WO2019013355A1 - 方向性電磁鋼板 - Google Patents

方向性電磁鋼板 Download PDF

Info

Publication number
WO2019013355A1
WO2019013355A1 PCT/JP2018/026624 JP2018026624W WO2019013355A1 WO 2019013355 A1 WO2019013355 A1 WO 2019013355A1 JP 2018026624 W JP2018026624 W JP 2018026624W WO 2019013355 A1 WO2019013355 A1 WO 2019013355A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
film
less
steel plate
amorphous oxide
Prior art date
Application number
PCT/JP2018/026624
Other languages
English (en)
French (fr)
Other versions
WO2019013355A9 (ja
Inventor
真介 高谷
義行 牛神
藤井 浩康
修一 中村
今井 武
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US16/628,809 priority Critical patent/US11189407B2/en
Priority to JP2019529823A priority patent/JP6881581B2/ja
Priority to BR112020000266-6A priority patent/BR112020000266A2/pt
Priority to EP18832179.8A priority patent/EP3653753A4/en
Priority to CN201880044653.6A priority patent/CN110832113B/zh
Priority to KR1020207000407A priority patent/KR102359168B1/ko
Priority to RU2020100035A priority patent/RU2736043C1/ru
Publication of WO2019013355A1 publication Critical patent/WO2019013355A1/ja
Publication of WO2019013355A9 publication Critical patent/WO2019013355A9/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/57Measuring gloss
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/33Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet used as an iron core material of a transformer, and more particularly to a grain-oriented electrical steel sheet with an amorphous oxide film excellent in adhesion of a tensile insulating film.
  • Directional electrical steel sheets are mainly used for transformers. Transformers are continuously energized for long periods of time from installation to disposal and continue to generate energy losses. Therefore, energy loss when magnetized in an alternating current, that is, iron loss, is a key indicator that determines the performance of the transformer.
  • applying tension to the steel plate is effective in reducing iron loss. It is an effective means for iron loss reduction to form a film of a material having a thermal expansion coefficient smaller than that of a steel plate at a high temperature on the surface of the steel plate.
  • the forsterite-based film excellent in film adhesion which is generated by the reaction between the oxide on the steel sheet surface and the annealing separator in the finish annealing step of the magnetic steel sheet, is a film capable of imparting tension to the steel sheet.
  • Patent Document 1 the method disclosed in Patent Document 1 in which a coating liquid mainly composed of colloidal silica and phosphate is baked onto the surface of a steel sheet to form an insulating film has a large effect of applying tension to the steel sheet, so It is an effective method to reduce losses. Therefore, it is a general method of manufacturing a grain oriented electrical steel sheet to leave a forsterite-based film generated in the finish annealing step and to apply an insulating coating mainly made of phosphate thereon.
  • Patent Documents 2 to 5 there is a technology for smoothing the steel sheet surface without forming a forsterite-based film by finish annealing by controlling the atmospheric dew point of decarburizing annealing and using alumina as an annealing separator. It is disclosed.
  • Patent Document 6 discloses a method of forming a tensile insulating film after forming an amorphous oxide film on the surface of a steel sheet.
  • Patent Documents 7 to 11 disclose techniques for controlling the structure of an amorphous oxide film for the purpose of forming a tensile insulating film having higher adhesion.
  • Patent Document 7 discloses a method for securing the film adhesion between a tensile insulating film and a steel plate.
  • the surface of a grain-oriented electrical steel sheet with the steel sheet surface smoothed is pretreated to introduce fine irregularities, then an oxide of the external oxidation type is formed, and the thickness of the external oxide film is further penetrated.
  • the film adhesion is secured by forming a particulate external oxide mainly composed of silica.
  • Patent Document 8 discloses a method for securing the film adhesion between a tensile insulating film and a steel plate.
  • the temperature rise rate in the temperature range of 200 ° C. or more and 1150 ° C. or less is 10 ° C./sec or more and 500 ° C./sec.
  • the adhesion between the tensile insulating film and the steel plate can be controlled by controlling the cross-sectional area ratio of metal oxides such as iron, aluminum, titanium, manganese, and chromium in the external oxide film to 50% or less. I have secured.
  • Patent Document 9 discloses a method for securing the film adhesion between a tensile insulating film and a steel plate.
  • an external oxidation oxide film is formed on a grain-oriented electrical steel sheet whose surface is smoothed, and in the subsequent tension insulation film formation step, the steel plate on which the external oxidation oxide film is formed and a coating for tension insulation film formation
  • the ratio of the density reduced layer in the external oxidation type oxide film is set to 30% or less, and the film adhesion between the tensile insulating film and the steel plate is secured.
  • Patent Document 10 discloses a method for securing the film adhesion between a tensile insulating film and a steel plate.
  • heat treatment is performed at a temperature of 1000 ° C. or more to form an external oxidation type oxide film on a grain-oriented electrical steel sheet having a smooth surface, and the temperature from the formation temperature of the external oxidation type oxide film to 200 ° C.
  • the film adhesion between the tensile insulating film and the steel plate is secured by controlling the cooling rate in the area to 100 ° C / sec or less and setting the cavity in the external oxidation oxide film to 30% or less in sectional area ratio .
  • Patent Document 11 discloses a method of securing the film adhesion between a tensile insulating film and a steel plate.
  • the heat treatment temperature is 600 ° C. or more and 1150 ° C. or less
  • the atmospheric dew point is ⁇ 20 ° C. or more and 0 ° C. or less in the heat treatment step of forming an external oxidation type oxide film on the grained electromagnetic steel sheet whose surface is smoothed.
  • the present invention covers the surface of a grain-oriented electrical steel sheet having no forsterite-based film on the surface of the steel sheet to significantly reduce iron loss.
  • the issue is to improve the adhesion with That is, an object of the present invention is to provide a grain-oriented electrical steel sheet excellent in adhesion to a tensile insulating film.
  • the present inventors diligently studied methods for solving the above problems. As a result, after forming a film on the surface of a steel plate having no forsterite-based film on the surface of the steel plate, which is obtained by removing the forsterite-based film or intentionally preventing the formation of forsterite It has been found that the adhesion between the tensile insulating film and the steel plate is remarkably improved by forming the amorphous oxide film such that the gloss of the steel plate is 150% or more.
  • the grain-oriented electrical steel sheet according to one aspect of the present invention has a steel sheet and an amorphous oxide film formed on the steel sheet, and the surface glossiness is 150% or more.
  • the steel sheet has a chemical composition in mass%, C: 0.085% or less, Si: 0.80 to 7.00%, Mn: 1 .00% or less, Al: 0.065% or less, S: 0.013% or less, Cu: 0 to 0.01 to 0.80%, N: 0 to 0.012%, P: 0 to 0.5 %, Ni: 0 to 1.0%, Sn: 0 to 0.3%, Sb: 0 to 0.3%, and the balance may be Fe and impurities.
  • the steel sheet may contain Cu: 0.01 to 0.80% by mass as the chemical composition.
  • the glossiness may be the glossiness measured by the method described in JIS Z-8741.
  • a directional electromagnetic steel sheet according to an embodiment of the present invention (hereinafter sometimes referred to as “the electromagnetic steel sheet according to the present embodiment") is a directional electromagnetic steel sheet having an amorphous oxide film on the surface of the steel sheet. It is characterized in that the glossiness is 150% or more.
  • the grain-oriented electrical steel sheet according to the present embodiment has a steel sheet and an amorphous oxide film formed on the steel sheet, and the surface glossiness is 150% or more.
  • the present inventors examined a method for securing the film adhesion of the tensile insulating film in the case of coating the surface of the steel plate without the forsterite-based film with a tensile insulating film for reducing core loss.
  • an amorphous oxide film covering the surface of the steel plate is formed on the surface of the steel plate without the forsterite-based film (in particular, an amorphous oxide film is formed to be in direct contact with the surface of the steel plate)
  • a steel plate without a forsterite-based film can be formed by removing the forsterite-based film after finish annealing or by intentionally preventing the formation of forsterite.
  • the formation of forsterite can be intentionally prevented by adjusting the composition of the annealing separator.
  • an amorphous oxide film is formed on the surface of a steel plate (base steel plate) having no forsterite-based film, and then the morphology of the amorphous oxide film is made uniform. It is believed that the adhesion between the steel sheet and the tensile insulating film formed thereon can be enhanced. However, the thickness of the amorphous oxide is as thin as several nm, and it is extremely difficult to determine whether the morphology is uniform. Therefore, the present inventors examined a method for evaluating the uniformity of the morphology of the amorphous oxide film.
  • the uniformity of the morphology of the amorphous oxide film can be evaluated by using the glossiness of the steel sheet surface having the amorphous oxide film. That is, it was found that the higher the degree of gloss of the steel sheet surface, the more uniform the morphology of the amorphous oxide film covering the steel sheet surface.
  • the present inventors conducted the following experiment, and the relationship between the adhesion of the tensile insulating film (film adhesion) and the glossiness of the steel sheet surface of the grain-oriented electrical steel sheet having the amorphous oxide film. investigated.
