WO1998053300A2 - System and apparaus for sequential processing of analytes - Google Patents
System and apparaus for sequential processing of analytes Download PDFInfo
- Publication number
- WO1998053300A2 WO1998053300A2 PCT/US1998/011224 US9811224W WO9853300A2 WO 1998053300 A2 WO1998053300 A2 WO 1998053300A2 US 9811224 W US9811224 W US 9811224W WO 9853300 A2 WO9853300 A2 WO 9853300A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microparticles
- flow chamber
- microparticle
- tag
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
- C12Q1/6874—Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0046—Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502715—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502761—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
- G01N15/1433—Signal processing using image recognition
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1484—Optical investigation techniques, e.g. flow cytometry microstructural devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/251—Colorimeters; Construction thereof
- G01N21/253—Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00279—Features relating to reactor vessels
- B01J2219/00306—Reactor vessels in a multiple arrangement
- B01J2219/00313—Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
- B01J2219/00315—Microtiter plates
- B01J2219/00317—Microwell devices, i.e. having large numbers of wells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00646—Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports
- B01J2219/00648—Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports by the use of solid beads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00659—Two-dimensional arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0647—Handling flowable solids, e.g. microscopic beads, cells, particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/10—Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0877—Flow chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0622—Valves, specific forms thereof distribution valves, valves having multiple inlets and/or outlets, e.g. metering valves, multi-way valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0633—Valves, specific forms thereof with moving parts
- B01L2400/0644—Valves, specific forms thereof with moving parts rotary valves
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B60/00—Apparatus specially adapted for use in combinatorial chemistry or with libraries
- C40B60/14—Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1456—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/149—Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N2015/0007—Investigating dispersion of gas
- G01N2015/0015—Investigating dispersion of gas in solids
Definitions
- the invention relates generally to systems and apparatus for carrying out large scale parallel reactions on solid phase supports, and more particularly, to systems and apparatus for monitoring and carrying out reactions on arrays of microparticles.
- microparticles for synthesizing analytes or for capturing analytes for subsequent analysis, e.g. Lam et al (cited above); Benkovic et al, International patent application PCT US95/03355; Gavin et al, International patent application PCT/EP97/02039; Brenner et al, International patent application PCT/US96/09513, and the like.
- Lam et al cited above
- Benkovic et al International patent application PCT US95/03355
- Gavin et al International patent application PCT/EP97/02039
- Brenner et al International patent application PCT/US96/09513, and the like.
- microparticles generally facilitate the construction and manipulation of large repertoires of analytes with minimal reagent and/or sample consumption.
- handling and manipulating large numbers of microparticles e.g.
- objects of our invention include, but are not limited to, providing a system and apparatus for sequentially delivering reagents to a population of analytes anchored to separate microparticles; providing an apparatus for simultaneously monitoring the interactions of processing reagents and analytes on the surfaces of microparticles disposed in a planar array; providing an apparatus for detecting optical signals generated by, or as the result of, interactions of processing reagents and analytes on the surfaces of microparticles disposed in a planar array; providing an apparatus for detecting pluralities of optical signals, each such plurality being generated at the surface of the same microparticle as a result of interactions between processing reagents and an analyte anchored to the surface of such microparticle; providing an apparatus for simultaneously tracking the positions of individual microparticles in a population of microparticles disposed in a flow chamber as a closely packed planar array; and providing a system and apparatus for simultaneously analyzing the nucleotide sequences of a population of polynucleo
- our invention achieves these and other objects with an apparatus comprising a flow chamber for disposing a population of microparticles in a planar array; fluidic means for sequentially delivering processing reagents from one or more reagent reservoirs to the flow chamber; and detection means for detecting a sequence of optical signals from each of the microparticles of the population.
- the sequences of optical signals are generated as a result of a multi-step analytical process, such as nucleic acid sequence analysis.
- the invention provides a system for simultaneously monitoring a population of analytes which includes the apparatus of the invention, microparticles carrying the analytes, and software means for processing images of, and/or optical signals generated by, the microparticles when disposed in a planar array.
- the flow chamber includes constraining means for restricting the movement of microparticles during cycles of reagent delivery.
- the invention includes a system for simultaneously analyzing the nucleotide sequences of a population of polynucleotides. Copies of each kind of polynucleotide in the population are sorted onto and anchored to one or more microparticles so that a population of loaded microparticles is formed. Loaded microparticles are disposed in a planar array in a flow chamber through which processing reagents are sequentially delivered to the loaded microparticles from one or more reagent reservoirs by a fluidic means.
- Optical signals generated by, or produced as a result of, the interaction of processing reagents and polynucleotides on the microparticles are imaged by a detection means.
- analysis includes determining the nucleotide sequence of a portion of each polynucleotide on the different microparticles, massively parallel signature sequencing (MPSS) analysis is employed, e.g. as described in Albrecht et al, International patent application PCT/US97/09472.
- MPSS massively parallel signature sequencing
- Figure 1 a is a schematic representation of a flow chamber and fluidics and detection systems for observing a planar array of microparticles loaded with analyte molecules, such as cDNA molecules for sequencing.
- Figure 1 b is a schematic of a preferred holder for a flow chamber.
- Figure 2a is bilateral cut away view of a flow chamber.
- Figure 2b is a top view of a flow chamber.
- Figure 2c is an illustration of microparticles being loaded into a flow chamber.
- Figures 3a through 3d schematically illustrate microparticle constraining means for a flow chamber.
- Figure 4 is a schematic representation of a device for loading microparticles into a flow chamber.
- Figure 5 is a schematic representation of a fluidics system for use with the invention.
- Figures 6a and 6b schematically illustrate top-lighting and back-lighting approaches for determining microparticle centers in an array.
- Figure 7 schematically illustrates the assignment of pixels to microparticles for data processing.
- Figure 8 is a flow chart summarizing operation of the system of the invention.
- oligonucleotide tags refers to an oligonucleotide to which a oligonucleotide tag specifically hybridizes to form a perfectly matched duplex or triplex.
- the oligonucleotide tag may be selected to be either double stranded or single stranded.
- the term "complement” is meant to encompass either a double stranded complement of a single stranded oligonucleotide tag or a single stranded complement of a double stranded oligonucleotide tag.
- oligonucleotide includes linear oligomers of natural or modified monomers or linkages, including deoxyribonucleosides, ribonucleosides, anomeric forms thereof, peptide nucleic acids (PNAs), and the like, capable of specifically binding to a target polynucleotide by way of a regular pattern of monomer-to-monomer interactions, such as Watson-Crick type of base pairing, base stacking, Hoogsteen or reverse Hoogsteen types of base pairing, or the like.
- monomers are linked by phosphodiester bonds or analogs thereof to form oligonucleotides ranging in size from a few monomeric units, e.g.
- oligonucleotide 3-4, to several tens of monomeric units, e.g. 40-60.
- ATGCCTG a sequence of letters, such as "ATGCCTG”
- A denotes deoxyadenosine
- C denotes deoxycytidine
- G denotes deoxyguanosine
- T denotes thymidine, unless otherwise noted.
- oligonucleotides of the invention comprise the four natural nucleotides; however, they may also comprise non- natural nucleotide analogs.
- oligonucleotides having natural or non-natural nucleotides may be employed, e.g. where processing by enzymes is called for, usually oligonucleotides consisting of natural nucleotides are required.
- Perfectly matched in reference to a duplex means that the poly- or oligonucleotide strands making up the duplex form a double stranded structure with one other such that every nucleotide in each strand undergoes Watson-Crick basepairing with a nucleotide in the other strand.
- the term also comprehends the pairing of nucleoside analogs, such as deoxyinosine, nucleosides with 2-aminopurine bases, and the like, that may be employed.
- the term means that the triplex consists of a perfectly matched duplex and a third strand in which every nucleotide undergoes Hoogsteen or reverse Hoogsteen association with a basepair of the perfectly matched duplex.
- a "mismatch" in a duplex between a tag and an oligonucleotide means that a pair or triplet of nucleotides in the duplex or triplex fails to undergo Watson-Crick and/or Hoogsteen and/or reverse Hoogsteen bonding.
- nucleoside includes the natural nucleosides, including 2'-deoxy and 2'- hydroxyl forms, e.g. as described in Kornberg and Baker, DNA Replication, 2nd Ed. (Freeman, San Francisco, 1992).
- "Analogs" in reference to nucleosides includes synthetic nucleosides having modified base moieties and/or modified sugar moieties, e.g. described by Scheit, Nucleotide Analogs (John Wiley, New York, 1980); Uhlman and Peyman, Chemical Reviews, 90: 543-584 (1990), or the like, with the only proviso that they are capable of specific hybridization.
- Such analogs include synthetic nucleosides designed to enhance binding properties, reduce complexity, increase specificity, and the like.
- sequence determination or "determining a nucleotide sequence” in reference to polynucleotides includes determination of partial as well as full sequence information of the polynucleotide. That is, the term includes sequence comparisons, fingerprinting, and like levels of information about a target polynucleotide, as well as the express identification and ordering of nucleosides, usually each nucleoside, in a target polynucleotide. The term also includes the determination of the identification, ordering, and locations of one, two, or three of the four types of nucleotides within a target polynucleotide.
- sequence determination may be effected by identifying the ordering and locations of a single type of nucleotide, e.g. cytosines, within the target polynucleotide "CATCGC " so that its sequence is represented as a binary code, e.g. "100101 ... " for "C-(not C)-(not C)-C-(not C)-C ... " and the like.
- a single type of nucleotide e.g. cytosines
- the term "complexity" in reference to a population of polynucleotides means the number of different species of molecule present in the population. DETAILED DESCRIPTION OF THE INVENTION
- the system and apparatus of the invention is particularly applicable to the analysis of molecules that can be anchored in populations of duplicate copies to particulate solid phase supports. That is, in accordance with the invention, each analyte of a population is present on at least one microparticle in a quantity sufficient for the type of analysis being performed.
- Analyte populations particularly relevant for use with the present apparatus include combinatorial libraries synthesized on microparticle supports, e.g as disclosed in Lam et al, Chem. Rev., 97: 411-448 (1997); or Dower et al, U.S. patent 5,708,153, and polynucleotide libraries sorted onto microparticle supports, e.g. as disclosed in Brenner (cited above).
- FIG. 1 is a schematic representation of an embodiment of the invention for detecting fluorescent signals.
- Flow chamber (100) having inlet (102), outlet (104) and planar cavity (106) holds microparticles in a planar array from which optical signals (108) generated by analytes and/or reactants on microparticles can be collected and imaged.
- Flow chamber (100) is operationally associated with fluidic system (112) and detection system (114), so that delivery of fluids and collection of signals is under control of computer (116).
- optical signals are collected by microscope (118) and are imaged onto a solid state imaging device, such as charge- coupled device (CCD) (120) which is capable of generating a digital image of the physical image of the microparticle array with sufficient resolution for individual microparticles to be distinguished.
- CCD charge- coupled device
- detection system (114) usually includes appropriate bandpass filter (122) for optical signal (108), bandpass filter (124) for excitation beam (128) generated by light source (126), and other standard components.
- bandpass filter (122) for optical signal (108)
- bandpass filter (124) for excitation beam (128) generated by light source (126)
- other standard components such as a conventional fluorescence microscope is preferred which is configured for epiillumination.
- a key feature of the invention is flow chamber (100).
- Body (130) of flow chamber (100) preferably comprised inlet ( 102), outlet ( 104) and planar cavity ( 106) which are formed by standard micromachining techniques, e.g. Ekstrom et al, International patent application PCT/SE91/00327; Brown, U.S. patent 4,911,782; Harrison et al, Anal. Chem. 64: 1926-1932 (1992); and the like.
- Transparent plate (132) is sealingly attached to body (130) to form an operational flow chamber (100).
- Body (130) may be constructed from any of several different materials including glass, silicon, polyethylene, polyester, teflon, other plastics, and the like.
- transparent plate (132) is glass or quartz; and, when body (130) and transparent plate (132) are glass or silicon, transparent plate (132) is preferably attached to body (130) by anodic bonding, e.g. Pomerantz, U.S. patent 3,397,279.
- Key functions of the flow chamber include i) holding a population of microparticles in a substantially immobilized planar array, or monolayer, during a sequence of processing steps, ii) ensuring that processing reagents can access each microparticle during each step of a process, and iii) minimizing processing reagent usage.
- the degree of immobilization required may vary among different embodiments.
- microparticle movement within a planar array increases the computational and measurement burden of tracking positions of microparticles by image processing software.
- Design trade-offs therefore exist between the use of image processing software and the use of physical and/or chemical means for constraining microparticle movement.
- physical and/or chemical means are employed to constrain microparticle movement within the planar array of microparticles in flow chamber (100). Such means are referred to herein as "movement constraining means.”
- movement constraining means Most preferably, physical, or mechanical, movement constraining means are employed.
- microparticles are disposed in flow chamber (100) in a closely packed planar array.
- "closely packed” in reference to a planar array means either that the number of microparticles per unit area of a planar array is at least eighty percent of the number of microparticles in a hexagonal array of equal area, or that the average distance between centers of adjacent microparticles is less than two microparticle diameters.
- a "hexagonal" array of microparticles means a planar array of microparticles in which every microparticle in the array contacts at least six other adjacent microparticles, as shown in Figure 3 a. Additions features of flow chamber ( 100) of a preferred embodiment are illustrated in
- Figures 2a through 2c Figure 2a is a cross sectional view along a longitudinal plane that bisects flow chamber (100). The same view, in a more abstracted rendition, is shown in Figure 2c.
- inlet (102) fluidly communicates with planar cavity (106) and outlet (104).
- Microparticles (200) carrying analytes enter inlet (102) and are carried by a suspending buffer to planar cavity (106) where they become packed against dam (202) which prevents the microparticles from exiting the flow chamber through outlet (104).
- dam (202) may be formed by a sudden reduction of the vertical dimension of planar cavity (106).
- vertical dimension (204) of planar cavity (106) is selected so that microparticles (200) are constrained to a plane, i.e. a monolayer, when they pack against dam (202). More preferably, vertical dimension (204) is selected to be between about 120 to 150 percent of the diameter of the microparticles employed. For example, when microparticles are employed that have diameters of 5 ⁇ m, vertical dimension (204) may be 7 ⁇ m. Magnetic microparticles may be constrained to a plane and constrained from movement by applying a magnetic field so that the microparticles are attracted to the ceiling or to the floor of planar cavity (106).
- Width (206) of planar cavity (106) is not a critical dimension; however, for convenience and efficiency, width (206) may be selected to correspond to the dimensions of the signal collection region of detection system (114).
- Such regions labeled 1 through k in Figure 2b are referred to herein as "tiles.” That is, the region of planar cavity (106) occupied by microparticles may be divided into non-overlapping areas, referred to as "tiles," that cover the entire occupied region.
- Figure 2b which is a top view of the flow chamber of Figure 2a, also shows inlet (102), planar cavity (106), dam (202), and outlet (104) that lie in sequence along axis (217) of flow chamber (100).
- Many movement constraining means may be selected for use with the flow chamber, either alone or in combination.
- Such means include loading microparticles with trace amounts of a chemically reactive species which may be activated and cross-linked; providing physical, or mechanical structures, such as ridges, within the flow chamber; providing magnetically responsive microparticles which may be immobilized by an external magnetic field; providing a second population of microparticles that are loaded into a flow chamber after the analyte-containing population, which forces the analyte-containing population against dam (202); and the like.
- Exemplary chemically reactive species for use with nucleic acid analytes are disclosed in Summerton et al, U.S. patent 4,123,610; Gamper et al, J. Mol.
- microparticle movement is constrained by providing a flow chamber with planar cavity (106) containing a plurality of ridges running parallel to axis (217) of the flow chamber, i.e. parallel to the direction of reagent flow, so that microparticles are arranged into rows, which may be single-file, or several microparticles wide, as shown in Figures 3a and 3b.
- Figures 3a and 3b illustrate two possible distances between parallel ridges. In Figure 3a, the distance is selected to permit maximal packing of microparticles into a hexagonal array, and in Figure 3b, the distance is selected for less efficient packing, but for increased reagent access to microparticle surfaces.
- Figures 3c and 3d are axial views of the flow chamber showing the microparticle arrangements of Figures 3a and 3b, respectively.
- the inner surfaces of flow chamber (100) may be passivated, that is, treated to render such surfaces inert and/or non- adsorbing with respect to enzymes.
- the type of treatment depends on the sensitivity of the enzymes used in the process, and their affinity for the surfaces.
- Surface treatments include silanization, e.g. with commercially available reagents (Pierce, Rockford, IL); and/or adsorption of various blocking polymers, such as poly-a-alanine, polyglycine, polyadenylic acid, polymaleimide, polyvinylpyrrolidone, or the like, e.g. Shoffner et al, Nucleic Acids Research, 24:
- glass inner surfaces of flow chamber (100) are covalently coated with a neutral coating, such as allyl methacrylate, using the technique disclosed in Sandoval et al, U.S. patent 5,326,738, which is incorporated by reference.
- Figure lb illustrates flow chamber (100) mounted between holders (140) and (142) which sealingly connect inlet ( 102) to inlet tubing ( 144) and outlet ( 104) to outlet tubing ( 146), respectively.
- holder (140) contains a rotary valve (not shown) operated by actuator (148) that shunts fluid flowing through inlet tubing (144) to inlet (102) or to waste line (150).
- actuator (148) operated by actuator (148) that shunts fluid flowing through inlet tubing (144) to inlet (102) or to waste line (150).
- Such a valve minimizes the amount of process reagent from a previous step that must be passed through flow chamber (100) prior to the initiation of the next process step. That is, such a rotary valve permits reagent in inlet tubing (144) to be shunted to waste and replaced by processing reagent required for the next step in the process being executed.
- peltier block (152) is employed to control temperature in flow chamber (100) and the entire assembly including flow chamber (100) and peltier block (152) is mounted on xyz-stage (154) which is under control of computer (116).
- microparticles are loaded into flow chamber ( 100) prior to attachment of holders (140) and (142) and the initiation of processing steps.
- Figure 4 illustrates a microparticle loader for loading microparticles into flow chamber (100).
- Flow chamber (100) is mounted between holders (400), (402), (404), and (406).
- Holders (400) and (402) sealingly clamp onto the inlet end (101) of flow chamber (100) and holders (404) and (406) sealingly clamp onto the outlet end (103) of flow chamber (100) so that inlet tubing (408) is in fluid communication with outlet tubing (410) when the microparticle loader is assembled.
- Inlet tubing (408) is connected to syringe (416) which is used to drive fluid through flow chamber (100).
- Holder (400) is constructed to have conical passage (412) which narrows to match the diameter of inlet (102) of flow chamber (100). After assembly of holders (400), (402), (404), and (406) a suspension of microparticles is placed in the conical passage after which fitting (414) is sealingly connected to holder (400).
- Fluid pressure and flow generated by syringe (416) then drives the microparticles into planar cavity (106) and against dam (202).
- approximately 500 thousand microparticles are loaded into flow chamber (100) by placing 5 ⁇ L of a 100 thousand microparticle/ ⁇ L solution (TE buffer, pH 8.0, Sambrook et al, Molecular Cloning, Second Edition (Cold Spring Harbor
- process reagents are delivered to flow chamber (100) by the fluidic system illustrated in Figure 5 which has the capacity to handle many different reagents for complex analytical processes.
- the fluidics system may accommodate up to 38 reagents, including wash buffers, rinses, enzymes, hybridization probes, adaptors, and the like.
- the function of the fluidics system is the sequential metering of selected processing reagents to flow chamber (100).
- Inlet (102) of flow chamber (100) is sealingly connected to holder (140) which contains rotary valve (actuator shown as 148) (not shown in Figure 5).
- rotary valve actuator shown as 148) (not shown in Figure 5).
- a variety of means may be employed for moving processing reagents from reservoirs, through tubing, and into flow chamber (100), including gravity feed, pressure feed, and pumps, e.g. peristaltic, syringe, and the like.
- common syringe pump (500) is employed for removing predetermined amounts processing reagents from reservoirs and for forcing such reagents through flow chamber (100) at a predetermined flow rate.
- pump (500) in operational association with valve block (502) and rotary valve (504) removes a predetermined amount of processing reagent from a selected reservoir by siphoning reagent out of the reservoir on the out-stroke of plunger (501) of pump (500).
- rotary valve (504) directs processing reagent from tubing (503) to reservoir (505) of pump (500).
- state of rotary valve (504) is changed to direct processing reagent from reservoir (505) to inlet tubing (144).
- Tubing (503) connects rotary valve (504) with manifold (508) which, in turn, is connected to a plurality (five shown) of banks of zero dead volume valves (506).
- Zero dead volume valves (506) connect individual reservoirs holding processing reagents to a common passageway (not shown in Figure 5) that runs through each of the banks of valves connecting to manifold (508).
