WO1998044539A1 - Procede de fabrication de composes semi-conducteurs - Google Patents

Procede de fabrication de composes semi-conducteurs Download PDF

Info

Publication number
WO1998044539A1
WO1998044539A1 PCT/JP1998/001347 JP9801347W WO9844539A1 WO 1998044539 A1 WO1998044539 A1 WO 1998044539A1 JP 9801347 W JP9801347 W JP 9801347W WO 9844539 A1 WO9844539 A1 WO 9844539A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
substrate
compound semiconductor
crystal
compound
Prior art date
Application number
PCT/JP1998/001347
Other languages
English (en)
French (fr)
Inventor
Yoshitaka Tomomura
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to EP98911017A priority Critical patent/EP0993027A4/en
Priority to US09/402,051 priority patent/US6358822B1/en
Publication of WO1998044539A1 publication Critical patent/WO1998044539A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds

Definitions

  • the invention relates to molecular beam epitaxy (MBE), gas source MBE (GS MBE), actinic epitaxy (CBE), organometallic molecular beam epitaxy (MOMBE), etc.
  • MBE molecular beam epitaxy
  • GS MBE gas source MBE
  • CBE actinic epitaxy
  • MOMBE organometallic molecular beam epitaxy
  • the present invention relates to a method for producing an m-V compound semiconductor containing a group V element.
  • m-V compound semiconductors which contain at least one other V element together with nitrogen, have attracted attention as a material for optoelectronics. This is because the crystal lattice constant and energy band gap of the mV group compound semiconductor can be controlled in a wide range by changing the composition of the mixed crystal.
  • G a InNA s-based semiconductors are used for optical fiber communication that transmits light in a band including a wavelength of 1.3 / 111 or 1.55 / im in a composition that allows lattice matching with G a As. It has a band gap desired for the active layer of the laser, and a large band offset of the conduction band can be obtained by combination with an AlGaAs or InGaP semiconductor. Therefore, it is expected to be a material capable of realizing a semiconductor laser for communication having improved temperature characteristics that the required current does not increase so much even if the temperature rises (for example, applied physics, Vol. 65 (19) 9 6) See page 148).
  • MBE gas source MBE
  • CBE actinic beam epitaxy
  • MOMBE metalorganic molecular beam epitaxy
  • N 2 nitrogen molecules
  • NH 3 ammonia
  • the nitrogen in the group V element must be Is required to be about 2.5 atomic% or more, which is larger than 0.5 atomic% in the conventional example as described above.
  • the crystallinity decreases as the nitrogen content increases.
  • nitrogen radicals are used as the nitrogen source, crystal defects are induced due to the high reactivity or high energy of the nitrogen radicals.
  • nitrogen radicals based on the high reactivity of nitrogen radicals, nitrogen easily forms bonds with m-group elements and is taken into the crystal with high efficiency, but also combines with group V elements other than nitrogen.
  • Nitrogen compound molecules are also formed, and these nitrogen compound molecules are also incorporated into the crystal to form anti-site group V elements (group V elements that occupy lattice positions that should be occupied by in group elements) and interstitial atoms. It is thought to induce severe crystal defects.
  • the N 2 molecule has a high vapor pressure and the incorporation rate into the crystal is small, and the bond between nitrogen and a Group V element other than nitrogen is formed. This causes a problem of lowering of crystallinity.
  • the energy released from nitrogen radicals causes the bonding between the already formed DI group element near the crystal growth surface and the V group element other than nitrogen (for example, Ga—As bonding).
  • the V group element other than nitrogen for example, Ga—As bonding.
  • Is dissociated, and vacancies may be generated by desorption of group V elements with relatively high vapor pressure.
  • the bond strength with the m-group element is smaller than that of nitrogen, and the m-V compound semiconductor containing other V-group elements is particularly strong. In this case, a problem of lowering of crystallinity occurs.
  • the present invention provides a method for manufacturing a compound semiconductor that can achieve excellent crystallinity even in an ffl-V compound semiconductor containing at least one other V element together with nitrogen. It is intended to provide. Disclosure of the invention
  • a method of manufacturing a compound semiconductor When an m-V compound semiconductor crystal containing at least one other V element together with nitrogen is grown by irradiating nitrogen, a nitrogen compound is used as a source of nitrogen, and the molecule of the nitrogen compound is converted into a substrate. It is characterized in that it is decomposed after arriving at the surface, and only nitrogen atoms are taken into the semiconductor crystal.
  • nitrogen atoms are taken into the crystal by dissociation and adsorption of the nitrogen compound on the crystal growth surface. Therefore, by using a stable nitrogen compound instead of a nitrogen radical as a nitrogen source, it is possible to suppress the reaction between nitrogen and other Group V elements other than nitrogen during the decomposition of the nitrogen compound. In addition, the energy released by the reaction when nitrogen is taken into the crystal by the decomposition of the nitrogen compound on the crystal growth surface can be made much smaller than the energy released by the nitrogen radical. In this case, it is possible to suppress the dissociation of the bond between the group ⁇ element and the group V element other than nitrogen, and to realize stable crystal growth.
  • a hydride of nitrogen can be preferably used as the nitrogen compound.
  • Nitrogen hydrogenation Because the bond dissociation energy of the substance is smaller than that of N 2 molecule, dissociation of hydride and adsorption of nitrogen on the crystal growth surface can be performed at relatively low temperature. Therefore, it is easy to control the composition ratio of nitrogen and other group V elements in the compound semiconductor to be grown.
  • H 2 molecules generated by dissociation of hydrides of nitrogen are easily desorbed from the crystal growth surface, unnecessary incorporation of impurities into the crystal does not occur.
  • impurities such as carbon (C) are present on the crystal growth surface, the impurity may form a hydride and be desorbed from the crystal growth surface, so that a cleaning effect can be expected.
  • NH 3 can be preferably used as the hydride of nitrogen.
  • NH 3 is the most stable of the hydrides of nitrogen. When nitrogen atoms are incorporated into the crystal by dissociation and adsorption, crystal defects occur due to the interaction between nitrogen and other Group V elements. Can be minimized.
  • the substrate is preferably kept at a temperature in the range of 500-750 ° C during crystal growth.
  • NH 3 it is preferable to irradiate the substrate after heating the NH 3 to a temperature in the range of 350 to 500 ° C.
  • hydrazine N 2 H 4
  • NH 3 a nitrogen hydride
  • an alkyl compound of nitrogen can be preferably used as the nitrogen compound.
  • Alkyl compounds of nitrogen generally have lower bond dissociation energies than hydrides of nitrogen. As a result, the dissociation of the nitrogen compound on the crystal growth surface becomes easier, and the efficiency of nitrogen uptake into the crystal can be increased.
  • the alkyl group generated by the decomposition of the alkyl compound of nitrogen is a hydrocarbon having a high vapor pressure, the alkyl group is not easily desorbed from the crystal growth surface and is not taken into the crystal. Can be obtained.
  • an alkylated product of hydrazine can also be preferably used.
  • an alkylamine-based compound can also be preferably used as the nitrogen alkyl compound.
  • a stable alkylamine compound When nitrogen atoms are incorporated into the crystal by dissociation and adsorption, it is possible to minimize the occurrence of crystal defects due to the interaction between nitrogen and other Group V elements.
  • the substrate When an alkylamine compound is used as the nitrogen compound, the substrate is preferably kept at a temperature in the range of 400 to 750 ° C. during the crystal growth.
  • the substrate is preferably a compound semiconductor having a zinc blende type crystal structure, and its surface preferably has a predetermined off angle from the (100 ⁇ plane to the ⁇ 111 ⁇ A plane. Decomposition of the nitrogen compound is promoted on the surface of such a compound semiconductor substrate, and a high nitrogen incorporation efficiency into the crystal can be realized even when a nitrogen compound having a lower reactivity than nitrogen radicals is used.
  • the off-angle of the surface of the compound semiconductor substrate is preferably in the range of 5 to 15 °.
  • the step of irradiating the substrate with nitrogen compound molecules and the step of irradiating the substrate with another group V element are preferably performed alternately without overlapping.
  • the interaction between nitrogen and other group V elements can be reduced. Therefore, the efficiency of nitrogen incorporation into the crystal is improved, and the reaction between nitrogen and other Group V elements, which cannot be sufficiently suppressed by using a nitrogen source that is not nitrogen radical, can be sufficiently suppressed. .
  • a nitrogen compound having a production cast energy smaller than 100 kj / mo 1 can be more preferably used.
  • a nitrogen compound having a production gypsum energy smaller than 100 kJ / mo 1 it is possible to more effectively suppress the reaction between nitrogen and a Group V element other than nitrogen during the decomposition of the nitrogen compound. it can.
  • the dissociation of the bond between the group III element and the group V element other than the nitrogen element due to the reaction when nitrogen is taken into the crystal by the decomposition of the nitrogen compound is more effectively suppressed, High quality crystals can be obtained.
  • FIG. 1 is a schematic cross-sectional view for explaining a quantum well structure manufactured in Example 1 of the present invention.
  • FIG. 2 shows a quantum well in the quantum well structure manufactured in Example 1 of the present invention. It is a rough showing the relationship between the nitrogen concentration in a layer and PL luminescence intensity.
  • FIG. 3 is a graph showing a PL light emission spectrum of a quantum well structure manufactured in Example 2 of the present invention.
  • FIG. 4 is a graph showing the relationship between the nitrogen composition of the GaInNAs film produced in Example 4 of the present invention and the off-angle from the ⁇ 100 ⁇ plane of the substrate surface.
  • FIG. 5 is a graph showing the relationship between the PL emission intensity and the off-angle of the substrate surface in the quantum well structure manufactured in Example 4 of the present invention.
  • FIG. 6 is a timing chart for explaining a raw material supply sequence when growing a GaInNAs mixed crystal layer according to the fifth embodiment of the present invention.
  • FIG. 7 is a graph showing the relationship between the heating temperature of NH 3 source gas and the wavelength and intensity of PL emission in the quantum well structure according to Example 6 of the present invention.
  • FIG. 8 is a graph showing the relationship between the nitrogen composition contained in the GaAsN layer formed in Example 7 of the present invention and the substrate temperature.
  • FIG. 9 is a graph showing the relationship between the PL emission wavelength and the intensity in the quantum well structure manufactured in Example 7.
  • FIG. 10 is a graph showing the relationship between the PL emission intensity of the quantum well structure manufactured in Example 8 of the present invention and the casting energy of the nitrogen source.
  • FIG. 11 is a schematic cross-sectional view illustrating a semiconductor laser manufactured in Example 9 of the present invention.
  • Ga InNAs having a composition lattice-matched to a GaAs substrate by MBE using NH 3 as a nitrogen source and a solid source as a source of other elements are used.
  • a single quantum well (SQW) structure has been fabricated in combination with A 1 Ga As.
  • FIG. 1 such a G a In NAs / A 1 G a As -S QW structure is included.
  • Volume The well structure is shown in a schematic cross section.
  • a 1 is formed on a GaAs substrate 1 having a just ⁇ 100 ⁇ crystal surface.
  • 3 G a. . 7 A s a thickness of 1 / lower cladding layer 2 of m
  • G al nNA s composed of a mixed crystal thickness of 6 nm quantum well layer 3
  • a 1. . 3 G a 0. 7 A s force Ranaru thickness 0. 2 // m upper class head layer 4, and
  • G a A s a thickness of 0. 1 mu cap layer 5 is MBE method m And grown sequentially.
  • molecular beams were irradiated on the substrate surface by heating the solid metal raw material using a Knudsen cell.
  • As the As 2 beam was irradiated onto the substrate surface by heating the solid As material using a cracking cell. 100% NH 3 gas was used as the nitrogen source.
  • the NH 3 was heated by the gas source cell to 350 ° C, where it was not decomposed, and the NH 3 beam was emitted from the gas source cell to the substrate surface.
  • By heating NH 3 to 100 ° C. or higher diffusion of NH 3 molecules on the crystal growth surface is promoted, and the flatness of the crystal growth surface is improved.
  • NH 3 is heated to 500 ° C.
  • N 2 is generated by thermal decomposition before NH 3 reaches the crystal growth surface, and the efficiency of nitrogen uptake into the crystal is reduced. Accordingly, NH 3 is arbitrary preferable be heated to a temperature in the range of 100 to 500 ° C.
  • the substrate is maintained at a temperature of 580 ° C, and a molecular beam intensity almost proportional to a target composition is used as illustrated in Table 1. Crystal growth was performed.
  • OX 10 "7 2 consisting of G a I nNA s / A 1 G a A s one SQW made first examples
  • the dependence of PL (photoluminescence) emission intensity on the nitrogen composition in the quantum well structure is shown in comparison with the quantum well structure fabricated by using MBE with nitrogen radicals instead of NH 3 .
  • the abscissa represents the nitrogen content (atomic%) in the group V element contained in the GaInNAs active layer 3
  • the ordinate represents the PL emission intensity (arbitrary unit).
  • Curve 2A represents the PL emission intensity in the quantum well structure according to the first embodiment
  • curve 2B including the white square represents the PL emission intensity in the conventional quantum well structure formed using nitrogen radicals. I have.
  • a quantum well structure made using nitrogen radicals has a nitrogen content of about 2 atoms. /. Above, the PL emission intensity sharply decreased.
  • the quantum well structure fabricated using NH 3 has improved PL emission intensity compared to the one fabricated using nitrogen radicals. It became clear.
  • the present invention it is possible to obtain a high-quality GaInNAs mixed crystal up to a relatively high nitrogen concentration range.
  • a semiconductor laser containing such a high concentration of nitrogen and using a high-quality GaInNas layer as an active layer a wavelength of 1.3 //! 11 or 1.55 ⁇ can be obtained.
  • Long-life, high-performance optical communication that can emit light in the band including A body laser can be provided.
  • NH of hydride of nitrogen was used as a nitrogen source, but hydrazine (N 2 H 4 ) and hydrogen azide (N 3 H) were used as other hydrides of nitrogen. Is also possible.
  • hydrazine hydrogen diazide has a smaller bond dissociation energy than NH 3, and is more easily decomposed on the crystal growth surface. Can be enhanced.
  • NH 3 is the most stable of nitrogen hydrides, with the lowest formed casting energy. Therefore, from the viewpoint of obtaining high-quality crystals, NH 3 generates crystal defects due to the interaction between nitrogen and other Group V elements when nitrogen atoms are incorporated into the crystal by dissociation and adsorption. Is preferred in that it can be minimized.
  • the substrate temperature was maintained at 580 ° C, but when NH 3 is used as a nitrogen source, a substrate temperature in the range of 500 to 750 ° C can be used.
  • the substrate temperature is lower than 500 ° C, the decomposition efficiency of NH 3 on the crystal growth surface decreases rapidly, and it becomes difficult to grow a mixed crystal containing nitrogen.
  • the substrate temperature exceeds 750 ° C, the desorption of group V elements other than nitrogen, such as As and P, generally increases, resulting in an increase in crystal defects and roughening of the crystal surface, resulting in high quality. It becomes difficult to obtain crystals.
  • A1 is used as the cladding layer of the SQW structure. . 3 G a 0.
  • 7 A s layer is used, may be used cladding layer I nG a P lattice-matched to Ga A s substrate.
  • a GaAs substrate having a just ⁇ 100 ⁇ plane is used as the substrate, a substrate surface having a predetermined off angle with respect to the ⁇ 100 ⁇ plane may be used.
  • a quantum well structure as shown in FIG. 1 was produced in the same manner as in the first embodiment except that the conditions for forming the quantum well layer 3 were changed. .
  • dimethylamine was used instead of NH 3 as the nitrogen source.
  • the dimethylamine vapor was irradiated onto the substrate surface using a gas source cell as in the case of NH 3 .
  • the gas source cell was heated to a temperature in the range of 50-150 ° C to prevent recondensation of dimethylamine vapor on the cell.
  • Dimethylamine vapor emitted from a gas source cell heated to a temperature within this range is not decomposed to reach the substrate surface.
  • the PL emission spectrum intensity of the quantum well structure according to the second embodiment is shown in comparison with the quantum well structure manufactured using nitrogen radicals. -Yes. That is, the horizontal axis in Fig. 3 represents the wavelength (nm) of light emitted from the quantum well structure, and the vertical axis represents PL emission intensity (arbitrary unit). Curve 3A corresponds to a quantum well structure fabricated using dimethylamine, and curve 3B corresponds to a quantum well structure fabricated using nitrogen radical.
