JP4222287B2 - Iii族窒化物半導体結晶の製造方法 - Google Patents

Iii族窒化物半導体結晶の製造方法 Download PDF

Info

Publication number
JP4222287B2
JP4222287B2 JP2004301065A JP2004301065A JP4222287B2 JP 4222287 B2 JP4222287 B2 JP 4222287B2 JP 2004301065 A JP2004301065 A JP 2004301065A JP 2004301065 A JP2004301065 A JP 2004301065A JP 4222287 B2 JP4222287 B2 JP 4222287B2
Authority
JP
Japan
Prior art keywords
group iii
nitride semiconductor
iii nitride
substrate
semiconductor crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004301065A
Other languages
English (en)
Other versions
JP2005101623A (ja
Inventor
久幸 三木
哲朗 桜井
峰夫 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004301065A priority Critical patent/JP4222287B2/ja
Publication of JP2005101623A publication Critical patent/JP2005101623A/ja
Application granted granted Critical
Publication of JP4222287B2 publication Critical patent/JP4222287B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、発光ダイオード(LED)、レーザダイオード(LD)、電子デバイス等の作製に用いられる結晶性の良いIII族窒化物半導体(以下、III族窒化物半導体はInGaAlNで表されるものとする。)結晶とその製造方法に関する。特に結晶性の良いIII族窒化物半導体結晶をサファイア基板上にエピタキシャル成長させるために好適に用いることができるIII族窒化物半導体結晶の製造方法に関する。
III族窒化物半導体は、可視光から紫外光領域に相当するエネルギーの直接遷移型のバンドギャップをもち高効率な発光が可能であるため、LEDやLDとしての製品化が成されている。また窒化アルミニウムガリウム(AlGaN)と窒化ガリウム(GaN)とのヘテロ接合界面では、III族窒化物半導体に特徴的な圧電効果による2次元電子層が発現するなど、電子デバイスとしても従来のIII−V族化合物半導体では得られない特性が得られるポテンシャルを持っている。
しかしながらIII族窒化物半導体は、単結晶の育成温度で2000気圧に及ぶ窒素の解離圧があるため、単結晶の育成が困難であり、他のIII−V族化合物半導体のようにエピタキシャル成長に使用する基板として、そのIII族窒化物半導体の単結晶基板を利用することは現状では困難である。そこで、エピタキシャル成長に使用する基板としては、サファイア(Al23)単結晶や炭化珪素(SiC)単結晶等の異種の材質からなる基板が用いられる。
これらの異種基板と、その上にエピタキシャル成長させるIII族窒化物半導体結晶の間には大きな格子不整合が存在する。例えばサファイア(Al23)と窒化ガリウム(GaN)の間には16%、SiCと窒化ガリウムの間には6%の格子不整合が存在する。一般にこのような大きな格子不整合の存在する場合には、基板上に結晶を直接エピタキシャル成長させることが困難であり、成長させても結晶性の良好な結晶は得られない。そこで、有機金属化学気相成長(MOCVD)法によりサファイア単結晶基板やSiC単結晶基板の上にIII族窒化物半導体結晶をエピタキシャル成長する場合、窒化アルミニウム(AlN)やAlGaNで構成される低温バッファ層と呼ばれる層を基板の上にまず堆積し、その上に高温でIII族窒化物半導体結晶をエピタキシャル成長させる方法が一般に行われてきた(例えば、特許文献1および特許文献2参照。)。
また、上記した低温バッファ層を用いた成長方法の他にも、例えば、900℃から1200℃程度の高温の温度範囲で成長したAlN層を基板上に形成し、その上に窒化ガリウムを成長させる方法も開示されている(例えば、非特許文献1および特許文献3参照。)。
特許第3026087号公報 特開平4−297023号公報 P.Kung、 et al., Applied PhysicsLetters,66(1995),2958. 特開平9−64477号公報
基板としてサファイアを用いる場合、上記の低温バッファ層は概略次のようにして形成される。まずサファイア基板をMOCVD法の成長装置内で1000℃〜1200℃の高温に加熱し、表面の酸化膜等を除去する。その後、成長装置の温度を低下させて400〜600℃程度の温度で、基板上にV/III比を3000〜10000として、有機金属原料と窒素源を同時に供給して、低温バッファ層を堆積させる。ここでV/III比とは、III−V族化合物半導体結晶をMOCVD法で成長させる際に、反応炉に流通するIII族元素を含む分子のモル数と、V族元素を含む分子のモル数の比率である。例えば、TMGaとアンモニアを用いて窒化ガリウムを成長させる場合には、反応炉内に流通するTMGaのモル数とアンモニアのモル数との比である。その後、有機金属原料の供給を停止し、成長装置の温度を再度上昇させて低温バッファ層の結晶化と呼ばれる熱処理を行い、しかる後に目的とするIII族窒化物半導体結晶をエピタキシャル成長させる。
低温バッファ層の堆積温度である400℃〜600℃では、原料として用いられる有機金属原料や窒素源、特に窒素源として用いられるアンモニアの熱分解は不充分である。従ってこのような低温で堆積させたままの低温バッファ層中には欠陥が多く含まれる。また低温で原料を反応させる為に、原料の有機金属のアルキル基や未分解の窒素源の間で重合反応を生じて、これらの反応物などの不純物も低温バッファ層の結晶中に多量に含まれる。
これらの欠陥や不純物を解消するために行われるのが、低温バッファ層の結晶化と呼ばれる熱処理の工程である。バッファ層の結晶化工程は、不純物や欠陥を多く含む低温バッファ層に、III族窒化物半導体結晶のエピタキシャル成長温度に近い高温で熱処理を行い、これらの不純物や欠陥の除去を行う。
以上のように低温バッファ層を用いた成長方法では、基板温度をサーマルクリーニングの温度である1200℃からバッファ層を成長させる温度である500℃近辺まで降温し、続いて500℃近辺からアニールを行う1000℃近い温度領域まで比較的短時間で上昇させる必要がある。この際、一般的に、冷却に伴う温度の変更には長い時間を必要とし、急激な温度の上昇には多くの量のエネルギーを必要とする。
また、このようなさまざまな温度の履歴を基板に与えることにより、基板には反りが生じる。更に、基板は反りによって割れやひびが生じることもある。また、基板の反りはその上に成長する結晶層に影響を与え、特にLED構造を作製する際には発光波長や発光強度の基板面内での不均一さを生じる。
また、このような低温バッファ層を用いた成長方法に対し、900℃から1200℃程度の高温の温度範囲で成長したAlNを基板上に形成し、その上に窒化ガリウムを成長させる方法も開示されている(例えば、P.Kung、
et al., Applied Physics Letters, 66(1995),2958. など)。この先行例には、この方法によって(0002)面のX線ロッキングカーブにして30arcsecと非常に良好な結晶を作製することが可能であることが記載されている。しかしながら、我々がこの手法を追試した所によれば、この手法で作製した窒化ガリウム結晶膜はカラム性の非常に高い結晶であり、結晶内に多くの粒界を含むことが判った。このような結晶は、基板から表面に向けて発生する貫通転位の密度が高い。このため、発光素子や電子デバイスなどの素子構造を作製しても良い特性が得られない。
