2007029028A1 (en) | 2005-09-06 | 2007-03-15 | Plastic Logic Limited | Laser ablation of electronic devices |
| WO2007110671A2 (en) | 2006-03-29 | 2007-10-04 | Plastic Logic Limited | Techniques for device fabrication with self-aligned electrodes |
| JP2008016857A (ja) * | 2001-01-31 | 2008-01-24 | Seiko Epson Corp | 薄膜トランジスターおよび薄膜トランジスターの作製方法 |
| EP1944775A1 (en) | 2003-09-02 | 2008-07-16 | Plastic Logic Limited | Production of electronic devices |
| US7442954B2 (en) | 2002-11-19 | 2008-10-28 | Polyic Gmbh & Co. Kg | Organic electronic component comprising a patterned, semi-conducting functional layer and a method for producing said component |
| KR100909481B1 (ko) * | 1999-12-21 | 2009-07-28 | 플라스틱 로직 리미티드 | 잉크젯으로 제조되는 집적회로 및 전자 디바이스 제조 방법 |
| US7592414B2 (en) | 2000-08-01 | 2009-09-22 | Merck Patent Gmbh | Materials that can be structured, method for producing the same and their use |
| DE102008045662A1 (de) | 2008-09-03 | 2010-03-04 | Merck Patent Gmbh | Optoelektronische Vorrichtung |
| DE102008045663A1 (de) | 2008-09-03 | 2010-03-04 | Merck Patent Gmbh | Fluorverbrückte Assoziate für optoelektronische Anwendungen |
| DE102008045664A1 (de) | 2008-09-03 | 2010-03-04 | Merck Patent Gmbh | Optoelektronische Vorrichtung |
| EP2166543A1 (en) | 2003-09-02 | 2010-03-24 | Plastic Logic Limited | Production of electronic devices |
| US7695875B2 (en) | 2002-02-05 | 2010-04-13 | Koninklijke Philips Electronics | Photo-sensitive composition |
| US7901766B2 (en) | 2003-09-04 | 2011-03-08 | Merck Patent Gmbh | Electronic devices comprising an organic conductor and semiconductor as well as an intermediate buffer layer made of a crosslinked polymer |
| EP2315289A2 (en) | 2001-05-23 | 2011-04-27 | Plastic Logic Limited | Laser patterning of devices |
| US7989071B2 (en) | 2004-05-04 | 2011-08-02 | Merck Patent Gmbh | Organic electronic devices |
| US8026185B2 (en) | 2006-08-07 | 2011-09-27 | Sumitomo Electric Industries, Ltd. | Method for manufacturing electronic circuit component |
| US8062984B2 (en) | 2005-09-06 | 2011-11-22 | Plastics Logic Limited | Laser ablation of electronic devices |
| EP2463928A2 (en) | 2005-06-01 | 2012-06-13 | Plastic Logic Limited | Layer-selective laser ablation patterning |
| EP1890346A3 (en) * | 1999-06-21 | 2012-06-20 | Cambridge Enterprise Limited | Aligned polymers for an organic TFT |
| US8451249B2 (en) | 2005-07-25 | 2013-05-28 | Plastic Logic Limited | Flexible touch screen display |
| US8637853B2 (en) | 2007-10-24 | 2014-01-28 | Merck Patent Gmbh | Optoelectronic device |
| US8652964B2 (en) | 2008-10-21 | 2014-02-18 | Plastic Logic Limited | Method and apparatus for the formation of an electronic device |
| US9229600B2 (en) | 2006-06-05 | 2016-01-05 | Flexenable Limited | Multi-touch active display keyboard |
| US9331132B2 (en) | 2005-04-05 | 2016-05-03 | Flexenable Limited | Multiple conductive layer TFT |
Families Citing this family (72)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6839158B2 (en) | 1997-08-28 | 2005-01-04 | E Ink Corporation | Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same |
| CN1171301C (zh) * | 1998-01-28 | 2004-10-13 | 薄膜电子有限公司 | 产生和擦除导电和半导电结构的方法及电场发生器调制器 |
| US6842657B1 (en) | 1999-04-09 | 2005-01-11 | E Ink Corporation | Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication |
| JP2004506985A (ja) * | 2000-08-18 | 2004-03-04 | シーメンス アクチエンゲゼルシヤフト | 封入された有機電子構成素子、その製造方法および使用 |
| US20040029310A1 (en) * | 2000-08-18 | 2004-02-12 | Adoft Bernds | Organic field-effect transistor (ofet), a production method therefor, an integrated circut constructed from the same and their uses |
