WO1998025711A1 - Articles enduits fonctionnels, procede de production et application correspondante - Google Patents

Articles enduits fonctionnels, procede de production et application correspondante Download PDF

Info

Publication number
WO1998025711A1
WO1998025711A1 PCT/JP1997/004559 JP9704559W WO9825711A1 WO 1998025711 A1 WO1998025711 A1 WO 1998025711A1 JP 9704559 W JP9704559 W JP 9704559W WO 9825711 A1 WO9825711 A1 WO 9825711A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
coating
component
weight
parts
Prior art date
Application number
PCT/JP1997/004559
Other languages
English (en)
French (fr)
Inventor
Junko Ikenaga
Takeyuki Yamaki
Koichi Takahama
Toshiharu Sako
Hirotsugu Kishimoto
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Priority to KR1019980706271A priority Critical patent/KR100325530B1/ko
Priority to US09/117,738 priority patent/US6165619A/en
Priority to EP97947894A priority patent/EP0916411A4/en
Priority to CA 2244752 priority patent/CA2244752C/en
Priority to US10/336,919 priority patent/USRE38850E1/en
Publication of WO1998025711A1 publication Critical patent/WO1998025711A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/546No clear coat specified each layer being cured, at least partially, separately
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31667Next to addition polymer from unsaturated monomers, or aldehyde or ketone condensation product

Definitions

  • the present invention relates to a functional coated product having a photocatalytic action, and a method for producing the same and its use.
  • the resulting coating film will be exposed to ultraviolet light and exhibit effects such as decomposition of organic substances, deodorization, and antibacterial effects.
  • a coating material having such a photocatalytic action for example, a photocatalytic organic paint in which photocatalyst particles are dispersed in an organic resin is known.
  • the photocatalytic organic paint has a drawback that when a long time elapses after the formation of the coating film, the coating film is deteriorated by ultraviolet rays and photocatalysis.
  • Inorganic paints in which photocatalyst particles are dispersed in a silicate-based, phosphate-based or zirconium-based inorganic composition are also known as photocatalytic coating materials.
  • these photocatalytic inorganic coatings have much higher durability than photocatalytic organic coatings, but all require high-temperature baking at 200 ° C or higher, which limits the range of use and heat resistance. It was not suitable for direct application to inferior building materials or plastics.
  • silicate-based inorganic paints have a drawback that, when used for a long period of time, alkali elutes to the surface and causes whitening.
  • Japanese Patent Application Laid-Open No. Sho 62-57470 discloses an inorganic coating material containing a metal alkoxide.
  • this inorganic paint cures at 200 ° C. or lower, there is a problem that the coating film is inflexible and easily cracks.
  • Japanese Patent Application Laid-Open No. 8-67835 proposes an antibacterial inorganic paint containing a photocatalyst, which is a component having a photocatalytic function, as an antibacterial agent.
  • photocatalyst In the case of carrying on a base material, there were difficulties in the restriction of the base material and the adhesion. In addition, the photocatalyst settled in the paint, and the performance of the photocatalyst tended to be slightly reduced.
  • Japanese Patent Application Laid-Open No. 8-141503 proposes an improvement in a method for forming an inorganic paint film having a high photocatalytic performance by supporting a photocatalyst on the surface.
  • this also has high adhesion of the coating film to the inorganic base material, but lacks adhesion to the organic surface such as the surface of a plastic or an organic painted plate.
  • the coating film of the above inorganic paint has a disadvantage that the surface is apt to be stained because it lacks the smoothness of the surface.
  • the present invention is excellent in adhesion of a coating film to various base materials, is unlikely to cause deterioration of the base material and the coating film due to the action of a photocatalyst, and has high smoothness on the surface of the coating film, so that it is not easily stained. It is an object of the present invention to provide a functional coated product having a high photocatalytic action, and a method for producing the same and its use.
  • the functional coated article according to the present invention includes a first coating layer formed of a cured film of an acrylic-modified silicone resin coating material on a surface of a base material, and a functional coating material formed on the surface of the first coating layer.
  • a second coating layer consisting of the cured film of (1) or (2).