  • an annealing separating agent mainly composed of alumina is applied to a decarburized and annealed sheet having a thickness of 0.23 mm containing 3.4% of Si, finish annealing is carried out, and secondary recrystallization is carried out.
  • a grain-oriented electrical steel sheet without a stellite-based coating was prepared. Heat treatment is applied to this grain-oriented electrical steel sheet in a 25% nitrogen, 75% hydrogen, dew point -30 ° C to 5 ° C atmosphere for 10 seconds so that the surface of the steel sheet is mainly composed of silica (SiO 2 ). A crystalline oxide film was formed.
  • the glossiness of the surface of a grain-oriented electrical steel sheet having this amorphous oxide film was measured according to the method specified in JIS Z-8741 (a black glass standard plate (refractive index 1.567) at an incident angle of 60 °) was measured by the method of defining glossiness).
  • a coating solution mainly composed of phosphate, chromic acid and colloidal silica is applied to the surface of a grain-oriented electrical steel sheet having an amorphous oxide film, and baked at 835 ° C. for 30 seconds in a nitrogen atmosphere, A tensile insulating film was formed.
  • the adhesion of the tensile insulating film to the tensile insulating film-oriented grain-oriented electrical steel sheet thus produced was investigated.
  • the film adhesion of the tension insulating film is determined by winding the sample collected from the above steel plate around a cylinder with a diameter of 20 mm (180 ° bending) and bending back so that the tension insulating film does not peel off from the steel plate.
  • the area ratio of the remaining part hereinafter referred to as "film remaining area ratio" was evaluated. The film remaining area ratio may be measured visually.
  • FIG. 1 shows the relationship between the degree of gloss and the film remaining area ratio. The conditions under which the film adhesion of the tension insulating film can be secured are determined from FIG. 1 as follows.
  • the surface of the grain-oriented electrical steel sheet having the steel sheet and the amorphous oxide film formed on the surface of the steel sheet and having the amorphous oxide film The glossiness of is specified as 150% or more.
  • the glossiness is preferably 230% or more.
  • the term "amorphous" means a solid in which atoms and molecules do not form a regular space lattice but have disordered arrangement. Specifically, when X-ray diffraction is performed, only the halo is detected, and a specific peak is not detected.
  • the amorphous oxide film is a film made of only a substantially amorphous oxide. Whether the film has an oxide can be confirmed using TEM or FT-IR.
  • the glossiness can be measured by the following method. Using a commercially available gloss meter, for example, a microtrigloss meter (4446) manufactured by BYK-Gardner, a method specified in JIS Z-8741 (black glass standard plate (refractive index 1.567) at an incident angle of 60 °) Assuming that the measured value is 100, it is measured by the method of specifying the glossiness). When a tensile insulating film is formed on an amorphous oxide film, the tensile insulating film of the product steel plate on which the tensile insulating film is formed is immersed in a 20% sodium hydroxide etching solution at 80 ° C. for 20 minutes. The degree of gloss may be measured after selective removal by etching.
  • a commercially available gloss meter for example, a microtrigloss meter (4446) manufactured by BYK-Gardner, a method specified in JIS Z-8741 (black glass standard plate (refractive index 1.567) at an incident
  • the amorphous oxide film is preferably an external oxidation type amorphous oxide film in order to ensure the uniformity of the morphology of the amorphous oxide film.
  • the tensile insulating film may be peeled off starting from the amorphous oxide.
  • the internal oxide type amorphous oxide film means an amorphous oxide film in a state in which an amorphous oxide intrudes into the inside of the steel plate at the interface between the steel plate and the amorphous oxide.
  • the component composition of the steel plate (base steel plate) does not directly affect the glossiness of the steel plate surface
  • the component composition (chemistry) of the steel plate for forming the amorphous oxide film of the electromagnetic steel plate according to the present embodiment The composition is not particularly limited. However, in order to obtain desirable characteristics as a grain-oriented electrical steel sheet after forming an amorphous oxide film and / or a tensile insulating film on the surface, the following range is preferable.
  • % related to the component composition means mass%.
  • C 0.085% or less C is an element that significantly deteriorates iron loss characteristics by magnetic aging. If the C content exceeds 0.085%, C remains even after decarburization annealing, and the iron loss characteristics deteriorate. Therefore, the C content is made 0.085% or less. The smaller the amount of C, the better for the iron loss characteristics, but since the detection limit is about 0.0001%, 0.0001% is a substantial lower limit of the C content. From a viewpoint of iron loss characteristic improvement, 0.010% or less of C content is preferred, and more preferably is 0.005% or less.
  • Si 0.80 to 7.00% Si is an element that contributes to the improvement of the magnetic properties. If the Si content is less than 0.80%, the steel undergoes phase transformation during secondary recrystallization annealing, and secondary recrystallization can not be controlled, and good magnetic flux density and core loss characteristics can not be obtained. Therefore, the Si content is 0.80% or more. Preferably it is 2.50% or more, more preferably 3.00% or more.
  • the Si content is 7.00% or less.
  • the Si content is 4.00% or less, More preferably, it is 3.75% or less.
  • the Mn content is 1.00% or less.
  • the Mn content is 1.00% or less.
  • it is 0.70% or less, More preferably, it is 0.50% or less.
  • the Al content may be 0%.
  • Mn is an austenite formation promoting element. If the Mn content is less than 0.01%, the effect can not be sufficiently obtained, and the steel sheet becomes brittle during hot rolling. Therefore, the Mn content may be 0.01% or more. Preferably it is 0.05% or more, More preferably, it is 0.10% or more.
  • the Al content is set to 0.065% or less. Preferably it is 0.060% or less, More preferably, it is 0.055% or less.
  • the Al content may be 0%.
  • Al is an element that forms AlN functioning as an inhibitor and contributes to the improvement of the magnetic properties. Therefore, in the slab used for production, if the Al content is less than 0.010%, the amount of formation of AlN is small and secondary recrystallization does not proceed sufficiently. Therefore, it is preferable to make Al content in the slab used for manufacture into 0.010% or more, and this Al may remain in a steel plate.
  • S 0.013% or less
  • S is an element that forms fine sulfides and reduces iron loss characteristics.
  • S is preferably as small as possible, but since the detection limit is about 0.0001%, the S content may be 0.0001% or more. More preferably, it is 0.003% or more, still more preferably 0.005% or more.
  • the S content is 0.013% or less.
  • it is 0.010% or less, more preferably 0.005% or less.
  • the magnetic steel sheet according to the present embodiment is basically based on the balance except the above elements being Fe and impurities, but in addition to the above elements, Cu is contained in the following range in order to improve the magnetic characteristics. It is also good.
  • the lower limit is 0% because Cu does not necessarily have to be contained.
  • Cu 0 to 0.80% Cu is an element that binds to S to form a precipitate that functions as an inhibitor. If the Cu content is less than 0.01%, the effect due to the inclusion is not sufficiently obtained. Therefore, when the effect is obtained, the Cu content is preferably 0.01% or more. More preferably, it is 0.04% or more, more preferably 0.08% or more.
  • the Cu content is made 0.80% or less.
  • it is 0.60% or less, More preferably, it is 0.50% or less.
  • the component composition described above may contain one or more of N, P, Ni, Sn, and Sb in the following range, as long as the characteristics of the electrical steel sheet according to the present embodiment are not impaired.
  • the lower limit is 0% because these elements do not necessarily have to be contained.
  • N 0 to 0.012% N is an element that forms AlN that functions as an inhibitor. If the N content is less than 0.004%, the formation of AlN becomes insufficient. Therefore, when the above effect is obtained, the N content is preferably set to 0.004% or more. More preferably, it is 0.006% or more, further preferably 0.007% or more.
  • N is also an element that forms blisters (voids) in the steel plate during cold rolling. If the N content exceeds 0.012%, there is a concern that blisters (voids) will be formed in the steel sheet at the time of cold rolling, so the N content is 0.012% or less even when it is contained.
  • the N content is preferably 0.010% or less, more preferably 0.009% or less.
  • P 0 to 0.50%
  • P is an element that contributes to the reduction of iron loss by increasing the specific resistance of the steel plate. In the case where the effect due to the content is surely obtained, it is preferable to make the P content 0.02% or more. On the other hand, if the P content exceeds 0.50%, the rollability decreases. Therefore, even when it is contained, the P content is made 0.50% or less. Preferably it is 0.35% or less.
  • Ni 0 to 1.00%
  • Ni is an element that enhances the specific resistance of the steel plate and contributes to the reduction of iron loss, controls the metal structure of the hot-rolled steel plate, and contributes to the improvement of the magnetic properties. In the case where the effect of the content is surely obtained, it is preferable to make the Ni content 0.02% or more. On the other hand, if the Ni content exceeds 1.00%, secondary recrystallization proceeds in an unstable manner. Therefore, even when it is contained, Ni is made 1.00% or less.
  • the Ni content is preferably 0.25% or less.
  • Sn 0 to 0.30%
  • Sb 0 to 0.30%
  • Sn and Sb segregate at grain boundaries, and during final annealing, Al is oxidized by the moisture released by the annealing separator (this oxidation causes different inhibitor strength at the coil position and causes variation in magnetic characteristics). It is an element having an action of preventing.
