WO1998046803A1 - Tole d'acier electromagnetique unidirectionnelle presentant d'excellentes caracteristiques de film et d'excellentes caracteristiques magnetiques, son procede de production et installation de recuit par decarburation a cet effet - Google Patents

Tole d'acier electromagnetique unidirectionnelle presentant d'excellentes caracteristiques de film et d'excellentes caracteristiques magnetiques, son procede de production et installation de recuit par decarburation a cet effet Download PDF

Info

Publication number
WO1998046803A1
WO1998046803A1 PCT/JP1998/000052 JP9800052W WO9846803A1 WO 1998046803 A1 WO1998046803 A1 WO 1998046803A1 JP 9800052 W JP9800052 W JP 9800052W WO 9846803 A1 WO9846803 A1 WO 9846803A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating chamber
rapid heating
annealing
steel sheet
annealing furnace
Prior art date
Application number
PCT/JP1998/000052
Other languages
English (en)
French (fr)
Inventor
Kenji Kosuge
Kishio Mochinaga
Eiichi Nanba
Nobuo Tachibana
Shinya Ishii
Naoki Yagi
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP09932397A external-priority patent/JP3392698B2/ja
Priority claimed from JP22182697A external-priority patent/JP3839924B2/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US09/202,511 priority Critical patent/US6395104B1/en
Priority to DE69840740T priority patent/DE69840740D1/de
Priority to EP98900194A priority patent/EP0926250B1/en
Priority to KR1019980710317A priority patent/KR100293141B1/ko
Publication of WO1998046803A1 publication Critical patent/WO1998046803A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention provides a grain-oriented electrical steel sheet containing 2.0 to 7.0% of Si, having excellent film properties and excellent iron loss properties.
  • the strip whose steel sheet was rapidly heated during the decarburizing annealing process was introduced into the decarburizing annealing furnace before the strip was rapidly heated during the decarburizing annealing process.
  • a method for producing a grain-oriented electrical steel sheet with extremely excellent film properties and excellent iron loss characteristics is provided.
  • the magnetic properties of a grain-oriented electrical steel sheet are evaluated based on both iron loss properties and excitation properties.
  • Increasing the excitation characteristics is effective in reducing the size of devices that increase the design magnetic flux density.
  • reducing the iron loss characteristics is effective in that when used as electrical equipment, less heat energy is lost and power consumption can be reduced.
  • aligning the ⁇ 100> axis of the crystal grains of the product in the rolling direction can enhance the excitation characteristics and lower the iron loss characteristics.
  • Japanese Patent Publication No. 40-15644 discloses a method for manufacturing a grain-oriented electrical steel sheet in order to obtain a high magnetic flux density.
  • This allows Al N + MnS to function as an inhibitor, with a rolling reduction of 80% in the final cold rolling process.
  • This is a production method in which the high pressure is exceeded.
  • the secondary recrystallization of ⁇ 110 ⁇ ⁇ 001> orientation of the high degree of integration oriented electrical steel sheet B 8 has a high magnetic flux density of more than 1.870T is obtained.
  • the size of the secondary recrystallized macropores is as large as 10 orders of magnitude, and can reduce eddy current loss, which is a factor affecting iron loss. It was not possible to obtain a good iron loss value.
  • JP-A-7 - just before the 62436 discloses that annealing be sampled Clip that is rolled to final thickness
  • Wakashi Ku is a heating step of decarburizing annealing
  • PH 2 0ZPH 2 has proposed a method of heat treatment in a non-oxidizing atmosphere 0.2 to 1 00 ° C / s or more in the heating rate of 700 ° C or higher.
  • rapid heating two pairs of direct current It also suggests using a file. ⁇
  • this manufacturing method sometimes forms a dense oxide layer on the steel sheet surface during rapid heating. When such an oxide layer is formed, it becomes a barrier and affects the decarburization action. Especially residual
  • unidirectional electrical steel sheets are subjected to bending processing when they are wound into a wound core, for example, by incorporating them into a transformer. Therefore, primary and secondary coatings (insulation coatings) are particularly used where the curvature of the corners is high. It is required to have excellent film adhesion with no occurrence of surface film separation consisting of, but there is still room for improvement in film adhesion with the above production method. Disclosure of the invention
  • the present invention relates to a grain-oriented electrical steel sheet containing 2.0 to 7.0% Si, having excellent film properties (film adhesion) and excellent magnetic properties (iron loss properties), and a method for producing the same.
  • the purpose of the present invention is to provide a decarburization annealing facility used in this production method.
  • the present inventors decarburized strips rolled to the final product thickness in order to obtain a grain-oriented electrical steel sheet with excellent film properties (film adhesion properties) and magnetic properties (iron loss properties).
  • a number of tests were carried out to rapidly heat to a temperature of 800 ° C or more at a heating rate of 100 ° C / s or more during the temperature rise stage of the annealing process.
  • the atmosphere exhaust port was installed at the strip inlet side (usually within 5 m from the strip inlet), which has been conventionally used when performing the decarburization annealing process.
  • a rapid heating chamber provided with the above-mentioned device for rapid heating is connected, and the atmosphere of the rapid heating chamber and the atmosphere of the decarburization annealing furnace are exhausted from the exhaust port. This was performed using a charcoal annealing facility.
  • the atmosphere of the rapid heating chamber including the throat section if a throat section is installed
  • the atmosphere of the decarburizing annealing furnace The time during which the strip stays at a temperature of 750 ° C or more in the rapid heating chamber (including the throat if a throat is installed), the film adhesion of the product, and the iron before and after magnetic aging.
  • GDS analysis method Glow discharge emission spectroscopy from the oxide film surface while the peak intensity ratio of Si to A1 is 1 Z2 or more in the analysis by glow discharge emission spectrometry (GDS analysis method) from the oxide film surface If the peak position from the surface of the oxide film of Si in the analysis by the GDS analysis method (GDS analysis method) is within 1/20 of the peak position from the surface of the oxide film of A1, Both properties are even better.
  • the annealing equipment provided with an exhaust port for exhausting the atmosphere of the rapid heating chamber and the atmosphere of the decarburizing annealing furnace near the entrance side of the decarburizing annealing furnace.
  • the PH 2 0 / PH 2 in the 0.8-1.8 when the PH 2 0ZPH 2 decarburization annealing furnace and 0.25 to 0.6 and the monitor, be sampled Clip is 750 ° C or more at a rapid pressurized heat chamber To stay within 5 seconds at a given temperature.
  • the present invention is based on these findings, and the gist thereof is as follows.
  • the electrical oxide steel sheet has a coating amount of the oxide film of 1 to 4 g / m 2 per one side, and is obtained by glow discharge emission spectroscopy (GDS analysis) performed from the surface of the oxide film.
  • the peak intensity of Si is not less than 1/2 of the peak intensity of A1, and the depth from the surface of the oxide film to the peak position of Si is one- notch of the depth from the surface of the oxide film to the peak position of A1.
  • the ratio y (%) that does not cause film separation due to bending of 20 mm in diameter satisfies the following formula within 10 and the iron loss property W (W / kg) satisfies the following formula Grain-oriented electrical steel sheet with excellent film and magnetic properties.
  • Slab consisting of Fe and unavoidable impurities, the rest of which contains the usual inhibitor components, is processed in the usual way, stripped by rolling to the final product thickness ,
  • the PH 2 0 / PH 2 of the sudden speed heating chamber from 0.20 to 3.0 and to 800 ° to be sampled Clip at least a heating rate of 100 ° C / s
  • the time during which the strip stays at a temperature of 750 ° C or more in the rapid heating chamber is set within 10 seconds, and the decarburization annealing is performed in the rapid heating chamber near the entry side.
  • the slab containing the usual inhibitor components and the balance consisting of Fe and unavoidable impurities is processed in the usual way, rolled to the final product thickness and stripped.
  • a step of performing a decarburizing annealing, a step of decarburizing annealing, a step of final finishing annealing, and a step of applying an insulating film treatment is performed.
  • the decarburization annealing is performed in the rapid heating chamber near the entry side. performs an exhaust port for exhausting the atmosphere of the atmosphere and decarburization annealing furnace set digits decarburization annealing furnace, the PH 2 0 / PH 2 of the decarburization annealing furnace 0.
  • the slab which contains a normal inhibitor component and the balance consisting of Fe and unavoidable impurities, is processed in the usual way, rolled to the final product thickness and stripped.
  • rapid heating chamber which is continuously provided through the throat portion to the annealing furnace, be sampled Li class tap to 100 ° CZ s or more as a PH 2 0ZPH 2 of 0.20 to 3.0 of the sudden speed heating chamber and throat portion Rapid heating to a temperature of 800 ° C or more at a heating rate and a strip of 750 ° C or more in the rapid heating chamber and throat.
  • the staying time is within 5 seconds, and the decarburization annealing is performed in a decarburization annealing furnace equipped with an exhaust port near the entrance to exhaust the atmosphere of the rapid heating chamber and the atmosphere of the decarburization annealing furnace.
  • grain-oriented electrical steel sheet having excellent film characteristics and magnetic properties of (1), wherein the PH 2 0 / PH 2 in the 0.25 to 0.6, characterized in that to process be sampled Clip in Production method.
  • Slab containing normal inhibitors and the balance consisting of Fe and unavoidable impurities is processed by the usual method and stripped by rolling to the final product thickness ,
  • the heating is performed by rapid heating chamber which is continuously provided through the throat portion to the annealing furnace, the sudden speed heating chamber and throat portion of the PH 2 0 / PH 2 to as a 0.8 to 1.8 be sampled Clip the 100 ° C / At a heating rate of at least s, the heating is performed rapidly to a temperature of at least 800 ° C, and the time during which the strip stays at a temperature of at least 750 ° C in the rapid heating chamber and the throat is set to within 10 seconds.
  • an exhaust port is provided near the inlet to exhaust the atmosphere of the rapid heating chamber and the atmosphere of the decarburization annealing furnace.
  • a rapid heating chamber equipped with a device for rapidly heating the strip rolled to the final product thickness to a temperature of 800 ° C or more at a heating rate of 100 ° CZs or more, and a decarburization annealing A unidirectional electromagnetic system characterized in that an exhaust port for exhausting the atmosphere of the rapid heating chamber and the atmosphere of the decarburizing annealing furnace is provided near the inlet side of the decarburizing annealing furnace. Steel plate decarburization annealing equipment.
  • a rapid heating chamber equipped with a device for rapidly heating the strip rolled to the final product thickness to a temperature of 800 ° C or more at a heating rate of 100 ° CZs or more, and a decarburization annealing
  • the decarburizing annealing furnace to be performed is connected via a throat section, and an exhaust port for exhausting the atmosphere of the rapid heating chamber and the atmosphere of the decarburizing annealing furnace is provided near the inlet side of the decarburizing annealing furnace.
  • Decarburization annealing equipment for grain-oriented electrical steel sheets.
  • the device that performs rapid heating is a roll pair that sandwiches two pairs of strips that are arranged at a distance in the direction of travel of the strip, and the pair of ports is an energizing roll.
  • the device that performs rapid heating is a pair of energizing rolls with a pinch roll disposed in the middle of the rapid heating chamber. This pinch opening is located near the high-temperature side energizing roll and pinched by this pinch roll. Extremely good magnetic properties characterized by heating to satisfy both the temperature of the strip at the part to be heated and the temperature at which the temperature drops below 750 ° C or the temperature drop within 50 ° C. Decarburizing annealing equipment for grain-oriented electrical steel sheets.
  • the rapid heating chamber is provided with a nozzle for blowing an atmospheric gas to the strip surface, wherein the nozzle is blown.
  • Decarburization annealing equipment for grain-oriented electrical steel sheets are provided with a nozzle for blowing an atmospheric gas to the strip surface, wherein the nozzle is blown.
  • Figure 1 is a chart showing the relationship between the ratio of the Si peak intensity obtained by the GDS analysis to the A1 peak intensity and the coating adhesion of the grain-oriented electrical steel sheet.
  • Figure 2 (a) is a chart showing examples of Si and A1 peaks obtained by removing the insulating film from conventional grain-oriented electrical steel sheets and performing GDS analysis.
  • FIG. 2 (b) is a chart showing an example of Si and A1 peaks obtained by removing the insulating film from the grain-oriented electrical steel sheet according to claim 1 and performing GDS analysis.
  • FIG. 2 (c) is a chart showing an example of Si and A1 peaks obtained by removing the insulating film from the grain-oriented electrical steel sheet according to claim 2 and performing GDS analysis.
  • Fig. 3 (a) is a chart showing the correlation between plate thickness and film adhesion.
  • Figure 3 (b) is a chart showing the correlation between sheet thickness and iron loss.
  • Figure 4 is a PH 2 0 / PH 2 and decarburization annealing furnace PH 2 0 / PH 2 in the rapid heating chamber is a chart showing a correlation between film adhesion.
  • Fig. 5 is a chart showing the relationship between the time that the strip stays at a temperature of 750 ° C or higher in the rapid heating chamber and the thickness of the formed initial oxide film.
  • FIG. 6 is a schematic diagram showing an example of the decarburizing annealing equipment of the present invention.
  • FIG. 7 is a schematic diagram showing an example of the decarburization annealing equipment of the present invention.
  • Figure 1 shows the ratio of the Si peak intensity to the A1 peak intensity obtained by analyzing the oxide film surface of a 0.23-mm-thick grain-oriented electrical steel sheet using the oxide-discharge emission spectroscopy (GDS analysis method).
  • Film density of the grain-oriented electrical steel sheet This shows the relationship with the adhesion.
  • This GDS analysis refers to the result of removing the insulating film from the final product, exposing the oxide film, and applying the GDS analysis method from the oxide film surface.
  • the adhesion of the film is evaluated by the rate (%) at which film peeling occurs for a 20 mm diameter curvature bend. In the bending test, about 6 bending test pieces were collected from about 130 product coils manufactured under the same conditions, and a total of about 800 test pieces were provided.
  • Figure 2 shows examples of Si and A1 peaks obtained by these GDS analyses.
  • a and B indicate the peak intensities of A1 and Si, respectively
  • C and D indicate the time until the peaks of A1 and Si appear from the oxide film surface, respectively.
  • Fig. 2 (a) shows the GDS measurement result of a normal product
  • Figs. 2 (b) and (c) show the GDS measurement result of the steel sheet of the present invention.
  • Both Fig. 2 (b) and (c) show the case where BZA is 0.5 or more.As shown in Fig. 1, when the D / C force becomes 0.1 or less, the film adhesion is very good. Become. Further, when DZC is 0.05 or less as shown in (c), the film adhesion is further improved as shown in FIG.
  • Figures 3 (a) and (b) show the correlation between the thickness of the obtained steel sheet and the film adhesion and iron loss characteristics. Regardless of the thickness of the present invention, the film adhesion is good and the iron loss characteristics are excellent.
  • Fig. 3 (1) shows the steel sheet showing the GDS analysis pattern shown in Fig. 2 (a), (2) shows Fig. 2 (b), and (3) shows Fig. 2 (c).
  • film adhesion at all plate thicknesses is improved, and iron loss is also improved.
  • the steel sheet with a DZC of 0.05 or less further shows improved film adhesion and iron loss.
  • the present inventors have found that the above-mentioned film having excellent adhesion can be obtained by controlling the initial oxide film formed in the decarburization annealing step.
  • the primary metallurgy is the formation of the primary recrystallized structure, the formation of the oxide film, and the decarburization from the steel sheet, but these processes are simultaneously performed in the same furnace. This was the conventional method.
  • the present inventors in the step of decarburizing annealing the strip rolled to the final product thickness, set the strip at 800 ° C at a heating rate of 100 ° C / sec or more.
  • a rapid heating chamber with a built-in device for rapid heating to the above temperature and a decarburization annealing furnace for decarburization annealing are connected in series, and the atmosphere of the rapid heating chamber and the decarburization near the inlet side of the decarburization annealing furnace.
  • a decarburization annealing facility equipped with an exhaust port for exhausting the atmosphere of the annealing furnace was used.
  • the control of the oxide film growth, recrystallization, and decarburization behavior is performed by separating the functions of the rapid heating chamber and the decarburization annealing furnace.
  • the operation and effect will be specifically described.
  • the rapid heating chamber we aim at (1) formation of an initial oxide film and (2) generation of primary recrystallization nuclei.
  • the initial oxide layer refers to an oxide layer having a thickness of the order of 100 angstrom on the very surface layer. This initial oxide layer forms an internal oxide layer of several m order, which will be described later. ).
