WO1999008334A1 - Precurseur carbone, matiere d'anode carbonee et batterie rechargeable non aqueuse - Google Patents

Precurseur carbone, matiere d'anode carbonee et batterie rechargeable non aqueuse Download PDF

Info

Publication number
WO1999008334A1
WO1999008334A1 PCT/JP1998/003493 JP9803493W WO9908334A1 WO 1999008334 A1 WO1999008334 A1 WO 1999008334A1 JP 9803493 W JP9803493 W JP 9803493W WO 9908334 A1 WO9908334 A1 WO 9908334A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonaceous
negative electrode
weight
carbon
carbonaceous material
Prior art date
Application number
PCT/JP1998/003493
Other languages
English (en)
French (fr)
Inventor
Takayuki Yamahira
Yoshiaki Takeuchi
Tadashi Ishihara
Akio Kato
Toru Fuse
Noritoshi Takao
Masahiko Harasaki
Original Assignee
Sony Corporation
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation, Mitsubishi Chemical Corporation filed Critical Sony Corporation
Priority to EP98936673A priority Critical patent/EP0936685A4/en
Publication of WO1999008334A1 publication Critical patent/WO1999008334A1/ja
Priority to US10/103,582 priority patent/US20020172866A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nonaqueous secondary battery having excellent characteristics as a power source for small and lightweight electric devices and electric vehicles.
  • the present invention relates to a carbonaceous material for a negative electrode and a carbonaceous precursor suitable as a negative electrode material, and further relates to a non-aqueous secondary battery using the negative electrode carbonaceous material.
  • BACKGROUND ART In recent years, with the spread of portable devices such as video cameras, mobile phones, and portable personal computers, demand for secondary batteries that can be used repeatedly instead of primary batteries is increasing.
  • non-aqueous secondary batteries using a carbonaceous material for the negative electrode active material, a composite oxide containing lithium for the positive electrode active material, and an organic solvent for the electrolyte have been receiving attention.
  • the negative electrode active material a soft carbon-based carbonaceous material such as coke disclosed in Japanese Patent Publication No. 4-24831 or a hard material disclosed in Japanese Patent Application Laid-Open No. 3-25053 is disclosed. carbonaceous material of the carbon system is proposed, as the positive electrode active material, JP 6 3 - 1 3 5 0 9 9 No. L i M 0 2 which is shown in Japanese (M is, C o, N i, etc.) Has been proposed.
  • non-aqueous secondary batteries using carbonaceous materials as the negative electrode active material have excellent cycle life and safety, but are not suitable for portable devices. Further improvements in energy density are demanded, for example, due to the demand for increased power consumption and the increase in the time that can be used for one charge.
  • An object of the present invention is to provide a carbonaceous material for a negative electrode having a large capacity per unit volume and a method for producing the same. Another object of the present invention is to provide a non-aqueous secondary battery having excellent cycle life and safety and high energy density.
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, have obtained the following findings.
  • the carbonaceous material used for the negative electrode of a non-aqueous secondary battery is composed of a fragment of about 1 OA in which benzene rings are connected in a plane, and a crystalline portion in which several fragments are stacked. It consists of an amorphous part where no significant lamination is observed.
  • the crystalline part is densely packed with carbon atoms and has a higher density than the amorphous part.
  • the amorphous part has a lower density and has more space than the crystalline part.
  • Hydrogen is covalently bonded to some of the carbon atoms at the ends of the fragment.
  • the true density and the X-ray diffraction pattern are defined as indices indicating the total amount of space in the carbonaceous material.
  • the spacing between the (002) planes and the thickness of the crystallite were specified. Furthermore, it was decided to specify the concentration of hydrogen contained in the carbonaceous material.
  • the carbonaceous material for a negative electrode according to the present invention has a true density of 1.65 to 1.85 g / cc, and a content of hydrogen to carbon in an atomic ratio of 0.01 to 0.15.
  • the (002) plane spacing is 3.45 to 3.55 angstroms
  • the crystallite thickness is 12.0 to 20.0 angstroms
  • X-ray scattering In the curve, the common tangent connecting the minimum values on both sides of the (00 2) diffraction line is defined as the baseline, the area surrounded by the base line and the (00 2) diffraction line is defined as S 1, and the diffraction angle 20 is 4 degrees or more.
  • the area ratio of SO to S1 is 0.4 to 2.0. There is a feature.
  • a carbonaceous raw material having an amount of resin of 0.5 to 30% by weight is oxidized, and the content of oxygen with respect to carbon in the atomic ratio of 0.01 to 0.2.
  • a carbonaceous precursor of the oxidation product After being obtained, the oxidation product is fired in an inert atmosphere.
  • the present inventors have provided the carbonaceous precursor which has a self-sintering property and changes into a large-capacity carbon material as a negative electrode active material in a subsequent baking step, and thus has the above excellent characteristics. It has been found that a negative electrode carbonaceous material can be obtained.
  • a negative electrode carbonaceous material can be obtained.
  • the carbonaceous precursor according to the present invention is a precursor of a negative electrode active material of a nonaqueous secondary battery having a negative electrode, a positive electrode, and a nonaqueous electrolyte, and has a carbon content of 80% by weight to 95% by weight. %,
  • the elemental ratio of oxygen to carbon, 0 / C, is from 0.01 to 0.2, and the resin content is from 0.5% to 5% by weight.
  • a non-aqueous secondary battery according to the present invention is a non-aqueous secondary battery comprising a positive electrode, a negative electrode mainly composed of a carbonaceous material, and a non-aqueous electrolyte, wherein the negative electrode carbonaceous material is used for the negative electrode. Since the negative electrode carbonaceous material has many sites where lithium can be doped and removed, the capacity per unit volume can be increased, and the energy density is high.
  • FIG. 1 is a diagram showing an X-ray scattering pattern of a carbonaceous material for a negative electrode to which the present invention is applied.
  • FIG. 2 is a view showing an X-ray scattering pattern of the carbonaceous material for a negative electrode obtained in the example.
  • FIG. 3 is a cross-sectional view illustrating a configuration of a coin-type secondary battery to which the present invention is applied.
  • FIG. 4 is a cross-sectional view showing a configuration of the charge / discharge capacity measurement cell.
  • the carbonaceous precursor of the present invention is calcined in an inert atmosphere in a later step, converted into a carbon material suitable as a negative electrode active material of a non-aqueous secondary battery, and put to practical use.
  • a sintered negative electrode composed of the active material and, if necessary, the current collector without using a mixture such as a binder or conductive material first press the powdered carbonaceous precursor with a die or the like.
  • a method can be adopted in which a green body is formed and then fired.
  • the component and the carbonaceous precursor can be molded and sintered together.
  • the carbon material obtained by firing the carbonaceous precursor of the present invention can also be used as an active material of a negative electrode formed by binding a powder with a binder or the like.
  • the oxygen contained in the carbonaceous precursor is gasified and lost in the firing step, but by introducing an amorphous portion into the obtained carbon material to increase the space in which lithium and the like can be occluded, the capacity is reduced. It is an important requirement that will increase.
  • the oxygen content is from 0.01 to 0.2, preferably from 0.01 to 0.1, more preferably from 0.04 to 0.06, as the atomic ratio of oxygen to carbon, 0 / C. Good. If the amount of oxygen is too small, baking in a later step The carbon material obtained by the method does not contain a sufficient amount of amorphous portion, and the capacity is undesirably reduced. On the other hand, if the amount of oxygen is too large, the carbon material obtained by firing in the subsequent step creates a lot of space, which reduces the density of the carbon material and aims at improving the density of the negative electrode. Cannot achieve.
  • the amount of binder component is an important requirement that governs the forming and sintering of carbonaceous precursors.
  • the caking component is an organic compound with a low molecular weight, plays the role of a binder connecting particles in the molding process, and carbonizes itself in the sintering process to enable sintering. In other words, if the formed caking component is small, there are problems such that the force for connecting the particles is weak and a compact cannot be obtained, or the strength is too low to withstand handling.
  • the sintering power is weak, and a sintered body having sufficient strength as an electrode cannot be obtained.
  • the amount of the binder component is large, sintering proceeds too much in the firing step, and the porosity of the obtained sintered body becomes low, and the sintered body is not suitable as a negative electrode. That is, the amount of the resin is 0.5 to 5% by weight, preferably 1 to 3% by weight, and the amount of weight loss observed up to 600 ° C. is 5 to 12% by weight, preferably 7 to To 12% by weight is good.
  • the carbonaceous precursor of the present invention is converted into a material substantially consisting of carbon by calcination and put to practical use. Therefore, the carbon content in the precursor is in the range of 80 to 95% by weight, preferably in the range of 87 to 93% by weight.
  • the method for obtaining the carbonaceous precursor of the present invention is not particularly limited, but a specific method will be described below.
  • the carbon of the present invention The carbonaceous precursor can be obtained, for example, by oxidizing a graphitizable carbon precursor of petroleum pitch or coal pitch, and performing heat treatment in an inert atmosphere as necessary.
  • the amount of resin of the carbonaceous precursor to be oxidized is 0.5 to 30% by weight, preferably 1 to 30% by weight, and Preferably, it is 3 to 26% by weight. If the amount of the resin is small, it is difficult to adjust the amount of the caking component of the carbonaceous precursor obtained by the oxidation treatment or the heat treatment to a desired range.
  • the method of oxidation treatment is not particularly limited as long as the desired amount of oxygen and the amount of formed caking can be obtained, but more specifically, oxidation with oxygen or air, sulfuric acid, nitric acid, hydrogen peroxide, etc. oxidation with an acid, also, N 0 NO x, S 0 2, SC X and halogens, oxidation with ozone, and the levator up.
  • the oxidation method includes a wet process and a dry process.
  • Dry oxidation with air is simple and preferred in terms of process. More specifically, a stationary method in which the carbonaceous precursor powder is placed in a container or the like and heated, a stirring method in which the carbonaceous precursor powder is heated while being stirred in an air stream or injecting air, a gas flow And a method using a fluidized bed created by vibration or the like.
  • static oxidation the reaction runs away due to heat storage of the oxidation reaction heat, and it is difficult to control.
  • fluidized bed oxidation the reaction progresses at a stretch, which is also difficult to control.
  • agitated oxidation is industrially advantageous because the equipment is simple and thermal storage runaway or short-time reaction is unlikely.
  • the treatment temperature is preferably in the range of 100 to 400 ° C., and more preferably in the range of 200 to 350 ° C.
  • Low oxidation temperature If the oxidation temperature is too high, the temperature of the object to be processed runs away due to the heat of the oxidation reaction, making it difficult to control and leaving an appropriate amount of caking component.
  • the oxidation treatment time is not particularly limited, the treatment time can be shortened if the oxidation temperature is high, and the treatment time is lengthened if the oxidation temperature is low.
  • the oxidizing process is performed until a predetermined amount of oxygen is obtained, and then in an inert atmosphere (that is, in a non-oxidizing atmosphere).
  • Heat treatment can be added.
  • the amount of oxygen and the caking component are independently controlled in different processes by adjusting only the caking component without exposing the oxygen taken in by the oxidation process in the previous process. This method is preferable because the stability of quality is improved in the process.
  • the heat treatment is desirably performed in an inert atmosphere, and the temperature is selected from the range of 200 to 450 ° C, and preferably 250 to 400 ° C. If the heat treatment temperature is low, it is not possible to drive out excess caking, and if the temperature is too high, controllability is poor, and oxygen is not preferred for the first time because oxygen is desorbed.
  • the particle size of the carbon precursor used for the oxidation treatment is selected in the range of 1/111 to 1111 m in consideration of diffusion of oxygen into the solid. However, it is preferably 200 m or less, preferably 5 to 60 ⁇ m, and more preferably 10 to 40 ⁇ m.
  • a commonly used method can be employed.
  • the area enclosed by the baseline and the (00 2) diffraction line is S 1
  • the diffraction angle 2> is 4 degrees or more and the lower angle side of the (00 2) diffraction line
  • the area ratio S 0 / S 1 of SO to S 1 is 0.4 to 2.0.
  • the range of 0 / S1 is an intermediate value between the soft carbon-based carbonaceous material and the hard carbon-based carbonaceous material.
