WO1998028339A1 - Particles having surface properties and methods of making them - Google Patents
Particles having surface properties and methods of making them Download PDFInfo
- Publication number
- WO1998028339A1 WO1998028339A1 PCT/GB1997/003531 GB9703531W WO9828339A1 WO 1998028339 A1 WO1998028339 A1 WO 1998028339A1 GB 9703531 W GB9703531 W GB 9703531W WO 9828339 A1 WO9828339 A1 WO 9828339A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- particles
- particles according
- monomer
- cationic
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/14—Polymerisation; cross-linking
- B01J13/18—In situ polymerisation with all reactants being present in the same phase
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/08—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
- A01N25/10—Macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/0241—Containing particulates characterized by their shape and/or structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/81—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- A61K8/8129—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers or esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers, e.g. polyvinylmethylether
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/81—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- A61K8/8141—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- A61K8/8152—Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q13/00—Formulations or additives for perfume preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
- A61Q17/04—Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/10—Washing or bathing preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/12—Preparations containing hair conditioners
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/20—Aqueous medium with the aid of macromolecular dispersing agents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0034—Fixed on a solid conventional detergent ingredient
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0039—Coated compositions or coated components in the compositions, (micro)capsules
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/222—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
- C11D3/225—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin etherified, e.g. CMC
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/222—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
- C11D3/227—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin with nitrogen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3719—Polyamides or polyimides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3746—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3753—Polyvinylalcohol; Ethers or esters thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3746—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3757—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3746—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3757—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
- C11D3/3761—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in solid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/41—Particular ingredients further characterized by their size
- A61K2800/412—Microsized, i.e. having sizes between 0.1 and 100 microns
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/56—Compounds, absorbed onto or entrapped into a solid carrier, e.g. encapsulated perfumes, inclusion compounds, sustained release forms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/60—Particulates further characterized by their structure or composition
- A61K2800/61—Surface treated
- A61K2800/62—Coated
- A61K2800/624—Coated by macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/60—Particulates further characterized by their structure or composition
- A61K2800/65—Characterized by the composition of the particulate/core
- A61K2800/654—The particulate/core comprising macromolecular material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
- Y10T428/2998—Coated including synthetic resin or polymer
Definitions
- This invention relates to particles having surface properties and methods of making them.
- These particles are particularly suitable for forming a stable-dispersion in a liquid concentrate containing active ingredient, such as a liquid detergent concentrate or liquid rinse conditioner containing a fragrance, wherein the active ingredient becomes imbibed or entrapped within the matrix of the polymer and this provides a product which is suitable for the controlled release of active ingredients.
- active ingredient such as a liquid detergent concentrate or liquid rinse conditioner containing a fragrance
- WO-A-90/08478 relates to food flavouring high note enhancement by micro-bead impregnated with flavouring containing volatiles and is protected by a soluble or swellable coating.
- This patent describes porous polymeric beads made from copolymers of divinylbenzene with styrene .
- the polymeric beads are preferably produced with a coating that retards the release of the flavouring.
- Illustrative coatings are hydroxyl propyl methyl cellulose and polyvinyl alcohol .
- EP-A-297605 is directed to cell culture micro- carriers comprising (meth) acrylic ester polymer particles having positively charged groups on the surface.
- the polymer particles have an average diameter of between 100 and 1000 microns and are prepared by oil in water type suspension polymerisation of (meth) acrylic ester as a monomer followed by treating the resulting polymer particles with ammonia or amine having 5 or less carbon atoms .
- polyvinyl alcohol may be used as a stabiliser in the aqueous phase of the polymer.
- the positive groups are generated by reacting the formed polymer particles with the amine or ammonia. In order for this to be possible it is necessary that the matrix monomer contains functional groups that react with the ammonia or amino compounds, e.g.
- JP-A-62289238 describes resistant anion exchangers.
- This patent describes an anionic exchange resin produced by polymerising glycydyl esters with other vinyl compounds and then reacting the polymer particles with ammonia or amines.
- WO-A-92/18222 describes the preparation and use of solid non-porous crosslinked polymer beads.
- the beads are produced by first forming a monomer phase which comprises at least one monoethylenically unsaturated monomer and a monomer soluble initiator.
- the monomer phase is then combined with an aqueous liquid-phase which is substantially immiscible with the monomer phase to form a reaction mixture.
- An organic polymer colloid suspending agent can also be combined with the aqueous phase.
- Preferred suspending agents include polyvinyl polyols having a molecular weight of at least 40,000 and includes polyvinyl alcohol.
- US-A-4842761 discloses composite particles comprising a water soluble polymer and a water insoluble polymer. Discrete entities of one polymer are embedded within a matrix of the other polymer. The composite particles are used as perfume carriers in laundry detergents and provide controlled release perfume.
- GB-A-2234901 describes a method of encapsulating a water insoluble substance, such as an insecticide, within a carrier capsule.
- the water insoluble substance is dissolved in a substance which is capable of modifying the carrier capsule so that it imbibes said substance and then entrapping said substance within the thereby modified carrier capsule by removal of the carrier capsule modifying agent.
- the patent exemplifies starch granules and cellulosic fibres as carrier capsule.
- EP-A-285694 is one of a series of documents concerned with porous cross linked polymers obtained by polymerisation around droplets of a liquid substance which may subsequently be removed. These porous polymers can act as carriers for a variety of liquids. They are used in products for application to the skin, and give controlled release of the liquid to the skin.
- polymer particles - which are insoluble in water - for controlled retention and/or release systems can be improved by providing at the surface of the insoluble particles which are preferably formed from a (meth) acrylic monomer with at least three carbon atoms in the esterifying alcohol, a further polymer with free hydroxyl groups .
- Such polymer enhances deposition of the particles on substrates.
- the use of such particles can enhance deposition of perfume or other active ingredients.
- the present invention may also provide particles containing an organic polymer core, which are insoluble in water, characterised in that the particles have at their exterior, a different polymer or polymers which provide (s) hydroxy functionality and cationic functionality. There may be a single such different polymer providing both those functionalities.
- the cationic functionality may be provided by pendant cationic groups that have been derived from cationic vinyl addition monomer units bonded to the organic water insoluble polymer or cationic monomer units present in the further free hydroxy containing polymer.
- the present invention also provides organic polymer particles of average particle size at least 40 microns, which have been produced by a process of suspension polymerisation of organic water insoluble vinyl addition monomers in an aqueous medium comprising a hydroxy containing polymeric polymerisation stabiliser that has free hydroxy groups, characterised in that a cationic monomer containing a C 4 -C a alkyl, aryl, alkaryl or aralkyl pendant groups are also present in the aqueous medium and this cationic monomer becomes incorporated onto the exterior of the polymer particles during the polymerisation process.
- the polymer particles of this invention are particularly suitable as carriers of active substances, especially those used in controlled release systems.
- the polymer particles can be dispersed into a liquid concentrate, such as a detergent concentrate or rinse conditioner containing an active ingredient such as a fragrance, so that the active ingredient is imbibed by the polymer particles and becomes entrapped within the polymer matrix. It is important that the particles remain in suspension in the active concentrate and do not agglomerate.
- the surface cationic character of the particles help stabilise the particles from agglomeration in the active concentrate, especially when such a liquid is an aqueous concentrated fabric conditioning agent.
- the presence of the functionalities at the exterior of the particles enhances the deposition of the particles onto certain substrates such as fabrics, skin etc. and thereby enhances the delivery of the active ingredient in a controlled fashion.
- An example of this could be a fabric treatment formulation that contains said particles, in which the active ingredient is an insecticide or insect repellant.
- the particles have a strong affinity for the fabric due to the hydroxy groups and possibly also by the cationic groups present at the exterior of the polymer particles.
- the polymer particles release insecticide for a prolonged period thereby preventing the damage to the fabric by insect grubs.
- the polymer particles also have the advantage of being easily removed from the substrate if required by normal laundering.
- the hydrophobic monomer or monomer blend comprises a monoolefinic monomer such as (meth) acrylic esters optionally with other monomers such as styrene and optionally a polyolefinic monomer capable of crosslinking the hydrophobic monomer.
- the hydrophobic monomer mixture comprises isobutyl methacrylate with 2 mole % divinyl benzene.
- the cationic vinyl addition monomer is typically a vinyl addition compound that incorporates a quaternary ammonium group and contains a C 4 -C 8 alkyl, aryl, aralkyl or alkaryl pendant group. Typically this can be a C 4 -C 8 halide quaternised dimethylamino ethyl (meth) acrylate .
- a preferred cationic monomer for this invention is benzyl chloride quaternised dimethylaminoethyl acrylate ( "MADQUAT" ) .
- the presence of cationic monomer may also increase particle size in the product, in a direct relationship between amount of cationic monomer and average size.
- the hydroxy polymeric polymerisation stabiliser which eventually becomes incorporated onto the exterior of the organic polymer particles can be any polyhydroxy compound suitable as a polymerisation stabiliser. Typically this can be a polyvinyl alcohol or a cellulosic ester. Polyvinyl alcohols are derived from the hydrolysis of polyvinyl acetate. Different grades of polyvinyl alcohol with different degrees of conversion can be formed depending on how much of the original hydrophobic character needs to be retained. For the purposes of this invention at least 80%, more preferably at least 90% of the vinyl acetate units should have been converted into vinyl alcohol units.
- cationic functionality may also be possible to impart some or all of the cationic functionality to the final polymeric particles by incorporating cationic monomer units into the polyhydroxy polymer.
- One example of this would be to first provide a copolymer of vinyl acetate with vinyl acetamide and then hydrolyse this to a polymer which would then have vinyl alcohol units and vinyl amine units.
- the vinyl amine units can be rendered cationic by subsequent protonation.
- the particles themselves are insoluble in water, so that they can be deposited from an aqueous wash or rinse liquor.
- the functional polymer at the exterior of these particles may form, or be included within a coating or incomplete coating on these individual particles.
- the hydroxy functional polymer is preferably nonionic or cationic. It will be explained below that it generally constitutes between 1 and 25% of the weight of the perfume-containing particles, usually between 1 and 10%.
- Polymer particles of this invention desirably have an average particle size of at least lO ⁇ m, better at least 20 ⁇ m or 30 ⁇ m, even better at least 40 ⁇ m, for ease of handling.
- the rate of release of any active ingredient in the particles may be faster than desired if the particles are of very small size such as average size of l ⁇ m.
- the polymer particles desirably have an average size not larger than 150 ⁇ m, better not over 125 ⁇ m so that the particles are not easily visible after deposition.
- particles intended to be used in fabric washing or conditioning it is especially preferred to use particles with a mean size of at least 40 ⁇ m, e.g. 40 to lOO ⁇ m.
- a faster rate of release may be desired than with fabrics products, although retention and delay in release for some hours is still desirable, consequently a smaller particle size may be advantageous, such as a mean size in the range from 10 to 50 ⁇ m.
- Polymerisation techniques generally produce a range of particle sizes.
- a high proportion of the particles lie between the above limits on particle size.
- 90% or more of the particles are larger than 30 ⁇ m.
- 90% or more of the particles are not larger than 150 or even 125 ⁇ .
- 95% or more are not larger than 125 or even lOO ⁇ m.