| DE10044842A1 (de) * | 2000-09-11 | 2002-04-04 | Siemens Ag | Organischer Gleichrichter, Schaltung, RFID-Tag und Verwendung eines organischen Gleichrichters |
| US20040026121A1 (en) * | 2000-09-22 | 2004-02-12 | Adolf Bernds | Electrode and/or conductor track for organic components and production method thereof |
| DE10061299A1 (de) | 2000-12-08 | 2002-06-27 | Siemens Ag | Vorrichtung zur Feststellung und/oder Weiterleitung zumindest eines Umwelteinflusses, Herstellungsverfahren und Verwendung dazu |
| DE10063721A1 (de) * | 2000-12-20 | 2002-07-11 | Merck Patent Gmbh | Organischer Halbleiter, Herstellungsverfahren dazu und Verwendungen |
| DE10105914C1 (de) | 2001-02-09 | 2002-10-10 | Siemens Ag | Organischer Feldeffekt-Transistor mit fotostrukturiertem Gate-Dielektrikum und ein Verfahren zu dessen Erzeugung |
| US7439096B2 (en) * | 2001-02-21 | 2008-10-21 | Lucent Technologies Inc. | Semiconductor device encapsulation |
| US6707063B2 (en) * | 2001-03-22 | 2004-03-16 | Hewlett-Packard Development Company, L.P. | Passivation layer for molecular electronic device fabrication |
| JP2005509200A (ja) * | 2001-03-26 | 2005-04-07 | シーメンス アクチエンゲゼルシヤフト | 少なくとも2つの有機電子構成エレメントを有する装置、および該装置のための製造方法 |
| DE10120520A1 (de) * | 2001-04-26 | 2002-11-14 | Infineon Technologies Ag | Halbleiterbauelement und Herstellungsverfahren |
| CN100407472C (zh) * | 2001-10-01 | 2008-07-30 | 皇家飞利浦电子股份有限公司 | 电子器件 |
| DE10151036A1 (de) | 2001-10-16 | 2003-05-08 | Siemens Ag | Isolator für ein organisches Elektronikbauteil |
| DE10151440C1 (de) | 2001-10-18 | 2003-02-06 | Siemens Ag | Organisches Elektronikbauteil, Verfahren zu seiner Herstellung und seine Verwendung |
| DE10160732A1 (de) | 2001-12-11 | 2003-06-26 | Siemens Ag | Organischer Feld-Effekt-Transistor mit verschobener Schwellwertspannung und Verwendung dazu |
| US6620657B2 (en) * | 2002-01-15 | 2003-09-16 | International Business Machines Corporation | Method of forming a planar polymer transistor using substrate bonding techniques |
| DE10212640B4 (de) | 2002-03-21 | 2004-02-05 | Siemens Ag | Logische Bauteile aus organischen Feldeffekttransistoren |
| DE10212639A1 (de) * | 2002-03-21 | 2003-10-16 | Siemens Ag | Vorrichtung und Verfahren zur Laserstrukturierung von Funktionspolymeren und Verwendungen |
| DE10226370B4 (de) * | 2002-06-13 | 2008-12-11 | Polyic Gmbh & Co. Kg | Substrat für ein elektronisches Bauteil, Verwendung des Substrates, Verfahren zur Erhöhung der Ladungsträgermobilität und Organischer Feld-Effekt Transistor (OFET) |
| EP1525630A2 (de) * | 2002-07-29 | 2005-04-27 | Siemens Aktiengesellschaft | Elektronisches bauteil mit vorwiegend organischen funktionsmaterialien und herstellungsverfahren dazu |
| DE50309888D1 (de) * | 2002-08-08 | 2008-07-03 | Polyic Gmbh & Co Kg | Elektronisches gerät |
| US6784017B2 (en) * | 2002-08-12 | 2004-08-31 | Precision Dynamics Corporation | Method of creating a high performance organic semiconductor device |
| JP2004140333A (ja) * | 2002-08-22 | 2004-05-13 | Yamanashi Tlo:Kk | 有機電界効果トランジスタおよびその製造方法 |
| JP2005537637A (ja) | 2002-08-23 | 2005-12-08 | ジーメンス アクツィエンゲゼルシャフト | 過電圧保護用の有機構成部品および関連する回路 |
| US20040094761A1 (en) * | 2002-11-02 | 2004-05-20 | David Sparrowe | Polymerizable amine mixtures, amine polymer materials and their use |
| EP1416004A1 (en) * | 2002-11-02 | 2004-05-06 | MERCK PATENT GmbH | Polymerizable amine mixtures, amine polymer materials and their use |
| WO2004042837A2 (de) * | 2002-11-05 | 2004-05-21 | Siemens Aktiengesellschaft | Organisches elektronisches bauteil mit hochaufgelöster strukturierung und herstellungsverfahren dazu |