- a preferred zero dead volume valve is described in U.S. patents 4,558, 845 and 4,703,913, which are incorporated by reference.
- Process reagents from reservoirs (514) are distributed to the banks of dead volume valves by way of manifold (510).
- Alternative valve blocks for controlling delivery of process reagents to flow chamber (100) include the valve matrix disclosed in U.S.
- detection means (114) of the invention is the ability to keep track of individual microparticles through multiple process steps and/or cycles. In connection with such tracking, detection means (114) periodically records optical characteristics of individual microparticles that provide a close approximation microparticle centers.
- the optical characteristic is the focused back light from the microparticles. That is, in reference to Figure 6a, back light (600) passes vertically through flow chamber (100) where it is focused by microparticles (602) onto focal plane (604).
- the image of focal plane (604) in this configuration appears as a field of bright points, where each point is located at the approximate center of its corresponding microparticle.
- top light (610)
- microparticles 602 where it scatters from the top surface of the microparticles.
- the optical characteristic is the scatter center of a microparticle.
- an image is collected from the plane containing scatter centers (612) resulting from such top lighting.
- the image of the scatter centers provides a convenient way to readily determine the approximate centers of the microparticles.
- microparticle centers (700) are determined, pixels (702) are assigned for determining characteristics, e.g. intensity, of an optical signal generated at each microparticle (602).
- the size of microparticle (602) and pixel area determine how many pixels are assigned to each microparticle.
- important factors include the degree to which the calculated center of a microparticle (as described above) is likely to deviate from the geometric center, the extent to which optical signal collected from the edge of an image contains spurious information (e.g. signal from an overlapping or adjacent microparticle), the uniformity of microparticle diameter and shape, and the like.
- the pixel dimensions of the CCD detector are about .9 ⁇ m x .9 ⁇ m.
- nine pixels fit easily within the interior of a microparticle image with a margin of at least about 1 ⁇ m between any pixel and the edge of the microparticle image.
- an initial pixel is assigned which encloses the computed center of a microparticle, e.g. pixel "5" in Figure 7. Thereafter, additional pixels are assigned, usually the immediately adjacent pixels.
- the value of the optical signal generated by a process at the surface of a microparticle is the average value of the optical signals collected by pixels assigned to that microparticle.
- microparticles with anchored analytes have been loaded into flow chamber (100) which has been operationally mounted in holders 140 and 142.
- the initial operation is the calibration of the microparticle focal plane (802). That is, the vertical, or "z", position of the xyz-stage is determined which optimizes the focus of either the scatter centers of the microparticles, i.e. the microparticle tops for top-lighting, or the focus points of the microparticles for back-lighting.
- the optimization is carried out by a conventional autofocusing algorithm which provides an image contrast function constructed from a predetermined sample of regions within a collected image.
- the contrast function may be evaluated iteratively for sequence of z-positions so that the differences of successive values of the contrast function can be determined. These are tested until a difference is found below a predetermined threshold, which is taken as the maximum of the contrast function. Focal plane location is taken as the z position which maximizes the image contrast function.
- a predetermined threshold which is taken as the maximum of the contrast function.
- Focal plane location is taken as the z position which maximizes the image contrast function.
- process steps are initiated (804) by way of a fluidics controller operationally associated with computer (116).
- stage settings are adjusted to place the first tile into focus using the autofocus algorithm (806), which places the focal plane of the microscope objective approximately at the tops of the microparticles.
- Stage settings are then adjusted (808) to bring the focal plane of the microscope objective to the approximate centers of the microparticles, as illustrated (606) in Figures 6a and 6b. The amount of stage movement in this re- focusing depends on the diameter of the microparticles being used.
- filters (124) and (122) After appropriate selection of filters (124) and (122), a fluorescent image of the first tile is collected (810) and transferred to data server (812).
- Fluorescent images are collected on the plane of the microparticle centers because of imperfections in the planar array. That is, microparticles in planar cavity (106) do not lie in a perfect planar array for a variety of reasons. For example, some microparticles are elevated above others as a result of packing into the flow chamber; there is some variability in the size and shape of the microparticles; and, the floor of planar cavity (106) may be uneven.
- the focal plane of the microscope objective is returned (814) to the microparticle focal plane, where another image is collected (816) for the purpose of computing microparticle centers as described above.
- the image of microparticle centers is transferred to data server (812) where data processor (818) assigns pixels of the fluorescent image to each microparticle center, as described above.
- data server data processor (818) assigns pixels of the fluorescent image to each microparticle center, as described above.
- the stage is moved so that an image of the next tile can be collected (822). If there are no further tiles of microparticles (820), then the next steps and/or cycles of the process are executed (826). If there are no further process steps (824), then the process is complete and the apparatus is placed in a holding mode.
- Optical signals collected in the course of analysis may be generated by a variety of mechanisms, including absorption and fluorescence, chemiluminescence, electrochemiluminescence, or bioluminescence emission.
- optical signaling means e.g. Kessler, editor, Nonradioactive Labeling and Detection of Biomolecules (Springer-Nerlag, Berlin); Keller and Manak, D ⁇ A Probes, Second Edition (Stockton Press, New York, 1993); and the like.
- optical signals generated in processing steps are fluorescence emissions.
- microparticles An important feature of the system of the invention is the use of microparticles for carrying analytes.
- a variety of microparticles may be employed depending on particular applications.
- microparticles must consist of a material compatible with the reagents and chemistry of the process steps being carried out and microparticle must be substantially mechanically rigid so that they retain their shape and size during process steps.
- substantially mechanically rigid means that microparticles neither swell nor contract by more than ten percent (as measure by diameter) in any process solvent or reagent.
- microparticles are microspheres of uniform size, i.e. microparticles are monodisperse.
- the diameters of spherical microparticles have a coefficient of variation less than five percent, and most preferably, less than two percent.
- Microparticle diameters are in the range of from 0J ⁇ m to 100 ⁇ m.
- microparticle diameters range from 1 ⁇ m to 20 ⁇ m.
- microparticle diameters are in the range of 1 to 5 ⁇ m.
- Suitable microparticle materials include inorganic support materials such as glass, e.g. controlled-pore glass, Balltoni beads; silica, zirconia, and the like, e.g.
- Minimally cross-hybridizing sets of oligonucleotide tags and tag complements may be synthesized either combinatorially or individually depending on the size of the set desired and the degree to which cross-hybridization is sought to be minimized (or stated another way, the degree to which specificity is sought to be enhanced).
- a minimally cross- hybridizing set may consist of a set of individually synthesized 10-mer sequences that differ from each other by at least 4 nucleotides, such set having a maximum size of 332 (when composed of 3 kinds of nucleotides and counted using a computer program such as disclosed in Appendix Ic of International patent application PCT/US96/09513).
- a minimally cross-hybridizing set of oligonucleotide tags may also be assembled combinatorially from subunits which themselves are selected from a minimally cross-hybridizing set.
- a set of minimally cross-hybridizing 12-mers differing from one another by at least three nucleotides may be synthesized by assembling 3 subunits selected from a set of minimally cross- hybridizing 4-mers that each differ from one another by three nucleotides.
- an oligonucleotide tag of the invention preferably consists of a plurality of subunits, each subunit consisting of an oligonucleotide of 3 to 9 nucleotides in length wherein each subunit is selected from the same minimally cross- hybridizing set.
- the number of oligonucleotide tags available depends on the number of subunits per tag and on the length of the subunits.
- 9 8 containing primers has a complexity of 8 , or about 1.34 x 10 .
- mRNA for library construction can be extracted from as few as 10-100 mammalian cells. Since a single mammalian cell contains about 5 x 10
- the cDNA library construction protocol results in a population containing no more than 37% of the total number of different tags. That is, without any overt sampling step at all, the protocol inherently generates a sample that comprises 37%, or less, of the tag repertoire. The probability of obtaining a double under these conditions is about 5%, which is within the preferred range.
- the fraction of the tag repertoire sampled is reduced to only 3.7%, even assuming that all the processing steps take place at 100% efficiency.
- the efficiencies of the processing steps for constructing cDNA libraries are very low, a "rule of thumb" being that good library should contain about 10 cDNA clones from mRNA extracted from 10 mammalian cells.
- a tag-polynucleotide conjugate mixture potentially contains every possible pairing of tags and types of mRNA or polynucleotide.
- overt sampling may be implemented by removing a sample volume after a serial dilution of the starting mixture of tag- polynucleotide conjugates. The amount of dilution required depends on the amount of starting material and the efficiencies of the processing steps, which are readily estimated.
- Such a sample is readily obtained as follows: Assume that the 5 x 10 mRNAs are perfectly converted into 5 x 10 vectors with tag-cDNA conjugates as inserts and that the 5 x 10 vectors are in a reaction solution having a volume of 100 ⁇ l. Four 10-fold serial dilutions may be carried out by transferring 10 ⁇ l from the original solution into a vessel containing 90 ⁇ l of an appropriate buffer, such as TE. This process may be repeated for three additional dilutions to obtain a 100 ⁇ l solution containing 5 x 10 vector molecules per ⁇ l. A 2 ⁇ l aliquot from this solution yields 10 vectors containing tag-cDNA conjugates as inserts.
- This sample is then amplified by straight forward transformation of a competent host cell followed by culturing.
- a competent host cell followed by culturing.
- no step in the above process proceeds with perfect efficiency.
- the step of transforming a host is very inefficient.
- no more than 1% of the vectors are taken up by the host and replicated.
- even fewer dilutions would be required to obtain a sample of 10 conjugates.
- a general method for exposing the single stranded tag after amplification involves digesting a target polynucleotide-containing conjugate with the 5'- 3' exonuclease activity of T4 DNA polymerase, or a like enzyme, e.g. as described in Kuijper et al, Gene, 112: 147-155 (1992).
- T4 DNA polymerase or a like enzyme, e.g. as described in Kuijper et al, Gene, 112: 147-155 (1992).
- the polynucleotides are mixed with microparticles containing the complementary sequences of the tags under conditions that favor the formation of perfectly matched duplexes between the tags and their complements.
- the hybridization conditions are sufficiently stringent so that only perfectly matched sequences form stable duplexes.
- GMA glycidalmethacrylate
- Polynucleotides loaded onto microparticles may be simultaneously sequenced in the instant apparatus using a "base-by-base” DNA sequencing methodology.
- Such sequencing methodology permits the stepwise identification of a sequence of nucleotides in a target polynucleotide, usually one base at a time, through successive cycles of treatment and detection.
- Base-by-base approaches are disclosed in the following references: Cheeseman, U.S. patent 5,302.509; Tsien et al, International application WO 91/06678; Rosenthal et al, International application WO 93/21340; Canard et al, Gene, 148: 1-6 (1994); Metzker et al, Nucleic Acids Research, 22: 4259-4267 (1994); and the like.
- Encoded adaptors may be used in an adaptor-based method of DNA sequencing that includes repeated cycles of ligation, identification, and cleavage, such as the method described in Brenner (cited above).
- a cDNA library is constructed in which an oligonucleotide tag consisting of 8 four-nucleotide "words" is attached to each cDNA.
- the repertoire of oligonucleotide tags of this size is sufficiently large (about 10 8 ) so that if the cDNAs are synthesized from a population of about 10 6 mRNAs, then there is a high probability that each cDNA will have a unique tag for sorting.
- the Bsm BI-Dpn II fragment containing the tag-cDNA conjugate is then inserted into a plasmid and amplified.
- tag-cDNA conjugates are amplified out of the plasmids by PCR in the presence of 5-Me-dCTP, using biotinylated and fluorescently labeled primers containing pre- defined restriction endonuclease sites.
- affinity purification with streptavidin coated magnetic beads the tag-cDNA conjugates are cleaved from the beads, treated with T4 DNA polymerase in the presence of dGTP to render the tags single stranded, and then combined with a repertoire of GMA beads having tag complements attached.
- poly(A + ) mRNA is extracted from DBY746 yeast cells using conventional protocols.
- First and second strand cDNA synthesis is carried out by combining 100- 150 pmoles of the following primer (SEQ ID NO: 1):
- V is G, C, or A
- [W,W,W,G] is a four-nucleotide word selected from Table II of Brenner, International patent application PCT/US96/09513, the single underlined portion is a Bsm BI recognition site, and the double underlined portion is a Pac I recognition site.
- tags of the conjugates are rendered single stranded by treating them with T4 DNA polymerase in the presence of dGTP. After the reaction is quenched, the tag-cDNA conjugate is purified by phenol-chloroform extraction and combined with 5.5 mm GMA beads carrying tag complements, each tag complement having a 5' phosphate. Hybridization is conducted under stringent conditions in the presence of a thermal stable ligase so that only tags forming perfectly matched duplexes with their complements are ligated.
- the GMA beads are washed and the loaded beads are concentrated by FACS sorting, using the fluorescently labeled cDNAs to identify loaded GMA beads.
- the tag-cDNA conjugates attached to the GMA beads are digested with Dpn II to remove the fluorescent label and treated with alkaline phosphatase to prepare the cDNAs for sequencing. That is, phasphatase is used to remove the 5' phosphate from the ends of the cDNAs to prevent unwanted cDNA-cDNA ligations by way of the palindromic Dpn II site.
- cleavage adaptor SEQ ID NO: 3
- SEQ ID NO: 3 The following cleavage adaptor is ligated to the Dpn II-digested and phosphatase treated cDNAs:
- the 3' phosphate is removed by alkaline phosphatase, the 5' strand of the cDNA is treated with T4 DNA kinase, and the nick between the cleavage adaptor and cDNA is ligated.
- the nick between the cleavage adaptor and cDNA is ligated.
- encoded adaptors are ligated to the ends of the cDNAs and the beads are ready for loading into the flow chamber.
- the polynucleotide-bead mixture is then washed, treated with a mixture of T4 polynucleotide kinase and T4 DNA ligase (New England Biolabs, Beverly, MA) to add a 5' phosphate at the gap between the target polynucleotide and the adaptor, and to complete the ligation of the adaptors to the target polynucleotide.
- T4 polynucleotide kinase and T4 DNA ligase New England Biolabs, Beverly, MA
- the bead-polynucleotide mixture is then washed in TE, diluted to a concentration of approximately 100 thousand beads per ⁇ L, and 5 ⁇ L of the resulting solution is loaded into a flow chamber with the help of the holders of Figure 4.
- top strands of the following 16 sets of 64 encoded adaptors (SEQ ID NO: 4 through SEQ ID NO: 19) are each separately synthesized on an automated DNA synthesizer (model 392 Applied Biosystems, Foster City) using standard methods.
- the bottom strand which is the same for all adaptors, is synthesized separately then hybridized to the respective top strands:
- Each of the 16 tag complements are separately synthesized as amino-derivatized oligonucleotides and are each labeled with a fluorescein molecule (using an NHS-ester of fluorescein, available from Molecular Probes, Eugene, OR) which is attached to the 5' end of the tag complement through a polyethylene glycol linker (Clonetech Laboratories, Palo Alto, CA).
- the sequences of the tag complements are simply the 12-mer complements of the tags listed above.
- a flow chamber of the design shown in Figures 2a and 2b is employed in association with an Olympus Optical Co., Ltd.
- Height (204) of flow chamber (201) is selected to be 7 ⁇ m, or approximately 140% of the diameter of the GMA beads.
- Width (210) of flow chamber (201 ) is selected so as to ensure that a 3x3 array of 9 image pixels will cover approximately 40-60% of a bead's image after lOx magnification (as illustrated in Figure 7). Thus, in order to capture images of tiles of about 100 thousand 5 ⁇ m GMA beads, width (210) is selected to have a value of 1.7 mm.
- Length (212) is selected so that the flow chamber can hold from 1 to 10 tiles of about one hundred thousand 5 ⁇ m diameter beads each.
- the cross section (220) of inlet passage (214) matches that of the inlet tubing and gradually enlarges to match that of flow chamber (201) in the region of the planar cavity, i.e. the region holding the GMA beads on which analysis is performed. It is desirable to have a constant cross section through the planar cavity of flow chamber (201) to minimize the creation of non-uniform flow patterns, as might occur with sudden constrictions and/or expansions in cross section.
- Both body (218) and cover (216) of flow chamber (201) are glass, and the planar cavity and channels of body (218) are formed by standard chemical etching techniques.
- Cross section (222) of outlet passage (224) is selected to match the cross section of flow chamber (201) at dam (202).
- the fluidics system of Figure 5a which includes all valves, syringe pump (500), and Peltier block (152), is controlled by code written in LabNIEW 5.0 (National Instruments, Austin, TX) and run on a Compact Deskpro Pentium-based microprocessor, which is connected to the various components of the fluidics system by standard I/O circuit boards. Detection system (114) and overall control of the instrument is effected through a Sun Microsystems (Mountain View, CA) Sparcstation 5. Three cycles of ligation, identification, and cleavage are carried out in flow chamber (201 ) to give the sequences of 12 nucleotides at the termini of each of appoximately 500,000 cDNAs. That is, five tiles of GMA beads are analyzed in the following series of process steps:
- the salt wash solution is 150 mM NaCl and 10 mM Tris- HC1 (pH 8.5), and the ethanol wash solution is 3:1 (v/v) solution of the salt wash solution and ethanol.