- An important aspect of reducing the amount of emulsion polymer formed is to use an initiator system that is substantially insoluble in the aqueous phase, so as to prevent initiation of monomer molecules held in micelles.
- Suitable water insoluble initiators include azo compounds such as azobisisobutyronitrile (AIBN) and higher alkyl peroxides.
- This polymer bearing hydroxy groups and located at the exterior of the particles serves to enhance deposition onto (or retention on) skin, hair, hard surfaces especially vitreous surfaces and fabric.
- This polymer is desirably such that at least 80% of the monomer residues in the polymer contain at least one free hydroxy group able to participate in hydrogen bonding.
- the polymer is preferably nonionic and such that, in its pure state, it is water-soluble. However, when attached to the exterior of the particles, it does not render them water soluble. It is attached in such a way that it is not washed off completely upon contact with water. In some instances there may be chemical bonding, even in a form of grafting.
- the preferred polymer is polyvinyl alcohol.
- polyvinyl alcohol cannot be prepared directly by polymerisation, and is obtained by the hydrolysis of polyvinyl acetate. This hydrolysis generally stops before completion, and polymers with varying amounts of hydrolysis are commercially available. We have found that deposition of particles, especially onto fabric, is better when the polyvinyl alcohol exhibits a substantial level of hydrolysis.
- polyvinyl alcohol which is 85 to 100% hydrolysed i.e. in which 85 or 88 to 100% of the acetate residues have been removed by hydrolysis. More preferably, the polyvinyl alcohol is at least 90% better at least 96% hydrolysed, e.g. 96 to 99% hydrolysed.
- Another possible polymer is a copolymer of polyvinyl alcohol, available through hydrolysis of the corresponding copolymer of vinyl acetate.
- a copolymer of vinyl acetate and vinyl formamide, with a high proportion of vinyl acetate can by hydrolysed to a copolymer of vinyl alcohol and vinyl formamide. Further hydrolysis of such a polymer converts the formamide residues to amine groups, giving a cationic copolymer of vinyl alcohol and vinyl amine.
- polymers which can be used is cellulose and chemically modified cellulose where the modification does not greatly reduce the number of hydroxyl groups present .
- examples of polymers in this category are hydroxyethyl cellulose, and hydroxypropyl cellulose. Hydroxyethyl cellulose is available commercially and is made by treatment of cellulose with sodium hydroxide, followed by reaction with ethylene oxide. Another possibility is cellulose which has been chemically modified by the introduction of cationic substituent groups .
- polymer particles which are solid - although they may be porous as well as solid - rather than particles in the form of hollow capsules.
- solid particles are that the desired size range is accessible, and that the polymerisation reaction can be carried out in the absence of perfume.
- the particles could possibly be porous particles made by polymerisation around a liquid pore- forming agent, as taught in EP-A-285694. However, we have found it to be unnecessary to include such a pore- forming agent. Polymers formed by simple polymerisation of a monomer mixture are able to absorb and carry active ingredients .
- Preferred polymer particles may be formed by the polymerisation of vinyl monomers, with some cross linking and/or chain branching agent included in the monomers which are polymerised, so that some cross links are formed between the polymer chains. If a cross linking agent is used, the proportion of cross linking may be low, so that after polymerisation there may be some polymer chains which remain entirely linear and are not cross linked to any other chains.
- a number of vinyl monomers containing a single carbon-carbon double bond may be used.
- One suitable category of monomers is the esters of acrylic and alkyl acrylic acids, of formula
- R x is hydrogen or alkyl of 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms and R 2 is alkyl (including branched and cycloalkyl) of 1 to 7 or 8 carbon atoms, preferably 3 or 4 carbon atoms in a straight or branched chain, or 7 carbon atoms in a bridged ring.
- suitable monomers are isobutyl methacrylate (which is particularly preferred) , n-butyl (meth) acrylate, isobutyl acrylate, n-propyl acrylate, iso-propylmethacrylate and norbornyl (meth) acrylate . Less preferred is methyl methacrylate.
- Another suitable monomer is styrene. It is possible to use simple linear polymers. However, these can give particles which are somewhat sticky, and it is usually convenient to introduce some cross-linking or chain branching.
- Cross linking between polymer chains formed from the above monomers can be achieved by including in the monomer mixture a small proportion of a monomer with two carbon-carbon double bonds, often termed polyolefinic or multifunctional cross-linking monomers.
- a monomer with two carbon-carbon double bonds often termed polyolefinic or multifunctional cross-linking monomers.
- the use of such a material to provide cross linking is well known in other applications of polymers, although it is usual to introduce a greater proportion of cross linking than is required for this invention.
- Examples of this type of cross linking agent are divinyl benzene, diesters formed between acrylic acid and diols and higher ester formed between acrylic acid and polyols - which may be sugars.
- Chain branching can be introduced by including among the monomers a hydroxyalkyl monomer of formula R x
- R x is as specified above and R 3 is alkyl of 1 to 6 carbon atoms bearing at least one hydroxy group, preferably 3 to 4 carbon atoms in a straight or branched chain and bearing a single hydroxy group.
- R 3 is alkyl of 1 to 6 carbon atoms bearing at least one hydroxy group, preferably 3 to 4 carbon atoms in a straight or branched chain and bearing a single hydroxy group.
- hydroxyalkyl monomer of the above formula provides from 10 to 40% by weight of the monomer mixture .
- Suitable hydroxyalkyl acrylate monomers are hydroxypropyl methacrylate, hydroxybutylacrylate, and hydroxyethylacrylate .
- Attachment of a polymer with hydroxy groups, notably polyvinyl alcohol, at the exterior of the particles, can be achieved by polymerising the monomers in the presence of the polyvinyl alcohol (or other polymer with hydroxy groups) using the technique of suspension polymerisation.
- a polymer with hydroxy groups notably polyvinyl alcohol
- Suspension polymerisation is a process in which the organic monomers are formed into a suspension in an aqueous phase, and polymerised. Polymerisation of each suspended droplet leads to a bead of polymer.
- Examples of materials which can be used as second stabilisation agents include other water soluble polymers such as polyacrylic acid or water soluble salts thereof.
- the amount of stabiliser used is generally between 1 and 5% by weight of aqueous phase or 3 to 15% by weight of the monomer being polymerised, most preferably between 5 and 10% by weight of monomer.
- surfactants such as sodium oleate or sodium lauryl sulphate
- the surfactants used in this application are those which are preferentially soluble in the aqueous phase, typically surfactants which have an HLB of 8 or above.
- HLB HLB
- surfactants which have an HLB of 8 or above.
- a typical polymerisation procedure will commence by forming an aqueous solution of the hydroxy functional polymer which acts as stabilising agent, together with a polymerisation initiator, in a reaction vessel. Then while agitating the contents of the reaction vessel, the organic monomers are progressively fed in so that the monomers become dispersed in the aqueous phase and polymerise therein. The addition of monomers can be continued until the mixture in the reaction vessel is a slurry of polymer beads containing about 30% by weight of polymer.
- some of the monomer is dispersed in the aqueous solution of stabilising agent before any polymerisation initiator is added.
- the monomers are emulsified in water before they are added to the reaction vessel .
- Suspension polymerisation typically produces polymer beads with a diameter larger than lOO ⁇ . Smaller particle sizes in the range of 50-100 ⁇ can be obtained by increasing the amount of stabiliser in the aqueous phase, or by increasing the amount of agitation, or both.
- materials which can serve as a second stabilising agent include sodium oleate and sodium lauryl sulphate, both of which are anionic surfactants, also nonionic surfactants with HLB of 8 and above, such as C 13 /C 15 alcohol ethoxylated with 3 to 11 ethylene oxide residues, and sorbitan ester surfactants of similar HLB.
- the amount of hydroxy functional polymer present in solution as a stabilising agent will generally be between 1% and 5% by weight of the aqueous phase in which polymerisation occurs. Larger amounts can also be used. The amount may well be between 3% and 15% by weight of the monomers undergoing polymerisation, possibly between 5% and 10%.
- Cross-linking between polymer chains formed from the above monomers can be achieved by including in the monomer mixture a proportion of a monomer with two or more carbon to carbon double bonds, often termed polyolefinic or multifunctional cross-linking monomers.
- polyolefinic monomers to provide crosslinking is well known in the application of polymers.
- the degree of cross-linking increases the ability for a polymer to swell in solvents decreases but the rigidity and glass temperature increases.
- the rigidity and durability of the polymer are important characteristics and so the degree of cross-linking would be high.
- the properties of the beads produced by suspension polymerisation can be influenced by the degree of crosslinking.
- a function of the polymerisation stabiliser is to prevent the agglomeration of polymerising particles.
- the cross-linking monomer becomes incorporated causing cross-linking between polymer chains to form a three dimensional network.
- Cross-linking results in the surface properties of the polymerising beads being much less sticky and much less prone to agglomeration when collisions occur.
- the polymer in this invention it is important that the polymer can swell sufficiently in the liquid medium that comprises active material to allow said active material to penetrate the polymer particles but important that the polymer matrix retains its form and does not dissolve.
- the amount of cross-linking is much lower than say for synthetic rubber.
- a suitable amount of cross- linking agent for this invention is not over 5 mole % of the monomer mixture and is preferably in the range from 0.5 to 3 mole %.
- polyolefinic monomer is soluble in or miscible with the hydrophobic monoolefinic monomer used and that the reactivity ratios are such that the polyolefinic monomer will readily copolymerise with the hydrophobic monoolefinic monomer.
- polyolefinic monomers used as cross-linking agents include divinyl benzene and diesters of acrylic acid or methacrylic acid with diols and diesters or higher esters formed between two or more moles of acrylic acid or methacrylic acid and polyols for example polyethylene glycol diacrylate .
- Hydroxy substituted acrylate esters can also lead to cross-linking.
- the mechanism by which they do so is a side reaction which is not fully understood.
- a suitable amount may lie in a range from 3 to 30 mole% of the monomer mixture. Preferably 10 to 30 mole% .
- the direct product is in the form of an aqueous slurry. If desired, the particles may be separated from the aqueous phase by filtration or centrifuging, possibly followed by drying.
- polymer particles Another possible route for the production of polymer particles is emulsion polymerisation to yield an aqueous emulsion of very small polymer particles (typically of sub-micron size) followed by a drying step to agglomerate these particles into larger particles with a size of at least 20 ⁇ .
- emulsion polymerisation to yield an aqueous emulsion of very small polymer particles (typically of sub-micron size) followed by a drying step to agglomerate these particles into larger particles with a size of at least 20 ⁇ .
- Absorption of perfume by the particles can be brought about simply by bringing the perfume and the particles into contact, and allowing them to stand. This may be done by mixing perfume with the particles after they have been separated from the aqueous phase, or it may be done by mixing perfume into an aqueous slurry of the particles and allowing the mixture to equilibrate. It can be done by mixing the particles and perfume separately into an aqueous liquid product and allowing that mixture to equilibrate.
- a further possibility is to encapsulate a "core" of polymer as described above, with aminoplast resin, while providing hydroxy- functional polymer at the exterior of the capsules, and absorb perfume within the core.
- Several typical procedures are available to produce such encapsulated polymer.