  • primary recrystallization texture control such as (110) and (111) is controlled mainly by the heating rate and the cooling rate after heating is reached. As the heating rate increases, (110) increases and (111) decreases. If the cooling rate after heating is increased, (111) increases and (100) decreases.
  • the rapid heating device the induction heating device is used to rapidly heat to a temperature range of 800 ° C or more at a heating rate of 100 ° C / s or more, preferably 300 ° C / s or more.
  • (110) can be increased.
  • a good primary recrystallization texture can be obtained. For example, when two pairs of energizing rolls are used, rapid heating to a temperature range of 800 ° C or more at a heating rate of 100 ° CZs or more, preferably 300 nos or more, by heating between the rolls,
  • the high-temperature roll removes heat and performs cooling at 10 to 40 ° C at a cooling rate of 2000 to 30000 ° C / s,
  • the internal oxide film is different from the initial oxide layer described above in that it is an oxide layer formed with a thickness of about several m from the surface of the steel sheet to the inside.
  • the present inventors formed an oxide film made of olsterite or the like. The present inventors have found that the form of this internal oxide layer greatly changes depending on the form of the above-mentioned initial oxide film.
  • the secondary recrystallization onset temperature is controlled, which controls the secondary recrystallized grain size and, consequently, improves the iron loss characteristics.
  • the atmosphere in the rapid heating chamber and the decarburizing annealing furnace is controlled and the strip in the rapid heating chamber is controlled to 750 mm.
  • Rapid PH 2 0 / PH 2 is 0.20 Not Mitsurude in the heating chamber is difficult to control the initial oxide film, dense the surface layer Si0 2 component becomes excessive, after for decarburization failure in decarburization annealing occurs It was set to 0.20 or more. Further, the PH 2 0ZPH 2 in rapid heating chamber is 3.00 greater than the initial oxide film The ratio of the Fe component-based oxide became excessive, resulting in poor film adhesion and degraded film characteristics.
  • Fig. 5 is a chart showing the relationship between the time during which the temperature of the strip stays at 750 ° C or higher in the rapid heating chamber and the thickness of the initial oxide film formed. From FIG. 5, be sampled Clip becomes 750 ° time to stay C or higher to more than 5 seconds and Si0 2 film thickness is 150 people more than, become a decarburization interface rate-limiting, and rather than 5 seconds or less because the do not like And
  • the PH 2 0 / PH 2 of the decarburization annealing furnace also, to obtain good film properties and decarburization performance, must be 0.25 to 0.6.
  • the PH 2 0 / PH 2 is less than 0.25, decarburization Oko regardless of the steel sheet, the thickness of the internal oxide layer becomes very small, since the formation of Forusuterai Bok after becomes inadequate, and 0.25 or more.
  • the PH 2 0 / PH 2 of the decarburization annealing furnace is greater than 0.6, Fe-based oxides in the internal oxide layer becomes excessive, Nari Si0 2 effects that were generated during the initial oxide film is rather name The value was set to 0.6 or less because film defects etc. occur.
  • the PH 2 0ZPH 2 rapid heating chamber and decarburization annealing furnace, a child and a range of time and temperature of be sampled Clip to stay above 750 ° C in rapid heating chamber thus, a grain-oriented electrical steel sheet having excellent film properties and magnetic properties can be manufactured.
  • the oxide film of the grain-oriented electrical steel sheet manufactured in this way was subjected to GDS analysis from the surface of the oxide film, the peak intensity of Si was more than 1/2 of the peak intensity of A1, and The depth to the peak position of Si is within 1 Z10 of the depth to the peak position of A1.
  • the PH 2 0ZPH 2 in the rapid heating chamber is reduced to a narrower range of 0.8 to 1.8. If it is limited to, the initial oxide film mainly composed of SiO 2 can be formed, and the film adhesion can be further improved.
  • the PH 2 0 / PH 2 in the rapid heating chamber from 0.8 to 1 When. The 8 range, becomes optimal ratio of S i based oxide to Fe-based oxides, in the primary film to be formed later
  • the Si peak position is controlled on the surface layer to further improve the film properties.
  • the grain-oriented electrical steel sheet manufactured in this manner has more excellent film properties and magnetic properties.
  • GDS analysis of the grain-oriented electrical steel sheet from the surface of the oxide film showed that the peak intensity of Si was not less than 1/2 of the peak intensity of A1, and the peak position of Si was Is within 1/20 of the depth to the peak position of A1.
  • the decarburization, the formation of the initial oxide film, the formation of the internal oxide film, and the primary recrystallization were performed at substantially the same time.
  • the rapid heating device used in the present invention for example, an induction heating device, a direct current heating device including two pairs of current-carrying rolls, etc. can be used.
  • a direct current heating device including two pairs of current-carrying rolls, etc.
  • the rapid heating device uses two pairs of energizing rolls with a pinch roll disposed in the middle of the rapid heating chamber, and the pinch rolls are arranged near the high-temperature side energizing rolls and pinched by the pinch rolls It is preferable that the device be heated so that the strip temperature of the part to be heated is 750 ° C or less, or the temperature drop is within 50 ° C, or both are satisfied.
  • Equipment that connects the rapid heating chamber and the decarburization annealing furnace without using a throat It is useful as a dedicated facility using the manufacturing method of the present invention.
  • the equipment that connects the rapid heating chamber and the decarburizing annealing furnace using the throat section can be configured so that the throat section can be opened to the atmosphere. Since the inflow of the atmosphere of the decarburizing annealing furnace into the heating chamber can be completely prevented, the rapid heating of the rapid heating chamber can be performed while using the decarburizing annealing equipment as a conventional strip decarburizing annealing furnace. Equipment can be maintained and serviced.
  • the initial oxide film is efficiently formed with a small amount of atmosphere gas by spraying the atmosphere gas onto the strip surface at 750 ° C or higher between the energizing rolls. It is preferable to provide an atmosphere gas spray nozzle toward the strip, and it is preferable to spray the nozzle from the position within 1 m to the strip surface in view of the consumption efficiency of the atmosphere gas.
  • the grain-oriented electrical steel sheet according to the present invention contains 0.005% or less by weight and Si: 2.0 to 7.0% by weight.
  • C is set to 0.005% or less, since the properties deteriorate due to magnetic aging.
  • the content of Si is set to 2.0% or more to improve iron loss. However, if it is too large, it is easily cracked during cold rolling and processing becomes difficult.
  • the grain-oriented electrical steel sheet of the present invention has an oxide film mainly composed of forsterite on the surface, and the amount of the film is 1 to 4 g / m 2 per one surface. If the amount of the oxide film exceeds 4 g / m 2 , the space factor deteriorates, so it was set to 4 gZm 2 . If it is less than the amount of oxide film is 1 g / m 2, and 1 gZm 2 or more for coating required tension can not be obtained o
  • the peak intensity of Si obtained by glow discharge emission spectroscopy (GDS analysis) performed from the surface of the oxide film is at least half the peak intensity of A1. It is. If the strength ratio is less than this, good adhesion of the film and iron loss value cannot be obtained. Further, the depth from the oxide film surface to the Si peak position according to the GDS analysis method is within 1 Z10 of the depth from the oxide film surface to the A1 peak position. This is because the required primary film adhesion cannot be obtained if the depth at the Si peak position is too high and the depth at the A1 peak position exceeds 1 to 10.
  • the GDS analysis in the present invention refers to the result of removing the insulating film from the final product, exposing the oxide film, and applying the GDS analysis method from the oxide film surface.
  • the depth from the oxide film surface to the Si (A1) peak position by GDS analysis is substantially determined from the time required from the start of analysis from the oxide film surface to the appearance of the peak.
  • adhesion y (%) ⁇ -122.45 t + 112.55 (t: It is possible to obtain the area expressed by the sheet thickness state) and to obtain good iron loss characteristics in the area expressed by the iron loss characteristic W (W / kg) 37 t + 0.280. Obviously.
  • the grain-oriented electrical steel sheet having a depth from the oxide film surface to the Si peak position according to the GDS analysis method, and having a depth within 1 to 20 of the depth from the oxide film surface to the A1 peak position,
  • the film properties and magnetic properties are even better.
  • the occurrence rate (adhesion) of the film without peeling due to the 20 mm diameter bending of the surface coating is determined by the adhesion y (%) ⁇ -122.45 t + 122.55 (t: sheet thickness ) Can be obtained, and good iron loss characteristics in the area expressed by iron loss characteristics W (W / kg) ⁇ 2.37 t +0.260 can be obtained.
  • the method for producing a grain-oriented electrical steel sheet according to the present invention is as follows: C: 0.10% or less; Si: 2.0 to 7.0%; Al: 400 ppm or less;
  • the starting material is a slab containing one component, with the balance being Fe and unavoidable impurities.
  • the content of Si is set to 2.0% or more to improve iron loss, but if it is too large, it is easily broken during cold rolling and processing becomes difficult.
  • Acid soluble A1 should be 400ppm or less in order to obtain proper dispersion of A1N. If the acid-soluble A1N content is less than 400 ppm, the required dispersion state of A1N cannot be obtained. Although there is no particular limitation on N in the present invention, it is preferable to add 0.0003 to 0.02% in order to obtain proper A1N.
  • MnS is used as an inhibitor, add Mn and S.
  • Mn is an element necessary for forming MnS and (Mn ⁇ Fe) S.
  • Se may be added instead of S, or both may be added.
  • the inhibitor-forming elements such as Cu, Sn, Sb, Cr, Bi, and Mo are inhibitors. At least one kind may be added at 1.0% or less for the purpose of strengthening the strength.
  • the molten steel containing the above components is made into a piece by ordinary continuous forming, and hot-rolled to obtain a strip having an intermediate thickness.
  • a hot rolled sheet may be obtained by a strip caster or the like.
  • a strip having a final product thickness is obtained by cold rolling once or twice or more including intermediate annealing.
  • a strip of the final product thickness is obtained by rolling.
  • the first rolling is preferably performed at a reduction rate of 5 to 60%, and the hot strip annealing and intermediate annealing are preferably performed at 950 to 1200 ° C for 30 seconds to 30 minutes. . It is desirable that the next final reduction is 85% or more. If it is less than 85%, a Goss nucleus with a ⁇ 110 ⁇ ⁇ 001> orientation having a high degree of integration in the rolling direction cannot be obtained.
  • the cold rolling method at this time is that the final thickness is obtained through each thickness step by multiple passes, but in order to improve the magnetic properties, the steel sheet is subjected to 100 ° C
  • One or more thermal effects may be applied to maintain the above temperature range for 30 seconds or more.
  • a rapid heating chamber in which a device for rapidly heating decarburization annealing is installed, and a decarburization annealing furnace for performing decarburization annealing are connected in series, and a rapid heating chamber is provided near the entrance side of the decarburization annealing furnace.
  • An exhaust port is provided for exhausting the atmosphere of the furnace and the atmosphere of the decarburizing annealing furnace.
  • a rapid heating chamber and a decarburization annealing furnace may be connected via a throat portion.
  • PH 2 0 / PH 2 is 0.20 to 3.00 unless name should not be in the rapid heating chamber in order to obtain a good film adhesion.
  • PH 2 0 / PH 2 is less than 0.20 is difficult to control the initial oxide film, dense in Table layer Si0 2 component becomes excessive, after decarburization failure in decarburization annealing was 0.20 or more so generated.
  • the PH 2 0 / PH 2 in the rapid heating chamber is 3.00 greater than the ratio of the Fe component oxide in the initial oxide film becomes excessive
  • the film adhesion was inferior and the film characteristics deteriorated.
  • the PH 2 0 / PH 2 of the decarburization annealing furnace is also to obtain a good film properties Contact and decarburization performance, must be from 0.20 to 0.6.
  • PH 2 0Z If PH 2 is less than 0.20, decarburization of the steel sheet does not occur, the thickness of the internal oxide layer becomes extremely small, and formation of forsterite later becomes inadequate.
  • the PH 2 0 / PH 2 of the decarburization annealing furnace is greater than 0.6, Fe-based oxides in the internal oxide layer becomes excessive, Si0 2 effects that were generated during the initial oxide film becomes no, The value was set to 0.6 or less due to film defects.
  • the atmosphere in the throat section is the same as the atmosphere in the rapid heating chamber. Atmosphere control shall be performed.
  • the peak intensity of Si obtained by glow discharge emission spectroscopy (GDS analysis) performed from the oxide film surface is 1 Z2 or more of the peak intensity of A1.
  • the depth from the surface of the oxide film to the peak position of Si is within 1/10 of the depth from the surface of the oxide film to the peak position of A1.
  • the peak intensity of Si obtained by glow discharge emission spectroscopy (GDS analysis) performed from the oxide film surface is more than 1/2 of the peak intensity of A1.
  • the depth of the Si peak position is within 1/20 of the depth of the A1 peak position, and the adhesion is extremely excellent (over 95% at a plate thickness of 0.23 mm).
  • a pair of energizing rolls sandwiching the strip or a pair of holding rolls and energizing rolls sandwiching the strip is spaced apart in the traveling direction of the strip. It is possible to adopt a method of providing electric heating to a temperature of 800 ° C or more. Of course, an induction heating method that is not in contact with the strip may be employed.
  • the heating rate of the strip is 100. CZ s or more.
  • the lower limit of 100 ° CZ s is set to 100 ° C / s below this point, because the ⁇ 110 ⁇ ⁇ 001> orientation grains after primary recrystallization required for secondary recrystallization decrease.
  • the heating temperature was set to 800 ° C or higher because nucleation of primary recrystallization does not occur below 800 ° C.
  • a rapid heating chamber 2 for performing rapid heating at the heating stage shown in Fig. 6 and a decarburizing annealing furnace 1 for performing decarburizing annealing are arranged continuously, and the decarburizing annealing furnace 1
  • the decarburization annealing facility is characterized by providing an exhaust port 7 for exhausting the atmosphere of the rapid heating chamber 2 and the atmosphere of the decarburization annealing furnace 1 near the inlet side.
  • decarburization annealing was performed with the rapid heating chamber 2 for rapid heating at the heating stage.
  • the decarburizing annealing furnace 1 is connected and arranged at the throat section 3, and exhaust exhausts the atmosphere of the rapid heating chamber 2 and the atmosphere of the decarburizing annealing furnace 1 near the inlet side of the decarburizing annealing furnace 1. It may be carried out in a decarburization annealing facility characterized by the provision of port 7.
  • FIGS. 6 and 7, 4 is a strip
  • 5 and 6 are energizing rolls
  • 8 and 9 are holding rolls that sandwich strip 4 in pairs with energizing rolls 5 and 6.
  • Numeral 10 denotes a nozzle for blowing atmospheric gas to a strip surface of 750 ° C or higher during rapid heating between the current-carrying rolls 5 and 6, and 11 and 11 denote strips 4. It is a pinch roll to be clamped, and the gap between the strip and the nozzle is less than 1 m.
  • nitriding treatment may be applied in an ammonia atmosphere.
  • a good film such as forsterite can be formed on the steel sheet surface. To obtain fine secondary recrystallized grains.
  • the insulating film is a secondary film mainly used for a grain-oriented electrical steel sheet mainly composed of phosphate and colloidal silica. The above magnetic properties maintain a low iron loss that does not change even after subsequent strain relief annealing.
  • a molten steel containing 3.25% Si, 0.078% C, 0.08% Mn, 0.01% P, 0.03% S, 0.03% AK 0.09% N, 0.08 Cu. 0.1% Sn is manufactured, and after slab heating, Hot rolling was performed to obtain 2.3-long hot-rolled steel sheet. Next, it was annealed at 1100 ° C for 3 minutes, further pickled, and then cold rolled to a 0.22 thickness. During rolling, annealing was performed at 220 ° C for 5 min.
  • a mouth-pair consisting of rolls 9 is arranged at a roll distance of 1.7 m, and at a position 0.5 m from the strip surface between the above-mentioned roll pairs, from the strip clamping point of the mouth 6, 9.
  • a rapid heating chamber 2 provided with atmosphere gas spray nozzles 10 and 10 at a position of 0.2 m and a decarburizing annealing furnace 1 were connected with a 1.5 m throat 3 and 1.6 m from the inlet of the decarburizing annealing furnace 1.
  • the plate was passed through a decarburization annealing facility with a heating chamber 2 and an exhaust port 7 for exhausting the atmosphere of the annealing furnace 1 at a position of 60 mZ, and treated under the conditions shown in Table 1. Then, after applying MgO, high-temperature annealing was performed at 1200 ° C for 24 hours in a hydrogen gas atmosphere, and then an insulating film was applied using a final annealing line to obtain a product.
  • the magnetic domain control manufacturing line is further passed through, and the angle of 12 ° formed with the direction perpendicular to the passing direction (direction C). groove width of 5 flame distance (depth 15 im, width 90 m) digging tooth type port Lumpur and insulating film followed 1 g / m 2 and coated final product. Table 2 shows the magnetic characteristics of each coil.
  • the present invention it is possible to provide a grain-oriented electrical steel sheet having excellent film properties and extremely good magnetic properties, and to provide a method of manufacturing the above-described grain-oriented electrical steel sheet and an equipment line.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