  • This carbonaceous material for a negative electrode defines the true density and the X-ray scattering curve (area ratio S0 / S1) as indices indicating the total amount of space in the carbonaceous material, and provides an index indicating the crystallinity of the carbonaceous material.
  • the distance between (002) planes and the thickness of crystallites are specified, and the concentration of hydrogen contained in the carbonaceous material is specified.
  • the true density of the carbonaceous material is an important index that indicates the total amount of space contained in the carbonaceous material, that is, the amorphous portion, and is a basic physical property that governs the active material density in the electrode. is there.
  • the true density of the carbonaceous material of the present invention is 1. 65 to 1.85 g / cc is preferred, and 1.71 to: L. 79 g / cc is more preferred. Within this range, both can be well balanced and a battery with a high capacity per unit volume can be obtained.
  • the area ratio S0 / S1 obtained from the X-ray scattering curve of the carbonaceous material of the present invention is an index indicating the size of the space contributing to the capacity of the carbonaceous material and its content.
  • the space contained in the carbonaceous material creates a dense and dense structure of electrons and shows strong scattering on the small-angle side of the X-ray diffraction pattern.
  • the space of this particular size is important, corresponding to the space of height.
  • the area ratio S 0 / S 1 is to standardize the content (SO) of a space of a specific size contributing to the capacity by the content (S 1) of the crystalline portion. If the area ratio S 0 / S 1 is too small, the space contributing to the capacity is undesirably reduced.
  • the area ratio S 0 / S 1 is preferably 0.4 to 2.0, more preferably 0.5 to 2.0, and even more preferably 0.5 to 1.5.
  • the spacing d of the (002) plane of the carbonaceous material of the present invention. . 2 and the thickness L c of the crystallite are indexes indicating the crystallinity of the crystalline part. (002) Surface spacing d. . 2 and the thickness L c of the crystallite, together with the size of the fragment, are also important in creating a space of a preferred size.
  • the spacing d of the (002) plane If Q 2 or the thickness L c of the crystallite is too large, a large space that does not contribute to the capacity increases, which is not preferable because the capacity decreases and the decomposition of the electrolytic solution is promoted.
  • the (002) plane Interval d. . 2. If the thickness L c of the crystallite is too small, a small space that does not contribute to the capacity increases, which leads to a decrease in the capacity and a decrease in the electrode density. Therefore, the spacing d of the (00 2) plane. . 2 is preferably 3, 45-3.55 angstroms, more preferably 3.45 to 3.52 angstroms. Further, the thickness Lc of the crystallite is preferably 12.0 to 20.0 angstroms, more preferably 15 to 20 angstroms, and further preferably 17 to 19 angstroms.
  • the atomic ratio H / C of the carbonaceous material of the present invention defines the concentration of hydrogen contained in the carbonaceous material, and lithium or the like absorbed by interacting with carbon atoms bonded to hydrogen atoms. It is an index that defines the capacity that is carried by
  • a carbonaceous material with a high atomic ratio H / C has a large capacity, but also has a large irreversible capacity in the first charge / discharge, making it impractical. Therefore, the atomic ratio H / C is preferably from 0.01 to 0.15, more preferably from 0.01 to 0.10.
  • the method for obtaining the above-described carbonaceous material for a negative electrode is not particularly limited, but can be obtained, for example, by firing the above-mentioned carbonaceous precursor.
  • the inert atmosphere refers to an atmosphere filled with an inert gas such as nitrogen or argon, or a reduced-pressure atmosphere, for example, a vacuum.
  • the firing in an inert atmosphere can be carried out by a method generally used industrially, and is not particularly limited.
  • the firing temperature is preferably in the range of 800 to 140 ° C, more preferably 900 to 110 ° C.
  • the firing time is preferably about 1 to 3 hours within the above temperature range, which is industrially advantageous.
  • the carbonaceous material obtained has a density of 1.65 to 1.85 g / cc and a content of hydrogen with respect to carbon of which the atomic ratio is H / C. 0.01 to 0.15, and the distance between the (002) planes d ⁇ in the X-ray diffraction measurement. 2 is 3.45 to 3.55 angstroms, the crystallite thickness Lc is 12.0 to 20.0 angstroms, and the area ratio of S 0 to S 1 is S 0 /
  • a carbonaceous raw material having an amount of resin of 0.5 to 30% by weight is used, and the carbonaceous raw material is oxidized to obtain an atomic ratio of 0 / C. After obtaining an oxidation product of 0.1 to 0.2, baking is effective.
  • a non-aqueous secondary battery according to the present invention includes a negative electrode mainly composed of the carbonaceous material for a negative electrode, a positive electrode, and a non-aqueous electrolyte.
  • the movement speed of an element such as lithium or its ion in a solid such as a carbonaceous material is the slowest in a crystal part having a dense structure. Therefore, efforts must be made to increase the contact between the electrode active material and the electrolyte by making the electrode structure porous. However, if the pore size is too small, The capacity is reduced without the electrolyte permeating. Therefore, the average particle diameter of the carbonaceous material constituting the negative electrode is preferably 1 to 100 im, more preferably 5 to 50 ⁇ m.
  • the carbonaceous material obtained as a sintered body is optimally used as an electrode as it is.
  • this carbonaceous material may be pulverized and mixed with a binder or the like and used as an electrode mixture.
  • the sintered body is used as an electrode, a structure in which the current collector and the sintered body are integrated as necessary can be adopted.
  • the positive electrode active material used for the positive electrode any of those conventionally used can be used, and there is no particular limitation. Specifically, L i F E_ ⁇ 2, L i C O_ ⁇ 2, L iN i 0 2, L iMn 2 0 4, and non-stoichiometric compounds thereof, Mn_ ⁇ 2, T i S 2, F e S Nb 3 S 4, Mo 3 S 4, C o the S 2, V 2 ⁇ 5, P 2 0 5, C R_ ⁇ 3, V 3 0 3, T e 0 Ge 0 2 , etc. can and Mochiiruko .
  • any conventionally used one can be used as long as the electrolyte is dissolved in an organic solvent, and is not particularly limited.
  • the organic solvent include esters such as propylene carbonate, ethylene carbonate, and acetyl lactone; and ethyl ether, tetrahydrofuran, substituted tetrahydrofuran, dioxolan, pyran and derivatives thereof, dimethoxetane and Ethers such as ethane; 3-substituted 1-2-oxasolidinones such as 3-methyl-2-oxazolidinone; sulfolane, methylsulfolane, acetonitrile, and propionitrile; It is used by mixing more than one kind.
  • Lithium perchlorate, lithium borofluoride, lithium phosphofluoride, lithium chloride aluminate, lithium halide, lithium trifluoromethane sulfonate, and the like can be used as the electrolyte.
  • a structure in which a positive electrode and a negative electrode are spirally formed through a separator, a structure in which a positive electrode and a negative electrode are stacked through a separator, and the like are employed.
  • the coal tar pitch is heat-treated to have a volatile content (VM) of 22.1% by weight, an amount of resin of 25.0% by weight, and a 0 / C of 0.09 (atomic ratio).
  • VM volatile content
  • the resin content is 5.2% by weight
  • the carbon content is 94.0% by weight and 0 / C
  • a carbonaceous raw material having an atomic ratio of 0.012 and a formed caking content of 14.8% by weight was obtained.
  • the carbonaceous raw material powder was formed and fired without any treatment by pulverizing to have a median diameter of 18 / m. The results are shown in Table 1.
  • the methods for measuring the contents of carbon and hydrogen, the particle size, the amount of resin, and the methods for evaluating the formability, sinterability, and battery characteristics are as follows, and are common to the following comparative examples and examples.
  • the content of carbon and hydrogen was determined by PerkinElmer Inc.
  • the atomic ratio H / C of hydrogen and carbon was calculated from the weight ratio of carbon and hydrogen using the respective atomic weights.
  • the element ratio ⁇ / C of oxygen and carbon was calculated from the weight contents of carbon and oxygen using the respective atomic weights.
  • the oxygen content is measured by LECO's oxygen and nitrogen analyzer. Using (TC-436), enclose 10 mg of the sample in a nickel capsule, heat at 300 W for 300 seconds, and then heat at 500 W for 100 seconds under a stream of helium, Carbon dioxide generated during heating at 500 W was quantified by infrared absorption. Heating at 300 W in all stages was performed to remove adsorbed water and the like.
  • the particle size was measured in a 0.1% by weight aqueous solution of sodium oleate by a laser diffraction / scattering method using LA-500 manufactured by HORIBA, Ltd.
  • the average particle diameter was determined as the median diameter at which the integration becomes 50% on a volume basis.
  • the resin amount was determined by measuring the toluene-insoluble content according to JIS-K2425. In addition, when the temperature was increased in an inert atmosphere and the weight loss observed up to 600 ° C was measured using a thermal analyzer “TG / DTA300” manufactured by Seiko Instruments Inc. It was determined by a method of heating at a heating rate of ° C / min. About 2 O mg of the sample was lightly filled into an alumina cylindrical container with a diameter and a height of about 5 mm for measurement.
  • 0.4 g of the carbonaceous precursor powder was placed in a mold having a diameter of 2 Omm, and pressed at a total pressure of 4 tons for 1 minute to produce a molded body having a thickness of about 1 mm. A part or all of the surface of the molded body may stick to the sesame during die removal and a complete molded body may not be obtained. This phenomenon is observed in the process of making 10 or more molded bodies. The probability was defined as the sticking rate when the mold was released. Also, the probability of observing the phenomenon of cracking or partial application of the compact in the process of producing 10 or more compacts is referred to as the mold breakage rate.
  • the evaluation of sinterability is performed by placing healthy compacts side by side on a smooth graphite plate, This was placed in a closed small electric furnace, heated to 1000 ° C at a rate of 300 ° C / hour under an argon gas flow, and maintained for 1 hour to produce a sintered electrode for evaluation.
  • the probability of cracking or complete cracking of the sintered electrode is called the cracking rate during firing, and the entire sintered electrode swells like a drum, or shows a partially foamed state, or loses its flatness due to warping
  • the probability that the sintered electrode is generated is referred to as a swelling ratio during firing.
  • the cracking rate during sintering and the swelling rate during sintering were determined by firing 10 or more sound compacts.
  • the density of the sintered electrode was determined from the volume and the weight determined from the thickness and diameter of a healthy electrode.
  • the battery characteristics were such that the sintered electrode obtained as described above was used as the working electrode, metal Li was used as the counter electrode, and the electrolyte was 1 mol / liter L i PF 6 / PC
  • Example 2 Same as Example 1 except that the oxidation treatment temperature was 250 ° C. Table of results -Shown in 1.
  • Example 1 Same as Example 1 except that the oxidation treatment temperature was 300 ° C. Table 1 shows the results.
  • Example 1 Same as Example 1 except that the oxidation treatment temperature was 350 ° C. Table 1 shows the results.
  • Example 1 Same as Example 1 except that the oxidation treatment temperature was 380 ° C. The results are shown in Table-1.
  • Example 12 Same as Example 4 except that the oxidation treatment was performed at 280 ° C. for 3 hours. The results are shown in Table 12.
  • Example 12 Same as Example 4 except that the oxidation treatment was performed at 280 ° C. for 7 hours. The results are shown in Table 12.
  • Example 12 Same as Example 4 except that the oxidation treatment was performed at 330 ° C. for 3 hours. The results are shown in Table 12.
  • Example 13 shows the results.
  • Example 13 shows the results.
  • Example 8 Same as Example 8 except that the heat treatment in an argon atmosphere was performed at 350 ° C. for 1 hour. The results are shown in Table-3.
  • Example 9 Example 10
  • Example 11 Example 12 Addition treatment temperature () 300 300 350 350 400
  • Addition treatment time (Hr) 1 3 L 3 1 ⁇ (%) 4.4 3.4 2. 5 2 9 2. ⁇ Caking component A (%) 12. 1 10. 9 11. 0 9. 6
  • 8.3 Calcined electrode density 1.30 1. 1 1. 29 1.30 1.29 Release capacity & (raAh) 372 379 382 37 ⁇ 378 Effectiveness (%) 77.7 78.5 00.1 78.5 79.4 Die removal W 0% 0 0 0 0 0 0 Adhesion rate when removing the mold% 0 0 0 0 0 0 0 0
  • Coal tar pitch was obtained by heat treatment at about 400 ° C.
  • the resin amount was 25.4% by weight, 0 / C was 0.0009 (atomic ratio), and the carbon content was 94.2% by weight.
  • a carbonaceous raw material having a caking content of 49.4% by weight was formed into a powder having a median diameter of 28 m, and then molded and fired without any treatment to obtain a sample. The results are shown in Table 1-4. The characteristics of the electrode based on the obtained sample could not be measured because a predetermined number of healthy compacts could not be obtained.
  • Approximately 80 g of the oxidized carbonaceous raw material powder used in Comparative Example 5 was flatly filled to a thickness of about 1 cm in a stainless steel tray of 18 cm, and this was placed in a closed small electric furnace. The sample was heated to 400 ° C. at a rate of 300 ° C./hour under an argon gas flow, and heated at the temperature for 4 hours to obtain a sample.
  • Table 14 shows the amount of the ⁇ component and the amount of the caking component of the obtained powder, and the results of evaluation by molding and firing the powder.