- the ligation and wash steps 13 and 14 are repeated once, after which the adaptors and the cDNAs are prepared for second strand ligation by passing T4 DNA kinase (New England Bioscience. Beverly, MA) at 7 units per ⁇ L through the flow chamber at 37°C with a flow rate of 1-2 ⁇ L per minute for 15-20 minutes.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Clinical Laboratory Science (AREA)
- Hematology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Fluid Mechanics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Signal Processing (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Optical Measuring Cells (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Computer Vision & Pattern Recognition (AREA)
Priority Applications (12)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP55075798A JP4294740B2 (ja) | 1997-05-23 | 1998-05-22 | 分析物の系列的プロセシングのためのシステムおよび装置 |
| CA002291180A CA2291180A1 (en) | 1997-05-23 | 1998-05-22 | System and apparatus for sequential processing of analytes |
| US09/424,028 US6406848B1 (en) | 1997-05-23 | 1998-05-22 | Planar arrays of microparticle-bound polynucleotides |
| AU77155/98A AU736321B2 (en) | 1997-05-23 | 1998-05-22 | System and apparatus for sequential processing of analytes |
| EP98925137A EP0985142A4 (en) | 1997-05-23 | 1998-05-22 | SYSTEM AND APPARATUS FOR THE SEQUENTIAL TREATMENT OF ANALYTES |
| US09/908,131 US6969488B2 (en) | 1998-05-22 | 2001-07-17 | System and apparatus for sequential processing of analytes |
| US09/907,795 US6654505B2 (en) | 1994-10-13 | 2001-07-17 | System and apparatus for sequential processing of analytes |
| US10/407,089 US20030224419A1 (en) | 1997-05-23 | 2003-04-02 | Data analysis and display system for ligation-based DNA sequencing |
| US11/207,443 US7282370B2 (en) | 1997-05-23 | 2005-08-18 | System and apparatus for sequential processing of analytes |
| US11/974,239 US8361713B2 (en) | 1997-05-23 | 2007-10-12 | System and apparatus for sequential processing of analytes |
| US13/693,658 US8728729B2 (en) | 1997-05-23 | 2012-12-04 | Method for sequential sequencing nucleic acids |
| US14/245,723 US9273354B2 (en) | 1997-05-23 | 2014-04-04 | System and apparatus for sequential processing of analytes |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US86261097A | 1997-05-23 | 1997-05-23 | |
| US08/862,610 | 1997-05-23 |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US86261097A Continuation-In-Part | 1994-10-13 | 1997-05-23 | |
| US86261097A Continuation | 1994-10-13 | 1997-05-23 |
Related Child Applications (6)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/424,028 A-371-Of-International US6406848B1 (en) | 1994-10-13 | 1998-05-22 | Planar arrays of microparticle-bound polynucleotides |
| US09424028 A-371-Of-International | 1998-05-22 | ||
| US09/908,131 Division US6969488B2 (en) | 1997-05-23 | 2001-07-17 | System and apparatus for sequential processing of analytes |
| US09/908,130 Division US6831994B2 (en) | 1997-05-23 | 2001-07-17 | System and apparatus for sequential processing of analytes |
| US09/907,795 Division US6654505B2 (en) | 1994-10-13 | 2001-07-17 | System and apparatus for sequential processing of analytes |
| US10/124,884 Continuation US6806052B2 (en) | 1997-05-23 | 2002-04-18 | Planar arrays of microparticle-bound polynucleotides |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO1998053300A2 true WO1998053300A2 (en) | 1998-11-26 |
| WO1998053300A3 WO1998053300A3 (en) | 1999-02-25 |
Family
ID=25338847
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1998/011224 Ceased WO1998053300A2 (en) | 1994-10-13 | 1998-05-22 | System and apparaus for sequential processing of analytes |
Country Status (6)
| Country | Link |
|---|---|
| US (6) | US6406848B1 (enExample) |
| EP (1) | EP0985142A4 (enExample) |
| JP (1) | JP4294740B2 (enExample) |
| AU (1) | AU736321B2 (enExample) |
| CA (1) | CA2291180A1 (enExample) |
| WO (1) | WO1998053300A2 (enExample) |
Cited By (98)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000004372A1 (en) * | 1998-07-16 | 2000-01-27 | The Board Of Regents, The University Of Texas System | Sensor arrays for the measurement and identification of multiple analytes in solutions |
| WO2000063678A1 (de) * | 1999-04-14 | 2000-10-26 | Carl Zeiss Jena Gmbh | Anordnung zur untersuchung von proben |
| WO2000068670A1 (en) * | 1999-05-07 | 2000-11-16 | Anslyn Eric V | Method and system for remotely collecting and evaluating chemical/biochemical information |
| US6210910B1 (en) | 1998-03-02 | 2001-04-03 | Trustees Of Tufts College | Optical fiber biosensor array comprising cell populations confined to microcavities |
| WO2000012123A3 (de) * | 1998-08-28 | 2001-04-12 | Febit Ferrarius Biotech Gmbh | Verfahren und messeinrichtung zur bestimmung einer vielzahl von analyten in einer probe |
| US6266459B1 (en) | 1997-03-14 | 2001-07-24 | Trustees Of Tufts College | Fiber optic sensor with encoded microspheres |
| US6274320B1 (en) | 1999-09-16 | 2001-08-14 | Curagen Corporation | Method of sequencing a nucleic acid |
| US6327410B1 (en) | 1997-03-14 | 2001-12-04 | The Trustees Of Tufts College | Target analyte sensors utilizing Microspheres |
| US6355431B1 (en) | 1999-04-20 | 2002-03-12 | Illumina, Inc. | Detection of nucleic acid amplification reactions using bead arrays |
| US6387707B1 (en) | 1996-04-25 | 2002-05-14 | Bioarray Solutions | Array Cytometry |
| US6406845B1 (en) | 1997-05-05 | 2002-06-18 | Trustees Of Tuft College | Fiber optic biosensor for selectively detecting oligonucleotide species in a mixed fluid sample |
| US6429027B1 (en) | 1998-12-28 | 2002-08-06 | Illumina, Inc. | Composite arrays utilizing microspheres |
| US6468811B1 (en) | 1996-04-25 | 2002-10-22 | Bioarray Solutions | Light-controlled electrokinetic assembly of particles near surfaces |
| JP2003505041A (ja) * | 1999-07-20 | 2003-02-12 | アフィボディ・テクノロジー・スウェーデン・アーベー | 固体支持体担体を用いる試験管内選択及びポリペプチドの任意の同定 |
| US6544732B1 (en) | 1999-05-20 | 2003-04-08 | Illumina, Inc. | Encoding and decoding of array sensors utilizing nanocrystals |
| JP2003515167A (ja) * | 1999-11-26 | 2003-04-22 | ザ ガヴァナーズ オブ ザ ユニヴァーシティー オブ アルバータ | ビーズベースの試薬を微小流体分析装置内に捕捉するための装置および方法 |
| US6573089B1 (en) | 1999-01-08 | 2003-06-03 | Applera Corporation | Method for using and making a fiber array |
| US6589779B1 (en) * | 1999-07-16 | 2003-07-08 | Board Of Regents, The University Of Texas System | General signaling protocol for chemical receptors in immobilized matrices |
| US6620584B1 (en) | 1999-05-20 | 2003-09-16 | Illumina | Combinatorial decoding of random nucleic acid arrays |
| WO2004011925A1 (ja) * | 2002-07-31 | 2004-02-05 | Kabushiki Kaisha Toshiba | 塩基配列検出装置及び塩基配列自動解析装置 |
| WO2004046697A1 (en) * | 2002-11-21 | 2004-06-03 | Smartbead Technologies Limited | Bioassay reading system |
| US6770441B2 (en) | 2000-02-10 | 2004-08-03 | Illumina, Inc. | Array compositions and methods of making same |
| US6812005B2 (en) | 2000-02-07 | 2004-11-02 | The Regents Of The University Of California | Nucleic acid detection methods using universal priming |
| US6846460B1 (en) | 1999-01-29 | 2005-01-25 | Illumina, Inc. | Apparatus and method for separation of liquid phases of different density and for fluorous phase organic syntheses |
| US6890741B2 (en) | 2000-02-07 | 2005-05-10 | Illumina, Inc. | Multiplexed detection of analytes |
| US6902921B2 (en) | 2001-10-30 | 2005-06-07 | 454 Corporation | Sulfurylase-luciferase fusion proteins and thermostable sulfurylase |
| US6913884B2 (en) | 2001-08-16 | 2005-07-05 | Illumina, Inc. | Compositions and methods for repetitive use of genomic DNA |
| US6942968B1 (en) | 1999-08-30 | 2005-09-13 | Illumina, Inc. | Array compositions for improved signal detection |
| US6956114B2 (en) | 2001-10-30 | 2005-10-18 | '454 Corporation | Sulfurylase-luciferase fusion proteins and thermostable sulfurylase |
| US7041510B2 (en) | 1996-04-25 | 2006-05-09 | Bioarray Solutions Ltd. | System and method for programmable illumination pattern generation |
| US7083914B2 (en) | 1997-05-23 | 2006-08-01 | Bioarray Solutions Ltd. | Color-encoding and in-situ interrogation of matrix-coupled chemical compounds |
| WO2006086210A2 (en) | 2005-02-10 | 2006-08-17 | Compass Genetics, Llc | Methods and compositions for tagging and identifying polynucleotides |
| US7115884B1 (en) | 1997-10-06 | 2006-10-03 | Trustees Of Tufts College | Self-encoding fiber optic sensor |
| US7220549B2 (en) | 2004-12-30 | 2007-05-22 | Helicos Biosciences Corporation | Stabilizing a nucleic acid for nucleic acid sequencing |
| US7285384B2 (en) | 2000-02-16 | 2007-10-23 | Illuminia, Inc. | Parallel genotyping of multiple patient samples |
| US7335153B2 (en) | 2001-12-28 | 2008-02-26 | Bio Array Solutions Ltd. | Arrays of microparticles and methods of preparation thereof |
| EP1330650A4 (en) * | 2000-10-12 | 2008-03-19 | Amnis Corp | METHOD AND DEVICE FOR READING WITH REPORTER MOLECULES MARKED BEADS |
| US7348181B2 (en) | 1997-10-06 | 2008-03-25 | Trustees Of Tufts College | Self-encoding sensor with microspheres |
| US7364850B2 (en) | 1998-03-05 | 2008-04-29 | Hitachi, Ltd. | DNA probe array |
| US7450229B2 (en) | 1999-01-25 | 2008-11-11 | Amnis Corporation | Methods for analyzing inter-cellular phenomena |
| EP2003214A2 (en) | 2005-02-01 | 2008-12-17 | AB Advanced Genetic Analysis Corporation | Reagents, methods, and libraries for bead-based sequencing |
| US7476734B2 (en) | 2005-12-06 | 2009-01-13 | Helicos Biosciences Corporation | Nucleotide analogs |
| US7482120B2 (en) | 2005-01-28 | 2009-01-27 | Helicos Biosciences Corporation | Methods and compositions for improving fidelity in a nucleic acid synthesis reaction |
| US7501245B2 (en) | 1999-06-28 | 2009-03-10 | Helicos Biosciences Corp. | Methods and apparatuses for analyzing polynucleotide sequences |
| US7567695B2 (en) | 2000-08-25 | 2009-07-28 | Amnis Corporation | Method and apparatus for reading reporter labeled beads |
| US7595189B2 (en) | 1999-01-08 | 2009-09-29 | Applied Biosystems, Llc | Integrated optics fiber array |
| US7604996B1 (en) | 1999-08-18 | 2009-10-20 | Illumina, Inc. | Compositions and methods for preparing oligonucleotide solutions |
| US7622281B2 (en) | 2004-05-20 | 2009-11-24 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and compositions for clonal amplification of nucleic acid |
| US7622294B2 (en) | 1997-03-14 | 2009-11-24 | Trustees Of Tufts College | Methods for detecting target analytes and enzymatic reactions |
| US7635562B2 (en) | 2004-05-25 | 2009-12-22 | Helicos Biosciences Corporation | Methods and devices for nucleic acid sequence determination |
| US7645596B2 (en) | 1998-05-01 | 2010-01-12 | Arizona Board Of Regents | Method of determining the nucleotide sequence of oligonucleotides and DNA molecules |
| US7666593B2 (en) | 2005-08-26 | 2010-02-23 | Helicos Biosciences Corporation | Single molecule sequencing of captured nucleic acids |
| US7670992B2 (en) | 1999-04-12 | 2010-03-02 | Hitachi Chemical Co., Ltd. | Method of producing probe arrays for biological materials using fine particles |
| US7745203B2 (en) | 2002-07-31 | 2010-06-29 | Kabushiki Kaisha Toshiba | Base sequence detection apparatus and base sequence automatic analyzing apparatus |
| US7781226B2 (en) | 2004-02-27 | 2010-08-24 | The Board Of Regents Of The University Of Texas System | Particle on membrane assay system |
| EP2233583A1 (en) | 2005-02-01 | 2010-09-29 | AB Advanced Genetic Analysis Corporation | Nucleic acid sequencing by performing successive cycles of duplex extension |
| WO2010139398A1 (de) * | 2009-06-04 | 2010-12-09 | Bürkert Werke GmbH | Modulares fliessinjektions-analysesystem |
| US7949383B2 (en) | 2000-02-25 | 2011-05-24 | Xenogen Corporation | Imaging apparatus with selectable moveable stage |
| US7981604B2 (en) | 2004-02-19 | 2011-07-19 | California Institute Of Technology | Methods and kits for analyzing polynucleotide sequences |
| US8080380B2 (en) | 1999-05-21 | 2011-12-20 | Illumina, Inc. | Use of microfluidic systems in the detection of target analytes using microsphere arrays |
| USRE43122E1 (en) | 1999-11-26 | 2012-01-24 | The Governors Of The University Of Alberta | Apparatus and method for trapping bead based reagents within microfluidic analysis systems |
| US8286665B2 (en) | 2006-03-22 | 2012-10-16 | The Regents Of The University Of California | Multiplexed latching valves for microfluidic devices and processors |
| US8388908B2 (en) | 2009-06-02 | 2013-03-05 | Integenx Inc. | Fluidic devices with diaphragm valves |
| US8394642B2 (en) | 2009-06-05 | 2013-03-12 | Integenx Inc. | Universal sample preparation system and use in an integrated analysis system |
| US8406498B2 (en) | 1999-01-25 | 2013-03-26 | Amnis Corporation | Blood and cell analysis using an imaging flow cytometer |
| US8420318B2 (en) | 2004-06-01 | 2013-04-16 | The Regents Of The University Of California | Microfabricated integrated DNA analysis system |
| US8431340B2 (en) | 2004-09-15 | 2013-04-30 | Integenx Inc. | Methods for processing and analyzing nucleic acid samples |
| US8454906B2 (en) | 2007-07-24 | 2013-06-04 | The Regents Of The University Of California | Microfabricated droplet generator for single molecule/cell genetic analysis in engineered monodispersed emulsions |
| US8476063B2 (en) | 2004-09-15 | 2013-07-02 | Integenx Inc. | Microfluidic devices |
| US8481268B2 (en) | 1999-05-21 | 2013-07-09 | Illumina, Inc. | Use of microfluidic systems in the detection of target analytes using microsphere arrays |
| US8512538B2 (en) | 2010-05-28 | 2013-08-20 | Integenx Inc. | Capillary electrophoresis device |
| US8548219B2 (en) | 1999-01-25 | 2013-10-01 | Amnis Corporation | Detection of circulating tumor cells using imaging flow cytometry |
| US8557518B2 (en) | 2007-02-05 | 2013-10-15 | Integenx Inc. | Microfluidic and nanofluidic devices, systems, and applications |
| US8584703B2 (en) | 2009-12-01 | 2013-11-19 | Integenx Inc. | Device with diaphragm valve |
| DE102008064763B3 (de) * | 2008-07-31 | 2013-11-28 | Eads Deutschland Gmbh | Optischer Partikeldetektor sowie Detektionsverfahren |
| US8672532B2 (en) | 2008-12-31 | 2014-03-18 | Integenx Inc. | Microfluidic methods |
| US8748165B2 (en) | 2008-01-22 | 2014-06-10 | Integenx Inc. | Methods for generating short tandem repeat (STR) profiles |
| US8763642B2 (en) | 2010-08-20 | 2014-07-01 | Integenx Inc. | Microfluidic devices with mechanically-sealed diaphragm valves |
| US8841116B2 (en) | 2006-10-25 | 2014-09-23 | The Regents Of The University Of California | Inline-injection microdevice and microfabricated integrated DNA analysis system using same |
| US8885913B2 (en) | 1999-01-25 | 2014-11-11 | Amnis Corporation | Detection of circulating tumor cells using imaging flow cytometry |
| CN104408284A (zh) * | 2014-10-24 | 2015-03-11 | 北京微旋基因技术有限公司 | 癌症体细胞突变基因测序数据分析工作流整合算法 |
| US9096898B2 (en) | 1998-05-01 | 2015-08-04 | Life Technologies Corporation | Method of determining the nucleotide sequence of oligonucleotides and DNA molecules |
| US9121058B2 (en) | 2010-08-20 | 2015-09-01 | Integenx Inc. | Linear valve arrays |
| CN105176797A (zh) * | 2015-10-26 | 2015-12-23 | 北京中科紫鑫科技有限责任公司 | 一种dna测序仪箱体框架 |
| US9528989B2 (en) | 2004-03-16 | 2016-12-27 | Amnis Corporation | Image-based quantitation of molecular translocation |
| US9557259B2 (en) | 2008-07-31 | 2017-01-31 | Eads Deutschland Gmbh | Optical particle detector and detection method |
| US9644623B2 (en) | 2002-12-30 | 2017-05-09 | The Regents Of The University Of California | Fluid control structures in microfluidic devices |
| US9657344B2 (en) | 2003-11-12 | 2017-05-23 | Fluidigm Corporation | Short cycle methods for sequencing polynucleotides |
| US9850536B2 (en) | 2000-02-07 | 2017-12-26 | Illumina, Inc. | Multiplex nucleic acid reactions |
| US10107804B2 (en) | 2001-03-23 | 2018-10-23 | Trustees Of Tufts College | Methods for detecting target analytes and enzymatic reactions |
| US10191071B2 (en) | 2013-11-18 | 2019-01-29 | IntegenX, Inc. | Cartridges and instruments for sample analysis |
| US10208332B2 (en) | 2014-05-21 | 2019-02-19 | Integenx Inc. | Fluidic cartridge with valve mechanism |
| US10407458B2 (en) | 2000-10-06 | 2019-09-10 | The Trustees Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
| US10525467B2 (en) | 2011-10-21 | 2020-01-07 | Integenx Inc. | Sample preparation, processing and analysis systems |
| US10690627B2 (en) | 2014-10-22 | 2020-06-23 | IntegenX, Inc. | Systems and methods for sample preparation, processing and analysis |
| US10865440B2 (en) | 2011-10-21 | 2020-12-15 | IntegenX, Inc. | Sample preparation, processing and analysis systems |
| US11293061B2 (en) | 2018-12-26 | 2022-04-05 | Illumina Cambridge Limited | Sequencing methods using nucleotides with 3′ AOM blocking group |
| US11787831B2 (en) | 2020-06-22 | 2023-10-17 | Illumina Cambridge Limited | Nucleosides and nucleotides with 3′ acetal blocking group |
Families Citing this family (305)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| USRE43097E1 (en) | 1994-10-13 | 2012-01-10 | Illumina, Inc. | Massively parallel signature sequencing by ligation of encoded adaptors |
| US6406848B1 (en) * | 1997-05-23 | 2002-06-18 | Lynx Therapeutics, Inc. | Planar arrays of microparticle-bound polynucleotides |
| US7144119B2 (en) | 1996-04-25 | 2006-12-05 | Bioarray Solutions Ltd. | System and method for programmable illumination pattern generation |
| US6958245B2 (en) | 1996-04-25 | 2005-10-25 | Bioarray Solutions Ltd. | Array cytometry |
| US6969488B2 (en) * | 1998-05-22 | 2005-11-29 | Solexa, Inc. | System and apparatus for sequential processing of analytes |
| WO1999067641A2 (en) | 1998-06-24 | 1999-12-29 | Illumina, Inc. | Decoding of array sensors with microspheres |
| US7510841B2 (en) | 1998-12-28 | 2009-03-31 | Illumina, Inc. | Methods of making and using composite arrays for the detection of a plurality of target analytes |
| US20060275782A1 (en) | 1999-04-20 | 2006-12-07 | Illumina, Inc. | Detection of nucleic acid reactions on bead arrays |
| JP2001004628A (ja) * | 1999-06-18 | 2001-01-12 | Kanagawa Acad Of Sci & Technol | 免疫分析装置と免疫分析方法 |
| US6818395B1 (en) | 1999-06-28 | 2004-11-16 | California Institute Of Technology | Methods and apparatus for analyzing polynucleotide sequences |
| US7022517B1 (en) | 1999-07-16 | 2006-04-04 | Board Of Regents, The University Of Texas System | Method and apparatus for the delivery of samples to a chemical sensor array |
| US7211390B2 (en) | 1999-09-16 | 2007-05-01 | 454 Life Sciences Corporation | Method of sequencing a nucleic acid |