明 細 書 皮膜特性と磁気特性に優れた一方向性電磁鋼板及びその製造方法並 びにその製造法に用いる脱炭焼鈍設備 技術分野
本発明は、 2. 0〜7. 0 %の S iを含み、 皮膜特性が優れかつ鉄損特 性が優れた一方向性電磁鋼板を提供する。 また、 上記の鋼板が脱炭 焼鈍の昇温過程で急速加熱されたス ト リ ップが脱炭焼鈍炉に導入さ れる前に、 脱炭焼鈍の昇温過程で急速加熱されたス ト リ ップの初期 酸化膜を制御することによって、 極めて皮膜特性が優れかつ鉄損特 性が優れた一方向性電磁鋼板を製造する方法を提供し、 さ らには、 上記製造方法に用いる脱炭焼鈍設備を提供する。 これら製品、 製造 方法および設備に関するものである。 背景技術
一般に、 一方向性電磁鋼板の磁気特性は鉄損特性と励磁特性の両 方で評価される。 励磁特性を高めることは設計磁束密度を高める機 器の小型化に有効である。 一方鉄損特性を少な く することは、 電気 機器と して使用する際、 熱エネルギーと して失われる ものを少なく し、 消費電力を節約できる点で有効である。 さ らに、 製品の結晶粒 の < 100 〉軸を圧延方向に揃えることは、 励磁特性を高め、 鉄損特 性も低く することができ、 近年特にこの面で多く の研究が重ねられ 、 様々な製品、 および製造技術が開発された。
たとえば、 特公昭 40 - 15644号公報に高い磁束密度を得るために、 方向性電磁鋼板の製造方法が開示されている。 これは A l N + MnS を イ ンヒビターと して機能させ、 最終冷延工程における圧下率が 80 % を超える強圧下とする製造方法である。 この方法によれば二次再結 晶の {110 } < 001 >方位の集積度が高く 、 B 8 が 1.870T以上の 高磁束密度を有する方向性電磁鋼板が得られる。
しかし、 この製造方法はある程度の鉄損低減は図れるが、 二次再 結晶のマク 口の粒径が 10關ォ一ダと大き く 、 鉄損に影響する因子で ある渦電流損を減らすことができず、 良好な鉄損値が得られていな 力、つた。
これに対し、 二次再結晶粒をより小さ く して磁気特性を向上する 方法と して特公平 6 — 51187 号公報に記載の方法がある。 この方法 は、 常温で圧延された鋼板 (ス ト リ ップ) に 140°CZ s以上の加熱 速度で 657°C以上の温度へ超急速焼きなま し処理を施し、 鋼板を脱 炭素処理し、 最終高温焼きなま し処理を施して二次成長を行い、 そ れによつて鋼板が低減した寸法の二次粒子および応力焼きなま し処 理後も有意な変化なしに持続する改善された鉄損を持つ製造方法で あな
しかし、 この製造方法により単に二次粒子を微細化するだけでは 、 従来の磁区細分化なみの鉄損を得るこ とは困難である。 特に鋼板 が急速加熱で、 急激に高温に曝されるこ とにより、 異なった組成の 酸化皮膜が形成されフ ァイアライ ト(Fe2Si04) が優先的に形成され るよう になる、 最終焼鈍において MgO塗布により フ ォルステラィ ト (2 g0 - Si02) の形成が必ずしも良好とならず、 十分な皮膜張力に より優れた磁気特性が得られないという問題がある。
かかる問題を解決するために、 特開平 7 — 62436 号公報では最終 板厚まで圧延されたス ト リ ップを焼鈍する直前、 若し く は脱炭焼鈍 の加熱段階と して、 PH20ZPH2 が 0.2以下の非酸化性雰囲気中で 1 00°C/ s以上の加熱速度で 700°C以上の温度へ加熱処理する方法を 提案している。 また、 急速加熱の具体例と して 2対の直接通電ロー ルを用いること も提示している。 ―
しかし、 この製造方法では、 急速加熱中に鋼板表面に緻密な酸化 層を形成する場合があることがわかった。 このような酸化層が形成 されると、 これがバリ ヤ一となり、 脱炭作用に影響する。 特に残留
C : 40 p pm以下に脱炭させることは困難になり、 その結果、 製造直 後の磁気特性は良好なものが得られるのであるが、 磁気時効により 製品磁気特性の劣化を生じてしま う。 また、 脱炭時間を長く しても 20 p pm以下の十分な脱炭を行う ことができない。
また、 一般に一方向性電磁鋼板は、 トラ ンスに組み込むなどして 、 巻き コアにする際、 鋼板に曲げ加工を加えるので、 特にコーナ部 の曲率の高いところで一次皮膜と二次皮膜 (絶縁皮膜) からなる表 面皮膜剝離の発生がない優れた皮膜密着性を有することが要求され るが、 上記製造方法では、 まだ皮膜密着性に改善に余地があった。 発明の開示
本発明は、 2. 0〜7. 0 %の S iを含み、 皮膜特性 (皮膜密着性) が 優れかつ磁気特性 (鉄損特性) が優れた一方向性電磁鋼板、 および その製造方法、 並びにこの製造方法に用いる脱炭焼鈍設備を提供す るものである。
本発明者等は、 皮膜特性 (皮膜密着性) 、 磁気特性 (鉄損特性) 共に優れた一方向性電磁鋼板を得るために、 最終製品厚まで圧延さ れたス ト リ ツプを脱炭焼鈍工程の昇温段階で 1 00 °C / s以上の加熱 速度で 800°C以上の温度に急速加熱する試験を多数実施した。
この試験は、 従来、 一般的に脱炭焼鈍工程を実施する際に用いら れているス ト リ ツプ入側部 (通常、 ス ト リ ップ入口から 5 m以内) に雰囲気の排気口を有する既設の脱炭焼鈍炉を改造した脱炭焼鈍設 備を用いて行なった。 すなわち、 既設の脱炭焼鈍炉の入側にスロー ト部を設けるか設けるこ とな く 、 上記急速加熱を行なう装置を設け た急速加熱室を連結し、 上記排気口から急速加熱室の雰囲気および 脱炭焼鈍炉の雰囲気を排気するようにした脱炭焼鈍設備を用いて行 つた。
そして、 上記脱炭焼鈍設備を用いて脱炭焼鈍工程を行う際に、 急 速加熱室 (スロー ト部を設置した場合は、 スロー ト部を含む) の雰 囲気、 脱炭焼鈍炉の雰囲気、 急速加熱室 (スロー ト部を設置した場 合は、 スロー ト部を含む) においてス ト リ ップが 750°C以上の温度 に滞在する時間と、 製品の皮膜密着性、 磁気時効前後の鉄損特性の 関係を種々検討した結果、 以下の知見が得られた。
1 ) 両特性に優れた製品は、 酸化皮膜表面からのグロ一放電発光 分析法(GDS分析法) による分析での Siの A1に対する ピーク強度比が 1 / 2以上であると共に、 酸化皮膜表面からのグロ一放電発光分析 法(GDS分析法) による分析での Siの酸化皮膜表面からのピーク位置 が、 A1の酸化皮膜表面からのピーク位置に対して 1 /10以内の表層 側に存在している。
2 ) 酸化皮膜表面からのグロ一放電発光分析法(GDS分析法) によ る分析での Siの A1に対する ピーク強度比が 1 Z 2以上であると共に 、 酸化皮膜表面からのグロ一放電発光分析法(GDS分析法) による分 析での Siの酸化皮膜表面からのピーク位置が、 A1の酸化皮膜表面か らのピーク位置に対して 1 / 20以内の表層側に存在している ものは 、 両特性がさ らに優れている。
3 ) 上記 1 ) の特性を満たす酸化皮膜は、 脱炭焼鈍炉の入側近傍 に急速加熱室の雰囲気と脱炭焼鈍炉の雰囲気を排気する排気口を設 けた焼鈍設備を用い、 急速加熱室中の PH20ZPH2 を 0.20〜3.0 と し 、 脱炭焼鈍炉中の PH20ZPH2 を 0.25〜0.6 とするとと もに、 急速加 熱室においてス ト リ ップが 750°C以上の温度に滞在する時間を 5秒 以内とすることで得られること。 ―
4 ) 上記 2 ) の特性を満たす酸化皮膜は、 脱炭焼鈍炉の入側近傍 に急速加熱室の雰囲気と脱炭焼鈍炉の雰囲気を排気する排気口を設 けた焼鈍設備を用い、 急速加熱室中の PH20/PH2 を 0.8~1.8 と し 、 脱炭焼鈍炉中の PH20ZPH2 を 0.25〜0.6 とするとと もに、 急速加 熱室においてス ト リ ップが 750°C以上の温度に滞在する時間を 5秒 以内とすることで得られること。
本発明はこれらの知見に基づく ものであり、 その要旨とするとこ ろは、 以下の通りである。
( 1 ) 重量%で、
C : 0.005%以下、
Si : 2.0〜7.0 %
を含み、 残部が Fe及び不可避的不純物からなり、 表面にフ ォルステ ライ トを主体とする酸化皮膜が形成されていて、 さ らに前記酸化皮 膜の表面には絶縁皮膜が形成された一方向性電磁鋼板であつて、 前 記酸化皮膜の皮膜量が片面当り l〜 4 g/m2 であり、 かつ前記酸 化皮膜表面から行う グロ一放電発光分析(GDS分析) によつて得られ る Siのピーク強度が A1のピーク強度の 1 / 2以上であるとと もに、 前記酸化皮膜表面から Siのピーク位置までの深さが酸化膜表面から A1のピーク位置までの深さの 1 ノ 10以内であつて、 20mm径曲げによ り皮膜剝離が発生しない率 y (%) が下記①式を満たし、 鉄損特性 W (W/kg) が下記②式を満たすことを特徴とする優れた皮膜特性 と磁気特性を有する一方向性電磁鋼板。
y (%) ≥ - 122.45 t + 112.55 (但し、 t : 板厚匪) …①
W (W/kg) ≤2.37 t + 0.280 (但し、 t : 扳厚 ) …② ( 2 ) 酸化皮膜表面から Siのピーク位置までの深さが酸化皮膜表 面から A1のピーク位置までの深さの 1 Z 20以内であつて、 20mm径曲 げにより皮膜剥離が発生しない率 y (%) が下記③式を満たし、 鉄 損特性 W (W/kg) が下記④式を満たすこ とを特徴とする前記 ( 1 ) 記載の優れた皮膜特性と磁気特性を有する一方向性電磁鋼板。
y (%) ≥ - 122.45 t + 122.55 (但し、 t : 板厚 mm) …③ W (W/kg) ≤ 2.37 t + 0.260 (但し、 t : 扳厚 mm) …④ ( 3 ) 重量%で、
C : 0. 10%以下、
Si : 2.0〜7.0
A1 : 400ppm以下
を含有し、 さ らに通常のイ ンヒ ビター成分を含み、 残部が Fe及び不 可避的不純物よりなるスラ ブを通常の方法で処理し、 最終製品厚ま で圧延してス ト リ ップとする工程と、 脱炭焼鈍する工程と、 最終仕 上焼鈍する工程と、 絶縁皮膜処理を施す工程とを含む一方向性電磁 鋼板の製造方法において、 脱炭焼鈍工程の昇温段階を脱炭焼鈍炉に 連設した急速加熱室で行い、 該急速加熱室の PH20/PH2 を 0.20〜3. 0 と してス ト リ ップを 100°C/ s以上の加熱速度で 800°C以上の温 度に急速加熱すると共に、 該急速加熱室においてス ト リ ップが 750 °C以上の温度に滞在する時間を 10秒以内と し、 脱炭焼鈍は入側近傍 に急速加熱室の雰囲気と脱炭焼鈍炉の雰囲気を排気する排気口を設 けた脱炭焼鈍炉で行う と共に、 脱炭焼鈍炉中の PH20/PH2 を 0.25〜 0.6 と してス ト リ ップを処理することを特徴とする前記 ( 1 ) 記載 の優れた皮膜特性と磁気特性を有する一方向性電磁鋼板の製造方法
( 4 ) 重量%で、
C 0.10%以下、
Si 2.0〜7.0 %、
A1 400ppm以下 を含有し、 さ らに通常のイ ンヒ ビター成分を含み、 残部が Fe及び不 可避的不純物よりなるスラブを通常の方法で処理し、 最終製品厚ま で圧延してス ト リ ップとする工程と、 脱炭焼鈍する工程と、 最終仕 上焼鈍する工程と、 絶縁皮膜処理を施す工程とを含む一方向性電磁 鋼板の製造方法において、 脱炭焼鈍工程の昇温段階を脱炭焼鈍炉に 連設した急速加熱室で行い、 該急速加熱室の PH20/PH2 を 0.8〜1. 8 と してス ト リ ップを 100°C/ s以上の加熱速度で 800°C以上の温 度に急速加熱すると共に、 該急速加熱室においてス ト リ ップが 750 °C以上の温度に滞在する時間を 5秒以内と し、 脱炭焼鈍は入側近傍 に急速加熱室の雰囲気と脱炭焼鈍炉の雰囲気を排気する排気口を設 けた脱炭焼鈍炉で行う と共に、 脱炭焼鈍炉中の PH20/PH2 を 0.25〜 0.6 と してス ト リ ップを処理するこ とを特徴とする前記 ( 2 ) 記載 の優れた皮膜特性と磁気特性を有する一方向性電磁鋼板の製造方法