また、同様に高温で作製したAlN層を用いた成長方法は、特開平9−64477の中でも述べられている。この文献中では作製するIII族窒化物半導体結晶が結晶性の良好な単結晶であることが望ましいとされている。我々は実験を重ねたが、上記した文献に記載された方法と同様に、この文献に記述されたような、良好な単結晶AlN膜を用いた成長方法では、素子構造を作製して良好な特性を得られるような結晶を成長することはできなかった。これは、結晶性の良好な単結晶の層をバッファ層として使用すると、その上にIII族窒化物半導体を成長させる際、成長初期に付着した原子のマイグレーションがうまく行われず、2次元成長しにくいためと考えている。
このように、素子を作製するに充分な結晶性のIII族窒化物半導体結晶を得ることができないため、高温で成長したAlNバッファ層を用いたIII族窒化物半導体結晶の成長方法は、現時点ではあまり一般的ではない。
本発明は、このように多くの温度領域を設定する必要のある低温バッファ層を用いる方法や作製される結晶の品質に問題のある高温AlN層を用いる方法に替わり、温度変化が比較的少ない工程で高品質のIII族窒化物半導体結晶を形成することが可能なIII族窒化物半導体結晶の製造方法を提供する。特に、サファイア基板上に高品質のIII族窒化物半導体結晶をエピタキシャル成長することが可能なIII族窒化物半導体結晶の製造方法を提供するものである。また、本発明は、前記のIII族窒化物半導体結晶の製造方法で製造した高品質のIII族窒化物半導体結晶と、そのIII族窒化物半導体結晶を用いたIII族窒化物半導体エピタキシャルウェーハである。
本発明は、(1)加熱した基板上に、V/III比を1000以下(V/III比が0の場合を含む)としてIII族原料を供給し、III族窒化物半導体(以下、III族窒化物半導体はInGaAlNで表されるものとする。)を形成する第1の工程と、その後III族原料と窒素原料を用いて、該基板上にIII族窒化物半導体結晶を気相成長させる第2の工程を有するIII族窒化物半導体結晶の製造方法。
(2)前記基板としてサファイア(Al23)を用いることを特徴とする(1)に記載のIII族窒化物半導体結晶の製造方法。
(3)前記第1の工程で供給するIII族原料が、少なくともAlを含むことを特徴とする上記(1)または(2)に記載のIII族窒化物半導体結晶の製造方法。
(4)前記第2の工程で、基板上に気相成長させるIII族窒化物半導体結晶がGaNからなることを特徴とする上記(1)ないし(3)に記載のIII族窒化物半導体結晶の製造方法。
(5)前記第1の工程または第2の工程の少なくとも一方において、気相成長を有機金属化学気相成長法(MOCVD法)で行うことを特徴とする上記(1)ないし(4)に記載のIII族窒化物半導体結晶の製造方法。
(6)前記第2の工程で、窒素原料としてアンモニア(NH3)を用いることを特徴とする上記(1)ないし(5)に記載のIII族窒化物半導体結晶の製造方法。
(7)前記第1の工程で形成したIII族窒化物半導体が島状結晶塊であることを特徴とする上記(1)ないし(6)に記載のIII族窒化物半導体結晶の製造方法。
(8)前記第1の工程で形成したIII族窒化物半導体が柱状結晶であることを特徴とする上記(1)ないし(7)に記載のIII族窒化物半導体結晶の製造方法。
(9)前記柱状結晶が、その側面が基板面とおおむね垂直であるように基板上に付着していることを特徴とする(8)に記載のIII族窒化物半導体結晶の製造方法。である。
また、本発明は、(10)加熱した基板上に第1のIII族窒化物半導体を作製し、その上に第2のIII族窒化物半導体結晶を作製するIII族窒化物半導体結晶の製造方法において、第1のIII族窒化物半導体が柱状結晶または島状結晶の集合体であることを特徴とするIII族窒化物半導体結晶の製造方法。
(11)前記柱状結晶が、その側面が基板面とおおむね垂直であるように基板上に付着していることを特徴とする(10)に記載のIII族窒化物半導体結晶の製造方法。である。
また、本発明は、(12)上記(1)ないし(11)に記載の方法で製造したIII族窒化物半導体結晶。である。
また、本発明は、(13)上記(12)に記載のIII族窒化物半導体結晶の上に、さらにIII族窒化物半導体結晶層を形成したIII族窒化物半導体エピタキシャルウェーハ。である。
本発明のIII族窒化物半導体結晶の製造方法を用いると、温度の昇降が少ないので、プロセスに必要な時間が短く、電力消費量が少ない。このことにより、製造プロセスの短縮、省コスト化が可能である。また、温度の変化が少ないことにより,基板の反りを最小限に抑えることができ、結晶特性の均一性が良好となる。その結果、本発明のIII族窒化物半導体結晶の製造方法を用いて、窒化ガリウム系化合物半導体を用いた半導体発光素子を製造すると、高輝度でウェーハ面内でほぼ均一な特性を有する発光ダイオードを作製することができる。
また、本発明に記載した方法によれば、従来の高温成長したAlNを用いた方法に比較してコラム性が小さく転位密度が小さく、その上に作製した素子構造が良好な素子特性を示す結晶を作製することができる。
本発明のIII族窒化物半導体結晶の製造方法は、加熱した基板上に、V/III比を1000以下(V/III比が0の場合を含む)としてIII族原料を供給し、III族窒化物半導体を形成する第1の工程と、その後III族原料と窒素原料を用いて、該基板上にIII族窒化物半導体結晶を気相成長させる第2の工程を有する。上記の第1、第2の工程を有するIII族窒化物半導体結晶の製造方法により、基板上に結晶性の良いIII族窒化物半導体結晶を形成することが可能となる。なお、本発明でIII族窒化物半導体とは、InGaAlNで表わされるものとする。
V/III比が1000以下の低いV/III比の条件で作製したIII族窒化物半導体結晶は、結晶中のV族元素とIII族元素の化学量論比(ストイキオメトリ)が1:1となっておらず、III族元素が過剰な側にずれて金属過剰になっていると思われる。このようなIII族窒化物半導体結晶層中には、過剰なIII族元素が金属晶や液滴として存在している。そのため、その上にIII族窒化物半導体結晶を成長させると成長初期のマイグレーションが効率良く進み、横方向の2次元成長ができるものと思われる。しかし、機構の詳細については不明である。
良好なIII族窒化物半導体を成長させるのに、小さいV/III比で作製したAlN膜が望ましいことは、特開平9−64477の中でも述べられている。しかし、この文献中では作製するIII族窒化物半導体結晶が結晶性の良い単結晶であることが望ましいとされている。我々は実験と解析を重ねることにより単結晶膜よりも柱状結晶や島状結晶の集合体である方がよりよいバッファ層として機能することを見出した。これは、柱状結晶や島状結晶からなる層の中に存在している粒界に金属晶や液滴が入り込むことで、より金属過剰的な結晶を生じやすいためと考えている。しかし、詳細については不明である。
この方法は、従来の低温バッファ層を用いる方法に比較して温度の昇降が少ないので、プロセスが短く、電力消費量が少ない。このことにより、製造プロセスの短縮、省コスト化が可能である。また、温度の変化が少ないことにより,基板の反りを最小限に抑えることができ、素子特性の均一性が良好となる。また、これまで開示されている高温で成長したAlN層を用いる成長方法に比較して良好な素子特性を示す結晶を作製することが可能である。
本発明では、基板としてガラス、SiC、Si、GaAs、サファイアなどを用いることができる。ここで、本発明では特に、前記基板がサファイア(Al23)であることが望ましい。基板がサファイアであると高品質な基板が安価に入手可能であるという利点がある。サファイア基板の面方位としては、m面、a面、c面等が使えるが、なかでもc面((0001)面)が好ましく、さらに基板表面の垂直軸が<0001>方向から特定の方向に傾斜していることが望ましい。また本発明に用いる基板は、第1の工程に用いる前に有機洗浄やエッチングのような前処理を行うと基板表面の状態を一定の状態に保つことができるため好ましい。
本発明では、第1の工程で供給するIII族原料としてトリメチルアルミニウム、トリエチルアルミニウム、ターシャリブチルアルミニウム、トリメチルガリウム、トリエチルガリウム、ターシャリブチルガリウム、トリメチルインジウム、トリエチルインジウム、ターシャリブチルインジウム、シクロペンタジエニルインジウム、などを用いることが出来る。また、トリメチルアルミニウム、トリエチルアルミニウム、ターシャリブチルアルミニウム、などのようにIII族原料が少なくともAlを含むと、アルミニウムを含む窒化物は分解温度が高いため、高温でも分解や昇華を起こしにくく、基板に結晶が成長しやすいという効果を有するため特に好ましい。