  • the content of any of the elements exceeds 0.30%, secondary recrystallization becomes unstable and the magnetic properties deteriorate. Therefore, the content of both Sn and Sb is 0.30% or less.
  • any of the elements is 0.25% or less.
  • the electromagnetic steel sheet according to the present embodiment contains the above-described elements, and the balance is made of Fe and impurities.
  • C 0.085% or less, Si: 0.80 to 7.00%, Mn: 0.01 to 1.00%, Al: 0.010 to 0.065%.
  • S 0.001 to 0.013%, Cu: 0 to 0.01 to 0.80%, N: 0 to 0.012%, P: 0 to 0.50%, Ni: 0 to 1.00 %, Sn: 0 to 0.30%, Sb: 0 to 0.30%, and the balance can be obtained by manufacturing using a slab consisting of Fe and impurities.
  • the molten steel adjusted to the required component composition is cast by a usual method (for example, continuous casting) to produce a slab for producing a grain-oriented electrical steel sheet.
  • the slab is subjected to ordinary hot rolling to form a hot rolled steel sheet, and the hot rolled steel sheet is wound up to form a hot rolled coil.
  • the hot-rolled coil is unwound, subjected to hot-rolled sheet annealing, and then subjected to one cold rolling or multiple cold rollings sandwiching the intermediate annealing to obtain the same thickness as the final product. It will be a steel plate.
  • the steel plate after cold rolling is subjected to decarburizing annealing.
  • the decarburization annealing it is preferable to heat the decarburization annealing in a wet hydrogen atmosphere.
  • the C content in the steel sheet can be reduced to a region where deterioration of the magnetic characteristics due to magnetic aging does not occur in the product steel sheet, and primary recrystallization can be performed. This primary recrystallization is in preparation for secondary recrystallization.
  • the steel sheet After decarburizing annealing, the steel sheet is annealed in an ammonia atmosphere to form AlN inhibitor in the steel sheet.
  • the steel sheet is subjected to finish annealing at a temperature of 1100 ° C. or higher.
  • the finish annealing may be performed in the form of a coil obtained by winding a steel sheet, but an annealing separator containing Al 2 O 3 as a main component is applied to the surface of the steel sheet for the purpose of preventing seizure of the steel sheet.
  • a scrubber is used to remove excess annealing separator from the steel plate and to control the surface condition of the steel plate.
  • the scrubber preferably has a brush yarn diameter of 0.2 mm to 0.6 mm.
  • the yarn diameter of the brush is more than 0.6 mm, the surface of the steel sheet is roughened (roughness is increased) and the glossiness after the formation of the amorphous oxide film is reduced, which is not preferable.
  • the surface roughness (arithmetic mean Ra of JIS B 0601) after removal of the annealing separator by a scrubber is preferably about 0.2 to 0.6 ⁇ m.
  • the steel sheet is annealed in a mixed atmosphere of hydrogen and nitrogen adjusted to partial pressure of oxygen (P H2O / P H2 ) to form an amorphous oxide film on the surface of the steel sheet.
  • P H2O / P H2 partial pressure of oxygen
  • the glossiness of the surface due to the uniformity of the morphology of the amorphous oxide film affects the film remaining area ratio (an index indicating the quality of the film adhesion of the tension insulating film).
  • the present inventors changed the oxygen partial pressure (P H2O / P H2 ) of the annealing atmosphere when forming the amorphous oxide film on the steel sheet after finish annealing, and changed the oxygen partial pressure of the annealing atmosphere ( The relationship between PH2O / PH2 ) and the degree of gloss was investigated.
  • FIG. 2 shows the relationship between the oxygen partial pressure and the degree of gloss of the annealing atmosphere for forming the obtained amorphous oxide film.
  • the case where the film remaining area rate is 90% or more is shown by ⁇ in the figure, and the case where the film remaining area rate is 80% or more and less than 90% is shown as ⁇ , and the film remaining area
  • the case where the rate is less than 80% is indicated by x.
  • the oxygen partial pressure (P H2O / P H2 ) of the annealing atmosphere for forming an amorphous oxide film having a gloss of 150% or more is 0.010 or less, and an amorphous having a gloss of 230% or more.
  • Oxygen partial pressure ( PH2O / PH2 ) of the annealing atmosphere which can form the quality oxide film is 0.005 or less, furthermore, it can form the amorphous oxide film which becomes 250% or more of surface glossiness It is understood that the oxygen partial pressure (P H2O / P H2 ) of the atmosphere is 0.001 or less.
  • the oxygen partial pressure (P H2O / P H2 ) of the annealing atmosphere for forming the amorphous oxide film is preferably 0.010 or less, and 0.005 or less It is more preferable to set it as 0.001, and it is further more preferable to set it as 0.001 or less.
  • the annealing temperature is preferably 600 to 1150 ° C., and more preferably 700 to 900 ° C.
  • the annealing temperature is less than 600 ° C., the amorphous oxide film is not sufficiently formed. Moreover, since the installation load will become high when it exceeds 1150 degreeC, it is unpreferable.
  • the cooling rate after annealing may not be limited, but the external oxide amorphous oxide film having an aspect ratio of the amorphous oxide of less than 1.2
  • the oxygen partial pressure (P H2O / P H2 ) at the time of annealing cooling is preferable to set the oxygen partial pressure (P H2O / P H2 ) at the time of annealing cooling to 0.005 or less.
  • Silicon steel slabs having the component compositions (Steel Nos. A to F) shown in Table 1-1 were respectively heated to 1100 ° C. and subjected to hot rolling to obtain hot-rolled steel plates having a thickness of 2.6 mm. These hot rolled steel sheets are annealed at 1100 ° C., and then subjected to one cold rolling or multiple cold rollings sandwiching intermediate annealing to obtain cold rolled steel sheets having a final thickness of 0.23 mm. Thereafter, these cold rolled steel sheets were subjected to decarburization annealing and nitriding annealing.
  • a cold-rolled steel plate subjected to decarburizing annealing and nitriding annealing is coated with a water slurry of an annealing separator composed mainly of alumina, and subjected to finish annealing at 1200 ° C. for 20 hours to complete secondary recrystallization.
  • an annealing separator composed mainly of alumina
  • finish annealing at 1200 ° C. for 20 hours to complete secondary recrystallization.
  • removal of the annealing separator by the scrubber and control of the surface condition were performed under the conditions shown in Table 2.
  • the grain-oriented electrical steel sheets consisted of 25% nitrogen and 75% hydrogen.
  • an atmosphere with an oxygen partial pressure such as 1-17
  • soaking (annealing) at a holding temperature shown in Table 2 followed by 25% nitrogen and 75% hydrogen the oxygen partial pressure shown in Table 2 Heat treatment was performed to cool to room temperature in the atmosphere.
  • the holding temperature of annealing was 600 ° C. or more, a film was formed on the surface of the steel plate.
  • Whether the film formed on the steel sheet surface was an amorphous oxide film was confirmed using X-ray diffraction and TEM. In addition, confirmation using FT-IR was also performed. Specifically, for each steel No. 1 on which a coating was formed. Manufacturing condition No. In the combination of the above, the cross section of the steel plate was processed by FIB (Focused Ion Beam), and a range of 10 ⁇ m ⁇ 10 ⁇ m was observed with a transmission electron microscope (TEM), and it was confirmed that the film consisted of SiO 2 . In addition, when the surface was analyzed by Fourier transform infrared spectroscopy (FT-IR), a peak was present at a wave number of 1250 (cm ⁇ 1 ).
  • FT-IR Fourier transform infrared spectroscopy
  • This peak since the peak derived from SiO 2, This also film was confirmed to match that have formed of SiO 2. Further, when X-ray diffraction was performed on a steel plate having a film, only the halo was detected except for the peak of the base iron, and no specific peak was detected. That is, the film in which all were formed was an amorphous oxide film.
  • a coating solution for forming a tensile insulating film comprising aluminum phosphate, chromic acid and colloidal silica is applied to the grain-oriented electrical steel sheet having the amorphous oxide film formed thereon. Then, by baking for 30 seconds at 850 ° C., a grain-oriented electrical steel sheet with a tensile insulating film was produced.
  • a sample collected from the produced directionally insulating steel sheet with a tension insulating film was wound (180 ° bending) on a cylinder having a diameter of 20 mm, and the film adhesion of the insulating film was evaluated by the film remaining area ratio after bending back.
  • the evaluation of the film adhesion of the insulating film was visually judged whether or not the tension insulating film was peeled off.
  • the case where the film remaining area ratio is 90% or more without peeling from the steel plate is GOOD, the case where the film remaining area ratio is 80% or more and less than 90% is OK, and the film remaining area ratio less than 80% is NG.
  • the tensile insulating film of the product steel sheet with a tensile insulating film is made of 20% sodium hydroxide at 80 ° C. It selectively removed by the wet etching which is immersed in etching solution for 20 minutes.
  • the glossiness of the surface of the grain-oriented electrical steel sheet from which the tensile insulating film has been selectively removed is measured according to JIS Z-8741 using a microtrigloss meter (4446) manufactured by BYK-Gardner (incident angle 60)
  • the black glass standard plate (refractive index 1.567) was measured at an angle of 100, and the gloss was determined by the method of specifying the degree of gloss).
  • Table 2 shows the evaluation of the gloss and the adhesion of the coating to the tensile insulating coating.
  • the present invention it is possible to provide a grain-oriented electrical steel sheet with an amorphous oxide film which is excellent in the adhesion between the steel sheet and the tensile insulating film formed on the steel sheet surface. Therefore, the present invention is highly applicable in the electromagnetic steel sheet manufacturing industry and the electromagnetic steel sheet utilization industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