( 5 ) 重量%で、
C : 0. 10%以下、
Si : 2.0〜7.0 %、
A1 : 400ppm以下
を含有し、 さ らに通常のイ ンヒ ビタ一成分を含み、 残部が Fe及び不 可避的不純物よりなるスラブを通常の方法で処理し、 最終製品厚ま で圧延してス ト リ ツプとする工程と、 脱炭焼鈍する工程と、 最終仕 上焼鈍する工程と、 絶縁皮膜処理を施す工程とを含む一方向性電磁 鋼板の製造方法において、 脱炭焼鈍工程の昇温段階を脱炭焼鈍炉に スロー ト部を介して連設した急速加熱室で行い、 該急速加熱室及び スロー ト部の PH20ZPH2 を 0.20〜3.0 と してス ト リ ツプを 100°CZ s以上の加熱速度で 800°C以上の温度に急速加熱すると共に、 該急 速加熱室及びスロー ト部においてス ト リ ップが 750°C以上の温度に 滞在する時間を 5秒以内と し、 脱炭焼 ¾は入側近傍に急速加熱室の 雰囲気と脱炭焼鈍炉の雰囲気を排気する排気口を設けた脱炭焼鈍炉 で行う と共に、 脱炭焼鈍炉中の PH20/PH2 を 0.25〜0.6 と してス ト リ ップを処理することを特徴とする前記 ( 1 ) 記載の優れた皮膜特 性と磁気特性を有する一方向性電磁鋼板の製造方法。
( 6 ) 重量%で、
C : 0.10%以下、
Si : 2.0〜7.0 %、
A1 : 400ppm以下
を含有し、 さ らに通常のイ ンヒ ビタ一成分を含み、 残部が Fe及び不 可避的不純物よりなるスラブを通常の方法で処理し、 最終製品厚ま で圧延してス ト リ ップとする工程と、 脱炭焼鈍する工程と、 最終仕 上焼鈍する工程と、 絶縁皮膜処理を施す工程とを含む一方向性電磁 鋼板の製造方法において、 脱炭焼鈍工程の昇温段階を脱炭焼鈍炉に スロー ト部を介して連設した急速加熱室で行い、 該急速加熱室及び スロー ト部の PH20/PH2 を 0.8〜1.8 と してス ト リ ップを 100°C/ s以上の加熱速度で 800°C以上の温度に急速加熱すると共に、 該急 速加熱室及びスロー ト部においてス 卜 リ ップが 750°C以上の温度に 滞在する時間を 10秒以内と し、 脱炭焼鈍は入側近傍に急速加熱室の 雰囲気と脱炭焼鈍炉の雰囲気を排気する排気口を設けた脱炭焼鈍炉 で行う と共に、 脱炭焼鈍炉中の PH20ZPH2 を 0.25〜0.6 と してス ト リ ップを処理するこ とを特徴とする前記 ( 2 ) 記載の優れた皮膜特 性と磁気特性を有する一方向性電磁鋼板の製造方法。
( 7 ) 急速加熱を通電ロールを用いた直接通電加熱で行なう こと を特徴とする前記 ( 3 ) 〜 ( 6 ) に記載の優れた皮膜特性と磁気特 性を有する一方向性電磁鋼板の製造方法。
( 8 ) さ らに磁区細分化処理を施すことを特徴とする前記 ( 3 ) ~ ( 7 ) に記載の優れた皮膜特性と磁気特性を有する一方向性電磁 鋼板の製造方法。
( 9 ) 最終製品厚まで圧延されたス ト リ ップを 100°CZ s以上の 加熱速度で 800°C以上の温度に急速加熱する装置を内設した急速加 熱室と、 脱炭焼鈍を行う脱炭焼鈍炉とを連設し、 脱炭焼鈍炉の入側 近傍に急速加熱室の雰囲気と脱炭焼鈍炉の雰囲気とを排気する排気 口を設けたこ とを特徴とする一方向性電磁鋼板の脱炭焼鈍設備。
(10) 最終製品厚まで圧延されたス ト リ ップを 100°CZ s以上の 加熱速度で 800°C以上の温度に急速加熱する装置を内設した急速加 熱室と、 脱炭焼鈍を行う脱炭焼鈍炉とをスロー ト部を介して連設し 、 脱炭焼鈍炉の入側近傍に急速加熱室の雰囲気と脱炭焼鈍炉の雰囲 気とを排気する排気口を設けたこ とを特徴とする一方向性電磁鋼板 の脱炭焼鈍設備。
(11) 急速加熱を行なう装置が、 ス ト リ ッ プの進行方向に距離を 設けて配置した二対のス ト リ ップを挟むロール対であり、 前記口一 ル対が通電ロ一ルの対からなる力、、 或いは押さえロールと通電ロ一 ルとの対からなるこ とを特徴とする前記 ( 9 ) または (10) 記載の 一方向性電磁鋼板の脱炭焼鈍設備。
(12) 急速加熱を行う装置が、 急速加熱室内に中間にピンチロー ルを配置した 2対の通電ロールであり、 このピンチ口一ルが高温側 通電ロールの近傍に配置し、 このピンチロールで挟持する部分のス ト リ ップの温度が 750°C以下、 或いは温度降下量が 50°C以内となる 力、、 その両方を満足するように加熱することを特徴とする極めて優 れた磁気特性を有する方向性電磁鋼板の脱炭焼鈍設備。
(13) 前記急速加熱室に、 ス ト リ ップ表面に対して雰囲気ガスを 吹き付けるノズルを設けたこ とを特徴とする前記 ( 9 ), (10), (11 ) 又は (12) 記載の一方向性電磁鋼板の脱炭焼鈍設備。 図面の簡単な説明 ―
図 1 は、 GDS分析法による分析で得られた Siピーク強度の A1ピ一 ク強度に対する比率と、 一方向性電磁鋼板の皮膜密着性との関係を 示す図表である。
図 2 ( a ) は、 従来の一方向性電磁鋼板から絶縁皮膜を除去し、 GDS分析を行って得られる Si, A1のピーク例を示す図表である。 図 2 ( b ) は、 請求項 1記載の一方向性電磁鋼板から絶縁皮膜を 除去し、 GDS分析を行って得られる Si, A1のピーク例を示す図表で ある。
図 2 ( c ) は、 請求項 2記載の一方向性電磁鋼板から絶縁皮膜を 除去し、 GDS分析を行って得られる Si, A1のピーク例を示す図表で ある。
図 3 ( a ) は、 板厚と皮膜密着性との相関を示した図表である。 図 3 ( b ) は、 板厚と鉄損との相関を示した図表である。
図 4 は、 急速加熱室中の PH20/PH2 及び脱炭焼鈍炉中 PH20/PH2 と、 皮膜密着性との相関を示す図表である。
図 5 は、 急速加熱室においてス ト リ ップが 750°C以上の温度に滞 在する時間と、 形成される初期酸化膜の厚みとの関係を示した図表 である。
図 6 は、 本発明の脱炭焼鈍設備の一例を示す概略図である。
図 7 は、 本発明の脱炭焼鈍設備の一例を示す概略図である。 発明を実施するための最良の形態
以下に本発明について詳細に説明する。
図 1 に、 0.23mm板厚の一方向性電磁鋼板の酸化皮膜表面からのグ 口一放電発光分析法(GDS分析法) による分析で得られた Siピーク強 度の A1ピーク強度に対する比率と、 当該一方向性電磁鋼板の皮膜密 着性との関係を示す。 なお、 本 GDS分析は、 最終製品から絶縁皮膜 を除去して酸化皮膜を露出させ、 酸化皮膜表面から GDS分析法を適 用 した結果のことをいう。 皮膜の密着性は、 20mm径の曲率曲げに対 して皮膜剥離が発生する割合 (%) で評価している。 曲げ試験には 、 同一条件で製造された 130前後の製品コイルから各々 6枚程度の 曲げ試験片を採取し、 合計で 800枚前後の試験片を供した。
図 1 に示されるように、 酸化皮膜表面からの GDS分析法による Si ピーク強度の A1ピーク強度に対する比率が大きい製品では、 皮膜密 着性が非常に良好になる。
図 2 はこれらの GDS分析で得られた Si, A1のピーク例を示したも のである。 図中の A, Bはそれぞれ A1と Siのピーク強度を、 C と D は酸化皮膜表面から A1と Siのピークが出現するまでの時間を、 それ ぞれ示している。 そして、 図 2 ( a ) は通常の製品の GDS測定結果 、 図 2 ( b ), (c ) は本発明鋼板の GDS測定結果である。 図 2 ( b ), ( c ) はどちらも B Z Aが 0.5以上の場合であり、 図 1 に示され るよう に、 さ らに D/ C力 0.1以下になると皮膜密着性が非常に良 好となる。 また、 ( c ) に示すよう に DZ Cが 0.05以下の場合には 、 図 1 に示されるように、 さ らに皮膜密着性が向上する。
上述のよう に皮膜密着性が向上する機構について、 以下に説明す
O
これら酸化皮膜に含まれる Siや A1は、 最終仕上焼鈍によって、 フ オルステラ イ ト (Mg2Si04) 、 ス ピネル(MgAl204) やコ一ジライ ト ( Mg2Al4Si50, 6) などの酸化物をな し、 鋼板表面に形成される酸化皮 膜の主要成分となっている。
こ こで、 酸化皮膜に含まれる Siのピーク強度が強く、 かつピーク 位置が鋼板表面に近い場合には、 最終仕上焼鈍後の酸化皮膜におい て、 上記主要成分がそれぞれ分離した層状に析出する傾向がある。 このように各酸化物が層状に析出する—ことで各酸化物の結晶化が進 み、 皮膜の密着性の向上につながっている ものと推測される。
そして逆に、 S iのピーク強度が弱い場合には、 上記酸化皮膜の主 要成分が皮膜全体に混在するために各酸化物の結晶化が進まず、 皮 膜密着性が向上しないものと推測される。
図 3 ( a ) , ( b ) は得られた鋼板の板厚と皮膜密着性及び鉄損特 性との相関を示したものである。 本発明いずれの板厚でも、 皮膜密 着性が良好でかつ鉄損特性に優れている。 図 3 において、 ①は図 2 ( a ) 、 ②は図 2 ( b ) 、 ③は図 2 ( c ) にそれぞれ記載された G DS分析パ夕ーンを示す鋼板について示したものである。 本発明によ りすべての板厚での皮膜密着性が向上し、 鉄損も良好になっている 。 さ らに図 2 ( c ) に示されているように D Z Cが 0. 05以下の鋼板 では、 さ らに皮膜密着性、 鉄損の向上がみられる。
さ らに、 本発明者らは、 上記の密着性に優れた皮膜が、 脱炭焼鈍 工程におい形成される初期酸化膜を制御すれば得られるこ とを見出 した。 一般に脱炭焼鈍工程では、 一次再結晶組織の形成、 酸化膜の 形成、 鋼板からの脱炭を、 主たるメ タラ ジ一と しているが、 これら の処理は同一の炉内で同時処理されるのが従来の方法であった。
これに対して、 本発明者らは、 最終製品厚まで圧延されたス ト リ ップを脱炭焼鈍する工程において、 ス ト リ ップを 100 °C /秒以上の 加熱速度で 800°C以上の温度に急速加熱する装置を内設した急速加 熱室と、 脱炭焼鈍を行う脱炭焼鈍炉とを連設し、 脱炭焼鈍炉の入側 近傍に急速加熱室の雰囲気と脱炭焼鈍炉の雰囲気とを排気する排気 口を設けた脱炭焼鈍設備を用いることと した。 そして本発明は、 初 期酸化皮膜の他に、 酸化膜成長、 再結晶、 脱炭挙動についての制御 を、 急速加熱室と脱炭焼鈍炉とで機能分離させて行う ものであって 、 以下にその作用効果を具体的に示す。 急速加熱室では、 まず①初期酸化膜の形成、 ②一次再結晶核発生 を狙いとする。 ここで初期酸化膜の形成については、 後の製品での 皮膜密着性に非常に寄与し、 初期に適正な Si02を形成させるこ とが 重要である。 この初期酸化層とは、 極表層の 100オングス トローム オーダの厚みの酸化膜のことを言い、 これが後に述べる数 mォー ダの内部酸化層形成、 さ らには製品での皮膜特性 (密着性) に大き く寄与する。 しかし、 この Si02形成量が過度であると脱炭性を阻害 することあるので、 初期酸化層の形成を微妙にコ ン トロールする必 要がある。 このため急速加熱室における PH20ZPH2 の値及び急速加 熱室においてス ト リ ップが初期酸化膜生成温度である 750°C以上の 温度に滞在する時間を制御する必要がある。
また、 再結晶核生成については、 (110), (111)などの一次再結晶 集合組織制御を、 主に加熱速度や加熱到達後の冷却速度により コ ン ト ロールする。 加熱速度が高く なると (110)は増加、 (111)は減少 し、 加熱到達後の冷却速度を速めれば、 (111)は増加、 (100)は減 少する傾向にある。 急速加熱装置と して、 たとえば、 誘導加熱装置 を用いる場合、 誘導加熱により 100°C/ s以上、 好ま しく は 300°C / s以上の加熱速度で 800°C以上の温度域に急速加熱させ、 (110) を増加させることができる。 このよ うな、 急速加熱により、 良好な 一次再結晶集合組織を得るこ とができる。 例えば、 二対の通電ロー ルを用いる場合、 ロール間の加熱により 100°CZ s以上、 好ま しく は 300 ノ s以上の加熱速度で 800°C以上の温度域に急速加熱し、