  • Coal tar pitch obtained by heat treatment at about 450 ° C resin content is 12.9 wt%, 0 / C is 0.009 (atomic ratio), and carbon content is 94.6% by weight of carbonaceous raw material with a caking content of 12.6% by weight was converted into a powder having a median diameter of 28m, then molded and fired without any treatment to obtain a sample. .
  • the results are shown in Table-4. The characteristics of the electrode based on the obtained sample could not be measured because a predetermined number of healthy compacts could not be obtained.
  • the results are shown in Table-4. The characteristics of the electrode based on the obtained sample could not be measured because a predetermined number of healthy compacts could not be obtained.
  • Comparative Example 8 Approximately 200 g of the same carbonaceous raw material powder as in Comparative Example 7 was flattened to a height of about 1 cm in a 28 x 20 cm stainless steel tray, and the temperature was previously raised to 250 ° C. And oxidized for 1 hour under a stream of air. Table 4 shows the repair results evaluated by molding and firing the obtained powder. The characteristics of the electrode based on the obtained sample could not be measured because a predetermined number of sound compacts could not be obtained.
  • composition ⁇ Swelling% 100 6 n 58 0 0 0 0
  • the volatile matter (hereinafter referred to as VM) obtained by heat treatment of the coal tar pitch is 22.1% by weight, the resin content is 25.0% by weight, and the atomic ratio 0 / C is 0.0000.
  • Material 9 was treated at 280 ° C. for 1 hour with mechanical energy in the presence of air.
  • a carbonaceous raw material having a VM of 13.6% by weight, an amount of resin of 7.6% by weight, a fixed carbon content of 86.03% by weight, and an atomic ratio of 0 / C of 0.017 was obtained. Obtained. Further, this carbonaceous raw material was pulverized to have a median diameter of 17.3 ⁇ m.
  • the carbonaceous raw material was oxidized in an air atmosphere at 280 ° C. for 30 minutes to obtain 12.8% by weight of VM, 1.4% by weight of resin, and an atomic ratio of 0 / C.
  • an oxidation product (carbonaceous precursor) of 0.048 was obtained.
  • the oxidation product was formed into a molded body having a thickness of about 1 mm at a pressure of 2 kgf / cm 2 , and then calcined at 1,000 ° C for 60 minutes in a nitrogen atmosphere to obtain a bulk density of 1.30 g / cm 2.
  • a carbonaceous material having a VM content of 22.1% by weight, an amount of resin of 25.0% by weight, and an atomic ratio of 0 / C of 0.0009 obtained by heat treatment of Cole-Rubich was converted to air. Oxidation treatment at 280 ° C for 1 hour while applying mechanical energy in the presence of. As a result, oxidation products having a VM of 13.6% by weight, an amount of resin of 7.6% by weight, a fixed carbon content of 86.03% by weight, and an atomic ratio of 0 / C of 0.017 ( A carbonaceous precursor was obtained. Further, this oxidation product was pulverized to a median diameter of 17.3 ⁇ m, and then calcined at 1,000 ° C. for 60 minutes in a nitrogen atmosphere to produce a carbonaceous material for a negative electrode.
  • Example 16 The same oxidation product as in Example 16 was fired in a nitrogen atmosphere at 900 ° C. for 60 minutes to produce a carbonaceous material for a negative electrode.
  • Example 15 The same carbonaceous raw material as in Example 15 was oxidized in an air atmosphere at 210 ° C. for 30 minutes to give a VM of 14.1% by weight, an arrangement amount of 4.0% by weight, and an atomic ratio of 0%. After obtaining an oxidation product having a / C of 0.022, the oxidation product was baked at 900 ° C. for 60 minutes in a nitrogen atmosphere to produce a carbonaceous material for a negative electrode.
  • Example 15 The same carbonaceous raw material as in Example 15 was oxidized at 260 ° C. for 30 minutes in an air atmosphere to obtain 13.6% by weight of VM, 0.7% by weight of arrangement, and atomic ratio. After obtaining an oxidation product having a 0 / C of 0.039, the oxidation product was baked at 900 ° C. for 60 minutes in a nitrogen atmosphere to produce a carbonaceous material for a negative electrode.
  • Example 15 The same carbonaceous raw material as in Example 15 was oxidized at 350 ° C. for 30 minutes in an air atmosphere to obtain 18.0% by weight of VM, 0.2% by weight of arrangement, and atomic ratio. After obtaining an oxidation product having a 0 / C of 0.09, the oxidation product was baked at 900 ° C. for 60 minutes in a nitrogen atmosphere to produce a carbonaceous material for a negative electrode.
  • Example 2 1 A carbonaceous raw material having a VM of 22.1% by weight, an amount of resin of 25.0% by weight, and an atomic ratio of 0 / C of 0.009 obtained by heat-treating coal tar pitch is subjected to an air atmosphere.
  • the medium was oxidized at 260 ° C. for 30 minutes to obtain an oxidation product having a VM content of 15.2% by weight, an amount of resin of 3.0% by weight, and an atomic ratio of 0 / C of 0.034.
  • the oxidation product is formed into a molded body having a thickness of about 1 mm at a pressure of 2 kgf / cm 2 , and then calcined at 100 ° C. for 60 minutes in a nitrogen atmosphere to obtain a bulk density of 1.30 g.
  • the particle size of the particles constituting this sintered body was about 15 ⁇ m.
  • a carbonaceous raw material with 14.6% by weight of VM, 13.0% by weight of resin, and atomic ratio 0 / C of 0.009 obtained by heat-treating Cole-Yu-Rubic was air-conditioned.
  • the medium was oxidized at 260 ° C. for 30 minutes to obtain an oxidation product having a VM content of 17.7% by weight, an amount of resin of 1.0% by weight, and a 0 / C of 0.078.
  • this oxidation product is formed into a molded body having a thickness of about 1 mm at a pressure of 2 kgf / cm 2 , and then calcined in a nitrogen atmosphere at 100 ° C. for 60 minutes to obtain a bulk density of 1.30 g.
  • the particle size of the particles constituting this sintered body was about 15 m.
  • the coal was baked at 110 ° C. for 3 hours in an inert atmosphere to obtain a carbon material for a negative electrode having a particle size of 16.2 m.
  • a carbonaceous raw material having a VM content of 5% by weight, a ⁇ -resin content of 0.5% by weight or less, and an atomic ratio of 0 / C of 0.0007 was obtained by heat treatment of Cole-Rubich. m or less.
  • This carbonaceous raw material powder is filled into a metal tray at a bulk density of about 0.5 g / cc to a thickness of about 1 cm, and oxidized in an air atmosphere at 390 ° C for 5 hours. After the treatment, an oxidation product having an atomic ratio of 0 / C of 0.35 was obtained from a range up to about 3 mm above the packed bed.
  • this oxidation product was calcined in a nitrogen atmosphere at 110 ° C. for 3 hours to obtain a carbonaceous material for a negative electrode.
  • a carbonaceous raw material with 5% by weight of VM obtained by heat-treating coal tar pitch, 0.5% by weight or less of arsenic and an atomic ratio of 0 / C of 0.0007 was converted to 45 / zm Crushed below.
  • This carbonaceous raw material powder is filled into a metal tray so as to have a bulk density of about 0.5 g / cc and a thickness of about lcm, and is oxidized in an air atmosphere at 390 ° C for 4 hours. After the treatment, an oxidation product having an atomic ratio of 0 / C of 0.35 was obtained from a range up to about 2 mm above the packed bed.
  • this oxidation product was calcined in a nitrogen atmosphere at 110 ° C. for 3 hours to obtain a carbonaceous material for a negative electrode.
  • the carbonaceous raw material was pulverized to 45 m or less. This carbonaceous raw material powder is placed on a metal tray with a thickness of about several mm, Oxidation treatment was performed in an air atmosphere at 230 ° C. for 3 hours to obtain an oxidation product having an atomic ratio of 0 / C of 0.131.
  • this oxidation product was calcined in a nitrogen atmosphere at 110 ° C. for 3 hours to obtain a carbonaceous material for a negative electrode.
  • a carbonaceous material for a negative electrode was obtained in the same manner as in Comparative Example 13 except that the oxidation treatment temperature was set to 180 ° C and an oxidation product having an atomic ratio 0 / C of 0.049 was obtained.
  • the petroleum pitch obtained by removing the light component of ethylene biene was 29.8% by weight, the resin content was 37.1% by weight, and the atomic ratio H / C was 0.6.
  • the carbonaceous raw material No. 7 was pulverized to 45 m or less. This carbonaceous raw material powder is placed on a metal tray with a thickness of about several mm, and oxidized at 310 ° C for 3 hours in an air atmosphere to obtain an oxidation product having a 0 / C of 0.254. .
  • this oxidation product was calcined in a nitrogen atmosphere at 110 ° C. for 3 hours to obtain a carbonaceous material for a negative electrode.
  • Table 5 shows the oxidation treatment conditions, the resin content of the carbonaceous raw material, and the oxygen content (atomic ratio 0 / C) of the oxidation product of the examples and the comparative examples.
  • ⁇ Ultimate (VM) was determined according to JIS-M8812.
  • the heat treatment temperature of the carbonaceous material obtained in the examples and comparative examples plane of the surface interval d u. 2 shows the thickness L c, the true density of crystallites, the atomic ratio H / C, the area ratio S 0 / S 1, the average diameter of the constituent particles in Table 6.
  • Fig. 2 shows the X-ray scattering curve of the carbonaceous material obtained by the blasting method using the transmission method. Baking d. 02 Lc True density H / C S0 / S1 Constituent particles Discharge capacity Capacity loss
  • Example 17 900 3.46 17.7 1.76 0.09 0.80 12.0 559 385 678 174
  • Example 18 900 3.47 18.3 1.74 0.10 0.67 16.6 567 416 724 151
  • Comparative Example 9 1100 3.44 23.9 2.07 0.019 0.28 16.2 322 267 550 55
  • the true density was measured by a true specific gravity measuring device (manufactured by Seishin Enterprise) by the n-butanol substitution method.
  • the carbonaceous raw material was pulverized to 45 m or less, dried at 105 ° C for 1 hour, cooled to room temperature in a nitrogen stream, and used for measurement.
  • the atomic ratio H / C that is, the content of hydrogen relative to carbon, was calculated from the weight contents of carbon and hydrogen using the respective atomic weights.
  • the contents of carbon and hydrogen were measured with a fully automatic elemental analyzer (“: HN meter 240 C” manufactured by PerkinElmer Inc.).
  • the particle size of the constituent particles was measured in a 0.1% by weight aqueous solution of sodium oleate by a laser diffraction / scattering method using a particle size distribution analyzer (“LA-500” manufactured by Horiba, Ltd.). The average particle diameter was determined as a particle diameter and a median diameter at which the integration becomes 50% on a volume basis.
  • the spacing d of the (002) plane. . 2 and the crystallite thickness L c were determined by X-ray diffraction in accordance with the method proposed by the Japan Society for the Promotion of Science 117 committee.
  • the equipment used and the measurement conditions were as follows.
  • Measurement range 20 4 to 40 degrees
  • the sintered bodies (carbonaceous materials for negative electrodes) obtained in Examples and Comparative Examples were lightly pulverized to have a median diameter of 15 ⁇ m, which was used as a negative electrode active material.
  • the particle size of the powder subjected to the battery evaluation is almost the same as the basic particles constituting the sintered body, and the battery evaluation indicates the characteristics of the basic particles of the sintered body.
  • the positive electrode pellet 1 was fabricated as follows.
  • a positive electrode active material As a positive electrode active material, a mixture of lithium carbonate 0.5 molar and cobalt carbonate 1 molar, by firing for 5 hours in air at 900 ° C, to obtain a L i C o 0 2.
  • the L i C o0 2 was a powder having an average particle diameter of 10 zm by grinding.
  • a the L i Co0 2 9 1 part by weight, A paste was prepared by mixing 6 parts by weight of graphite as a conductive material and 3 parts by weight of polyvinylidene fluoride as a binder, and adding N-methylpyrrolidone as a dispersant. Then, the base was dried and formed into a diameter of 15.5 mm to obtain a positive electrode pellet 1.
  • negative electrode pellet 2 was produced as follows.
  • the positive electrode pellet 1 was accommodated in a positive electrode can 3 made of aluminum, and the negative electrode pellet 2 was accommodated in a negative electrode tube 4 made of stainless steel (SUS304). Then, the positive electrode pellet 1 and the negative electrode pellet 2 are laminated via a polypropylene separator 5 and caulked with a gasket 6 to form a coin type having a diameter of 20 mm and a thickness of 2.5 mm. A secondary battery was manufactured.
  • the positive electrode 12 was connected to the positive electrode can 3
  • the negative electrode 13 was connected to the negative electrode strip 4
  • a lithium electrode 15 was used as the reference electrode 14 to produce a three-electrode cell.
  • the battery is charged at a constant current of 0.25 mA until the potential of the negative electrode 13 reaches 0 V, and similarly, the potential of the negative electrode 13 reaches 1.5 V. Discharge was performed at a constant current of 0.25 mA until the charge and discharge capacities were measured. C When both the charge and discharge reached a predetermined potential, the measurement was terminated. Table 6 shows the obtained battery characteristics.
  • the carbonaceous raw material having a y-resin content of 0.5 to 30% by weight was oxidized to obtain an oxidation product having an atomic ratio 0 / C of 0.01 to 0.2. Then, the carbonaceous material of the example obtained by firing this oxidation product has a (002) plane spacing d. . 2. It can be seen that the parameters of crystallite thickness Lc, true density, atomic ratio H / C, area ratio S0 / S1, and average diameter of constituent particles have been optimized. In addition, it can be seen that the battery using the carbonaceous material for which various parameters have been optimized for the negative electrode has a high charge / discharge capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