| DE10253154A1 (de) | 2002-11-14 | 2004-05-27 | Siemens Ag | Messgerät zur Bestimmung eines Analyten in einer Flüssigkeitsprobe |
| US20060035423A1 (en) * | 2002-11-19 | 2006-02-16 | Walter Fix | Organic electronic component comprising the same organic material for at least two functional layers |
| US7078261B2 (en) * | 2002-12-16 | 2006-07-18 | The Regents Of The University Of California | Increased mobility from organic semiconducting polymers field-effect transistors |
| DE10300521A1 (de) * | 2003-01-09 | 2004-07-22 | Siemens Ag | Organoresistiver Speicher |
| EP1586127B1 (de) * | 2003-01-21 | 2007-05-02 | PolyIC GmbH & Co. KG | Organisches elektronikbauteil und verfahren zur herstellung organischer elektronik |
| DE10302149A1 (de) | 2003-01-21 | 2005-08-25 | Siemens Ag | Verwendung leitfähiger Carbon-black/Graphit-Mischungen für die Herstellung von low-cost Elektronik |
| ATE476739T1 (de) * | 2003-01-29 | 2010-08-15 | Polyic Gmbh & Co Kg | Organisches speicherbauelement |
| DE10330064B3 (de) * | 2003-07-03 | 2004-12-09 | Siemens Ag | Logikgatter mit potentialfreier Gate-Elektrode für organische integrierte Schaltungen |
| DE10330062A1 (de) * | 2003-07-03 | 2005-01-27 | Siemens Ag | Verfahren und Vorrichtung zur Strukturierung von organischen Schichten |
| DE10338277A1 (de) * | 2003-08-20 | 2005-03-17 | Siemens Ag | Organischer Kondensator mit spannungsgesteuerter Kapazität |
| DE10339036A1 (de) | 2003-08-25 | 2005-03-31 | Siemens Ag | Organisches elektronisches Bauteil mit hochaufgelöster Strukturierung und Herstellungsverfahren dazu |
| JP2005072528A (ja) * | 2003-08-28 | 2005-03-17 | Shin Etsu Chem Co Ltd | 薄層電界効果トランジスター及びその製造方法 |
| DE10340643B4 (de) * | 2003-09-03 | 2009-04-16 | Polyic Gmbh & Co. Kg | Druckverfahren zur Herstellung einer Doppelschicht für Polymerelektronik-Schaltungen, sowie dadurch hergestelltes elektronisches Bauelement mit Doppelschicht |
| DE10340644B4 (de) | 2003-09-03 | 2010-10-07 | Polyic Gmbh & Co. Kg | Mechanische Steuerelemente für organische Polymerelektronik |
| DE102004002024A1 (de) * | 2004-01-14 | 2005-08-11 | Siemens Ag | Organischer Transistor mit selbstjustierender Gate-Elektrode und Verfahren zu dessen Herstellung |
| JP4501444B2 (ja) * | 2004-02-04 | 2010-07-14 | ソニー株式会社 | トランジスタにおける配線構造の形成方法及び電界効果型トランジスタの製造方法 |
| US7449758B2 (en) * | 2004-08-17 | 2008-11-11 | California Institute Of Technology | Polymeric piezoresistive sensors |
| DE102004040831A1 (de) * | 2004-08-23 | 2006-03-09 | Polyic Gmbh & Co. Kg | Funketikettfähige Umverpackung |
| TWI456658B (zh) * | 2004-11-05 | 2014-10-11 | Creator Technology Bv | 圖樣化有機材料以同時形成絕緣體及半導體之方法及藉該方法形成之裝置 |
| JP4792781B2 (ja) * | 2004-12-06 | 2011-10-12 | 凸版印刷株式会社 | 薄膜トランジスタの製造方法 |
| DE102004059464A1 (de) * | 2004-12-10 | 2006-06-29 | Polyic Gmbh & Co. Kg | Elektronikbauteil mit Modulator |
| DE102004059465A1 (de) * | 2004-12-10 | 2006-06-14 | Polyic Gmbh & Co. Kg | Erkennungssystem |
| DE102004059467A1 (de) * | 2004-12-10 | 2006-07-20 | Polyic Gmbh & Co. Kg | Gatter aus organischen Feldeffekttransistoren |
| DE102004063435A1 (de) | 2004-12-23 | 2006-07-27 | Polyic Gmbh & Co. Kg | Organischer Gleichrichter |
| DE102005009820A1 (de) | 2005-03-01 | 2006-09-07 | Polyic Gmbh & Co. Kg | Elektronikbaugruppe mit organischen Logik-Schaltelementen |
| DE102005009819A1 (de) | 2005-03-01 | 2006-09-07 | Polyic Gmbh & Co. Kg | Elektronikbaugruppe |
| DE102005017655B4 (de) * | 2005-04-15 | 2008-12-11 | Polyic Gmbh & Co. Kg | Mehrschichtiger Verbundkörper mit elektronischer Funktion |
| DE102005031448A1 (de) | 2005-07-04 | 2007-01-11 | Polyic Gmbh & Co. Kg | Aktivierbare optische Schicht |