(110)を増加させる。 さ らに、 加熱温度到達後に高温側ロールの抜 熱により 2000〜 30000 °C/ sの冷却速度で 10〜40°Cの冷却を施し、
(111)を増加させることができる。 このような急速加熱と急速冷却 の組み合わせにより、 最適な一次再結晶集合組織を得ることができ ο 次に引き続く脱炭焼鈍炉では、 ①脱炭、 ②一次再結晶粒径制御、 ③内部酸化皮膜のコ ン ト ロール、 を狙いとする。 こ こで内部酸化皮 膜とは、 前述した初期酸化層とは異なり、 鋼板表面から内部へ向け て数 ^ mほどの厚みで形成される酸化層のこ とで、 後に塗布される MgOと フ ォルステライ ト等からなる酸化皮膜を形成する ものである 本発明者らは、 この内部酸化層の形態が、 前述した初期酸化膜の 形態により大き く 変化する こ とを見出した。 具体的には、 初期酸化 層で極表層にオ ングス ト ロームオーダの Si02を形成させるこ とによ り、 後の内部酸化層中の Si02成分を多く し、 フ ォルステラィ ト皮膜 の構造に大きな影響を及ぼし、 皮膜の密着性を向上させる。 また、 一次再結晶粒径を制御することにより、 二次再結晶開始温度を制御 し、 これが二次再結晶粒径をコ ン ト ロール、 ひいては鉄損特性を良 好なものにする。
そこで本発明では、 上述のごと く初期酸化膜と内部酸化層をコ ン ト ロールするべく 、 急速加熱室及び脱炭焼鈍炉の雰囲気を制御する とともに、 急速加熱室におけるス ト リ ッ プの 750°C以上の滞在時間 を制御することと した。
図 4 に、 板厚 0.23mmの一方向性電磁鋼板を製造する際に、 前述の 脱炭焼鈍設備を用い、 急速加熱室中の PH20ZPH2 及び脱炭焼鈍炉中 の PH20/PH2 を種々変化させ、 その他の条件は本発明の製造条件と した際の製品の皮膜特性と脱炭焼鈍設備の雰囲気との関係を示す。 良好な皮膜密着性を得るためには急速加熱室中の PH20ZPH2 が 0. 20〜3.00でなければならない。 急速加熱室中の PH20/PH2 が 0.20未 満では初期酸化膜の制御が困難で、 表層に緻密な Si02成分が過剰に なり、 後の脱炭焼鈍において脱炭不良が発生するため 0.20以上と し た。 また、 急速加熱室中の PH20ZPH2 が 3.00超では、 初期酸化膜中 の Fe成分系酸化物の比率が過剰になり—、 皮膜密着性が劣り、 皮膜特 性を劣化させるため 3.00以下と した。
また、 初期酸化膜の形成については、 上記急速加熱室の PH20ZPH 2 中の 750°C以上の温度のス ト リ ップの滞在時間が長すぎると、 か えつて脱炭性などへの悪影響を及ぼすので、 ある程度の時間範囲が よい。 図 5 は、 急速加熱室においてス ト リ ップの温度が 750°C以上 に滞在する時間と、 形成される初期酸化膜の厚みとの関係を示した 図表である。 図 5 より、 ス ト リ ップが 750°C以上に滞在する時間が 5秒を超えると Si02膜厚が 150人超となり、 脱炭が界面律速となり 、 好ま し く はないので 5秒以下と した。
また、 脱炭焼鈍炉の PH20/PH2 についても、 良好な皮膜特性及び 脱炭性能を得るため、 0.25〜0.6 でなければならない。 PH20/PH2 が 0.25未満では、 鋼板の脱炭が起こ らず、 内部酸化層の厚みが非常 に少なく なり、 後のフォルステラィ 卜の形成が不適切になるので、 0.25以上と した。 また、 脱炭焼鈍炉中の PH20/PH2 が 0.6超では、 内部酸化層中の Fe系酸化物が過剰になり、 初期酸化膜中に生成され た Si02の効果がな く なり、 皮膜欠陥などが生じるので 0.6以下と し た。
上記のよう に、 急速加熱室及び脱炭焼鈍炉中の PH20ZPH2 と、 急 速加熱室においてス ト リ ップの温度が 750°C以上に滞在する時間と を一定範囲とするこ とで、 優れた皮膜特性と磁気特性を有する一方 向性電磁鋼板を製造することができる。 そして、 このようにして製 造された一方向性電磁鋼板の酸化皮膜は、 酸化皮膜表面からの GDS 分析を行う と、 Siのピーク強度が A1のピーク強度の 1 / 2以上であ るとともに、 Siのピーク位置までの深さが A1のピーク位置までの深 さの 1 Z10以内である。
さ らに、 急速加熱室中の PH20ZPH2 を 0.8〜1.8 のより狭い範囲 に制限すると、 より適正な S i 02主体の初期酸化膜を形成するこ とが でき、 さ らに皮膜密着性を良好なものにできる。 急速加熱室中の PH 2 0/ PH 2 を 0. 8〜1. 8 の範囲内とすると、 Fe系酸化物に対する S i系 酸化物の割合が最適になり、 後に形成される一次皮膜中の S iピーク 位置を表面層に制御し、 皮膜特性をさ らに良好なものとする。
このようにして製造された一方向性電磁鋼板は、 さ らに優れた皮 膜特性と磁気特性とを有している。 そして、 その一方向性電磁鋼板 に酸化皮膜表面からの GDS分析を行う と、 S iのピーク強度が A 1のピ ーク強度の 1 / 2以上であるとと もに、 S iのピーク位置までの深さ が A 1のピーク位置までの深さの 1 / 20以内である。
以上、 従来の技術では、 上記の脱炭、 初期酸化膜、 内部酸化皮膜 の形成、 一次再結晶が略同時進行した処理方法であつたが、 本発明 では上述した急速加熱室と脱炭焼鈍炉との機能分離により優れた皮 膜特性と磁気特性とを有する一方向性電磁鋼板を製造する こ とがで さる。
本発明で用いる急速加熱装置と しては、 例えば誘導加熱装置、 2 対の通電ロールよりなる直接通電加熱装置等を用いることが出来る 力 前述したように通電加熱装置のほうが急速加熱による一次再結 晶集合組織改善効果に加えて、 急速冷却による一次再結晶集合組織 改善効果が得られるので直接通電加熱装置を採用することが望ま し い。 具体的には、 急速加熱装置は、 急速加熱室内に、 中間にピンチ ロールを配置した 2対の通電ロールを用い、 このピンチロールが高 温側通電ロールの近傍に配置され、 このピンチロールで挟持する部 分のス ト リ ップの温度が 750 °C以下、 或いは温度降下量が 50°C以内 となるか、 その両方を満足するように加熱する装置であることが好 ま しい。
スロー トを用いずに急速加熱室と脱炭焼鈍炉を連結する設備は、 本発明の製造方法を使用する専用設備と して有用である。 スロー ト 部を用いて急速加熱室と脱炭焼鈍炉を連結する設備は、 スロー ト部 を大気開放可能に構成できるので、 スロー ト部を大気開放すれば、 急速加熱装置が内設された急速加熱室に、 脱炭焼鈍炉の雰囲気の流 入が完全に防止できるので、 脱炭焼鈍設備を従来のス ト リ ップの脱 炭焼鈍炉と して使用 しつつ、 急速加熱室の急速加熱装置を保守点検 整備することができる。
雰囲気ガスを通電ロール間の 750°C以上のス ト リ ップ表面に対し て吹き付けることにより少量の雰囲気ガスで前記初期酸化膜が効率 的に形成されるので、 上記ス ト リ ップ表面に向かって雰囲気ガス吹 き付けノ ズルを設けるのがよ く 、 雰囲気ガスの消費効率上ス ト リ ツ プ表面に対して 1 m以内の位置から吹き付けるのが好ま しい。
まず、 本発明の一方向性電磁鋼板について説明する。
本発明の一方向性電磁鋼板は、 重量%でじ : 0.005%以下、 Si : 2.0〜7.0 重量%を含む。
Cは、 これ以上では磁気時効で特性が劣化するので 0.005%以下 と した。
Siは、 鉄損をよく するために 2.0%以上とするが、 多すぎると冷 間圧延の際に割れ易く加工が困難となるので 7.0%以下とする。
また、 本発明の一方向性電磁鋼板は、 表面にフォルステラィ 卜を 主体とする酸化皮膜を有しており、 その皮膜量は片面当たり 1 〜 4 g/m2 である。 酸化皮膜の皮膜量が 4 g/m2 を超えると占積率 が悪化するので 4 gZm2 と した。 一方、 酸化皮膜量が 1 g/m2 未満では、 必要な皮膜張力が得られないため 1 gZm2 以上とする o
そして、 前記酸化皮膜表面から行う グロ一放電発光分析(GDS分析 ) によって得られる Siのピーク強度は A1のピーク強度の 1 / 2以上 である。 強度比がこれ未満では良好な皮膜の密着性及び鉄損値が得 られないためである。 また、 前記 GDS分析法による酸化皮膜表面か ら Siのピーク位置までの深さは、 酸化膜表面から A1のピーク位置ま での深さの 1 Z10以内とする。 Siピーク位置の深さ力く、 A1ピーク位 置の深さの 1 ノ 10を超えると必要な一次皮膜の密着性が得られない ためである。
なお、 本発明における GDS分析とは、 最終製品から絶縁皮膜を除 去して酸化皮膜を露出させ、 酸化皮膜表面から GDS分析法を適用 し た結果のこ とをいう。 また、 GDS分析による酸化皮膜表面から Si ( A1) のピーク位置までの深さは、 実質的には、 酸化皮膜表面より分 析を始めてから ピークが出現するまでに要する時間から判断する。 以上の構成により、 本発明の一方向性電磁鋼板は、 表面皮膜の 20 mm径曲げによる皮膜剥離なしの発生率 (密着性) が、 密着性 y (% ) ≥ - 122.45 t + 112.55 ( t : 板厚態) で表現される領域を得るこ とが可能となり、 また、 鉄損特性 W (W/kg) 37 t + 0.280 で 表現される領域の良好な鉄損特性を得るこ とが可能となる。
さ らに、 前記 GDS分析法による酸化皮膜表面から Siのピーク位置 までの深さ力く、 酸化膜表面から A1のピーク位置までの深さの 1 ノ 20 以内である一方向性電磁鋼板は、 皮膜特性と磁気特性がさ らに優れ ている。 すなわち、 この構成による一方向性電磁鋼板では、 表面皮 膜の 20mm径曲げによる皮膜剝離なしの発生率 (密着性) が、 密着性 y (%) ≥ - 122.45 t + 122.55 ( t : 板厚議) で表現される領域を 得ることが可能となり、 また、 鉄損特性 W (W/kg) ≤2.37 t +0. 260 で表現される領域の良好な鉄損特性を得ることが可能となる。
次に、 本発明の一方向性電磁鋼板の製造方法について説明する。 本発明の一方向性電磁鋼板の製造方法は、 重量%で、 C : 0.10% 以下、 Si :2.0〜7.0 %、 Al :400ppm以下ならびに通常のイ ンヒ ビタ 一成分を含み、 残余は Feおよび不可避的不純物よりなるスラブを出 発材とする。
Cは、 0.10%を超えると脱炭処理時間が長く なり、 経済的に不利 となるので 0.10%以下と した。
Siは鉄損をよくするために 2.0%以上とするが、 多すぎると冷間 圧延の際に割れ易く加工が困難となるので 7.0%以下とする。
イ ンヒ ビターと して A1Nを利用するため、 酸可溶性 A1を添加する 。 酸可溶性 A1は A1Nの適正な分散状態を得るために 400ppm以下とす る。 酸可溶性 A1Nが 400ppm未満では必要な A1Nの分散状態が得られ ないためである。 Nについては、 本発明では特に限定しないが、 適 正な A 1Nを得るためには 0, 003〜0.02%の添加が好ま しい。
さ らに、 一方向性電磁鋼板を製造するにあたり、 通常のイ ンヒ ビ タ一成分と して以下の成分元素を添加することが好ま しい。
イ ンヒ ビタ一と して MnSを利用する場合は、 Mnと Sを添加する。 Mnは、 MnS, (Mn · Fe) Sを形成するために必要な元素で、 適当な分散 状態を得るためには、 0.001〜0.05%の添加が好ま しい。 なお、 S の代わり に Seを添加しても良く 、 また両方を添加することもできる そのほ力、、 Cu, Sn, Sb, Cr, Bi, Mo等のイ ンヒ ビタ一形成元素は イ ンヒ ビタ一を強くする目的で 1.0%以下において少なく と も 1種 添加しても良い。