また本発明の第1の工程では、III族原料と同時にアンモニア、アルキルアミン類、ヒドラジン類、等のV族原料を供給することにより、III族窒化物半導体を形成する。本発明では、第1の工程においてIII族原料を供給する際のV/III比を1000以下とする。さらに好ましくは500以下とし、更に好ましくは100以下とする。V/III比をこのように設定することにより、より金属過剰の化合物半導体結晶を生じやすいという効果がある。
本発明においては、V/III比が0、すなわちV族原料の供給量が0であっても良い。但しこの場合、意図して供給するV族原料が0であっても、反応炉の壁面や天板やサセプタなどに付着した付着物の分解から供給される窒素によりIII族窒化物半導体が形成されることが必要である。この場合、反応炉の壁面や天板やサセプタなどに付着した付着物の組成や量を適正に制御する必要がある。具体的には、成長終了後の反応炉のベーキング時間や温度を調節したり、行うこと自体を停止したりする。また、低温バッファ法を用いた成長には一般的な技術であるサーマルクリーニングと呼ばれる工程も、時間や温度を調節したり、行うこと自体を停止したりする。一例を述べると、前回の成長を行ったあとベーキングを行わず、サーマルクリーニングを600℃において10分間行った後で、第1の工程として基板を1000℃として金属含有化合物のみを流通させ、その後第2の工程である結晶成長を行ったところ、良好なIII族窒化物半導体結晶を作製することができた。
また、第1の工程におけるV/III比を0としても良好なIII族窒化物半導体結晶が得られるもうひとつの条件としては、キャリアガスにN2を用いて、1000℃近い温度でのN2のわずかな分解によって生じる窒素(N)原子を窒素源として用いる方法がある。
本発明の第1の工程では、雰囲気ガスとして、水素、希ガス、窒素等の単独ガスまたは混合ガスを用いることが出来る。上に述べたように、雰囲気ガスとして窒素を用いた場合には窒素ガスは原料ガスとしても機能している場合がある。
また、第1の工程を行う際の雰囲気の圧力は1000〜1×105Paとすることが出来る。望ましくは、1×105Pa以下とし、更に望ましくは1×104Pa以下とする。第1の工程における圧力が低いと、作製される金属過剰のIII族窒化物半導体層の表面が平坦となり、その上に成長する第2のIII族窒化物半導体層の表面も平坦化しやすいという効果がある。
また本発明では、第1の工程を行う際の基板の温度と第2の工程を行う際の基板の温度は特に規定しないが、第1の工程を行い際の基板の温度は次の第2の工程を行う際の基板の温度と同じか、またはより高いことが望ましい。第1の工程を第2の工程を行う際の基板の温度と同じか、またはより高い温度で行うと、III族原料ガスである有機金属化合物分子の分解が効率良く行われ、形成される結晶内に未分解のアルキル基などによる不純物が混入されないという利点がある。
本発明の第1の工程で形成するIII族窒化物半導体は、島状結晶塊となるようにする。すなわち、幅が1nmから500nm、高さが5nmから100nm程度の島状の粒子塊が密集した島状結晶塊の集合とする。III族窒化物を島状結晶とすることにより、結晶層に粒界を多く生じるため金属晶や液滴がそこに残留しやすくなり、より金属過剰な層として機能するという効果が得られると考えられる。また、島状結晶の分布があまり密ではなく、結晶塊と結晶塊の間に基板表面が見えるような構造であっても構わない。この場合、結晶成長速度の異なる領域が表面に混在するので、選択成長の効果により貫通転位の密度が少なくなり、より良好な結晶が作製できる。
或いは、本発明の第1の工程で形成するIII族窒化物半導体は、柱状結晶となるようにする。すなわち、幅が0.1nmから100nm、高さが10nmから500nm程度の柱状の粒子が集合した柱状結晶とする。III族窒化物を柱状結晶とすることにより、結晶層に粒界を多く生じるため金属晶や液滴がそこに残留しやすくなり、より金属過剰な層として機能するという効果が得られると考えられる。
また本発明の第2の工程では、III族原料と窒素原料を用いて、第1の工程でIII族窒化物を形成した基板上にIII族窒化物半導体結晶を気相成長させる。成長させるIII族窒化物半導体結晶がGaNであると、GaNはIII族窒化物半導体の中でも、2次元成長しやすいため平坦な結晶膜としやすく好ましい。GaNによって、一旦平坦で良好な結晶膜を作製させておくと、その上に様々な組成のIII族窒化物半導体結晶層を使った半導体デバイス構造を作製することが容易となる。
本発明の第1の工程、または、第2の工程、あるいはその両方の工程において、気相成長法としては有機金属化学気相成長法(MOCVD法)や気相エピタキシー法(VPE法)を用いることができる。この内MOCVD法は、III族原料の分解の速度を調節でき、成長速度も適当である、などの理由により好ましい。また、MOCVD法によれば、平坦化した基板を反応炉の外に取り出すことなく結晶上に良好な特性を有する様々な素子構造を作製することができる。
第2の工程でMOCVD法でIII族窒化物半導体結晶を成長する際の基板の温度は、950℃から1200℃、雰囲気の圧力は1000Paから1×105Paとするのが好ましい。
また、第2の工程で使用する窒素原料としては、アンモニア(NH3)が気体であって取り扱いが容易であり、市場に多数流通していて価格も安価であるため好ましい。III族原料としては、トリメチルアルミニウム、トリエチルアルミニウム、ターシャリブチルアルミニウム、トリメチルガリウム、トリエチルガリウム、ターシャリブチルガリウム、トリメチルインジウム、トリエチルインジウム、ターシャリブチルインジウム、シクロペンタジエニルインジウム、を用いることができる。また、第2の工程でIII族窒化物半導体結晶を成長する際のV/III比は、500〜20000とするのが好ましい。
本発明では、上記の第1、第2の工程を有するIII族窒化物半導体結晶の製造方法により、短時間、省電力のプロセスにより、基板上に均一性が高く、結晶性の良いIII族窒化物半導体結晶を形成することができる。従って上記のIII族窒化物半導体結晶の上に、さらにIII族窒化物半導体結晶層を形成することにより、発光ダイオードやレーザダイオード、或いは電子デバイス等の作製に用いられる積層構造を有するIII族窒化物半導体エピタキシャルウェーハを作製することが出来る。
以下、本発明を実施例に基づいて具体的に説明する。
(実施例1)
本発明に係わる、窒化ガリウム系化合物半導体結晶の製造方法を説明する。本実施例1では、サファイア基板上に第1の工程として、トリメチルアルミニウム(TMAl)の蒸気とトリメチルガリウム(TMGa)の蒸気をモル比にして1:2で混合した気体を含む気体と、アンモニア(NH3)を含む気体を流通する処理を施し、第2の工程としてTMGaとアンモニアを流通して窒化ガリウムを成長させ、サファイア基板上に窒化ガリウム結晶からなるGaN層を作製した。第1の工程で用いた条件でのV/III比は、約85である。
上記のGaN層を含む試料の作製は、MOCVD法を用いて以下の手順で行った。まず、サファイア基板を導入する前に、同じ装置で行った前回の成長で反応炉内部に付着した付着物を、アンモニアと水素を含むガス中で加熱して窒化して、これ以上分解しにくいようにした。反応炉が室温まで降温するのを待ち、続いてサファイア基板を誘導加熱式ヒータのRFコイルの中に設置された石英製の反応炉の中に導入した。サファイア基板は、窒素ガス置換されたグローブボックスの中で、加熱用のカーボン製のサセプタ上に載置した。試料を導入後、窒素ガスを流通して反応炉内をパージした。窒素ガスを10分間に渡って流通した後、誘導加熱式ヒータを作動させ、10分をかけて基板温度を1170℃に昇温した。基板温度を1170℃に保ったまま、水素ガスと窒素ガスを流通させながら9分間放置して、基板表面のサーマルクリーニングを行った。サーマルクリーニングを行っている間に、反応炉に接続された原料であるトリメチルガリウム(TMGa)の入った容器(バブラ)およびトリメチルアルミニウム(TMAl)の入った容器(バブラ)の配管に水素キャリアガスを流通して、バブリングを開始した。各バブラの温度は、温度を調整するための恒温槽を用いて一定に調整しておいた。バブリングによって発生したTMGaおよびTMAlの蒸気は、成長工程が始まるまでは、キャリアガスと一緒に除害装置への配管へ流通させ、除害装置を通して系外へ放出した。サーマルクリーニングの終了後、窒素キャリアガスのバルブを閉とし、反応炉内へのガスの供給を水素のみとした。