  • M uses dimethylamine instead of nitrogen radical.
  • the quantum well structure including the quantum well layer 3 formed by the BE method can emit PL light having a high peak intensity and a small half-value width in the vicinity of a wavelength of 1.3 jm.
  • An NA s / A 1 G a As _ S QW structure can be obtained. That is, high-quality GaInNAs mixed crystals can be obtained also by the MBE method using dimethylamine as the nitrogen source as in the second embodiment.
  • dimethylamine was used as the alkylated compound containing nitrogen.
  • nitrogen such as NH 3 , hydrazine and hydrogen azide described in Example 1 was used.
  • Alkylated compounds such as methylamine, methylhydrazine, methyl azide, etc., in which a hydrogen atom in a hydride is substituted with an alkyl group, can also be used.
  • the bond dissociation energy of the nitrogen compound can be reduced with little change in the cast energy compared to the nitrogen hydride. It can be made smaller.
  • the efficiency of dissociation of nitrogen compounds can be improved without increasing the reaction between nitrogen and other group V elements on the crystal growth surface, and the efficiency of incorporation of nitrogen into crystals is improved. At the same time, it becomes possible to lower the crystal growth temperature.
  • alkyl halides containing nitrogen alkyl amine compound, like the NH 3 It is a monostable compound and can minimize the occurrence of crystal defects due to the interaction between nitrogen and other Group V elements when nitrogen atoms are incorporated into the crystal by dissociation and adsorption.
  • the substrate was kept at 500 ° C. during the formation of the quantum well 3 using dimethylamine.However, when an alkylamine-based compound was used as a nitrogen source, the substrate was kept at 400 to 750 ° C. By maintaining the temperature within the range described above, it is possible to grow the quantum well layer 3 of high quality. That is, in the case of using an alkyl amine of compound are capable of it due to the easily decomposed as compared with NH 3, growing the quantum well layer 3 to a relatively low temperature of the substrate surface Thus, on the substrate surface at the same temperature, higher incorporation efficiency of nitrogen into the crystal can be obtained.
  • Fig. 3 Al is used as cladding layers 2 and 4 in the SQW structure. . 3 G a 0. 7 is A s layer is used, G a A s the substrate I Nga P may be found using lattice-matched to. Further, although the just ⁇ 100 ⁇ crystal plane was used as the substrate surface, a substrate surface having a predetermined off angle with respect to the ⁇ 100 ⁇ plane may be used.
  • a GaInNP mixed crystal layer was grown on the just ⁇ 100 ⁇ plane of the GaP substrate.
  • the substrate is maintained at a temperature of 550 ° C, a PH 3 was cracked in 800 ° C by gas source cell, P 2 beam is irradiated on the substrate surface.
  • Ga, In and N the same raw materials and cells as in Example 1 were used.
  • the obtained GaInNP layer was evaluated by X-ray diffraction. As a result, the half-width of the ⁇ 400 ⁇ diffraction spectrum was extremely small and a good value of 15 seconds. Thus, according to the present invention, a high-quality GaInNP mixed crystal layer can be obtained.
  • NH 3 was used as the nitrogen source. However, it is needless to say that other nitrogen raw materials exemplified in Examples 1 and 2 can be used. .
  • the GaAs substrate having a zinc-blende-type crystal structure has various off-angles from the just ⁇ 100 ⁇ plane toward the ⁇ 111 ⁇ plane.
  • a 0111 InAlNs mixed crystal layer with a thickness of 111 was grown under condition 2 in Table 1.
  • the relationship between the off-angle of the substrate surface and the nitrogen content in the group V element was determined using the peak energy of PL emission and the X-ray diffraction peak position. It was examined and the results are shown in FIG.
  • the horizontal axis represents the off angle (degree) from the just ⁇ 100 ⁇ plane of the GaAs substrate to the ⁇ 01 1> direction via the ⁇ 1 1 1 ⁇ plane
  • the vertical axis represents G a I it represents a nitrogen composition in group V elements (atomic. / 0) in NNA s mixed crystal layer.
  • the nitrogen content of the obtained GaInNAs mixed crystal layer increases when the substrate surface has an off-angle toward the ⁇ 111 ⁇ A plane direction, but the ⁇ 1 1 1 ⁇ It does not increase when it has an off-angle toward the B-plane direction.
  • the ⁇ 1 1 1 ⁇ A plane refers to the ⁇ 1 1 1 ⁇ plane terminated by cation atoms
  • the ⁇ 1 1 1 ⁇ B plane refers to the ⁇ 1 1 1 ⁇ plane terminated by anion atoms.
  • a cation atom means a group V element
  • an anion atom means a group V element.
  • the horizontal axis represents the off-angle of the substrate surface as in FIG. 4, and the vertical axis represents the PL emission intensity (arbitrary unit).
  • the PL emission intensity is increased. It is considered that the reason for this is that the effect of the off-angle of the substrate surface improves the nitrogen uptake efficiency during the growth of the mixed crystal layer and the crystallinity of the mixed crystal layer.
  • the off-angle of the substrate surface is more than 20 °, the PL emission intensity of the quantum well structure tends to decrease. It is considered that the reason for this is that when the off-angle of the substrate surface is 20 ° or more, the substrate surface becomes rough. From the above, the PL emission intensity of the quantum well structure is improved by setting the off-angle of the substrate surface within the range of 5 to 15 ° from the ⁇ 100 ⁇ plane toward the ⁇ 111 ⁇ A plane. Can be done.
  • FIG. 6 is a timing chart showing a sequence of material supply on the ⁇ 100 ⁇ plane of the GaAs substrate.
  • molecular beams were constantly irradiated on the substrate surface for the Group III elements Ga and In.
  • the arsenic material (A s 2 ) is supplied on the substrate surface for 11.5 seconds, and after a 1 second interval, the nitrogen material (NH 3 ) is supplied for 3.3 seconds. This sequence was repeated several times with a 1-second interval.
  • the thickness of the mixed crystal layer grown in one cycle of the raw material supply sequence is set within a range of about 0.5 to 5 molecular layers, a mixed crystal having a substantially uniform composition can be obtained.
  • it is possible to control the mixed crystal composition by appropriately adjusting the molecular beam intensity and supply time of the nitrogen source and the arsenic source.
  • the nitrogen raw material and the raw material of the group V element other than nitrogen are supplied independently, so that the incorporation of nitrogen into the crystal and other group V elements Competition can be avoided, and the efficiency of nitrogen uptake into the crystal can be improved.
  • PL light emission was lower than that in the quantum well structure including a quantum well layer manufactured by simultaneously supplying nitrogen and other group V elements onto the substrate surface. The strength was increased, that is, a high-quality GaInNAs / A1GaAs-S QW structure could be obtained.
  • FIG. 7 shows the relationship between the heating temperature of the third gas and the PL emission characteristics in the quantum well structure fabricated in this manner.
  • the abscissa represents the heating temperature of Nyuita 3 gas (° C)
  • the left vertical axis represents the PL intensity (arbitrary unit)
  • the right vertical axis in the PL intensity peak It represents the wavelength (nm).
  • the broken curve 7A represents the PL emission wavelength
  • the solid curve 7B represents the PL emission intensity.
  • heating the NH 3 gas to 100 ° C or higher increased the PL emission intensity, especially within the heating temperature range of 350 to 500 ° C. Is obtained.
  • the PL emission intensity sharply decreases as the temperature rises.
  • the reason that the emission intensity increases due to the heating of the NH 3 gas is probably that the heat energy of the NH 3 molecule increases and the migration of the NH 3 molecule on the crystal growth surface is promoted. It is conceivable that. In particular, when the heating temperature of the NH 3 gas is in the range of 350 to 500 ° C, it is considered that the effect due to the migration of NH 3 molecules becomes remarkable. On the other hand, when the heating temperature of NH 3 gas is 500 ° C or higher, the emission intensity decreases as the rate of nitrogen uptake into the crystal decreases due to the lattice matching condition with the GaAs substrate. This is considered to be due to the occurrence of crystal defects due to the deviation from.
  • the heating temperature of the NH 3 gas is preferably 500 ° C. or less from the viewpoint of the PL emission wavelength and the crystallinity of the G a InN a s layer. Further, from the viewpoint of the crystallinity of the GaN layer, the heating temperature of the NH 3 gas is preferably 100 ° C. or higher, more preferably 350 ° C. or higher.
  • a solid material was used as a material other than nitrogen.
  • TSAs tertiary butylarsine
  • TDMAA s Dimethylaminoarsine
  • organometallic compounds such as Ga and In can be used as the group IV element raw materials.
  • a mixed crystal layer of a group V-V compound semiconductor containing another group V element together with nitrogen was grown using monomethylhydrazine (MMHy) as a nitrogen source.
  • MMHy monomethylhydrazine
  • a GaAsN mixed crystal layer was grown on the ⁇ 100 ⁇ plane of the GaAs substrate using MMHy at various substrate temperatures, and the substrate with a nitrogen content in the mixed crystal layer was grown.
  • the temperature dependence was investigated.
  • the Ga raw material was supplied in the same manner as in Example 1, but the As raw material was supplied as As 2 molecular beams by heating tertiary tyl arsine (TBA s) to 600 ° C. Was done.
  • TSA s tertiary tyl arsine
  • the other crystal growth conditions are 10 atoms at which the nitrogen incorporation efficiency into the GaAsN layer is the highest and the nitrogen content in the group V element is almost saturated. Set to / 0 .
  • the GaAsN layer was also grown under the same conditions except that NH 3 was used instead of MMHy.
  • FIG. 8 shows the relationship between the nitrogen content in the thus obtained GaAs N layer and the substrate temperature.
  • the horizontal axis represents the substrate temperature (° C)
  • the vertical axis represents the nitrogen composition in Group V elements in GaA s N layer (atomic. / 0).
  • the solid curve 8 A and dashed curve 8 B represents a nitrogen composition of G a A s N layer in the case of using the case and NH 3 with MMHy respectively.
  • the GaAsN layer grows at a substrate temperature of about 350 ° C or higher, and the nitrogen content increases with an increase in the substrate temperature. It tends to saturate above 600 ° C.
  • the curve 8B when NH 3 is used, the GaAsN layer grows at about 450 ° C. or higher, and the nitrogen content increases as the substrate temperature increases. Tends to saturate at about 700 ° C.
  • the results in FIG. 8 show that the use of MMHy as a nitrogen source in the growth of a mixed crystal layer of a III-V compound semiconductor containing other group V elements together with nitrogen is lower than in the case of using NH 3. It can be seen that the mixed crystal layer can be grown at the temperature.
  • TBAs are used to illustrate that various arsenic materials can be used. Although a case was shown, the tendency as shown in FIG. 8 hardly changed when a solid raw material was used as in Example 1 as in the case of Example 1.
  • FIG. 1 shows the same as in Example 1 except that NH 3 or MMHy was used as a nitrogen source and the substrate was kept at 500 ° C. during the growth of the quantum well layer 3.
  • NH 3 or MMHy was used as a nitrogen source and the substrate was kept at 500 ° C. during the growth of the quantum well layer 3.
  • the composition of the GaInNAs layer 3 is such that the In content in the group III element is 7.1 atoms in order to obtain an emission wavelength of 1.3 / Xm. /. Therefore, the conditions of each raw material beam were optimized so that the N content in the group V element was 2.5 atomic%.
  • Figure 9 shows the PL emission intensity of the quantum well structure obtained in this way.
  • the horizontal axis represents the PL emission wavelength (nm) of the quantum well structure
  • the vertical axis represents the PL emission intensity (arbitrary unit).
  • the solid curve 9A and the broken curve 9B show the PL emission intensity when MMHy and NH 3 are used, respectively.
  • Hy was used, but hydrazine (N 2 H 4 ) ⁇ dimethyl hydrazine (DMH y) can also be used as a preferred nitrogen source in the same substrate temperature range.
  • DMHy dimethyl hydrazine
  • carbon may be incorporated as an impurity in the crystal, so that MMHy or alkyl containing less alkyl groups than DMHy may be used.
  • NH 4 containing no hydroxyl group is more preferable because it can suppress the incorporation of impurity carbon into the crystal.
  • the quantum well structure as shown in FIG. was done. That is, in the eighth embodiment, various raw materials having different generation energies as shown in Table 5 are used as the nitrogen raw material, and the substrate is kept at the respective nitrogen raw materials while the quantum well layer 3 is formed. The temperature was maintained at the optimal temperature when using.
  • the quantum well layer 3 has an In content of 7.1 atoms in the III group element. /. Then, the molecular beam intensity of Ga, In, As, and the nitrogen source was set so that the nitrogen content in the group V element was 2.5 atomic%.
  • FIG. 10 shows the relationship between the PL emission spectrum intensity and the casting energy of the nitrogen source in the quantum well structure according to the eighth embodiment. That is, the horizontal axis in FIG. 10 represents the cast energy (k jZmo 1) at 298 K of the nitrogen source used to form the quantum well layer 3, and the vertical axis represents the PL emission intensity (arbitrary unit). .
  • PL emission intensity tends to increase by using a nitrogen source having a lower Gibbs energy of formation than nitrogen radicals. In particular, nitrogen with production Gibbs energy less than about lOO kj / mol —
  • a high-quality GaInNAs / A1GaAs-SQW structure having high PL emission intensity can be obtained.
  • the just ⁇ 100 ⁇ crystal plane was used as the substrate surface.
  • A1 is used as cladding layers 2 and 4.
  • G a 0. 7 is A s layer is used, Ga A s tendency shown in Figure 10 even when G a I n P that can be lattice matched is used in the substrate is almost the same, such les ,.
  • Ga In formed by MBE using NH 3 as a nitrogen source and a solid source as a source of other elements.
  • a semiconductor laser including an active layer of NA s—S QW was fabricated.
  • FIG. 11 a semiconductor laser including such a GaInNAs—SQW structure is shown in a schematic sectional view.
  • an n-type GaAs substrate 1 having a just ⁇ 100 ⁇ crystal surface, a 0.5 / xm thick buffer layer 6 of n-type GaAs and an n-type A 1 3 G a. . 7 A s force Ranaru thickness 1 // m of n-type clad layer 7, n-type G a A s a thickness of 0. 1 5 mu m of the n-type guide layer 8, throat-loop G a. . 929 I n. .. 71 N. .. 25 A s. .
  • S QW layer 9 made of 975, p-type G a A s a thickness of 0. 1 5 // p-type guide layer 10 of m, p-type A 1 0. 3 G a. 0.5 ⁇ m thick p-type cladding layer 11 consisting of 7 As and 0.1 ⁇ m thick contact layer 12 consisting of p-type GaAs are grown sequentially by MBE I was made to. In growing these layers, the same conditions as in Example 1 were used for the substrate temperature, NH 3 gas heating temperature, and the like. Also, G a 929 In 0. 71 N 0 .. 25 A s. . In the growth of 975 one SQW layer 9, the growth conditions shown in the condition 2 in Table 1 were employed.
  • the characteristic temperature of the conventional semiconductor laser is about 50 K.
  • the characteristic temperature has been improved to 170 K in the range from room temperature to 85 ° C.
  • the increase in current required for laser oscillation has been reduced.
  • reliability tests were performed by driving the semiconductor laser of this example at an output of 1 OmW at 60 ° C. As a result, a life of 5,000 hours or more (until the drive current increased by 20% from the initial current) Time) was confirmed.
  • a semiconductor laser for optical communication having a high characteristic temperature, a low oscillation threshold, and high reliability and high performance can be obtained.
  • NH 3 was used as a nitrogen source, but it has a production cast energy smaller than 100 kJ / mo 1, such as dimethylamine and MMHy shown in other embodiments. Even if a nitrogen compound is used, a semiconductor laser having similar performance can be obtained. Also, by changing the composition of the GaInNAs active layer, a semiconductor laser having excellent performance in the wavelength band of 1.55 / xm can be obtained.
  • MB E method described in the above embodiment, GSMBE method as described above, CBE method has been used as a broad concept, including MOMBE method, as the group V source raw materials such as As H 3 A gas may be used, and an organic metal such as trimethylgallium (TMGa), trimethinoleanolinium (TMA 1), or trimethylindium (TMIn) may be used as a raw material of the m-group element.
  • TMGa trimethylgallium
  • TMA 1 trimethinoleanolinium
  • TMIn trimethylindium
  • the compound semiconductor crystal is irradiated by irradiating the substrate with the molecular beam of the source material in a crystal growth chamber evacuated so that the mean free path of the source molecule is longer than the distance between the substrate and the molecular beam source.
  • MBE method in a broad sense is used, in which each raw material molecule reacts only on the crystal growth surface, various raw materials can be applied to the present invention.
  • the N concentration in the V-group element is ⁇ 3.5 at.
  • a GaInn s mixed crystal that can be lattice-matched was used.
  • a GaInNP mixed crystal having a N concentration of 3 atomic% and lattice matching with a GaP substrate was used. It contains not only mixed crystals of GaInNAs and GaInNP having a concentration, but also nitrogen and at least one other group V element, As, P, Sb, and Bi,
  • the present invention can be applied to the growth of a mixed crystal layer of a III-V compound semiconductor containing at least one of B, Al, G a, In and T 1 as a group V element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Semiconductor Lasers (AREA)