| US7244559B2 (en) | 1999-09-16 | 2007-07-17 | 454 Life Sciences Corporation | Method of sequencing a nucleic acid |
| CA2401782A1 (en) | 2000-01-31 | 2001-08-02 | John T. Mcdevitt | Portable sensor array system |
| US7611869B2 (en) | 2000-02-07 | 2009-11-03 | Illumina, Inc. | Multiplexed methylation detection methods |
| US7361488B2 (en) | 2000-02-07 | 2008-04-22 | Illumina, Inc. | Nucleic acid detection methods using universal priming |
| DE10065632A1 (de) * | 2000-05-12 | 2001-11-15 | Smtech Biovision Holding Ag Ec | Verfahren zum Nachweis von Polynukleotiden |
| US7057704B2 (en) | 2000-09-17 | 2006-06-06 | Bioarray Solutions Ltd. | System and method for programmable illumination pattern generation |
| US20030045005A1 (en) | 2000-10-17 | 2003-03-06 | Michael Seul | Light-controlled electrokinetic assembly of particles near surfaces |
| CA2440754A1 (en) | 2001-03-12 | 2002-09-19 | Stephen Quake | Methods and apparatus for analyzing polynucleotide sequences by asynchronous base extension |
| US7280207B2 (en) | 2001-07-25 | 2007-10-09 | Applera Corporation | Time-delay integration in a flow cytometry system |
| US20030040129A1 (en) * | 2001-08-20 | 2003-02-27 | Shah Haresh P. | Binding assays using magnetically immobilized arrays |
| US20080288178A1 (en) * | 2001-08-24 | 2008-11-20 | Applera Corporation | Sequencing system with memory |
| US20030108664A1 (en) * | 2001-10-05 | 2003-06-12 | Kodas Toivo T. | Methods and compositions for the formation of recessed electrical features on a substrate |
| WO2003069333A1 (en) | 2002-02-14 | 2003-08-21 | Illumina, Inc. | Automated information processing in randomly ordered arrays |
| US20030217923A1 (en) * | 2002-05-24 | 2003-11-27 | Harrison D. Jed | Apparatus and method for trapping bead based reagents within microfluidic analysis systems |
| US7923260B2 (en) | 2002-08-20 | 2011-04-12 | Illumina, Inc. | Method of reading encoded particles |
| US7508608B2 (en) | 2004-11-17 | 2009-03-24 | Illumina, Inc. | Lithographically fabricated holographic optical identification element |
| CA2496296A1 (en) * | 2002-08-20 | 2004-03-04 | Cyvera Corporation | Diffraction grating-based encoded micro-particles for multiplexed experiments |
| US7872804B2 (en) | 2002-08-20 | 2011-01-18 | Illumina, Inc. | Encoded particle having a grating with variations in the refractive index |
| AU2003265583C1 (en) * | 2002-08-20 | 2009-05-21 | Cyvera Corporation | Diffraction grating-based optical identification element |
| US7164533B2 (en) | 2003-01-22 | 2007-01-16 | Cyvera Corporation | Hybrid random bead/chip based microarray |
| US7901630B2 (en) | 2002-08-20 | 2011-03-08 | Illumina, Inc. | Diffraction grating-based encoded microparticle assay stick |
| US7441703B2 (en) | 2002-08-20 | 2008-10-28 | Illumina, Inc. | Optical reader for diffraction grating-based encoded optical identification elements |
| US7900836B2 (en) | 2002-08-20 | 2011-03-08 | Illumina, Inc. | Optical reader system for substrates having an optically readable code |
| EP1540590A1 (en) * | 2002-09-12 | 2005-06-15 | Cyvera Corporation | Assay stick comprising coded microbeads |
| CA2499046A1 (en) * | 2002-09-12 | 2004-03-25 | Cyvera Corporation | Diffraction grating-based encoded micro-particles for multiplexed experiments |
| WO2004024328A1 (en) | 2002-09-12 | 2004-03-25 | Cyvera Corporation | Method and apparatus for aligning elongated microbeads in order to interrogate the same |
| US20100255603A9 (en) | 2002-09-12 | 2010-10-07 | Putnam Martin A | Method and apparatus for aligning microbeads in order to interrogate the same |
| US7092160B2 (en) | 2002-09-12 | 2006-08-15 | Illumina, Inc. | Method of manufacturing of diffraction grating-based optical identification element |
| WO2004025562A1 (en) * | 2002-09-12 | 2004-03-25 | Cyvera Corp. | Method and apparatus for labelling using diffraction grating-based encoded optical identification elements |
| CA2498916A1 (en) * | 2002-09-12 | 2004-03-25 | Cyvera Corporation | Chemical synthesis using diffraction grating-based encoded optical elements |
| US7175810B2 (en) * | 2002-11-15 | 2007-02-13 | Eksigent Technologies | Processing of particles |
| US7220592B2 (en) * | 2002-11-15 | 2007-05-22 | Eksigent Technologies, Llc | Particulate processing system |
| CA2513535C (en) | 2003-01-29 | 2012-06-12 | 454 Corporation | Bead emulsion nucleic acid amplification |
| US7575865B2 (en) | 2003-01-29 | 2009-08-18 | 454 Life Sciences Corporation | Methods of amplifying and sequencing nucleic acids |
| WO2005026686A2 (en) * | 2003-09-09 | 2005-03-24 | Compass Genetics, Llc | Multiplexed analytical platform |
| US20050100939A1 (en) * | 2003-09-18 | 2005-05-12 | Eugeni Namsaraev | System and methods for enhancing signal-to-noise ratios of microarray-based measurements |
| US20050174085A1 (en) * | 2004-02-10 | 2005-08-11 | Olympus Corporation | Micromanipulation system |
| US7433123B2 (en) | 2004-02-19 | 2008-10-07 | Illumina, Inc. | Optical identification element having non-waveguide photosensitive substrate with diffraction grating therein |
| US8101431B2 (en) | 2004-02-27 | 2012-01-24 | Board Of Regents, The University Of Texas System | Integration of fluids and reagents into self-contained cartridges containing sensor elements and reagent delivery systems |
| US8953866B2 (en) | 2004-03-16 | 2015-02-10 | Amnis Corporation | Method for imaging and differential analysis of cells |
| WO2005111242A2 (en) * | 2004-05-10 | 2005-11-24 | Parallele Bioscience, Inc. | Digital profiling of polynucleotide populations |
| US8536661B1 (en) | 2004-06-25 | 2013-09-17 | University Of Hawaii | Biosensor chip sensor protection methods |
| WO2006020363A2 (en) | 2004-07-21 | 2006-02-23 | Illumina, Inc. | Method and apparatus for drug product tracking using encoded optical identification elements |
| WO2006023563A2 (en) * | 2004-08-17 | 2006-03-02 | Immunivest Corporation | A diagnostic imaging device for the analysis of circulating rare cells |
| US7785785B2 (en) | 2004-11-12 | 2010-08-31 | The Board Of Trustees Of The Leland Stanford Junior University | Charge perturbation detection system for DNA and other molecules |
| WO2006055735A2 (en) | 2004-11-16 | 2006-05-26 | Illumina, Inc | Scanner having spatial light modulator |
| DE602005019791D1 (de) | 2004-11-16 | 2010-04-15 | Illumina Inc | Verfahren und vorrichtung zum lesen von kodierten mikrokugeln |
| US7604173B2 (en) | 2004-11-16 | 2009-10-20 | Illumina, Inc. | Holographically encoded elements for microarray and other tagging labeling applications, and method and apparatus for making and reading the same |
| WO2006116726A2 (en) * | 2005-04-28 | 2006-11-02 | Applera Corporation | Multi-color light detection with imaging detectors |
| US7858382B2 (en) | 2005-05-27 | 2010-12-28 | Vidar Systems Corporation | Sensing apparatus having rotating optical assembly |
| US8377398B2 (en) | 2005-05-31 | 2013-02-19 | The Board Of Regents Of The University Of Texas System | Methods and compositions related to determination and use of white blood cell counts |
| US20100291588A1 (en) * | 2005-06-24 | 2010-11-18 | The Board Of Regents Of The University Of Texas System | Systems and methods including self-contained cartridges with detection systems and fluid delivery systems |
| EP1907584A2 (en) * | 2005-06-28 | 2008-04-09 | Agencourt Personal Genomics Corporation | Methods of producing and sequencing modified polynucleotides |
| CA2623130C (en) | 2005-09-21 | 2018-01-09 | Luminex Corporation | Methods and systems for image data processing |
| US7623624B2 (en) | 2005-11-22 | 2009-11-24 | Illumina, Inc. | Method and apparatus for labeling using optical identification elements characterized by X-ray diffraction |
| US7537897B2 (en) * | 2006-01-23 | 2009-05-26 | Population Genetics Technologies, Ltd. | Molecular counting |
| US7749365B2 (en) | 2006-02-01 | 2010-07-06 | IntegenX, Inc. | Optimized sample injection structures in microfluidic separations |
| US7528374B2 (en) | 2006-03-03 | 2009-05-05 | Vidar Systems Corporation | Sensing apparatus having optical assembly that collimates emitted light for detection |
| US7397546B2 (en) | 2006-03-08 | 2008-07-08 | Helicos Biosciences Corporation | Systems and methods for reducing detected intensity non-uniformity in a laser beam |
| US7830575B2 (en) | 2006-04-10 | 2010-11-09 | Illumina, Inc. | Optical scanner with improved scan time |
| AU2007237909A1 (en) * | 2006-04-19 | 2007-10-25 | Applied Biosystems, Llc. | Reagents, methods, and libraries for gel-free bead-based sequencing |
| EP2038655A2 (en) * | 2006-06-02 | 2009-03-25 | Luminex Corporation | Systems and methods for performing measurements of one or more materials |
| US8296088B2 (en) * | 2006-06-02 | 2012-10-23 | Luminex Corporation | Systems and methods for performing measurements of one or more materials |
| US11001881B2 (en) | 2006-08-24 | 2021-05-11 | California Institute Of Technology | Methods for detecting analytes |
| DE102006027675B4 (de) * | 2006-06-14 | 2011-05-12 | Siemens Ag | Verfahren zur Bestimmung der Konzentration von Nukleinsäuren |
| WO2007149696A1 (en) * | 2006-06-23 | 2007-12-27 | Applera Corporation | Systems and methods for cooling in biological analysis instruments |
| US8048626B2 (en) | 2006-07-28 | 2011-11-01 | California Institute Of Technology | Multiplex Q-PCR arrays |
| US11525156B2 (en) | 2006-07-28 | 2022-12-13 | California Institute Of Technology | Multiplex Q-PCR arrays |
| US11560588B2 (en) | 2006-08-24 | 2023-01-24 | California Institute Of Technology | Multiplex Q-PCR arrays |
| JP4445569B2 (ja) * | 2006-10-19 | 2010-04-07 | 平田機工株式会社 | ろ過水監視装置及びろ過水監視システム |
| AU2007334393A1 (en) | 2006-12-14 | 2008-06-26 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
| US8349167B2 (en) | 2006-12-14 | 2013-01-08 | Life Technologies Corporation | Methods and apparatus for detecting molecular interactions using FET arrays |
| US8262900B2 (en) | 2006-12-14 | 2012-09-11 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
| US11339430B2 (en) | 2007-07-10 | 2022-05-24 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
| US20080176765A1 (en) * | 2007-01-24 | 2008-07-24 | Arrayomics, Inc. | Sorting Of Microdevices |
| WO2008109176A2 (en) | 2007-03-07 | 2008-09-12 | President And Fellows Of Harvard College | Assays and other reactions involving droplets |
| EP2395113A1 (en) | 2007-06-29 | 2011-12-14 | Population Genetics Technologies Ltd. | Methods and compositions for isolating nucleic acid sequence variants |
| US8222040B2 (en) * | 2007-08-28 | 2012-07-17 | Lightspeed Genomics, Inc. | Nucleic acid sequencing by selective excitation of microparticles |
| US8759077B2 (en) | 2007-08-28 | 2014-06-24 | Lightspeed Genomics, Inc. | Apparatus for selective excitation of microparticles |
| US20090062132A1 (en) * | 2007-08-29 | 2009-03-05 | Borner Scott R | Alternative nucleic acid sequencing methods |
| WO2009046149A1 (en) * | 2007-10-01 | 2009-04-09 | Applied Biosystems Inc. | Chase ligation sequencing |
| US20090139311A1 (en) * | 2007-10-05 | 2009-06-04 | Applied Biosystems Inc. | Biological Analysis Systems, Devices, and Methods |
| US9797010B2 (en) | 2007-12-21 | 2017-10-24 | President And Fellows Of Harvard College | Systems and methods for nucleic acid sequencing |
| EP2982437B1 (en) | 2008-06-25 | 2017-12-06 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale fet arrays |
| US8198028B2 (en) * | 2008-07-02 | 2012-06-12 | Illumina Cambridge Limited | Using populations of beads for the fabrication of arrays on surfaces |
| WO2010033200A2 (en) | 2008-09-19 | 2010-03-25 | President And Fellows Of Harvard College | Creation of libraries of droplets and related species |
| US20100137143A1 (en) | 2008-10-22 | 2010-06-03 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes |
| US20100301398A1 (en) | 2009-05-29 | 2010-12-02 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes |
| US20100157086A1 (en) * | 2008-12-15 | 2010-06-24 | Illumina, Inc | Dynamic autofocus method and system for assay imager |
| EP3290531B1 (en) | 2008-12-19 | 2019-07-24 | President and Fellows of Harvard College | Particle-assisted nucleic acid sequencing |
| WO2010094036A1 (en) | 2009-02-13 | 2010-08-19 | X-Chem, Inc. | Methods of creating and screening dna-encoded libraries |
| WO2010116341A1 (en) * | 2009-04-09 | 2010-10-14 | Koninklijke Philips Electronics N.V. | Preparation of thin layers of a fluid containing cells for analysis |
| US8673627B2 (en) | 2009-05-29 | 2014-03-18 | Life Technologies Corporation | Apparatus and methods for performing electrochemical reactions |
| US8776573B2 (en) | 2009-05-29 | 2014-07-15 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
| US8574835B2 (en) | 2009-05-29 | 2013-11-05 | Life Technologies Corporation | Scaffolded nucleic acid polymer particles and methods of making and using |
| US20120261274A1 (en) | 2009-05-29 | 2012-10-18 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
| WO2011026102A1 (en) | 2009-08-31 | 2011-03-03 | Life Technologies Corporation | Methods of bead manipulation and forming bead arrays |
| EP2493619B1 (en) | 2009-10-27 | 2018-12-19 | President and Fellows of Harvard College | Droplet creation techniques |
| US8835358B2 (en) | 2009-12-15 | 2014-09-16 | Cellular Research, Inc. | Digital counting of individual molecules by stochastic attachment of diverse labels |
| US9315857B2 (en) | 2009-12-15 | 2016-04-19 | Cellular Research, Inc. | Digital counting of individual molecules by stochastic attachment of diverse label-tags |
| JP5663985B2 (ja) * | 2009-12-16 | 2015-02-04 | ソニー株式会社 | マイクロビーズ検査用のセル及びマイクロビーズの解析方法 |
| US9465228B2 (en) | 2010-03-19 | 2016-10-11 | Optical Biosystems, Inc. | Illumination apparatus optimized for synthetic aperture optics imaging using minimum selective excitation patterns |
| US8502867B2 (en) | 2010-03-19 | 2013-08-06 | Lightspeed Genomics, Inc. | Synthetic aperture optics imaging method using minimum selective excitation patterns |
| JP5726431B2 (ja) * | 2010-03-31 | 2015-06-03 | 一般財団法人電力中央研究所 | 標的検出装置及び標的検出方法 |
| WO2011149525A1 (en) | 2010-05-25 | 2011-12-01 | Arryx, Inc. | Holographic fluctuation microscopy apparatus and method for determining mobility of particle and/or cell dispersions |
| TW201716791A (zh) | 2010-06-30 | 2017-05-16 | 生命技術公司 | 用於測試離子感測場效電晶體(isfet)陣列之裝置及方法 |
| TWI580955B (zh) | 2010-06-30 | 2017-05-01 | 生命技術公司 | 離子感測電荷累積電路及方法 |
| US8415177B2 (en) | 2010-06-30 | 2013-04-09 | Life Technologies Corporation | Two-transistor pixel array |
| US11307166B2 (en) | 2010-07-01 | 2022-04-19 | Life Technologies Corporation | Column ADC |
| JP5876044B2 (ja) | 2010-07-03 | 2016-03-02 | ライフ テクノロジーズ コーポレーション | 低濃度ドープドレインを有する化学的感応性センサ |
| US9618475B2 (en) | 2010-09-15 | 2017-04-11 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
| ES2690753T3 (es) | 2010-09-21 | 2018-11-22 | Agilent Technologies, Inc. | Aumento de la confianza en las identificaciones de alelos con el recuento molecular |
| EP2619564B1 (en) | 2010-09-24 | 2016-03-16 | Life Technologies Corporation | Matched pair transistor circuits |
| ES2564855T3 (es) * | 2010-11-12 | 2016-03-29 | Abbvie Inc. | Método y sistema óptico de alto rendimiento para determinar el efecto de una sustancia de ensayo sobre las células vivas |
| EP3709303A1 (en) | 2010-12-14 | 2020-09-16 | Life Technologies Corporation | Systems and methods for run-time sequencing run quality monitoring |
| US9353411B2 (en) | 2011-03-30 | 2016-05-31 | Parallel Synthesis Technologies | Nucleic acid sequencing technique using a pH-sensing agent |
| JP5796333B2 (ja) * | 2011-04-26 | 2015-10-21 | Jfeエンジニアリング株式会社 | マイクロチップユニット及びマイクロチップユニットを用いた化合物の合成装置 |
| SG10201605812YA (en) | 2011-09-07 | 2016-09-29 | Chem Inc X | Methods for tagging dna-encoded libraries |
| CA2852915C (en) | 2011-10-18 | 2018-05-15 | Luminex Corporation | Methods and systems for image data processing |
| EP2587248A1 (en) * | 2011-10-25 | 2013-05-01 | Koninklijke Philips Electronics N.V. | Filtering particles from blood or other media |
| US9970984B2 (en) | 2011-12-01 | 2018-05-15 | Life Technologies Corporation | Method and apparatus for identifying defects in a chemical sensor array |
| US8747748B2 (en) | 2012-01-19 | 2014-06-10 | Life Technologies Corporation | Chemical sensor with conductive cup-shaped sensor surface |
| US8821798B2 (en) | 2012-01-19 | 2014-09-02 | Life Technologies Corporation | Titanium nitride as sensing layer for microwell structure |
| US9135497B2 (en) | 2012-01-27 | 2015-09-15 | National Instruments Corporation | Identifying randomly distributed microparticles in images to sequence a polynucleotide |
| US11177020B2 (en) | 2012-02-27 | 2021-11-16 | The University Of North Carolina At Chapel Hill | Methods and uses for molecular tags |
| CA2865575C (en) | 2012-02-27 | 2024-01-16 | Cellular Research, Inc. | Compositions and kits for molecular counting |
| WO2013128281A1 (en) | 2012-02-28 | 2013-09-06 | Population Genetics Technologies Ltd | Method for attaching a counter sequence to a nucleic acid sample |
| WO2013145836A1 (ja) * | 2012-03-30 | 2013-10-03 | ソニー株式会社 | マイクロチップ型光学測定装置及び該装置における光学位置調整方法 |
| US8786331B2 (en) | 2012-05-29 | 2014-07-22 | Life Technologies Corporation | System for reducing noise in a chemical sensor array |
| KR102146721B1 (ko) | 2012-07-13 | 2020-08-21 | 엑스-켐, 인크. | 폴리머라제에 의해 판독가능하지 않은 코딩 올리고뉴클레오티드 연결을 갖는 dna-코딩된 라이브러리 |
| CA2878957A1 (en) * | 2012-07-25 | 2014-01-30 | Theranos, Inc. | Image analysis and measurement of biological samples |
| US10323279B2 (en) | 2012-08-14 | 2019-06-18 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| AU2013302756C1 (en) | 2012-08-14 | 2018-05-17 | 10X Genomics, Inc. | Microcapsule compositions and methods |
| US9701998B2 (en) | 2012-12-14 | 2017-07-11 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| US11591637B2 (en) | 2012-08-14 | 2023-02-28 | 10X Genomics, Inc. | Compositions and methods for sample processing |
| US10221442B2 (en) | 2012-08-14 | 2019-03-05 | 10X Genomics, Inc. | Compositions and methods for sample processing |
| US9951386B2 (en) | 2014-06-26 | 2018-04-24 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| US10752949B2 (en) | 2012-08-14 | 2020-08-25 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| US10273541B2 (en) | 2012-08-14 | 2019-04-30 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| US10584381B2 (en) | 2012-08-14 | 2020-03-10 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| US20160040229A1 (en) | 2013-08-16 | 2016-02-11 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