キャリアガスの切り替え後、基板の温度を1150℃に降温させた。1150℃で温度が安定したのを確認した後、アンモニア配管のバルブを開き、アンモニアの炉内への流通を開始した。続いてTMGaとTMAlの配管のバルブを同時に切り替え、TMGaとTMAlの蒸気を含む気体を反応炉内へ供給して、サファイア基板上にIII族窒化物半導体を付着させる第1の工程を開始した。供給するTMGaとTMAlの混合比は、バブリングする配管に設置した流量調節器でモル比率で2:1となるように調節し、アンモニアの量はV/III比が85となるように調節した。6分間の処理の後、TMGaとTMAlの配管のバルブを同時に切り替え、TMGaとTMAlの蒸気を含む気体を反応炉内へ供給を停止した。続いてアンモニアの供給も停止し、そのまま3分間保持した。
3分間のアニールの後、アンモニアガスの配管のバルブを切り替え、炉内にアンモニアガスの供給を再び開始した。そのまま4分間アンモニアを流通させた。その間に、TMGaの配管の流量調整器の流量を調節した。4分の後、TMGaのバルブを切り替えてTMGaの炉内への供給を開始し、GaNの成長を開始した。約1時間に渡って上記のGaN層の成長を行ったあと、TMGaの配管のバルブを切り替え、原料の反応炉への供給を終了して成長を停止した。GaN層の成長を終了した後、誘導加熱式ヒータへの通電を停止して、基板の温度を室温まで20分をかけて降温した。降温中は、反応炉内の雰囲気を成長中と同じようにアンモニアと窒素と水素から構成したが、基板の温度が300℃となったのを確認後、アンモニアと水素の供給を停止した。その後、窒素ガスを流通しながら基板温度を室温まで降温し、試料を大気中に取り出した。
以上の工程により、サファイア基板上に柱状構造を持つ金属過剰のIII族窒化物半導体層を形成し、その上にアンドープで2μmの膜厚のGaN層を形成した試料を作製した。取り出した基板は多少金属のような黒味がかった色を呈しており、基板との界面に形成したIII族窒化物半導体層が金属過剰なストイキオメトリのものであることを示していた。成長面は鏡面であった。
次に、上記の方法で成長を行ったアンドープGaN層のX線ロッキングカーブ(XRC)測定を行った。測定には、Cuβ線X線発生源を光源として用いて、対称面である(0002)面と非対称面である(10−12)面で行った。一般的に、窒化ガリウム系化合物半導体の場合、(0002)面のXRCスペクトル半値幅は結晶の平坦性(モザイシティ)の指標となり、(10−12)面のXRCスペクトル半値幅は転位密度(ツイスト)の指標となる。この測定の結果、本発明の方法で作製したアンドープGaN層は、(0002)面の測定では半値幅230秒、(10−12)面では半値幅350秒を示した。
また、上記のGaN層の最表面を一般的な原子間力顕微鏡(AFM)を用いて観察した。その結果、表面には成長ピットは見られず、良好なモフォロジーの表面が観察された。
本試料の断面を、透過型電子顕微鏡(TEM)で観察したところ、サファイア基板と窒化ガリウム層との界面には、基板面と略垂直方向に多数の粒界を持つAlN膜が観察された。膜厚は60nm程度であり、粒界と粒界の距離は5nmから50nmであった。この層は、縦長の柱状結晶の集合体からなる層であると思われる。元素分析によれば、この膜は20%程度のGaを含んでいた。
(実施例2)
実施例2では、実施例1とほとんど同じ工程で、第1の工程でIII族窒化物半導体の成長を2分とすることだけが異なる条件を用いて実験を行った。この場合にも取り出したウエハの表面は鏡面状であった。色は、無色透明であった。
本試料の断面を、透過型電子顕微鏡(TEM)で観察したところ、サファイア基板と窒化ガリウム層との界面には、島状のAlN結晶塊が存在していることが確認された。元素分析によれば、この結晶塊は15%程度のGaを含んでいた。
本実験プロセスと途中まで同じ成長を行い、窒化ガリウム層の成長の前にプロセスを停止して成長炉から取り出した試料を作製し、その表面のモフォロジーを原子間力顕微鏡(AFM)にて観察したところ、サファイア表面には、上から見た形状が丸みを帯びた六角形状で、断面が台形状の形状を有する窒化アルミニウム結晶塊が散在していた。
(実施例3)
本実施例3では、前回の実験の後、成長を行う前のベーキングを実施せずにサファイア基板を反応炉に導入し、第1の工程として、トリメチルアルミニウム(TMAl)の蒸気を含む気体を流通し、第2の工程としてTMGaとアンモニアを流通して窒化ガリウムを成長させ、サファイア基板上に窒化ガリウム結晶からなるGaN層を作製した。本実施例での意図したV/III比は0であるが、反応炉の壁面や天板に付着した付着物の分解などにより、基板上には少量のN原子が供給されている。
上記のGaN層を含む試料の作製は、MOCVD法を用いて以下の手順で行った。まず、サファイア基板を誘導加熱式ヒータのRFコイルの中に設置された石英製の反応炉の中に導入した。サファイア基板は、窒素ガス置換されたグローブボックスの中で、加熱用のカーボン製サセプタ上に載置した。試料を導入後、窒素ガスを流通して反応炉内をパージした。窒素ガスを10分間に渡って流通した後、誘導加熱式ヒータを作動させ、10分をかけて基板温度を600℃に昇温した。基板温度を600℃に保ったまま、水素ガスを流通させながら9分間放置した。その間に、反応炉に接続された原料であるトリメチルガリウム(TMGa)の入った容器(バブラ)およびトリメチルアルミニウム(TMAl)の入った容器(バブラ)の配管に水素キャリアガスを流通して、バブリングを開始した。各バブラの温度は、温度を調整するための恒温槽を用いて一定に調整しておいた。バブリングによって発生したTMGaおよびTMAlの蒸気は、成長工程が始まるまでは、キャリアガスと一緒に除害装置への配管へ流通させ、除害装置を通して系外へ放出した。その後、窒素キャリアガスのバルブを閉として、反応炉内へ水素ガスの供給を開始した。
キャリアガスの切り替え後、基板の温度を1150℃に昇温させた。1150℃で温度が安定したのを確認した後、TMAlの配管のバルブを切り替え、TMAlの蒸気を含む気体を反応炉内へ供給した。この際、反応炉の壁面や天板に付着した付着物の分解により、TMAlと同時に少量のNが基板へ供給されたと考えている。9分間の処理の後、TMAlの配管のバルブを同時に切り替え、TMAlの蒸気を含む気体を反応炉内へ供給を停止し、そのまま3分間保持した。
3分間のアニールの後、アンモニアガスの配管のバルブを切り替え、炉内にアンモニアガスの供給を開始した。そのまま4分間アンモニアを流通させた。その間に、TMGaの配管の流量調整器の流量を調節した。4分の後、TMGaのバルブを切り替えてTMGaの炉内への供給を開始し、GaNの成長を開始した。約1時間に渡って上記のGaN層の成長を行ったあと、TMGaの配管のバルブを切り替え、原料の反応炉への供給を終了して成長を停止した。GaN層の成長を終了した後、誘導加熱式ヒータへの通電を停止して、基板の温度を室温まで20分をかけて降温した。降温中は、反応炉内の雰囲気を成長中と同じようにアンモニアと窒素と水素から構成したが、基板の温度が300℃となったのを確認後、アンモニアと水素の供給を停止した。その後、窒素ガスを流通しながら基板温度を室温まで降温し、試料を大気中に取り出した。
以上の工程により、サファイア基板上に第1の工程で柱状構造を持つ金属過剰のIII族窒化物半導体層を形成し、その上にアンドープで2μmの膜厚のGaN層を形成した試料を作製した。取り出した基板は実施例1と同様に、多少金属のような黒味がかった色を呈しており、基板との界面に形成したIII族窒化物半導体が金属過剰なストイキオメトリのものであることを示していた。成長面は鏡面であった。
次に、上記の方法で成長を行ったアンドープGaN層のXRC測定を行った。測定には、Cuβ線X線発生源を光源として用いて、対称面である(0002)面と非対称面である(10−12)面で行った。測定の結果、本発明の方法で作製したアンドープGaN層は、(0002)面の測定では半値幅200秒、(10−12)面では半値幅330秒を示した。