- One procedure is to form polymer beads, for example of an acrylate polymer, as described earlier, and dispense this organic mixture in an aqueous solution containing the hydroxy functional polymer and urea- formaldehyde precondensate . The mixture is agitated to keep the organic mixture in suspension. While maintaining solution temperature between 20 “C and 90 °C, acid is then added to catalyse polymerisation of the dissolved urea-formaldehyde precondensate.
- shells of water- insoluble, urea- formaldehyde polymer form around and encapsulate the dispersed organic mixture and molecules of the hydroxy-group containing polymer are incorporated in and at the exterior of these shells.
- Melanine- formaldehyde precondensate can be used in place of urea-formaldehyde, and may be preferred.
- Another procedure is to form encapsulated core polymer, in the absence of perfume, and subsequently allow perfume to diffuse through the shell, into the core polymer. We have found that absorption of perfume is possible through a thin shell, even though a thicker hollow shell is capable of retaining liquid perfume.
- the weight of polymer forming the shell is less than the weight of polymer forming the core, and the shell to core weight ratio may lie in a range from 1:3 to 1:20, better 1:5 to 1:20.
- Hydroxy functional polymer will generally provide a substantial proportion of the shell, yet constitute from 1% to 25% of the capsules.
- a product contains particles in which perfume is absorbed within polymer which is encapsulated by a thin shell
- perfume can diffuse through the shell, and can be released without rupture of the shell, although the release and dispersion of perfume will be slower than for neat perf me.
- encapsulated polymer with absorbed perfume can provide deposition and retarded release of perfume similarly to the (preferred) arrangement when perfume is absorbed in polymer beads which have hydroxy functional polymer directly at their exterior. Examples of preparation and use of the particles will now be given.
- a 700ml reaction flask equipped with motorised stirrer, reflux condenser, thermometer and inlet tube for delivery from a peristaltic pump was placed in a water bath at about 65 °C.
- An aqueous phase was prepared by mixing hydroxyethyl cellulose (5 parts) and deionized water (168 parts) .
- the hydroxyethyl cellulose had a degree of substitution of one and was available from Hercules Chemical Corp as NATROSOL 250L. This phase was mixed until the hydroxyethyl cellulose dissolved and was then charged into the reaction flask. Stirring was applied to the reaction flask.
- a monomer phase was prepared by mixing iso-butyl methacrylate (70 parts) with a cross linking co-monomer which was 1, 6-hexanedioldiacrylate (1.8 parts). 2 , 2 ' -azo (bis) isobutyronitrile [usually abbreviated to AIBN] (2 parts) was added directly to the reaction flask and dispersed for about five minutes.
- the monomer phase was added to the stirring reaction flask using a peristaltic pump over about ninety minutes. After addition the reaction mass was stirred at about 65 °C for about three hours and subsequently cooled.
- the polymer beads were recovered from the aqueous slurry by filtration and air dried. The beads were sieved to separate the fraction with size below 125 ⁇ m. It can be seen that in this Example, the total quantity of hydroxy- functional polymer was less than 10% by weight of monomers, and only part of that quantity becomes attached to the polymer beads.
- the cross linking agent is 2% by weight and 1.63% by mole of the monomer mixture.
- An aqueous phase was prepared by mixing poly (vinyl alcohol) available as Gohsenol AH-22 from Nippon Gohsei British Trades and Shippers Ltd, Dagenham, Essex and having a degree of hydrolysis of 97 to 98.8% (5 parts) and deionized water (168 parts) . This phase was stirred until the poly (vinyl alcohol) dissolved and was then charged into the reaction flask. Stirring was applied to the reaction flask.
- a monomer phase was prepared by mixing styrene (68 parts) and 1, 6-hexanedioldiacrylate (1.8 parts) .
- AIBN (2 parts) was added directly to the reaction flask and dispersed for about five minutes.
- the monomer phase was added to the stirring reaction flask using a peristaltic pump over about ninety minutes. After addition the reaction mass was stirred at about 65 °C for about three hours and subsequently cooled.
- the products was in the form of an aqueous slurry from which the polymer beads were recovered by filtration and air dried.
- Example 5 iso-butylmethacrylate (54 parts) and hydroxypropylmethacrylate (18 parts)
- Example 6 Beads, produced as in Example 5, were sieved to remove any beads larger than 75 ⁇ m diameter.
- a perfume was prepared consisting of equal amounts of i) dihydromyrcenol (2 , 6-dimethyl-7-octen-2-ol) ii) anisaldehyde iii) dimethylbenzylcarbinyl acetate
- Perfume-loaded polymer beads were prepared by mixing the above beads and perfume into a diluted rinse conditioner, to yield an aqueous slurry containing: -
- This slurry was agitated for two hours and left to stand for twenty four hours, after which it appeared that all the perfume had been absorbed into the polymer beads.
- This slurry was added to a quantity of a rinse conditioner formulation which was an aqueous emulsion containing a 1, 2-dihardened tallowloxy-3-trimethyl ammoniopropane chloride (HTTMAPC) as cationic softener.
- HTTMAPC 1, 2-dihardened tallowloxy-3-trimethyl ammoniopropane chloride
- the resulting perfumed formulation contained 0.75% by weight perfume, carried in polymer beads.
- the perfumed rinse conditioner formulation was agitated for two hours and then stored for six days in a closed container.
- a control formulation contained 0.75% by weight perfume, and the same concentration of fabric softener, without polymer beads .
- this rinse conditioner formulation and the control formulation were both diluted with water to provide rinse liquors containing 0.5% of the rinse conditioner formulation.
- Test pieces of fabric were de-sized cotton terry towelling, approximate weight 25g. For each test, a piece of terry towelling was weighed accurately and treated with 30 times its own weight of rinse liquor, in a Tergotometer pot, stirring at 80rpm for 20 minutes. The cloth was then wrung out by hand, and line dried.
- the amount of perfume in the fresh and used rinse liquors was determined by solvent extraction from lOOg of rinse liquor and gas chromatographic (GC) analysis of the solvent extract. The percentage deposition of perfume materials onto the cloth was calculated for three of the five materials. The results obtained were:
- the amount of perfume on the dry cloth was determined by extraction of 5g of dry cloth with 20ml ethyl acetate, followed by GC analysis of the solvent extract .
- the amount of perfume detected was expressed as a percentage of the theoretical maximum quantity (which would be present if there were complete deposition onto fabric and no subsequent losses) .
- Perfume mixture was incorporated into polymer beads, as set out in the previous Example, but with two ratios of polymer to perfume. These were 1:1 polymer to perfume and 1:2 polymer to perfume.
- the resulting perfumed beads were incorporated into rinse conditioner formulations as in the previous example so as to provide 0.75% by weight perfume in each formulation.
- a control formulation contained 0.75% by weight perfume, but no polymer. These were diluted to rinse liquors containing 0.5% by weight fabric conditioner, and used to treat terry towelling as in the previous Example .
- the treated cloths were assessed by a panel of eight people.
- Example 2 Beads were produced as in Example 2.
- the monomer mixture was isobutyl methacrylate (70 parts) mixed with 1, 6-hexanedioldiacrylate (1.8 parts).
- Preparations were carried out using various different grades of polyvinyl alcohol and some other materials as the stabiliser.
- the grades of polyvinyl alcohol differed in the extent to which they had been hydrolysed from polyvinyl acetate .
- the perfume-containing polymer beads were mixed into rinse conditioner (as used in Example 6) using a magnetic stirrer.
- the amount of perfume carrying beads was 1.5% by weight of the rinse conditioner, so that, the quantity of perfume was 0.75% by weight of the rinse conditioner formulation.
- a control formulation was prepared containing 0.75% Florocyclene without the polymer. Deposition onto fabric was assessed using test cloths made of cotton terry towelling, acrylic fabric, and polyester. The fabric washing procedure was the same as set out in Example 6. After treatment of the fabric and drying, the intensity of Florocyclene on groups of the dried test cloths was assessed by a panel of five assessors who ranked the cloths in order of intensity of Florocyclene. The following results were obtained as unanimous views of the assessors:
- a monomer blend comprising 1225 parts of isobutyl methacrylate and 24.5 parts butane diol diacrylate were then charged to the reactor over 1 hour to provide reaction solids of 35%.
- the temperature of the reaction needed was held at 60 - 62 °C until monomer addition was completed and then the temperature of the was allowed to rise under the reaction exotherm to 80 °C where it was held for 3 hours.
- the reaction medium was then cooled and the particle size range of the polymer was established as 40 - 900 microns with a means of 81.1 microns.
- the composition contained less than 9% emulsion, i.e. of beads less than lO ⁇ m.
- Example 7 was repeated but in a flat bottom vessel with a stirrer speed of 300rpm and using lauryl peroxide as the initiator.
- the particle size range was from 20- 200 microns, with a mean particle size of 79 microns.
- the composition contained less than 8% emulsion.
- Example 7 was repeated by varying the amount of hydrophobic monomer blend charged to the reactor so as to provide reaction solids of 30%, 35% and 40%. The results are as follows:-
- Example 10 Example 7 was repeated at 25% solids content but varying the amounts of stabiliser, defoamer and cationic monomer .
- Example 7 was repeated using an amount of hydrophobic monomer that would provide a reaction medium of 25% solids and different grades of polyvinyl alcohol were used having different degrees of hydrolysis.
- sodium chloride was added to the aqueous phase and the tests using 98% hydrolysed PVA, lauryl bromide quaternised dimethylaminoethyl methacrylate was used in place of the benzyl chloride quaternary cationic monomer.
- Example 7 was repeated but using different levels of stabiliser.
- Example 7 was repeated using the following cationic monomers : -
- Example 7 was repeated using DMAPMA acetate salts, with different degrees of neutralisation, as the cationic monomer component. The amount of emulsion produced was measured.
- Example 7 was repeated but using various levels of benzyl chloride quaternised dimethylaminoethyl methacrylate.