明 細 書 炭素質前駆体、 負極用炭素質材料及び非水系二次電池 技 術 分 野 本発明は、 小型、 軽量の電気機器や電気自動車の電源として優れ た特性を有する非水系二次電池に負極材料として好適な負極用炭素 質材料及び炭素質前駆体に関するものであり、 さらには係る負極炭 素質材料を用いた非水系二次電池に関するものである。 背 景 技 術 近年、 ビデオカメラ、 携帯電話ゃポ一夕ブルパソコン等の携帯機 器の普及に伴い、 一次電池に代わって繰り返し使用できる二次電池 の需要が高まっている。 特に、 負極活物質に炭素質材料を用い、 正 極活物質にリチウムを含有する複合酸化物を用い、 電解液に有機溶 媒を使った非水系二次電池が注目されている。
例えば、 負極活物質としては、 特公平 4— 2 4 8 3 1号公報に示 されるコークス等のソフ トカーボン系の炭素質材料や、 特開平 3 - 2 5 0 5 3号公報に示されるハードカーボン系の炭素質材料が提案 され、 正極活物質としては、 特開昭 6 3 - 1 3 5 0 9 9号公報に示 される L i M 0 2 ( Mは、 C o、 N i等) が提案されている。
しかしながら、 従来の炭素質材料を負極活物質として用いた非水 系二次電池は、 サイクル寿命及び安全性に優れるものの、 携帯機器 の消費電気量の増加や、 1回の充電で使える時間の伸長が要求され ている等の理由から、 エネルギー密度のより一層の向上が望まれて いる。
このためには、 電極上での活物質の充填密度を向上させる、 ある いはより多くの電極材料を電池缶内に詰め込む等の対策が考えられ るが、 いずれの対策にも限界がある。 負極活物質において、 ソフ ト カーボン系の炭素質材料は、 真密度は高いものの容量が低く、 一方 ハ一ドカーボン系の炭素質材料は、 容量は高いものの真密度が低く、 エネルギー密度の向上が困難である。 発 明 の 開 示 本発明は、 単位体積当たりの容量が大きな負極用炭素質材料及び その製造方法を提供することを目的とする。 また、 本発明は、 サイ クル寿命、 安全性に優れるとともに、 エネルギー密度の高い非水系 二次電池を提供することを目的とするものである。
本発明者らは、 上記課題を解決するため、 鋭意検討を重ねた結果、 以下のような知見を得た。
非水系二次電池の負極に用いられる炭素質材料は、 ベンゼン環が 平面的に連なった大きさ 1 O A程度のフラグメントを構成単位とし、 このフラグメン 卜が数枚積層した結晶質部分と、 規則的な積層がみ られない非晶質部分とからなつている。 結晶質部分は、 炭素原子が 密に詰まり、 非晶質部分に比べて密度が高い。 一方、 非晶質部分は、 密度が低く、 結晶質部分より多くの空間を有する。 また、 フラグメ ン卜の端部の一部の炭素原子には、 水素が共有結合している。 このような構造の炭素質材料は、 電気化学的にリチウム等の元素 をド一プする時、 下記の 3種類のサイ 卜にリチウム等の元素が吸蔵 されることで、 高い電気化学的容量が発現すると考えられる。
( 1 ) 結晶質部分の層間に黒鉛層間化合物と類似の形態で吸蔵され る。
( 2 ) 主に非晶質部分に存在する空間に吸蔵される。
( 3 ) 水素原子と結合している炭素原子と相互作用する。
そこで、 本発明に係る負極用炭素質材料は、 炭素質材料中の空間 の総量を表す指標として真密度と X線回折パターンを規定した。 ま た、 炭素質材料の結晶性を表す指標として、 ( 002 ) 面の面間隔、 結晶子の厚さを規定した。 さらに、 炭素質材料中に含まれる水素濃 度を規定することにした。
すなわち、 本発明に係る負極用炭素質材料は、 真密度が 1. 6 5 〜 1. 8 5 g/c cであり、 水素の炭素に対する含有量が原子比で 0. 0 1〜0. 1 5であり、 ( 00 2 ) 面の面間隔が 3. 4 5〜3. 5 5オングス トロームであり、 結晶子の厚さが 1 2. 0〜20. 0 オングス トロームであり、 かつ、 X線散乱曲線において、 ( 00 2 ) 回折線の両側の極小値を結ぶ共通接線をベースラインとし、 ベ —スラインと ( 00 2 ) 回折線とに囲まれる面積を S 1とし、 回折 角 20が 4度以上で ( 0 0 2 ) 回折線より低角側の X線散乱曲線と ベースラインとに囲まれる面積を S 0とするとき、 S Oの S 1に対 する面積比が 0. 4〜2. 0であることを特徴とする。
この負極用炭素質材料の製造方法は、 ァレジン量が 0. 5〜30 重量%である炭素質原料を酸化処理して、 酸素の炭素に対する含有 量が原子比で 0. 0 1〜0. 2である酸化生成物の炭素質前駆体を 得た後、 この酸化生成物を不活性雰囲気中で焼成することを特徴と する。
本発明者等は、 自己焼結性を有し、 かつ、 後の焼成工程で負極活 物質として容量が大きな炭素材料へ変化する炭素質前駆体を提供す る事で、 上記優れた特性を有する負極炭素質材料を得ることができ る事を見いだした。 本発明による炭素質前駆体を成形し次いで焼成 する事で、 バインダ一等の合剤を用いることなく負極を形成する事 ができるようになり、 負極中の活物質の密度が向上し、 エネルギー 密度が高い非水系二次電池が可能となる。
この、 本発明に係る炭素質前駆体は、 負極、 正極及び非水電解液 を有する非水系二次電池の負極活物質の前駆体であって、 炭素含有 量が 8 0重量%〜 9 5重量%、 酸素と炭素の元素比 0 / Cが 0 . 0 1〜 0 . 2であり、 且つァレジン量が 0 . 5重量%〜 5重量%であ ることを特徴とするものである。
また、 本発明に係る非水系二次電池は、 正極と、 炭素質材料を主 体とする負極と、 非水系電解液とを備える非水系二次電池において、 負極に上記負極炭素質材料を用いたものであり、 負極炭素質材料が、 リチウムをド一プ脱ド一プできるサイ トを多く有しているため、 単 位体積当たりの容量を増加させることができ、 高いエネルギー密度 を有する。 図 面 の 簡 単 な 説 明 図 1は、 本発明を適用した負極用炭素質材料の X線散乱パターン を示す図である。 図 2は、 実施例で得られた負極用炭素質材料の X線散乱パターン を示す図である。
図 3は、 本発明を適用したコィン型二次電池の構成を示す断面図 である。
図 4は、 充放電容量測定用セルの構成を示す断面図である。 発明を実施するための最良の形態 以下、 発明を詳細に説明する。
本発明の炭素質前駆体は、 後の工程で不活性雰囲気中で焼成され て、 非水系二次電池の負極活物質として好適な炭素材料へと変化し て実用に供される。 バインダ一や導電材等の合剤を用いることなく、 活物質および必要に応じて集電体からなる焼結負極を得るには、 ま ず粉末とした炭素質前駆体をダイス等で加圧して成形体とし、 次い で焼成する方法がとれる。 負極に集電体あるいはリード線等が必要 な場合には、 該部品と炭素質前駆体を一緒に成形、 焼結する事がで きる。 また、 本発明の炭素質前駆体を焼成して得た炭素材料は、 粉 体をバインダ一等で結合して作られる負極の活物質として用いる事 もできる。
該炭素質前駆体に含まれる酸素は、 焼成工程で大部分がガス化し て失われるが、 得られだ炭素材料へ非晶質部分を導入し、 リチウム 等が吸蔵できる空間を増やす事で容量の増加をもたらす重要な要件 である。 酸素量は、 酸素と炭素の原子比 0 / Cとして、 0 . 0 1か ら 0 . 2が、 好ましくは 0 . 0 1から 0 . 1、 更に好ましくは 0 . 0 4から 0 . 0 6がよい。 該酸素量が少なすぎると、 後工程の焼成 により得られた炭素材料に十分な量の非晶質部分が含まれず、 容量 が低下し好ましくない。 一方、 酸素量が多すぎると、 後工程の焼成 して得られる炭素材料に多くの空間が生じ、 このため炭素材料の密 度が低下し、 負極密度を向上させようとする本発明の目的が達成で きない。
炭素質前駆体に含まれる トルエンに可溶な有機物、 即ちァレジン 量、 あるいは、 該炭素質前駆体を不活性雰囲気中で昇温し 6 0 0 °C までに観察される重量減少率で代表される粘結成分量は、 炭素質前 駆体の成形と焼結を支配する重要な要件である。 粘結成分とは低分 子量の有機化合物であり、 成形の工程では粒子間を繋ぐバインダー の役割を演じ、 焼結の工程では自ら炭素化して焼結を可能ならしめ る。 即ち成粘結分が少ないと、 粒子間を繋ぐ力が弱く、 成形体が得 れない、 あるいはその強度が弱くハンドリングに耐えない等の問題 が生じる。 また、 焼結工程では焼結力が弱く、 電極として十分な強 度の焼結体が得られない。 一方、 粘結成分が多いと、 焼成工程では 焼結が進みすぎ、 得られた焼結体の気孔率が低くなり負極として適 さなくなる。 即ち、 ァレジン量は 0 . 5から 5重量%、 好ましくは 1から 3重量%がよく、 6 0 0 °Cまでに観察される重量減少率量は、 5から 1 2重量%が、 好ましくは 7から 1 2重量%がよい。
本発明の炭素質前駆体は焼成により実質的に炭素からなる材料へ 変換されて実用に供される。 従って、 前躯体中の炭素含有量は、 8 0から 9 5重量%の範囲、 好ましくは 8 7から 9 3重量%の範囲が よい。
本発明の炭素質前駆体を得るためには特にその方法は限定される ものではないが、 以下にその具体的方法を説明する。 本発明の炭素 質前駆体は、 例えば、 石油ピッチや石炭ピッチの易黒鉛化炭素前駆 体を酸化し、 必要に応じて不活性雰囲気中で加熱処理する事で得ら れる。 ピッチ類等の易黒鉛化炭素前駆体を酸化処理する場合、 酸化 に供される炭素質前駆体のァレジン量が 0 . 5から 3 0重量%、 好 ましくは 1から 3 0重量%、 さらに好ましくは 3から 2 6重量%が よい。 yレジン量が少ないと、 酸化処理あるいは加熱処理して得ら れる炭素質前駆体の成粘結分の量を希望の範囲に調整する事が難し くなる。 また、 ァレジン量が多すぎると、 該原料の軟化点が低くな り、 酸化処理や加熱処理の温度が制限されて工程的に不利である。 酸化処理の方法は希望の酸素量と成粘結分量が得られる限り、 特 に限定されるものではないが、 より具体的には、 酸素あるいは空気 による酸化、 硫酸や硝酸、 過酸化水素等の酸による酸化、 また、 N 0 N O x , S 0 2 , S C Xやハロゲン類、 オゾン等による酸化が挙 げられる。 酸化の方式も湿式によるプロセスと乾式によるプロセス 等がある。
空気による乾式酸化が簡易で工程的には好ましい。 より具体的に は、 容器等に炭素質前駆体粉末を入れ加熱する静置方式や、 炭素質 前駆体粉末を撹拌しながら空気気流下、 あるいは空気吹き込み下で 加熱する撹拌式や、 ガスの流れや振動等により作った流動層を用い る方法等がある。 静置式酸化は酸化反応熱の蓄熱により反応が暴走 しゃすく制御が難しい。 また、 流動層式酸化は反応が一気に進み、 これも制御が難しい。 一方、 撹拌式酸化は設備が簡易でかつ、 蓄熱 暴走や短時間での反応がおきにく く工業的に有利である。 空気によ る酸化処理において、 その処理温度は 1 0 0から 4 0 0 °Cの範囲が よく、 更に好ましくは 2 0 0から 3 5 0 °Cがよい。 酸化温度が低す ぎると酸化が進行せず、 また、 酸化温度が高すぎると酸化反応熱に より被処理物の温度が暴走して制御が難しく、 かつ適当量の粘結成 分を残すことができなくなる。 酸化処理時間も特に限定されるもの ではないが、 酸化温度が高ければ処理時間は短くでき、 酸化温度が 低ければ処理時間を長くする。
酸素量と粘結成分量とを酸化処理工程のみで制御する事が難しい 場合には、 所定の酸素量が得られるまで酸化処理を行った後に、 不 活性雰囲気中 (即ち非酸化性雰囲気中) での加熱処理を追加する事 ができる。 該加熱処理を行う場合、 前工程である酸化処理により取 り込まれた酸素を迫い出す事なく、 粘結成分のみを調整する事で、 酸素量と粘結成分を異なる工程で独立に制御させる方法が可能とな り、 工程的に品質の安定性が向上し好ましい。 該加熱処理は不活性 雰囲気中で行われる事が望ましく、 その温度は 200から 4 50 °C の範囲から選ばれ、 好ましく 2 5 0から 40 0°Cがよい。 加熱処理 温度が低いと余分に含まれる粘結分を追い出す事ができず、 また、 温度が高すぎると制御性が悪く、 かつ、 酸素が脱離をはじめて好ま しくない。
酸化反応は主に固気反応であるため、 酸化処理に供される炭素前 駆体の粒径は、 酸素の固体内への拡散を考慮して、 1 /111から 1 111 mの範囲で選ばれるが、 200 m以下がよく、 好ましく 5から 6 0〃m、 更に好ましく 1 0から 40〃mの範囲がよい。 該粒径の炭 素質原料を得るために粉砕が必要な場合には、 一般的に用いられる 方法を採用する事ができる。
一方、 本発明に係る負極用炭素質材料は、 真密度が 1. 6 5〜 1. 8 5 g/c cであり、 水素の炭素に対する含有量が原子比 H/Cで 0. 0 1〜0. 1 5であり、 ( 00 2 ) 面の面間隔 d。。2が 3. 4 5 〜3. 5 5オングス トロームであり、 結晶子の厚さ L cが 1 2. 0 〜2 0. 0オングス トロームである。 そして、 この負極用炭素質材 料は、 X線散乱曲線において、 図 1に示すように、 ( 00 2 ) 回折 線の両側の極小値 ( 2 (9 = 1 5度及び 3 0度付近にあらわれる) を 結ぶ共通接線をべ一スラインとし、 ベースラインと ( 00 2 ) 回折 線とに囲まれる面積を S 1とし、 回折角 2 >が 4度以上で ( 00 2 ) 回折線より低角側の X線散乱曲線とベースラインとに囲まれる 面積を S Oとするとき、 S Oの S 1に対する面積比 S 0/S 1が 0. 4〜 2. 0であることを特徴とする。 この面積比 S 0/S 1の範囲 は、 ソフ トカーボン系の炭素質材料とハ一ドカーボン系の炭素質材 料の中間値となるものである。