この方向性電磁鋼板は、鋼板と、前記鋼板上に形成された非晶質酸化物被膜と、 を有し、表面の光沢度が150%以上である。

Description

方向性電磁鋼板
 本発明は、変圧器の鉄芯材料として使用する方向性電磁鋼板、特に、張力絶縁被膜の密着性に優れた、非晶質酸化物被膜付き方向性電磁鋼板に関する。
 本願は、2017年07月13日に、日本に出願された特願2017-137408号に基づき優先権を主張し、その内容をここに援用する。
 方向性電磁鋼板は、主として、変圧器に使用される。変圧器は、据付けから廃棄までの長期間にわたり連続的に励磁され、エネルギー損失を発生し続ける。そのため、交流で磁化される際のエネルギー損失、即ち、鉄損が、変圧器の性能を決定する主要な指標となる。
 方向性電磁鋼板の鉄損を低減するため、(a){110}<001>方位(ゴス方位)への集積を高める、(b)Si等の固溶元素の含有量を多くして鋼板の電気抵抗を高める、又は、(c)電磁鋼板の板厚を薄くする、との観点から、これまで、多くの技術が開発されてきた。
 また、鋼板に張力を付与することが、鉄損の低減に有効である。鋼板より熱膨張係数が小さい材質の被膜を、高温で、鋼板表面に形成することが、鉄損低減のための有効な手段である。電磁鋼板の仕上げ焼鈍工程で、鋼板表面の酸化物と焼鈍分離剤が反応して生成する、被膜密着性に優れるフォルステライト系被膜は、鋼板に張力を付与することができる被膜である。
 例えば、特許文献1に開示の、コロイド状シリカとリン酸塩とを主体とするコーティング液を、鋼板表面に焼き付けて絶縁被膜を形成する方法は、鋼板への張力付与の効果が大きいので、鉄損の低減に有効な方法である。それ故、仕上げ焼鈍工程で生成したフォルステライト系被膜を残し、その上に、リン酸塩を主体とする絶縁コーティングを施すことが、一般的な方向性電磁鋼板の製造方法となっている。
 しかしながら、近年、フォルステライト系被膜が磁壁の移動を妨げ、鉄損に悪影響を及ぼすことが明らかになった。方向性電磁鋼板において、磁区は、交流磁場の下で磁壁が移動して変化する。この磁壁の移動が円滑かつ迅速であることが、鉄損の低減に効果的であるが、フォルステライト系被膜は、鋼板/被膜界面に凹凸構造を有し、この凹凸構造が磁壁の移動を妨げるので、鉄損に悪影響を及ぼすと考えられる。
 そこで、フォルステライト系被膜の形成を抑制し、鋼板表面を平滑化する技術が検討されている。例えば、特許文献2~5には、脱炭焼鈍の雰囲気露点を制御し、焼鈍分離剤としてアルミナを用いることにより、仕上げ焼鈍でフォルステライト系被膜を形成せず、鋼板表面を平滑化する技術が開示されている。
 しかしながら、このようにして鋼板表面を平滑化した場合、鋼板に張力を付与するためには、鋼板表面に、十分な密着性を有する張力絶縁被膜を形成する必要がある。
 このような課題に対し、特許文献6には、鋼板表面に非晶質酸化物被膜を形成した後、張力絶縁被膜を形成する方法が開示されている。また、特許文献7~11には、さらに密着性が高い張力絶縁被膜を形成することを目的とし、非晶質酸化物被膜の構造を制御する技術が開示されている。
 特許文献7には、張力絶縁被膜と鋼板との被膜密着性を確保する方法が開示されている。この方法では、鋼板表面を平滑化した一方向性電磁鋼板の表面に、微小凹凸を導入する前処理を施した後、外部酸化型の酸化物を形成し、さらに外部酸化膜の膜厚を貫通した形で、シリカを主体とする粒状外部酸化物を形成することによって、被膜密着性を確保している。
 特許文献8には、張力絶縁被膜と鋼板との被膜密着性を確保する方法が開示されている。この方法では、鋼板表面を平滑化した一方向性電磁鋼板に外部酸化型酸化膜を形成する熱処理工程において、200℃以上1150℃以下の温度域の昇温速度を10℃/秒以上500℃/秒以下に制御し、外部酸化膜に占める鉄、アルミニウム、チタン、マンガン、クロム等の金属系酸化物の断面面積率を50%以下とすることで、張力絶縁被膜と鋼板との被膜密着性を確保している。
 特許文献9には、張力絶縁被膜と鋼板との被膜密着性を確保する方法が開示されている。この方法では、鋼板表面を平滑化した一方向性電磁鋼板に外部酸化型酸化膜を形成し、続く張力絶縁被膜形成工程において、外部酸化型酸化膜が形成された鋼板と張力絶縁被膜形成用塗布液との接触時間を20秒以下にすることで、外部酸化型酸化膜中の密度低下層の比率を30%以下にし、張力絶縁被膜と鋼板との被膜密着性を確保している。
 特許文献10には、張力絶縁被膜と鋼板との被膜密着性を確保する方法が開示されている。この方法では、鋼板表面を平滑化した一方向性電磁鋼板に外部酸化型酸化膜を形成するために熱処理を1000℃以上の温度で行い、外部酸化型酸化膜の形成温度から200℃までの温度域の冷却速度を100℃/秒以下に制御し、外部酸化型酸化膜中の空洞を断面面積率で30%以下とすることで、張力絶縁被膜と鋼板との被膜密着性を確保している。
 特許文献11には、張力絶縁被膜と鋼板との被膜密着性を確保する方法が開示されている。この方法では、鋼板表面を平滑化した一方向性電磁鋼板に外部酸化型酸化膜を形成する熱処理工程において、熱処理温度を600℃以上1150℃以下、雰囲気露点を-20℃以上0℃以下とする条件で、かつ、その時の冷却雰囲気露点を5℃以上60℃以下とする条件で焼鈍し、外部酸化型酸化膜中に断面面積率で5%以上30%以下の金属鉄を含有させることで、張力絶縁被膜と鋼板との被膜密着性を確保している。
 しかしながら、特許文献7~11に開示されたいずれの方法においても、張力絶縁被膜と鋼板との十分な密着性が得られず、期待する鉄損低減効果が十分に発現しない場合がある。
日本国特開昭48-039338号公報 日本国特開平07-278670号公報 日本国特開平11-106827号公報 日本国特開平11-118750号公報 日本国特開2003-268450号公報 日本国特開平07-278833号公報 日本国特開2002-322566号公報 日本国特開2002-348643号公報 日本国特開2003-293149号公報 日本国特開2002-363763号公報 日本国特開2003-313644号公報
 本発明は、従来技術の現状に鑑み、鉄損を大幅に低減するために、鋼板表面にフォルステライト系被膜がない方向性電磁鋼板の表面に張力絶縁被膜を被覆する際、張力絶縁被膜と鋼板との密着性を高めることを課題とする。すなわち、本発明は、張力絶縁被膜との密着性に優れる方向性電磁鋼板を提供することを目的とする。
 本発明者らは、上記課題を解決する手法について鋭意検討した。その結果、フォルステライト系被膜を除去したり、又は、フォルステライトの生成を意図的に防止したりすることによって得られた、鋼板表面にフォルステライト系被膜を有しない鋼板の表面に、被膜形成後の鋼板の光沢度が150%以上となるような非晶質酸化物被膜を形成することで、張力絶縁被膜と鋼板との密着性が顕著に向上することを見いだした。
 本発明は、上記知見に基づいてなされたもので、その要旨は、以下のとおりである。
(1)本発明の一態様に係る方向性電磁鋼板は、鋼板と、前記鋼板上に形成された非晶質酸化物被膜と、を有し、表面の光沢度が150%以上である。
(2)上記(1)に記載の方向性電磁鋼板は、前記鋼板が、化学組成として、質量%で、C:0.085%以下、Si:0.80~7.00%、Mn:1.00%以下、Al:0.065%以下、S:0.013%以下、Cu:0~0.01~0.80%、N:0~0.012%、P:0~0.5%、Ni:0~1.0%、Sn:0~0.3%、Sb:0~0.3%、を含有し、残部がFe及び不純物からなってもよい。
(3)上記(2)に記載の方向性電磁鋼板は、前記鋼板が、前記化学組成として、質量%で、Cu:0.01~0.80%を含有してもよい。
(4)上記(1)~(3)のいずれかに記載の方向性電磁鋼板は、前記光沢度が、JIS Z-8741に記載の方法で測定した光沢度であってもよい。
 本発明の上記態様によれば、張力絶縁被膜と鋼板との密着性に優れる方向性電磁鋼板を提供することができる。
光沢度と被膜残存面積率との関係を示す図である。 非晶質酸化物被膜を形成する焼鈍雰囲気の酸素分圧と光沢度との関係を示す図である。
 本発明の一実施形態に係る方向性電磁鋼板(以下「本実施形態に係る電磁鋼板」ということがある。)は、鋼板表面に非晶質酸化物被膜を有する方向性電磁鋼板において、表面の光沢度が150%以上であることを特徴とする。言い換えれば、本実施形態に係る方向性電磁鋼板は、鋼板と、前記鋼板上に形成された非晶質酸化物被膜と、を有し、表面の光沢度が150%以上であることを特徴とする。
 以下、本実施形態に係る電磁鋼板について説明する。
 本発明者らは、フォルステライト系被膜がない鋼板表面に、鉄損を低減するための張力絶縁被膜を被覆する場合において、張力絶縁被膜の被膜密着性を確保する方法について検討した。その結果、フォルステライト系被膜がない鋼板の表面に、鋼板表面を被覆する非晶質酸化物被膜を形成(特に鋼板の表面に直接接するように非晶質酸化物被膜を形成)した上で、この非晶質酸化物被膜のモルフォロジーを均一にして、張力絶縁被膜と鋼板との界面における応力集中を極力抑制することが重要であると発想した。フォルステライト系被膜がない鋼板は、仕上げ焼鈍後にフォルステライト系被膜を除去したり、又は、フォルステライトの生成を意図的に防止することによって形成できる。例えば、焼鈍分離剤の組成を調整することで、フォルステライトの生成を意図的に防止することができる。
 上述したように、フォルステライト系被膜がない鋼板(母材鋼板)の表面に、非晶質酸化物被膜を形成した上で、この非晶質酸化物被膜のモルフォロジーを均一にすることで、その上に形成される張力絶縁被膜と、鋼板との密着性を高めることができると考えられる。しかしながら、非晶質酸化物の厚みは数nm程度と非常に薄く、モルフォロジーが均一であるかどうか判断することは極めて難しい。そこで、本発明者らは、非晶質酸化物被膜のモルフォロジーの均一性を評価する手法を検討した。その結果、非晶質酸化物被膜を有する鋼板表面の光沢度を用いれば、非晶質酸化物被膜のモルフォロジーの均一性を評価できることを見いだした。即ち、鋼板表面の光沢度が高いほど、鋼板表面を被覆した非晶質酸化物被膜のモルフォロジーが均一であることが分かった。