  • the method for producing a functional coated product according to the present invention includes:
  • the acrylic-modified silicone resin coating material contains the following components (A), (B), (C) and (D).
  • the functional coating material (1) contains the following components (E) and (F).
  • the functional coating material (2) contains the following components (A), (B), (C) and (F).
  • R represents the same or different substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms
  • m represents an integer of 0 to 3
  • X represents a hydrolyzable group.
  • colloidal silica dispersed in an organic solvent water or a mixed solvent thereof, 0.001 to 0.5 mol of water is used per 1 mol equivalent of the hydrolyzable group (X).
  • R 2 is the same or different and represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and a and b are respectively 0.2 ⁇ a ⁇ 2 and 0.0001 ⁇ b ⁇ 3, which is a number that satisfies the relationship a + b ⁇ 4), and a polyorganosiloxane containing a silanol group in the molecule.
  • R 3 is a hydrogen atom and / or a methyl group
  • a second (meth) acrylate ester wherein R 4 is at least one group selected from the group consisting of an epoxy group, a glycidyl group, and a hydrocarbon group containing at least one of these;
  • (meth) acrylate refers to either or both of acrylate and methacrylate.
  • An organosiloxane comprising a hydrolyzed polycondensate of a mixture consisting of: and adjusted to have a weight average molecular weight of 800 or more in terms of polystyrene.
  • the acryl-modified silicone resin coating material In the acryl-modified silicone resin coating material, 1 to 94 parts by weight of component (A) and 1 to 94 parts by weight of component (B) and component (D) 5 To 35 parts by weight (however, the total of the components (A), (B) and (D) is 100 parts by weight).
  • the acryl-modified silicone resin coating material may also include a pigment.
  • the substrate is preferably selected from the group consisting of a metal substrate, an organic substrate, and an organic coating substrate having an organic coating on any one of these substrates.
  • building-related members particularly building-related members for outdoor use, building gates and members to be used therewith (for example, pillars, etc.), Building fences and components used therefor, windows (eg, daylighting windows) and components used therefor (eg, window frames, etc.), automobiles, machinery and equipment, especially outdoor equipment, road peripherals (particularly Traffic signs), advertising towers, especially outdoor advertising towers, outdoor or indoor lighting fixtures, and members used therefor (eg, resin members, metal members, etc.).
  • windows eg, daylighting windows
  • components used therefor eg, window frames, etc.
  • automobiles, machinery and equipment especially outdoor equipment, road peripherals (particularly Traffic signs)
  • advertising towers especially outdoor advertising towers, outdoor or indoor lighting fixtures, and members used therefor (eg, resin members, metal members, etc.).
  • the silicon compounds (E 1) to (E 3) used as raw materials for the organosiloxane (E), which is the component (E) of the functional coating material (1), include:
  • R 5 and R 6 each represent a monovalent hydrocarbon group, and n represents an integer of 0 to 2.
  • R 6 is not particularly limited, and includes, for example, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms.
  • alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group and octyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; Aralkyl groups such as phenylethyl group, 2-phenylpropyl group and 3-phenylpropyl group; aryl groups such as phenyl group and tolyl group; alkenyl groups such as vinyl group and aryl group; chloromethyl group and arc ⁇ propyl group Halogen-substituted hydrocarbon groups such as 1,3,3,3-trifluoropropyl group, etc .; a-methacryloxypropyl group, a-glycidoxypropyl group
  • R 5 it is not particularly limited, for example, is used which the ⁇ alkyl group having 1 to 4 carbon atoms as a main raw material.
  • R 5 and R 6 may be the same or different among the silicon compounds (E 1) to (E 3).
  • the organosiloxane (E) can be prepared by, for example, diluting the raw materials (E1) to (E3) with an appropriate solvent, adding water and a catalyst as necessary in a required amount, and hydrolyzing and decomposing the organosiloxane (E).
  • the molecular weight distribution (weight average molecular weight (M w)) of the prepolymer is smaller than 800, the curing shrinkage during the polycondensation of the functional coating material is large and cracks occur in the coating film after curing. It ’s easy.