| DE102005035589A1 (de) | 2005-07-29 | 2007-02-01 | Polyic Gmbh & Co. Kg | Verfahren zur Herstellung eines elektronischen Bauelements |
| DE102005035590A1 (de) * | 2005-07-29 | 2007-02-01 | Polyic Gmbh & Co. Kg | Elektronisches Bauelement |
| US20070034842A1 (en) * | 2005-08-12 | 2007-02-15 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Polymerizable dielectric material |
| DE102005042166A1 (de) * | 2005-09-06 | 2007-03-15 | Polyic Gmbh & Co.Kg | Organisches Bauelement und ein solches umfassende elektrische Schaltung |
| DE102005044306A1 (de) | 2005-09-16 | 2007-03-22 | Polyic Gmbh & Co. Kg | Elektronische Schaltung und Verfahren zur Herstellung einer solchen |
| FI20070063A0 (fi) * | 2007-01-24 | 2007-01-24 | Ronald Oesterbacka | Orgaaninen kenttävaikutustransistori |
| US8003980B2 (en) * | 2007-01-30 | 2011-08-23 | Hewlett-Packard Development Company, L.P. | Layered electro-organic devices with crosslinked polymer and methods of preparing the same |
| WO2008144762A2 (en) * | 2007-05-21 | 2008-11-27 | Plextronics, Inc. | Organic electrodes and electronic devices |
| WO2008144759A2 (en) * | 2007-05-21 | 2008-11-27 | Plextronics, Inc. | Organic electrodes and electronic devices |
| US7879678B2 (en) * | 2008-02-28 | 2011-02-01 | Versatilis Llc | Methods of enhancing performance of field-effect transistors and field-effect transistors made thereby |
| KR101491714B1 (ko) * | 2008-09-16 | 2015-02-16 | 삼성전자주식회사 | 반도체 소자 및 그 제조 방법 |
| IT1392069B1 (it) * | 2008-11-27 | 2012-02-09 | St Microelectronics Srl | Metodo per realizzare un dispositivo elettronico organico a film sottile e corrispondente dispositivo |
| US20140097003A1 (en) * | 2012-10-05 | 2014-04-10 | Tyco Electronics Amp Gmbh | Electrical components and methods and systems of manufacturing electrical components |
| TWI628803B (zh) * | 2017-09-15 | 2018-07-01 | 友達光電股份有限公司 | 有機薄膜電晶體元件及其製作方法 |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01259563A (ja) | 1988-04-08 | 1989-10-17 | Mitsubishi Electric Corp | 電界効果型トランジスタ |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB8715959D0 (en) * | 1987-07-07 | 1987-08-12 | British Petroleum Co Plc | Field effect transistors |
| WO1990008402A1 (fr) * | 1989-01-10 | 1990-07-26 | Mitsubishi Denki Kabushiki Kaisha | Transistor a effet de champ et dispositif d'affichage a cristaux liquides l'utilisant |
| US5892244A (en) * | 1989-01-10 | 1999-04-06 | Mitsubishi Denki Kabushiki Kaisha | Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor |
| JP2813428B2 (ja) * | 1989-08-17 | 1998-10-22 | 三菱電機株式会社 | 電界効果トランジスタ及び該電界効果トランジスタを用いた液晶表示装置 |
| FR2664430B1 (fr) * | 1990-07-04 | 1992-09-18 | Centre Nat Rech Scient | Transistor a effet de champ en couche mince de structure mis, dont l'isolant et le semiconducteur sont realises en materiaux organiques. |
| JP3224829B2 (ja) * | 1991-08-15 | 2001-11-05 | 株式会社東芝 | 有機電界効果型素子 |
| ATE171560T1 (de) | 1993-03-09 | 1998-10-15 | Koninkl Philips Electronics Nv | Herstellungsverfahren eines musters von einem elektrisch leitfähigen polymer auf einer substratoberfläche und metallisierung eines solchen musters |
| US5427841A (en) | 1993-03-09 | 1995-06-27 | U.S. Philips Corporation | Laminated structure of a metal layer on a conductive polymer layer and method of manufacturing such a structure |
| US5567550A (en) * | 1993-03-25 | 1996-10-22 | Texas Instruments Incorporated | Method of making a mask for making integrated circuits |
| JP3246189B2 (ja) * | 1994-06-28 | 2002-01-15 | 株式会社日立製作所 | 半導体表示装置 |
| EP0727100B1 (en) * | 1994-09-06 | 2003-01-29 | Philips Electronics N.V. | Electroluminescent device comprising a poly-3,4-dioxythiophene layer |