Description

明細書 化合物半導体の製造方法 技術分野
本発明は、 分子線ェピタキシャル成長 (MBE) 法、 ガスソース MB E (GS MBE) 法、 化学線ェピタキシャル成長 (CBE) 法、 有機金属分子線ェピタキ シャル成長 (MOMBE) 法などにおけるように、 原料分子の平均自由工程が基 板と分子線源との間の距離より大きくなるように真空排気された結晶成長室内で 原料分子線を基板に照射することによって、 窒素とともに少なくとももう 1つの
V族元素を含む m— V族化合物半導体を製造する方法に関する。 背景技術
近年、 オプトエレク トロニクス用材料として、 窒素とともに少なくとももう 1 つの V族元素を含む m— V族化合物半導体が注目されている。 なぜならば、 m— V族化合物半導体は、 その混晶の糸且成を変化させることによって、 その結晶格子 定数やエネルギバンドギャップを広い範囲で制御できるからである。 中でも、 G a I nNA s系半導体は、 G a A sと格子整合が可能になる組成において 1. 3 / 111または1. 5 5 /imの波長を含む帯域の光を伝送する光ファイバ通信用レー ザの活性層のために望まれるバンドギャップを有し、 かつ、 A l G a A s系また は I nG a P系の半導体との組合せによって伝導帯の大きなバンドオフセットが 得られること力ゝら、 温度が上昇しても必要な電流があまり増大しないという改善 された温度特性を有する通信用半導体レーザを実現し得る材料として期待されて いる (たとえば、 応用物理、 第 6 5巻 (1 9 9 6) 第 1 4 8頁参照) 。
従来、 G a I nNA s系半導体などのように窒素とともに他の V族元素を含む
ΠΙ— V族化合物半導体の形成に用いられる分子線ェピタキシャル成長 (MBE) 法、 ガスソース MB E (GSMBE) 法、 化学線ヱピタキシャル成長 (CBE) 法、 有機金属分子線ェピタキシャル成長 (MOMBE) 法など (以下、 これらの 方法を MB E法と総称する) による結晶成長においては、 結晶中への窒素の取込 一 み ¾率への観点から、 窒素分子 (N2) またはアンモニア (NH3) のプラズマ から得られる活性窒素 (窒素ラジカル) が用いられている (特開平 6— 334 1 68号公報参照) 。
し力 し、 窒素原料として窒素ラジカルを用いる MB E法によれば、 窒素ととも に他の V族元素を含む ΙΠ— V族化合物半導体の結晶成長においては、 窒素濃度の 増大とともにその半導体の結晶性が低下するという問題がある。 たとえば、 G a 0.75 I n0.25N0. Q05A s 0.995の混晶を単一量子井戸 (SQW) の活性層に用 いた半導体レーザにおいて、 77 Kで波長 1. 1 1 3 mの光のレーザ発振が報 告されているが (Electronics Letters, Vol.32, 1996, p.1585 参照) 、 光ファ ィバ通信に利用される 1. 3 111または1. 55 /zmの波長を含む帯域における 光のレーザ発振が実現されていない。
すなわち、 G a A sに格子整合し得る G a I n NA s系混晶において、 1. 3 μ m以上の発振波長に相当するエネルギバンドギヤップを得るためには、 V族元 素中の窒素の含有量を上記のような従来例における 0. 5原子%より大きな約 2. 5原子%以上にする必要があるが、 従来の窒素ラジカルを用いた MB E法で成長 させられた半導体においては、 窒素含有量の増大に伴って結晶性が低下すること がわかってきた。
この原因は、 窒素源として窒素ラジカルを用いた場合に、 窒素ラジカルの反応 性の高さまたはその高いエネルギに起因して結晶欠陥が誘発されるからであると 考えられる。 すなわち、 窒素ラジカルの反応性の高さに基づいて、 窒素は m族元 素との結合を容易に形成して結晶内へ高い効率で取込まれるが、 同時に窒素以外 の V族元素と結合した窒素化合物分子も形成されてしまい、 この窒素化合物分子 も結晶中に取込まれることによってアンチサイ トの V族元素 (in族元素が占める べき格子位置を占めた V族元素) や格子間原子のような結晶欠陥を誘発すると考 えられる。 このとき、 N_Nの結合が生成しても N2分子は高い蒸気圧を有して いて結晶中へのその取込み率は小さく、 窒素以外の V族元素と窒素との結合が形 成された場合に結晶性の低下の問題が生じる。
また、 窒素ラジカルから放出されたエネルギによって、 既に形成された結晶成 長表面近傍の DI族元素と窒素以外の V族元素との結合 (たとえば、 Ga— A s結 ― 合) が解離させられて、 比較的蒸気圧の高い V族元素が脱離して空孔が発生する ことが考えられる。 このとき、 m族元素と窒素との結合は強くて安定であるので、 特に m族元素との結合強度が窒素に比べて小さレ、他の V族元素を含む m— V族化 合物半導体において結晶性の低下の問題が生じる。
したがって、 窒素ラジカルを用いる M B E法によって窒素とともに他の V族元 素を含む m— V族化合物半導体の結晶を成長させる場合、 結晶中の窒素濃度を増 大させようとして窒素ラジカルの供給量を増大させれば、 高品質の結晶を得るこ とが難しくなるとレヽぅ問題がある。
以上のような従来技術における課題に鑑み、 本発明は、 窒素とともに少なくと ももう 1つの V族元素を含む ffl— V族化合物半導体においても優れた結晶性を実 現し得る化合物半導体の製造方法を提供することを目的としている。 発明の開示
本発明の 1つの態様による化合物半導体の製造方法は、 原料分子の平均自由ェ 程が基板と分子線源との間の距離より大きくなるように真空排気された結晶成長 室内で原料分子線を基板に照射することによつて窒素とともに少なくとももう 1 つの V族元素をも含む m— V族化合物半導体結晶が成長させられるときに、 窒素 の原料として窒素化合物が用いられ、 その窒素化合物の分子は基板の表面に到達 した後に分解して窒素原子のみが半導体結晶中に取込まれることを特徴としてい る。
すなわち、 結晶成長表面における窒素化合物の解離と吸着によって窒素原子が 結晶中に取込まれる。 したがって、 窒素ラジカルではなくて安定な窒素化合物を 窒素原料として用いることによって、 窒素化合物の分解の際に窒素以外の V族元 素と窒素との反応を抑制することが可能である。 また、 結晶成長表面において窒 素化合物の分解によつて窒素が結晶中に取込まれる際の反応によつて放出される エネルギは窒素ラジカルが放出するエネルギょり小さくされ得るので、 結晶成長 表面近傍における Π族元素と窒素以外の V族元素との結合の解離を抑制すること が可能となり、 安定した結晶成長を実現することができる。
窒素化合物としては、 窒素の水素化物が好ましく用いられ得る。 窒素の水素化 —物の結合解離エネルギは N 2分子に比べて小さいので、 結晶成長表面における水 素化物の解離と窒素の吸着が比較的低温で行なわれ得る。 したがって、 成長させ られる化合物半導体における窒素とその他の V族元素との組成比の制御が容易に なる。 また、 窒素の水素化物の解離によって生じる H 2分子は結晶成長表面から 容易に脱離するので、 結晶中への不要な不純物の取込みが生じることもない。 さ らに、 結晶成長表面に炭素 (C ) などの不純物が存在する場合には、 その不純物 が水素化物を形成して結晶成長表面から脱離することによる清浄化の効果も期待 され得る。
窒素の水素化物としては、 N H 3が好ましく用いられ得る。 N H 3は窒素の水 素化物の中で最も安定であり、 解離と吸着によって窒素原子が結晶中に取込まれ るときに、 窒素とそれ以外の V族元素との相互反応による結晶欠陥の発生を最小 限に抑制することができる。
窒素化合物として窒素の水素化物が用いられる場合には、 結晶成長の間に基板 は 5 0 0〜7 5 0 °Cの範囲内の温度に保持されることが好ましい。 また、 窒素化 合物として N H 3を用いる場合には、 その N H 3を 3 5 0〜5 0 0 °Cの範囲内の 温度に加熱した後に基板に照射することが好ましい。
なお、 窒素の水素化物として、 ヒ ドラジン (N 2 H 4) も N H 3と同様に好まし く用いられ得る。
また、 窒素化合物として、 窒素のアルキル化合物も好ましく用いられ得る。 窒 素のアルキル化合物は一般に窒素の水素化物より小さな結合解離エネルギを有し ている。 その結果、 結晶成長表面における窒素化合物の解離が容易となり、 結晶 中への窒素の取込み効率が高められ得る。 また、 窒素のアルキル化合物の分解に よって生じるアルキル基は高い蒸気圧を有する炭化水素であるので、 結晶成長表 面から容易に脱離して結晶中に取込まれることがないので、 高純度の結晶を得る ことができる。
なお、 窒素のアルキル化合物として、 ヒ ドラジンのアルキル化物も同様に好ま しく用いられ得る。
さらに、 窒素のアルキル化合物としてアルキルアミン系化合物も好ましく用い られ得る。 安定なアルキルアミン系化合物を用いる場合、 結晶成長表面における 解離と吸着によつて窒素原子が結晶中へ取込まれる際に、 窒素とそれ以外の V族 元素との相互反応による結晶欠陥の発生を最小限に抑制することができる。 窒素 の化合物としてアルキルアミン系化合物を用いる場合には、 結晶成長の間に基板 は 4 0 0〜7 5 0 °Cの範囲内の温度に保持されることが好ましい。
基板は閃亜鉛鉱型の結晶構造を有する化合物半導体であることが好ましく、 そ の表面は ( 1 0 0 } 面から { 1 1 1 } A面方向に向かう所定オフ角度を有するこ とが好ましい。 このような化合物半導体基板の表面では窒素化合物の分解が促進 され、 窒素ラジカルに比べて反応性の低い窒素化合物を用いても結晶中への窒素 の高い取込み効率を実現することができる。 特に、 化合物半導体基板の表面のォ フ角度は 5〜1 5 ° の範囲内にあることが好ましい。
V族元素を基板上に供給するとき、 窒素化合物分子を基板に照射する工程と他 の V族元素を基板に照射する工程とが重複することなく交互に行なわれることが 好ましい。 窒素原料とそれ以外の V族元素の原料の基板への供給を個別に独立し て行なうことによって、 窒素と他の V族元素との相互作用を低減させることがで きる。 したがって、 結晶中への窒素の取込み効率が改善されるとともに、 窒素ラ ジカルではない窒素原料を用いることでは十分には抑制できない窒素と他の V族 元素との反応の十分な抑制も可能になる。
窒素原料としては、 1 0 0 k j /m o 1 より小さな生成ギプスエネルギを有す る窒素化合物がより好ましく用いられ得る。 1 0 0 k J /m o 1 より小さな生成 ギプスエネルギを有する窒素化合物を用いることによって、 窒素化合物の分解の 際に、 窒素以外の V族元素と窒素との反応をより効果的に抑制することができる。 また、 結晶成長表面において、 窒素化合物の分解によって窒素が結晶中に取込ま れる際の反応に起因する I I I族元素と窒素元素以外の V族元素との結合の解離 がより効果的に抑制され、 高品質の結晶を得ることが可能になる。 図面の簡単な説明
図 1は、 本発明の実施例 1において作製された量子井戸構造を説明するための 概略的な断面図である。
図 2は、 本発明の実施例 1において作製された量子井戸構造における量子井戸 一層中の窒素濃度と P L発光強度との関係を示すダラフである。
図 3は、 本発明の実施例 2において作製された量子井戸構造の P L発光スぺク トルを示すグラフである。
図 4は、 本発明の実施例 4において作製された G a I nNA s膜の窒素組成と 基板表面の {100} 面からのオフ角度との関係を示すグラフである。
図 5は、 本発明の実施例 4において作製された量子井戸構造における P L発光 強度と基板表面のオフ角度との関係を示すグラフである。
図 6は、 本発明の実施例 5による G a I nNA s混晶層の成長の際における原 料供給シーケンスを説明するためのタイミングチャートである。
図 7は、 本発明の実施例 6による量子井戸構造において、 NH3原料ガスの加 熱温度と P L発光の波長および強度との関係を示すグラフである。