  • the molecular weight is more than 50,000, a long time is required for the curing reaction, and a sufficient coating film hardness may not be obtained.
  • the amount of the raw materials (E 1) to (E 3) used for preparing the organosiloxane (E) is such that (E 1) is 5 to 30,000 parts by weight (preferably 100 parts by weight of (E 2)). 10 to 25,000 parts by weight, more preferably 20 to 20,000 parts by weight, (E 3) 0 to 60 parts by weight (preferably 0 to 40 parts by weight, more preferably 0 to 30 parts by weight) It is. If the amount of (E 1) is less than the above range, there is a problem that the desired hardness of the cured film cannot be obtained (hardness is reduced). Conversely, if the amount is more than the above range, the cross-linking density of the cured film is low.
  • the colloidal silica that can be used as the raw material (E 1) is not particularly limited.
  • water-dispersible or non-aqueous organic solvent-dispersible colloidal silica such as alcohol can be used.
  • colloidal silica contains 20 to 50% by weight of silica as a solid content, and the silica content can be determined from this value.
  • Water present as a component other than the form component can be used as a curing agent as described later.
  • Water-dispersible colloidal silica is usually made of water glass, but can be easily obtained as a commercial product.
  • the organic solvent-dispersible colloidal silica can be easily prepared by replacing water of the water-dispersible colloidal silica with an organic solvent.
  • Such an organic solvent-dispersible Koguchi idal silica can be easily obtained as a commercial product in the same manner as the water dispersibility Koguchi idal silica.
  • the type of the organic solvent in which the colloidal silica is dispersed is not particularly limited, and examples thereof include lower fats such as methanol, ethanol, isopropanol, n-butanol, and isobutanol.
  • ethylene glycol derivatives such as ethylene glycol, ethylene glycol monobutyl ether, and ethylene glycol monoethyl ether acetate
  • ethylene glycol derivatives such as diethylene glycol and diethylene glycol monobutyl ether
  • diacetone alcohol one or more selected from the group consisting of these can be used.
  • hydrophilic organic solvents toluene, xylene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, methyl ethyl ketone, and the like can also be used.
  • Water is used as a curing agent for the hydrolysis and polycondensation reaction of the raw materials (E 1) to (E 3), and the amount of the curing agent is determined by the amount of the silicon compound (E 1) to (E 3).
  • the diluting solvent used in the hydrolysis-polycondensation reaction of the raw materials (E 1) to (E 3) is not particularly limited, and for example, those described above as the colloidal silica dispersion solvent can be used.
  • the pH of the organosiloxane (E) is not particularly limited, but is preferably adjusted to 3.8 to 6. When the pH is within this range, the organosiloxane (E) can be stably used within the above-mentioned molecular weight range. If the pH is out of the above range, the stability of the organosiloxane (E) becomes poor, so that the usable period from the preparation of the coating is limited.
  • the method of adjusting H is not particularly limited. For example, if the pH is less than 3.8 when the raw material of organosiloxane (E) is mixed, for example, a basic reagent such as ammonia is used. The pH may be adjusted to within the above range using pH.
  • the pH may be adjusted using an acidic reagent such as hydrochloric acid.
  • the reaction does not proceed in reverse with a low molecular weight, and when it takes time to reach the molecular weight range, the reaction may be promoted by heating the organosiloxane (E).
  • the pH may be lowered with an acidic reagent to proceed the reaction, and then returned to a predetermined pH with a basic reagent.
  • the functional coating material (1) does not need to contain a curing catalyst when cured by heating, but heats the coating film of the functional coating material (1) by promoting the condensation reaction of the organosiloxane (E). If necessary, a curing catalyst may be included for the purpose of accelerating the curing and curing the coating film at room temperature.