| TW293172B (enExample) * | 1994-12-09 | 1996-12-11 | At & T Corp | |
| US5625199A (en) * | 1996-01-16 | 1997-04-29 | Lucent Technologies Inc. | Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors |
-
1998
- 1998-07-27 EP EP98932464A patent/EP0968537B1/en not_active Expired - Lifetime
- 1998-07-27 JP JP51409999A patent/JP4509228B2/ja not_active Expired - Fee Related
- 1998-07-27 WO PCT/IB1998/001144 patent/WO1999010939A2/en not_active Ceased
- 1998-08-17 US US09/135,416 patent/US6429450B1/en not_active Expired - Lifetime
-
2002
- 2002-06-05 US US10/163,104 patent/US7402834B2/en not_active Expired - Fee Related
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01259563A (ja) | 1988-04-08 | 1989-10-17 | Mitsubishi Electric Corp | 電界効果型トランジスタ |
Non-Patent Citations (1)
| Title |
|---|
| GARNIER ET AL., SCIENCE, vol. 265, 1994, pages 1684 - 1686 |
Cited By (99)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6720203B2 (en) * | 1999-04-28 | 2004-04-13 | E. I. Du Pont De Nemours And Company | Flexible organic electronic device with improved resistance to oxygen and moisture degradation |
| US7005798B2 (en) * | 1999-04-28 | 2006-02-28 | E. I. Du Pont De Nemours And Company | Flexible organic electronic device with improved resistance to oxygen and moisture degradation |
| WO2000065670A1 (en) * | 1999-04-28 | 2000-11-02 | E.I. Du Pont De Nemours And Company | Flexible organic electronic device with improved resistance to oxygen and moisture degradation |
| EP1890346A3 (en) * | 1999-06-21 | 2012-06-20 | Cambridge Enterprise Limited | Aligned polymers for an organic TFT |
| JP2003502874A (ja) * | 1999-06-21 | 2003-01-21 | ケンブリッジ ユニバーシティ テクニカル サービシズ リミティド | 有機tft用の配列されたポリマー |
| US8541257B2 (en) | 1999-06-21 | 2013-09-24 | Cambridge University Technical Services Limited | Aligned polymers for an organic TFT |
| WO2001017041A1 (en) * | 1999-08-31 | 2001-03-08 | E Ink Corporation | Method for forming a patterned semiconductor film |
| US6545291B1 (en) | 1999-08-31 | 2003-04-08 | E Ink Corporation | Transistor design for use in the construction of an electronically driven display |
| US6750473B2 (en) | 1999-08-31 | 2004-06-15 | E-Ink Corporation | Transistor design for use in the construction of an electronically driven display |
| EP1727220A2 (en) | 1999-09-10 | 2006-11-29 | Koninklijke Philips Electronics N.V. | Conductive structure based on poly-3,4-alkenedioxythiophene (PEDOT) and polystyrenesulfonic acid (PSS) |
| JP2003509869A (ja) * | 1999-09-10 | 2003-03-11 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | ポリ−3,4−アルケンジオキシチオフェン(pedot)およびポリスチレンスルホン酸(pss)に基づく導電構造 |
| US6521109B1 (en) | 1999-09-13 | 2003-02-18 | Interuniversitair Microelektronica Centrum (Imec) Vzw | Device for detecting an analyte in a sample based on organic materials |
| JP2001147215A (ja) * | 1999-09-13 | 2001-05-29 | Interuniv Micro Electronica Centrum Vzw | 有機材料に基づいてサンプル中の被分析物を検出するための装置 |
| EP1085320A1 (en) * | 1999-09-13 | 2001-03-21 | Interuniversitair Micro-Elektronica Centrum Vzw | A device for detecting an analyte in a sample based on organic materials |
| EP1085319A1 (en) * | 1999-09-13 | 2001-03-21 | Interuniversitair Micro-Elektronica Centrum Vzw | A device for detecting an analyte in a sample based on organic materials |
| US6362509B1 (en) | 1999-10-11 | 2002-03-26 | U.S. Philips Electronics | Field effect transistor with organic semiconductor layer |
| WO2001027998A1 (en) * | 1999-10-11 | 2001-04-19 | Koninklijke Philips Electronics N.V. | Integrated circuit |
| WO2001047044A3 (en) * | 1999-12-21 | 2001-12-06 | Plastic Logic Ltd | Forming interconnects |