 上記考えに基づき、本発明者らは、次の実験を行い、張力絶縁被膜の密着性(被膜密着性)と非晶質酸化物被膜を有する方向性電磁鋼板の鋼板表面の光沢度との関係を調査した。
 実験用素材として、Siを3.4%含む板厚0.23mmの脱炭焼鈍板に、アルミナを主体とする焼鈍分離剤を塗布して仕上げ焼鈍を行い、二次再結晶させることによって、フォルステライト系被膜を有さない方向性電磁鋼板を準備した。この方向性電磁鋼板に、窒素25%、水素75%、露点-30℃~5℃の雰囲気において、均熱時間10秒の熱処理を施し、鋼板表面に、シリカ(SiO)を主体とする非晶質酸化物被膜を形成した。
 この非晶質酸化物被膜を有する方向性電磁鋼板の表面の光沢度を、JIS Z-8741に規格された方法(入射角60°で黒ガラス標準板(屈折率1.567)を測定した値を100として、光沢度を規定する方法)で測定した。
 次いで、非晶質酸化物被膜を有する方向性電磁鋼板の表面に、リン酸塩、クロム酸、コロイダルシリカを主体とする塗布液を塗布し、窒素雰囲気中において、835℃で30秒間焼き付けて、張力絶縁被膜を形成した。
 このようにして作製した張力絶縁被膜付き方向性電磁鋼板における、張力絶縁被膜の被膜密着性を調査した。
 張力絶縁被膜の被膜密着性は、直径20mmの円筒に、上記鋼板から採取した試料を巻き付け(180°曲げ)の後、曲げ戻した状態で、張力絶縁被膜が鋼板から剥離せず、密着したま残存している部分の面積率(以下「被膜残存面積率」という。)で評価した。被膜残存面積率については、目視で測定すればよい。
 図1に、光沢度と被膜残存面積率との関係を示す。図1から、張力絶縁被膜の被膜密着性を確保できる条件を求めると次のようになる。
 (i)光沢度が150%以上で、被膜残存面積率が80%以上となり、張力絶縁被膜の被膜密着性は良好である。
 (ii)光沢度が230%以上で、被膜残存面積率が90%以上となり、張力絶縁被膜の被膜密着性はより良好である。
 以上の結果に基づいて、本実施形態に係る電磁鋼板において、鋼板と鋼板の表面に形成された非晶質酸化物被膜とを有し、非晶質酸化物被膜を有する方向性電磁鋼板の表面の光沢度は150%以上と規定する。光沢度は、好ましくは230%以上である。
 ここで、非晶質とは、原子や分子が規則正しい空間格子を作らないで、乱れた配列をしている固体である。具体的には、X線回折を行った際に、ハローのみが検出され、特定のピークが検出されない状態を示す。
 本実施形態に係る電磁鋼板において、非晶質酸化物被膜とは、実質的に非晶質な酸化物のみからなる被膜である。被膜が酸化物を有するかどうかは、TEMやFT-IRを用いて確認できる。
 光沢度は、以下の方法で測定できる。
 市販の光沢計、例えばBYK-Gardner社製のマイクロトリグロス光沢計(4446)を使用し、JIS Z-8741に規格の方法(入射角60°で黒ガラス標準板(屈折率1.567)を測定した値を100として、光沢度を規定する方法)により測定する。
 非晶質酸化物被膜の上に張力絶縁被膜が形成されている場合、張力絶縁被膜を形成した製品鋼板の張力絶縁被膜を、80℃の20%水酸化ナトリウムのエッチング液に20分間浸漬する湿式エッチングで選択的に除去してから、光沢度を測定すればよい。
 非晶質酸化物被膜のモルフォロジーの均一性を確保する点で、非晶質酸化物被膜は、外部酸化型の非晶質酸化物被膜であることが好ましい。
 鋼板表面に、外部酸化型ではなく、内部酸化型の非晶質酸化物被膜を形成した場合、非晶質酸化物を起点にして張力絶縁被膜が剥離する場合がある。ここで、内部酸化型の非晶質酸化物被膜とは、鋼板と非晶質酸化物の界面において、非晶質酸化物が鋼板内部に陥入した状態の非晶質酸化物被膜のことであり、陥入部の深さ方向の長さと陥入部の底辺の長さの比であるアスペクト比が1.2以上の非晶質酸化物が内部酸化型の非晶質酸化物であると定義する。
 鋼板表面の光沢度に、鋼板(母材鋼板)の成分組成は、直接、影響しないので、本実施形態に係る電磁鋼板の、非晶質酸化物被膜を形成するための鋼板の成分組成(化学組成)は、特に、限定しない。しかしながら、表面に非晶質酸化物被膜及び/又は張力絶縁被膜を形成した後に、方向性電磁鋼板としての好ましい特性を得る場合、以下の範囲であることが好ましい。以下、成分組成に係る%は、質量%を意味する。
 C:0.085%以下
 Cは、磁気時効によって鉄損特性を著しく劣化させる元素である。C含有量が0.085%を超えると、脱炭焼鈍後も、Cが残留し、鉄損特性が劣化する。そのため、C含有量は0.085%以下とする。Cは、少ないほど鉄損特性にとって好ましいが、検出限界が0.0001%程度であるので、0.0001%がC含有量の実質的な下限である。鉄損特性改善の観点から、C含有量は0.010%以下が好ましく、より好ましくは0.005%以下である。
 Si:0.80~7.00%
 Siは、磁気特性の向上に寄与する元素である。Si含有量が0.80%未満では、二次再結晶焼鈍時に鋼が相変態して、二次再結晶を制御することができず、良好な磁束密度と鉄損特性とが得られない。そのため、Si含有量は0.80%以上とする。好ましくは2.50%以上、より好ましくは3.00%以上である。
 一方、Si含有量が7.00%を超えると、鋼板が脆化し、製造工程での通板性が著しく悪化する。そのため、Si含有量は7.00%以下とする。好ましくは4.00%以下であり、より好ましくは3.75%以下である。
 Mn:1.00%以下
 Mn含有量が1.00%を超えると、二次再結晶焼鈍時に鋼が相変態し、良好な磁束密度と鉄損特性とが得られない。そのため、Mn含有量は1.00%以下とする。好ましくは0.70%以下、より好ましくは0.50%以下である。Al含有量は0%でもよい。
 一方、Mnは、オーステナイト形成促進元素である。Mn含有量が0.01%未満では、効果が十分に得られず、また、熱間圧延時に鋼板が脆化する。そのため、Mn含有量は0.01%以上としてもよい。好ましくは0.05%以上、より好ましくは0.10%以上である。
 Al:0.065%以下
 Al含有量が0.065%を超えると、鋼板が脆化するとともに、AlNの析出が不均一になる。その結果、所要の二次再結晶組織が得られず、磁束密度が低下する。そのため、Al含有量は0.065%以下とする。好ましくは0.060%以下、より好ましくは0.055%以下である。Al含有量は0%でもよい。
 一方、Alは、インヒビターとして機能するAlNを形成し、磁気特性の向上に寄与する元素である。そのため、製造に用いるスラブにおいて、Al含有量が0.010%未満では、AlNの生成量が少なく、二次再結晶が十分に進行しない。そのため、製造に用いるスラブにおけるAl含有量は0.010%以上とすることが好ましく、このAlが鋼板に残存してもよい。
 S:0.013%以下
 Sは、微細な硫化物を形成し、鉄損特性を低下させる元素である。Sは、少ないほど好ましいが、検出限界が0.0001%程度であるので、S含有量は0.0001%以上としてもよい。より好ましくは0.003%以上、さらに好ましくは0.005%以上である。
 一方、S含有量が0.013%を超えると、鉄損特性が著しく低下する。そのため、S含有量は0.013%以下とする。好ましくは0.010%以下、より好ましくは0.005%以下である。
 本実施形態に係る電磁鋼板は、上記元素を除く残部は、Fe及び不純物であることを基本とするが、上記元素の他、Cuを、磁気特性の向上のため、以下の範囲で含有してもよい。Cuは必ずしも含有しなくてもよいので、その下限は0%である。
 Cu:0~0.80%
 Cuは、Sと結合し、インヒビターとして機能する析出物を形成する元素である。Cu含有量が0.01%未満では、含有による効果が十分に得られないので、効果を得る場合、Cu含有量は0.01%以上とすることが好ましい。より好ましくは0.04%以上、さらに好ましくは0.08%以上である。
 一方、Cu含有量が0.80%を超えると、析出物の分散が不均一になり、鉄損低減効果が飽和する。そのため、含有させる場合でも、Cu含有量は0.80%以下とする。好ましくは0.60%以下、より好ましくは0.50%以下である。
 また、上述した成分組成は、本実施形態に係る電磁鋼板の特性を損なわない範囲で、N、P、Ni、Sn、Sbの1種又は2種以上を以下の範囲で含有してもよい。これらの元素は必ずしも含有しなくてもよいので、その下限は0%である。
 N:0~0.012%
 Nは、インヒビターとして機能するAlNを形成する元素である。N含有量が0.004%未満では、AlNの形成が不十分となるので、上記効果を得る場合、N含有量は0.004%以上とすることが好ましい。より好ましくは0.006%以上、さらに好ましくは0.007%以上である。
 一方、Nは、冷間圧延時、鋼板中にブリスター(空孔)を形成する元素でもある。N含有量が0.012%を超えると、冷間圧延時、鋼板中にブリスター(空孔)が生成する懸念があるので、含有させる場合でも、N含有量は0.012%以下とする。N含有量は、好ましくは0.010%以下、より好ましくは0.009%以下である。
 P:0~0.50%
 Pは、鋼板の比抵抗を高めて、鉄損の低減に寄与する元素である。含有による効果を確実に得る場合には、P含有量を0.02%以上とすることが好ましい。
 一方、P含有量が0.50%を超えると、圧延性が低下する。そのため、含有させる場合でも、P含有量は0.50%以下とする。好ましくは0.35%以下である。
 Ni:0~1.00%
 Niは、鋼板の比抵抗を高めて、鉄損の低減に寄与するとともに、熱延鋼板の金属組織を制御し、磁気特性の向上に寄与する元素である。含有による効果を確実に得る場合には、Ni含有量を0.02%以上とすることが好ましい。
 一方、Ni含有量が1.00%を超えると、二次再結晶が不安定に進行する。そのため、含有させる場合でも、Niは1.00%以下とする。Ni含有量は好ましくは0.25%以下である。