| KR102393608B1 (ko) | 2012-09-04 | 2022-05-03 | 가던트 헬쓰, 인크. | 희귀 돌연변이 및 카피수 변이를 검출하기 위한 시스템 및 방법 |
| US11913065B2 (en) | 2012-09-04 | 2024-02-27 | Guardent Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
| US10876152B2 (en) | 2012-09-04 | 2020-12-29 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
| EP3567116A1 (en) | 2012-12-14 | 2019-11-13 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| US10533221B2 (en) | 2012-12-14 | 2020-01-14 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| US9080968B2 (en) | 2013-01-04 | 2015-07-14 | Life Technologies Corporation | Methods and systems for point of use removal of sacrificial material |
| US9841398B2 (en) | 2013-01-08 | 2017-12-12 | Life Technologies Corporation | Methods for manufacturing well structures for low-noise chemical sensors |
| US8962366B2 (en) | 2013-01-28 | 2015-02-24 | Life Technologies Corporation | Self-aligned well structures for low-noise chemical sensors |
| BR112015019159A2 (pt) | 2013-02-08 | 2017-07-18 | 10X Genomics Inc | geração de código de barras de polinucleotídeos |
| CA3209297A1 (en) * | 2013-02-18 | 2014-08-21 | Theranos Ip Company, Llc | Image analysis and measurement of biological samples |
| US8841217B1 (en) | 2013-03-13 | 2014-09-23 | Life Technologies Corporation | Chemical sensor with protruded sensor surface |
| US8963216B2 (en) | 2013-03-13 | 2015-02-24 | Life Technologies Corporation | Chemical sensor with sidewall spacer sensor surface |
| JP6671274B2 (ja) | 2013-03-15 | 2020-03-25 | ライフ テクノロジーズ コーポレーション | 薄伝導性素子を有する化学装置 |
| US9116117B2 (en) | 2013-03-15 | 2015-08-25 | Life Technologies Corporation | Chemical sensor with sidewall sensor surface |
| JP6581074B2 (ja) | 2013-03-15 | 2019-09-25 | ライフ テクノロジーズ コーポレーション | 一貫性のあるセンサ表面積を有する化学センサ |
| US9835585B2 (en) | 2013-03-15 | 2017-12-05 | Life Technologies Corporation | Chemical sensor with protruded sensor surface |
| JP2016510895A (ja) | 2013-03-15 | 2016-04-11 | ライフ テクノロジーズ コーポレーション | 一貫性のあるセンサ表面積を有する化学センサ |
| DE102013102988A1 (de) * | 2013-03-22 | 2014-09-25 | Leica Microsystems Cms Gmbh | Lichtmikroskopisches Verfahren zur Lokalisierung von Punktobjekten |
| US20140336063A1 (en) | 2013-05-09 | 2014-11-13 | Life Technologies Corporation | Windowed Sequencing |
| US10458942B2 (en) | 2013-06-10 | 2019-10-29 | Life Technologies Corporation | Chemical sensor array having multiple sensors per well |
| CN110964796B (zh) | 2013-08-28 | 2024-04-05 | 贝克顿迪金森公司 | 大规模平行单细胞分析 |
| US10395758B2 (en) | 2013-08-30 | 2019-08-27 | 10X Genomics, Inc. | Sequencing methods |
| JP2017504307A (ja) | 2013-10-07 | 2017-02-09 | セルラー リサーチ, インコーポレイテッド | アレイ上のフィーチャーをデジタルカウントするための方法およびシステム |
| EP3065712A4 (en) | 2013-11-08 | 2017-06-21 | President and Fellows of Harvard College | Microparticles, methods for their preparation and use |
| US9824068B2 (en) | 2013-12-16 | 2017-11-21 | 10X Genomics, Inc. | Methods and apparatus for sorting data |
| EP3378952B1 (en) | 2013-12-28 | 2020-02-05 | Guardant Health, Inc. | Methods and systems for detecting genetic variants |
| CN106413896B (zh) | 2014-04-10 | 2019-07-05 | 10X基因组学有限公司 | 用于封装和分割试剂的流体装置、系统和方法及其应用 |
| CN113249435B (zh) | 2014-06-26 | 2024-09-03 | 10X基因组学有限公司 | 分析来自单个细胞或细胞群体的核酸的方法 |
| JP2017522866A (ja) | 2014-06-26 | 2017-08-17 | 10エックス ジェノミクス, インコーポレイテッド | 核酸配列の分析 |
| SG11201610691QA (en) | 2014-06-26 | 2017-01-27 | 10X Genomics Inc | Processes and systems for nucleic acid sequence assembly |
| US12312640B2 (en) | 2014-06-26 | 2025-05-27 | 10X Genomics, Inc. | Analysis of nucleic acid sequences |
| US20160122817A1 (en) | 2014-10-29 | 2016-05-05 | 10X Genomics, Inc. | Methods and compositions for targeted nucleic acid sequencing |
| US9975122B2 (en) | 2014-11-05 | 2018-05-22 | 10X Genomics, Inc. | Instrument systems for integrated sample processing |
| TWI794007B (zh) | 2014-12-18 | 2023-02-21 | 美商生命技術公司 | 積體電路裝置、感測器裝置及積體電路 |
| KR20170097712A (ko) | 2014-12-18 | 2017-08-28 | 라이프 테크놀로지스 코포레이션 | 대형 fet 어레이를 사용한 분석물 측정을 위한 방법과 장치 |
| US10077472B2 (en) | 2014-12-18 | 2018-09-18 | Life Technologies Corporation | High data rate integrated circuit with power management |
| SG11201705615UA (en) | 2015-01-12 | 2017-08-30 | 10X Genomics Inc | Processes and systems for preparing nucleic acid sequencing libraries and libraries prepared using same |
| MX2017008916A (es) | 2015-01-13 | 2017-10-19 | 10X Genomics Inc | Sistemas y metodos para visualizar informacion de fases y variaciones estructurales. |
| CN107208156B (zh) | 2015-02-09 | 2021-10-08 | 10X基因组学有限公司 | 用于使用变异识别数据来确定结构变异和定相的系统和方法 |
| ES2975332T3 (es) | 2015-02-19 | 2024-07-04 | Becton Dickinson Co | Análisis unicelular de alto rendimiento que combina información proteómica y genómica |
| CN115651972A (zh) | 2015-02-24 | 2023-01-31 | 10X 基因组学有限公司 | 用于靶向核酸序列覆盖的方法 |
| US10697000B2 (en) | 2015-02-24 | 2020-06-30 | 10X Genomics, Inc. | Partition processing methods and systems |
| EP3262192B1 (en) | 2015-02-27 | 2020-09-16 | Becton, Dickinson and Company | Spatially addressable molecular barcoding |
| WO2016160844A2 (en) | 2015-03-30 | 2016-10-06 | Cellular Research, Inc. | Methods and compositions for combinatorial barcoding |
| WO2016172373A1 (en) | 2015-04-23 | 2016-10-27 | Cellular Research, Inc. | Methods and compositions for whole transcriptome amplification |
| US11124823B2 (en) | 2015-06-01 | 2021-09-21 | Becton, Dickinson And Company | Methods for RNA quantification |
| CN108026524A (zh) | 2015-09-11 | 2018-05-11 | 赛卢拉研究公司 | 用于核酸文库标准化的方法和组合物 |
| CA3001679A1 (en) | 2015-10-13 | 2017-04-20 | President And Fellows Of Harvard College | Systems and methods for making and using gel microspheres |
| US11371094B2 (en) | 2015-11-19 | 2022-06-28 | 10X Genomics, Inc. | Systems and methods for nucleic acid processing using degenerate nucleotides |
| CN115369161A (zh) | 2015-12-04 | 2022-11-22 | 10X 基因组学有限公司 | 用于核酸分析的方法和组合物 |
| JP2019507585A (ja) | 2015-12-17 | 2019-03-22 | ガーダント ヘルス, インコーポレイテッド | 無細胞dnaの分析による腫瘍遺伝子コピー数を決定するための方法 |
| US11081208B2 (en) | 2016-02-11 | 2021-08-03 | 10X Genomics, Inc. | Systems, methods, and media for de novo assembly of whole genome sequence data |
| WO2017155858A1 (en) | 2016-03-07 | 2017-09-14 | Insilixa, Inc. | Nucleic acid sequence identification using solid-phase cyclic single base extension |
| EP4269616A3 (en) | 2016-05-02 | 2024-02-14 | Becton, Dickinson and Company | Accurate molecular barcoding |
| WO2017197343A2 (en) | 2016-05-12 | 2017-11-16 | 10X Genomics, Inc. | Microfluidic on-chip filters |
| WO2017197338A1 (en) | 2016-05-13 | 2017-11-16 | 10X Genomics, Inc. | Microfluidic systems and methods of use |
| CA3023409A1 (en) * | 2016-05-19 | 2017-11-23 | Wisconsin Alumni Research Foundation | Methods, systems, and compositions for studying solvent accessibility and three-dimensional structure biological molecules |
| US10301677B2 (en) | 2016-05-25 | 2019-05-28 | Cellular Research, Inc. | Normalization of nucleic acid libraries |
| EP3465502B1 (en) | 2016-05-26 | 2024-04-10 | Becton, Dickinson and Company | Molecular label counting adjustment methods |
| US10202641B2 (en) | 2016-05-31 | 2019-02-12 | Cellular Research, Inc. | Error correction in amplification of samples |
| US10640763B2 (en) | 2016-05-31 | 2020-05-05 | Cellular Research, Inc. | Molecular indexing of internal sequences |
| KR102638006B1 (ko) | 2016-09-26 | 2024-02-20 | 셀룰러 리서치, 인크. | 바코딩된 올리고뉴클레오티드 서열을 갖는 시약을 이용한 단백질 발현의 측정 |
| CN109906274B (zh) | 2016-11-08 | 2023-08-25 | 贝克顿迪金森公司 | 用于细胞标记分类的方法 |
| CN109952612B (zh) | 2016-11-08 | 2023-12-01 | 贝克顿迪金森公司 | 用于表达谱分类的方法 |
| US10550429B2 (en) | 2016-12-22 | 2020-02-04 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| US10011872B1 (en) | 2016-12-22 | 2018-07-03 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| US10815525B2 (en) | 2016-12-22 | 2020-10-27 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| CN110573253B (zh) | 2017-01-13 | 2021-11-02 | 赛卢拉研究公司 | 流体通道的亲水涂层 |
| US12264411B2 (en) | 2017-01-30 | 2025-04-01 | 10X Genomics, Inc. | Methods and systems for analysis |
| EP4029939B1 (en) | 2017-01-30 | 2023-06-28 | 10X Genomics, Inc. | Methods and systems for droplet-based single cell barcoding |
| US11319583B2 (en) | 2017-02-01 | 2022-05-03 | Becton, Dickinson And Company | Selective amplification using blocking oligonucleotides |
| US10995333B2 (en) | 2017-02-06 | 2021-05-04 | 10X Genomics, Inc. | Systems and methods for nucleic acid preparation |
| EP3625715A4 (en) | 2017-05-19 | 2021-03-17 | 10X Genomics, Inc. | DATA SET ANALYSIS SYSTEMS AND METHODS |
| US10844372B2 (en) | 2017-05-26 | 2020-11-24 | 10X Genomics, Inc. | Single cell analysis of transposase accessible chromatin |
| SG11201901822QA (en) | 2017-05-26 | 2019-03-28 | 10X Genomics Inc | Single cell analysis of transposase accessible chromatin |
| EP4345172A3 (en) | 2017-06-05 | 2024-07-03 | Becton, Dickinson and Company | Sample indexing for single cells |
| US10837047B2 (en) | 2017-10-04 | 2020-11-17 | 10X Genomics, Inc. | Compositions, methods, and systems for bead formation using improved polymers |
| WO2019084043A1 (en) | 2017-10-26 | 2019-05-02 | 10X Genomics, Inc. | METHODS AND SYSTEMS FOR NUCLEIC ACID PREPARATION AND CHROMATIN ANALYSIS |
| CN111479631B (zh) | 2017-10-27 | 2022-02-22 | 10X基因组学有限公司 | 用于样品制备和分析的方法和系统 |
| EP3954782A1 (en) | 2017-11-15 | 2022-02-16 | 10X Genomics, Inc. | Functionalized gel beads |
| US10829815B2 (en) | 2017-11-17 | 2020-11-10 | 10X Genomics, Inc. | Methods and systems for associating physical and genetic properties of biological particles |
| WO2019108851A1 (en) | 2017-11-30 | 2019-06-06 | 10X Genomics, Inc. | Systems and methods for nucleic acid preparation and analysis |
| CN111699388B (zh) | 2017-12-12 | 2024-08-02 | 10X基因组学有限公司 | 用于单细胞处理的系统和方法 |
| US11946095B2 (en) | 2017-12-19 | 2024-04-02 | Becton, Dickinson And Company | Particles associated with oligonucleotides |
| WO2019126789A1 (en) | 2017-12-22 | 2019-06-27 | 10X Genomics, Inc. | Systems and methods for processing nucleic acid molecules from one or more cells |
| US11366303B2 (en) | 2018-01-30 | 2022-06-21 | Rebus Biosystems, Inc. | Method for detecting particles using structured illumination |
| SG11202007686VA (en) | 2018-02-12 | 2020-09-29 | 10X Genomics Inc | Methods characterizing multiple analytes from individual cells or cell populations |
| US11639928B2 (en) | 2018-02-22 | 2023-05-02 | 10X Genomics, Inc. | Methods and systems for characterizing analytes from individual cells or cell populations |
| WO2019169028A1 (en) | 2018-02-28 | 2019-09-06 | 10X Genomics, Inc. | Transcriptome sequencing through random ligation |
| EP3775271B1 (en) | 2018-04-06 | 2025-03-12 | 10X Genomics, Inc. | Systems and methods for quality control in single cell processing |
| EP4545647A3 (en) | 2018-05-03 | 2025-07-09 | Becton, Dickinson and Company | Molecular barcoding on opposite transcript ends |
| AU2019262048B2 (en) | 2018-05-03 | 2025-09-04 | Becton, Dickinson And Company | High throughput multiomics sample analysis |
| WO2019217758A1 (en) | 2018-05-10 | 2019-11-14 | 10X Genomics, Inc. | Methods and systems for molecular library generation |
| US11932899B2 (en) | 2018-06-07 | 2024-03-19 | 10X Genomics, Inc. | Methods and systems for characterizing nucleic acid molecules |
| US11703427B2 (en) | 2018-06-25 | 2023-07-18 | 10X Genomics, Inc. | Methods and systems for cell and bead processing |
| US12188014B1 (en) | 2018-07-25 | 2025-01-07 | 10X Genomics, Inc. | Compositions and methods for nucleic acid processing using blocking agents |
| US20200032335A1 (en) | 2018-07-27 | 2020-01-30 | 10X Genomics, Inc. | Systems and methods for metabolome analysis |
| CN112703252B (zh) | 2018-08-03 | 2024-09-10 | 10X基因组学有限公司 | 用于最小化条形码交换的方法和系统 |
| US12065688B2 (en) | 2018-08-20 | 2024-08-20 | 10X Genomics, Inc. | Compositions and methods for cellular processing |
| WO2020041148A1 (en) | 2018-08-20 | 2020-02-27 | 10X Genomics, Inc. | Methods and systems for detection of protein-dna interactions using proximity ligation |
| EP3840635A4 (en) * | 2018-08-23 | 2022-05-18 | Sanwa Biotech Ltd. | PORTABLE DIAGNOSTIC APPARATUS AND RELATED METHOD |
| CN118853827A (zh) | 2018-10-01 | 2024-10-29 | 贝克顿迪金森公司 | 确定5’转录物序列 |
| CN112969789A (zh) | 2018-11-08 | 2021-06-15 | 贝克顿迪金森公司 | 使用随机引发的单细胞全转录组分析 |
| US11459607B1 (en) | 2018-12-10 | 2022-10-04 | 10X Genomics, Inc. | Systems and methods for processing-nucleic acid molecules from a single cell using sequential co-partitioning and composite barcodes |
| EP3894552A1 (en) | 2018-12-13 | 2021-10-20 | Becton, Dickinson and Company | Selective extension in single cell whole transcriptome analysis |
| US12169198B2 (en) | 2019-01-08 | 2024-12-17 | 10X Genomics, Inc. | Systems and methods for sample analysis |
| US11845983B1 (en) | 2019-01-09 | 2023-12-19 | 10X Genomics, Inc. | Methods and systems for multiplexing of droplet based assays |
| WO2020150356A1 (en) | 2019-01-16 | 2020-07-23 | Becton, Dickinson And Company | Polymerase chain reaction normalization through primer titration |
| EP3914728B1 (en) | 2019-01-23 | 2023-04-05 | Becton, Dickinson and Company | Oligonucleotides associated with antibodies |
| WO2020167862A1 (en) | 2019-02-12 | 2020-08-20 | 10X Genomics, Inc. | Systems and methods for transfer of reagents between droplets |
| US12275993B2 (en) | 2019-02-12 | 2025-04-15 | 10X Genomics, Inc. | Analysis of nucleic acid sequences |
| US11851683B1 (en) | 2019-02-12 | 2023-12-26 | 10X Genomics, Inc. | Methods and systems for selective analysis of cellular samples |
| WO2020167866A1 (en) | 2019-02-12 | 2020-08-20 | 10X Genomics, Inc. | Systems and methods for transposon loading |
| EP3924505B1 (en) | 2019-02-12 | 2025-12-17 | 10X Genomics, Inc. | Methods for processing nucleic acid molecules |
| US11467153B2 (en) | 2019-02-12 | 2022-10-11 | 10X Genomics, Inc. | Methods for processing nucleic acid molecules |
| US12305239B2 (en) | 2019-02-12 | 2025-05-20 | 10X Genomics, Inc. | Analysis of nucleic acid sequences |
| CN113454234B (zh) | 2019-02-14 | 2025-03-18 | 贝克顿迪金森公司 | 杂合体靶向和全转录物组扩增 |
| US11655499B1 (en) | 2019-02-25 | 2023-05-23 | 10X Genomics, Inc. | Detection of sequence elements in nucleic acid molecules |
| US11920183B2 (en) | 2019-03-11 | 2024-03-05 | 10X Genomics, Inc. | Systems and methods for processing optically tagged beads |
| CN119510370A (zh) | 2019-03-14 | 2025-02-25 | 因斯利克萨公司 | 基于时间门控的荧光检测的方法和系统 |
| US11579217B2 (en) | 2019-04-12 | 2023-02-14 | Western Digital Technologies, Inc. | Devices and methods for frequency- and phase-based detection of magnetically-labeled molecules using spin torque oscillator (STO) sensors |
| US11738336B2 (en) | 2019-04-12 | 2023-08-29 | Western Digital Technologies, Inc. | Spin torque oscillator (STO) sensors used in nucleic acid sequencing arrays and detection schemes for nucleic acid sequencing |
| US11609208B2 (en) | 2019-04-12 | 2023-03-21 | Western Digital Technologies, Inc. | Devices and methods for molecule detection based on thermal stabilities of magnetic nanoparticles |
| CN113905822B (zh) | 2019-04-12 | 2023-09-22 | 西部数据技术公司 | 使用磁传感器阵列边合成边核酸测序 |
| US11112468B2 (en) | 2019-04-12 | 2021-09-07 | Western Digital Technologies, Inc. | Magnetoresistive sensor array for molecule detection and related detection schemes |
| US11327073B2 (en) | 2019-04-12 | 2022-05-10 | Western Digital Technologies, Inc. | Thermal sensor array for molecule detection and related detection schemes |
| WO2020214642A1 (en) | 2019-04-19 | 2020-10-22 | Becton, Dickinson And Company | Methods of associating phenotypical data and single cell sequencing data |
| TWI860366B (zh) * | 2019-06-19 | 2024-11-01 | 美商伊路米納有限公司 | 儀器中的試劑交換 |
| WO2021011944A2 (en) * | 2019-07-18 | 2021-01-21 | Essenlix Corporation | Imaging based homogeneous assay |
| EP4004231B1 (en) | 2019-07-22 | 2025-11-12 | Becton, Dickinson and Company | Single cell chromatin immunoprecipitation sequencing assay |
| US12235262B1 (en) | 2019-09-09 | 2025-02-25 | 10X Genomics, Inc. | Methods and systems for single cell protein analysis |
| US11208682B2 (en) | 2019-09-13 | 2021-12-28 | Western Digital Technologies, Inc. | Enhanced optical detection for nucleic acid sequencing using thermally-dependent fluorophore tags |
| CN114729350A (zh) | 2019-11-08 | 2022-07-08 | 贝克顿迪金森公司 | 使用随机引发获得用于免疫组库测序的全长v(d)j信息 |
| US11747329B2 (en) | 2019-11-22 | 2023-09-05 | Western Digital Technologies, Inc. | Magnetic gradient concentrator/reluctance detector for molecule detection |
| US11649497B2 (en) | 2020-01-13 | 2023-05-16 | Becton, Dickinson And Company | Methods and compositions for quantitation of proteins and RNA |
| EP4097228B1 (en) | 2020-01-29 | 2024-08-14 | Becton, Dickinson and Company | Barcoded wells for spatial mapping of single cells through sequencing |
| US12449419B1 (en) | 2020-02-12 | 2025-10-21 | 10X Genomics, Inc. | Methods for detecting binding of peptide-MHC monomers to T cells |
| WO2021163630A1 (en) | 2020-02-13 | 2021-08-19 | 10X Genomics, Inc. | Systems and methods for joint interactive visualization of gene expression and dna chromatin accessibility |
| WO2021173719A1 (en) | 2020-02-25 | 2021-09-02 | Becton, Dickinson And Company | Bi-specific probes to enable the use of single-cell samples as single color compensation control |
| US11851700B1 (en) | 2020-05-13 | 2023-12-26 | 10X Genomics, Inc. | Methods, kits, and compositions for processing extracellular molecules |
| EP4150118A1 (en) | 2020-05-14 | 2023-03-22 | Becton Dickinson and Company | Primers for immune repertoire profiling |
| EP4407030B1 (en) | 2020-06-02 | 2025-12-17 | Becton, Dickinson and Company | Oligonucleotides and beads for 5 prime gene expression assay |
| US11932901B2 (en) | 2020-07-13 | 2024-03-19 | Becton, Dickinson And Company | Target enrichment using nucleic acid probes for scRNAseq |
| CN116194589A (zh) | 2020-07-31 | 2023-05-30 | 贝克顿迪金森公司 | 用于转座酶可及染色质的单细胞测定 |
| US12084715B1 (en) | 2020-11-05 | 2024-09-10 | 10X Genomics, Inc. | Methods and systems for reducing artifactual antisense products |
| US12480158B1 (en) | 2020-11-05 | 2025-11-25 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
| WO2022109343A1 (en) | 2020-11-20 | 2022-05-27 | Becton, Dickinson And Company | Profiling of highly expressed and lowly expressed proteins |
| US12392771B2 (en) | 2020-12-15 | 2025-08-19 | Becton, Dickinson And Company | Single cell secretome analysis |
| US12398262B1 (en) | 2021-01-22 | 2025-08-26 | 10X Genomics, Inc. | Triblock copolymer-based cell stabilization and fixation system and methods of use thereof |