また、上記のGaN層の最表面を一般的な原子間力顕微鏡(AFM)を用いて観察した。その結果、表面には成長ピットは見られず、良好なモフォロジーの表面が観察された。
本試料の断面を、透過型電子顕微鏡(TEM)で観察したところ、サファイア基板と窒化ガリウム層との界面には、基板面と略垂直方向に多数の粒界を持つAlN膜が観察された。膜厚は20nm程度であり、粒界と粒界の距離は10nmから50nmであった。この層は、縦長の柱状結晶の集合体からなる層であると思われる。元素分析によれば、この膜は5%程度のGaを含んでいた。
(実施例4)
本実施例4では、サファイア基板上に第1の工程として、トリメチルアルミニウム(TMAl)の蒸気とトリメチルインジウム(TMIn)の蒸気をモル比にして2:1で混合した気体を含む気体を、キャリアガスとして窒素を用いて流通する処理を施し、第2の工程としてTMGaとアンモニアを流通して窒化ガリウムを成長させ、サファイア基板上の窒化ガリウム結晶からなるGaN層を作製した。第1の工程において、キャリアガスである窒素ガスがわずかに分解し、少量の窒素原子を供給しているものと思われる。
上記のGaN層を含む試料の作製は、MOCVD法を用いて以下の手順で行った。まず、サファイア基板を導入する前に、同装置で行った前回の成長で反応炉内部に付着した付着物を、アンモニアと水素を含むガス中で加熱して窒化して、分解しないようにした。反応炉が室温まで降温するのを待ち、続いてサファイア基板を誘導加熱式ヒータのRFコイルの中に設置された石英製の反応炉の中に導入した。サファイア基板は、窒素ガス置換されたグローブボックスの中で、加熱用のカーボン製サセプタ上に載置した。試料を導入後、窒素ガスを流通して反応炉内をパージした。窒素ガスを10分間に渡って流通した後、誘導加熱式ヒータを作動させ、10分をかけて基板温度を1170℃に昇温した。基板温度を1170℃に保ったまま、水素ガスを流通させながら9分間放置して、基板表面のサーマルクリーニングを行った。サーマルクリーニングを行っている間に、反応炉に接続された原料であるトリメチルガリウム(TMGa)の入った容器(バブラ)およびトリメチルアルミニウム(TMAl)の入った容器(バブラ)およびトリメチルインジウム(TMIn)の入った容器(バブラ)の配管に水素キャリアガスを流通して、バブリングを開始した。各バブラの温度は、温度を調整するための恒温槽を用いて一定に調整しておいた。バブリングによって発生したTMGaおよびTMAlおよびTMInの蒸気は、成長工程が始まるまでは、キャリアガスと一緒に除害装置への配管へ流通させ、除害装置を通して系外へ放出した。サーマルクリーニングの終了後、水素キャリアガスのバルブを閉とし、変わって窒素ガスの供給バルブを開として、反応炉内へのガスの供給を窒素とした。
キャリアガスの切り替え後、基板の温度を1150℃に降温させた。1150℃で温度が安定したのを確認した後、TMInとTMAlの配管のバルブを同時に切り替え、TMInとTMAlの蒸気を含む気体を反応炉内へ供給して、第1の工程としてサファイア基板上にIII族窒化物半導体を付着させる処理を開始した。供給するTMInとTMAlの混合比は、バブリングする配管に設置した流量調節器でモル比率で1:2となるように調節した。6分間の処理の後、TMInとTMAlの配管のバルブを同時に切り替え、TMInとTMAlの蒸気を含む気体を反応炉内へ供給を停止し、そのまま3分間保持した。
3分間のアニールの後、アンモニアガスの配管のバルブを切り替え、炉内にアンモニアガスの供給を開始した。そのまま4分間アンモニアを流通させた。その間に、TMGaの配管の流量調整器の流量を調節した。4分の後、TMGaのバルブを切り替えてTMGaの炉内への供給を開始し、GaNの成長を開始した。約1時間に渡って上記のGaN層の成長を行ったあと、TMGaの配管のバルブを切り替え、原料の反応炉への供給を終了して成長を停止した。GaN層の成長を終了した後、誘導加熱式ヒータへの通電を停止して、基板の温度を室温まで20分をかけて降温した。降温中は、反応炉内の雰囲気を成長中と同じようにアンモニアと窒素と水素から構成したが、基板の温度が300℃となったのを確認後、アンモニアと水素の供給を停止した。その後、窒素ガスを流通しながら基板温度を室温まで降温し、試料を大気中に取り出した。
以上の工程により、サファイア基板上に柱状構造を持つ金属過剰のIII族窒化物半導体層を形成し、その上にアンドープで2μmの膜厚のGaN層を形成した試料を作製した。取り出した基板は無色透明であった。成長面は鏡面であった。
次に、上記の方法で成長を行ったアンドープGaN層のXRC測定を行った。測定には、Cuβ線X線発生源を光源として用いて、対称面である(0002)面と非対称面である(10−12)面で行った。この測定の結果、本発明の方法で作製したアンドープGaN層は、(0002)面の測定では半値幅350秒、(10−12)面では半値幅400秒を示した。
また、上記のGaN層の最表面を一般的な原子間力顕微鏡(AFM)を用いて観察した。その結果、表面には成長ピットは見られず、良好なモフォロジーの表面が観察された。
本試料の断面を、透過型電子顕微鏡(TEM)で観察したところ、サファイア基板と窒化ガリウム層との界面には、基板面と略垂直方向に多数の粒界を持つAlInN膜が観察された。膜厚は10nm程度であり、粒界と粒界の距離は5nmから50nmであった。この層は、縦長の柱状結晶の集合体からなる層であると思われる。
(実施例5)
本実施例5では、本発明のIII窒化物半導体結晶の製造方法を用いた、窒化ガリウム系化合物半導体発光素子の製造方法について説明する。本実施例5では、実施例3と同じ条件を用いて平坦な低SiドープGaN結晶を作製し、さらにその上にIII族窒化物半導体結晶層を形成して最終的に図1に示す半導体発光素子用のエピタキシャル層構造を有するエピタキシャルウェーハを作製した。つまりエピタキシャルウェーハは、c面を有するサファイア基板9上に、実施例3に記載したのと同じ成長方法によって柱状の構造を持つ金属過剰のAlN層8を形成したのち、基板側から順に、1×1017cm-3の電子濃度を持つ2μmの低SiドープGaN層7、1×1019cm-3の電子濃度を持つ1.8μmの高SiドープGaN層6、1×1017cm-3の電子濃度を持つ100ÅのIn0.1Ga0.9Nクラッド層5、GaN障壁層に始まりGaN障壁層に終わる、層厚を70Åとする6層のGaN障壁層3と、層厚を20Åとする5層のノンドープのIn0.2Ga0.8N井戸層4とからなる多重量子井戸構造20、30ÅのノンドープのAl0.2Ga0.8N拡散防止層2、8×1017cm-3の正孔濃度を持つ0.15μmのMgドープGaN層1、を積層した構造を有する。また、本実施例5で作製した半導体発光素子の電極構造の平面図を図2に示す。
上記の半導体発光素子構造のエピタキシャル層を有するウェーハの作製は、MOCVD法を用いて以下の手順で行った。サファイア基板上に柱状の構造を持つAlN層8を形成するまでは、実施例3で記述したのと同じ手順を用いた。サファイア基板上に柱状の構造を持つAlN層8を形成した後、アンモニアの流通を続けながら、TMGaの配管の流量調整器の流量を調節した。また、Si26の配管への流通を開始した。低SiドープのGaN層の成長が始まるまでの間、Si26はキャリアガスと一緒に除害装置への配管へ流通させ、除害装置を通して系外へ放出した。その後TMGaとSi26のバルブを切り替えてTMGaとSi26の炉内への供給を開始し、低ドープのGaNの成長を開始し、約1時間15分に渡って上記のGaN層の成長を行った。SiH4の流通させる量は事前に検討してあり、低SiドープGaN層の電子濃度が1×1017cm-3となるように調整した。このようにして、2μmの膜厚を成す低SiドープGaN層7を形成した。
更に、この低SiドープGaN層7上に高Siドープのn型GaN層6を成長した。低SiドープのGaN層を成長後、1分間に渡ってTMGaとSi26の炉内への供給を停止した。その間、Si26の流通量を変更した。流通させる量は事前に検討してあり、高SiドープGaN層の電子濃度が1×1019cm-3となるように調整した。アンモニアはそのままの流量で炉内へ供給し続けた。1分間の停止の後、TMGaとSi26の供給を再開し、1時間に渡って成長を行った。この操作により、1.8μmの膜厚を成す高SiドープGaN層を形成した。