そ して上記成分を含有する溶鋼を通常の連続铸造で铸片と し、 こ れを熱間圧延して中間厚のス ト リ ップを得る。 このとき、 ス ト リ ッ プキャ スターなどにより熱延板を得てもよい。 次いで、 上記熱延ス ト リ ップには熱延扳焼鈍を施した後、 1 回または中間焼鈍を含む 2 回以上の冷間圧延により最終製品厚のス ト リ ップを得る。 または、 熱延板焼鈍を施すことなく 、 1 回または中間焼鈍を含む 2回以上の 圧延により最終製品厚のス ト リ ップを得る。
中間焼鈍を含む 2 回以上の圧延をする際の、 1 回目の圧延は圧下 率 5〜60%、 熱延板焼鈍および中間焼鈍は 950〜 1200°Cで 30秒〜 30 分行う ことが好ま しい。 次の最終圧下率は圧下率 85%以上が望ま し い。 85%未満では {110 } < 001 >方位が圧延方向に高い集積度を もつゴス核が得られないからである。
なお、 この時の冷間圧延方法と して、 複数回のパスにより各板厚 段階を経て最終板厚となるが、 磁気特性を向上させるため、 その途 中板厚段階において鋼板に 100°C以上の温度範囲で 30秒以上の時間 保持する熱効果を 1 回以上与えてもよい。
以上のようにして最終製品厚まで圧延されたス ト リ ップに、 脱炭 焼鈍を施す。 本発明では、 脱炭焼鈍を、 急速加熱する装置を内設し た急速加熱室と、 脱炭焼鈍を行う脱炭焼鈍炉とを連設し、 脱炭焼鈍 炉の入側近傍に急速加熱室の雰囲気と脱炭焼鈍炉の雰囲気とを排気 する排気口を設けたことを特徴とする一方向性電磁鋼板の脱炭焼鈍 設備を用いて行う。 前記脱炭焼鈍設備は、 急速加熱室と脱炭焼鈍炉 とをスロー ト部を介して連設してもよい。 こ こで、 初期酸化膜と内 部酸化層とをコ ン ト ロールするため、 特に急速加熱室と脱炭焼鈍炉 との両方における雰囲気制御が重要である。
そこで本発明では、 初期酸化膜を制御するため急速加熱炉の PH20 /PH2 を規制し、 後に生成される内部酸化層を適正なものにするた め脱炭焼鈍炉の PH20ZPH2 を規制する。 まず、 良好な皮膜密着性を 得るためには急速加熱室中の PH 20/ PH 2 が 0.20〜 3.00でなければな らない。 PH20/PH2 が 0.20未満では初期酸化膜の制御が困難で、 表 層に緻密な Si02成分が過剰になり、 後の脱炭焼鈍において脱炭不良 が発生するので 0.20以上と した。 また、 急速加熱室中の PH20/PH2 が 3.00超では、 初期酸化膜中の Fe成分系酸化物の比率が過剰になり 、 皮膜密着性が劣り、 皮膜特性を劣化させるので 3.00以下と した。 また、 脱炭焼鈍炉中の PH20/PH2 についても、 良好な皮膜特性お よび脱炭性能を得るため、 0.20〜0.6 でなければならない。 PH20Z PH2 が 0.20未満では、 鋼板の脱炭が起こ らず、 内部酸化層の厚みが 非常に少なく なり、 後のフ オルステライ トの形成が不適切になるの で 0.25以上と した。 また、 脱炭焼鈍炉中の PH20/PH2 が 0.6超では 、 内部酸化層中の Fe系酸化物が過剰になり、 初期酸化膜中に生成さ れた Si02の効果が無く なり、 皮膜欠陥などが生じるので 0.6以下と した。
なお、 急速加熱室と脱炭焼鈍炉とをスロー ト部を介して連設した 脱炭焼鈍設備を用いる場合には、 スロー ト部の雰囲気は急速加熱室 の雰囲気と同じものと し、 同様の雰囲気制御を行う ものとする。
また、 上記急速加熱室の PH20ZPH2 中でス ト リ ップが 750°C以上 の温度に滞在する時間を 10秒以下の短時間とするこ とで、 薄い Si02 を初期に形成するこ とができる。 ス ト リ ップが 750°C以上に滞在す る時間が 5秒を超えると、 Si02層の厚みが 150ォングス トロ一ムを 超えるので 5秒以下とする。
以上のように、 急速加熱室中と脱炭焼炉中の PH20ノ PH2 を特定し 、 急速加熱室の PH20ZPH2 中でス ト リ ップが 750°C以上の温度に滞 在する時間を特定するこ とにより、 良好な皮膜特性と鉄損特性を有 する一方向性電磁鋼板を得ることができる。
そして上記方法で得られた一方向性電磁鋼板は、 酸化皮膜表面か ら行う グロ一放電発光分析(GDS分析) によつて得られる Siのピーク 強度が A1のピーク強度の 1 Z 2以上であるとと もに、 前記酸化皮膜 表面から Siのピーク位置までの深さが酸化膜表面から A1のピーク位 置までの深さの 1 /10以内であり、 非常に皮膜密着性に優れている (板厚 0.23iMiで 85%以上) 。 また、 皮膜密着性 (板厚 0.23mmで 95%超) をより良好なものにす るためには、 急速加熱炉中の PH20ZPH2 を 0.8〜1.8 の範囲とすれ ばよい。 このように雰囲気制御するこ とで、 より適正な Si02主体の 初期酸化膜を形成することができる。 すなわち、 PH20ZPH2 が 0.8 〜1.8 の範囲では、 Fe系酸化物に対する Si系酸化物の割合が最適に なり、 後に形成される一次皮膜中の Siピーク位置を表面層に制御し 、 皮膜密着性をより良好なものとするこ とができる。
そして上記方法で得られた一方向性電磁鋼板は、 酸化皮膜表面か ら行う グロ一放電発光分析(GDS分析) によつて得られる Siのピーク 強度が A1のピーク強度の 1 / 2以上であると と もに、 Siピーク位置 の深さが A1ピーク位置の深さの 1 / 20以内であり、 非常に密着性に 優れている (板厚 0.23mmで 95%超) 。
急速加熱は、 ス ト リ ツプを挟む通電ロ一ル対ぁるいはス ト リ ップ を挟む押さえロールと通電ロールからなるロール対をス ト リ ップの 進行方向に距離を存して設け、 800°C以上の温度へ通電加熱する方 法を採用することができる。 勿論、 ス ト リ ップと非接触の誘導加熱 方法を採用 してもよい。 ス ト リ ップの加熱速度は 100。CZ s以上と する。 下限 100°CZ s は、 これ以下では、 二次再結晶に必要な一次 再結晶後の {110 } < 001 〉方位粒が減少するので 100°C/ s と し た。 加熱温度は、 800°C未満では一次再結晶の核発生が起こ らない ので、 800°C以上と した。
上述した脱炭焼鈍は、 図 6 に示す昇温段階での急速加熱を行う急 速加熱室 2 と脱炭焼鈍を行う脱炭焼鈍炉 1 とが連続して配列され、 脱炭焼鈍炉 1 の入側近傍に急速加熱室 2 の雰囲気と脱炭焼鈍炉 1 の 雰囲気を排気する排気口 7 を設けたことを特徴とする脱炭焼鈍設備 で実施する。
また、 昇温段階での急速加熱を行う急速加熱室 2 と脱炭焼鈍を行 う脱炭焼鈍炉 1 とがスロー ト部 3で連—結して配列され、 脱炭焼鈍炉 1 の入側近傍に急速加熱室 2 の雰囲気と脱炭焼鈍炉 1 の雰囲気を排 気する排気口 7 を設けたことを特徴とする脱炭焼鈍設備で実施して もよい。
図 6, 7 において、 4 はス ト リ ップ、 5, 6 は通電ロール、 8, 9 は通電ロール 5, 6 と対となってス ト リ ップ 4 を挟む押さえロー ル、 1 0 , 1 0は通電ロール 5, 6 間の急速加熱中の 750 °C以上のス ト リ ップ表面に対して雰囲気ガスを吹き付けるノ ズルであり、 1 1, 1 1 はス ト リ ップ 4 を挟持するピンチロールであり、 ス ト リ ップ、 ノ ズ ル間の間隙は 1 m以下となしている。
前述した脱炭焼鈍過程では、 製品での磁気特性を劣化させないた めに、 炭素は 20 p pm以下に低減されなければならない。 ここで、 熱 延でのスラブ加熱温度を低温と し、 A 1 Nのみをイ ンヒ ビターと して 利用するプロセスの場合は、 アンモニア雰囲気中で窒化処理を付与 してもよい。
さ らに、 MgO等の焼鈍分離剤を塗布して、 二次再結晶と純化のた め 1 1 00 °C以上の仕上げ焼鈍を行う こ とで、 フ ォルステライ トなどの 良好な皮膜を鋼板表面に形成した微細な二次再結晶粒を得る。
フ ォルステラィ 卜などの良好な皮膜の上に、 さ らに絶縁皮膜を塗 布するこ とにより極めて低い鉄損御性を有する一方向性電磁鋼板が 製造される。 ここでの絶縁皮膜は、 燐酸塩とコロイダルシリ カを主 成分とする通常の一方向性電磁鋼板に使われる二次皮膜をいう。 以 上の磁気特性は、 後の歪み取り焼鈍を施しても、 変化しない低鉄損 を保持している。
なお得られた製品で、 さ らに鉄損を良好にするため、 上記一方向 性電磁鋼板に、 磁区を細分化するための処理を施すこと も可能であ 実施例 ―
〔実施例 1 一 1 〕
重量%にて成分、 3.25%Si、 0.078% C , 0.08%Mn、 0.01% P、 0.03% S、 0.03%AK 0.09% N、 0.08 Cu. 0.1%Snを含む溶鋼を 铸造し、 スラブ加熱後、 熱間圧延を行い、 2.3龍厚の熱延鋼板を得 た。 次に、 1100°Cで 3分間焼鈍を行い、 さ らに酸洗したのち、 冷間 圧延により 0.22態厚にした。 圧延では、 途中、 温度 220°Cで 5 min の焼鈍を施している。
圧延された鋼板 A, Bを湿潤水素中で脱炭焼鈍を施した (従来法
) o
また、 圧延された Cから J については、 図 7 に示したス ト リ ップ 4 を挟む通電ロール 5、 および押さえロール 8 からなるロール対と ス ト リ ップ 4 を挟む通電ロール 6 および押さえロール 9 からなる口 —ル対とをロール間隔 1.7mで配置すると共に、 上記ロール対間の ス ト リ ツプ表面から 0.5m位置で口一ル 6, 9のス ト リ ツプ挟持点 から 0.2mの位置に雰囲気ガス吹付けノ ズル 10, 10を設けた急速加 熱室 2 と脱炭焼鈍炉 1 とを 1.5mのスロー ト 3で連結し、 脱炭焼鈍 炉 1 の入口から 1.6m位置に加熱室 2、 焼鈍炉 1 の雰囲気を排気す る排気口 7 を設けた脱炭焼鈍設備に 60m Z分で通板し、 表 1 に示す 条件下で処理を行った。 その後、 MgOを塗布した後、 1200°Cに、 24 hr間、 水素ガス雰囲気中で高温焼鈍を行い、 続く仕上げ焼鈍ラ イ ン で絶縁皮膜を塗布して製品と した。
本発明条件を満足する C〜Gコイルについては皮膜特性、 鉄損特 性とも優れた一方向性電磁鋼板が得られている。 特に、 すべての条 件を満足する、 C〜 Eコイ ルではより優れた皮膜特性、 鉄損特性が 得られた。 表 1
Figure imgf000027_0001
但し、 mmi: ストリツプが 75o°c iiに ¾した時間 効: 250°Cx200hr
〔実施例 1 一 2〕
上記、 B, C, F, Hの 4 コイルの製品については、 更に磁区制 御製造ラ イ ンを通板し、 通板方向の直角 ( C方向) 方向とのなす角 度 12 ° の方向に幅 5 難間隔で溝 (深さ 15 i m、 幅 90 m ) を歯型口 ールで掘り、 その後 1 g / m 2 の絶縁皮膜を塗布し最終製品と した 。 各コイルの磁気特性値を表 2 に示す。
表 2
Figure imgf000028_0001
〔実施例 2〕
実施例 1 と同じ成分の溶鋼を铸造し、 実施例 1 と同じ工程により 0. 22mm厚のス ト リ ップを得た。 このス ト リ ップに、 スロー ト部を有 さない点以外は実施例 1 の脱炭焼鈍設備と全く 同じ構成の脱炭焼鈍 設備を用い、 実施例 1 と同じ工程により製品と した。 その結果、 実 施例 1 と同じ く皮膜特性、 鉄損特性とも優れた一方向性電磁鋼板が 得られた。 特に、 すべての条件を満足するコイルではより優れた皮 膜特性、 鉄損特性を有する一方向性電磁鋼板が得られた。 産業上の利用可能性
本発明により皮膜特性が優れ、 かつ磁気特性が極めて良好な一方 向性電磁鋼板を提供でき、 かつ上記一方向性電磁鋼板の製造方法お よび設備列を提供することができる。