この負極用炭素質材料は、 炭素質材料中の空間の総量を表す指標 として真密度と X線散乱曲線 (面積比 S 0/S 1 ) とを規定し、 炭 素質材料の結晶性を表す指標として、 ( 00 2 ) 面の面間隔、 結晶 子の厚さを規定し、 さらに、 炭素質材料中に含まれる水素濃度を規 定する。
すなわち、 炭素質材料の真密度は、 炭素質材料中に含まれる空間 の総量、 すなわち非晶質部分を表す重要な指標であるとともに、 電 極中の活物質密度を支配する基本的な物性である。
真密度が高すぎると、 非晶質部分が減少し、 黒鉛構造に近くなる ため好ましくない。 真密度が低くすぎると、 すなわち非晶質部分が 多く、 空間が多く存在する炭素質材料では、 空間への吸蔵が多くな り単位重量当たりの容量が増加するが、 電極の密度が減少するため 好ましくない。 したがって、 本発明の炭素質材料の真密度は、 1. 6 5〜 1. 8 5 g/c cが好ましく、 1. 7 1〜: L . 79 g/c c がより好ましい。 この範囲において、 両者がうまくバランスし、 単 位体積当たりの容量が高い電池を得ることができる。
また、 本発明の炭素質材料の X線散乱曲線から得られる面積比 S 0/S 1は、 炭素質材料の容量に寄与する空間の大きさとその含有 量を表す指標である。
炭素質材料に含まれる空間は、 電子の粗密構造を生み、 X線回折 パターンの小角側で強い散乱を示す。 S Oは、 回折角 20が 4〜 1 5度付近の、 すなわち電子の粗密周期が約 2 2〜 6オングス ト口一 ム (=X線の波長え /2 s i n (θ ) ) の範囲にある大きさの空間 に対応し、 この特定の大きさの空間が重要である。 面積比 S 0/S 1は、 容量に寄与する特定の大きさの空間の含有量 (S O ) を、 結 晶質部分の含有量 ( S 1 ) で規格化することにしたものである。 面積比 S 0/S 1が小さすぎると、 容量に寄与する空間が少なく なるため好ましくない。 また、 面積比 S 0/S 1が大きすぎると、 密度が低下し、 単位体積当たりの容量が低下するため好ましくない。 したがって、 面積比 S 0/S 1は、 0. 4〜 2. 0が好ましく、 0. 5〜 2. 0がより好ましく、 さらに 0. 5〜 1. 5がより好ましい。 また、 本発明の炭素質材料の ( 002 ) 面の面間隔 d。。2と結晶子 の厚さ L cは、 結晶質部分の結晶性を表す指標である。 ( 0 02 ) 面の面間隔 d。。2と結晶子の厚さ L cは、 フラグメントの大きさと共 に、 好ましい大きさの空間を作る上でも重要である。
( 002 ) 面の面間隔 d。Q 2、 或いは結晶子の厚さ L cが大きすぎ ると、 容量に寄与しない大きな空間が多くなり、 容量の低下や電解 液の分解が促進されるため好ましくない。 一方、 ( 002 ) 面の面 間隔 d。。2、 或いは結晶子の厚さ L cが小さすぎると、 容量に寄与し ない小さな空間が多くなり、 容量の低下を招く と共に電極密度が減 少し好ましくない。 したがって、 ( 00 2 ) 面の面間隔 d。。2は、 3 , 45 - 3. 5 5オングス トロームが好ましく、 3. 4 5〜3. 5 2 オングス トロームがより好ましい。 また、 結晶子の厚さ L cは、 1 2. 0〜20. 0オングス トロームが好ましく、 1 5〜 20オング ス トロームがより好ましく、 さらに 1 7〜 1 9オングス トロームが より好ましい。
また、 本発明の炭素質材料の原子比 H/Cは、 炭素質材料中に含 まれる水素の濃度を規定し、 水素原子と結合した炭素原子と相互作 用することで吸蔵されるリチウム等が担う容量を規定する指標であ る。
原子比 H/Cが高い炭素質材料では、 容量は大きくなるものの、 初回の充放電における不可逆容量も大きくなり、 実用的でない。 し たがって、 原子比 H/Cは、 0. 0 1〜0. 1 5が好ましく、 0. 0 1〜 0. 1 0がより好ましい。
上述した負極用炭素質材料を得る方法は、 特に限定されるもので ないが、 例えば先の炭素質前駆体を焼成することにより得ることが できる。
すなわち、 上述した炭素質前駆体を不活性雰囲気中で焼成するこ とにより、 所望の負極用炭素質材料を得ることができる。 ここで、 不活性雰囲気とは、 窒素、 アルゴン等の不活性ガスで満たされた雰 囲気、 或いは減圧された雰囲気、 例えば真空中をいう。
不活性雰囲気中での焼成は、 工業的に一般に行われる方法を用い ることができ、 特に限定されるものではない。 焼成温度は、 80 0〜; 1 40 0 °Cの範囲が好ましく、 9 0 0〜 1 1 0 0°Cがより好ましい。 焼成時間は、 上記温度範囲内で 1〜3時 間程度が工業的に有利である。
このようにして、 得られた炭素質材料は、 上述したように、 真密 度が 1. 6 5〜 1. 8 5 g/c cであり、 水素の炭素に対する含有 量が原子比 H/Cで 0. 0 1〜0. 1 5であり、 X線回折測定にお いて、 ( 00 2 ) 面の面間隔 d ϋ。2が 3. 4 5〜3. 5 5オングス ト ロームであり、 結晶子の厚さ L cが 1 2. 0〜20. 0オングス ト ロームであり、 S 0の S 1に対する面積比 S 0/S 1が 0. 4〜 2. 0である負極用炭素質材料となる。
この負極用炭素質材料は、 これら各種パラメ一夕を最適化するこ とにより、 リチウムをドープ脱ドープできるサイ トが多く形成され、 焼結体としても使用可能な炭素質材料となり、 単位体積当たりの容 量を向上させることができる。
また、 各種パラメ一夕の最適化を図るためには、 ァレジン量が 0. 5-3 0重量%である炭素質原料を用い、 この炭素質原料を酸化し て原子比 0/Cが 0. 0 1〜0. 2である酸化生成物を得た後、 焼 成することが有効である。
本発明に係る非水系二次電池は、 この負極用炭素質材料を主体と する負極と、 正極と、 非水電解液と備えることを特徴とするもので める。
なお、 炭素質材料等の固体内におけるリチウム等の元素或いはそ のイオンの移動速度は、 密な構造を持つ結晶部分が最も遅くなる。 したがって、 電極構造を多孔質として、 電極活物質と電解液との接 触を増やす努力が必要である。 しかし、 気孔径を小さく しすぎると、 電解液が浸透せずに容量が減少する。 したがって、 負極を構成する 炭素質材料の平均粒径は、 1〜 100 imが好ましく、 5〜50〃 mがより好ましい。
なお、 焼結体として得られる炭素質材料は、 そのまま電極として 使用するのが最適であるが、 この炭素質材料を粉砕してバインダー 等とともに混合し電極合剤として用いてもよい。 焼結体を電極とし て用いる場合には、 必要に応じて集電体と焼結体を一体とする構造 もとることができる。
なお、 本発明に係る非水系二次電池において、 正極に用いられる 正極活物質としては、 従来から使用されているものをいずれも使用 でき、 特に限定されるものではない。 具体的には、 L i F e〇2、 L i C o〇2、 L iN i 02、 L iMn 204、 及びこれらの非定比化合 物、 Mn〇2、 T i S2、 F e S Nb3S4、 Mo3S4、 C o S 2、 V25、 P 205、 C r〇3、 V 303、 T e 0 Ge 02等を用いるこ とができる。
電解液は、 有機溶剤に電解質を溶解したものであれば、 従来から 使用されているものをいずれも使用でき、 特に限定されるものでは ない。 例えば、 有機溶剤としては、 プロピレンカーボネート、 ェチ レンカーボネート、 ァ一プチロラク トン等のエステル類や、 ジェチ ルェ一テル、 テトラヒ ドロフラン、 置換テトラヒ ドロフラン、 ジォ キソラン、 ピラン及びその誘導体、 ジメ トキシェタン、 ジェトキシ エタン等のエーテル類や、 3—メチルー 2—才キサゾリジノン等の 3置換一 2—ォキサソリジノン類や、 スルホラン、 メチルスルホラ ン、 ァセ トニト リル、 プロピオ二ト リル等が挙げられ、 これらを単 独もしくは 2種類以上混合して使用される。 また、 電解質としては、 過塩素酸リチウム、 ホウフッ化リチウム、 燐フッ化リチウム、 塩化 アルミン酸リチウム、 ハロゲン化リチウム、 トリフルォロメ夕ンス ルホン酸リチゥム等が使用できる。
電池の構成としては、 正極と負極とをセパレ一夕を介して渦巻き 状にした構造や、 正極と負極とをセパレ一夕を介して積層した構造 等が採用される。
以下、 実験結果をもとに本発明を具体的に説明する。
<炭素質前駆体の作製及びその評価 >
比較例 1
コールタールピッチを熱処理して揮発分 (V M ) が 2 2 . 1重量 %で、 ァレジン量が 2 5 . 0重量%でかつ 0 / Cが 0 . 0 0 9 (原 子比) とし、 次いで空気の存在下で機械的エネルギーを付与しなが ら 2 8 0 °Cで 1時間熱処理して、 ァレジン量が 5 . 2重量%、 炭素 含有量が 9 4 . 0重量%でかつ 0 / Cが 0 . 0 1 2 (原子比) 、 成 粘結分量が 1 4 . 8重量%の炭素質原料を得た。 粉砕によりメジァ ン径を 1 8 / mとして該炭素質原料粉末を何ら処理することなく、 成形、 焼成して用いた。 結果を表— 1に示す。
なお、 炭素と水素の含有量、 粒径、 ァレジン量の測定方法、 及び 成形性、 焼結性、 電池特性の評価方法は下記の通りであり、 以下の 比較例および実施例で共通である。
炭素と水素の含有量はパーキンエルマ一社製 「C H N計 2 4 0
C」 で求めた。 水素と炭素の原子比 H / Cは、 炭素および水素の重 量割合からそれぞれの原子量を用いて計算した。 酸素と炭素の元素 比〇/ Cは、 炭素および酸素の重量含有率からそれぞれの原子量を 用いて計算した。 酸素含有量は L E C O社製の酸素窒素分析装置 ( T C - 43 6 ) を用い、 試料 1 0 mgをニッケルカプセルに封入 しへリゥム気流下で、 3 00 Wで 3 00秒、 続いて 5 5 00 Wで 1 0 0秒加熱し、 後段の 5 500 Wでの加熱中に発生する二酸化炭素 を赤外吸収より定量した。 全段の 3 0 0 Wでの加熱は吸着水等を除 去するために行った。
粒径は、 ォレイン酸ナト リウム 0. 1重量%水溶液中で、 レーザ 回折 ·散乱法により、 堀場製作所社製の L A— 50 0を用いて測定 した。 平均粒径は体積基準で積算が 5 0 %となる粒径をメジアン径 として求めた。
ァレジン量 ( トルエン可溶分量) は、 J I S— K 242 5に従つ て トルエン不溶分量を測定して求めた。 また、 不活性雰囲気中で昇 温し、 6 00 °Cまでに観察される重量減少率は、 セイコー電子社製 熱分析装置 「T G/D TA 3 00」 を使用して、 アルゴン気流下、 5°C/分の昇温速度で加熱する方法で求めた。 試料約 2 O mgを直 径と高さが約 5 mmのアルミナ製の円筒型容器に軽く充填して測定 に供した。
成型性の評価は、 直径 2 Ommの金型に 0. 4 gの炭素質前駆体 粉末を入れ、 総圧 4 トンで 1分間加圧して、 約 l mm厚さの成形体 を作り行った。 型抜時に成形体の表面の一部、 あるいは全部が押し ゴマに付着して完全な成形体が得られない場合があり、 1 0個以上 の成形体を作る過程で、 該事象が観察される確率を型抜時付着率と した。 また、 1 0個以上の成形体を作る過程で、 成形体に割れが入 つたり、 一部がかける現象が観察される確率を型抜時崩れ率と称す る。
焼結性の評価は、 健全な成形体を平滑な黒鉛板上に並べて置き、 これを密閉式小型電気炉中に置き、 アルゴンガス気流下で、 300 °C /時間の昇温速度で 1000°Cまで昇温し、 1時間保持して焼結 電極を作り評価した。 焼結電極にひび割れや完全な割れが発生する 確率を焼成時割れ率と称し、 焼結電極の全体が太鼓状に膨れたり、 あるいは部分的に発泡状態を示す、 あるいはそりにより平面性が失 われた焼結電極が発生する確率を焼成時膨れ率と称する。 焼成時割 れ率および焼成時膨れ率は 10枚以上の健全な成形体を焼成して求 めた。 また、 焼結電極の密度は健全な電極の厚さと直径から求まる 体積と、 その重量から求めた。
電池特性は上述のようにして得られた焼結電極を作用極とし、 金 属 L iを対極とし、 電解液に 1モル/リ ッ トルー L i PF6 /P C
(プロピレンカーボネート) を用いたテス トセルにて実施した。 充 放電は 0. 2 mA/ cm2 の定電流法にて、 充電 ( L i ド一プ) は 電極間電圧が 0. 0Vまで行い、 その後電流の方向を逆転して放電
(L iの脱ドープ) を、 電極間電圧が 1. 5 Vまで実施した。 放電 時に観測された電気量から放電容量を、 充電時電気量に対する放電 時電気量の割合から効率を求めた。
実施例 1
比較例 1と同じ炭素質原料粉末約 200 gを、 28 x 20 c mの ステンレス トレィ中に約 1 cmの高さに平らにならして入れ、 これ を予め 170°Cに昇温してある高温オーブン中に置いて、 空気気流 下で酸化処理温度 230°C、 1時間酸化処理した。 得られた粉末を 成形、 焼成して評価した結果を表— 1に示す。