高SiドープGaN層6を成長した後、TMGaとSi26のバルブを切り替えて、これらの原料の炉内への供給を停止した。アンモニアはそのまま流通させながら、バルブを切り替えてキャリアガスを水素から窒素へ切り替えた。その後、基板の温度を1160℃から800℃へ低下させた。炉内の温度の変更を待つ間に、Si26の供給量を変更した。流通させる量は事前に検討してあり、SiドープInGaNクラッド層の電子濃度が1×1017cm-3となるように調整した。アンモニアはそのままの流量で炉内へ供給し続けた。また、あらかじめトリメチルインジウム(TMIn)とトリエチルガリウム(TEGa)のバブラへのキャリアガスの流通を開始しておいた。Si26ガス、およびバブリングによって発生したTMInおよびTEGaの蒸気は、クラッド層の成長工程が始まるまでは、キャリアガスと一緒に除害装置への配管へ流通させ、除害装置を通して系外へ放出した。その後、炉内の状態が安定するのを待って、TMInとTEGaとSi26のバルブを同時に切り替え、これらの原料の炉内への供給を開始した。約10分間に渡って供給を継続し、100Åの膜厚を成すSiドープIn0.1Ga0.9Nクラッド層5を形成した。その後、TMIn、TEGaおよびSi26のバルブを切り替え、これらの原料の供給を停止した。
次に、GaNよりなる障壁層3とIn0.2Ga0.8Nよりなる井戸層4で構成される多重量子井戸構造20を作製した。多重量子井戸構造の作製にあたっては、SiドープIn0.1Ga0.9Nクラッド層5上に、始めにGaN障壁層3を形成し、そのGaN障壁層上にIn0.2Ga0.8N井戸層4を形成した。この構造を5回繰り返し積層したのち、5番目のIn0.2Ga0.8N井戸層上に、6番目のGaN障壁層を形成し、多重量子井戸構造20の両側をGaN障壁層3から構成した構造とした。すなわち、SiドープIn0.1Ga0.9Nクラッド層の成長終了後、30秒間に渡って停止したのち、基板温度や炉内の圧力、キャリアガスの流量や種類はそのままで、TEGaのバルブを切り替えてTEGaの炉内への供給を行った。7分間に渡ってTEGaの供給を行った後、再びバルブを切り替えてTEGaの供給を停止してGaN障壁層の成長を終了した。これにより、70Åの膜厚を成すGaN障壁層3を形成した。
GaN障壁層の成長を行っている間、除外設備への配管に流していたTMInの流量を、クラッド層の成長の時と比較して、モル流量にして2倍になるように調節しておいた。GaN障壁層の成長終了後、30秒間に渡ってIII族原料の供給を停止したのち、基板温度や炉内の圧力、キャリアガスの流量や種類はそのままで、TEGaとTMInのバルブを切り替えてTEGaとTMInの炉内への供給を行った。2分間に渡ってTEGaとTMInの供給を行った後、再びバルブを切り替えてTEGaとTMInの供給を停止してIn0.2Ga0.8N井戸層の成長を終了した。これにより20Åの膜厚を成すIn0.2Ga0.8N井戸層4を形成した。
In0.2Ga0.8N井戸層の成長終了後、30秒間に渡ってIII族原料の供給を停止したのち、基板温度や炉内の圧力、キャリアガスの流量や種類はそのままで、TEGaの炉内への供給を開始し、再びGaN障壁層の成長を行った。このような手順を5回繰り返し、5層のGaN障壁層と5層のIn0.2Ga0.8N井戸層を作製した。更に、最後のIn0.2Ga0.8N井戸層上にGaN障壁層を形成した。
このGaN障壁層で終了する多重量子井戸構造20上に、ノンドープのAl0.2Ga0.8N拡散防止層2を作製した。あらかじめトリメチルアルミニムウム(TMAl)のバブラへのキャリアガスの流通を開始しておいた。バブリングによって発生したTMAlの蒸気は、拡散防止層の成長工程が始まるまでは、キャリアガスと一緒に除害装置への配管へ流通させ、除害装置を通して系外へ放出した。
炉内の圧力が安定するのを待って、TEGaとTMAlのバルブを切り替え、これらの原料の炉内への供給を開始した。その後、約3分間に渡って成長を行ったあと、TEGaとTMAlの供給を停止し、ノンドープのAl0.2Ga0.8N拡散防止層の成長を停止した。これにより、30Åの膜厚を成すノンドープのAl0.2Ga0.8N拡散防止層2を形成した。
このノンドープのAl0.2Ga0.8N拡散防止層上に、MgドープのGaN層1を作製した。TEGaとTMAlの供給を停止して、ノンドープのAl0.2Ga0.8N拡散防止層の成長が終了した後、2分間をかけて、基板の温度を1060℃に上昇した。更に、キャリアガスを水素に変更した。また、あらかじめビスシクロペンタジエニルマグネシウム(Cp2Mg)のバブラへのキャリアガスの流通を開始しておいた。バブリングによって発生したCp2Mgの蒸気は、MgドープGaN層の成長工程が始まるまでは、キャリアガスと一緒に除害装置への配管へ流通させ、除害装置を通して系外へ放出した。
温度と圧力を変更して炉内の圧力が安定するのを待って、TMGaとCp2Mgのバルブを切り替え、これらの原料の炉内への供給を開始した。
Cp2Mgを流通させる量は事前に検討してあり、MgドープGaNクラッド層の正孔濃度が8×1017cm-3となるように調整した。その後、約6分間に渡って成長を行ったあと、TMGaとCp2Mgの供給を停止し、MgドープのGaN層の成長を停止した。これにより、0.15μmの膜厚を成すMgドープGaN層1が形成された。
MgドープGaN層の成長を終了した後、誘導加熱式ヒータへの通電を停止して、基板の温度を室温まで20分をかけて降温した。成長温度から300℃までの降温中は、反応炉内のキャリアガスを窒素のみから構成し、容量にして1%のNH3を流通した。その後、基板温度が300℃となったのを確認した時点でNH3の流通を停止し、雰囲気ガスを窒素のみとした。基板温度が室温まで降温したのを確認して、ウェーハを大気中に取り出した。
以上のような手順により、半導体発光素子用のエピタキシャル層構造を有するエピタキシャルウェーハを作製した。ここでMgドープGaN層はp型キャリアを活性化するためのアニール処理を行わなくてもp型を示した。
次いで、上記のサファイア基板上にエピタキシャル層構造が積層されたエピタキシャルウェーハを用いて半導体発光素子の一種である発光ダイオードを作製した。作製したウェーハについて、公知のフォトリソグラフィーによってMgドープGaN層の表面14上に、表面側から順にチタン、アルミニウム、金を積層した構造を持つp電極ボンディングパッド12とそれに接合したAuのみからなる透光性p電極13を形成し、p側電極を作製した。更にその後ウェーハにドライエッチングを行い、高SiドープGaN層のn側電極を形成する部分11を露出させ、露出した部分にNi、Al、Ti、Auの4層よりなるn電極10を作製した。これらの作業により、ウエーハ上に図2に示すような形状を持つ電極を作製した。
このようにしてp側およびn側の電極を形成したウェーハについて、サファイア基板の裏面を研削、研磨してミラー状の面とした。その後、該ウェーハを350μm角の正方形のチップに切断し、電極が上になるように、リードフレーム上に載置し、金線でリードフレームへ結線して発光素子とした。上記のようにして作製した発光ダイオードのp側およびn側の電極間に順方向電流を流したところ、電流20mAにおける順方向電圧は3.0Vであった。また、p側の透光性電極を通して発光を観察したところ、発光波長は470nmであり、発光出力は6cdを示した。このような発光ダイオードの特性は、作製したウェーハのほぼ全面から作製された発光ダイオードについて、ばらつきなく得られた。
本発明の実施例5に係わる半導体発光素子用のエピタキシャル層構造を有するエピタキシャルウェーハの断面を示す模式図である。 本発明の実施例5に係わる半導体発光素子の電極構造を示す平面図である。
符号の説明
1 MgドープGaN層
2 ノンドープのAl0.2Ga0.8N拡散防止層
3 GaN障壁層
4 In0.2Ga0.8N井戸層
5 In0.1Ga0.9Nクラッド層
6 高SiドープGaN層
7 低SiドープGaN層
8 金属過剰のAlN層
9 サファイア基板
10 n電極
11 高SiドープGaN層のn側電極を形成する部分
12 p電極ボンディングパッド
13 透光性p電極
14 MgドープGaN層の表面
20 多重量子井戸構造