  • the curing catalyst examples include, but are not particularly limited to, alkyl titanates; metal carbonates such as tin octylate, dibutyl tin dilaurate, and dioctyl tin dimaleate; dibutylamine 1-2-hexoate; Amine salts such as dimethylamine acetate and ethanolamine acetate; quaternary ammonium salts of carboxylic acids such as tetramethylammonium acetate; amines such as tetraethylpentamine; N-yS -Amine silane coupling agents such as aminoethyl-1-aminopropyltrimethoxysilane, N- / 3-aminoethyl-1-aminopropylmethyldimethoxysilane; acids such as p-toluenesulfonic acid, phthalic acid and hydrochloric acid; aluminum alkoxides; Aluminum compounds such as aluminum chelate; lithium acetate,
  • the functional coating material (1) also contains a curing catalyst (C)
  • the amount is It is preferably 25% by weight or less, more preferably ⁇ 20% by weight / 0 , based on the total solid content of the luganosiloxane (E) in terms of the total condensed compound. If it exceeds 45% by weight, the storage stability of the coating solution may be impaired.
  • the photocatalyst (photocatalyst (F)) used as the component (F) in the functional coating materials (1) and (2) is not particularly limited.
  • titanium oxide, zinc oxide, tin oxide, zirconium oxide , Tungsten oxide, chromium oxide, molybdenum oxide, iron oxide, nickel oxide, ruthenium oxide, cobalt oxide, copper oxide, manganese oxide, germanium oxide, lead oxide, oxidized dominate, vanadium oxide, niobium oxide, tantalum oxide And oxides such as rhodium oxide and rhenium oxide.
  • the average primary particle size of the photocatalyst (F) is preferably 5 O Aim or less, more preferably 5 m or less, and 0.5 Ai or less. More preferably, it is m or less.
  • the photocatalyst (F) only one type may be used, or two or more types may be used in combination.
  • the photocatalyst (F) generates active oxygen (photocatalytic property) when irradiated with ultraviolet rays in the atmosphere. Since active oxygen can oxidize and decompose organic substances, its properties are used to make use of the properties of carbon-based dirt components attached to painted products (for example, carbon fractions contained in automobile exhaust gas, tobacco, etc.). Self-cleaning effect to decompose odors; deodorant effect to decompose malodorous compounds represented by amine compounds and aldehyde compounds; antibacterial effect to prevent the generation of bacterial components represented by Escherichia coli and Staphylococcus aureus Can be obtained.
  • the photocatalyst (F) may support a metal.
  • the metal that may be supported is not particularly limited, and examples thereof include gold, silver, copper, iron, zinc, nickel, cobalt, platinum, ruthenium, palladium, rhodium, and cadmium. One or more of these can be appropriately selected and used. Carrying the metal promotes the charge separation of the photocatalyst (F), and the photocatalysis is more effectively performed.
  • the metal-supported photocatalyst (F) has an oxidizing property in the presence of light, and this oxidizing property has effects such as deodorization and antibacterial effects. Further, a clay crosslinked body having a photocatalyst (F) supported between layers may be used. By introducing the photocatalyst (F) between the layers, the photocatalyst (F) is supported on the fine particles and the photocatalytic performance is improved.
  • the method of dispersing the photocatalyst (F) in the functional coating material (1) or (2) is not particularly limited.
  • the silica-dispersed oligomer solution (A) used as the component (A) of the acryl-modified silicone resin coating material and the functional coating material (2) is used as a functional group that is subjected to a curing reaction when forming a cured film. It is the main component of the base polymer having a hydrolyzable group (X).
  • colloidal silica dispersed in an organic solvent or water including a mixed solvent of an organic solvent and water
  • the group R 1 in the hydrolyzable organosilane represented by the general formula (I) is not particularly limited as long as it is the same or different and is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms.
  • Is for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group or a octyl group; a cycloalkyl group such as a cyclopentyl group or a cyclohexyl group;
  • Aralkyl groups such as phenylethyl, 2-phenylpropyl, and 3-phenylpropyl; aryl groups such as phenyl and tolyl; alkenyl groups such as vinyl and aryl; chloromethyl and chloro Halogen-substituted hydrocarbon groups such as
  • the hydrolyzable group X is not particularly limited, and examples thereof include an alkoxy group, an acetoxyl group, a quinoxime group, an enoxy group, an amino group, an aminooxy group, and an amide group.