 Sn:0~0.30%
 Sb:0~0.30%
 Sn及びSbは、結晶粒界に偏析し、仕上げ焼鈍時、焼鈍分離剤が放出する水分でAlが酸化される(この酸化で、コイル位置でインヒビター強度が異なり、磁気特性が変動する)のを防止する作用を有する元素である。含有による効果を確実に得る場合には、いずれの元素においても、含有量を0.02%以上とすることが好ましい。
 一方、いずれの元素も含有量が0.30%を超えると、二次再結晶が不安定となり、磁気特性が劣化する。そのため、Sn及びSbのいずれも含有量を0.30%以下とする。好ましくは、いずれの元素も0.25%以下である。
 すなわち、本実施形態に係る電磁鋼板は、上記元素を含み、残部がFe及び不純物からなる。
 このような成分組成を有する鋼板は、C:0.085%以下、Si:0.80~7.00%、Mn:0.01~1.00%、Al:0.010~0.065%、S:0.001~0.013%、Cu:0~0.01~0.80%、N:0~0.012%、P:0~0.50%、Ni:0~1.00%、Sn:0~0.30%、Sb:0~0.30%、を含有し、残部がFe及び不純物からなるスラブを用いて製造することによって得ることができる。
 次に本実施形態に係る電磁鋼板の好ましい製造方法について説明する。
 所要の成分組成に調整した溶鋼を、通常の方法(例えば、連続鋳造)で鋳造して方向性電磁鋼板製造用のスラブを製造する。次いで、このスラブを通常の熱間圧延に供して、熱延鋼板とし、この熱延鋼板を巻き取って熱延コイルとする。続いて、熱延コイルを巻き戻して、熱延板焼鈍を施し、その後、1回の冷間圧延、又は、中間焼鈍を挟む複数回の冷間圧延を施して、最終製品と同じ板厚の鋼板とする。冷間圧延後の鋼板に脱炭焼鈍を施す。
 脱炭焼鈍は、湿水素雰囲気中で加熱することが好ましい。上記雰囲気で脱炭焼鈍を行うことにより、鋼板中のC含有量を、製品鋼板において磁気時効による磁気特性の劣化が生じない領域まで低減するとともに、一次再結晶させることができる。この一次再結晶は、二次再結晶の準備となる。
 脱炭焼鈍後、鋼板をアンモニア雰囲気中で焼鈍し、鋼板中にAlNインヒビターを生成させる。
 続いて、鋼板に、1100℃以上の温度で仕上げ焼鈍を施す。仕上げ焼鈍は、鋼板を巻き取ったコイルの形態で行えばよいが、鋼板表面に、鋼板の焼付き防止の目的で、Al23を主成分とする焼鈍分離剤を塗布してから行う。
 仕上げ焼鈍の終了後、スクラバーを用いて、鋼板から余分な焼鈍分離剤を除去するとともに、鋼板の表面状態を制御する。余分な焼鈍分離剤の除去を行う場合、スクラバーによる処理とともに、水洗を行うことが好ましい。
 スクラバーは、ブラシの糸径を、直径0.2mm~0.6mmとすることが好ましい。ブラシの糸径が、0.6mm超の場合、鋼板表面が荒れ(粗度が大きくなり)、非晶質酸化物被膜形成後の光沢度が低下するので、好ましくない。一方、ブラシの糸径が0.2mm未満であると、余分な焼鈍分離剤の除去が十分でなく、非晶質酸化物被膜形成後の光沢度が低下するので好ましくない。
 スクラバーによる焼鈍分離剤除去後の、鋼板の表面粗度(JISB0601の算術平均Ra)は、0.2~0.6μm程度とすることが好ましい。
 次いで、鋼板に、酸素分圧(PH2O/PH2)を調整した水素と窒素の混合雰囲気中で焼鈍を施し、鋼板表面に非晶質酸化物被膜を形成する。
 前述したように、表面の光沢度(非晶質酸化物被膜のモルフォロジーの均一性に起因)が被膜残存面積率(張力絶縁被膜の被膜密着性の良否を示す指標)に影響する。本発明者らは、仕上げ焼鈍後の鋼板に対し、非晶質酸化物被膜を形成する際の焼鈍雰囲気の酸素分圧(PH2O/PH2)を変化させて、焼鈍雰囲気の酸素分圧(PH2O/PH2)と光沢度との関係を調査した。
 図2に、得られた非晶質酸化物被膜を形成する焼鈍雰囲気の酸素分圧と光沢度との関係を示す。図2において、被膜密着性の評価で、被膜残存面積率が90%以上の場合を図中に○で示し、被膜残存面積率が80%以上90%未満の場合を△で示し、被膜残存面積率が80%未満の場合を×で示した。
 図2から、光沢度150%以上となる非晶質酸化物被膜を形成する焼鈍雰囲気の酸素分圧(PH2O/PH2)は0.010以下であり、光沢度230%以上となる非晶質酸化物被膜を形成し得る焼鈍雰囲気の酸素分圧(PH2O/PH2)は0.005以下であり、さらに、表面光沢度250%以上となる非晶質酸化物被膜を形成し得る焼鈍雰囲気の酸素分圧(PH2O/PH2)は0.001以下であることが解る。
 そのため、本実施形態に係る電磁鋼板を得る場合、非晶質酸化物被膜を形成する焼鈍雰囲気の酸素分圧(PH2O/PH2)は0.010以下とすることが好ましく、0.005以下とすることがより好ましく、0.001以下とすることがさらに好ましい。
 非晶質酸化物被膜を形成する焼鈍において、焼鈍温度は600~1150℃が好ましく、700~900℃がより好ましい。
 焼鈍温度が600℃未満では、非晶質酸化物被膜が十分に生成しない。また、1150℃超では設備負荷が高くなるので好ましくない。
 非晶質酸化物被膜を形成する焼鈍において、焼鈍後の冷却速度は限定しなくてもよいが、非晶質酸化物のアスペクト比が1.2未満の外部酸化型の非晶質酸化物被膜のモルフォロジーを均一にする制御を行うためには、焼鈍冷却時の酸素分圧(PH2O/PH2)を0.005以下にすることが好ましい。
 以上により、張力絶縁被膜の被膜密着性が優れた非晶質酸化物被膜付き方向性電磁鋼板を得ることができる。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。
 (実施例)
 表1-1に示す成分組成(鋼No.A~F)の珪素鋼スラブを、それぞれ、1100℃に加熱して熱間圧延に供し、板厚2.6mmの熱延鋼板とした。これらの熱延鋼板に1100℃で焼鈍を施し、その後、一回の冷間圧延又は中間焼鈍を挟む複数回の冷間圧延を施して、最終板厚0.23mmの冷延鋼板とした。その後、これらの冷延鋼板に、脱炭焼鈍と窒化焼鈍を施した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 次いで、脱炭焼鈍と窒化焼鈍とを施した冷延鋼板に、アルミナを主体とする焼鈍分離剤の水スラリーを塗布して、1200℃、20時間の仕上げ焼鈍を施して二次再結晶を完了させ、鋼板表面にフォルステライト系被膜がなく、鏡面光沢を有する、方向性電磁鋼板を得た。仕上げ焼鈍前には、表2に示す条件でスクラバーによる焼鈍分離剤の除去と表面状態の制御とを行った。その際、スクラバーの糸径を0.2~0.6μmとした場合には、鋼板の表面粗度(JISB0601の算術平均Ra)は、0.3~0.4μm程度であった。また、仕上げ焼鈍後の鋼板の成分を分析したところ、表1-2の通りであった。
 この方向性電磁鋼板に、窒素25%及び水素75%からなり、表2の製造条件No.1~17のような、酸素分圧の雰囲気中で、表2に示す保持温度で均熱処理(焼鈍)を施し、次いで、窒素25%及び水素75%からなり、表2に示す酸素分圧の雰囲気中で、室温まで冷却する熱処理を施した。焼鈍の保持温度が600℃以上であった場合には、鋼板表面に被膜が形成された。
 鋼板表面に形成された被膜が非晶質酸化物被膜であったかどうかは、X線回折及び、TEMを用いて確認した。また、合わせてFT-IRを用いた確認も行った。
 具体的には、被膜が形成されたそれぞれの鋼No.製造条件No.の組み合わせにおいて、鋼板断面をFIB(Focused Ion Beam)加工し、透過電子顕微鏡(TEM)にて10μm×10μmの範囲を観察し、被膜がSiOからなることを確認した。
 また、表面をフーリエ変換赤外分光法(FT-IR)で分析したところ、波数1250(cm-1)の位置にピークが存在した。このピークは、SiO由来のピークであるので、このことからも、被膜がSiOで形成されていることが合わせて確認できた。
 また、被膜を有する鋼板に対し、X線回折を行った際に、地鉄のピークを除けばハローのみが検出され、特定のピークが検出されなかった。
 すなわち、いずれも形成された被膜は非晶質酸化物被膜であった。
 次に、張力絶縁被膜の密着性を評価するため、この非晶質酸化物被膜を形成した方向性電磁鋼板に、リン酸アルミニウム、クロム酸及びコロイダルシリカからなる張力絶縁被膜形成用塗布液を塗布し、850℃で30秒、焼き付けることで、張力絶縁被膜付き方向性電磁鋼板を作製した。
 作製した張力絶縁被膜付き方向性電磁鋼板から採取した試料を、直径20mmの円筒に巻き付け(180°曲げ)、曲げ戻した後の被膜残存面積率で絶縁被膜の被膜密着性を評価した。絶縁被膜の被膜密着性の評価は、目視で張力絶縁被膜の剥離の有無を判断した。鋼板から剥離せず、被膜残存面積率が90%以上の場合をGOOD、被膜残存面積率が80%以上90%未満の場合をOK、被膜残存面積率が80%未満をNGとした。
 張力絶縁被膜を形成した非晶質酸化物被膜付き一向性電磁鋼板の表面の光沢度を測定するため、張力絶縁被膜を形成した製品鋼板の張力絶縁被膜を、80℃の20%水酸化ナトリウムのエッチング液に20分間浸漬する湿式エッチングで選択的に除去した。
 張力絶縁被膜を選択的に除去した方向性電磁鋼板の表面の光沢度を、BYK-Gardner社製のマイクロトリグロス光沢計(4446)を使用し、JIS Z-8741に規格の方法(入射角60°で黒ガラス標準板(屈折率1.567)を測定した値を100として、光沢度を規定する方法)により測定した。
 表2に、光沢度と張力絶縁被膜との被膜密着性の評価を示す。
Figure JPOXMLDOC01-appb-T000003
 表2から、非晶質酸化物被膜付き方向性電磁鋼板の表面の光沢度が150%以上で、良好な被膜密着性が得られていることが解る。
 前述したように、本発明によれば、鋼板表面に形成する張力絶縁被膜と鋼板の密着性に優れる非晶質酸化物被膜付き方向性電磁鋼板を提供することができる。よって、本発明は、電磁鋼板製造産業及び電磁鋼板利用産業において利用可能性が高いものである。