実施例 2
酸化処理温度が 250°Cである以外は実施例 1と同じ。 結果を表 - 1に示す。
実施例 3
酸化処理温度が 3 0 0 °Cである以外は実施例 1 と同じ。 結果を表 一 1に示す。
比較例 2
酸化処理温度が 3 5 0 °Cである以外は実施例 1 と同じ。 結果を表 一 1に示す。
比較例 3
酸化処理温度が 3 8 0 °Cである以外は実施例 1 と同じ。 結果を表 - 1に示す。
[表一 1 〗 例 1〜 3、 比校例 3の結果
比較^ 1 実施例: 1 実施例 2 実施例 3 比較例 2 比 M 3 酸化 ½理¾度 ( ) な し 230 250 300 350 380 酸化処理時閱 ( H r) 1 I ] 1 1
Ο / C 0. 01 0. 04 0.05 0. 06 0.09 0. 11
C ( % ) 94.0 91. 1 90. 5 90. A 83. 0 79. 0
V ( % ) 5. 2 2. 1 1.8 0. 5 0. 2 0.2 粘桔成分 1 ( % ) 14.8 10. 4 8.6 6. 0 4. 0 3. 1
½成 * ^密度 1. 36 1. 31 1. 31 1. 25 1. 22 1. 16 放 «容 Jt (mAh/g) 345 371 377 385 382 368 効^ (%) 70.3 79. 1 78.7 79. 8 72. 1 67. 2 型抜時崩れ率 % 0 0 0 0 29 Ί 型抜時付着率 % 23 0 0 0 0 0 焼成時割れ率 % 0 0 0 0 0 17 垅成時膨れ率 % 23 0 0 0 0 0
実施例 4
比較例 1 と同じ炭素質原料粉末 1 0 k gを容積 1 5 リ ツ トルの二 —ダに入れ、 空気流下、 2 2 r p mの速度で撹拌しながら、 2 5 0 °Cで 1 0時間酸化処理した。 得られた粉末を成形、 焼成して評価し た結果を表— 2に示す。
実施例 5
酸化処理が 2 8 0 °C、 3時間である以外は実施例 4と同じ。 結果 を表一 2に示す。
実施例 6
酸化処理が 2 8 0 °C、 7時間である以外は実施例 4と同じ。 結果 を表一 2に示す。
実施例 7
酸化処理が 3 3 0 °C、 3時間である以外は実施例 4と同じ。 結果 を表一 2に示す。
表 2】
[表一 2 ] 実施例 4〜 7の結果
比較例 1 突施例 4 実施例 5 実施例 6 実施例 7 敌化処理温度 (で) な し 250 280 280 330 酸化処理時間 ( H r) 10 3 7 3
0 / C 0. 01 0. 05 0. 04 0. 05 0. 05
C ( % ) 94. 0 90. 8 91. 0 90. 4 90. 1
7 ( % ) 5. 2 2. 5 2. 9 2. 1 1. 2 粘結成分!: (%) 14. 8 11. 4 Π . 6 9. 7 7. 7 焼成 密度 1. 36 1. 31 1. 31 1. 29 1. 28 放 ¾容数 (mAh/g) 345 38·1 373 382 379 効率 ( % ) 70. 3 79. 9 78. 6 80. 0 80. 2 型抜時 Wれ率 % 0 0 0 0 0 型抜時付 ¾率 % 23 0 0 0 0 垅成時割れ^ % 0 0 0 0 0 焼成時膨れ率 % 23 0 0 0 0
実施例 8
比較例 1と同じ炭素質原料粉末 1 0 k gを、 容積 1 5 リツ トルの ニーダに入れ、 空気流下、 2 2 r p mの速度で撹拌しながら、 2 5 0 °Cで 6時間酸化処理した。 得られた炭素質原料粉末約 8 0 gを、 1 8 X 1 4 c mのステンレス トレイ中に、 厚さ約 1 c mに平らに満 たして、 これを密閉式小型電気炉中に置き、 アルゴンガス気流下で、 3 0 0 °C/時間の昇温速度で 3 0 0 °Cまで昇温し、 該温度で 1時間 加熱処理して試料とした。 得られた粉末のァ成分量と粘結成分量、 および該粉末を成形、 焼成して評価した結果を表一 3に示す.
実施例 9
アルゴン雰囲気下での加熱処理時間が 3時間であるい以外は実施 例 8 と同じ。 結果を表一 3に示す。
実施例 1 0
アルゴン雰囲気下での加熱処理が、 3 5 0 °C、 1時間である以外 は実施例 8と同じ。 結果を表一 3に示す。
実施例 1 1
アルゴン雰囲気下での加熱処理が、 3 5 0 °C、 1時間である以外 は実施例 8と同じ。 結果を表— 3に示す。
実施例 1 2
アルゴン雰囲気下での加熱処理が、 3 5 0 °C、 1時間である以外 は実施例 8と同じ。 結果を表一 3に示す。 【表 3
[¾ - 3 ] 実施例 8 2 の結果
実施冽 8 実施例 9 実施例 10 実施例 11 実施例 12 加然処理'温度 ( ) 300 300 350 350 400 加然処理時間 ( H r) 1 3 L 3 1 γ ( % ) 4.4 3.4 2. 5 2. 9 2. } 粘結成分 A (%) 12. 1 10. 9 11. 0 9. 6 8. 3 焼成 ¾極密度 1.30 1. 1 1. 29 1. 30 1.29 放 ¾容& (raAh ) 372 379 382 37Ί 378 効 (%) 77. 7 78. 5 00. 1 78.5 79.4 型抜時 Wれ % 0 0 0 0 0 型抜時付着率 % 0 0 0 0 0 垅成時割れ率 % 0 0 0 0 0
½成時膨れ率 % 0 0 0 0 0
比較例 4
コールタールピッチを約 40 0°Cで熱処理して得た、 ァレジン量 が 2 5. 4重量%、 0/Cが 0. 00 9 (原子比) 、 炭素含有量が 94. 2重量%、 成粘結分量が 49. 4重量%の炭素質原料を、 メ ジアン径 28 mの粉末とした後、 何ら処理することなく成形およ び焼成して試料とした。 結果は表一 4に示す。 尚、 得られた試料に 基づく電極の特性は健全な成形体が所定数得られなかったため、 測 定不能であった。
比較例 5
比較例 4と同じ炭素質原料粉末約 20 0 gを、 2 8 x 20 c mの ステンレス トレィ中に約 1 cmの高さに平らにならして入れ、 これ を予め 200 °Cに昇温してある高温オーブン中に置いて、 空気気流 下で 4時間酸化処理した。 得られた粉末を成形、 焼成して評価した 結果を表— 4に示す。 尚、 得られた試料に基づく電極の特性は健全 な成形体が所定数得られなかったため、 測定不能であった。
実施例 1 3
比較例 5で用いた酸化処理された炭素質原料粉末約 80 gを、 1 8 1 4 cmのステンレス トレィ中に、 厚さ約 1 c mに平らに満た して、 これを密閉式小型電気炉中に置き、 アルゴンガス気流下で、 30 0°C/時間の昇温速度で 400°Cまで昇温し、 該温度で 4時間 加熱処理して試料とした。 得られた粉末のァ成分量と粘結成分量、 および該粉末を成形、 焼成して評価した結果を表一 4に示す。
比較例 6
コールタールピッチを約 45 0°Cで熱処理して得た、 ァレジン量 が 1 2. 9重量%、 0/Cが 0. 009 (原子比) 、 炭素含有量が 94. 6重量%、 成粘結分量が 1 2. 6重量%の炭素質原料を、 メ ジアン径 28〃mの粉末とした後、 何ら処理することなく成形およ び焼成して試料とした。 結果を表— 4に示す。 尚、 得られた試料に 基づく電極の特性は健全な成形体が所定数得られなかったため、 測 定不能であった。
実施例 14
まず、 比較例 6と同じ炭素質原料粉末約 2 0 0 gを、 28 x 2 0 cmのステンレス トレィ中に約 1 cmの高さに平らにならして入れ、 これを予め 250 °Cに昇温してある高温オープン中に置いて、 空気 気流下で 1時間酸化処理した。 次いで、 酸化処理された炭素原料粉 末約 80 gを、 1 8 x l 4 cmのステンレス ト レィ中に、 厚さ約 1 cmに平らに満たして、 これを密閉式小型電気炉中に置き、 ァルゴ ンガス気流下で、 300 °C/時間の昇温速度で 40 0 °Cまで昇温し、 該温度で 3時間加熱処理して試料とした。 得られた粉末のァ成分量 と粘結成分量、 および該粉末を成形、 焼成して評価した結果を表— 4に示す。
比較例 7
コールタールピッチを約 500 °C熱処理して得た、 γレジン量が 0. 1重量%、 0/Cが 0. 009 (原子比) 、 炭素含有量が 94. 9重量%、 成粘結分量が 2. 2重量%の炭素質原料を、 メジアン径 2 8〃mの粉末とした後、 何ら処理することなく成形および焼成し て試料とした。 結果は表— 4に示す。 尚、 得られた試料に基づく電 極の特性は健全な成形体が所定数得られなかったため、 測定不能で あった。
比較例 8 比較例 7と同じ炭素質原料粉末約 20 0 gを、 2 8 x 20 c mの ステンレス トレイ中に約 1 cmの高さに平らにならして入れ、 これ を予め 2 50 °Cに昇温してある高温オーブン中に置いて、 空気気流 下で 1時間酸化処理した。 得られた粉末を成形、 焼成して評価した 繕果を表— 4に示す。 尚、 得られた試料に基づく電極の特性は健全 な成形体が所定数得られなかったため、 測定不能であった。
[¾ - 4 ] 突施例 1 3 4、 比蛟例 4 〜 8 の結来
比 m 4 比校例 5 実施例 13 比校例 6 実施例 14 比^例 7 比 例 8 化処理 ¾度 (t: ) な し 200 200 な し 250 な し 250 酸化処理時間 (H r) 4 4 1 1 加^処理涅度 CC ) な し •な し な し 400 な し な し 加 ^処理時間 ( II r) 4 3
O/ C 0.01 0.06 0.06 0.01 0.05 0.00 0. Q'i
C (%) 94.2 89.9 89.8 94.6 90.8 94.9 91.0 r ( ) 25.4 13.8 3. 1 I 2.6 3.0 0. I 0. 1 粘結成分後 (%) 49.4 29.9 12.0 2D.2 11.8 2.2 1.3 焼成 ¾插密度 ― ― 1.30 ― 1.31 ― 一 放 ¾容量 (inAh/g) 376 379
効率 (%) 78.2 78. Ί
型抜時崩れ率 % 0 0 0 0 0 53 62 型抜 Pき付着 % 58 33 0 37 0 0 0 iA成 れ ^ % 0 0 0' 0 0 29 33
½成 ^膨れ率 % 100 6Ί n 58 0 0 0
<負極炭素質材料の作製及びこれを用いた電池の評価 >
実施例 1 5
コールタールピッチを熱処理して得た揮発分 (以下、 VMと称 す。 ) が 22. 1重量%で、 ァレジン量が 2 5. 0重量%で、 かつ 原子比 0/Cが 0. 0 0 9である原料を、 空気の存在下で機械的ェ ネルギ一を付与しながら 2 80 °Cで 1時間処理した。 これにより、 VMが 1 3. 6重量%、 ァレジン量が 7. 6重量%、 固定炭素分が 8 6. 03重量%で、 原子比 0/Cが 0. 0 1 7である炭素質原料 を得た。 さらに、 この炭素質原料を粉砕し、 メジアン径を 1 7. 3 〃mとした。
次に、 この炭素質原料を空気雰囲気中 280 °Cで 3 0分間酸化処 理して、 VMが 1 2. 8重量%、 ァレジン量が 1. 4重量%で、 か つ原子比 0/Cが 0. 04 8の酸化生成物 (炭素質前駆体) を得た。 次に、 この酸化生成物を 2 k g f / c m2の圧力で約 1 mm厚の成 形体にした後、 窒素雰囲気中 1 000°Cで 6 0分間焼成して、 嵩密 度 1. 30 g/c cの焼結体である負極用炭素質材料を得た。 この 焼結体を構成する粒子の粒径は約 1 5 Aimであった。
実施例 1 6
コール夕—ルビッチを熱処理して得た VM 22. 1重量%で、 ァ レジン量が 2 5. 0重量%で、 かつ原子比 0/Cが 0. 00 9であ る炭素質原料を、 空気の存在下で機械的エネルギーを付与しながら 280°Cで 1時間酸化処理した。 これにより、 VMが 1 3. 6重量 %、 ァレジン量が 7. 6重量%、 固定炭素分が 8 6. 03重量%で、 かつ原子比 0/Cが 0. 0 1 7の酸化生成物 (炭素質前駆体) を得 た。 さらに、 この酸化生成物を粉碎し、 メジアン径を 1 7. 3〃mと した後、 窒素雰囲気中 1 000 °Cで 6 0分間焼成して負極用炭素質 材料を作製した。
実施例 1 7
実施例 1 6と同じ酸化生成物を窒素雰囲気中 9 00 °Cで 6 0分間 焼成して負極用炭素質材料を作製した。
実施例 1 8
実施例 1 5と同じ炭素質原料を、 空気雰囲気中 2 1 0°Cで 30分 間酸化処理して、 VMが 14. 1重量%、 アレンジ量が 4. 0重量 %で、 かつ原子比 0/Cが 0. 0 22の酸化生成物を得た後、 この 酸化生成物を窒素雰囲気中 9 0 0 °Cで 6 0分間焼成して負極用炭素 質材料を作製した。
実施例 1 9
実施例 1 5と同じ炭素質原料を、 空気雰囲気中 2 6 0 °Cで 30分 間酸化処理して、 VMが 1 3. 6重量%、 アレンジ量が 0. 7重量 %で、 かつ原子比 0/Cが 0. 039の酸化生成物を得た後、 この 酸化生成物を窒素雰囲気中 900°Cで 60分間焼成して負極用炭素 質材料を作製した。
実施例 20
実施例 1 5と同じ炭素質原料を、 空気雰囲気中 3 5 0 °Cで 30分 間酸化処理して、 VMが 1 8. 0重量%、 アレンジ量が 0. 2重量 %で、 かつ原子比 0/Cが 0. 09の酸化生成物を得た後、 この酸 化生成物を窒素雰囲気中 9 00 °Cで 60分間焼成して負極用炭素質 材料を作製した。