- the polymer particles produced in Example 7 evaluated by assessing the ability to absorb water insoluble active ingredients. 10 parts of beads were dispersed into 10 parts of liquid water insoluble active ingredients and the quantity of liquid absorbed was observed visually.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Birds (AREA)
- Dermatology (AREA)
- Emergency Medicine (AREA)
- Molecular Biology (AREA)
- Pest Control & Pesticides (AREA)
- Polymers & Plastics (AREA)
- Agronomy & Crop Science (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Toxicology (AREA)
- Dentistry (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Dispersion Chemistry (AREA)
- Detergent Compositions (AREA)
- Fats And Perfumes (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Cosmetics (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Medicinal Preparation (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52855598A JP2001507059A (ja) | 1996-12-23 | 1997-12-23 | 表面特性を有する粒子、及びそれを製造する方法 |
AU53319/98A AU5331998A (en) | 1996-12-23 | 1997-12-23 | Particles having surface properties and methods of making them |
DE69710367T DE69710367T2 (de) | 1996-12-23 | 1997-12-23 | Teilchen mit oberflächeneigenschaften und verfahren zu ihrer herstellung |
EP97950317A EP0950070B1 (en) | 1996-12-23 | 1997-12-23 | Particles having surface properties and methods of making them |
CA002277143A CA2277143C (en) | 1996-12-23 | 1997-12-23 | Particles having surface properties and methods of making them |
AT97950317T ATE213001T1 (de) | 1996-12-23 | 1997-12-23 | Teilchen mit oberflächeneigenschaften und verfahren zu ihrer herstellung |
DK97950317T DK0950070T3 (da) | 1996-12-23 | 1997-12-23 | Partikler med overfladeegenskaber og fremgangsmåder til fremstilling deraf |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96309466.9 | 1996-12-23 | ||
EP96309466 | 1996-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998028339A1 true WO1998028339A1 (en) | 1998-07-02 |
Family
ID=8225210
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1997/003530 WO1998028398A1 (en) | 1996-12-23 | 1997-12-23 | Particles containing absorbed liquids and methods of making them |
PCT/GB1997/003529 WO1998028396A1 (en) | 1996-12-23 | 1997-12-23 | Compositions containing perfume |
PCT/GB1997/003531 WO1998028339A1 (en) | 1996-12-23 | 1997-12-23 | Particles having surface properties and methods of making them |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1997/003530 WO1998028398A1 (en) | 1996-12-23 | 1997-12-23 | Particles containing absorbed liquids and methods of making them |
PCT/GB1997/003529 WO1998028396A1 (en) | 1996-12-23 | 1997-12-23 | Compositions containing perfume |
Country Status (14)
Country | Link |
---|---|
US (3) | US6024943A (da) |
EP (3) | EP0950070B1 (da) |
JP (3) | JP4509225B2 (da) |
AT (1) | ATE213001T1 (da) |
AU (3) | AU729041B2 (da) |
BR (2) | BR9713619A (da) |
CA (3) | CA2277143C (da) |
DE (2) | DE69710367T2 (da) |
DK (1) | DK0950070T3 (da) |
ES (2) | ES2350721T3 (da) |
ID (2) | ID21962A (da) |
PT (1) | PT950070E (da) |
WO (3) | WO1998028398A1 (da) |
ZA (3) | ZA9711589B (da) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001002527A1 (en) * | 1999-07-01 | 2001-01-11 | The Procter & Gamble Company | Detergent compositions or components |
US6194375B1 (en) * | 1996-12-23 | 2001-02-27 | Quest International B.V. | Compositions containing perfume |
WO2001025393A1 (en) * | 1999-10-05 | 2001-04-12 | The Procter & Gamble Company | Elastic article |
WO2002009663A1 (en) * | 2000-08-02 | 2002-02-07 | Quest International B.V. | Particles |
WO2002013771A2 (en) * | 2000-08-16 | 2002-02-21 | L'oreal | Hair styling composition comprising encapsulated adhesives |
FR2828887A1 (fr) * | 2001-08-22 | 2003-02-28 | Rhodia Chimie Sa | Additif preformule pour composition de traitement des articles en fibres textiles et utilisation dudit comme agent de soin |
EP1343934A2 (de) | 2000-12-05 | 2003-09-17 | Basf Aktiengesellschaft | Reaktiv modifizierte, teilchenförmige polymerisate zur behandlung der oberflächen textiler und nicht-textiler materialien |
WO2003085074A1 (de) | 2002-04-10 | 2003-10-16 | Henkel Kommanditgesellschaft Auf Aktien | Textilschonendes textilreinigungsmittel |
WO2004041233A1 (en) * | 2002-11-01 | 2004-05-21 | The Procter & Gamble Company | Polymeric assisted benefit agent delivrery systems |
WO2004041232A1 (en) * | 2002-11-01 | 2004-05-21 | The Procter & Gamble Company | Perfume polymeric particles |
WO2004041222A1 (en) * | 2002-11-01 | 2004-05-21 | The Procter & Gamble Company | Rinse-off personal care compositions comprising cationic perfume polymeric particles |
US6756353B1 (en) * | 1999-07-01 | 2004-06-29 | The Procter & Gamble Company | Detergent compositions or components |
GB2432844A (en) * | 2005-12-02 | 2007-06-06 | Unilever Plc | Laundry composition |
US7524807B2 (en) | 2002-11-01 | 2009-04-28 | The Procter & Gamble Company | Rinse-off personal care compositions comprising anionic and/or nonionic perfume polymeric particles |
EP2098631A1 (en) * | 2006-12-28 | 2009-09-09 | Kao Corporation | Fiber treating agent |
US7723285B2 (en) | 2004-07-20 | 2010-05-25 | Michigan Molecular Institute | Beneficial agent delivery systems |
EP2550863A1 (de) | 2011-07-27 | 2013-01-30 | Bayer Intellectual Property GmbH | Aktivstoffhaltige Partikel auf Polyacrylat-Basis |
EP2150605B2 (en) † | 2007-05-31 | 2016-11-02 | Colgate-Palmolive Company | Fabric softening compositions comprising polymeric materials |
US9546122B2 (en) | 2013-03-11 | 2017-01-17 | Ndsu Research Foundation | Monomers and polymers derived from natural phenols |
WO2017102425A1 (de) * | 2015-12-17 | 2017-06-22 | Henkel Ag & Co. Kgaa | Verbessertes waschverfahren iv |
WO2017102423A1 (de) * | 2015-12-17 | 2017-06-22 | Henkel Ag & Co. Kgaa | Verbessertes waschverfahren ii |
WO2017102421A1 (de) * | 2015-12-17 | 2017-06-22 | Henkel Ag & Co. Kgaa | Verbessertes waschverfahren i |
Families Citing this family (217)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997047288A1 (en) | 1996-06-14 | 1997-12-18 | Emisphere Technologies, Inc. | Microencapsulated fragrances and method for preparation |
FR2779650B1 (fr) * | 1998-06-15 | 2000-07-21 | Oreal | Composition pulverulente moussante solide a hydrater pour le soin ou le nettoyage de la peau |
US6939835B2 (en) * | 1999-03-26 | 2005-09-06 | Firmenich Sa | Cyclic compounds and their use as precursors of fragrant alcohols |
GB9910389D0 (en) * | 1999-05-05 | 1999-07-07 | Unilever Plc | Laundry compositions |
US6328951B1 (en) * | 1999-12-21 | 2001-12-11 | International Flavors & Fragrances Inc. | Water-soluble solid-phase ironing aid freshening composition tablets consisting of same for use in the steam chamber of an iron and process for preparing and utilizing the same |
EP1111034A1 (en) | 1999-12-22 | 2001-06-27 | The Procter & Gamble Company | Laundry and cleaning and/or fabric care compositions |
DE10000223A1 (de) * | 2000-01-05 | 2001-07-12 | Basf Ag | Mikrokapselzubereitungen und Mikrokapseln enthaltende Wasch- und Reinigungsmittel |
US6491953B1 (en) * | 2000-01-07 | 2002-12-10 | Amcol International Corporation | Controlled release compositions and method |
US7208464B2 (en) * | 2000-06-02 | 2007-04-24 | The Procter & Gamble Company | Fragrance compositions |
FR2806307B1 (fr) * | 2000-03-20 | 2002-11-15 | Mane Fils V | Preparation parfumee solide sous forme de microbilles et utilisation de ladite preparation |
GB2360793A (en) * | 2000-03-29 | 2001-10-03 | Unilever Plc | Improving perfume deposition or retention on fabrics |
EP1146057A1 (en) | 2000-04-15 | 2001-10-17 | Givaudan SA | Polymeric nanoparticles including olfactive molecules |
AU2001263062A1 (en) * | 2000-05-11 | 2001-11-20 | The Procter And Gamble Company | Highly concentrated fabric softener compositions and articles containing such compositions |
US7018423B2 (en) * | 2000-06-05 | 2006-03-28 | Procter & Gamble Company | Method for the use of aqueous vapor and lipophilic fluid during fabric cleaning |
DE10044382A1 (de) * | 2000-09-08 | 2002-04-04 | Haarmann & Reimer Gmbh | Pflegemittel |
CA2357106A1 (en) * | 2000-09-11 | 2002-03-11 | The Caldrea Company | Aromatherapeutic environmental system |
US6887493B2 (en) * | 2000-10-25 | 2005-05-03 | Adi Shefer | Multi component controlled release system for oral care, food products, nutraceutical, and beverages |
US7407650B2 (en) * | 2000-10-27 | 2008-08-05 | The Procter & Gamble Company | Fragrance compositions |
US7413731B2 (en) * | 2000-10-27 | 2008-08-19 | The Procter And Gamble Company | Fragrance compositions |
AU2001214416A1 (en) * | 2000-10-27 | 2002-05-06 | The Procter And Gamble Company | Fragrance compositions |
US20020100122A1 (en) * | 2000-11-08 | 2002-08-01 | Rodrigues Klein A. | Method for reducing wrinkles and improving feel in fabrics |
US6531444B1 (en) | 2000-11-09 | 2003-03-11 | Salvona, Llc | Controlled delivery system for fabric care products |
GB2369094A (en) | 2000-11-17 | 2002-05-22 | Procter & Gamble | Packaging assembly for sheets of water-soluble sachets |
US6525016B2 (en) * | 2001-01-16 | 2003-02-25 | Goldschmidt Chemical Corporation | Blend of imidazolinium quat and amido amine quat for use in fabric softeners with premium softening, high-viscosity at low-solids and non-yellowing properties |
DE10105801B4 (de) * | 2001-02-07 | 2004-07-08 | Henkel Kgaa | Wasch- und Reinigungsmittel umfassend feine Mikropartikel mit Reinigungsmittelbestandteilen |
JP2002284660A (ja) * | 2001-03-23 | 2002-10-03 | Haarmann & Reimer Kk | 毛髪化粧料用香料組成物 |
GB0108657D0 (en) * | 2001-04-06 | 2001-05-30 | Quest Int | Perfume compositions |
ES2318042T3 (es) | 2001-09-06 | 2009-05-01 | THE PROCTER & GAMBLE COMPANY | Velas perfumadas. |
US6786223B2 (en) * | 2001-10-11 | 2004-09-07 | S. C. Johnson & Son, Inc. | Hard surface cleaners which provide improved fragrance retention properties to hard surfaces |