図 8は、 本発明の実施例 7において形成された G a A s N層に含まれる窒素組 成と基板温度との関係を示すグラフである。
図 9は、 実施例 7によって作製された量子井戸構造における P L発光の波長と 強度との関係を示すグラフである。
図 10は、 本発明の実施例 8において作製された量子井戸構造の P L発光強度 と窒素原料の生成ギプスエネルギとの関係を示すグラフである。
図 1 1は、 本発明の実施例 9において作製された半導体レーザを説明するため の模式的な断面図である。 発明を実施するための最良の形態
以下において、 本発明の実施の形態が、 種々の実施例を通して詳細に説明され る。
(実施例 1 )
本発明の第 1の実施例では、 窒素原料として NH3を用いかつ他の元素の原料 として固体原料を用いた MB E法によって、 G a A s基板に格子整合する組成を 有する Ga I nNAsと A 1 Ga A sとの組合せによる単一量子井戸 (SQW) 構造が作製された。
図 1において、 このような G a I n NA s /A 1 G a A s - S QW構造を含む 量 ¥井戸構造が模式的な断面図で示されている。 この量子井戸構造においては、 ジャスト { 100} 結晶表面を有する G a A s基板 1上に、 A 1。.3G a。.7 A sからなる厚さ 1 / mの下部クラッド層 2、 G a l nNA s混晶からなる厚さ 6 nmの量子井戸層 3、 A 1。. 3G a 0. 7 A s力 らなる厚さ 0. 2 // mの上部クラ ッド層 4、 および G a A sからなる厚さ 0. 1 μ mのキャップ層 5が M B E法に よつて順次成長させられた。
MB E原料の A 1、 G a、 および I nの各々に関しては、 固体金属原料をクヌ 一センセルを用いて加熱することによって分子線が基板表面上に照射された。 A sに関しては、 固体の A s原料をクラッキングセルを用いて加熱することによつ て、 A s 2ビームが基板表面上に照射された。 窒素原料としては、 1 00%の N H3ガスが用いられた。 NH3はそれが分解されない 3 50°Cにガスソースセル によって加熱され、 そのガスソースセルから N H 3ビームが基板表面に照射され た。 NH3を 100°C以上に加熱することによって、 結晶成長面上において NH 3分子の拡散が促進され、 結晶成長面の平坦性が向上する。 しかし、 NH3をガ スソースセルによって 500°C以上に加熱すれば、 NH3が結晶成長表面に到達 する前に熱分解によって N2が生成し、 結晶中への窒素の取込み効率が低下する。 したがって、 NH3は 100〜500°Cの範囲内の温度に加熱されることが好ま しい。
A l G aA s層 2, 4と G aA s層 5の成長の際には、 基板が 580。Cの温度 に保持され、 分子線強度として A 1 =2 X 1 0- 7To r r (G a A s層の形成 の場合は不要) 、 G a - 5 X 1 0 7To r r、 そして A s =5 X 10- 6To r rが用いられた。 この場合の結晶成長速度は、 厚さ方向において約 0. δ μηιΖ hでめつ 7こ。
G a I nNA s混晶層 3の形成においては、 基板が 580°Cの温度に保持され、 表 1に例示されているように目的とする組成にほぼ比例する分子線強度を用レ、て 結晶成長が行なわれた。 宋 1千 丄 木 1干 ί 宋忏
U lllll、A Y比日曰? ntLR
インシ、、ゥム組成 (%) 2.8 7.1 9.9
窒素組成 (%) 1.0 2.5 3.5
Gaビ ム強度 (Torr) 5.0X10" 7 5.0X10— 7 5.0X10—7
Inビ ム強度 (Torr) 1.5X10— 8 3.8X10— 8 5.5X10" 8
As 2ビ ム強度(Torr) 2.5X10— 6 2.5X10— 6 2.5X10" 6
NH 3力ス流量(Torr) 1.7X10" 7 4.3X10" 7 6. OX 10" 7 図 2において、 第 1実施例によって作製された G a I nNA s/A 1 G a A s 一 SQWからなる量子井戸構造における PL (フォ トルミネセンス) 発光強度の 窒素組成依存性が、 MBE法において NH3の代わりに窒素ラジカルを用いて作 製された量子井戸構造との比較において示されている。 図 2のグラフにおいて、 横軸は Ga I nNA s活性層 3に含まれる V族元素中の窒素含有量 (原子%) を 表わし、 縦軸は PL発光強度 (任意単位) で表わしている。 黒丸印を含む曲線 2 Aは第 1実施例による量子井戸構造における P L発光強度を表わし、 白角印を含 む曲線 2 Bは窒素ラジカルを利用して形成された従来の量子井戸構造における P L発光強度を表わしている。
図 2から明らかなように、 NH3を利用して作製された量子井戸構造において は、 3. 5原子。/。程度の高い窒素含有量を有していても十分な強度の P L発光を 生じ得ることが確認された。 他方、 窒素ラジカルを利用して作製された量子井戸 構造においては、 窒素含有量が約 2原子。/。を超えれば急激に P L発光強度が低下 した。 また、 約 2原子%以下の低い窒素濃度の範囲においても、 NH3を利用し て作製された量子井戸構造は、 窒素ラジカルを利用して作製されたものに比べて P L発光強度が改善されることが明らかになつた。
第 1実施例における以上の結果から明らかなように、 本発明によれば、 比較的 高い窒素濃度範囲まで高品質の G a I nNA s混晶を得ることができる。 また、 このような高濃度の窒素を含みかつ高品質の G a I nNA s層を活性層として用 いた半導体レーザを作製することにより、 1. 3 // !11または1. 55 μπιの波長 を含む帯域の光を低電流で射出することができ、 かつ長寿命の高性能の光通信用 体レーザを提供することができる。
ところで、 図 2においては窒素原料として窒素の水素化物のうちの NH 利 用されたが、 窒素の他の水素化物としてヒ ドラジン (N2H4) やアジ化水素 (N3H) を用いることも可能である。 表 2に示されているように、 ヒ ドラジン ゃァジ化水素は N H 3に比べて小さな結合解離エネルギを有してレ、て結晶成長表 面上で分解しやすいので、 結晶内への窒素の取込み効率が高められ得る。
表 2
Figure imgf000011_0001
しかし、 表 3に示されているように、 NH3は、 窒素の水素化物の中で最も小 さな生成ギプスエネルギを有していて安定である。 したがって、 高品質結晶を得 るという観点からは、 NH3は、 解離と吸着によって窒素原子が結晶中へ取込ま れる際に、 窒素とそれ以外の V族元素との相互反応による結晶欠陥の発生を最小 限に抑制し得るという点で好ましい。
表 3
窒素化合物 生成キ"フ"スエネルキ"
(298K)
Δ G(kJ/mol)
-103.4
(NH 3)
ヒ ドラジン 23.8
(N 2H4)
アジ化水素 222.8
(N 3H) ' お、 図 2においては基板温度が 580°Cに保持されたが、 NH3を窒素原料 として用いる場合には、 500〜750°Cの範囲内の基板温度を用いることがで きる。 基板温度が 500°Cより低くなれば結晶成長表面上での NH3の分解効率 が急激に低下し、 窒素を含む混晶を成長させることが困難になる。 他方、 基板温 度が 750°Cを超えれば、 一般に A sや Pなどの窒素以外の V族元素の脱離が増 大し、 結晶欠陥が増大するとともに結晶表面の荒れを生じて、 高品質の結晶を得 ることが困難になる。
また、 図 2においては S QW構造のクラッド層として A 1。.3G a 0.7 A s層 が用いられたが、 Ga A s基板に格子整合する I nG a Pのクラッド層を用いて もよい。 また、 基板としてジャスト {100} 面を有する G a A s基板が用いら れたが、 {100} 面に対して所定のオフ角を有する基板表面が用いられてもよ い。
(実施例 2)
本発明の第 2の実施例においては、 量子井戸層 3の形成条件が変更されたこと を除けば実施例 1の場合と同様に図 1に示されているような量子井戸構造が作製 された。
すなわち、 第 2実施例においては、 窒素原料として、 NH3に代えてジメチル ァミンが用いられた。 ジメチルァミンの蒸気は、 NH3の場合と同様に、 ガスソ ースセルを用いて基板表面上に照射された。 ガスソースセルは、 そのセル上への ジメチルァミン蒸気の再凝縮を防止するために、 50〜1 50°Cの範囲内の温度 に加熱された。 この範囲内の温度に加熱されたガスソースセルから放射されたジ メチルァミンの蒸気は、 基板表面上に至るまでに分解させられることはない。 量子井戸層 3が形成される間、 基板は 500°Cの温度に保持され、 分子線強度 は G a = 5 X 1 0- 7To r r、 I n = 3. 8 X 1 0- 7T o r r、 A s = 2. 5 X 1 0- eT o r r、 およびジメチノレアミン = 2. 1 X 1 0 - 7 T o r rに設定さ れた。 このようにして形成された量子井戸層 3における m族元素中の I n含有量 は 7. 1原子%であり、 V族元素中の窒素含有量は 2. 5原子%であった。 図 3においては、 第 2実施例による量子井戸構造における PL発光スぺク トル 強度が、 窒素ラジカルを利用して作製された量子井戸構造との比較において示さ - れ いる。 すなわち、 図 3の横軸は量子井戸構造から射出される光の波長 (n m) を表わし、 縦軸は P L発光強度 (任意単位) を表わしている。 曲線 3 Aはジ メチルァミンを利用して作製された量子井戸構造に対応し、 曲線 3 Bは窒素ラジ カルを利用して作製された量子井戸構造に対応している。
図 3から明らかなように、 窒素ラジカルではなくてジメチルァミンを用いる M
B E法によって形成された量子井戸層 3を含む量子井戸構造は 1 . 3 j mの波長 近傍において高いピーク強度と小さな半値幅を有する P L光を射出することがで き、 高品質の G a I n N A s /A 1 G a A s _ S QW構造を得ることができる。 すなわち、 第 2実施例におけるように窒素原料としてジメチルァミンを用いる M B E法によっても、 高品質の G a I n N A s混晶を得ることができる。
なお、 第 2実施例の以上の説明では窒素を含むアルキル化物としてジメチルァ ミンが用いられたが、 この他に実施例 1において述べられた N H 3、 ヒ ドラジン、 アジ化水素などのような窒素の水素化物における水素原子をアルキル基で置換し たメチルァミン、 メチルヒ ドラジン、 アジ化メチルなどのようなアルキル化物も 同様に用いられ得る。 窒素の水素化物における水素原子をアルキル基で置換する ことにより、 表 4に例示されているように、 窒素の水素化物に比べて生成ギプス エネルギをほとんど変化させることなく、 窒素化合物の結合解離エネルギを小さ くすることが可能になる。 その結果、 結晶成長表面上における窒素と他の V族元 素との反応を増大させることなく窒素化合物の解離の効率を向上させることがで き、 窒素の結晶中への取込み効率が改善されるとともに、 結晶成長温度を低くす ることが可能になる。
表 4
Figure imgf000013_0001
窒素を含むアルキル化物の中でも、 アルキルアミン系化合物は N H 3と同様に 一安定な化合物であり、 解離と吸着によって窒素原子が結晶中へ取込まれる際に、 窒素と他の V族元素との相互反応による結晶欠陥の発生を最小限に抑制すること ができる。
なお、 図 3においてはジメチルァミンを用いて量子井戸 3を形成する間に基板 が 500°Cに保持されたが、 窒素原料としてアルキルアミン系化合物を用いる場 合には、 基板を 400〜750°Cの範囲内の温度に保持することによって高品質 の量子井戸層 3を成長させることが可能である。 すなわち、 アルキルアミン系化 合物を用いる場合には、 それが NH3に比べて分解しやすいことに起因して、 比 較的低い温度の基板表面上に量子井戸層 3を成長させることが可能になり、 同じ 温度の基板表面上においては窒素の結晶中へのより高い取込み効率を得ることが できる。