  • an alkoxy group is preferred because of its availability and ease of preparation of the organosilane silica-dispersed oligomer solution (A).
  • hydrolyzable organosilane examples include alkoxysilanes having mono-, g-, tri-, and tetra-functionalities wherein m in the general formula (I) is an integer of 0 to 3, Examples include methoxysilanes, oximesilanes, enoxysilanes, aminosilanes, aminoxysilanes, amidesilanes, and the like. Among them, alkoxysilanes are preferable because they are easily available and the silica-dispersed oligomer solution of organosilane (A) is easily prepared.
  • Examples of the organoalkoxysilane include trimethylmethoxysilane, trimethylethoxysilane, trimethylisopropoxysilane, and dimethylisobutylmethoxysilane.
  • organosilane compounds which are generally called silane coupling agents are also included in the alkoxysilanes.
  • hydrolyzable organosilanes represented by the general formula (I)
  • Colloidal silica in the component (A) has the effect of increasing the hardness of the cured film of the coating material and improving the smoothness and crack resistance.
  • the colloidal silica is not particularly limited, but for example, those described above as the raw material (E 1) of the organosiloxane (E) can be used.
  • water-dispersible colloidal silica water present as a component other than the solid content can be used for the hydrolysis of the hydrolyzable organosilane and can be used as a curing agent for the coating material. .
  • the colloidal silica is preferably 5 to 95% by weight, more preferably 10 to 90% by weight, as a silica content, based on the solid content of the organosilane of (I) in terms of the total condensed compound. / 0 , more preferably in the range of 20 to 85% by weight. If the content is less than 5% by weight, a desired coating hardness tends to be hardly obtained. On the other hand, if the content exceeds 95% by weight, it becomes difficult to uniformly disperse the silica, the component (A) becomes gelled, and the cured film becomes too hard, which tends to cause cracks in the film. May be invited.
  • the compounding ratio of the component (A) in the coating material is a value including the dispersion medium of the co-idal silica.
  • the amount of water used for preparing the silica-dispersed oligomeric solution of organosilane (A) is, as described above, 0.1 ml of water per 1 molar equivalent of the hydrolyzable group (X) of the hydrolyzable organosilane. It is in the range of 0.1 to 0.5 mol, preferably in the range of 0.1 to 0.4 mol. If the amount of water used is less than 0.001 mol, a sufficient partial hydrolyzate cannot be obtained, and if it exceeds 0.5 mol, the stability of the partial hydrolyzate deteriorates.
  • the above-mentioned amount of water used in the partial hydrolysis reaction of the hydrolyzable organosilane is based on the case of using all ⁇ water-free colloidal silica (for example, colloidal silica force using only an organic solvent as a dispersion medium). Is the amount of water added separately, and water-containing colloidal silica (for example, water-only colloidal silica using a mixed solvent of an organic solvent and water as a dispersion medium of colloidal silica force) was used. If the water contained in the colloidal silica is smaller than the water contained in the colloidal silica, Quantity.
  • water-containing colloidal silica for example, water-only colloidal silica using a mixed solvent of an organic solvent and water as a dispersion medium of colloidal silica force
  • the water usage is the total amount of water previously contained in the colloidal silica and separately added water.
  • water may be separately added, and in such a case, the water usage amount is included in the colloidal silica in advance. This is the total amount of water added and water added separately. However, water is separately added so that the total amount does not exceed the upper limit (0.5 mol per mol equivalent of the hydrolyzable group (X)).
  • the method of partially hydrolyzing the hydrolyzable organosilane is not particularly limited.
  • a method of mixing the hydrolyzable organosilane with colloidal silicide may be used. If not, add water here if necessary.) At this time, the partial hydrolysis reaction proceeds at room temperature, but in order to accelerate the partial hydrolysis reaction, if necessary, heating (for example, 60 to 100 ° C) or using a catalyst You may.
  • the catalyst examples include, but are not limited to, hydrochloric acid, acetic acid, halogenated silane, chloroacetic acid, citric acid, benzoic acid, dimethylmalonic acid, formic acid, propionic acid, glucuronic acid, glycolic acid,
  • organic acids and inorganic acids such as maleic acid, malonic acid, toluenesulfonic acid and oxalic acid can be used.