US7763238B2 (en) * | 2002-01-16 | 2010-07-27 | Monell Chemical Senses Center | Olfactory adaptation and cross-adapting agents to reduce the perception of body odors |
US7053034B2 (en) * | 2002-04-10 | 2006-05-30 | Salvona, Llc | Targeted controlled delivery compositions activated by changes in pH or salt concentration |
US20030194416A1 (en) * | 2002-04-15 | 2003-10-16 | Adl Shefer | Moisture triggered release systems comprising aroma ingredients providing fragrance burst in response to moisture |
US7115282B2 (en) * | 2002-04-17 | 2006-10-03 | Salvona Ip Llc | Multi component controlled release system for anhydrous cosmetic compositions |
US7067152B2 (en) * | 2002-04-17 | 2006-06-27 | Salvona Llc | Multi component moisture triggered controlled release system that imparts long lasting cooling sensation on the target site and/or provides high impact fragrance or flavor burst |
US6825161B2 (en) * | 2002-04-26 | 2004-11-30 | Salvona Llc | Multi component controlled delivery system for soap bars |
US7208460B2 (en) * | 2002-04-26 | 2007-04-24 | Salvona Ip, Llc | Multi component controlled delivery system for soap bars |
US6740631B2 (en) | 2002-04-26 | 2004-05-25 | Adi Shefer | Multi component controlled delivery system for fabric care products |
US6739719B2 (en) * | 2002-06-13 | 2004-05-25 | Essilor International Compagnie Generale D'optique | Lens blank convenient for masking unpleasant odor and/or delivering a pleasant odor upon edging and/or surfacing, and perfume delivering lens |
ES2280763T3 (es) * | 2002-06-27 | 2007-09-16 | Unilever N.V. | Composicion de perfume. |
US20040018278A1 (en) * | 2002-07-25 | 2004-01-29 | Popplewell Lewis Michael | Packaging containing fragrance |
JP4865225B2 (ja) * | 2002-08-14 | 2012-02-01 | ジボダン・ネーデルランド・サービシーズ・ビー・ブイ | カプセル化された材料からなる組成物 |
US7335631B2 (en) * | 2002-09-09 | 2008-02-26 | Symrise, Inc. | Encapsulated perfume compositions in hair and skin products which release a burst of fragrance after initial topical application |
US7306809B2 (en) * | 2002-09-13 | 2007-12-11 | Lipo Chemicals, Inc. | Optically activated particles for use in cosmetic compositions |
BR0303954A (pt) * | 2002-10-10 | 2004-09-08 | Int Flavors & Fragrances Inc | Composição, fragrância, método para divisão de uma quantidade efetiva olfativa de fragrância em um produto sem enxague e produto sem enxague |
US20040071742A1 (en) * | 2002-10-10 | 2004-04-15 | Popplewell Lewis Michael | Encapsulated fragrance chemicals |
US7125835B2 (en) * | 2002-10-10 | 2006-10-24 | International Flavors & Fragrances Inc | Encapsulated fragrance chemicals |
US7585824B2 (en) * | 2002-10-10 | 2009-09-08 | International Flavors & Fragrances Inc. | Encapsulated fragrance chemicals |
US20080188392A1 (en) * | 2002-12-02 | 2008-08-07 | Diamond Chemical Company, Inc. | Laundry Compositions |
US7670627B2 (en) * | 2002-12-09 | 2010-03-02 | Salvona Ip Llc | pH triggered targeted controlled release systems for the delivery of pharmaceutical active ingredients |
US6949500B2 (en) * | 2002-12-16 | 2005-09-27 | Colgate-Palmolive Company | Fabric softener compositions containing a mixture of cationic polymers as rheology modifiers |
EP1443058A1 (en) * | 2003-01-29 | 2004-08-04 | Firmenich Sa | Polymeric particles and fragrance delivery systems |
US6921024B2 (en) * | 2003-01-31 | 2005-07-26 | Alene Candles, Inc. | Disposable sheet fragrance delivery system |
EP1590427A2 (en) * | 2003-02-03 | 2005-11-02 | Ciba SC Holding AG | Washing agent and fabric softener formulations |
WO2004084844A2 (en) | 2003-03-27 | 2004-10-07 | Dow Corning Corporation | Controlled release compositions |
GB0313136D0 (en) * | 2003-06-06 | 2003-07-09 | Unilever Plc | Detergent component and process for preparation |
ES2298777T3 (es) * | 2003-08-13 | 2008-05-16 | Firmenich Sa | Producto envasado. |
DK1670870T3 (da) * | 2003-09-26 | 2008-11-10 | Basf Se | Bindemiddelsystem indeholdende aminoplastharpiks, copolymerer af N-funktionaliserede ethylenisk umættede monomerer og i givet fald vinylalkohol og syre |
JP2005105508A (ja) * | 2003-10-01 | 2005-04-21 | Rohm & Haas Co | 水性組成物のレオロジーを制御するためのポリマー及び方法 |
WO2005032503A1 (en) * | 2003-10-02 | 2005-04-14 | Firmenich Sa | Controlled delivery system for fragrance comprising a (meth)acrylate/hydroxy (meth) acrylate copolymer |
DE10351523A1 (de) * | 2003-11-03 | 2005-06-16 | Basf Ag | Wäßrige Dispersionen mit Duftstoffen |
US7060306B2 (en) * | 2003-11-10 | 2006-06-13 | Springstead Patricia R | Skin formulation |
US7105064B2 (en) * | 2003-11-20 | 2006-09-12 | International Flavors & Fragrances Inc. | Particulate fragrance deposition on surfaces and malodour elimination from surfaces |
US20050112152A1 (en) * | 2003-11-20 | 2005-05-26 | Popplewell Lewis M. | Encapsulated materials |
US20050113282A1 (en) * | 2003-11-20 | 2005-05-26 | Parekh Prabodh P. | Melamine-formaldehyde microcapsule slurries for fabric article freshening |
DE602004005406T2 (de) * | 2003-12-11 | 2007-11-29 | Rohm And Haas Co. | System und Verfahren zur Freisetzung von eingekapselten aktiven Bestandteilen |
GB0328848D0 (en) * | 2003-12-12 | 2004-01-14 | Unilever Plc | Fabric conditioning composition |
GB0328842D0 (en) * | 2003-12-12 | 2004-01-14 | Unilever Plc | Fabric conditioning composition |
US20050129812A1 (en) * | 2003-12-12 | 2005-06-16 | Brown Martha J.M. | Packaging for eliminating off-odors |
US7531365B2 (en) | 2004-01-08 | 2009-05-12 | International Flavors & Fragrances Inc. | Analysis of the headspace proximate a substrate surface containing fragrance-containing microcapsules |
US20050226900A1 (en) * | 2004-04-13 | 2005-10-13 | Winton Brooks Clint D | Skin and hair treatment composition and process for using same resulting in controllably-releasable fragrance and/or malodour counteractant evolution |
US20050227907A1 (en) * | 2004-04-13 | 2005-10-13 | Kaiping Lee | Stable fragrance microcapsule suspension and process for using same |
US7968083B2 (en) * | 2004-04-15 | 2011-06-28 | The Hong Kong Polytechnic University | Methods of manufacturing deodorants, and deodorants resulting thereof |
US7211556B2 (en) * | 2004-04-15 | 2007-05-01 | Colgate-Palmolive Company | Fabric care composition comprising polymer encapsulated fabric or skin beneficiating ingredient |
GB0409570D0 (en) * | 2004-04-29 | 2004-06-02 | Ciba Spec Chem Water Treat Ltd | Particulate compositions and their manufacture |
MXPA06014734A (es) * | 2004-06-15 | 2007-02-12 | Ciba Sc Holding Ag | Particulas polimericas. |
US8919662B2 (en) | 2004-06-24 | 2014-12-30 | Enviroscent, Inc. | Scent devices and methods |
US20060039966A1 (en) * | 2004-08-12 | 2006-02-23 | Miller Bruce A Jr | Dosage delivery apparatus for improving user acceptance of oral supplements and medicaments and methods for manufacturing same |
EP1637188A1 (en) * | 2004-08-20 | 2006-03-22 | Firmenich Sa | Improved liquid/sprayable compositions comprising fragranced aminoplast capsules |
US7594594B2 (en) * | 2004-11-17 | 2009-09-29 | International Flavors & Fragrances Inc. | Multi-compartment storage and delivery containers and delivery system for microencapsulated fragrances |
US7485613B2 (en) * | 2004-12-01 | 2009-02-03 | Venus Laboratories, Inc. | Low foaming carpet-cleaning detergent concentrate comprised of ethylene oxide adduct and without phosphates |
US7459420B2 (en) * | 2004-12-01 | 2008-12-02 | Vlahakis E Van | Automatic dishwashing detergent comprised of ethylene oxide adduct and without phosphates |
US7621813B2 (en) | 2004-12-07 | 2009-11-24 | Microsoft Corporation | Ubiquitous unified player tracking system |
US7887419B2 (en) | 2004-12-07 | 2011-02-15 | Microsoft Corporation | Game achievements system |
US7977288B2 (en) * | 2005-01-12 | 2011-07-12 | Amcol International Corporation | Compositions containing cationically surface-modified microparticulate carrier for benefit agents |
US7871972B2 (en) * | 2005-01-12 | 2011-01-18 | Amcol International Corporation | Compositions containing benefit agents pre-emulsified using colloidal cationic particles |
US7569533B2 (en) * | 2005-01-12 | 2009-08-04 | Amcol International Corporation | Detersive compositions containing hydrophobic benefit agents pre-emulsified using sub-micrometer-sized insoluble cationic particles |
US7888306B2 (en) | 2007-05-14 | 2011-02-15 | Amcol International Corporation | Compositions containing benefit agent composites pre-emulsified using colloidal cationic particles |
US8138137B2 (en) * | 2005-02-04 | 2012-03-20 | Amcol International Corporation | Extended delivery of ingredients from a fabric softener composition |
US20060248665A1 (en) * | 2005-05-06 | 2006-11-09 | Pluyter Johan G L | Encapsulated fragrance materials and methods for making same |
US20070207174A1 (en) * | 2005-05-06 | 2007-09-06 | Pluyter Johan G L | Encapsulated fragrance materials and methods for making same |
EP1893734B1 (en) | 2005-06-08 | 2019-03-20 | Firmenich Sa | Near anhydrous consumer products comprising fragranced aminoplast capsules |
ATE485807T1 (de) † | 2005-09-23 | 2010-11-15 | Takasago Perfumery Co Ltd | Kern/schale-kapseln enthaltend ein öl oder einen wachsartigen feststoff |
EP1954795B8 (en) * | 2005-11-29 | 2009-08-26 | Basf Se | Capsules |
GB0524665D0 (en) † | 2005-12-02 | 2006-01-11 | Unilever Plc | Laundry composition |
GB2432852A (en) * | 2005-12-02 | 2007-06-06 | Unilever Plc | Laundry composition including polymer particles containing perfume and a cationic deposition aid |
GB2432851A (en) * | 2005-12-02 | 2007-06-06 | Unilever Plc | Laundry composition including polymer particles containing perfume and a non-ionic deposition aid |
GB2432850A (en) * | 2005-12-02 | 2007-06-06 | Unilever Plc | Polymeric particle comprising perfume and benefit agent, in particular a laundry composition |