| US7763501B2 (en) | 1999-12-21 | 2010-07-27 | Plastic Logic Limited | Forming interconnects |
| US7635857B2 (en) | 1999-12-21 | 2009-12-22 | Plastic Logic Limited | Transistor having soluble layers |
| WO2001047043A1 (en) * | 1999-12-21 | 2001-06-28 | Plastic Logic Limited | Solution processed devices |
| JP2003518754A (ja) * | 1999-12-21 | 2003-06-10 | プラスティック ロジック リミテッド | 溶液処理された素子 |
| WO2001047044A2 (en) | 1999-12-21 | 2001-06-28 | Plastic Logic Limited | Forming interconnects |
| KR100909481B1 (ko) * | 1999-12-21 | 2009-07-28 | 플라스틱 로직 리미티드 | 잉크젯으로 제조되는 집적회로 및 전자 디바이스 제조 방법 |
| US6905906B2 (en) | 1999-12-21 | 2005-06-14 | Plastic Logic Limited | Solution processed devices |
| US7098061B2 (en) | 1999-12-21 | 2006-08-29 | Plastic Logic Limited | Forming interconnects using locally deposited solvents |
| WO2001047045A1 (en) * | 1999-12-21 | 2001-06-28 | Plastic Logic Limited | Solution processing |
| CN100379048C (zh) * | 1999-12-21 | 2008-04-02 | 造型逻辑有限公司 | 形成互连 |
| KR100927890B1 (ko) * | 1999-12-21 | 2009-11-23 | 플라스틱 로직 리미티드 | 용액 처리 디바이스 |
| JP2013211565A (ja) * | 1999-12-21 | 2013-10-10 | Plastic Logic Ltd | 溶液処理された素子 |
| US6808972B2 (en) | 1999-12-21 | 2004-10-26 | Plastic Logic Limited | Method of processing solution on a substrate |
| AU779878B2 (en) * | 1999-12-21 | 2005-02-17 | Flexenable Limited | Forming interconnects |
| US7592414B2 (en) | 2000-08-01 | 2009-09-22 | Merck Patent Gmbh | Materials that can be structured, method for producing the same and their use |
| DE10043204A1 (de) * | 2000-09-01 | 2002-04-04 | Siemens Ag | Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte Schaltung |
| US6903958B2 (en) | 2000-09-13 | 2005-06-07 | Siemens Aktiengesellschaft | Method of writing to an organic memory |
| DE10057502A1 (de) * | 2000-11-20 | 2002-05-29 | Siemens Ag | Organischer Feld-Effekt-Transistor |
| DE10061297A1 (de) * | 2000-12-08 | 2002-06-27 | Siemens Ag | Organischer Feld-Effekt-Transistor, Verfahren zur Sturkturierung eines OFETs und integrierte Schaltung |
| DE10061297C2 (de) * | 2000-12-08 | 2003-05-28 | Siemens Ag | Verfahren zur Sturkturierung eines OFETs |
| US8139005B2 (en) | 2001-01-31 | 2012-03-20 | Seiko Epson Corporation | Display device |
| JP2008016857A (ja) * | 2001-01-31 | 2008-01-24 | Seiko Epson Corp | 薄膜トランジスターおよび薄膜トランジスターの作製方法 |
| CN100352077C (zh) * | 2001-03-07 | 2007-11-28 | 阿克里奥公司 | 电化学器件 |
| US6642069B2 (en) | 2001-03-07 | 2003-11-04 | Acreo Ab | Electrochemical pixel device |
| WO2002071505A1 (en) * | 2001-03-07 | 2002-09-12 | Acreo Ab | Electrochemical device |
| WO2002071139A1 (en) * | 2001-03-07 | 2002-09-12 | Acreo Ab | Electrochemical pixel device |
| US6806511B2 (en) | 2001-03-07 | 2004-10-19 | Acreo Ab | Electrochemical device |
| US7582895B2 (en) | 2001-03-07 | 2009-09-01 | Acreo Ab | Electrochemical device including a channel of an organic material, a gate electrode, and an electrolyte therebetween |
| US7679110B2 (en) | 2001-03-07 | 2010-03-16 | Acreo Ab | Electrochemical device and methods for producing the same |
| US7012306B2 (en) | 2001-03-07 | 2006-03-14 | Acreo Ab | Electrochemical device |
| US7705410B2 (en) | 2001-03-07 | 2010-04-27 | Acreo Ab | Circuitry and method |
| EP2315289A2 (en) | 2001-05-23 | 2011-04-27 | Plastic Logic Limited | Laser patterning of devices |
| US8154015B2 (en) | 2001-11-09 | 2012-04-10 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device including thin film transistor |
| US10680049B2 (en) | 2001-11-09 | 2020-06-09 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
| US8648338B2 (en) | 2001-11-09 | 2014-02-11 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device comprising an organic compound layer |