Claims (4)

  1.   鋼板と、
      前記鋼板上に形成された非晶質酸化物被膜と、
     を有し、
     表面の光沢度が150%以上である
     ことを特徴とする方向性電磁鋼板。
  2.   前記鋼板が、化学組成として、質量%で、
     C:0.085%以下、
     Si:0.80~7.00%、
     Mn:1.00%以下、
     Al:0.065%以下、
     S:0.013%以下、
     Cu:0~0.01~0.80%、
     N:0~0.012%、
     P:0~0.5%、
     Ni:0~1.0%、
     Sn:0~0.3%、
     Sb:0~0.3%、
    を含有し、残部がFe及び不純物からなる
    ことを特徴とする請求項1に記載の方向性電磁鋼板。
  3.  前記鋼板が、前記化学組成として、質量%で、Cu:0.01~0.80%を含有することを特徴とする請求項2に記載の方向性電磁鋼板。
  4.  前記光沢度が、JIS Z-8741に記載の方法で測定した光沢度であることを特徴とする請求項1~3のいずれか1項に記載の方向性電磁鋼板。
PCT/JP2018/026624 2017-07-13 2018-07-13 方向性電磁鋼板 WO2019013355A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/628,809 US11189407B2 (en) 2017-07-13 2018-07-13 Grain-oriented electrical steel sheet
JP2019529823A JP6881581B2 (ja) 2017-07-13 2018-07-13 方向性電磁鋼板
BR112020000266-6A BR112020000266A2 (pt) 2017-07-13 2018-07-13 folha de aço eletromagnética orientada
EP18832179.8A EP3653753A4 (en) 2017-07-13 2018-07-13 ORIENTED ELECTROMAGNETIC STEEL PLATE
CN201880044653.6A CN110832113B (zh) 2017-07-13 2018-07-13 方向性电磁钢板
KR1020207000407A KR102359168B1 (ko) 2017-07-13 2018-07-13 방향성 전자 강판
RU2020100035A RU2736043C1 (ru) 2017-07-13 2018-07-13 Электротехнический стальной лист с ориентированной зеренной структурой

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-137408 2017-07-13
JP2017137408 2017-07-13

Publications (2)

Publication Number Publication Date
WO2019013355A1 true WO2019013355A1 (ja) 2019-01-17
WO2019013355A9 WO2019013355A9 (ja) 2019-11-28

Family

ID=65001276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026624 WO2019013355A1 (ja) 2017-07-13 2018-07-13 方向性電磁鋼板

Country Status (8)