また、 図 3においては S QW構造におけるクラッド層 2, 4として A l。.3G a 0.7 A s層が用いられたが、 G a A s基板に格子整合する I nGa Pが用いら れてもよい。 さらに、 基板表面としてジャスト {100} 結晶面が用いられたが、 {100} 面に対して所定のオフ角度を有する基板表面が用いられてもよい。
(実施例 3 )
本発明の第 3の実施例においては、 G a P基板のジャスト {100} 面上に G a I nNP混晶層が成長させられた。 その基板は 550°Cの温度に保持され、 P H3をガスソースセルにて 800°Cでクラッキングして、 P2ビームが基板表面 上に照射された。 他の元素の G a、 I nおよび Nに関しては、 実施例 1の場合と 同じ原料とセルが用いられた。
この Ga I nNP混晶層は、 G a P基板と格子整合し得る組成 (ΠΙ族元素中の 111=5原子%、 V族元素中の N= 3原子。 /0) で、 1 mの厚さまで成長させら れた。 このときの分子線の条件は、 G a = 5. 0 X 10 7 To r r、 I n = 2. 6 X 1 0- 8To r r、 P 2 (P H3) = 5. 0 X 10- 6To r r、 そして NH3 = 3. 9 X 10 7T o r rであった。
得られた G a I nNP層を X線回折によって評価した結果、 {400} 回折ス ぺク トルの半値幅は、 極めて小さくて良好な値である 1 5秒であった。 このよう に、 本発明によれば、 高品質の G a I nNP混晶層を得ることもできる。 よお、 第 3実施例における以上の説明では窒素源として NH3が用いられたが、 実施例 1および実施例 2に例示された他の窒素原料を用いることも可能であるこ とは言うまでもなレ、。
(実施例 4)
本発明の第 4の実施例において、 閃亜鉛鉱型結晶構造を有する G a A s基板の ジャスト { 1 00} 面から { 1 1 1 } 面方向に向かう種々のオフ角度を有する 種々の表面上に厚さ 1 111の0 a I nNA s混晶層が、 表 1中の条件 2のもとに 成長させられた。 得られた G a I nNA s混晶層において、 基板表面のオフ角度 と V族元素中の窒素含有量との関係が、 P L発光のピークエネルギと X線回折ピ ーク位置とを利用して調べられ、 その結果が図 4において示されている。
図 4のグラフにおいて、 横軸は G a A s基板のジャスト {100} 面から {1 1 1 } 面を経て 〈01 1〉 方向へ向かうオフ角度 (度数) を表わし、 縦軸は G a I nNA s混晶層における V族元素中の窒素組成 (原子。 /0) を表わしている。 図 4からわかるように、 得られた G a I nNA s混晶層における窒素含有量は、 基 板表面が {1 1 1 } A面方向へ向かうオフ角を有する場合に増大するが、 {1 1 1 } B面方向に向かうオフ角を有する場合には増大しない。 この理由は、 おそら く、 { 1 1 1 } A面方向に向かうオフ角の場合に基板表面に形成される ΠΙ族原子 からなるステップにおける窒素化合物の分解効率が、 { 1 1 1 } B面方向に向か うオフ角の場合に基板表面に形成される V族原子からなるステップにおけるそれ に比べて高いからであると考えられる。
なお、 {1 1 1} A面とは陽イオン原子で終端された {1 1 1} 面を意味し、 {1 1 1 } B面とは陰イオン原子で終端された {1 1 1 } 面を意味する。 ここで、 Π— V族化合物半導体の場合には、 陽イオン原子とは ΠΙ族元素を意味し、 陰ィォ ン原子とは V族元素を意味する。
図 4の結果から、 {1 00} 面から { 1 1 1 } A面に向かう 3〜20° のオフ 角度を有する基板表面を用いることによって、 成長させられる混晶層内への窒素 の取込み効率の向上が期待され得る。 特に、 5〜1 5° のオフ角度の場合に、 窒 素のより高い取込み効率が期待され^ =る。
次に、 G a A s基板表面のオフ角度が種々に変化させられたことを除けば、 実 mm lの場合と同様に図 1に示されているような量子井戸構造が表 1中の条件 2 のもとに作製された。 こうして得られた量子井戸構造の P L発光強度とオフ角度 との関係が図 5において示されている。
図 5において、 横軸は図 4の場合と同様に基板表面のオフ角度を表わしている 力 縦軸は PL発光強度 (任意単位) を表わしている。 図 5に示されているよう に、 基板表面のオフ角度が 5〜1 5° の範囲内にある場合に、 P L発光強度の増 大が得られる。 この理由として、 基板表面のオフ角度の影響によって混晶層成長 中の窒素の取込み効率が改善されるとともに混晶層の結晶性が向上したからであ ると考えられる。 他方、 基板表面のオフ角度が 20° 以上になれば、 量子井戸構 造の P L発光強度は逆に低下する傾向にある。 この理由としては、 基板表面のォ フ角が 20° 以上になれば、 その基板表面が荒れた状態になるからであると考え られる。 以上のことから、 基板表面のオフ角度を { 1 00} 面から {1 1 1 } A 面に向かう 5〜1 5° の範囲内に設定することによって、 量子井戸構造の PL発 光強度を向上させることができる。
なお、 第 4実施例において、 窒素を原料として、 NH3以外に実施例 1および 実施例 2に例示されている他の窒素化合物も同様に用い得ることは言うまでもな レ、。
(実施例 5)
本発明の第 5の実施例においては、 量子井戸層 3の成長の間に窒素原料 (NH 3) とヒ素原料 (As 2) が 500°Cの基板表面上に同時に供給されることなく 交互に供給されたことを除けば、 実施例 1の場合と同様に図 1に示されているよ うな量子井戸構造が作製された。 図 6は、 G a A s基板の {100} 面上の原料 供給のシーケンスを表わすタイミングチヤ一トである。 図 6からわかるように、 G a I nNA s量子井戸層 3の成長の間、 ΙΠ族元素である G aと I nに関しては 常時に基板表面上に分子線が照射された。 しかし、 V族元素に関しては、 基板表 面上にヒ素原料 (A s 2) が 1 1. 5秒間供給された後に 1秒間のインターバル を経てから窒素原料 (NH3) が 3. 3秒間供給され、 このシーケンスが 1秒間 のィンターバルを挟んで複数回繰返された。
このとき、 原料分子線の強度は G a = 2. 5 X 1 0- 7To r r.、 Ι η = 2· 5 X 1 0 - 8 To r r、 A s 2= 2. 5 X 1 0_GT o r r、 および NH3 = 5 X 1 0 -6 T o r rに設定された。 このような分子線強度によって、 窒素原料とヒ素 原料の供給シーケンスの 1周期の間に、 ほぼ3分子層の G a I nNA s層が成長 させられる。 '
図 6に示されているような原料供給において、 窒素原料の供給の間には G aと
I nと窒素が結晶中に取込まれ、 ヒ素原料の供給の間には G aと I nと A sが結 晶中に取込まれる。 そのとき、 1周期の原料供給シーケンスにおいて成長する混 晶層の厚さを 0. 5〜 5分子層程度の範囲内に設定すれば、 ほぼ均一組成の混晶 を得ることが可能である。 また、 窒素原料とヒ素原料の分子線強度や供給時間を 適切に調節することによって混晶組成を制御することが可能である。
第 5実施例におけるような原料供給法によれば、 窒素原料と窒素以外の V族元 素の原料とが独立に供給されるので、 結晶中への窒素の取込みに関して他の V族 元素との競合を避けることができ、 結晶中への窒素の取込み効率を向上させるこ とが可能になる。 その結果、 実施例 5による量子井戸構造においては、 窒素とそ の他の V族元素とが同時に基板表面上に供給されることによつて作製された量子 井戸層を含むものに比べて PL発光強度が増大し、 すなわち高品質の G a I nN A s /A 1 G a A s -S QW構造を得ることができた。
なお、 第 5実施例においても、 窒素を原料として NH3以外に実施例 1および 実施例 2に例示された他の窒素化合物をも用い得ることは言うまでもない。 また、 第 5実施例においても、 基板のジャスト {1 00} 表面以外にオフ角度を有する 基板表面を用レ、得ることも言うまでもない。
(実施例 6)
本発明の第 6の実施例においては、 ガスセルにおける N H 3の加熱温度が種々 に変えられたことを除けば、 実施例 1の場合と同様に、 図 1に示されているよう な量子井戸構造が作製された。 ガス供給ラインからガスセルに供給された NH3 は、 ガスセル内部の加熱部分を通過して所望の温度に加熱された後に、 結晶成長 表面上に供給された。 Ga I nNA s層 3の成長中における各分子線の強度は、 NH3ガスの加熱温度が 3 50°Cの条件のもとにおいて、 m族元素中の I nの含 有量が 7. 1原子%で V族元素中の窒素含有量が 2. 5原子%になるように固定 ぎ ήた。 このようにして作製された量子井戸構造において、 ΝΗ3ガスの加熱温 度と P L発光特性との関係が図 7において示されている。
図 7のグラフにおいて、 横軸は ΝΗ3ガスの加熱温度 (°C) を表わし、 左側の 縦軸は PL発光強度 (任意単位) を表わし、 そして右側の縦軸は PL発光強度ピ ークにおける波長 (nm) を表わしている。 また、 破線の曲線 7 Aは P L発光波 長を表わし、 実線の曲線 7 Bは P L発光強度を表わしている。
曲線 7 Aからわかるように、 NH3ガスの加熱温度が 500°C以上になれば、 発光強度ピークにおける波長が短くなる。 この理由としては、 500°C以上の加 熱温度のもとでは N H 3が分解して安定な N 2分子が形成されるので、 結晶成長 表面において窒素原子の取込み量が減少し、 G a I nNA s層中の窒素含有量が 低下するからであると考えられる。
他方、 曲線 7 Bからわかるように、 NH3ガスを 100°C以上に加熱すること によって P L発光強度が増大し、 特に、 350〜500°Cの加熱温度範囲内にお いて発光強度の著しい増大が得られる。 しかし、 NH3ガスを 500°C以上の温 度に加熱すれば、 その温度の上昇に伴って P L発光強度は急激に低下する。
NH3ガスの加熱に起因して発光強度が増大する理由としては、 おそらく、 N H 3分子が有する熱エネルギが増大して、 結晶成長表面における 'N H 3分子のマ ィグレーシヨンが促進されるからであると考えられる。 特に、 NH3ガスの加熱 温度が 350〜500°Cの範囲内にあるときに、 NH 3分子のマイグレーション による効果が顕著になるものと考えられる。 他方、 NH3ガスの加熱温度が 50 0°C以上の場合に発光強度が低下する理由としては、 結晶中への窒素の取込み率 の減少に伴って、 G a A s基板との格子整合条件からのずれに起因する結晶欠陥 が発生するからであると考えられる。
以上を要約すれば、 P L発光波長と G a I nNA s層の結晶性の観点から、 N H3ガスの加熱温度は 500°C以下であることが好ましい。 また、 G a l nNA s層の結晶性の観点から、 NH3ガスの加熱温度は 1 00°C以上であることが好 ましく、 350°C以上であることがさらに好ましい。
なお、 第 6実施例における以上の説明では、 窒素以外の原料として固体原料が 用いられたが、 A s原料としてターシヤリブチルアルシン (TBAs) ゃトリス — ジメチルァミノアルシン (TDMAA s) などを用いることもでき、 ΠΙ族元素原 料として G aや I nの有機金属化合物などを用いることもできる。
(実施例 7 )
本発明の第 7の実施例においては、 窒素とともに他の V族元素を含む ΠΙ— V族 化合物半導体の混晶層が、 窒素原料としてモノメチルヒ ドラジン (MMHy) を 用いて成長させられた。