US20070138673A1 (en) | 2005-12-15 | 2007-06-21 | Kaiping Lee | Process for Preparing a High Stability Microcapsule Product and Method for Using Same |
US20070138674A1 (en) | 2005-12-15 | 2007-06-21 | Theodore James Anastasiou | Encapsulated active material with reduced formaldehyde potential |
WO2007130684A1 (en) * | 2006-05-05 | 2007-11-15 | The Procter & Gamble Company | Films with microcapsules |
US20070275866A1 (en) * | 2006-05-23 | 2007-11-29 | Robert Richard Dykstra | Perfume delivery systems for consumer goods |
US7833960B2 (en) | 2006-12-15 | 2010-11-16 | International Flavors & Fragrances Inc. | Encapsulated active material containing nanoscaled material |
US8076280B2 (en) * | 2006-12-20 | 2011-12-13 | Basf Se | Emulsions containing encapsulated fragrances and personal care compositions comprising said emulsions |
US7879747B2 (en) | 2007-03-30 | 2011-02-01 | Kimberly-Clark Worldwide, Inc. | Elastic laminates having fragrance releasing properties and methods of making the same |
EP2132290A1 (en) * | 2007-04-02 | 2009-12-16 | The Procter and Gamble Company | Fabric care composition |
US20080311064A1 (en) * | 2007-06-12 | 2008-12-18 | Yabin Lei | Higher Performance Capsule Particles |
KR100890428B1 (ko) * | 2007-08-20 | 2009-03-26 | 주식회사 선진화학 | 자외선 차단제를 함유하는 화장료 조성물용 고분자 복합 입자 및 그의 제조방법 |
EP2265702A1 (en) | 2008-02-08 | 2010-12-29 | Amcol International Corporation | Compositions containing cationically surface-modified microparticulate carrier for benefit agents |
GB0803538D0 (en) | 2008-02-27 | 2008-04-02 | Dow Corning | Deposition of lipophilic active material in surfactant containing compositions |
EP2103678A1 (en) * | 2008-03-18 | 2009-09-23 | The Procter and Gamble Company | Detergent composition comprising a co-polyester of dicarboxylic acids and diols |
EP2103675A1 (en) * | 2008-03-18 | 2009-09-23 | The Procter and Gamble Company | Detergent composition comprising cellulosic polymer |
US8188022B2 (en) | 2008-04-11 | 2012-05-29 | Amcol International Corporation | Multilayer fragrance encapsulation comprising kappa carrageenan |
CA2721086A1 (en) | 2008-04-11 | 2009-10-15 | Amcol International Corporation | Multilayer fragrance encapsulation |
WO2010065446A2 (en) | 2008-12-01 | 2010-06-10 | The Procter & Gamble Company | Perfume systems |
US9044732B2 (en) * | 2008-12-04 | 2015-06-02 | International Flavors & Fragrances Inc. | Microcapsules containing active ingredients |
US20100143422A1 (en) * | 2008-12-04 | 2010-06-10 | Lewis Michael Popplewell | Microcapsules Containing Active Ingredients |
US10099194B2 (en) | 2011-03-18 | 2018-10-16 | International Flavors & Fragrances Inc. | Microcapsules produced from blended sol-gel precursors and method for producing the same |
US9763861B2 (en) | 2008-12-04 | 2017-09-19 | International Flavors & Fragrances Inc. | Stable, flowable silica capsule formulation |
US11458105B2 (en) | 2008-12-04 | 2022-10-04 | International Flavors & Fragrances Inc. | Hybrid fragrance encapsulate formulation and method for using the same |
US8754028B2 (en) * | 2008-12-16 | 2014-06-17 | The Procter & Gamble Company | Perfume systems |
FR2941972B1 (fr) * | 2009-02-09 | 2011-05-27 | Ab7 Ind | Procede d'enduction de microspheres sur un materiau souple |
JP5565653B2 (ja) * | 2009-04-13 | 2014-08-06 | 国立大学法人九州大学 | 高吸油性高分子電解質ゲル |
EP2270124A1 (en) | 2009-06-30 | 2011-01-05 | The Procter & Gamble Company | Bleaching compositions comprising a perfume delivery system |
EP4159833A3 (en) | 2009-12-09 | 2023-07-26 | The Procter & Gamble Company | Fabric and home care products |
WO2011084463A1 (en) | 2009-12-17 | 2011-07-14 | The Procter & Gamble Company | Freshening compositions comprising malodor binding polymers and malodor control components |
ES2665937T3 (es) | 2009-12-18 | 2018-04-30 | The Procter & Gamble Company | Perfumes y encapsulados de perfume |
US9132204B2 (en) | 2010-03-31 | 2015-09-15 | Enviroscent, Inc. | Methods, compositions and articles for olfactory-active substances |
ES2457495T3 (es) | 2010-03-31 | 2014-04-28 | Unilever N.V. | Incorporación de microcápsulas a detergentes líquidos estructurados |
EP2674477B1 (en) | 2010-04-01 | 2018-09-12 | The Procter and Gamble Company | Cationic polymer stabilized microcapsule composition |
WO2011120799A1 (en) | 2010-04-01 | 2011-10-06 | Unilever Plc | Structuring detergent liquids with hydrogenated castor oil |
EP2553075B1 (en) | 2010-04-01 | 2014-05-07 | The Procter and Gamble Company | Fabric care compositions comprising copolymers |
US9993793B2 (en) | 2010-04-28 | 2018-06-12 | The Procter & Gamble Company | Delivery particles |
US9186642B2 (en) * | 2010-04-28 | 2015-11-17 | The Procter & Gamble Company | Delivery particle |
EP3085759B1 (en) | 2010-06-22 | 2018-02-07 | The Procter and Gamble Company | Perfume systems |
WO2011163325A1 (en) | 2010-06-22 | 2011-12-29 | The Procter & Gamble Company | Perfume systems |
CA2803629C (en) | 2010-07-02 | 2015-04-28 | The Procter & Gamble Company | Filaments comprising an active agent nonwoven webs and methods for making same |
CN102971453B (zh) | 2010-07-02 | 2015-08-12 | 宝洁公司 | 包含非香料活性剂的长丝、非织造纤维网和制备它们的方法 |
RU2543892C2 (ru) | 2010-07-02 | 2015-03-10 | Дзе Проктер Энд Гэмбл Компани | Способ получения пленок из нетканых полотен |
RU2553295C2 (ru) | 2010-07-02 | 2015-06-10 | Дзе Проктер Энд Гэмбл Компани | Моющий продукт и способы его изготовления |
JP5759544B2 (ja) | 2010-07-02 | 2015-08-05 | ザ プロクター アンド ギャンブルカンパニー | 活性剤を送達する方法 |
GB201011905D0 (en) | 2010-07-15 | 2010-09-01 | Unilever Plc | Benefit delivery particle,process for preparing said particle,compositions comprising said particles and a method for treating substrates |
US11717471B2 (en) | 2010-12-01 | 2023-08-08 | Isp Investments Llc | Hydrogel microcapsules |
EP2495300A1 (en) | 2011-03-04 | 2012-09-05 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Structuring detergent liquids with hydrogenated castor oil |
EP2694016B1 (en) | 2011-04-07 | 2017-05-24 | The Procter and Gamble Company | Shampoo compositions with increased deposition of polyacrylate microcapsules |
US9162085B2 (en) | 2011-04-07 | 2015-10-20 | The Procter & Gamble Company | Personal cleansing compositions with increased deposition of polyacrylate microcapsules |
JP2014510140A (ja) | 2011-04-07 | 2014-04-24 | ザ プロクター アンド ギャンブル カンパニー | ポリアクリレートマイクロカプセルの付着が増大したコンディショナー組成物 |
BR112013033049A2 (pt) | 2011-06-23 | 2017-01-31 | Procter & Gamble | sistemas de perfume |
EP2725912A4 (en) | 2011-06-29 | 2015-03-04 | Solae Llc | BAKERY COMPOSITIONS WITH SOYAMOL PROTEINS ISOLATED FROM PROCESSING STREAMS |
DE102011078721A1 (de) * | 2011-07-06 | 2013-01-10 | Evonik Degussa Gmbh | Pulver enthaltend mit Polymer beschichtete polymere Kernpartikel |
MX2014001939A (es) | 2011-09-13 | 2014-03-31 | Procter & Gamble | Composiciones fluidas mejoradas de telas. |
PL2570474T3 (pl) | 2011-09-13 | 2015-04-30 | Procter & Gamble | Stabilne, rozpuszczalne w wodzie wyroby w dawce jednostkowej |
RU2655288C1 (ru) | 2012-01-04 | 2018-05-24 | Дзе Проктер Энд Гэмбл Компани | Волокнистые структуры, содержащие частицы, и способы их изготовления |
CN106968050B (zh) | 2012-01-04 | 2019-08-27 | 宝洁公司 | 具有多个区域的含活性物质纤维结构 |
MX352942B (es) | 2012-01-04 | 2017-12-14 | Procter & Gamble | Estructuras fibrosas que contienen activos y multiples regiones que tienen densidades diferentes. |
EP2836579B1 (en) * | 2012-04-10 | 2018-07-25 | The Procter and Gamble Company | Malodor reduction compositions |
EP2841551B1 (en) | 2012-04-23 | 2015-12-09 | Unilever Plc. | Externally structured aqueous isotropic liquid detergent compositions |
CN104245910B (zh) | 2012-04-23 | 2017-02-15 | 荷兰联合利华有限公司 | 外部结构化的水性各向同性液体洗涤剂组合物 |
IN2014MN02040A (da) | 2012-04-23 | 2015-09-11 | Unilever Plc | |
EP2708588A1 (en) | 2012-09-14 | 2014-03-19 | The Procter & Gamble Company | Fabric care composition |
EP2708592B2 (en) | 2012-09-14 | 2022-03-16 | The Procter & Gamble Company | Fabric care composition |
EP2708589A1 (en) | 2012-09-14 | 2014-03-19 | The Procter & Gamble Company | Fabric care composition |
US9556405B2 (en) | 2012-11-29 | 2017-01-31 | Conopco, Inc. | Polymer structured aqueous detergent compositions |
EP2803719A1 (en) | 2013-05-14 | 2014-11-19 | The Procter & Gamble Company | Cleaning composition |
BR112015031917A2 (pt) | 2013-06-19 | 2017-07-25 | Procter & Gamble | artigo absorvente que compreende uma composição de fragrância ou para controle de odores |
MX2015017186A (es) | 2013-06-19 | 2016-03-16 | Procter & Gamble | Articulo absorbente que comprende compuestos reactivos complejos o encapsulados. |
US9610228B2 (en) | 2013-10-11 | 2017-04-04 | International Flavors & Fragrances Inc. | Terpolymer-coated polymer encapsulated active material |
ES2658226T3 (es) | 2013-10-18 | 2018-03-08 | International Flavors & Fragrances Inc. | Formulación fluida y estable de cápsulas de sílice |
MX361936B (es) | 2013-10-18 | 2018-12-19 | Int Flavors & Fragrances Inc | Formulacion encapsulada de fragancia hibrida y metodo para su uso. |
MX353557B (es) | 2013-11-11 | 2018-01-17 | Int Flavors & Fragrances Inc | Composiciones multicápsulas. |
MX2016007157A (es) | 2013-12-09 | 2016-07-21 | Procter & Gamble | Estructuras fibrosas que incluyen un agente activo y tienen un grafico impreso sobre estas. |
WO2015138579A1 (en) | 2014-03-12 | 2015-09-17 | The Procter & Gamble Company | Detergent composition |
EP3116983B1 (en) | 2014-03-12 | 2017-11-29 | The Procter and Gamble Company | Detergent composition |
EP3116985B1 (en) | 2014-03-12 | 2018-07-25 | The Procter and Gamble Company | Detergent composition |
CN106102696A (zh) | 2014-03-12 | 2016-11-09 | 宝洁公司 | 洗涤剂组合物 |
US9149552B1 (en) | 2014-09-29 | 2015-10-06 | Enviroscent, Inc. | Coating providing modulated release of volatile compositions |
US20170216166A1 (en) * | 2014-10-01 | 2017-08-03 | International Flavors & Fragrances Inc. | Capsules containing polyvinyl alcohol |