  • the component (A) preferably has a pH of 2.0 to 7.0, more preferably 2.5 to 6.5, and still more preferably 3.0, in order to stably obtain its performance over a long period of time. It is good to set it to 0-6.0. If the pH is outside this range, the performance continuity of the component (A) will be significantly reduced, especially under the condition that the amount of water used is 0.3 mol or more per mol equivalent of the hydrolyzable group (X).
  • the pH of the component (A) is out of the above range, if it is more acidic than this range, the pH may be adjusted by adding a basic reagent such as ammonia or ethylenediamine. For example, the pH may be adjusted using an acidic reagent such as hydrochloric acid, nitric acid, and acetic acid. However, the adjustment method is not particularly limited. Acrylic-modified silicone resin coating material and functional coating material
  • the silanol group-containing polyorganosiloxane (B) used as the component (B) in (2) is a base polymer having a hydrolyzable group as a functional group that participates in a curing reaction and the component (A). It is a cross-linking agent for forming three-dimensional cross-links in the cured film, and is a component that has an effect of absorbing cracks due to curing shrinkage of the component (A) and preventing cracks from occurring.
  • R 2 in the average composition formula (II) representing (B) is not particularly limited, and may be the same as R 1 in the formula (I), but preferably has 1 to 1 carbon atoms. 4, substituted hydrocarbon groups such as alkyl group, phenyl group, vinyl group, ⁇ -glycidoxypropyl group, ⁇ -methacryloxypropyl group, ⁇ -aminopropyl group, 3,3,3-tripropyl propyl group, More preferred are a methyl group and a phenyl group.
  • a and b are numbers satisfying the above-mentioned relationship, respectively, and when a is less than 0.2 or b exceeds 3, there is an inconvenience that cracks occur in the cured film. If a exceeds 2 and is less than 4, or if b is less than 0.0001, curing does not proceed well.
  • the silanol group-containing polyorganosiloxane (B) is not particularly limited.
  • methyltrichlorosilane, dimethyldichlorosilane, phenyltrichlorosilane, diphenyldichlorosilane It can be obtained by hydrolyzing one or a mixture of two or more of the corresponding alkoxysilanes with a large amount of water by a known method.
  • the polyorganosiloxane thus obtained is adjusted to have a weight average molecular weight (Mw) in terms of polystyrene of 700 to 20,000, preferably 750 to 18000, more preferably 800 to 16000.
  • Mw weight average molecular weight
  • a hydroxyl group-containing polyorganosiloxane (B) When a hydroxyl group-containing polyorganosiloxane (B) is hydrolyzed by a known method using an alkoxyne, a small amount of an unhydrolyzed alkoxy group may remain. That is, a polyorganosiloxane in which a silanol group and a trace amount of an alkoxy group coexist may be obtained. In the present invention, such a polyorganosiloxane may be used.
  • the curing catalyst (C) used as the component (C) in (2) is a component that promotes a condensation reaction between the component (A) and the component (B) to cure the coating.
  • curing catalysts (C) include all of those previously exemplified as curing catalysts that the functional coating material (1) may optionally include.
  • the curing catalyst (C) is not particularly limited as long as it is effective for promoting the condensation reaction between the component (A) and the component (B) other than those exemplified above.
  • the acrylic resin (D) used as a component (D) in the acrylic-modified silicone resin coating material has the effect of improving the toughness of the cured film of the acrylic-modified silicone resin coating material, thereby reducing the occurrence of cracks. Prevention and increase of film thickness.
  • the acrylic resin (D) is incorporated into the condensed crosslinked product of the component (A) and the component (B), which becomes the three-dimensional skeleton of the cured film of the acrylic modified silicone resin coating material, and the condensed crosslinked product is acrylyl modified.
  • the condensation crosslinked product is acryl-modified, the adhesion between the cured film of the acryl-modified silicone resin coating material and the substrate is improved.