| US9054199B2 (en) | 2001-11-09 | 2015-06-09 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
| US11063102B2 (en) | 2001-11-09 | 2021-07-13 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
| US10461140B2 (en) | 2001-11-09 | 2019-10-29 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
| JP2003208110A (ja) * | 2001-11-09 | 2003-07-25 | Semiconductor Energy Lab Co Ltd | 発光装置 |
| US8324618B2 (en) | 2001-11-09 | 2012-12-04 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
| US9905624B2 (en) | 2001-11-09 | 2018-02-27 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
| US7695875B2 (en) | 2002-02-05 | 2010-04-13 | Koninklijke Philips Electronics | Photo-sensitive composition |
| US7301687B2 (en) | 2002-03-07 | 2007-11-27 | Acreo Ab | Electrochemical device |
| WO2003074627A1 (en) * | 2002-03-07 | 2003-09-12 | Acreo Ab | Electrochemical device |
| CN1304897C (zh) * | 2002-03-07 | 2007-03-14 | 阿克里奥公司 | 电化学器件 |
| US7158277B2 (en) | 2002-03-07 | 2007-01-02 | Acreo Ab | Electrochemical device |
| US7442954B2 (en) | 2002-11-19 | 2008-10-28 | Polyic Gmbh & Co. Kg | Organic electronic component comprising a patterned, semi-conducting functional layer and a method for producing said component |
| EP2312664A2 (en) | 2002-12-14 | 2011-04-20 | Plastic Logic Limited | Electronic devices |
| EP2312662A1 (en) | 2002-12-14 | 2011-04-20 | Plastic Logic Limited | A method for patterning |
| WO2004055919A2 (en) | 2002-12-14 | 2004-07-01 | Plastic Logic Limited | Electronic devices |
| EP2323190A2 (en) | 2002-12-14 | 2011-05-18 | Plastic Logic Limited | Electronic devices |
| WO2004068267A3 (en) * | 2003-01-28 | 2004-09-16 | Koninkl Philips Electronics Nv | Electronic device |
| EP1944775A1 (en) | 2003-09-02 | 2008-07-16 | Plastic Logic Limited | Production of electronic devices |
| EP2166543A1 (en) | 2003-09-02 | 2010-03-24 | Plastic Logic Limited | Production of electronic devices |
| US7901766B2 (en) | 2003-09-04 | 2011-03-08 | Merck Patent Gmbh | Electronic devices comprising an organic conductor and semiconductor as well as an intermediate buffer layer made of a crosslinked polymer |
| WO2005027216A2 (en) | 2003-09-12 | 2005-03-24 | Plastic Logic Limited | Electronic devices |
| WO2005076384A1 (en) * | 2004-02-10 | 2005-08-18 | Universite Libre De Bruxelles | Method for the manufacturing of multilayer mesogenic components |
| EP1564827A1 (en) * | 2004-02-10 | 2005-08-17 | Université Libre De Bruxelles | Method for the manufacturing of multilayer mesogenic components |
| US7989071B2 (en) | 2004-05-04 | 2011-08-02 | Merck Patent Gmbh | Organic electronic devices |
| WO2006061658A1 (en) | 2004-12-06 | 2006-06-15 | Plastic Logic Limited | Electrode patterning |
| WO2006106321A1 (en) | 2005-04-05 | 2006-10-12 | Plastic Logic Limited | Patterning metal layers |
| US9947723B2 (en) | 2005-04-05 | 2018-04-17 | Flexenable Limited | Multiple conductive layer TFT |
| US9331132B2 (en) | 2005-04-05 | 2016-05-03 | Flexenable Limited | Multiple conductive layer TFT |
| EP2463928A2 (en) | 2005-06-01 | 2012-06-13 | Plastic Logic Limited | Layer-selective laser ablation patterning |
| USRE45885E1 (en) | 2005-06-01 | 2016-02-09 | Flexenable Limited | Laser ablation of electronic devices |
| US9209400B2 (en) | 2005-06-01 | 2015-12-08 | Flexenable Limited | Layer-selective laser ablation patterning |
| US8451249B2 (en) | 2005-07-25 | 2013-05-28 | Plastic Logic Limited | Flexible touch screen display |
| US8890831B2 (en) | 2005-07-25 | 2014-11-18 | Plastic Logic Limited | Flexible touch screen display |
| EP1752480A1 (en) * | 2005-08-12 | 2007-02-14 | Merck Patent GmbH | Polymerizable dielectric material |