Claims (8)

  1. 加熱したサファイア(Al)基板上に、V/III比(反応炉に流通するIII族元素を含む分子のモル数と、V族元素を含む分子のモル数の比率)を500以下(V/III比が0の場合を含む)としてIII族原料を供給し、少なくともAlを含む金属過剰な島状結晶又は柱状結晶の集合体からなるIII族窒化物半導体(以下、III族窒化物半導体はInGaAlNで表されるものとする。)を形成する第1の工程と、その後III族原料と窒素原料を用いて、該基板上に、基板温度950℃〜1200℃で、かつ第1の工程の基板温度以下で、III族窒化物半導体結晶を気相成長させる第2の工程を有するMOCVD法によるIII族窒化物半導体結晶の製造方法。
  2. 950℃以上に加熱したサファイア(Al)基板上に、V/III比(反応炉に流通するIII族元素を含む分子のモル数と、V族元素を含む分子のモル数の比率)を1000以下(V/III比が0の場合を含む)としてIII族原料を供給し、1×10Pa以下で、少なくともAlを含む金属過剰な島状結晶又は柱状結晶の集合体からなるIII族窒化物半導体を形成する第1の工程と、その後III族原料と窒素原料を用いて、該基板上に、基板温度950℃〜1200℃で、かつ第1の工程の基板温度以下で、III族窒化物半導体結晶を気相成長させる第2の工程を有するMOCVD法によるIII族窒化物半導体結晶の製造方法。
  3. V族原料が、反応炉の壁面や天板やサセプタに付着した付着物の分解から供給されることを特徴とする請求項1または2に記載のIII族窒化物半導体結晶の製造方法。
  4. 第1の工程におけるV族原料の供給量が0であることを特徴とする請求項1ないし3の何れか1項に記載のIII族窒化物半導体結晶の製造方法。
  5. 第1の工程の前にサーマルクリーニングを行わないことを特徴とする請求項1ないし4のいずれか1項に記載のIII族窒化物半導体結晶の製造方法。
  6. 前記第2の工程で、窒素原料としてアンモニア(NH3)を用いることを特徴とする請求項1ないし5のいずれか1項に記載のIII族窒化物半導体結晶の製造方法。
  7. 前記島状結晶の集合体は、幅が1nmから500nm、高さが5nmから100nmの島状の粒子塊が密集していることを特徴とする請求項1ないし6のいずれか1項に記載のIII族窒化物半導体結晶の製造方法。
  8. 前記柱状結晶の集合体は、幅が0.1nmから100nm、高さが10nmから500nmの柱状の粒子が集合していることを特徴とする請求項1ないし6のいずれか1項に記載のIII族窒化物半導体結晶の製造方法。
JP2004301065A 2004-10-15 2004-10-15 Iii族窒化物半導体結晶の製造方法 Expired - Lifetime JP4222287B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004301065A JP4222287B2 (ja) 2004-10-15 2004-10-15 Iii族窒化物半導体結晶の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004301065A JP4222287B2 (ja) 2004-10-15 2004-10-15 Iii族窒化物半導体結晶の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002038841A Division JP3656606B2 (ja) 2002-02-15 2002-02-15 Iii族窒化物半導体結晶の製造方法