  • the cured coating of the acryl-modified silicone resin coating material and the cured coating of the functional coating material (1) or (2) are both silicone resin cured products having a polysiloxane structure.
  • the adhesion between the coatings is high. Therefore, between the cured coating of the functional coating material (1) or (2) and the base material, a cured coating of an acryl-modified silicone resin coating material having high adhesion to them is interposed. So, after all, functional coating material
  • acrylic-modified silicone resin exhibits high weather resistance and durability, and is not affected by the photocatalyst contained in the functional coating materials (1) and (2) in the upper layer.
  • the first (meth) acrylate ester which is one of the constituent monomers of the acryl resin (D), is represented by the formula (III) in which R 4 is a substituted or unsubstituted monovalent having 1 to 9 carbon atoms Hydrocarbon groups such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i_butyl, sec-butyl, tert-butyl, pentyl, hexyl, Alkyl groups such as heptyl group and octyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aralkyl groups such as 2-phenylethyl group, 2-phenylpropyl group and 3-phenylpropyl group Aryl group such as phenyl group and tolyl group; halogenated hydrocarbon group such as chloromethyl group, chloropropyl group, 3,3,3-trifluoro
  • the second (meth) acrylic acid ester which is another constituent monomer of the acrylic resin (D), is represented by the formula (III) wherein R 4 is an epoxy group, a glycidyl group, and / or at least one of these. And at least one group selected from the group consisting of a hydrocarbon group (for example, an aglycidoxypropyl group). Preferred are an epoxy group and a glycidyl group.
  • the third (meth) acrylic acid ester, which is another monomer of the acrylic resin (D), is represented by the formula (III) in which R 4 is an alkoxysilyl group and / or a silyl halide.
  • a hydrocarbon group containing a group for example, trimethoxyethoxysilylpropyl group, dimethoxymethylsilylpropyl group, monomethoxydimethylsilylpropyl group, triethoxysilylpropyl group, ethoxymethylsilylpropyl group, ethoxydimethyl At least one of silylpropyl group, trichlorosilylpropyl group, dichloromethylsilylpropyl group, chlorodimethylsilylpropyl group, kudimethoxysilylpropyl group, dichloromethoxysilylpropyl group, etc. .
  • the acrylic resin (D) is a copolymer of a (meth) acrylic acid ester containing at least one of each of the first, second, and third (meth) acrylic esters and a total of at least three, One or more selected from the above-mentioned first, second and third (meth) acrylic esters, or one more selected from other (meth) acrylic esters. Copolymers containing two or more species may be used.
  • the first (meth) acrylic acid ester is an essential component for improving the toughness of the cured film of the acrylic-modified silicone resin coating material.
  • the component (A) and the component (B) It also has the effect of improving compatibility.
  • a substituted or unsubstituted hydrocarbon group R 4 is, to some extent It is desirable to have the above volume, and it is preferable that the carbon number is 2 or more.
  • the second (meth) acrylic acid ester is an essential component for improving the adhesion between the cured film of the acrylic-modified silicone resin coating material and the substrate.
  • the third (meth) acrylic acid ester forms a chemical bond between the acrylic resin (D) and the components (A) and (B) when the acrylic-modified silicone resin coating material is cured. Thereby, the acrylic resin (D) is fixed in the cured film. Further, the third (meth) acrylic acid ester also has an effect of improving the compatibility between the acrylic resin (D) and the components (A) and (B).
  • the molecular weight of the acryl resin (D) greatly affects the compatibility of the acryl resin (D) with the components (A) and (B). If the weight average molecular weight of the acrylic resin (D) in terms of polystyrene exceeds 50,000, phase separation may occur and the coating film may be whitened. Therefore, it is desirable that the weight average molecular weight in terms of polystyrene of the acrylic resin (D) is 50,000 or less.
  • the lower limit of the weight average molecular weight of the acrylic resin (D) in terms of polystyrene is preferably 1,000. If the molecular weight is less than 1,000, the toughness of the coating film tends to decrease, and cracks tend to occur, which is not preferable.