実施例 2 1 コールタールピッチを熱処理して得た V Mが 22. 1重量%で、 ァレジン量が 2 5. 0重量%で、 かつ原子比 0/Cが 0. 0 0 9で ある炭素質原料を、 空気雰囲気中 2 60 °Cで 30分間酸化処理して、 VMが 1 5. 2重量%、 ァレジン量が 3. 0重量%で、 かつ原子比 0/Cが 0. 034の酸化生成物を得た。
次に、 この酸化生成物を 2 k g f /c m2の圧力で約 1 mm厚の成 形体にした後、 窒素雰囲気中 1 00 0 °Cで 6 0分間焼成して、 嵩密 度 1. 30 g/c cの焼結体である負極用炭素質材料を得た。 この 焼結体を構成する粒子の粒径は約 1 5〃mであった。
実施例 22
コール夕一ルビッチを熱処理して得た VMが 1 4. 6重量%で、 ァレジン量が 1 3. 0重量%で、 かつ原子比 0/Cが 0. 009で ある炭素質原料を、 空気雰囲気中 2 60°Cで 30分間酸化処理して、 VMが 1 7. 7重量%、 ァレジン量が 1. 0重量%で、 かつ 0/C が 0. 0 78の酸化生成物を得た。
次に、 この酸化生成物を 2 k g f /c m2の圧力で約 1 mm厚の成 形体にした後、 窒素雰囲気中 1 00 0 °Cで 60分間焼成して、 嵩密 度 1. 3 0 g/c cの焼結体である負極用炭素質材料を得た。 この 焼結体を構成する粒子の粒径は約 1 5 mであった。
比較例 9
コール夕一ルビッチを不活性雰囲気中 1 1 00°Cで 3時間焼成し て、 粒径 1 6. 2 mの負極用炭素材料を得た。
比較例 1 0
コールタールピッチを不活性雰囲気中 700°Cで 3時間焼成して、 粒径 1 6. 7 mの負極用炭素材料を得た。 比較例 1 1
コール夕—ルビッチを熱処理して得た VMが 5重量%で、 γレジ ン量が 0. 5重量%以下で、 かつ原子比 0/Cが 0. 00 7である 炭素質原料を、 4 5 m以下に粉砕した。 この炭素質原料粉末を、 嵩密度約 0. 5 g/c cにて厚さ約 1 c mになるように金属製トレ ィに充填し、 空気雰囲気中 39 0 °Cで 5時間酸化処理し、 酸化処理 終了後に、 充填層の上部約 3 mmまでの範囲から、 原子比 0/Cが 0. 3 5である酸化生成物を得た。
次に、 この酸化生成物を窒素雰囲気中 1 1 0 0°Cで 3時間焼成し て、 負極用炭素質材料を得た。
比較例 1 2
コールタールピッチを熱処理して得た VMが 5重量%で、 ァレジ ン量が 0. 5重量%以下で、 かつ原子比 0/Cが 0. 00 7である 炭素質原料を、 4 5 /zm以下に粉碎した。 この炭素質原料粉末を、 嵩密度約 0. 5 g/c cにて厚さ約 l c mになるように金属製トレ ィに充填し、 空気雰囲気中 3 9 0 °Cで 4時間酸化処理し、 酸化処理 終了後に、 充填層の上部約 2 mmまでの範囲から、 原子比 0/Cが 0. 35である酸化生成物を得た。
次に、 この酸化生成物を窒素雰囲気中 1 1 00°Cで 3時間焼成し て、 負極用炭素質材料を得た。
比較例 1 3
石油ピッチであるエチレンへビエンドの軽質分を除去して得た、 1 が28. 7重量%で、 ァレジン量が 98. 2重量%で、 かつ原 子比 H/Cが 0. 8 3である炭素質原料を、 4 5〃m以下に粉砕し た。 この炭素質原料粉末を、 厚さ約数 mmで金属製トレイにのせ、 空気雰囲気中 23 0 °Cで 3時間酸化処理し、 原子比 0/Cが 0. 1 3 1である酸化生成物を得た。
次に、 この酸化生成物を窒素雰囲気中 1 1 00°Cで 3時間焼成し て、 負極用炭素質材料を得た。
比較例 1 4
酸化処理温度を 1 80°Cとして、 原子比 0/Cが 0. 04 9であ る酸化生成物を得た以外は、 比較例 1 3と同様にして、 負極用炭素 質材料を得た。
比較例 1 5
石油ピッチであるエチレンへビエン ドの軽質分を除去して得た、 ^[が29. 8重量%で、 ァレジン量が 3 7. 1重量%で、 かつ原 子比 H/Cが 0. 6 7である炭素質原料を 4 5 m以下に粉砕した。 この炭素質原料粉末を、 厚さ約数 mmで金属製トレイにのせ、 空気 雰囲気中 3 1 0°Cで 3時間酸化処理し、 0/Cが 0. 2 54である 酸化生成物を得た。
次に、 この酸化生成物を窒素雰囲気中 1 1 00°Cで 3時間焼成し て、 負極用炭素質材料を得た。
実施例及び比較例の酸化処理条件、 炭素質原料のァレジン量、 酸 化生成物の酸素含有量 (原子比 0/C) を表 5に示す。
【衷 5】
Figure imgf000034_0001
^究分 ( VM) は、 J I S— M 88 12に従って求めた。
特性評肺
以上、 実施例及び比較例で得られた炭素質材料の加熱処理温度、 ( 002 ) 面の面間隔 du2と、 結晶子の厚さ L c、 真密度、 原子比 H/C、 面積比 S 0/S 1、 構成粒子の平均径を表 6に示す。 また、 突施冽 1 5で得られた炭素質材料の透過法による X線散乱曲線を図 2に示す。 焼成 d。02 Lc 真密度 H/C S0/S1 構成粒子 放電容量 容量ロス
fr 平均径
[°C] [A] [A] [g/cc] - - [mAH/g] [mAH/cc] [mAH/g]
実施例 15 1000 3.50 17.4 1.75 0.048 0.79 15.2 469 383 670 86
実施例 16 1000 3.47 17.9 1.80 0.09 0.81 13.2 494 370 666 124
実施例 17 900 3.46 17.7 1.76 0.09 0.80 12.0 559 385 678 174
実施例 18 900 3.47 18.3 1.74 0.10 0.67 16.6 567 416 724 151
実施例 19 900 3.48 17.7 1.72 0.09 1.01 15.6 527 382 657 145
実施例 20 900 3.49 16.9 1.69 0.09 1.36 17.3 595 405 684 190
実施例 21 1000 3.48 16.8 1.77 0.09 0.53 15.3 481 373 660 108
実施例 22 1000 3.48 17.2 1.81 0.09 0.52 16.4 474 375 679 99
比較例 9 1100 3.44 23.9 2.07 0.019 0.28 16.2 322 267 550 55
比較例 10 700 3.41 18.4 1.72 0.19 0.96 16.7 906 667 1147 239
比較例 11 1100 3.43 24.2 2.01 0.02 0.41 25.3 381 289 581 92
比較例 12 1100 3.44 23.8 2.05 0.02 0.30 26.0 325 265 543 60
比較例 13 1100 3.64 11.7 1.55 0.038 3.08 19.5 475 351 544 124
比較例 14 1100 3.48 21.7 1.96 0.078 0.48 19.3 314 239 568 75
比較例 15 1100 3.59 12.0 1.54 0.049 2.91 13.4 516 360 554 156
^ 6 真密度は、 n—ブ夕ノール置換法により、 真比重測定器 (セイシ ン企業社製) を用いて測定した。 炭素質原料は、 45〃m以下に粉 砕後、 105°Cで 1時間乾燥し、 窒素気流中室温まで冷却して測定 に供した。
原子比 H/C、 すなわち炭素に対する水素の含有量は、 炭素及び 水素の重量含有率からそれぞれの原子量を用いて計算した。 炭素及 び水素の含有量は、 全自動元素分析装置 (パーキンエルマ一社製 「(: HN計 240 C」 ) で測定した。
構成粒子の粒径は、 ォレイ ン酸ナト リウム 0. 1重量%水溶液中 で、 レーザ回折 ,散乱法により、 粒度分布測定装置 (堀場製作所製 「LA— 500」 ) を用いて測定した。 この平均粒径は、 体積基準 で積算が 50 %となる粒径、 メジアン径として求めた。
( 002 ) 面の面間隔 d。。2と結晶子の厚さ L cは、 X線回折によ り学術振興会 1 1 7委員会提案の方法に準拠して求めた。 使用した 装置及びその測定条件は、 以下のとおりとした。
測定装置 フィ リ ップス社製 X線回折装置 PW17 10 B A S E D
X線源 CuKひ線 (N iフィル夕一使用)
(モノクロメ一夕として黒鉛を使用) X線出力 40 k V、 30 mA
測定配置 反射法
測定方法 ステップスキャン方式により 0. 02度/ステップ 積算時間 1秒
面積比 S 0/S 1は、 X線回折測定により得られる X線散乱曲線 において、 ( 002 ) 回折線の両側の極小値 ( 26» = 15度及び 3 0度付近) を結ぶ共通接線をベースラインとし、 ベースラインと
( 002 ) 回折線とに囲まれる面積を S 1とし、 回折角 20が 4度 以上で ( 002 ) 回折線より低角側の X線散乱曲線とベースライン とに囲まれる面積を S Oとするとき、 S Oの S 1に対する面積比で ある。 使用した装置及びその測定条件は、 以下のとおりとした。 測定装置 理学電機社製 X線回折装置ロータフレクス RU—
200 B
X線源 CuKひ線 (N iフィルター使用)
X線出力 50 k V、 200 mA
測定範囲 20=4〜40度
測定配置 透過法
測定方法 ステップスキャン方式により 0. 1度/ステップ 積算時間 20秒
検出器 封入型比例計数管 5738 E 1
以上、 実施例及び比較例で得られた焼結体 (負極用炭素質材料) を軽く粉砕し、 メジアン径 1 5〃mとし、 これを負極活物質として 用いた。 電池評価に供した粉末の粒径は、 焼結体を構成する基本粒 子とほぼ同じであり、 電池評価は、 焼結体の基本粒子の特性を表す ものである。
電池の作製方法を図 3を参照しながら、 以下に示す。
まず最初に、 正極ペレッ ト 1を次のように作製した。
正極活物質として、 炭酸リチウム 0. 5モルと炭酸コバルト 1モ ルとを混合し、 900 °Cの空気中で 5時間焼成することにより、 L i C o 02を得た。 この L i C o02は、 粉砕することによって平均 粒径 10 zmの粉体とした。 次に、 この L i Co029 1重量部と、 導電材としてグラファイ ト 6重量部と、 結着剤としてポリフッ化ビ 二リデン 3重量部とを混合し、 これに N—メチルピロリ ドンを分散 剤として加えて、 ペース トを作製した。 そして、 このべ一ス トを乾 燥し、 直径 1 5 . 5 mmに成形して正極ペレヅ ト 1 とした。
次に、 負極ペレッ ト 2を次のように作製した。
各実施例及び比較例で作製された負極用炭素質材料を負極活物質 として 9 0重量部用い、 結着剤としてポリフッ化ビニリデン 1 0重 量部を加えて混合し、 これに N—メチルピロリ ドンを分散剤として 加えて、 ペース トを作製した。 そして、 このペース トを乾燥し、 直 径 1 6 mmに成形して負極ペレッ ト 2とした。
次に、 上記正極ペレツ ト 1をアルミニウム製の正極缶 3に収納し、 負極ペレッ ト 2をステンレス ( S U S 3 0 4 ) 製の負極力ヅプ 4に 収納した。 そして、 正極ペレッ ト 1 と負極ペレツ ト 2とをポリプロ ピレン製のセパレ一夕 5を介して積層し、 ガスケッ ト 6によりかし めて、 直径 2 0 mm、 厚さ 2 . 5 m mのコイン型二次電池を作製し た。
次に、 図 4に示すように、 充放電容量測定用セル 1 0に、 炭酸ェ チレンとジェチルカーボネ一トとの混合溶媒に L i P F 6を 1 m o 1 / 1溶解させた電解液 1 1を注入した。 先のコイン型二次電池の側 面に内部まで達する穴を開け、 これを充放電容量測定用セルの電解 液 1 1に浸潰した。 そして、 正極 1 2を正極缶 3に接続し、 負極 1 3を負極力ップ 4に接続し、 参照極 1 4としてリチウム金属 1 5を 用い、 3極式セルを作製した。
そして、 室温にて、 負極 1 3の電位が 0 Vに達するまで定電流 0 . 2 5 m Aにて充電を行い、 同様に負極 1 3の電位が 1 . 5 Vに達す るまで定電流 0. 2 5mAにて放電を行い、 充放電容量を測定した c なお、 充放電共に、 所定の電位に達した時点で測定を終了した。 得 られた電池特性を表 6に併せて示す。
表 6の結果から、 yレジン量が 0. 5〜3 0重量%である炭素質 原料を酸化して、 原子比 0/Cが 0. 0 1〜0. 2である酸化生成 物を得た後、 この酸化生成物を焼成することにより得た実施例の炭 素質材料は、 ( 00 2 ) 面の面間隔 d。。2 、 結晶子の厚さ L c、 真 密度、 原子比 H/C、 面積比 S 0/S 1、 構成粒子の平均径の各種 パラメ一夕がそれぞれ最適化されていることがわかる。 また、 これ ら各種パラメ一夕が最適化された炭素質材料を負極に用いた電池は、 高い充放電容量を示していることがわかる。
これに対して、 酸化工程を経ていない炭素質材料、 またレジン量 が少なすぎる或いは多すぎる炭素質原料を用いた炭素質材料の比較 例は、 各種パラメ一夕が最適化されておらず、 これを用いた電池は、 充放電容量が低いか、 容量ロスが大きいものとなっていることがわ かる。