まず、 GaA s基板の {100} 面上に、 種々の基板温度のもとで MMHyを 用いて G a A s N混晶層を成長させることによって、 その混晶層における窒素含 有量の基板温度依存性が調べられた。 このとき、 G a原料は実施例 1の場合と同 様に供給されたが、 A s原料はターシャリプチルアルシン (TBA s) を 60 0°Cに加熱することによって A s 2分子線として供給された。 他の結晶成長条件 は、 GaA s N層中への窒素の取込み効率が最も高くなつて V族元素中の窒素含 有量がほぼ飽和する 1 0原子。 /0になるように設定された。 また、 MMHyの代わ りに NH3を用いたこと以外は同じ条件のもとにおいても G a A s N層が成長さ せられた。 こうして得られた GaA s N層中の窒素含有量と基板温度との関係が 図 8に示されている。
図 8のグラフにおいて、 横軸は基板温度 (°C) を表わし、 縦軸は GaA s N層 における V族元素中の窒素組成 (原子。 /0) を表わしている。 そして、 実線の曲線 8 Aと破線の曲線 8 Bは、 それぞれ MMHyを用いた場合と NH3を用いた場合 における G a A s N層中の窒素組成を表わしている。
曲線 8 Aからわかるように、 MMHyを用いた場合には基板温度が約 350 °C 以上で G a A s N層が成長し、 基板温度の上昇に伴って窒素含有量が増大して、 約 600°C以上で飽和する傾向がある。 他方、 曲線 8 Bからわかるように、 NH 3を用いた場合には、 約 450°C以上で G a A s N層が成長し、 基板温度の上昇 に伴って窒素含有量が増大して、 約 700°Cで飽和する傾向がある。 すなわち、 図 8の結果から、 窒素とともに他の V族元素を含む Π— V族化合物半導体の混晶 層の成長において、 窒素原料として MMHyを用いることによって、 NH3を用 いた場合に比べて低い温度でその混晶層を成長させ得ることがわかる。
なお、 図 8では種々のヒ素原料を用い得ることをも例示するために T B A sを 用いた場合が示されたが、 ヒ素原料として実施例 1の場合と同様に固体原料を用 Vヽた場合でも、 図 8に示されているような傾向はほとんど変わらない。
次に、 窒素原料として NH3または MMHyを用いかつ量子井戸層 3の成長の 間に基板が 500°Cに保持されたことを除けば、 実施例 1の場合と同様に図 1に 示されているような量子井戸構造が作製された。 このとき G a I nNA s層 3の 組成としては、 1. 3 /X mの発光波長を得るために、 ΠΙ族元素中の I n含有量が 7. 1原子。/。であって V族元素中の N含有量が 2. 5原子%になるように、 各原 料分子線の条件が最適化された。 こうして得られた量子井戸構造における P L発 光強度が図 9に示されている。
図 9のグラフにおいて、 横軸は量子井戸構造の P L発光波長 (nm) を表わし、 縦軸は PL発光強度 (任意単位) を表わしている。 そして、 実線の曲線 9 Aと破 線の曲線 9 Bとは、 それぞれ MMHyを用いた場合と NH3を用いた場合におけ る P L発光強度を示している。 図 9の結果から明らかなように、 500°Cの基板 温度のもとでは、 NH3でなくて MMHyを用いて作製された量子井戸構造にお いて高いピークと狭い半値幅を有する P L発光が得られ、 高品質の Ga I nNA s量子井戸 3が形成されていることがわかる。 し力 ^し、 基板温度が約 600°C以 上の条件のもとでは、 MMHyではなくて NH3を用いて作製された半導体レー ザの方が、 良好な P L発光特性を示した。
このように、 NH3と MMHyとによる効果が異なる理由としては、 基板温度 が低い場合には結晶成長表面上における NH3の分解効率が減少するので、 未分 解の NH3分子が結晶成長を阻害して結晶性の低下を生じるからであると考えら れる。 他方、 基板温度が高くて NH3と MMHyとのいずれもが容易に分解可能 な条件のもとでは、 比較的反応性が低くて結晶成長表面において欠陥を誘発しに くい N H 3を用いた場合に、 良好な結晶性が得られるからであると考えられる。 なお、 第 7実施例の以上の説明においては、 ヒ ドラジン系の化合物として MM
Hyが用いられたが、 ヒ ドラジン (N2H4) ゃジメチルヒ ドラジン (DMH y) なども、 同様の基板温度範囲において好ましい窒素源として用いることがで きる。 ただし、 DMHyを用いる場合には結晶中に炭素が不純物として取込まれ ることがあるので、 DMH yに比べて少ないアルキル基を含む MMH yやアルキ — ル基を含まない N H 4は、 結晶中への不純物炭素の取込みを抑制することがで きるという点でより好ましい。
(実施例 8 )
本発明の第 8の実施例においては、 量子井戸層 3の形成条件が変更されたこと を除けば、 実施例 1の場合と同様に図 1に示されているような量子井戸構造が作 製された。 すなわち、 第 8実施例においては、 窒素原料として表 5に示されてい るような異なる生成エネルギを有する種々の原料が用いられ、 量子井戸層 3が形 成される間に基板はそれぞれの窒素原料を用いた場合において最適な温度に保持 された。 量子井戸層 3における I I I族元素中の I n含有量が 7· 1原子。 /。であ つて V族元素中の窒素含有量が 2. 5原子%になるように、 G a、 I n、 A s、 および窒素原料の分子線強度が設定された。
表 5
Figure imgf000021_0001
図 1 0においては、 第 8実施例による量子井戸構造における P L発光スぺク ト ル強度と窒素原料の生成ギプスエネルギとの関係が示されている。 すなわち、 図 1 0の横軸は量子井戸層 3の形成に用いられた窒素原料の 298 Kにおける生成 ギプスエネルギ (k jZmo 1 ) を表わし、 縦軸は P L発光強度 (任意単位) を 表している。 図 1 0から明らかなように、 窒素ラジカルに比べて小さな生成ギブ スエネルギを有する窒素原料を用いることにより、 P L発光強度が増大する傾向 にある。 特に、 約 l O O k j/mo l より小さな生成ギブスェネルギを有する窒 — 一 素原料を用いることによって、 高い P L発光強度を有する高品質の G a I nNA s/A 1 G a A s - S QW構造を得ることができる。
なお、 第 8実施例の以上の説明においては、 基板表面としてジャスト { 1 0 0} 結晶面が用いられたが、 オフ角度を有する基板表面が用いられた場合でも、 図 1 0に示されている傾向はほとんど変わらない。 さらに、 クラッド層 2, 4と して A 1。. 3G a 0. 7 A s層が用いられたが、 Ga A s基板に格子整合し得る G a I n Pが用いられた場合にも図 10に示されている傾向はほとんど変わらなレ、。
(実施例 9)
本発明の第 9の実施例においては、 実施例 1の場合と同様に窒素原料として N H3を用いかつ他の元素の原料として固体原料を用いた MB E法によって形成さ れた G a I n N A s— S QWの活性層を含む半導体レーザが作製された。
図 1 1において、 このような G a I nNA s— SQW構造を含む半導体レ一ザ が模式的な断面図で示されている。 この半導体レーザにおいては、 ジャスト { 1 00} 結晶表面を有する n型 G a A s基板 1上に、 n型 G a A sからなる厚さ 0. 5 /xmのバッファ層 6、 n型 A 1 3G a。.7 A s力 らなる厚さ 1 // mの n型ク ラッド層 7、 n型 G a A sからなる厚さ 0. 1 5 μ mの n型ガイド層 8、 ノンド ープ G a。.929 I n。.。71N。.。25A s。.975からなる S QW層 9、 p型 G a A s からなる厚さ 0. 1 5 //mの p型ガイ ド層 10、 p型 A 10.3G a。.7 A sから なる厚さ 0. 5 μ mの p型クラッド層 1 1、 および p型 G a A sからなる厚さ 0. 1 / mのコンタク ト層 1 2が MB E法によって順次成長させられた。 なお、 これ らの層の成長の際に、 基板温度、 NH3ガス加熱温度等については、 実施例 1の 場合と同様の条件が用いられた。 また、 G a 929 I n0.。71N0.。25A s。.975 一 SQW層 9の成長においては、 表 1中の条件 2に示される成長条件が採用され た。
このようにして、 各半導体層が成長させられて積層された後に、 p型 Λ 1。.3 G a。.7A sクラッド層 1 1と ρ型 G a A sコンタク ト層 1 2の一部がゥエツト エッチングによってメサストライプ状にエッチング除去され、 ポリアミ ドからな る絶縁層 1 3がそのエッチング除去された部分を覆うように形成された。 さらに、 上部電極 14と下部電極 1 5が形成され、 図 1 1に示されているようなリツジス ト イプ型の半導体レ一ザが作製された。
この半導体レーザでは、 共振器端面に λΖ 2コーティングが施された状態で室 温において 1. 3 / mの波長の光の連続発振が確認され、 その発振しきい値は 1 5 mAで、 効率は 0. 35WZAであった。 また、 従来の半導体レーザの特性温 度は約 50 Kであるが、 この実施例の半導体レーザにおいては室温から 85°Cの 範囲において特性温度が 1 70Kに向上していた (すなわち、 温度の上昇に伴う レーザ発振に必要な電流の増大が少なくなつた) 。 さらに、 この実施例の半導体 レ一ザを 60°Cにおいて 1 OmWの出力で駆動することによって信頼性試験を行 なった結果、 5000時間以上の寿命 (駆動電流が初期電流から 20%増大する までの時間) が確認された。
このように、 本発明による化合物半導体の製造方法を利用することにより、 特 性温度が高くて発振しきい値が低くかつ高信頼性で高性能の光通信用半導体レー ザを得ることができる。 なお、 第 9実施例においては窒素原料として NH3が用 いられたが、 他の実施例に示されたジメチルァミンや MMHyなどのように 1 0 0 k J/mo 1 より小さな生成ギプスエネルギを有する窒素化合物を用いても同 様の性能を有する半導体レーザを得ることができる。 また、 Ga l nNAs活性 層の組成を変えることによって、 1. 55 /xmの波長帯においても同様に優れた 性能を有する半導体レーザを得ることができる。
なお、 以上の実施例において説明された MB E法は、 前述のように GSMBE 法、 CBE法、 MOMBE法などを含む広い概念として用いられており、 V族元 素原料としては As H3などのガスを用いることもでき、 m族元素原料としては トリメチルガリウム (TMGa) 、 トリメチノレアノレミニゥム (TMA 1 ) 、 また はトリメチルインジウム (TMI n) などの有機金属を用いることもできる。 要 するに、 原料分子の平均自由工程が基板と分子線源との間の距離以上になるよう に真空排気された結晶成長室内で原料分子線を基板上に照射することによって化 合物半導体結晶を成長させる広義の MB E法を用いれば、 各原料分子は結晶成長 表面上のみで反応を起こすので、 種々の原料が本発明に適用可能である。
また、 以上の種々の実施例において、 窒素と他の V族元素を含む ΙΠ— V族化合 物半導体として、 V族元素中の N濃度≤3. 5原子%であって Ga A s基板に格 子整合し得る G a I nNA s混晶ゃ N濃度 =3原子%であって Ga P基板に格子 整合し得る G a I nNP混晶が用いられたが、 本発明は、 他の種々の窒素濃度を 有する G a I nNA sや Ga I n N Pの混晶はもちろんのこと、 窒素とともにそ れ以外の V族元素である A s、 P、 S b、 および B iの少なくとも 1つを含み、 ΠΙ族元素として B、 A l、 G a、 I n、 および T 1の少なくとも 1つを含む ΠΙ— V族化合物半導体の混晶層の成長に適用することができる。 産業上の利用可能性
以上のように、 本発明によれば、 窒素とともに少なくとも 1以上の他の V族元 素を含む ΠΙ— V族化合物半導体の混晶層の MB E成長において、 結晶欠陥を発生 させることなく高品質の混晶層を得ることが可能となる。 したがって、 このよう な高品質の混晶層を利用することによって高性能のォプトエレク トロニクスデバ イスを提供することが可能になる。