| WO2022182682A1 (en) | 2021-02-23 | 2022-09-01 | 10X Genomics, Inc. | Probe-based analysis of nucleic acids and proteins |
| WO2024163450A2 (en) * | 2023-01-30 | 2024-08-08 | Ansa Biotechnologies, Inc. | Methods and systems for polymer synthesis by contacting synthesis surfaces with compartmentalized liquid reagents |
| WO2025244989A1 (en) | 2024-05-21 | 2025-11-27 | Pacific Biosciences Of California, Inc. | Selectively functionalized nanoscale wells |
Family Cites Families (178)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3413464A (en) | 1965-04-29 | 1968-11-26 | Ibm | Method for measuring the nucleic acid in biological cells after enhancement in an acidic solution |
| US3397279A (en) | 1966-01-25 | 1968-08-13 | Amp Inc | Cable clamp and guide means for electrical connectors |
| US3791192A (en) | 1972-07-03 | 1974-02-12 | Lockheed Aircraft Corp | Particle standard and calibration method |
| US4125828A (en) | 1972-08-04 | 1978-11-14 | Med-El Inc. | Method and apparatus for automated classification and analysis of cells |
| US4046720A (en) | 1974-01-17 | 1977-09-06 | California Institute Of Technology | Crosslinked, porous, polyacrylate beads |
| US4123610A (en) | 1977-03-09 | 1978-10-31 | The United States Government | Nucleic acid crosslinking agent and affinity inactivation of nucleic acids therewith |
| US4180739A (en) | 1977-12-23 | 1979-12-25 | Varian Associates, Inc. | Thermostatable flow cell for fluorescence measurements |
| US4354114A (en) | 1979-10-09 | 1982-10-12 | Karnaukhov Valery N | Apparatus for investigation of fluorescence characteristics of microscopic objects |
| US4252769A (en) | 1979-12-26 | 1981-02-24 | California Institute Of Technology | Apparatus for the performance of chemical processes |
| US4363967A (en) | 1980-10-07 | 1982-12-14 | The United States Of America As Represented By The Secretary Of The Army | Method and apparatus for far infrared detection |
| JPS58105065A (ja) | 1981-12-17 | 1983-06-22 | Olympus Optical Co Ltd | 免疫学的凝集反応に基く分析装置 |
| US5310674A (en) | 1982-05-10 | 1994-05-10 | Bar-Ilan University | Apertured cell carrier |
| US4558845A (en) | 1982-09-22 | 1985-12-17 | Hunkapiller Michael W | Zero dead volume valve |
| US4703913A (en) | 1982-09-22 | 1987-11-03 | California Institute Of Technology | Diaphragm valve |
| US4605630A (en) | 1983-07-27 | 1986-08-12 | Cooper Lipotech Inc. | Large-liposome agglutination reagent and method |
| SE455736B (sv) | 1984-03-15 | 1988-08-01 | Sarastro Ab | Forfaringssett och anordning for mikrofotometrering och efterfoljande bildsammanstellning |
| US4883750A (en) | 1984-12-13 | 1989-11-28 | Applied Biosystems, Inc. | Detection of specific sequences in nucleic acids |
| US4661225A (en) | 1985-06-10 | 1987-04-28 | Paper Chemistry Laboratory, Inc. | Method and apparatus for measuring the electrophoretic mobility of migrating particles |
| US4811218A (en) | 1986-06-02 | 1989-03-07 | Applied Biosystems, Inc. | Real time scanning electrophoresis apparatus for DNA sequencing |
| US4822746A (en) | 1986-06-25 | 1989-04-18 | Trustees Of Tufts College | Radiative and non-radiative energy transfer and absorbance modulated fluorescence detection methods and sensors |
| US5143853A (en) | 1986-06-25 | 1992-09-01 | Trustees Of Tufts College | Absorbance modulated fluorescence detection methods and sensors |
| US5252494A (en) | 1986-06-25 | 1993-10-12 | Trustees Of Tufts College | Fiber optic sensors, apparatus, and detection methods using controlled release polymers and reagent formulations held within a polymeric reaction matrix |
| US5114864A (en) | 1986-06-25 | 1992-05-19 | Trustees Of Tufts College | Fiber optic sensors, apparatus, and detection methods using fluid erodible controlled release polymers for delivery of reagent formulations |
| US5254477A (en) | 1986-06-25 | 1993-10-19 | Trustees Of Tufts College | Flourescence intramolecular energy transfer conjugate compositions and detection methods |
| US5525464A (en) | 1987-04-01 | 1996-06-11 | Hyseq, Inc. | Method of sequencing by hybridization of oligonucleotide probes |
| US4930072A (en) | 1987-08-31 | 1990-05-29 | At&T Bell Laboratories | Method for computing transitive closure |
| FR2621393B1 (fr) | 1987-10-05 | 1991-12-13 | Toledano Jacques | Dispositif de detection immunoenzymatique de substances a partir d'une goutte de sang ou de liquide provenant d'un quelconque milieu biologique |
| US5104791A (en) | 1988-02-09 | 1992-04-14 | E. I. Du Pont De Nemours And Company | Particle counting nucleic acid hybridization assays |
| US4988617A (en) | 1988-03-25 | 1991-01-29 | California Institute Of Technology | Method of detecting a nucleotide change in nucleic acids |
| US4911782A (en) * | 1988-03-28 | 1990-03-27 | Cyto-Fluidics, Inc. | Method for forming a miniaturized biological assembly |
| US5740270A (en) * | 1988-04-08 | 1998-04-14 | Neuromedical Systems, Inc. | Automated cytological specimen classification system and method |
| US5002867A (en) | 1988-04-25 | 1991-03-26 | Macevicz Stephen C | Nucleic acid sequence determination by multiple mixed oligonucleotide probes |
| US5700637A (en) | 1988-05-03 | 1997-12-23 | Isis Innovation Limited | Apparatus and method for analyzing polynucleotide sequences and method of generating oligonucleotide arrays |
| US4908112A (en) | 1988-06-16 | 1990-03-13 | E. I. Du Pont De Nemours & Co. | Silicon semiconductor wafer for analyzing micronic biological samples |
| US6107023A (en) | 1988-06-17 | 2000-08-22 | Genelabs Technologies, Inc. | DNA amplification and subtraction techniques |
| EP0394406B1 (en) * | 1988-10-21 | 1995-04-26 | Molecular Devices Corporation | Methods and apparatus for detecting the effect of cell affecting agents on living cells |
| US5705402A (en) | 1988-11-03 | 1998-01-06 | Igen International, Inc. | Method and apparatus for magnetic microparticulate based luminescence assay including plurality of magnets |
| US5575849A (en) | 1988-11-25 | 1996-11-19 | Canon Kabushiki Kaisha | Apparatus for producing a substrate having a surface with a plurality of spherical dimples for photoconductive members |
| EP0372524A3 (en) | 1988-12-07 | 1991-10-09 | The General Hospital Corporation | Method of enrichment and cloning for dna containing an insertion or corresponding to a deletion |
| GB2226182A (en) | 1988-12-14 | 1990-06-20 | Philips Electronic Associated | Semiconductor device manufacture with laser-induced chemical etching |
| US5047524A (en) | 1988-12-21 | 1991-09-10 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
| US5237016A (en) | 1989-01-05 | 1993-08-17 | Siska Diagnostics, Inc. | End-attachment of oligonucleotides to polyacrylamide solid supports for capture and detection of nucleic acids |
| EP0392546A3 (en) | 1989-04-14 | 1991-09-11 | Ro Institut Za Molekularnu Genetiku I Geneticko Inzenjerstvo | Process for determination of a complete or a partial contents of very short sequences in the samples of nucleic acids connected to the discrete particles of microscopic size by hybridization with oligonucleotide probes |
| US5116765A (en) | 1989-04-25 | 1992-05-26 | Olympus Optical Co., Ltd. | Method for automatic chemical analyzing |
| US5800992A (en) | 1989-06-07 | 1998-09-01 | Fodor; Stephen P.A. | Method of detecting nucleic acids |
| US5017540A (en) | 1989-09-15 | 1991-05-21 | Sandoval Junior E | Silicon hydride surface intermediates for chemical separations apparatus |
| GB2236852B (en) | 1989-09-25 | 1994-04-06 | Scotgen Ltd | DNA probe based assays and intermediates useful in the synthesis of cleavable nucleic acids for use in such assays |
| WO1991006678A1 (en) | 1989-10-26 | 1991-05-16 | Sri International | Dna sequencing |
| FI85897C (fi) * | 1990-04-19 | 1992-06-10 | Valmet Paper Machinery Inc | Foerfarande foer begraensning av bestryckningsbredd vid bestryckning av papper eller kartong och anordning avsedd foer foerverkligande av foerfarandet. |
| US5494810A (en) | 1990-05-03 | 1996-02-27 | Cornell Research Foundation, Inc. | Thermostable ligase-mediated DNA amplifications system for the detection of genetic disease |
| SE470347B (sv) | 1990-05-10 | 1994-01-31 | Pharmacia Lkb Biotech | Mikrostruktur för vätskeflödessystem och förfarande för tillverkning av ett sådant system |
| US5667976A (en) | 1990-05-11 | 1997-09-16 | Becton Dickinson And Company | Solid supports for nucleic acid hybridization assays |
| US5173260A (en) | 1990-09-17 | 1992-12-22 | Eastman Kodak Company | Beads fused to a test device support |
| US5235522A (en) * | 1990-10-10 | 1993-08-10 | Cell Analysis Systems, Inc. | Method and apparatus for automated analysis of biological specimens |
| CA2046713A1 (en) | 1990-10-16 | 1992-04-17 | Richard M. Martinelli | Amplification of midivariant dna templates |
| CA2094495C (en) | 1990-10-22 | 2007-04-03 | David Botstein | Methods for modifying and detecting the effects on the interaction of modified polypeptides and target substrates |
| US5244636A (en) | 1991-01-25 | 1993-09-14 | Trustees Of Tufts College | Imaging fiber optic array sensors, apparatus, and methods for concurrently detecting multiple analytes of interest in a fluid sample |
| US5250264A (en) | 1991-01-25 | 1993-10-05 | Trustees Of Tufts College | Method of making imaging fiber optic sensors to concurrently detect multiple analytes of interest in a fluid sample |
| US5320814A (en) | 1991-01-25 | 1994-06-14 | Trustees Of Tufts College | Fiber optic array sensors, apparatus, and methods for concurrently visualizing and chemically detecting multiple analytes of interest in a fluid sample |
| US5257182B1 (en) | 1991-01-29 | 1996-05-07 | Neuromedical Systems Inc | Morphological classification system and method |
| JPH04337446A (ja) | 1991-05-15 | 1992-11-25 | Hitachi Ltd | 微粒子計測方法、定量方法および微粒子計測装置 |
| AU1999092A (en) | 1991-05-24 | 1992-12-30 | Walter Gilbert | Method and apparatus for rapid nucleic acid sequencing |
| US5474796A (en) | 1991-09-04 | 1995-12-12 | Protogene Laboratories, Inc. | Method and apparatus for conducting an array of chemical reactions on a support surface |
| US5639603A (en) | 1991-09-18 | 1997-06-17 | Affymax Technologies N.V. | Synthesizing and screening molecular diversity |
| CA2118806A1 (en) * | 1991-09-18 | 1993-04-01 | William J. Dower | Method of synthesizing diverse collections of oligomers |
| US5849486A (en) * | 1993-11-01 | 1998-12-15 | Nanogen, Inc. | Methods for hybridization analysis utilizing electrically controlled hybridization |
| GB9127415D0 (en) | 1991-12-24 | 1992-02-19 | Swordfish Int Ltd | Solid support bound detection and diagnostic system |
| US5301006A (en) | 1992-01-28 | 1994-04-05 | Advanced Micro Devices, Inc. | Emission microscope |
| US5262127A (en) | 1992-02-12 | 1993-11-16 | The Regents Of The University Of Michigan | Solid state chemical micro-reservoirs |
| US5888723A (en) | 1992-02-18 | 1999-03-30 | Johnson & Johnson Clinical Diagnostics, Inc. | Method for nucleic acid amplification and detection using adhered probes |
| WO1993017126A1 (en) | 1992-02-19 | 1993-09-02 | The Public Health Research Institute Of The City Of New York, Inc. | Novel oligonucleotide arrays and their use for sorting, isolating, sequencing, and manipulating nucleic acids |
| GB9207086D0 (en) | 1992-03-31 | 1992-05-13 | Sharp Kk | Improvements relating to information technology |
| GB9208733D0 (en) * | 1992-04-22 | 1992-06-10 | Medical Res Council | Dna sequencing method |
| AU677780B2 (en) | 1992-05-01 | 1997-05-08 | Trustees Of The University Of Pennsylvania, The | Microfabricated detection structures |
| US5637469A (en) | 1992-05-01 | 1997-06-10 | Trustees Of The University Of Pennsylvania | Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems |
| US5296375A (en) * | 1992-05-01 | 1994-03-22 | Trustees Of The University Of Pennsylvania | Mesoscale sperm handling devices |
| US5587128A (en) * | 1992-05-01 | 1996-12-24 | The Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification devices |
| US5364591A (en) | 1992-06-01 | 1994-11-15 | Eastman Kodak Company | Device for moving a target-bearing solid through a liquid for detection while being contained |
| US5403708A (en) | 1992-07-06 | 1995-04-04 | Brennan; Thomas M. | Methods and compositions for determining the sequence of nucleic acids |
| US5203368A (en) | 1992-07-29 | 1993-04-20 | Protein Technologies Inc. | Matrix of valves |
| US5372783A (en) * | 1992-08-03 | 1994-12-13 | Sapidyne, Inc. | Assay system |
| US5639423A (en) | 1992-08-31 | 1997-06-17 | The Regents Of The University Of Calfornia | Microfabricated reactor |
| US5889881A (en) | 1992-10-14 | 1999-03-30 | Oncometrics Imaging Corp. | Method and apparatus for automatically detecting malignancy-associated changes |
| US6026174A (en) | 1992-10-14 | 2000-02-15 | Accumed International, Inc. | System and method for automatically detecting malignant cells and cells having malignancy-associated changes |
| US5503980A (en) | 1992-11-06 | 1996-04-02 | Trustees Of Boston University | Positional sequencing by hybridization |
| US5795714A (en) | 1992-11-06 | 1998-08-18 | Trustees Of Boston University | Method for replicating an array of nucleic acid probes |
| US5298741A (en) | 1993-01-13 | 1994-03-29 | Trustees Of Tufts College | Thin film fiber optic sensor array and apparatus for concurrent viewing and chemical sensing of a sample |
| GB9301122D0 (en) | 1993-01-21 | 1993-03-10 | Scient Generics Ltd | Method of analysis/separation |
| US5556764A (en) | 1993-02-17 | 1996-09-17 | Biometric Imaging, Inc. | Method and apparatus for cell counting and cell classification |
| AU6357394A (en) | 1993-03-04 | 1994-09-26 | Sapidyne, Inc. | Assay flow apparatus and method |
| FR2703052B1 (fr) | 1993-03-26 | 1995-06-02 | Pasteur Institut | Nouvelle méthode de séquençage d'acides nucléiques. |
| US5479252A (en) * | 1993-06-17 | 1995-12-26 | Ultrapointe Corporation | Laser imaging system for inspection and analysis of sub-micron particles |
| US6007987A (en) | 1993-08-23 | 1999-12-28 | The Trustees Of Boston University | Positional sequencing by hybridization |
| US6401267B1 (en) | 1993-09-27 | 2002-06-11 | Radoje Drmanac | Methods and compositions for efficient nucleic acid sequencing |
| ATE257861T1 (de) | 1993-09-27 | 2004-01-15 | Arch Dev Corp | Methoden und zusammensetzungen zur effizienten nukleinsaeuresequenzierung |
| US5415839A (en) | 1993-10-21 | 1995-05-16 | Abbott Laboratories | Apparatus and method for amplifying and detecting target nucleic acids |
| CA2174140C (en) * | 1993-10-28 | 2004-04-06 | Kenneth L. Beattie | Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions |
| US5429807A (en) * | 1993-10-28 | 1995-07-04 | Beckman Instruments, Inc. | Method and apparatus for creating biopolymer arrays on a solid support surface |
| US5827704A (en) | 1994-01-25 | 1998-10-27 | The Regents Of The University Of Michigan | Vectors for cloning and modification of DNA fragments |
| US5631734A (en) | 1994-02-10 | 1997-05-20 | Affymetrix, Inc. | Method and apparatus for detection of fluorescently labeled materials |
| US5578832A (en) | 1994-09-02 | 1996-11-26 | Affymetrix, Inc. | Method and apparatus for imaging a sample on a device |
| ATE197156T1 (de) | 1994-03-23 | 2000-11-15 | Penn State Res Found | Verfahren zum nachweis von verbindungen einer konbinatorischen bibliothek. |
| US5552278A (en) * | 1994-04-04 | 1996-09-03 | Spectragen, Inc. | DNA sequencing by stepwise ligation and cleavage |
| EP0754241B1 (en) | 1994-04-04 | 1998-12-02 | Ciba Corning Diagnostics Corp. | Hibridization-ligation assays for the detection of specific nucleic acid sequences |
| WO1995033073A1 (en) | 1994-05-28 | 1995-12-07 | Tepnel Medical Limited | Producing copies of nucleic acids |
| US5807522A (en) | 1994-06-17 | 1998-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for fabricating microarrays of biological samples |
| WO1995035390A1 (en) | 1994-06-22 | 1995-12-28 | Mount Sinai School Of Medicine Of The City University Of New York | Ligation-dependent amplification for the detection of infectious pathogens and abnormal genes |
| US5876924A (en) | 1994-06-22 | 1999-03-02 | Mount Sinai School Of Medicine | Nucleic acid amplification method hybridization signal amplification method (HSAM) |
| US5942391A (en) | 1994-06-22 | 1999-08-24 | Mount Sinai School Of Medicine | Nucleic acid amplification method: ramification-extension amplification method (RAM) |
| AU2990595A (en) | 1994-07-26 | 1996-02-22 | Sydney Brenner | Multidimensional conduit combinatorial library synthesis device |
| US5512490A (en) | 1994-08-11 | 1996-04-30 | Trustees Of Tufts College | Optical sensor, optical sensing apparatus, and methods for detecting an analyte of interest using spectral recognition patterns |
| US5593824A (en) * | 1994-09-02 | 1997-01-14 | Pharmacia Biotech, Inc. | Biological reagent spheres |
| US5710000A (en) | 1994-09-16 | 1998-01-20 | Affymetrix, Inc. | Capturing sequences adjacent to Type-IIs restriction sites for genomic library mapping |
| US5599668A (en) | 1994-09-22 | 1997-02-04 | Abbott Laboratories | Light scattering optical waveguide method for detecting specific binding events |
| US5707799A (en) | 1994-09-30 | 1998-01-13 | Abbott Laboratories | Devices and methods utilizing arrays of structures for analyte capture |
| US5604097A (en) * | 1994-10-13 | 1997-02-18 | Spectragen, Inc. | Methods for sorting polynucleotides using oligonucleotide tags |
| US5846719A (en) | 1994-10-13 | 1998-12-08 | Lynx Therapeutics, Inc. | Oligonucleotide tags for sorting and identification |
| US6654505B2 (en) | 1994-10-13 | 2003-11-25 | Lynx Therapeutics, Inc. | System and apparatus for sequential processing of analytes |
| US6406848B1 (en) * | 1997-05-23 | 2002-06-18 | Lynx Therapeutics, Inc. | Planar arrays of microparticle-bound polynucleotides |
| US5695934A (en) | 1994-10-13 | 1997-12-09 | Lynx Therapeutics, Inc. | Massively parallel sequencing of sorted polynucleotides |
| US5545539A (en) * | 1994-10-18 | 1996-08-13 | Genzyme Corporation | Method for nucleotide sequence amplification |
| WO1996015271A1 (en) | 1994-11-16 | 1996-05-23 | Abbott Laboratories | Multiplex ligations-dependent amplification |
| GB2295152A (en) | 1994-11-18 | 1996-05-22 | Pfizer Ltd | Preparation of a library of compounds by solid-phase synthesis |
| US5750341A (en) | 1995-04-17 | 1998-05-12 | Lynx Therapeutics, Inc. | DNA sequencing by parallel oligonucleotide extensions |