Country Link
US (1) US11189407B2 (ja)
EP (1) EP3653753A4 (ja)
JP (1) JP6881581B2 (ja)
KR (1) KR102359168B1 (ja)
CN (1) CN110832113B (ja)
BR (1) BR112020000266A2 (ja)
RU (1) RU2736043C1 (ja)
WO (1) WO2019013355A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151791B2 (ja) * 2019-01-16 2022-10-12 日本製鉄株式会社 方向性電磁鋼板
CN113740144B (zh) * 2020-05-27 2023-10-17 宝山钢铁股份有限公司 一种评价薄板电工钢可轧性的方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839338A (ja) 1971-09-27 1973-06-09
JPH06184762A (ja) * 1992-08-25 1994-07-05 Nippon Steel Corp 一方向性珪素鋼板の絶縁皮膜形成方法
JPH07278670A (ja) 1994-04-05 1995-10-24 Nippon Steel Corp 鉄損の低い方向性電磁鋼板の製造方法
JPH07278833A (ja) 1994-04-15 1995-10-24 Nippon Steel Corp 一方向性珪素鋼板の絶縁皮膜形成方法
JPH11106827A (ja) 1997-10-06 1999-04-20 Nippon Steel Corp 磁気特性が優れた鏡面一方向性電磁鋼板の製造方法
JPH11118750A (ja) 1997-10-14 1999-04-30 Kurita Water Ind Ltd 参照電極設置用装置
JP2002322566A (ja) 2001-04-23 2002-11-08 Nippon Steel Corp 張力付与性絶縁皮膜の皮膜密着性に優れる一方向性珪素鋼板とその製造方法
JP2002348643A (ja) 2001-05-22 2002-12-04 Nippon Steel Corp 張力付与性絶縁皮膜の皮膜密着性に優れる一方向性珪素鋼板とその製造方法
JP2002363763A (ja) 2001-06-08 2002-12-18 Nippon Steel Corp 絶縁皮膜密着性に優れる一方向性珪素鋼板とその製造方法
JP2003268450A (ja) 2002-01-08 2003-09-25 Nippon Steel Corp 鏡面方向性珪素鋼板の製造方法
JP2003293149A (ja) 2002-04-08 2003-10-15 Nippon Steel Corp 張力付与性絶縁皮膜密着性に優れる一方向性珪素鋼板とその製造方法
JP2003313644A (ja) 2002-04-25 2003-11-06 Nippon Steel Corp 張力付与性絶縁皮膜の鋼板密着性に優れる一方向性珪素鋼板とその製造方法
JP2009228117A (ja) * 2008-03-25 2009-10-08 Jfe Steel Corp 方向性電磁鋼板の製造方法
JP2010040666A (ja) * 2008-08-01 2010-02-18 Toyota Motor Corp 磁性材料のSiO2薄膜形成方法
JP2016513358A (ja) * 2012-12-28 2016-05-12 ポスコ 方向性電気鋼板およびその製造方法
JP2017137408A (ja) 2016-02-03 2017-08-10 クラスターテクノロジー株式会社 白色リフレクター用硬化性エポキシ樹脂組成物及びその硬化物、光半導体素子搭載用基板、並びに光半導体装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324099A (ja) * 1986-07-17 1988-02-01 Kawasaki Steel Corp 低鉄損一方向性けい素鋼板の製造方法
DE3886146T2 (de) 1987-09-10 1994-04-14 Kawasaki Steel Co Siliziumstahlbleche mit niedrigem Eisenverlust und Verfahren zur Herstellung derselben.
DE69326792T2 (de) 1992-04-07 2000-04-27 Nippon Steel Corp Kornorientiertes Siliziumstahlblech mit geringen Eisenverlusten und Herstellungsverfahren
CN1054885C (zh) * 1995-07-26 2000-07-26 新日本制铁株式会社 生产一种具有镜面和改进了铁损的晶粒取向电工钢板的方法
JP3294515B2 (ja) * 1996-10-04 2002-06-24 日本鋼管株式会社 電磁鋼板用絶縁皮膜の形成方法
JP3392698B2 (ja) * 1997-04-16 2003-03-31 新日本製鐵株式会社 極めて優れた磁気特性を有する方向性電磁鋼板の製造方法
WO1998046803A1 (fr) * 1997-04-16 1998-10-22 Nippon Steel Corporation Tole d'acier electromagnetique unidirectionnelle presentant d'excellentes caracteristiques de film et d'excellentes caracteristiques magnetiques, son procede de production et installation de recuit par decarburation a cet effet
JP4030716B2 (ja) * 2000-11-01 2008-01-09 シーケーディ株式会社 錠剤の外観検査装置およびptp包装機
RU2386725C2 (ru) * 2005-07-14 2010-04-20 Ниппон Стил Корпорейшн Текстурированный электротехнический стальной лист, имеющий изолирующую пленку, не содержащую хром, и агент изолирующей пленки
BRPI0712594B1 (pt) * 2006-05-19 2018-07-10 Nippon Steel & Sumitomo Metal Corporation Chapa de aço elétrica com grão orientado tendo uma película de isolamento de alta resistência à tração e método de tratamento de tal película de isolamento.
WO2009113392A1 (ja) * 2008-03-13 2009-09-17 新日本製鐵株式会社 熱伝導性に優れた絶縁被膜を持つ電磁鋼板及びその製造方法
JP4681689B2 (ja) * 2009-06-03 2011-05-11 新日本製鐵株式会社 無方向性電磁鋼板及びその製造方法
KR101356053B1 (ko) * 2011-12-28 2014-01-28 주식회사 포스코 방향성 전기강판 및 그 제조방법
JP6225759B2 (ja) * 2014-03-10 2017-11-08 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR101696627B1 (ko) * 2014-11-26 2017-01-16 주식회사 포스코 방향성 전기강판용 소둔 분리제 조성물, 및 이를 이용한 방향성 전기강판의 제조방법
WO2016085257A1 (ko) * 2014-11-26 2016-06-02 주식회사 포스코 방향성 전기강판용 소둔 분리제 조성물, 및 이를 이용한 방향성 전기강판의 제조방법

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839338A (ja) 1971-09-27 1973-06-09
JPH06184762A (ja) * 1992-08-25 1994-07-05 Nippon Steel Corp 一方向性珪素鋼板の絶縁皮膜形成方法
JPH07278670A (ja) 1994-04-05 1995-10-24 Nippon Steel Corp 鉄損の低い方向性電磁鋼板の製造方法
JPH07278833A (ja) 1994-04-15 1995-10-24 Nippon Steel Corp 一方向性珪素鋼板の絶縁皮膜形成方法
JPH11106827A (ja) 1997-10-06 1999-04-20 Nippon Steel Corp 磁気特性が優れた鏡面一方向性電磁鋼板の製造方法
JPH11118750A (ja) 1997-10-14 1999-04-30 Kurita Water Ind Ltd 参照電極設置用装置
JP2002322566A (ja) 2001-04-23 2002-11-08 Nippon Steel Corp 張力付与性絶縁皮膜の皮膜密着性に優れる一方向性珪素鋼板とその製造方法
JP2002348643A (ja) 2001-05-22 2002-12-04 Nippon Steel Corp 張力付与性絶縁皮膜の皮膜密着性に優れる一方向性珪素鋼板とその製造方法
JP2002363763A (ja) 2001-06-08 2002-12-18 Nippon Steel Corp 絶縁皮膜密着性に優れる一方向性珪素鋼板とその製造方法
JP2003268450A (ja) 2002-01-08 2003-09-25 Nippon Steel Corp 鏡面方向性珪素鋼板の製造方法
JP2003293149A (ja) 2002-04-08 2003-10-15 Nippon Steel Corp 張力付与性絶縁皮膜密着性に優れる一方向性珪素鋼板とその製造方法
JP2003313644A (ja) 2002-04-25 2003-11-06 Nippon Steel Corp 張力付与性絶縁皮膜の鋼板密着性に優れる一方向性珪素鋼板とその製造方法
JP2009228117A (ja) * 2008-03-25 2009-10-08 Jfe Steel Corp 方向性電磁鋼板の製造方法
JP2010040666A (ja) * 2008-08-01 2010-02-18 Toyota Motor Corp 磁性材料のSiO2薄膜形成方法
JP2016513358A (ja) * 2012-12-28 2016-05-12 ポスコ 方向性電気鋼板およびその製造方法
JP2017137408A (ja) 2016-02-03 2017-08-10 クラスターテクノロジー株式会社 白色リフレクター用硬化性エポキシ樹脂組成物及びその硬化物、光半導体素子搭載用基板、並びに光半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3653753A4

Also Published As

Publication number Publication date
KR20200017458A (ko) 2020-02-18
US11189407B2 (en) 2021-11-30
KR102359168B1 (ko) 2022-02-08
JPWO2019013355A1 (ja) 2020-05-28
EP3653753A1 (en) 2020-05-20
WO2019013355A9 (ja) 2019-11-28
RU2736043C1 (ru) 2020-11-11
BR112020000266A2 (pt) 2020-07-14
US20200203047A1 (en) 2020-06-25
EP3653753A4 (en) 2021-04-07
CN110832113B (zh) 2022-08-02
JP6881581B2 (ja) 2021-06-02
CN110832113A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
KR102393831B1 (ko) 방향성 전자 강판
WO2019013351A1 (ja) 方向性電磁鋼板及びその製造方法
WO2020149347A1 (ja) 方向性電磁鋼板の製造方法
JP6881581B2 (ja) 方向性電磁鋼板
JP6876280B2 (ja) 方向性電磁鋼板
US11145446B2 (en) Grain-oriented electrical steel sheet
US11952646B2 (en) Grain-oriented electrical steel sheet having excellent insulation coating adhesion without forsterite coating
JP7151791B2 (ja) 方向性電磁鋼板
JP2004315915A (ja) 一方向性電磁鋼板の絶縁被膜形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832179

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019529823

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207000407

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020000266

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018832179

Country of ref document: EP

Effective date: 20200213

ENP Entry into the national phase

Ref document number: 112020000266

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200106