Claims

" ' 請求の範囲
1 . 原料分子の平均自由工程が基板と分子茅泉源との間の距離より大きくなるよ うに真空排気された結晶成長室内で原料分子線を基板に照射することによって窒 素とともに少なくとももう 1つの V族元素を含む Π— V族化合物半導体結晶が成 長させられるときに、 窒素の原料として窒素化合物が用いられ、 前記窒素化合物 の分子は前記基板の表面に到達した後に分解して窒素原子のみが前記半導体結晶 中に取込まれることを特徴とする化合物半導体の製造方法。
2 . 前記窒素原料として、 窒素の水素化物が用いられることを特徴とする請求 項 1に記載の化合物半導体の製造方法。
3 . 前記窒素の水素化物として、 アンモニアが用いられることを特徴とする請 求項 2に記載の化合物半導体の製造方法。
4 . 前記半導体結晶の成長の間に前記基板が 5 0 0〜 7 0 0 °Cの範囲内の温度 に保持されることを特徴とする請求項 3に記載の化合物半導体の製造方法。
5 . 前記アンモエアは 3 5 0〜5 0 0 °Cの範囲内の温度に加熱された後に前記 基板に照射されることを特徴とする請求項 3に記載の化合物半導体の製造方法。
6 . 前記窒素の水素化物として、 ヒ ドラジンが用いられることを特徴とする請 求項 2に記載の化合物半導体の製造方法。
7 . 前記窒素原料として、 窒素のアルキル化物が用いられることを特徴とする 請求項 1に記載の化合物半導体の製造方法。
8 . 前記窒素のアルキル化物として、 アルキルアミン系化合物が用いられるこ とを特徴とする請求項 7に記載の化合物半導体の製造方法。
9 . 前記半導体結晶の成長の間に前記基板が 4 0 0〜 7 5 0 °Cの範囲内の温度 に保持されることを特徴とする請求項 8に記載の化合物半導体の製造方法。
1 0 . 前記窒素原料として、 ヒ ドラジンのアルキル化物が用いられることを特 徴とする請求項 2に記載の化合物半導体の製造方法。
1 1 . 前記基板は閃亜鉛鉱型の結晶構造を有する化合物半導体からなり、 前記 基板は { 1 0 0 } 面から { 1 1 1 } A面方向に向かう所定のオフ角度を有するこ とを特徴とする請求項 1に記載の化合物半導体の製造方法。
1 2 . 前記オフ角度は 5〜1 5。 の範囲内にあることを特徴とする請求項 1 1 に記載の化合物半導体の製造方法。
1 3 . V族元素を前記基板上に供給するとき、 窒素原料を基板に照射する工程 と窒素以外の V族元素を基板に照射する工程とが重複することなく交互に行なわ れることを特徴とする請求項 1に記載の化合物半導体の製造方法。
1 4 . 前記窒素原料として、 1 0 0 k J Zm o 1 よりも小さな生成ギプスエネ ルギを有する窒素化合物が用いられることを特徴とする請求項 1に記載の化合物 半導体の製造方法。
PCT/JP1998/001347 1997-03-28 1998-03-26 Procede de fabrication de composes semi-conducteurs WO1998044539A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP98911017A EP0993027A4 (en) 1997-03-28 1998-03-26 PROCESS FOR MANUFACTURING SEMICONDUCTOR COMPOUNDS
US09/402,051 US6358822B1 (en) 1997-03-28 1998-03-26 Method of epitaxially growing III-V compound semiconductor containing nitrogen and at least another group V element utilizing MBE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7638697 1997-03-28
JP9/76386 1997-03-28