Claims

請 求 の 範 囲
1. 負極、 正極及び非水電解液を有する非水系二次電池の負極活 物質の前駆体であって、
炭素含有量が 8 0重量%〜9 5重量%、 酸素と炭素の元素比〇/ Cが 0. 0 1〜0. 2であり、 且つ yレジン量が 0. 5重量%〜 5 重量%であることを特徴とする炭素質前駆体。
2. 不活性雰囲気中で加熱したとき、 6 0 0 °Cまでの重量減少が 5重量%〜 1 2重量%であることを特徴とする請求項 1記載の炭素 質前駆体。
3. yレジン量が 0. 5重量%〜 30重量%である炭素質原料を 酸化処理し、 炭素含有量が 80重量%〜9 5重量%、 酸素と炭素の 元素比 0/Cが 0. 0 1〜0. 2であり、 且つ "Xレジン量が 0. 5 重量%〜 5重量%である炭素質前駆体とすることを特徴とする炭素 質前駆体の製造方法。
4. 上記炭素質原料をビツチ類から得ることを特徴とする請求項 3記載の炭素質前駆体の製造方法。
5. 上記炭素質原料として、 平均粒径が 200〃m以下の粉体を 用いることを特徴とする請求項 3記載の炭素質前駆体の製造方法。
6. 上記酸化処理が、 酸化性雰囲気中、 1 00°C〜400°Cでの 加熱処理であることを特徴とする請求項 3記載の炭素質前駆体の製 造方法。
7. 上記酸化処理の後、 非酸化性雰囲気中で加熱処理することを 特徴とする請求項 3記載の炭素質前駆体の製造方法。
8. 上記非酸化性雰囲気中での加熱処理を、 200 °C〜450°C で行うことを特徴とする請求項 7記載の炭素質前駆体の製造方法。
9. 真密度が 1. 65 g/c c〜 l . 85 g/c cであり、 水素の炭素に対する含有量が原子比で 0. 0 1〜0. 15であり-
( 002 ) 面の面間隔が 3. 45 A〜 3. 55 Aであり、 結晶子 の厚さが 12. 0A〜20. OAであり、
かつ、 X線散乱曲線において、 ( 002 ) 回折線の両側の極小値 を結ぶ共通接線をベースラインとし、 ベースラインと (002) 回 折線とに囲まれる面積を S 1とし、 回折角 2 Θが 4度以上で (◦ 0 2 ) 回折線より低角側の X線散乱曲線とベースラインとに囲まれる 面積を S Oとするとき、 S 0の S 1に対する面積比が 0. 4〜2. 0であることを特徴とする負極用炭素質材料。
10. 平均粒径が 1〃m〜 100 mであることを特徴とする請 求項 9記載の負極用炭素 ft材料。
1 1. ァレジン量が 0. 5〜30重量%である炭素質原料を酸化 処理して、 酸素の炭素に対する含有量が原子比で 0. 0 1〜0. 2 である酸化生成物を得た後、 この酸化生成物を不活性雰囲気中で焼 成し、
真密度が 1. 65 g/c c〜 l. 85 g/c cであり、 水素の炭 素に対する含有量が原子比で 0. 0 1〜0. 15であり、 (00 2) 面の面間隔が 3. 45A〜3. 55Aであり、 結晶子の厚さが
12. 0A〜20. OAであり、 かつ、 X線散乱曲線において、
( 002 ) 回折線の両側の極小値を結ぶ共通接線をべ一スラインと し、 ベースラインと (002) 回折線とに囲まれる面積を S 1とし、 回折角 20が 4度以上で ( 002 ) 回折線より低角側の X線散乱曲 線とベースラインとに囲まれる面積を S Oとするとき、 80の31 に対する面積比が 0. 4〜2. 0である負極用炭素質材料とするこ とを特徴とする負極用炭素質材料の製造方法。
1 2. 上記酸化生成物を請求項 3乃至請求項 8のいずれかに記載の 方法により製造することを特徴とする請求項 1 1記載の負極用炭素 質材料の製造方法。
1 3. 上記不活性雰囲気中での焼成を、 800 °C〜 1 40 0°Cで 行うことを特徴とする請求項 1 1記載の負極炭素質材料の製造方法。
14. 正極と、 炭素質材料を主体とする負極と、 非水系電解液と を備える非水系二次電池において、
上記炭素質材料は、 真密度が 1. 6 5〜 1. 8 5 g/c cであり、 水素の炭素に対する含有量が原子比で 0. 0 1〜0. 1 5であり、 ( 002 ) 面の面間隔が 3. 4 5〜3. 5 5オングス トロームで あり、 結晶子の厚さが 1 2. 0〜 20. 0オングス トロームであり、 かつ、 X線散乱曲線において、 ( 00 2 ) 回折線の両側の極小値 を結ぶ共通接線をベースラインとし、 ベースラインと ( 00 2 ) 回 折線とに囲まれる面積を S 1とし、 回折角 26>が 4度以上で ( 00 2) 回折線より低角側の X線散乱曲線とベースラインとに囲まれる 面積を S Oとするとき、 S 0の S 1に対する面積比が 0. 4〜2. 0であることを特徴とする非水系二次電池。
1 5. 上記炭素質材料の平均粒径は、 1〃π!〜 1 00〃mである ことを特徴とする請求項 1 4記載の非水系二次電池。
1 6. 上記負極は、 焼結電極であることを特徴とする請求項 1 4 記載の非水系二次電池。
PCT/JP1998/003493 1997-08-05 1998-08-05 Precurseur carbone, matiere d'anode carbonee et batterie rechargeable non aqueuse WO1999008334A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP98936673A EP0936685A4 (en) 1997-08-05 1998-08-05 CARBON OXYGEN, CARBON ANODE MATERIAL AND NON-WATER RECHARGEABLE BATTERY
US10/103,582 US20020172866A1 (en) 1997-08-05 2002-03-20 Carbonaceous precursor, carbonaceous material for negative electrode and non-aqueous secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/210496 1997-08-05
JP9/210898 1997-08-05
JP21089897 1997-08-05
JP21049697 1997-08-05

Publications (1)

Publication Number Publication Date
WO1999008334A1 true WO1999008334A1 (fr) 1999-02-18

Family

ID=26518087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003493 WO1999008334A1 (fr) 1997-08-05 1998-08-05 Precurseur carbone, matiere d'anode carbonee et batterie rechargeable non aqueuse

Country Status (6)

Country Link
US (1) US20020172866A1 (ja)
EP (1) EP0936685A4 (ja)
KR (1) KR100555817B1 (ja)
CN (1) CN1156039C (ja)
TW (1) TW396650B (ja)
WO (1) WO1999008334A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534636A (ja) * 2000-05-24 2003-11-18 リテック,リミテッド ライアビリテイ カンパニー リチウムイオン電気化学電池及び蓄電池
JP2007194207A (ja) * 2005-12-21 2007-08-02 Mitsubishi Chemicals Corp リチウムイオン二次電池
JP2007227368A (ja) * 2006-01-27 2007-09-06 Mitsubishi Chemicals Corp リチウムイオン二次電池
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3826746B2 (ja) * 2000-08-18 2006-09-27 ソニー株式会社 非水電解液二次電池
KR100836524B1 (ko) * 2006-02-23 2008-06-12 한국전기연구원 고용량 전극 활물질, 그 제조방법, 이를 구비한 전극 및에너지 저장 장치
US9447251B2 (en) * 2008-07-01 2016-09-20 Vobeck Materials Corp. Articles having a compositional gradient and methods for their manufacture
US8615812B2 (en) * 2009-03-31 2013-12-31 Advanced Fuel Research, Inc. High-strength porous carbon and its multifunctional applications
KR101084069B1 (ko) 2010-06-17 2011-11-16 삼성에스디아이 주식회사 층간 거리가 조절된 결정성 탄소 재료 및 그의 제조 방법
CN102227020B (zh) * 2011-05-20 2014-06-11 田东 一种用于锂离子电池改性石墨负极材料的制备方法
TWI511923B (zh) * 2013-09-26 2015-12-11 China Steel Corp 用於電極片及電容之高比表面積的活性碳微球及其製造方法
CN108134084A (zh) * 2016-12-01 2018-06-08 神华集团有限责任公司 一种碳质材料及其制备方法、电池负极和电池
EP3814430A1 (en) * 2018-06-27 2021-05-05 Imertech Surface-functionalized carbonaceous particles, methods of making, and applications of the same
CN114824165B (zh) * 2022-06-30 2022-10-14 宁德新能源科技有限公司 负极极片、电化学装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324555A (ja) * 1986-03-27 1988-02-01 Sharp Corp 電極及びその製造方法
JPH05299090A (ja) * 1992-04-24 1993-11-12 Sony Corp 非水電解液二次電池
JPH05307959A (ja) * 1992-04-30 1993-11-19 Mitsubishi Petrochem Co Ltd 電極材料およびその製造方法
JPH05325948A (ja) * 1992-05-27 1993-12-10 Osaka Gas Co Ltd 負極材の製造方法およびリチウム二次電池
JPH07302593A (ja) * 1994-05-09 1995-11-14 Asahi Organic Chem Ind Co Ltd カーボン粒子及びこれを用いた非水系二次電池用負極
JPH09147839A (ja) * 1995-11-29 1997-06-06 Matsushita Electric Ind Co Ltd 非水電解液二次電池用負極の製造法
JPH09204918A (ja) * 1995-11-25 1997-08-05 Sony Corp 非水電解液二次電池用負極材料、その製造方法及び非水電解液二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244757A (en) * 1991-01-14 1993-09-14 Kabushiki Kaisha Toshiba Lithium secondary battery
US5541022A (en) * 1992-08-06 1996-07-30 Hitachi, Ltd. Composite anode for nonaqueous secondary battery and method for producing the same
JPH0660868A (ja) * 1992-08-06 1994-03-04 Hitachi Ltd 非水系二次電池用複合負極とその製造法
JPH08148185A (ja) * 1994-06-28 1996-06-07 Sharp Corp 非水系二次電池及び非水系二次電池用負極
US5601950A (en) * 1994-06-29 1997-02-11 Sony Corporation Non-aqueous electrolyte secondary cell
EP0746047A1 (en) * 1995-06-01 1996-12-04 Toray Industries, Inc. An amorphous material, electrode and secondary battery
US5651950A (en) * 1995-07-19 1997-07-29 Yee Fong Chemical & Ind. Co., Ltd. Process for producing silicon carbide
JPH09249407A (ja) * 1996-03-14 1997-09-22 Toyota Central Res & Dev Lab Inc 黒鉛複合物およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324555A (ja) * 1986-03-27 1988-02-01 Sharp Corp 電極及びその製造方法
JPH05299090A (ja) * 1992-04-24 1993-11-12 Sony Corp 非水電解液二次電池
JPH05307959A (ja) * 1992-04-30 1993-11-19 Mitsubishi Petrochem Co Ltd 電極材料およびその製造方法
JPH05325948A (ja) * 1992-05-27 1993-12-10 Osaka Gas Co Ltd 負極材の製造方法およびリチウム二次電池
JPH07302593A (ja) * 1994-05-09 1995-11-14 Asahi Organic Chem Ind Co Ltd カーボン粒子及びこれを用いた非水系二次電池用負極
JPH09204918A (ja) * 1995-11-25 1997-08-05 Sony Corp 非水電解液二次電池用負極材料、その製造方法及び非水電解液二次電池
JPH09147839A (ja) * 1995-11-29 1997-06-06 Matsushita Electric Ind Co Ltd 非水電解液二次電池用負極の製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0936685A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534636A (ja) * 2000-05-24 2003-11-18 リテック,リミテッド ライアビリテイ カンパニー リチウムイオン電気化学電池及び蓄電池
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2007194207A (ja) * 2005-12-21 2007-08-02 Mitsubishi Chemicals Corp リチウムイオン二次電池
JP2007227368A (ja) * 2006-01-27 2007-09-06 Mitsubishi Chemicals Corp リチウムイオン二次電池

Also Published As

Publication number Publication date
KR100555817B1 (ko) 2006-03-03
EP0936685A1 (en) 1999-08-18
EP0936685A4 (en) 2007-10-17
TW396650B (en) 2000-07-01
CN1239592A (zh) 1999-12-22
CN1156039C (zh) 2004-06-30
KR20000068703A (ko) 2000-11-25
US20020172866A1 (en) 2002-11-21

Similar Documents

Publication Publication Date Title
KR101441712B1 (ko) 비수계 2차전지용 복합 흑연 입자, 그것을 함유하는 부극 재료, 부극 및 비수계 2차전지
KR100830612B1 (ko) 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
KR101461220B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 그리고 이를 포함하는 음극 및 리튬 이차 전지
US6884545B2 (en) Anode material for lithium secondary battery, process for production thereof, and lithium secondary battery
JP4613943B2 (ja) リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前躯体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP3844495B2 (ja) 非水電解液二次電池
WO2017221554A1 (ja) リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池用正極活物質、並びにリチウムイオン二次電池
JPWO2019171623A1 (ja) リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
JP5454652B2 (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
JP4997700B2 (ja) リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
WO1999008334A1 (fr) Precurseur carbone, matiere d&#39;anode carbonee et batterie rechargeable non aqueuse
JPH10189044A (ja) 非水電解液二次電池
JP5469347B2 (ja) リチウム二次電池負極活物質の製造方法
JP5182498B2 (ja) 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ
KR20210149970A (ko) 규소계-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
JP3406583B2 (ja) リチウム二次電池負極用黒鉛−炭素複合材料、その製造方法及びリチウム二次電池
KR101984052B1 (ko) 비수전해질 이차전지 음극용 탄소질 재료, 비수전해질 이차전지용 음극 전극, 비수전해질 이차전지 및 차량
CN112424118A (zh) 整体中间相石墨化物的制造方法
JP4635413B2 (ja) 非水電解液二次電池負極用黒鉛粒子の製造方法
JP4444572B2 (ja) 電極の製造方法および電池の製造方法
JPH10125324A (ja) 非水電解液二次電池及びその正極活物質の製造方法
JPH09306489A (ja) 非水電解液二次電池用負極材料とこの非水電解液二次電池用負極材料の製造方法およびこれを用いた非水電解液二次電池
KR20220087143A (ko) 리튬 이온 이차전지용 음극재, 이의 제조방법 및 이를 포함하는 리튬 이온 이차전지
JP3318957B2 (ja) 非水電解液二次電池
TW202349768A (zh) 矽-碳混合物、其製備方法及包含其之負極活性材料與鋰二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98801318.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998936673

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997002912

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998936673

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09269842

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1019997002912

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997002912

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998936673

Country of ref document: EP