| WO2007029028A1 (en) | 2005-09-06 | 2007-03-15 | Plastic Logic Limited | Laser ablation of electronic devices |
| US8062984B2 (en) | 2005-09-06 | 2011-11-22 | Plastics Logic Limited | Laser ablation of electronic devices |
| WO2007110671A2 (en) | 2006-03-29 | 2007-10-04 | Plastic Logic Limited | Techniques for device fabrication with self-aligned electrodes |
| US8987808B2 (en) | 2006-03-29 | 2015-03-24 | Cambridge Enterprise Limited | Thin film transistor with accurately aligned electrode patterns and electronic device(s) that include same |
| US8900955B2 (en) | 2006-03-29 | 2014-12-02 | Cambridge Enterprise Limited | Thin film transistor device with accurately aligned electrode patterns |
| US9229600B2 (en) | 2006-06-05 | 2016-01-05 | Flexenable Limited | Multi-touch active display keyboard |
| US8026185B2 (en) | 2006-08-07 | 2011-09-27 | Sumitomo Electric Industries, Ltd. | Method for manufacturing electronic circuit component |
| US8637853B2 (en) | 2007-10-24 | 2014-01-28 | Merck Patent Gmbh | Optoelectronic device |
| DE102008045664A1 (de) | 2008-09-03 | 2010-03-04 | Merck Patent Gmbh | Optoelektronische Vorrichtung |
| DE102008045662A1 (de) | 2008-09-03 | 2010-03-04 | Merck Patent Gmbh | Optoelektronische Vorrichtung |
| DE102008045663A1 (de) | 2008-09-03 | 2010-03-04 | Merck Patent Gmbh | Fluorverbrückte Assoziate für optoelektronische Anwendungen |
| US8652964B2 (en) | 2008-10-21 | 2014-02-18 | Plastic Logic Limited | Method and apparatus for the formation of an electronic device |
Also Published As
| Publication number | Publication date |
|---|---|
| US6429450B1 (en) | 2002-08-06 |
| EP0968537A2 (en) | 2000-01-05 |
| JP4509228B2 (ja) | 2010-07-21 |
| EP0968537B1 (en) | 2012-05-02 |
| JP2001505002A (ja) | 2001-04-10 |
| WO1999010939A3 (en) | 1999-06-10 |
| US20020151117A1 (en) | 2002-10-17 |
| US7402834B2 (en) | 2008-07-22 |
| WO1999010939A9 (en) | 2006-05-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0968537B1 (en) | A method of manufacturing a field-effect transistor substantially consisting of organic materials | |
| CN100483774C (zh) | 半导体器件及其形成方法 | |
| JP5060695B2 (ja) | 電子素子配列から電子回路を構成する方法および該方法により形成される電子回路 | |
| CN101542744B (zh) | 自对准有机薄膜晶体管及其制造方法 | |
| JP5073141B2 (ja) | 内部接続の形成方法 | |
| EP1243033B1 (en) | Solution processing | |
| JP5658789B2 (ja) | 溶液処理された素子 | |
| US6635406B1 (en) | Method of producing vertical interconnects between thin film microelectronic devices and products comprising such vertical interconnects | |
| JP2000505249A (ja) | 導電性ポリマーのパターンおよび電極または電気接点としてのその応用 | |
| CN101384963A (zh) | 一种使薄膜形成图案的方法 | |
| US20060094172A1 (en) | Method of fabricating thin film transistor | |
| JP5137296B2 (ja) | 電界効果トランジスタ | |
| KR20090045884A (ko) | 자기정렬 유기박막 트랜지스터 및 그 제조 방법 | |
| WO2009085599A1 (en) | Organic semiconductor device and method of manufacturing same | |
| JP4085420B2 (ja) | 電界効果半導体装置及びその製造方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): JP |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1999 514099 Kind code of ref document: A Format of ref document f/p: F |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1998932464 Country of ref document: EP |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| AK | Designated states |
Kind code of ref document: A3 Designated state(s): JP |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| WWP | Wipo information: published in national office |
Ref document number: 1998932464 Country of ref document: EP |
|
| COP | Corrected version of pamphlet |
Free format text: PAGE 19, DESCRIPTION, REPLACED BY CORRECT PAGE 19 |