ES2869275T3 (es) | 2015-04-24 | 2021-10-25 | Int Flavors & Fragrances Inc | Sistemas de suministro y procedimientos de preparación del mismo |
US10226544B2 (en) | 2015-06-05 | 2019-03-12 | International Flavors & Fragrances Inc. | Malodor counteracting compositions |
EP3307333A1 (en) | 2015-06-09 | 2018-04-18 | Enviroscent, Inc. | Formed three-dimensional matrix and associated coating providing modulated release of volatile compositions |
USD800286S1 (en) | 2015-07-31 | 2017-10-17 | Enviroscent, Inc. | Collection of scent-infused wound sheets |
US10047324B2 (en) | 2015-10-13 | 2018-08-14 | Henkel IP & Holding GmbH | Multi-stage benefit agent delivery system |
AU2017207981B2 (en) | 2016-01-14 | 2020-10-29 | Isp Investments Llc | Friable shell microcapsules, process for preparing the same and method of use thereof |
US20170204223A1 (en) | 2016-01-15 | 2017-07-20 | International Flavors & Fragrances Inc. | Polyalkoxy-polyimine adducts for use in delayed release of fragrance ingredients |
BR112018076803B1 (pt) | 2016-07-01 | 2022-05-03 | International Flavors & Fragrances Inc | Composição estável de microcápsula, e, produto de consumo |
US10066190B2 (en) | 2016-07-18 | 2018-09-04 | Henkel IP & Holding GmbH | Mild liquid detergent formulations |
ES2950434T3 (es) | 2016-09-16 | 2023-10-10 | Int Flavors & Fragrances Inc | Composiciones de microcápsula estabilizadas con agentes de control de la viscosidad |
WO2018064449A1 (en) | 2016-09-30 | 2018-04-05 | Enviroscent, Inc. | Articles formed of pulp base materials with modulated scent release |
US10752868B2 (en) | 2016-11-09 | 2020-08-25 | Henkel IP & Holding GmbH | Unit dose detergent composition |
US11697905B2 (en) | 2017-01-27 | 2023-07-11 | The Procter & Gamble Company | Active agent-containing articles that exhibit consumer acceptable article in-use properties |
US11697906B2 (en) | 2017-01-27 | 2023-07-11 | The Procter & Gamble Company | Active agent-containing articles and product-shipping assemblies for containing the same |
WO2018140472A1 (en) | 2017-01-27 | 2018-08-02 | The Procter & Gamble Company | Active agent-containing articles that exhibit consumer acceptable article in-use properties |
US11697904B2 (en) | 2017-01-27 | 2023-07-11 | The Procter & Gamble Company | Active agent-containing articles that exhibit consumer acceptable article in-use properties |
WO2018140565A1 (en) | 2017-01-27 | 2018-08-02 | Henkel IP & Holding GmbH | Stable unit dose compositions with high water content |
WO2018210523A1 (en) | 2017-05-15 | 2018-11-22 | Unilever Plc | Composition |
WO2018210522A1 (en) | 2017-05-15 | 2018-11-22 | Unilever Plc | Composition |
WO2018210524A1 (en) | 2017-05-15 | 2018-11-22 | Unilever Plc | Composition |
WO2018210700A1 (en) | 2017-05-15 | 2018-11-22 | Unilever Plc | Composition |
EP3625323A4 (en) | 2017-05-17 | 2021-03-31 | Henkel IP & Holding GmbH | STABLE UNIT DOSE COMPOSITIONS |
EP3403640A1 (en) * | 2017-05-18 | 2018-11-21 | The Procter & Gamble Company | Conditioner compositions with increased deposition of polyacrylate microcapsules |
US11318075B2 (en) | 2017-07-20 | 2022-05-03 | Rdje Technologes Llc | Controlled release polymer encapsulated fragrances |
US10597604B2 (en) | 2017-11-10 | 2020-03-24 | Henkel IP & Holding GmbH | Stable encapsulated fragrance compositions |
EP3611246B1 (en) * | 2018-08-14 | 2021-03-10 | The Procter & Gamble Company | Fabric treatment compositions comprising benefit agent capsules |
EP3611247B1 (en) | 2018-08-14 | 2021-03-10 | The Procter & Gamble Company | Fabric treatment compositions comprising benefit agent capsules |
EP3611245B1 (en) * | 2018-08-14 | 2021-03-10 | The Procter & Gamble Company | Liquid fabric treatment compositions comprising brightener |
US11098271B2 (en) | 2019-06-12 | 2021-08-24 | Henkel IP & Holding GmbH | Salt-free structured unit dose systems |
US11186804B2 (en) | 2019-11-27 | 2021-11-30 | Henkel IP & Holding GmbH | Structured liquid detergent composition for a unit dose detergent pack having improved structuring properties and suspension stability |
WO2021113568A1 (en) | 2019-12-05 | 2021-06-10 | The Procter & Gamble Company | Method of making a cleaning composition |
CN114667337A (zh) | 2019-12-05 | 2022-06-24 | 宝洁公司 | 清洁组合物 |
US11046922B1 (en) | 2019-12-17 | 2021-06-29 | Henkel IP & Holding GmbH | 2-in-1 unit dose providing softening and detergency |
US11427794B2 (en) | 2019-12-19 | 2022-08-30 | Henkel Ag & Co. Kgaa | Low density unit dose detergents based on butyl cellosolve with encapsulated fragrance |
US11220657B2 (en) | 2019-12-31 | 2022-01-11 | Henkel IP & Holding GmbH | Solid perfume composition delivering softening |
US11214761B2 (en) | 2019-12-31 | 2022-01-04 | Henkel IP & Holding GmbH | Solid perfume composition delivering fabric care |
US11492574B2 (en) | 2020-01-30 | 2022-11-08 | Henkel Ag & Co. Kgaa | Unit dose detergent pack including a liquid detergent composition comprising an alkyl polyglycoside surfactant |
US11535819B2 (en) | 2020-04-01 | 2022-12-27 | Henkel Ag & Co. Kgaa | Unit dose detergent pack including a liquid detergent composition with improved color stability |
US12077729B2 (en) | 2020-05-01 | 2024-09-03 | Henkel Ag & Co. Kgaa | Unit dose detergent pack including an opacified liquid detergent composition free of a microplastic opacifier |
EP4299706A1 (en) | 2022-06-27 | 2024-01-03 | The Procter & Gamble Company | Alkaline hard surface cleaning composition |
EP4299697A1 (en) | 2022-06-27 | 2024-01-03 | The Procter & Gamble Company | Acidic hard surface cleaning composition |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6128441A (ja) * | 1984-07-20 | 1986-02-08 | Lion Corp | pH感応性マイクロカプセルの製造方法 |
EP0441512A2 (en) * | 1990-01-29 | 1991-08-14 | Nippon Shokubai Co., Ltd. | Oil- absorbent polymer and use therefor |
WO1992018222A1 (en) * | 1991-04-18 | 1992-10-29 | Advanced Polymer Systems, Inc. | Preparation and use of solid beads having controlled characteristics |
WO1993022417A1 (en) * | 1992-04-29 | 1993-11-11 | Unilever N.V. | Capsule which comprises a component subject to degradation and a composite polymer |
EP0604109A2 (en) * | 1992-12-21 | 1994-06-29 | Rohm And Haas Company | Suspension polymerization process for water-soluble monomers |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4264766A (en) * | 1877-09-19 | 1981-04-28 | Hoffmann-La Roche Inc. | Immunological diagnostic reagents |
GB1390503A (en) * | 1971-03-30 | 1975-04-16 | Unilever Ltd | Liquid detergent compositions |
AT339246B (de) * | 1974-08-14 | 1977-10-10 | Henkel & Cie Gmbh | Als bestandteil von pulverformigen wasch- und bleichmitteln geeignetes bleichhilfsmittel |
DE2413561A1 (de) * | 1974-03-21 | 1975-10-02 | Henkel & Cie Gmbh | Lagerbestaendiger, leichtloeslicher waschmittelzusatz und verfahren zu dessen herstellung |
US4234627A (en) * | 1977-02-04 | 1980-11-18 | The Procter & Gamble Company | Fabric conditioning compositions |
GB2066839B (en) * | 1979-12-29 | 1984-03-14 | Vysoka Skola Chem Tech | Method of manufacture of perfumed detergents |
US4497718A (en) * | 1983-04-20 | 1985-02-05 | Lever Brothers Company | Homogeneous aqueous fabric softening composition with stilbene sulfonic acid fluorescent whitener |
NL8400516A (nl) * | 1984-02-17 | 1985-09-16 | Naarden International Nv | Werkwijze ter bereiding van luchtverfrissingsgelen. |
US4908233A (en) * | 1985-05-08 | 1990-03-13 | Lion Corporation | Production of microcapsules by simple coacervation |
US4777089A (en) * | 1985-05-08 | 1988-10-11 | Lion Corporation | Microcapsule containing hydrous composition |
US4690825A (en) | 1985-10-04 | 1987-09-01 | Advanced Polymer Systems, Inc. | Method for delivering an active ingredient by controlled time release utilizing a novel delivery vehicle which can be prepared by a process utilizing the active ingredient as a porogen |
JP2562624B2 (ja) * | 1986-11-07 | 1996-12-11 | 昭和電工株式会社 | 水溶性マイクロカプセルおよび液体洗剤組成物 |
US4997772A (en) * | 1987-09-18 | 1991-03-05 | Eastman Kodak Company | Water-insoluble particle and immunoreactive reagent, analytical elements and methods of use |
JPS6410979A (en) | 1987-07-03 | 1989-01-13 | Mitsubishi Chem Ind | Microcarrier for cultivating cell |
US4855144A (en) * | 1987-10-23 | 1989-08-08 | Advanced Polymer Systems | Synthetic melanin aggregates |
US5492646A (en) * | 1988-01-19 | 1996-02-20 | Allied Colloids Limited | Polymeric matrix particle compositions containing coacervate polymer shell |
US4842761A (en) * | 1988-03-23 | 1989-06-27 | International Flavors & Fragrances, Inc. | Compositions and methods for controlled release of fragrance-bearing substances |
US5051305A (en) * | 1988-12-30 | 1991-09-24 | Arcade, Inc. | Stabilized perfume-containing microcapsules and method of preparing the same |
NZ232237A (en) | 1989-02-06 | 1991-05-28 | Wrigley W M Jun Co | Food product containing porous polymeric beads impregnated with volatile flavourings |
CA2009047C (en) * | 1989-02-27 | 1999-06-08 | Daniel Wayne Michael | Microcapsules containing hydrophobic liquid core |
US5137646A (en) * | 1989-05-11 | 1992-08-11 | The Procter & Gamble Company | Coated perfume particles in fabric softener or antistatic agents |
CA2015737C (en) * | 1989-05-11 | 1995-08-15 | Diane Grob Schmidt | Coated perfume particles |
US5188753A (en) * | 1989-05-11 | 1993-02-23 | The Procter & Gamble Company | Detergent composition containing coated perfume particles |
US5154842A (en) * | 1990-02-20 | 1992-10-13 | The Procter & Gamble Company | Coated perfume particles |
US5180637A (en) * | 1990-11-02 | 1993-01-19 | Sakura Color Products Corporation | Double-walled microcapsules and a process for preparation of same |
GB9120951D0 (en) * | 1991-10-02 | 1991-11-13 | Unilever Plc | Perfume particles |