Claims

請 求 の 範 囲
1 . 重量%で、
C : 0.005%以下、
Si : 2.0〜7· 0 %
を含み、 残部が Fe及び不可避的不純物からなり、 表面にフ ォルステ ライ トを主体とする酸化皮膜が形成されていて、 さ らに前記酸化皮 膜の表面には絶縁皮膜が形成された一方向性電磁鋼板であって、 前 記酸化皮膜の皮膜量が片面当り 1〜 4 g /m2 であり、 かつ前記酸 化皮膜表面から行う グロ一放電発光分析(GDS分析) によって得られ る Siのピーク強度が A1のピーク強度の 1 Z 2以上であるとともに、 前記酸化皮膜表面から Siのピーク位置までの深さが酸化膜表面から A1のピーク位置までの深さの 1 / 10以内であつて、 20mm径曲げによ り皮膜剥離が発生しない率 y (%) が下記 ( 1 ) 式を満たし、 鉄損 特性 W (W/kg) が下記 ( 2 ) 式を満たすことを特徴とする優れた 皮膜特性と磁気特性を有する一方向性電磁鋼板。
y (%) ≥— 122.45 t + 112.55 (但し、 t : 板厚! MI) … ( 1 ) W (W/kg) ≤ 2.37 t + 0.280 (但し、 t : 板厚 mm) … ( 2 )
2. 酸化皮膜表面から Siのピーク位置までの深さが酸化皮膜表面 から A1のピーク位置までの深さの 1 / 20以内であつて、 20mm径曲げ により皮膜剥離が発生しない率 y (%) が下記 ( 3 ) 式を満た し、 鉄損特性 W (W/kg) が下記 ( 4 ) 式を満たすことを特徴とする請 求の範囲 1 記載の優れた皮膜特性と磁気特性を有する一方向性電磁 鋼板。
y ( ) ≥ - 122.45 t + 122.55 (但し、 t : 板厚 mm) … ( 3 ) W (W/kg) ≤2.37 t + 0.260 (但し、 t : 板厚 mm) - ( 4 )
3. 重量%で、 C : 0.10%以下、
Si: 2.0〜7· 0 %、
Α1: 400ppm以下
を含有し、 さ らに通常のイ ンヒ ビター成分を含み、 残部が Fe及び不 可避的不純物よりなるスラ ブを通常の方法で処理し、 最終製品厚ま で圧延してス ト リ ップとする工程と、 脱炭焼鈍する工程と、 最終仕 上焼鈍する工程と、 絶縁皮膜処理を施す工程とを含む一方向性電磁 鋼板の製造方法において、 脱炭焼鈍工程の昇温段階を脱炭焼鈍炉に 連設した急速加熱室で行い、 該急速加熱室の PH20/PH2 を 0.20〜3. 0 と してス ト リ ップを 100°C/ s以上の加熱速度で 800°C以上の温 度に急速加熱すると共に、 該急速加熱室においてス ト リ ップが 750 °C以上の温度に滞在する時間を 10秒以内と し、 脱炭焼鈍は入側近傍 に急速加熱室の雰囲気と脱炭焼鈍炉の雰囲気を排気する排気口を設 けた脱炭焼鈍炉で行う と共に、 脱炭焼鈍炉中の PH20ノ PH2 を 0.25〜 0.6 と してス ト リ ップを処理することを特徴とする請求の範囲 1 記 載の優れた皮膜特性と磁気特性を有する一方向性電磁鋼板の製造方 法。
4. 重量%で、
C : 0.10%以下、
Si : 2.0〜7.0 %、
A1 : 400ρρπι以下
を含有し、 さ らに通常のイ ンヒ ビタ一成分を含み、 残部が Fe及び不 可避的不純物よりなるスラブを通常の方法で処理し、 最終製品厚ま で圧延してス ト リ ップとする工程と、 脱炭焼鈍する工程と、 最終仕 上焼鈍する工程と、 絶縁皮膜処理を施す工程とを含む一方向性電磁 鋼板の製造方法において、 脱炭焼鈍工程の昇温段階を脱炭焼鈍炉に 連設した急速加熱室で行い、 該急速加熱室の PH20/PH2 を 0.8〜1. 8 と してス ト リ ップを 100°CZ s以上の加熱速度で 800°C以上の温 度に急速加熱すると共に、 該急速加熱室においてス ト リ ップが 750 °C以上の温度に滞在する時間を 10秒以内と し、 脱炭焼鈍は入側近傍 に急速加熱室の雰囲気と脱炭焼鈍炉の雰囲気を排気する排気口を設 けた脱炭焼鈍炉で行う と共に、 脱炭焼鈍炉中の PH20/PH2 を 0.25〜 0.6 と してス ト リ ップを処理するこ とを特徴とする請求の範囲 2記 載の優れた皮膜特性と磁気特性を有する一方向性電磁鋼板の製造方 法。
5. 重量%で、
C : 0.10%以下、
Si : 2.0〜7.0 %、
A1 : 400ppm以下
を含有し、 さ らに通常のイ ンヒ ビター成分を含み、 残部が Fe及び不 可避的不純物よりなるスラブを通常の方法で処理し、 最終製品厚ま で圧延してス ト リ ップとする工程と、 脱炭焼鈍する工程と、 最終仕 上焼鈍する工程と、 絶縁皮膜処理を施す工程とを含む一方向性電磁 鋼板の製造方法において、 脱炭焼鈍工程の昇温段階を脱炭焼鈍炉に スロー ト部を介して連設した急速加熱室で行い、 該急速加熱室及び スロー ト部の PH20ZPH2 を 0.20〜3.0 と してス ト リ ップを 100°C/ s以上の加熱速度で 800°C以上の温度に急速加熱すると共に、 該急 速加熱室及びスロー ト部においてス ト リ ップが 750°C以上の温度に 滞在する時間を 10秒以内と し、 脱炭焼鈍は入側近傍に急速加熱室の 雰囲気と脱炭焼鈍炉の雰囲気を排気する排気口を設けた脱炭焼鈍炉 で行う と共に、 脱炭焼鈍炉中の PH20ZPH2 を 0.25〜0.6 と してス ト リ ップを処理するこ とを特徴とする請求の範囲 1記載の優れた皮膜 特性と磁気特性を有する一方向性電磁鋼板の製造方法。
6. 重量%で、 C : 0.10%以下、
Si : 2.0〜7.0 %、
Al : 400ppm以下
を含有し、 さ らに通常のイ ンヒ ビター成分を含み、 残部が Fe及び不 可避的不純物よりなるスラブを通常の方法で処理し、 最終製品厚ま で圧延してス ト リ ッ プとする工程と、 脱炭焼鈍する工程と、 最終仕 上焼鈍する工程と、 絶縁皮膜処理を施す工程とを含む一方向性電磁 鋼板の製造方法において、 脱炭焼鈍工程の昇温段階を脱炭焼鈍炉に スロー ト部を介して連設した急速加熱室で行い、 該急速加熱室及び スロー ト部の PH20/PH2 を 0.8〜1.8 と してス ト リ ップを 100°CZ s以上の加熱速度で 800°C以上の温度に急速加熱すると共に、 該急 速加熱室及びスロー ト部においてス ト リ ップが 750°C以上の温度に 滞在する時間を 10秒以内と し、 脱炭焼鈍は入側近傍に急速加熱室の 雰囲気と脱炭焼鈍炉の雰囲気を排気する排気口を設けた脱炭焼鈍炉 で行う と共に、 脱炭焼鈍炉中の PH20/PH2 を 0.25〜0.6 と してス ト リ ップを処理することを特徴とする請求の範囲 2記載の優れた皮膜 特性と磁気特性を有する一方向性電磁鋼板の製造方法。
7. 急速加熱を通電ロールを用いた直接通電加熱で行なう こ とを 特徴とする請求の範囲 3〜 6 のいずれか 1 項に記載の優れた皮膜特 性と磁気特性を有する一方向性電磁鋼板の製造方法。
8. さ らに磁区細分化処理を施すことを特徴とする請求の範囲 3 〜 7 のいずれか 1 項に記載の優れた皮膜特性と磁気特性を有する一 方向性電磁鋼板の製造方法。
9. 最終製品厚まで圧延されたス ト リ ップを 100°C/ s以上の加 熱速度で 800°C以上の温度に急速加熱する装置を内設した急速加熱 室と、 脱炭焼鈍を行う脱炭焼鈍炉とを連設し、 脱炭焼鈍炉の入側近 傍に急速加熱室の雰囲気と脱炭焼鈍炉の雰囲気とを排気する排気口 を設けたことを特徴とする一方向性電磁鋼板の脱炭焼鈍設備。
10. 最終製品厚まで圧延されたス ト リ ップを 100°C/ s以上の加 熱速度で 800°C以上の温度に急速加熱する装置を内設した急速加熱 室と、 脱炭焼鈍を行う脱炭焼鈍炉とをスロー ト部を介して連設し、 脱炭焼鈍炉の入側近傍に急速加熱室の雰囲気と脱炭焼鈍炉の雰囲気 とを排気する排気口を設けたことを特徴とする一方向性電磁鋼板の 脱炭焼鈍設備。
11. 急速加熱を行なう装置が、 ス ト リ ップの進行方向に距離を設 けて配置した二対のス ト リ ツプを挟む口一ル対であり、 前記ロール 対が通電ロールの対からなる力、、 或いは押さえロールと通電ロール との対からなるこ とを特徴とする請求の範囲 9 または 10記載の一方 向性電磁鋼板の脱炭焼鈍設備。
12. 急速加熱を行なう装置が、 急速加熱室内に、 中間にピンチ口 ールを配置した 2対の通電ロールであり、 このピンチロールが高温 側通電ロールの近傍に配置し、 このピンチロールで挟持する部分の ス ト リ ップの温度が 750°C以下、 或いは温度降下量が 50°C以内とな る力、、 その両方を満足するよう に加熱することを特徴とする極めて 優れた磁気特性を有する方向性電磁鋼板の脱炭焼鈍設備。
13. 急速加熱室に、 ス ト リ ップ表面に対して雰囲気ガスを吹き付 けるノ ズルを設けたことを特徴とする請求の範囲 9 , 10, 11又は 12 記載の一方向性電磁鋼板の脱炭焼鈍設備。
PCT/JP1998/000052 1997-04-16 1998-01-09 Tole d'acier electromagnetique unidirectionnelle presentant d'excellentes caracteristiques de film et d'excellentes caracteristiques magnetiques, son procede de production et installation de recuit par decarburation a cet effet WO1998046803A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/202,511 US6395104B1 (en) 1997-04-16 1998-01-09 Method of producing unidirectional electromagnetic steel sheet having excellent film characteristics and magnetic characteristics
DE69840740T DE69840740D1 (de) 1997-04-16 1998-01-09 Unidirektionales elektromagnetisches stahlblech mit hervorragenden film- und magnetischen eigenschaften, herstellungsverfahren und entkohlungsglühungskonfiguration dafür
EP98900194A EP0926250B1 (en) 1997-04-16 1998-01-09 Grain-oriented electromagnetic steel sheet having excellent film characteristics and magnetic characteristics, its production method and decarburization annealing setup therefor
KR1019980710317A KR100293141B1 (ko) 1997-04-16 1998-01-09 피막특성과 자기특성이 우수한 일방향성 전자강판과 그 제조방법및그제조방법에사용되는탈탄소둔설비