Publications (1)

Publication Number Publication Date
WO1998044539A1 true WO1998044539A1 (fr) 1998-10-08

Family

ID=13603903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001347 WO1998044539A1 (fr) 1997-03-28 1998-03-26 Procede de fabrication de composes semi-conducteurs

Country Status (3)

Country Link
US (1) US6358822B1 (ja)
EP (1) EP0993027A4 (ja)
WO (1) WO1998044539A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3642386B2 (ja) * 1998-09-30 2005-04-27 株式会社リコー 半導体レーザ素子および光ディスク装置
US6693033B2 (en) 2000-02-10 2004-02-17 Motorola, Inc. Method of removing an amorphous oxide from a monocrystalline surface
US6638838B1 (en) 2000-10-02 2003-10-28 Motorola, Inc. Semiconductor structure including a partially annealed layer and method of forming the same
JP4720058B2 (ja) * 2000-11-28 2011-07-13 株式会社Sumco シリコンウェーハの製造方法
US6673646B2 (en) 2001-02-28 2004-01-06 Motorola, Inc. Growth of compound semiconductor structures on patterned oxide films and process for fabricating same
US6734530B2 (en) * 2001-06-06 2004-05-11 Matsushita Electric Industries Co., Ltd. GaN-based compound semiconductor EPI-wafer and semiconductor element using the same
US6709989B2 (en) 2001-06-21 2004-03-23 Motorola, Inc. Method for fabricating a semiconductor structure including a metal oxide interface with silicon
US20030013223A1 (en) * 2001-07-16 2003-01-16 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices utilizing the formation of a compliant III-V arsenide nitride substrate used to form the same
US6646293B2 (en) 2001-07-18 2003-11-11 Motorola, Inc. Structure for fabricating high electron mobility transistors utilizing the formation of complaint substrates
US6693298B2 (en) 2001-07-20 2004-02-17 Motorola, Inc. Structure and method for fabricating epitaxial semiconductor on insulator (SOI) structures and devices utilizing the formation of a compliant substrate for materials used to form same
US6667196B2 (en) 2001-07-25 2003-12-23 Motorola, Inc. Method for real-time monitoring and controlling perovskite oxide film growth and semiconductor structure formed using the method
US6639249B2 (en) 2001-08-06 2003-10-28 Motorola, Inc. Structure and method for fabrication for a solid-state lighting device
US6673667B2 (en) 2001-08-15 2004-01-06 Motorola, Inc. Method for manufacturing a substantially integral monolithic apparatus including a plurality of semiconductor materials
JP2003152283A (ja) * 2001-11-19 2003-05-23 Mitsubishi Electric Corp GaInNAs層の形成方法、エピタキシャルウェハ、半導体レーザ、高電子移動度トランジスタ、ヘテロ接合バイポーラトランジスタ、及び高周波集積回路
US6756325B2 (en) * 2002-05-07 2004-06-29 Agilent Technologies, Inc. Method for producing a long wavelength indium gallium arsenide nitride(InGaAsN) active region
US7255746B2 (en) 2002-09-04 2007-08-14 Finisar Corporation Nitrogen sources for molecular beam epitaxy
US20050112281A1 (en) * 2003-11-21 2005-05-26 Rajaram Bhat Growth of dilute nitride compounds
US20090140886A1 (en) * 2007-12-03 2009-06-04 International Truck Intellectual Property Company, Llc Multiple geofence system for vehicles
JP2009184836A (ja) * 2008-02-01 2009-08-20 Sumitomo Electric Ind Ltd Iii−v族化合物半導体の結晶成長方法、発光デバイスの製造方法および電子デバイスの製造方法
US20090256165A1 (en) * 2008-04-14 2009-10-15 Katherine Louise Smith Method of growing an active region in a semiconductor device using molecular beam epitaxy
JP2010199236A (ja) * 2009-02-24 2010-09-09 Sumitomo Electric Ind Ltd 発光素子の製造方法および発光素子
US20230135911A1 (en) * 2021-11-04 2023-05-04 Qorvo Us, Inc. MOLECULAR BEAM EPITAXY (MBE) REACTORS AND METHODS FOR n+GaN REGROWTH

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555631A (ja) * 1991-02-08 1993-03-05 Asahi Chem Ind Co Ltd 半導体積層薄膜およびその製造方法
JPH05109636A (ja) * 1991-07-23 1993-04-30 Toshiba Corp 薄膜の製造方法
JPH0684796A (ja) * 1992-09-07 1994-03-25 Nec Corp 半導体結晶成長方法
JPH06334168A (ja) * 1993-03-26 1994-12-02 Hitachi Ltd 半導体素子
JPH08316151A (ja) * 1995-05-17 1996-11-29 Fujitsu Ltd 半導体の製造方法
JPH08325094A (ja) * 1995-03-30 1996-12-10 Sumitomo Chem Co Ltd 3−5族化合物半導体の製造方法
JPH0923026A (ja) * 1995-07-06 1997-01-21 Sumitomo Chem Co Ltd 3−5族化合物半導体発光素子
JPH0936427A (ja) * 1995-07-18 1997-02-07 Showa Denko Kk 半導体装置及びその製造方法
JPH09134878A (ja) * 1995-11-10 1997-05-20 Matsushita Electron Corp 窒化ガリウム系化合物半導体の製造方法
JPH09134881A (ja) * 1995-11-10 1997-05-20 Matsushita Electron Corp 窒化物系化合物半導体の製造方法
JPH1012924A (ja) * 1996-04-22 1998-01-16 Sony Corp 半導体積層構造、半導体発光装置および電界効果トランジスタ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130269A (en) * 1988-04-27 1992-07-14 Fujitsu Limited Hetero-epitaxially grown compound semiconductor substrate and a method of growing the same
US5602418A (en) * 1992-08-07 1997-02-11 Asahi Kasei Kogyo Kabushiki Kaisha Nitride based semiconductor device and manufacture thereof
US5762706A (en) * 1993-11-09 1998-06-09 Fujitsu Limited Method of forming compound semiconductor device
US5689123A (en) * 1994-04-07 1997-11-18 Sdl, Inc. III-V aresenide-nitride semiconductor materials and devices
US6017774A (en) * 1995-12-24 2000-01-25 Sharp Kabushiki Kaisha Method for producing group III-V compound semiconductor and fabricating light emitting device using such semiconductor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555631A (ja) * 1991-02-08 1993-03-05 Asahi Chem Ind Co Ltd 半導体積層薄膜およびその製造方法
JPH05109636A (ja) * 1991-07-23 1993-04-30 Toshiba Corp 薄膜の製造方法
JPH0684796A (ja) * 1992-09-07 1994-03-25 Nec Corp 半導体結晶成長方法
JPH06334168A (ja) * 1993-03-26 1994-12-02 Hitachi Ltd 半導体素子
JPH08325094A (ja) * 1995-03-30 1996-12-10 Sumitomo Chem Co Ltd 3−5族化合物半導体の製造方法
JPH08316151A (ja) * 1995-05-17 1996-11-29 Fujitsu Ltd 半導体の製造方法
JPH0923026A (ja) * 1995-07-06 1997-01-21 Sumitomo Chem Co Ltd 3−5族化合物半導体発光素子
JPH0936427A (ja) * 1995-07-18 1997-02-07 Showa Denko Kk 半導体装置及びその製造方法
JPH09134878A (ja) * 1995-11-10 1997-05-20 Matsushita Electron Corp 窒化ガリウム系化合物半導体の製造方法
JPH09134881A (ja) * 1995-11-10 1997-05-20 Matsushita Electron Corp 窒化物系化合物半導体の製造方法
JPH1012924A (ja) * 1996-04-22 1998-01-16 Sony Corp 半導体積層構造、半導体発光装置および電界効果トランジスタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0993027A4 *

Also Published As

Publication number Publication date
EP0993027A1 (en) 2000-04-12
US6358822B1 (en) 2002-03-19
EP0993027A4 (en) 2002-05-29

Similar Documents

Publication Publication Date Title
WO1998044539A1 (fr) Procede de fabrication de composes semi-conducteurs
JP2809690B2 (ja) 化合物半導体材料とこれを用いた半導体素子およびその製造方法
US6508879B1 (en) Method of fabricating group III-V nitride compound semiconductor and method of fabricating semiconductor device
US6852161B2 (en) Method of fabricating group-iii nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
US7053413B2 (en) Homoepitaxial gallium-nitride-based light emitting device and method for producing
KR100712753B1 (ko) 화합물 반도체 장치 및 그 제조방법
US20090197399A1 (en) Method of growing group iii-v compound semiconductor, and method of manufacturing light-emitting device and electron device
JPH0964477A (ja) 半導体発光素子及びその製造方法
JP3269344B2 (ja) 結晶成長方法および半導体発光素子
JP2002252177A (ja) 半導体素子
KR20060085662A (ko) 3족 질화물 p형 반도체의 제조방법, 및 3족 질화물 반도체발광 소자
JP4974043B2 (ja) 発光素子およびその製造方法
KR20020065892A (ko) 3족 질화물 반도체 결정 제조 방법, 갈륨나이트라이드-기재 화합물 반도체 제조 방법, 갈륨나이트라이드-기재 화합물 반도체, 갈륨나이트라이드-기재 화합물 반도체 발광 소자, 및 반도체발광 소자를 이용한 광원
JP2005277401A (ja) 窒化ガリウム系化合物半導体積層物およびその製造方法
JP5105738B2 (ja) 窒化ガリウム系化合物半導体積層物の製造方法
JP2005340762A (ja) Iii族窒化物半導体発光素子
JP4284944B2 (ja) 窒化ガリウム系半導体レーザ素子の製造方法
JP4222287B2 (ja) Iii族窒化物半導体結晶の製造方法
JPH10326749A (ja) 化合物半導体の製造方法
WO2000016383A1 (fr) Procede de fabrication d'une couche de semi-conducteur compose et dispositif semi-conducteur compose
JP2000150398A (ja) 化合物半導体層の形成方法、化合物半導体装置、および化合物半導体装置を用いたシステム
JP3654331B2 (ja) 半導体製造方法および半導体発光素子
JP3344189B2 (ja) 分布ブラッグ反射ミラー多層膜を有する半導体装置
JP4450269B2 (ja) 半導体発光素子の製造方法
US5824151A (en) Vapor deposition method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998911017

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09402051

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998911017

Country of ref document: EP