US5281357A (en) * | 1993-03-25 | 1994-01-25 | Lever Brothers Company, Division Of Conopco, Inc. | Protease containing heavy duty liquid detergent compositions comprising capsules comprising non-proteolytic enzyme and composite polymer |
US5385959A (en) * | 1992-04-29 | 1995-01-31 | Lever Brothers Company, Division Of Conopco, Inc. | Capsule which comprises a component subject to degradation and a composite polymer |
US5281355A (en) * | 1992-04-29 | 1994-01-25 | Lever Brothers Company, Division Of Conopco, Inc. | Heavy duty liquid detergent compositions containing a capsule which comprises a component subject to degradation and a composite polymer |
US6048520A (en) * | 1992-09-24 | 2000-04-11 | Helene Curtis, Inc. | Clear leave-on hair treatment composition and method |
WO1998012298A2 (en) * | 1996-09-18 | 1998-03-26 | The Procter & Gamble Company | Process for making particulate laundry additive composition |
ES2350721T3 (es) * | 1996-12-23 | 2011-01-26 | Givaudan Nederland Services B.V. | Composiciones que contienen perfume. |
-
1997
- 1997-12-23 ES ES97950315T patent/ES2350721T3/es not_active Expired - Lifetime
- 1997-12-23 AT AT97950317T patent/ATE213001T1/de not_active IP Right Cessation
- 1997-12-23 JP JP52855398A patent/JP4509225B2/ja not_active Expired - Lifetime
- 1997-12-23 DE DE69710367T patent/DE69710367T2/de not_active Expired - Lifetime
- 1997-12-23 DE DE69739959T patent/DE69739959D1/de not_active Expired - Lifetime
- 1997-12-23 ZA ZA9711589A patent/ZA9711589B/xx unknown
- 1997-12-23 AU AU53317/98A patent/AU729041B2/en not_active Ceased
- 1997-12-23 CA CA002277143A patent/CA2277143C/en not_active Expired - Fee Related
- 1997-12-23 ZA ZA9711582A patent/ZA9711582B/xx unknown
- 1997-12-23 JP JP52855498A patent/JP2001507384A/ja active Pending
- 1997-12-23 BR BR9713619-0A patent/BR9713619A/pt not_active IP Right Cessation
- 1997-12-23 WO PCT/GB1997/003530 patent/WO1998028398A1/en active IP Right Grant
- 1997-12-23 ID IDW990574A patent/ID21962A/id unknown
- 1997-12-23 DK DK97950317T patent/DK0950070T3/da active
- 1997-12-23 ES ES97950317T patent/ES2170969T3/es not_active Expired - Lifetime
- 1997-12-23 EP EP97950317A patent/EP0950070B1/en not_active Expired - Lifetime
- 1997-12-23 JP JP52855598A patent/JP2001507059A/ja active Pending
- 1997-12-23 US US08/997,380 patent/US6024943A/en not_active Expired - Fee Related
- 1997-12-23 BR BR9713634-4A patent/BR9713634A/pt not_active Application Discontinuation
- 1997-12-23 AU AU53319/98A patent/AU5331998A/en not_active Abandoned
- 1997-12-23 WO PCT/GB1997/003529 patent/WO1998028396A1/en active IP Right Grant
- 1997-12-23 EP EP97950315A patent/EP0950087B1/en not_active Revoked
- 1997-12-23 ZA ZA9711578A patent/ZA9711578B/xx unknown
- 1997-12-23 EP EP97950316A patent/EP0950088A1/en not_active Withdrawn
- 1997-12-23 PT PT97950317T patent/PT950070E/pt unknown
- 1997-12-23 AU AU53318/98A patent/AU730956B2/en not_active Ceased
- 1997-12-23 CA CA002275792A patent/CA2275792C/en not_active Expired - Fee Related
- 1997-12-23 US US08/997,090 patent/US6329057B1/en not_active Expired - Fee Related
- 1997-12-23 WO PCT/GB1997/003531 patent/WO1998028339A1/en active IP Right Grant
- 1997-12-23 US US08/996,721 patent/US6194375B1/en not_active Expired - Lifetime
- 1997-12-23 CA CA002277136A patent/CA2277136C/en not_active Expired - Fee Related
- 1997-12-23 ID IDW990577D patent/ID27689A/id unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6128441A (ja) * | 1984-07-20 | 1986-02-08 | Lion Corp | pH感応性マイクロカプセルの製造方法 |
EP0441512A2 (en) * | 1990-01-29 | 1991-08-14 | Nippon Shokubai Co., Ltd. | Oil- absorbent polymer and use therefor |
WO1992018222A1 (en) * | 1991-04-18 | 1992-10-29 | Advanced Polymer Systems, Inc. | Preparation and use of solid beads having controlled characteristics |
WO1993022417A1 (en) * | 1992-04-29 | 1993-11-11 | Unilever N.V. | Capsule which comprises a component subject to degradation and a composite polymer |
EP0604109A2 (en) * | 1992-12-21 | 1994-06-29 | Rohm And Haas Company | Suspension polymerization process for water-soluble monomers |
Non-Patent Citations (1)
Title |
---|
DATABASE WPI Section Ch Week 8612, Derwent World Patents Index; Class A14, AN 86-079085, XP002057513 * |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6194375B1 (en) * | 1996-12-23 | 2001-02-27 | Quest International B.V. | Compositions containing perfume |
WO2001002527A1 (en) * | 1999-07-01 | 2001-01-11 | The Procter & Gamble Company | Detergent compositions or components |
WO2001002526A1 (en) * | 1999-07-01 | 2001-01-11 | The Procter & Gamble Company | Detergent compositions or components |
US6756353B1 (en) * | 1999-07-01 | 2004-06-29 | The Procter & Gamble Company | Detergent compositions or components |
WO2001025393A1 (en) * | 1999-10-05 | 2001-04-12 | The Procter & Gamble Company | Elastic article |
WO2002009663A1 (en) * | 2000-08-02 | 2002-02-07 | Quest International B.V. | Particles |
US6927195B2 (en) | 2000-08-02 | 2005-08-09 | Quest International Services B.V. | Particles |
WO2002013771A3 (en) * | 2000-08-16 | 2002-08-08 | Oreal | Hair styling composition comprising encapsulated adhesives |
WO2002013771A2 (en) * | 2000-08-16 | 2002-02-21 | L'oreal | Hair styling composition comprising encapsulated adhesives |
EP1343934A2 (de) | 2000-12-05 | 2003-09-17 | Basf Aktiengesellschaft | Reaktiv modifizierte, teilchenförmige polymerisate zur behandlung der oberflächen textiler und nicht-textiler materialien |
WO2003018736A1 (fr) * | 2001-08-22 | 2003-03-06 | Rhodia Chimie | Additif preformule pour composition de traitement des articles en fibres textiles et utilisation dudit additif comme agent de soin |
FR2828887A1 (fr) * | 2001-08-22 | 2003-02-28 | Rhodia Chimie Sa | Additif preformule pour composition de traitement des articles en fibres textiles et utilisation dudit comme agent de soin |
WO2003085074A1 (de) | 2002-04-10 | 2003-10-16 | Henkel Kommanditgesellschaft Auf Aktien | Textilschonendes textilreinigungsmittel |
EP1492863B1 (de) * | 2002-04-10 | 2009-11-11 | Henkel AG & Co. KGaA | Textilschonendendes textilreinigungsmittel |
US8187580B2 (en) | 2002-11-01 | 2012-05-29 | The Procter & Gamble Company | Polymeric assisted delivery using separate addition |
WO2004041222A1 (en) * | 2002-11-01 | 2004-05-21 | The Procter & Gamble Company | Rinse-off personal care compositions comprising cationic perfume polymeric particles |
AU2003286811B2 (en) * | 2002-11-01 | 2007-08-02 | Basf Aktiengesellschaft | Perfume polymeric particles |
US7316994B2 (en) | 2002-11-01 | 2008-01-08 | The Procter & Gamble Company | Perfume polymeric particles |
US7524807B2 (en) | 2002-11-01 | 2009-04-28 | The Procter & Gamble Company | Rinse-off personal care compositions comprising anionic and/or nonionic perfume polymeric particles |
WO2004041233A1 (en) * | 2002-11-01 | 2004-05-21 | The Procter & Gamble Company | Polymeric assisted benefit agent delivrery systems |
WO2004041232A1 (en) * | 2002-11-01 | 2004-05-21 | The Procter & Gamble Company | Perfume polymeric particles |
US7723285B2 (en) | 2004-07-20 | 2010-05-25 | Michigan Molecular Institute | Beneficial agent delivery systems |
GB2432844A (en) * | 2005-12-02 | 2007-06-06 | Unilever Plc | Laundry composition |
EP2098631A4 (en) * | 2006-12-28 | 2012-01-18 | Kao Corp | FIBER TREATMENT AGENT |
EP2098631A1 (en) * | 2006-12-28 | 2009-09-09 | Kao Corporation | Fiber treating agent |
EP2150605B2 (en) † | 2007-05-31 | 2016-11-02 | Colgate-Palmolive Company | Fabric softening compositions comprising polymeric materials |
EP2550863A1 (de) | 2011-07-27 | 2013-01-30 | Bayer Intellectual Property GmbH | Aktivstoffhaltige Partikel auf Polyacrylat-Basis |
US9546122B2 (en) | 2013-03-11 | 2017-01-17 | Ndsu Research Foundation | Monomers and polymers derived from natural phenols |
US9630897B2 (en) | 2013-03-11 | 2017-04-25 | Ndsu Research Foundation | Monomers and polymers derived from natural phenols |
WO2017102425A1 (de) * | 2015-12-17 | 2017-06-22 | Henkel Ag & Co. Kgaa | Verbessertes waschverfahren iv |
WO2017102423A1 (de) * | 2015-12-17 | 2017-06-22 | Henkel Ag & Co. Kgaa | Verbessertes waschverfahren ii |
WO2017102421A1 (de) * | 2015-12-17 | 2017-06-22 | Henkel Ag & Co. Kgaa | Verbessertes waschverfahren i |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2277143C (en) | Particles having surface properties and methods of making them | |
US6558706B2 (en) | Microencapsulated fragrances and method for preparation | |
JP2639844B2 (ja) | 洗剤組成物 | |
JP3553134B2 (ja) | マイクロカプセル、その製造法および物質を制御して放出する方法 | |
JP4593916B2 (ja) | ポリマー粒子の製造方法 | |
US5324445A (en) | Polymeric compositions | |
US4948818A (en) | Method of making porous hydrophilic-lipophilic copolymeric powders | |
EP1756184B1 (en) | Polymeric particles | |
US7648715B2 (en) | Colourants encapsulated in polymer matrix | |
EP1954795A1 (en) | Capsules | |
US5856409A (en) | Method of making hydrophobic copolymers hydrophilic | |
AU2002316861A1 (en) | Colourants encapsulated in a polymer matrix | |
US4898913A (en) | Method of making hydrophobic copolymers hydrophilic | |
CN116033963A (zh) | 具有高芯壁比的包含有益剂的递送颗粒 | |
JP2004535491A (ja) | 織物コンディショニング剤を含有する粒子 | |
US5169904A (en) | Method of making hydrophobic copolymers hydrophilic | |
US5135989A (en) | Method of making hydrophobic copolymers hydrophilic | |
FI92712C (fi) | Entsyymipitoisia pesuainekoostumuksia | |
WO2024023598A1 (en) | Microcapsules and encapsulation thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1997950317 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2277143 Country of ref document: CA Ref country code: CA Ref document number: 2277143 Kind code of ref document: A Format of ref document f/p: F Ref country code: JP Ref document number: 1998 528555 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1997950317 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 1997950317 Country of ref document: EP |