| US5877280A (en) | 1995-06-06 | 1999-03-02 | The Mount Sinai School Of Medicine Of The City University Of New York | Thermostable muts proteins |
| HUP9900910A2 (hu) | 1995-06-07 | 1999-07-28 | Lynx Therapeutics, Inc. | Oligonukleotid jelzések osztályozáshoz és azonosításhoz |
| US5856174A (en) | 1995-06-29 | 1999-01-05 | Affymetrix, Inc. | Integrated nucleic acid diagnostic device |
| EP0852004B1 (en) | 1995-10-11 | 2011-01-19 | Luminex Corporation | Multiplexed analysis of clinical specimens |
| US5962228A (en) | 1995-11-17 | 1999-10-05 | Lynx Therapeutics, Inc. | DNA extension and analysis with rolling primers |
| US5780231A (en) | 1995-11-17 | 1998-07-14 | Lynx Therapeutics, Inc. | DNA extension and analysis with rolling primers |
| US5763175A (en) | 1995-11-17 | 1998-06-09 | Lynx Therapeutics, Inc. | Simultaneous sequencing of tagged polynucleotides |
| US5633972A (en) | 1995-11-29 | 1997-05-27 | Trustees Of Tufts College | Superresolution imaging fiber for subwavelength light energy generation and near-field optical microscopy |
| US6151405A (en) | 1996-11-27 | 2000-11-21 | Chromavision Medical Systems, Inc. | System and method for cellular specimen grading |
| US5814524A (en) | 1995-12-14 | 1998-09-29 | Trustees Of Tufts College | Optical sensor apparatus for far-field viewing and making optical analytical measurements at remote locations |
| EP2368897B1 (en) | 1996-02-09 | 2016-10-19 | Cornell Research Foundation, Inc. | Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays |
| US5741647A (en) | 1996-02-16 | 1998-04-21 | Tam; Joseph Wing On | Flow through nucleic acid hybridisation uses thereof and a device thereof |
| US6045277A (en) * | 1996-04-15 | 2000-04-04 | Seiko Epson Corporation | Tape printing apparatus |
| US6074609A (en) | 1996-04-24 | 2000-06-13 | Glaxo Wellcome Inc. | Systems for arraying beads |
| CA2253710A1 (en) | 1996-04-25 | 1997-10-30 | Spectrametrix Inc. | Analyte assay using particulate labels |
| ES2288760T3 (es) | 1996-04-25 | 2008-01-16 | Bioarray Solutions Ltd. | Ensamblaje electrocinetico controlado por luz de particulas proximas a superficies. |
| US6054277A (en) * | 1996-05-08 | 2000-04-25 | Regents Of The University Of Minnesota | Integrated microchip genetic testing system |
| JP2000512744A (ja) | 1996-05-16 | 2000-09-26 | アフィメトリックス,インコーポレイテッド | 標識材料を検出するシステムおよび方法 |
| EP2369007B1 (en) | 1996-05-29 | 2015-07-29 | Cornell Research Foundation, Inc. | Detection of nucleic acid sequence differences using coupled ligase detection and polymerase chain reactions |
| PL331513A1 (en) | 1996-06-06 | 1999-07-19 | Lynx Therapeutics | Method of sequencing, by a ligand effect, specific encoded adapters and composition containing double-string oligonucleotidic adapters |
| US6376256B1 (en) | 1996-08-21 | 2002-04-23 | Smithkline Beecham Corporation | Rapid process for arraying and synthesizing bead-based combinatorial libraries |
| US6031930A (en) | 1996-08-23 | 2000-02-29 | Bacus Research Laboratories, Inc. | Method and apparatus for testing a progression of neoplasia including cancer chemoprevention testing |
| US5872623A (en) | 1996-09-26 | 1999-02-16 | Sarnoff Corporation | Massively parallel detection |
| US5854684A (en) | 1996-09-26 | 1998-12-29 | Sarnoff Corporation | Massively parallel detection |
| GB9620209D0 (en) | 1996-09-27 | 1996-11-13 | Cemu Bioteknik Ab | Method of sequencing DNA |
| US5854078A (en) | 1996-11-06 | 1998-12-29 | University Of Pittsburgh | Polymerized crystalline colloidal array sensor methods |
| US5900481A (en) * | 1996-11-06 | 1999-05-04 | Sequenom, Inc. | Bead linkers for immobilizing nucleic acids to solid supports |
| US5958703A (en) * | 1996-12-03 | 1999-09-28 | Glaxo Group Limited | Use of modified tethers in screening compound libraries |
| US5804384A (en) * | 1996-12-06 | 1998-09-08 | Vysis, Inc. | Devices and methods for detecting multiple analytes in samples |
| US6122396A (en) | 1996-12-16 | 2000-09-19 | Bio-Tech Imaging, Inc. | Method of and apparatus for automating detection of microorganisms |
| US20020042048A1 (en) | 1997-01-16 | 2002-04-11 | Radoje Drmanac | Methods and compositions for detection or quantification of nucleic acid species |
| US6023540A (en) | 1997-03-14 | 2000-02-08 | Trustees Of Tufts College | Fiber optic sensor with encoded microspheres |
| US6327410B1 (en) | 1997-03-14 | 2001-12-04 | The Trustees Of Tufts College | Target analyte sensors utilizing Microspheres |
| US6406845B1 (en) | 1997-05-05 | 2002-06-18 | Trustees Of Tuft College | Fiber optic biosensor for selectively detecting oligonucleotide species in a mixed fluid sample |
| US5985214A (en) * | 1997-05-16 | 1999-11-16 | Aurora Biosciences Corporation | Systems and methods for rapidly identifying useful chemicals in liquid samples |
| AU756945B2 (en) | 1997-05-23 | 2003-01-30 | Bioarray Solutions Ltd | Color-encoding and in-situ interrogation of matrix-coupled chemical compounds |
| US6969488B2 (en) | 1998-05-22 | 2005-11-29 | Solexa, Inc. | System and apparatus for sequential processing of analytes |
| US6057150A (en) | 1997-09-19 | 2000-05-02 | Bio-Rad Laboratories, Inc. | Biaxial strain system for cultured cells |
| US7115884B1 (en) | 1997-10-06 | 2006-10-03 | Trustees Of Tufts College | Self-encoding fiber optic sensor |
| US5922617A (en) | 1997-11-12 | 1999-07-13 | Functional Genetics, Inc. | Rapid screening assay methods and devices |
| US6265163B1 (en) | 1998-01-09 | 2001-07-24 | Lynx Therapeutics, Inc. | Solid phase selection of differentially expressed genes |
| AU4194899A (en) | 1998-05-21 | 1999-12-06 | Hyseq, Inc. | Linear arrays of immobilized compounds and methods of using same |
| WO1999067641A2 (en) | 1998-06-24 | 1999-12-29 | Illumina, Inc. | Decoding of array sensors with microspheres |
| AU6131299A (en) | 1998-08-26 | 2000-03-21 | Trustees Of Tufts College | Combinatorial polymer synthesis of sensors for polymer-based sensor arrays |
| US6429027B1 (en) | 1998-12-28 | 2002-08-06 | Illumina, Inc. | Composite arrays utilizing microspheres |
| WO2000047996A2 (en) | 1999-02-09 | 2000-08-17 | Illumina, Inc. | Arrays comprising a fiducial and automated information processing in randomly ordered arrays |
| EP1151302B1 (en) | 1999-02-09 | 2010-03-31 | Illumina, Inc. | Intrabead screening methods and compositions |
| AU3174600A (en) | 1999-03-10 | 2000-09-28 | Asm Scientific, Inc. | A method for direct nucleic acid sequencing |
| HK1046156B (en) | 1999-04-20 | 2009-01-23 | Illumina, Inc. | Detection of nucleic acid reactions on bead arrays |
| EP1190100B1 (en) | 1999-05-20 | 2012-07-25 | Illumina, Inc. | Combinatorial decoding of random nucleic acid arrays |
| ATE338273T1 (de) | 1999-05-20 | 2006-09-15 | Illumina Inc | Vorrichtung zur halterung und präsentation von mindestens einer mikrokugelmatrix zu lösungen und/oder zu optischen abbildungssystemen |
| US6544732B1 (en) | 1999-05-20 | 2003-04-08 | Illumina, Inc. | Encoding and decoding of array sensors utilizing nanocrystals |
| US20020051971A1 (en) | 1999-05-21 | 2002-05-02 | John R. Stuelpnagel | Use of microfluidic systems in the detection of target analytes using microsphere arrays |
| US6807522B1 (en) * | 2001-02-16 | 2004-10-19 | Unisys Corporation | Methods for predicting instruction execution efficiency in a proposed computer system |
-
1998
- 1998-05-22 US US09/424,028 patent/US6406848B1/en not_active Expired - Lifetime
- 1998-05-22 JP JP55075798A patent/JP4294740B2/ja not_active Expired - Lifetime
- 1998-05-22 WO PCT/US1998/011224 patent/WO1998053300A2/en not_active Ceased
- 1998-05-22 EP EP98925137A patent/EP0985142A4/en not_active Withdrawn
- 1998-05-22 AU AU77155/98A patent/AU736321B2/en not_active Expired
- 1998-05-22 CA CA002291180A patent/CA2291180A1/en not_active Abandoned
-
2001
- 2001-07-17 US US09/908,130 patent/US6831994B2/en not_active Expired - Lifetime
-
2002
- 2002-04-18 US US10/124,884 patent/US6806052B2/en not_active Expired - Lifetime
-
2007
- 2007-10-12 US US11/974,239 patent/US8361713B2/en not_active Expired - Fee Related
-
2012
- 2012-12-04 US US13/693,658 patent/US8728729B2/en not_active Expired - Fee Related
-
2014
- 2014-04-04 US US14/245,723 patent/US9273354B2/en not_active Expired - Fee Related
Cited By (198)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6387707B1 (en) | 1996-04-25 | 2002-05-14 | Bioarray Solutions | Array Cytometry |
| US6797524B1 (en) | 1996-04-25 | 2004-09-28 | Bioarray Solutions Ltd. | Light-controlled electrokinetic assembly of particles near surfaces |
| US7615345B2 (en) | 1996-04-25 | 2009-11-10 | Bio Array Solutions Ltd. | Arrays formed of encoded beads having oligonucleotides attached |
| US6514771B1 (en) | 1996-04-25 | 2003-02-04 | Bioarray Solutions | Light-controlled electrokinetic assembly of particles near surfaces |
| US6468811B1 (en) | 1996-04-25 | 2002-10-22 | Bioarray Solutions | Light-controlled electrokinetic assembly of particles near surfaces |
| US7041510B2 (en) | 1996-04-25 | 2006-05-09 | Bioarray Solutions Ltd. | System and method for programmable illumination pattern generation |
| US10241026B2 (en) | 1997-03-14 | 2019-03-26 | Trustees Of Tufts College | Target analyte sensors utilizing microspheres |
| US7622294B2 (en) | 1997-03-14 | 2009-11-24 | Trustees Of Tufts College | Methods for detecting target analytes and enzymatic reactions |
| US9377388B2 (en) | 1997-03-14 | 2016-06-28 | Trustees Of Tufts College | Methods for detecting target analytes and enzymatic reactions |
| US6266459B1 (en) | 1997-03-14 | 2001-07-24 | Trustees Of Tufts College | Fiber optic sensor with encoded microspheres |
| US6859570B2 (en) | 1997-03-14 | 2005-02-22 | Trustees Of Tufts College, Tufts University | Target analyte sensors utilizing microspheres |
| US6327410B1 (en) | 1997-03-14 | 2001-12-04 | The Trustees Of Tufts College | Target analyte sensors utilizing Microspheres |
| US6406845B1 (en) | 1997-05-05 | 2002-06-18 | Trustees Of Tuft College | Fiber optic biosensor for selectively detecting oligonucleotide species in a mixed fluid sample |
| US6482593B2 (en) | 1997-05-05 | 2002-11-19 | Trustees Of Tufts College | Fiber optic biosensor for selectively detecting oligonucleotide species in a mixed fluid sample |
| US9945051B2 (en) | 1997-05-23 | 2018-04-17 | Rutgers, The State University Of New Jersey | Color-encoding and in-situ interrogation of matrix-coupled chemical compounds |
| US7083914B2 (en) | 1997-05-23 | 2006-08-01 | Bioarray Solutions Ltd. | Color-encoding and in-situ interrogation of matrix-coupled chemical compounds |
| US8691591B2 (en) | 1997-10-06 | 2014-04-08 | Trustees Of Tufts College | Self-encoding sensor with microspheres |
| US20120004120A1 (en) * | 1997-10-06 | 2012-01-05 | Walt David R | Self-encoding sensor with microspheres |
| US8030094B2 (en) | 1997-10-06 | 2011-10-04 | Trustees Of Tufts College | Self-encoding sensor with microspheres |
| US9157113B2 (en) * | 1997-10-06 | 2015-10-13 | Trustees Of Tufts College, Tufts University | Self-encoding sensor with microspheres |
| US7754498B2 (en) * | 1997-10-06 | 2010-07-13 | Trustees Of Tufts College | Self-encoding sensor with microspheres |
| US7115884B1 (en) | 1997-10-06 | 2006-10-03 | Trustees Of Tufts College | Self-encoding fiber optic sensor |
| US8426217B2 (en) | 1997-10-06 | 2013-04-23 | Trustees Of Tufts College | Self-encoding sensor with microspheres |
| JP2009180735A (ja) * | 1997-10-06 | 2009-08-13 | Tufts College | 分析化学センサー配列の光学応答標示を改良する方法 |
| US7348181B2 (en) | 1997-10-06 | 2008-03-25 | Trustees Of Tufts College | Self-encoding sensor with microspheres |
| US20130296186A1 (en) * | 1997-10-06 | 2013-11-07 | Trustees Of Tufts College, Tufts University | Self-encoding sensor with microspheres |
| US6667159B1 (en) | 1998-03-02 | 2003-12-23 | Trustees Of Tufts College | Optical fiber biosensor array comprising cell populations confined to microcavities |
| US6210910B1 (en) | 1998-03-02 | 2001-04-03 | Trustees Of Tufts College | Optical fiber biosensor array comprising cell populations confined to microcavities |
| US6377721B1 (en) | 1998-03-02 | 2002-04-23 | Trustees Of Tufts College | Biosensor array comprising cell populations confined to microcavities |
| US7368238B2 (en) | 1998-03-05 | 2008-05-06 | Hitachi, Ltd. | Method for manufacturing a DNA probe array |
| US7364850B2 (en) | 1998-03-05 | 2008-04-29 | Hitachi, Ltd. | DNA probe array |
| US9212393B2 (en) | 1998-05-01 | 2015-12-15 | Life Technologies Corporation | Method of determining the nucleotide sequence of oligonucleotides and DNA molecules |
| US9725764B2 (en) | 1998-05-01 | 2017-08-08 | Life Technologies Corporation | Method of determining the nucleotide sequence of oligonucleotides and DNA molecules |
| US7645596B2 (en) | 1998-05-01 | 2010-01-12 | Arizona Board Of Regents | Method of determining the nucleotide sequence of oligonucleotides and DNA molecules |
| US9096898B2 (en) | 1998-05-01 | 2015-08-04 | Life Technologies Corporation | Method of determining the nucleotide sequence of oligonucleotides and DNA molecules |
| US9458500B2 (en) | 1998-05-01 | 2016-10-04 | Life Technologies Corporation | Method of determining the nucleotide sequence of oligonucleotides and DNA molecules |
| US9957561B2 (en) | 1998-05-01 | 2018-05-01 | Life Technologies Corporation | Method of determining the nucleotide sequence of oligonucleotides and DNA molecules |
| US10214774B2 (en) | 1998-05-01 | 2019-02-26 | Life Technologies Corporation | Method of determining the nucleotide sequence of oligonucleotides and DNA molecules |
| US10208341B2 (en) | 1998-05-01 | 2019-02-19 | Life Technologies Corporation | Method of determining the nucleotide sequence of oligonucleotides and DNA molecules |
| WO2000004372A1 (en) * | 1998-07-16 | 2000-01-27 | The Board Of Regents, The University Of Texas System | Sensor arrays for the measurement and identification of multiple analytes in solutions |
| WO2000012123A3 (de) * | 1998-08-28 | 2001-04-12 | Febit Ferrarius Biotech Gmbh | Verfahren und messeinrichtung zur bestimmung einer vielzahl von analyten in einer probe |
| US6998274B2 (en) | 1998-12-28 | 2006-02-14 | Illumina, Inc. | Composite arrays utilizing microspheres |
| US6429027B1 (en) | 1998-12-28 | 2002-08-06 | Illumina, Inc. | Composite arrays utilizing microspheres |
| US6858394B1 (en) | 1998-12-28 | 2005-02-22 | Illumina, Inc. | Composite arrays utilizing microspheres |
| US6573089B1 (en) | 1999-01-08 | 2003-06-03 | Applera Corporation | Method for using and making a fiber array |
| US6635470B1 (en) | 1999-01-08 | 2003-10-21 | Applera Corporation | Fiber array and methods for using and making same |
| US6982149B2 (en) | 1999-01-08 | 2006-01-03 | Applera Corporation | Fiber array and methods for using and making same |
| US7595189B2 (en) | 1999-01-08 | 2009-09-29 | Applied Biosystems, Llc | Integrated optics fiber array |
| US6649404B1 (en) | 1999-01-08 | 2003-11-18 | Applera Corporation | Method for using and making a fiber array |
| US7634125B2 (en) | 1999-01-25 | 2009-12-15 | Amnis Corporation | Blood and cell analysis using an imaging flow cytometer |
| US7634126B2 (en) | 1999-01-25 | 2009-12-15 | Amnis Corporation | Blood and cell analysis using an imaging flow cytometer |
| US7925069B2 (en) | 1999-01-25 | 2011-04-12 | Amnis Corporation | Blood and cell analysis using an imaging flow cytometer |
| US8885913B2 (en) | 1999-01-25 | 2014-11-11 | Amnis Corporation | Detection of circulating tumor cells using imaging flow cytometry |
| US8660332B2 (en) | 1999-01-25 | 2014-02-25 | Amnis Corporation | Blood and cell analysis using an imaging flow cytometer |
| US8548219B2 (en) | 1999-01-25 | 2013-10-01 | Amnis Corporation | Detection of circulating tumor cells using imaging flow cytometry |
| US7450229B2 (en) | 1999-01-25 | 2008-11-11 | Amnis Corporation | Methods for analyzing inter-cellular phenomena |
| US8406498B2 (en) | 1999-01-25 | 2013-03-26 | Amnis Corporation | Blood and cell analysis using an imaging flow cytometer |
| US7522758B2 (en) | 1999-01-25 | 2009-04-21 | Amnis Corporation | Blood and cell analysis using an imaging flow cytometer |
| US6846460B1 (en) | 1999-01-29 | 2005-01-25 | Illumina, Inc. | Apparatus and method for separation of liquid phases of different density and for fluorous phase organic syntheses |
| US8178652B2 (en) | 1999-01-29 | 2012-05-15 | Illumina, Inc. | Apparatus and method for separation of liquid phases of different density and for fluorous phase organic syntheses |
| US7977456B2 (en) | 1999-01-29 | 2011-07-12 | Illumina, Inc. | Apparatus and method for separation of liquid phases of different density and for fluorous phase organic syntheses |
| US8394923B2 (en) | 1999-01-29 | 2013-03-12 | Illumina, Inc. | Apparatus and method for separation of liquid phases of different density and for fluorous phase organic syntheses |
| US7670992B2 (en) | 1999-04-12 | 2010-03-02 | Hitachi Chemical Co., Ltd. | Method of producing probe arrays for biological materials using fine particles |
| US6823079B1 (en) | 1999-04-14 | 2004-11-23 | Carl Zeiss Jena Gmbh | Device for examining samples |
| DE19916749B4 (de) * | 1999-04-14 | 2004-02-12 | Carl Zeiss Jena Gmbh | Verfahren zur Untersuchung von Proben |
| WO2000063678A1 (de) * | 1999-04-14 | 2000-10-26 | Carl Zeiss Jena Gmbh | Anordnung zur untersuchung von proben |
| US6355431B1 (en) | 1999-04-20 | 2002-03-12 | Illumina, Inc. | Detection of nucleic acid amplification reactions using bead arrays |
| WO2000068670A1 (en) * | 1999-05-07 | 2000-11-16 | Anslyn Eric V | Method and system for remotely collecting and evaluating chemical/biochemical information |
| US7166431B2 (en) | 1999-05-20 | 2007-01-23 | Illumina, Inc. | Combinatorial decoding of random nucleic acid arrays |
| US7563576B2 (en) | 1999-05-20 | 2009-07-21 | Illumina, Inc. | Combinatorial decoding of random nucleic acid arrays |
| US8563246B2 (en) | 1999-05-20 | 2013-10-22 | Illumina, Inc. | Combinatorial decoding of random nucleic acid arrays |
| US8206917B2 (en) | 1999-05-20 | 2012-06-26 | Illumina, Inc. | Combinatorial decoding of random nucleic acid arrays |
| US7960119B2 (en) | 1999-05-20 | 2011-06-14 | Illumina, Inc. | Combinatorial decoding of random nucleic acid arrays |
| US9163283B2 (en) | 1999-05-20 | 2015-10-20 | Illumina, Inc. | Combinatorial decoding of random nucleic acid arrays |
| US6544732B1 (en) | 1999-05-20 | 2003-04-08 | Illumina, Inc. | Encoding and decoding of array sensors utilizing nanocrystals |
| US6620584B1 (en) | 1999-05-20 | 2003-09-16 | Illumina | Combinatorial decoding of random nucleic acid arrays |