Publications (2)

Publication Number Publication Date
JP2005101623A JP2005101623A (ja) 2005-04-14
JP4222287B2 true JP4222287B2 (ja) 2009-02-12

Family

ID=34464176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301065A Expired - Lifetime JP4222287B2 (ja) 2004-10-15 2004-10-15 Iii族窒化物半導体結晶の製造方法

Country Status (1)

Country Link
JP (1) JP4222287B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095823A (ja) * 2005-09-27 2007-04-12 Toyota Central Res & Dev Lab Inc 半導体装置と半導体装置製造方法
WO2007040295A1 (en) * 2005-10-04 2007-04-12 Seoul Opto Device Co., Ltd. (al, ga, in)n-based compound semiconductor and method of fabricating the same
JP5131889B2 (ja) * 2005-12-06 2013-01-30 学校法人 名城大学 窒化物系化合物半導体素子の製造方法
JP5474292B2 (ja) * 2007-11-06 2014-04-16 シャープ株式会社 窒化物半導体発光ダイオード素子
JPWO2010116424A1 (ja) * 2009-04-08 2012-10-11 パナソニック株式会社 半導体素子の製造方法
US20140004668A1 (en) * 2011-04-05 2014-01-02 Sumitomo Electric Industries, Ltd. Method for manufacturing nitride electronic devices
KR101412621B1 (ko) 2013-05-29 2014-06-27 (주)티티에스 기판 지지대의 처리 방법

Also Published As

Publication number Publication date
JP2005101623A (ja) 2005-04-14

Similar Documents

Publication Publication Date Title
JP3656606B2 (ja) Iii族窒化物半導体結晶の製造方法
US6852161B2 (en) Method of fabricating group-iii nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
US7951617B2 (en) Group III nitride semiconductor stacked structure and production method thereof
US8772060B2 (en) Method for manufacturing group III nitride semiconductor light emitting element, group III nitride semiconductor light emitting element and lamp
JP4833616B2 (ja) Iii族窒化物半導体の製造方法
JP2007103774A (ja) Iii族窒化物半導体積層構造体およびその製造方法
JP2008177525A (ja) Iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
JP3940673B2 (ja) Iii族窒化物半導体結晶の製造方法、および窒化ガリウム系化合物半導体の製造方法
JP2008124060A (ja) Iii族窒化物化合物半導体発光素子の製造方法、及びiii族窒化物化合物半導体発光素子、並びにランプ
JP2008078186A (ja) 窒化物系化合物半導体の結晶成長方法
JP2008034444A (ja) Iii族窒化物半導体発光素子の製造方法、iii族窒化物半導体発光素子及びランプ
US8389313B2 (en) Deposition method of III group nitride compound semiconductor laminated structure
US8236103B2 (en) Group III nitride semiconductor crystal, production method thereof and group III nitride semiconductor epitaxial wafer
JP3991823B2 (ja) Iii族窒化物半導体結晶、その製造方法、iii族窒化物半導体エピタキシャルウェーハ
JPH0832113A (ja) p型GaN系半導体の製造方法
JP4222287B2 (ja) Iii族窒化物半導体結晶の製造方法
KR20020065892A (ko) 3족 질화물 반도체 결정 제조 방법, 갈륨나이트라이드-기재 화합물 반도체 제조 방법, 갈륨나이트라이드-기재 화합물 반도체, 갈륨나이트라이드-기재 화합물 반도체 발광 소자, 및 반도체발광 소자를 이용한 광원
JP4974635B2 (ja) Iii族窒化物化合物半導体積層構造体の成膜方法
JP2010199236A (ja) 発光素子の製造方法および発光素子
JP4284944B2 (ja) 窒化ガリウム系半導体レーザ素子の製造方法
JP2008098245A (ja) Iii族窒化物化合物半導体積層構造体の成膜方法
JP4193379B2 (ja) 3−5族化合物半導体の製造方法
JPH09293678A (ja) InGaN層を有する半導体ウエハ及びその製造方法並びにそれを具備する発光素子
JP2007220745A (ja) III族窒化物p型半導体の製造方法
JP2008177523A (ja) Iii族窒化物化合物半導体発光素子の製造方法、及びiii族窒化物化合物半導体発光素子、並びにランプ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Ref document number: 4222287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141128

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141128

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141128

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term