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP09932397A JP3392698B2 (ja) 1997-04-16 1997-04-16 極めて優れた磁気特性を有する方向性電磁鋼板の製造方法
JP9/99323 1997-04-16
JP9/221826 1997-08-18
JP22182697A JP3839924B2 (ja) 1997-08-18 1997-08-18 皮膜特性と磁気特性に優れた一方向性電磁鋼板及びその製造方法並びにその製造法に用いる脱炭焼鈍設備

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/202,511 A-371-Of-International US6395104B1 (en) 1997-04-16 1998-01-09 Method of producing unidirectional electromagnetic steel sheet having excellent film characteristics and magnetic characteristics
US10/108,064 Continuation US6635125B2 (en) 1997-04-16 2002-03-27 Grain-oriented electrical steel sheet excellent in film characteristics and magnetic characteristics, process for producing same, and decarburization annealing facility used in same process

Publications (1)

Publication Number Publication Date
WO1998046803A1 true WO1998046803A1 (fr) 1998-10-22

Family

ID=26440461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000052 WO1998046803A1 (fr) 1997-04-16 1998-01-09 Tole d'acier electromagnetique unidirectionnelle presentant d'excellentes caracteristiques de film et d'excellentes caracteristiques magnetiques, son procede de production et installation de recuit par decarburation a cet effet

Country Status (6)

Country Link
US (2) US6395104B1 (ja)
EP (1) EP0926250B1 (ja)
KR (1) KR100293141B1 (ja)
CN (1) CN1088475C (ja)
DE (1) DE69840740D1 (ja)
WO (1) WO1998046803A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008654A1 (fr) * 2001-07-16 2003-01-30 Nippon Steel Corporation Tole magnetique unidirectionnelle a densite de flux magnetique tres elevee, a caracteristiques de pertes dans le fer et de revetement dans un champ magnetique puissant excellentes, et procede de production associe

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359622B1 (ko) * 1999-05-31 2002-11-07 신닛뽄세이테쯔 카부시키카이샤 고자장 철손 특성이 우수한 고자속밀도 일방향성 전자 강판 및 그의 제조방법
DE10220282C1 (de) * 2002-05-07 2003-11-27 Thyssenkrupp Electrical Steel Ebg Gmbh Verfahren zum Herstellen von kaltgewalztem Stahlband mit Si-Gehalten von mindestens 3,2 Gew.-% für elektromagnetische Anwendungen
JP4823719B2 (ja) * 2006-03-07 2011-11-24 新日本製鐵株式会社 磁気特性が極めて優れた方向性電磁鋼板の製造方法
DE102006017762B4 (de) * 2006-04-12 2010-07-08 Siemens Ag Verfahren zum Laminieren eines Elektrobandes für Transformatorenkerne
DE102007057906B4 (de) * 2007-11-29 2015-10-22 Ab Skf Beschichtungsanordnung
JP4840518B2 (ja) 2010-02-24 2011-12-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
WO2012001971A1 (ja) * 2010-06-30 2012-01-05 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5772410B2 (ja) 2010-11-26 2015-09-02 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN103305745B (zh) * 2012-03-09 2016-04-27 宝山钢铁股份有限公司 一种高质量硅钢常化基板的生产方法
JP5672273B2 (ja) * 2012-07-26 2015-02-18 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5854233B2 (ja) * 2013-02-14 2016-02-09 Jfeスチール株式会社 方向性電磁鋼板の製造方法
US9956118B2 (en) 2014-09-15 2018-05-01 3M Innovative Properties Company Personal protective system tool communication adapter
US10697038B2 (en) * 2014-09-26 2020-06-30 Jfe Steel Corporation Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core
WO2019013355A1 (ja) * 2017-07-13 2019-01-17 新日鐵住金株式会社 方向性電磁鋼板
CA3075609C (en) 2017-09-28 2022-06-21 Jfe Steel Corporation Grain-oriented electrical steel sheet
JP6958738B2 (ja) * 2018-07-13 2021-11-02 日本製鉄株式会社 方向性電磁鋼板及びその製造方法
JP7339549B2 (ja) * 2019-01-16 2023-09-06 日本製鉄株式会社 フォルステライト皮膜を有しない絶縁皮膜密着性に優れる方向性電磁鋼板
JP7256406B2 (ja) * 2019-02-08 2023-04-12 日本製鉄株式会社 方向性電磁鋼板、方向性電磁鋼板の絶縁被膜形成方法、及び方向性電磁鋼板の製造方法
US11948711B2 (en) 2019-09-19 2024-04-02 Nippon Steel Corporation Grain oriented electrical steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571575B2 (ja) * 1978-06-09 1982-01-12
JPH01290716A (ja) * 1988-03-25 1989-11-22 Armco Advanced Materials Corp 粒子方向性珪素鋼の超急速熱処理方法
JPH04202713A (ja) * 1990-11-30 1992-07-23 Kawasaki Steel Corp 被膜特性と磁気特性に優れた薄型方向性けい素鋼板の製造方法
JPH0762436A (ja) * 1993-08-24 1995-03-07 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964989A (en) * 1975-01-13 1976-06-22 Allegheny Ludlum Industries, Inc. Apparatus for supplying current to a moving strip
US3997317A (en) * 1975-03-24 1976-12-14 E. W. Bowman Incorporated Glass annealing lehr having gas and electric heating means
DE3017215C2 (de) 1980-05-06 1983-06-01 Mayer, Karl, 8050 Freising Schweißschutzanordnung
JPS5920745B2 (ja) * 1980-08-27 1984-05-15 川崎製鉄株式会社 鉄損の極めて低い一方向性珪素鋼板とその製造方法
US4898627A (en) * 1988-03-25 1990-02-06 Armco Advanced Materials Corporation Ultra-rapid annealing of nonoriented electrical steel
EP0392534B1 (en) * 1989-04-14 1998-07-08 Nippon Steel Corporation Method of producing oriented electrical steel sheet having superior magnetic properties
JP2710000B2 (ja) * 1991-07-10 1998-02-04 新日本製鐵株式会社 被膜特性と磁気特性に優れた一方向性珪素鋼板
JPH0578736A (ja) * 1991-09-26 1993-03-30 Nippon Steel Corp 珪素鋼ストリツプの連続脱炭焼鈍方法
EP0606884B1 (en) * 1993-01-12 1999-08-18 Nippon Steel Corporation Grain-oriented electrical steel sheet with very low core loss and method of producing the same
US5484484A (en) * 1993-07-03 1996-01-16 Tokyo Electron Kabushiki Thermal processing method and apparatus therefor
US5472520A (en) * 1993-12-24 1995-12-05 Kawasaki Steel Corporation Method of controlling oxygen deposition during decarbutization annealing on steel sheets
JP3359449B2 (ja) * 1995-01-06 2002-12-24 新日本製鐵株式会社 超高磁束密度一方向性電磁鋼板の製造方法
US5620533A (en) * 1995-06-28 1997-04-15 Kawasaki Steel Corporation Method for making grain-oriented silicon steel sheet having excellent magnetic properties
JPH0959723A (ja) * 1995-08-23 1997-03-04 Nippon Steel Corp 鋼板の通電加熱装置
JP3220362B2 (ja) * 1995-09-07 2001-10-22 川崎製鉄株式会社 方向性けい素鋼板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571575B2 (ja) * 1978-06-09 1982-01-12
JPH01290716A (ja) * 1988-03-25 1989-11-22 Armco Advanced Materials Corp 粒子方向性珪素鋼の超急速熱処理方法
JPH04202713A (ja) * 1990-11-30 1992-07-23 Kawasaki Steel Corp 被膜特性と磁気特性に優れた薄型方向性けい素鋼板の製造方法
JPH0762436A (ja) * 1993-08-24 1995-03-07 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0926250A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008654A1 (fr) * 2001-07-16 2003-01-30 Nippon Steel Corporation Tole magnetique unidirectionnelle a densite de flux magnetique tres elevee, a caracteristiques de pertes dans le fer et de revetement dans un champ magnetique puissant excellentes, et procede de production associe
US7399369B2 (en) 2001-07-16 2008-07-15 Nippon Steel Corporation Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same
US7981223B2 (en) 2001-07-16 2011-07-19 Nippon Steel Corporation Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same

Also Published As

Publication number Publication date
EP0926250B1 (en) 2009-04-15
EP0926250A4 (en) 2004-07-28
US6635125B2 (en) 2003-10-21
CN1226935A (zh) 1999-08-25
US6395104B1 (en) 2002-05-28
US20020139444A1 (en) 2002-10-03
KR20000016710A (ko) 2000-03-25
KR100293141B1 (ko) 2001-06-15
EP0926250A1 (en) 1999-06-30
CN1088475C (zh) 2002-07-31
DE69840740D1 (de) 2009-05-28

Similar Documents

Publication Publication Date Title
WO1998046803A1 (fr) Tole d&#39;acier electromagnetique unidirectionnelle presentant d&#39;excellentes caracteristiques de film et d&#39;excellentes caracteristiques magnetiques, son procede de production et installation de recuit par decarburation a cet effet
JP3387914B1 (ja) 皮膜特性と高磁場鉄損に優れる高磁束密度一方向性電磁鋼板の製造方法
JP6057108B2 (ja) 方向性電磁鋼板の製造方法
WO2007102282A1 (ja) 磁気特性が極めて優れた方向性電磁鋼板の製造方法
WO2014047757A1 (zh) 一种高磁感普通取向硅钢的制造方法
JP3386751B2 (ja) 被膜特性と磁気特性に優れた方向性けい素鋼板の製造方法
JP2679944B2 (ja) 鉄損の低い鏡面方向性電磁鋼板の製造方法
JP5332946B2 (ja) 窒化型方向性電磁鋼板の窒化後のコイル巻き取り方法
JPH0756048B2 (ja) 被膜特性と磁気特性に優れた薄型方向性けい素鋼板の製造方法
JPH10152724A (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP3839924B2 (ja) 皮膜特性と磁気特性に優れた一方向性電磁鋼板及びその製造方法並びにその製造法に用いる脱炭焼鈍設備
JP2001506704A (ja) 変圧器の磁気回路の製造で用いられる配向粒子を有する電気鋼板の製造方法
US11948711B2 (en) Grain oriented electrical steel sheet
JP4119635B2 (ja) 脱炭性の良好な鏡面方向性電磁鋼板の製造方法
JP4119634B2 (ja) 鉄損の良好な鏡面方向性電磁鋼板の製造方法
JP3562433B2 (ja) 磁気特性と被膜特性に優れた方向性けい素鋼板
JP7180694B2 (ja) 方向性電磁鋼板の製造方法
JP3885428B2 (ja) 方向性電磁鋼板の製造方法
JP3268198B2 (ja) 磁気特性・被膜特性に優れる方向性けい素鋼板の製造方法
JPH09279247A (ja) 磁束密度の高い一方向性電磁鋼板の製造方法
JP7188459B2 (ja) 方向性電磁鋼板の製造方法
JP3392695B2 (ja) 極めて優れた鉄損特性を有する一方向性電磁鋼板の製造方法
JP3456861B2 (ja) 極めて優れた磁気特性を有する方向性電磁鋼板の製造方法
JPH06212262A (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JPH10273726A (ja) コイル長手方向の磁気特性の安定した方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98800664.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09202511

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019980710317

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998900194

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998900194

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980710317

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980710317

Country of ref document: KR