| US6890764B2 (en) | 1999-05-20 | 2005-05-10 | Illumina, Inc. | Encoding and decoding of array sensors utilizing nanocrystals |
| US8080380B2 (en) | 1999-05-21 | 2011-12-20 | Illumina, Inc. | Use of microfluidic systems in the detection of target analytes using microsphere arrays |
| US9289766B2 (en) | 1999-05-21 | 2016-03-22 | Illumina, Inc. | Use of microfluidic systems in the detection of target analytes using microsphere arrays |
| US8883424B2 (en) | 1999-05-21 | 2014-11-11 | Illumina, Inc. | Use of microfluidic systems in the detection of target analytes using microsphere arrays |
| US8481268B2 (en) | 1999-05-21 | 2013-07-09 | Illumina, Inc. | Use of microfluidic systems in the detection of target analytes using microsphere arrays |
| US7501245B2 (en) | 1999-06-28 | 2009-03-10 | Helicos Biosciences Corp. | Methods and apparatuses for analyzing polynucleotide sequences |
| US6589779B1 (en) * | 1999-07-16 | 2003-07-08 | Board Of Regents, The University Of Texas System | General signaling protocol for chemical receptors in immobilized matrices |
| JP2003505041A (ja) * | 1999-07-20 | 2003-02-12 | アフィボディ・テクノロジー・スウェーデン・アーベー | 固体支持体担体を用いる試験管内選択及びポリペプチドの任意の同定 |
| US9745573B2 (en) | 1999-08-18 | 2017-08-29 | Illumina, Inc. | Compositions and methods for preparing oligonucleotide solutions |
| US8669053B2 (en) | 1999-08-18 | 2014-03-11 | Illumina, Inc. | Compositions and methods for preparing oligonucleotide solutions |
| US7604996B1 (en) | 1999-08-18 | 2009-10-20 | Illumina, Inc. | Compositions and methods for preparing oligonucleotide solutions |
| US6942968B1 (en) | 1999-08-30 | 2005-09-13 | Illumina, Inc. | Array compositions for improved signal detection |
| US6274320B1 (en) | 1999-09-16 | 2001-08-14 | Curagen Corporation | Method of sequencing a nucleic acid |
| US8034628B2 (en) | 1999-11-26 | 2011-10-11 | The Governors Of The University Of Alberta | Apparatus and method for trapping bead based reagents within microfluidic analysis systems |
| JP2003515167A (ja) * | 1999-11-26 | 2003-04-22 | ザ ガヴァナーズ オブ ザ ユニヴァーシティー オブ アルバータ | ビーズベースの試薬を微小流体分析装置内に捕捉するための装置および方法 |
| JP4799792B2 (ja) * | 1999-11-26 | 2011-10-26 | ザ ガヴァナーズ オブ ザ ユニヴァーシティー オブ アルバータ | ビーズベースの試薬を微小流体分析装置内に捕捉するための装置および方法 |
| USRE43122E1 (en) | 1999-11-26 | 2012-01-24 | The Governors Of The University Of Alberta | Apparatus and method for trapping bead based reagents within microfluidic analysis systems |
| US6812005B2 (en) | 2000-02-07 | 2004-11-02 | The Regents Of The University Of California | Nucleic acid detection methods using universal priming |
| US9850536B2 (en) | 2000-02-07 | 2017-12-26 | Illumina, Inc. | Multiplex nucleic acid reactions |
| US10837059B2 (en) | 2000-02-07 | 2020-11-17 | Illumina, Inc. | Multiplex nucleic acid reactions |
| US6890741B2 (en) | 2000-02-07 | 2005-05-10 | Illumina, Inc. | Multiplexed detection of analytes |
| US6770441B2 (en) | 2000-02-10 | 2004-08-03 | Illumina, Inc. | Array compositions and methods of making same |
| US7803537B2 (en) | 2000-02-16 | 2010-09-28 | Illumina, Inc. | Parallel genotyping of multiple patient samples |
| US7285384B2 (en) | 2000-02-16 | 2007-10-23 | Illuminia, Inc. | Parallel genotyping of multiple patient samples |
| US7949383B2 (en) | 2000-02-25 | 2011-05-24 | Xenogen Corporation | Imaging apparatus with selectable moveable stage |
| US7567695B2 (en) | 2000-08-25 | 2009-07-28 | Amnis Corporation | Method and apparatus for reading reporter labeled beads |
| US10633700B2 (en) | 2000-10-06 | 2020-04-28 | The Trustees Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
| US10669577B2 (en) | 2000-10-06 | 2020-06-02 | The Trustees Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
| US10457984B2 (en) | 2000-10-06 | 2019-10-29 | The Trustees Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
| US10577652B2 (en) | 2000-10-06 | 2020-03-03 | The Trustees Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
| US10435742B2 (en) | 2000-10-06 | 2019-10-08 | The Trustees Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
| US10648028B2 (en) | 2000-10-06 | 2020-05-12 | The Trustees Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
| US10669582B2 (en) | 2000-10-06 | 2020-06-02 | The Trustees Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
| US10428380B2 (en) | 2000-10-06 | 2019-10-01 | The Trustees Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
| US10662472B2 (en) | 2000-10-06 | 2020-05-26 | The Trustees Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
| US10570446B2 (en) | 2000-10-06 | 2020-02-25 | The Trustee Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
| US10407458B2 (en) | 2000-10-06 | 2019-09-10 | The Trustees Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
| US10407459B2 (en) | 2000-10-06 | 2019-09-10 | The Trustees Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
| EP1330650A4 (en) * | 2000-10-12 | 2008-03-19 | Amnis Corp | METHOD AND DEVICE FOR READING WITH REPORTER MOLECULES MARKED BEADS |
| US10107804B2 (en) | 2001-03-23 | 2018-10-23 | Trustees Of Tufts College | Methods for detecting target analytes and enzymatic reactions |
| US6913884B2 (en) | 2001-08-16 | 2005-07-05 | Illumina, Inc. | Compositions and methods for repetitive use of genomic DNA |
| US6902921B2 (en) | 2001-10-30 | 2005-06-07 | 454 Corporation | Sulfurylase-luciferase fusion proteins and thermostable sulfurylase |
| US6956114B2 (en) | 2001-10-30 | 2005-10-18 | '454 Corporation | Sulfurylase-luciferase fusion proteins and thermostable sulfurylase |
| US7335153B2 (en) | 2001-12-28 | 2008-02-26 | Bio Array Solutions Ltd. | Arrays of microparticles and methods of preparation thereof |
| US9611507B2 (en) | 2001-12-28 | 2017-04-04 | Bioarray Solutions, Ltd. | Arrays of microparticles and methods of preparation thereof |
| US10138511B2 (en) | 2001-12-28 | 2018-11-27 | Bioarray Solutions Ltd. | Arrays of microparticles and methods of preparation thereof |
| US7745203B2 (en) | 2002-07-31 | 2010-06-29 | Kabushiki Kaisha Toshiba | Base sequence detection apparatus and base sequence automatic analyzing apparatus |
| WO2004011925A1 (ja) * | 2002-07-31 | 2004-02-05 | Kabushiki Kaisha Toshiba | 塩基配列検出装置及び塩基配列自動解析装置 |
| WO2004046697A1 (en) * | 2002-11-21 | 2004-06-03 | Smartbead Technologies Limited | Bioassay reading system |
| US9644623B2 (en) | 2002-12-30 | 2017-05-09 | The Regents Of The University Of California | Fluid control structures in microfluidic devices |
| US9651039B2 (en) | 2002-12-30 | 2017-05-16 | The Regents Of The University Of California | Fluid control structures in microfluidic devices |
| US9657344B2 (en) | 2003-11-12 | 2017-05-23 | Fluidigm Corporation | Short cycle methods for sequencing polynucleotides |
| US7981604B2 (en) | 2004-02-19 | 2011-07-19 | California Institute Of Technology | Methods and kits for analyzing polynucleotide sequences |
| US7781226B2 (en) | 2004-02-27 | 2010-08-24 | The Board Of Regents Of The University Of Texas System | Particle on membrane assay system |
| US9528989B2 (en) | 2004-03-16 | 2016-12-27 | Amnis Corporation | Image-based quantitation of molecular translocation |
| US7622281B2 (en) | 2004-05-20 | 2009-11-24 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and compositions for clonal amplification of nucleic acid |
| US7635562B2 (en) | 2004-05-25 | 2009-12-22 | Helicos Biosciences Corporation | Methods and devices for nucleic acid sequence determination |
| US8420318B2 (en) | 2004-06-01 | 2013-04-16 | The Regents Of The University Of California | Microfabricated integrated DNA analysis system |
| US8476063B2 (en) | 2004-09-15 | 2013-07-02 | Integenx Inc. | Microfluidic devices |
| US9752185B2 (en) | 2004-09-15 | 2017-09-05 | Integenx Inc. | Microfluidic devices |
| US8431390B2 (en) | 2004-09-15 | 2013-04-30 | Integenx Inc. | Systems of sample processing having a macro-micro interface |
| US8551714B2 (en) | 2004-09-15 | 2013-10-08 | Integenx Inc. | Microfluidic devices |
| US8431340B2 (en) | 2004-09-15 | 2013-04-30 | Integenx Inc. | Methods for processing and analyzing nucleic acid samples |
| US7220549B2 (en) | 2004-12-30 | 2007-05-22 | Helicos Biosciences Corporation | Stabilizing a nucleic acid for nucleic acid sequencing |
| US7482120B2 (en) | 2005-01-28 | 2009-01-27 | Helicos Biosciences Corporation | Methods and compositions for improving fidelity in a nucleic acid synthesis reaction |
| EP2003214A2 (en) | 2005-02-01 | 2008-12-17 | AB Advanced Genetic Analysis Corporation | Reagents, methods, and libraries for bead-based sequencing |
| EP2241637A1 (en) | 2005-02-01 | 2010-10-20 | AB Advanced Genetic Analysis Corporation | Nucleic acid sequencing by performing successive cycles of duplex extension |
| EP2233581A1 (en) | 2005-02-01 | 2010-09-29 | AB Advanced Genetic Analysis Corporation | Nucleic acid sequencing by performing successive cycles of duplex extension |
| EP2236628A2 (en) | 2005-02-01 | 2010-10-06 | AB Advanced Genetic Analysis Corporation | Reagents, methods and libraries for bead-based sequencing |
| EP2316977A1 (en) | 2005-02-01 | 2011-05-04 | AB Advanced Genetic Analysis Corporation | Reagents, methods and libraries for bead-based amflication |
| EP2239342A2 (en) | 2005-02-01 | 2010-10-13 | AB Advanced Genetic Analysis Corporation | Reagents, methods and libraries for bead-based sequencing |
| EP2233582A1 (en) | 2005-02-01 | 2010-09-29 | AB Advanced Genetic Analysis Corporation | Nucleic acid sequencing by performing successive cycles of duplex extension |
| EP2233583A1 (en) | 2005-02-01 | 2010-09-29 | AB Advanced Genetic Analysis Corporation | Nucleic acid sequencing by performing successive cycles of duplex extension |
| EP2230316A1 (en) | 2005-02-01 | 2010-09-22 | AB Advanced Genetic Analysis Corporation | Nucleic acid sequencing by performing successive cycles of duplex extension |
| US10323277B2 (en) | 2005-02-01 | 2019-06-18 | Applied Biosystems, Llc | Reagents, methods, and libraries for bead-based sequencing |
| EP2857523A1 (en) | 2005-02-01 | 2015-04-08 | Applied Biosystems, LLC | Method for identifying a sequence in a polynucleotide |
| EP2230315A1 (en) | 2005-02-01 | 2010-09-22 | AB Advanced Genetic Analysis Corporation | Nucleic acid sequencing by performing successive cycles of duplex extension |
| EP2272983A1 (en) | 2005-02-01 | 2011-01-12 | AB Advanced Genetic Analysis Corporation | Reagents, methods and libraries for bead-based sequencing |
| WO2006086210A2 (en) | 2005-02-10 | 2006-08-17 | Compass Genetics, Llc | Methods and compositions for tagging and identifying polynucleotides |
| US7666593B2 (en) | 2005-08-26 | 2010-02-23 | Helicos Biosciences Corporation | Single molecule sequencing of captured nucleic acids |
| US9868978B2 (en) | 2005-08-26 | 2018-01-16 | Fluidigm Corporation | Single molecule sequencing of captured nucleic acids |
| US7476734B2 (en) | 2005-12-06 | 2009-01-13 | Helicos Biosciences Corporation | Nucleotide analogs |
| US8286665B2 (en) | 2006-03-22 | 2012-10-16 | The Regents Of The University Of California | Multiplexed latching valves for microfluidic devices and processors |
| US8841116B2 (en) | 2006-10-25 | 2014-09-23 | The Regents Of The University Of California | Inline-injection microdevice and microfabricated integrated DNA analysis system using same |
| US8557518B2 (en) | 2007-02-05 | 2013-10-15 | Integenx Inc. | Microfluidic and nanofluidic devices, systems, and applications |
| US8454906B2 (en) | 2007-07-24 | 2013-06-04 | The Regents Of The University Of California | Microfabricated droplet generator for single molecule/cell genetic analysis in engineered monodispersed emulsions |
| US8748165B2 (en) | 2008-01-22 | 2014-06-10 | Integenx Inc. | Methods for generating short tandem repeat (STR) profiles |
| DE102008064763B3 (de) * | 2008-07-31 | 2013-11-28 | Eads Deutschland Gmbh | Optischer Partikeldetektor sowie Detektionsverfahren |
| US9557259B2 (en) | 2008-07-31 | 2017-01-31 | Eads Deutschland Gmbh | Optical particle detector and detection method |
| US8672532B2 (en) | 2008-12-31 | 2014-03-18 | Integenx Inc. | Microfluidic methods |
| US8388908B2 (en) | 2009-06-02 | 2013-03-05 | Integenx Inc. | Fluidic devices with diaphragm valves |
| WO2010139398A1 (de) * | 2009-06-04 | 2010-12-09 | Bürkert Werke GmbH | Modulares fliessinjektions-analysesystem |
| US9494613B2 (en) | 2009-06-04 | 2016-11-15 | Buerkert Werke Gmbh | Modular flow injection analysis system |
| CN103547927A (zh) * | 2009-06-04 | 2014-01-29 | 波凯特有限公司 | 模块化流体注射分析系统 |
| US9012236B2 (en) | 2009-06-05 | 2015-04-21 | Integenx Inc. | Universal sample preparation system and use in an integrated analysis system |
| US8562918B2 (en) | 2009-06-05 | 2013-10-22 | Integenx Inc. | Universal sample preparation system and use in an integrated analysis system |
| US8394642B2 (en) | 2009-06-05 | 2013-03-12 | Integenx Inc. | Universal sample preparation system and use in an integrated analysis system |
| US8584703B2 (en) | 2009-12-01 | 2013-11-19 | Integenx Inc. | Device with diaphragm valve |
| US8512538B2 (en) | 2010-05-28 | 2013-08-20 | Integenx Inc. | Capillary electrophoresis device |
| US8763642B2 (en) | 2010-08-20 | 2014-07-01 | Integenx Inc. | Microfluidic devices with mechanically-sealed diaphragm valves |
| US9121058B2 (en) | 2010-08-20 | 2015-09-01 | Integenx Inc. | Linear valve arrays |
| US9731266B2 (en) | 2010-08-20 | 2017-08-15 | Integenx Inc. | Linear valve arrays |
| US11684918B2 (en) | 2011-10-21 | 2023-06-27 | IntegenX, Inc. | Sample preparation, processing and analysis systems |
| US12168798B2 (en) | 2011-10-21 | 2024-12-17 | Integenx. Inc. | Sample preparation, processing and analysis systems |
| US10525467B2 (en) | 2011-10-21 | 2020-01-07 | Integenx Inc. | Sample preparation, processing and analysis systems |
| US10865440B2 (en) | 2011-10-21 | 2020-12-15 | IntegenX, Inc. | Sample preparation, processing and analysis systems |
| US10989723B2 (en) | 2013-11-18 | 2021-04-27 | IntegenX, Inc. | Cartridges and instruments for sample analysis |
| US10191071B2 (en) | 2013-11-18 | 2019-01-29 | IntegenX, Inc. | Cartridges and instruments for sample analysis |
| US12385933B2 (en) | 2013-11-18 | 2025-08-12 | Integenx Inc. | Cartridges and instruments for sample analysis |
| US10961561B2 (en) | 2014-05-21 | 2021-03-30 | IntegenX, Inc. | Fluidic cartridge with valve mechanism |
| US10208332B2 (en) | 2014-05-21 | 2019-02-19 | Integenx Inc. | Fluidic cartridge with valve mechanism |
| US12152272B2 (en) | 2014-05-21 | 2024-11-26 | Integenx Inc. | Fluidic cartridge with valve mechanism |
| US11891650B2 (en) | 2014-05-21 | 2024-02-06 | IntegenX, Inc. | Fluid cartridge with valve mechanism |
| US12099032B2 (en) | 2014-10-22 | 2024-09-24 | IntegenX, Inc. | Systems and methods for sample preparation, processing and analysis |
| US10690627B2 (en) | 2014-10-22 | 2020-06-23 | IntegenX, Inc. | Systems and methods for sample preparation, processing and analysis |
| CN104408284A (zh) * | 2014-10-24 | 2015-03-11 | 北京微旋基因技术有限公司 | 癌症体细胞突变基因测序数据分析工作流整合算法 |
| CN105176797A (zh) * | 2015-10-26 | 2015-12-23 | 北京中科紫鑫科技有限责任公司 | 一种dna测序仪箱体框架 |
| US11827931B2 (en) | 2018-12-26 | 2023-11-28 | Illumina Cambridge Limited | Methods of preparing growing polynucleotides using nucleotides with 3′ AOM blocking group |
| US12227802B2 (en) | 2018-12-26 | 2025-02-18 | Illumina Cambridge Limited | Nucleotides with a 3′ AOM blocking group |
| US11293061B2 (en) | 2018-12-26 | 2022-04-05 | Illumina Cambridge Limited | Sequencing methods using nucleotides with 3′ AOM blocking group |
| US11787831B2 (en) | 2020-06-22 | 2023-10-17 | Illumina Cambridge Limited | Nucleosides and nucleotides with 3′ acetal blocking group |
| US12286453B2 (en) | 2020-06-22 | 2025-04-29 | Illumina Cambridge Limited | Methods of sequencing using nucleotides with 3′ acetal blocking group |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2291180A1 (en) | 1998-11-26 |
| US9273354B2 (en) | 2016-03-01 |
| US8728729B2 (en) | 2014-05-20 |
| US6831994B2 (en) | 2004-12-14 |
| US6806052B2 (en) | 2004-10-19 |
| US20140213464A1 (en) | 2014-07-31 |
| US20020051992A1 (en) | 2002-05-02 |
| AU7715598A (en) | 1998-12-11 |
| US8361713B2 (en) | 2013-01-29 |
| EP0985142A4 (en) | 2006-09-13 |
| EP0985142A2 (en) | 2000-03-15 |
| US20090143244A1 (en) | 2009-06-04 |
| AU736321B2 (en) | 2001-07-26 |
| JP4294740B2 (ja) | 2009-07-15 |
| US20030077615A1 (en) | 2003-04-24 |
| US6406848B1 (en) | 2002-06-18 |
| JP2002507280A (ja) | 2002-03-05 |
| US20130184162A1 (en) | 2013-07-18 |
| WO1998053300A3 (en) | 1999-02-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6806052B2 (en) | Planar arrays of microparticle-bound polynucleotides | |
| US6969488B2 (en) | System and apparatus for sequential processing of analytes | |
| US6654505B2 (en) | System and apparatus for sequential processing of analytes | |
| EP2350648B1 (en) | Selective processing of biological material on a microarray substrate | |
| EP1967592B1 (en) | Method of improving the efficiency of polynucleotide sequencing | |
| US6958217B2 (en) | Single-stranded polynucleotide tags | |
| US11701656B2 (en) | Multi-droplet capture | |
| WO1997013877A1 (en) | Measurement of gene expression profiles in toxicity determination | |
| CA2897376A1 (en) | Modular system and probes for dna analysis | |
| KR19990022543A (ko) | 분류 및 식별을 위한 올리고누클레오티드 태그 | |
| WO2002097113A2 (en) | Sequencing by proxy | |
| CN113811391A (zh) | 使用微流体位置编码设备的方法 | |
| AU8365101A (en) | System and apparatus for sequential processing of analytes | |
| EP1423529B1 (en) | Assay for analyzing gene expression | |
| EP0840803B1 (en) | Simultaneous sequencing of tagged polynucleotides | |
| EP0931165A1 (en) | Measurement of gene expression profiles in toxicity determination |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| AK | Designated states |
Kind code of ref document: A3 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 09424028 Country of ref document: US |
|
| ENP | Entry into the national phase |
Ref document number: 2291180 Country of ref document: CA Ref country code: CA Ref document number: 2291180 Kind code of ref document: A Format of ref document f/p: F |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1998925137 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 77155/98 Country of ref document: AU |
|
| WWP | Wipo information: published in national office |
Ref document number: 1998925137 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWG | Wipo information: grant in national office |
Ref document number: 77155/98 Country of ref document: AU |