  • the second (meth) acrylic acid ester is desirably 2% or more in terms of a monomer molar ratio in the copolymer as the acrylic resin (D). If it is less than 2%, the adhesion of the coating film tends to be insufficient.
  • the third (meth) acrylic acid ester is desirably in the range of 2 to 50% by mole ratio of monomers in the copolymer. If it is less than 2%, the compatibility between the acryl resin (D) and the components (A) and (B) is poor, and the coating film may be whitened. On the other hand, if it exceeds 50%, the bond density between the acryl resin (D) and the components (A) and (B) becomes too high, and there is a tendency that the improvement in toughness, which is the original purpose of the acryl resin, cannot be seen.
  • the acrylic resin (D) for example, a solution polymerization in a known organic solvent, a radical polymerization method by emulsion polymerization or suspension polymerization, or an anion polymerization method or a force thione polymerization method can be used. However, this is not something specific.
  • the radical polymerization method by solution polymerization for example, a known method may be used.
  • the first, second and third (meth) acrylate monomers are dissolved in an organic solvent in a reaction vessel, a radical polymerization initiator is added, and the mixture is heated and reacted under a nitrogen stream.
  • the organic solvent used at this time is not particularly limited, for example, toluene, xylene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether, ethylene glycol acetate Monoethylen is used.
  • the radical polymerization initiator is not particularly limited, but examples thereof include cumene hydroperoxide, tertiary butyl hydroperoxide, dicumylperoxide, ditertiary butylperoxide, benzoyl peroxide, acetyl peroxide, Lauroyl oxide, azobisisobutyronitrile, hydrogen peroxide—Fe 2+ salt, persulfate—NaHSO 3, cumene hydroperoxide—Fe 2+ salt, benzoyl peroxide—dimethylaniline, peroxide — Triethyl aluminum is used.
  • a chain transfer agent can be added.
  • chain transfer agent examples include, but are not limited to, quinones such as monoethyl hydroquinone and p-benzoquinone; mercaptoacetic acid monoethyl ester, mercaptoacetic acid n-butyl ester Thiols such as mercaptoacetic acid-1-ethylhexyl ester, mercaptocyclohexane, mercaptocyclopentane and 2-mercaptoethanol; di-3-chlorobenzene benzene, p-toluenethiol Examples thereof include phenols such as benzene and thiol; phenol derivatives such as amercaptopropyltrimethoxysilane; phenylpicrylhydrazine; diphenylamine; and tert-butylcatechol.
  • quinones such as monoethyl hydroquinone and p-benzoquinone
  • mercaptoacetic acid monoethyl ester mer
  • the proportion of the photocatalyst (F) in the functional coating material (1) is not particularly limited, since the photocatalytic performance is exhibited regardless of its size.
  • the total amount of the organosiloxane (E) Preferably, ⁇ 10 to 90 parts by weight, more preferably 50 to 10 parts by weight, based on 10 to 90 parts by weight of the resin solid content in terms of the condensation compound (however, the resin solid content of (E) and ( F)) is 100 parts by weight). If the photocatalyst (F) is less than 10 parts by weight, sufficient photocatalytic performance tends not to be obtained, and if it exceeds 90 parts by weight, a brittle and non-smooth coating film tends to be obtained.
  • the proportion of the photocatalyst (F) in the functional coating material (2) is not particularly limited because the photocatalytic performance is exhibited regardless of its size.
  • the components (A) and (B) Preferably, ⁇ 10 to 90 parts by weight, more preferably 50 to 10 parts by weight, based on 10 to 90 parts by weight of the total resin solid content in terms of total condensed compounds (however, the components (A) and (B)
  • the total of the resin solid content and the component (F) is 100 parts by weight. If the amount of the photocatalyst (F) is less than 10 parts by weight, sufficient photocatalytic performance tends not to be obtained.
  • the mixing ratio of the component (A) and the component (B) is not particularly limited in terms of the total condensed compound, but, for example, preferably 1 to 99 parts by weight of the component (A) Component (B) is 99 to 1 part by weight, more preferably 5 to 95 parts by weight of component (A), and 95 to 5 parts by weight of component (B), and more preferably 10 to 95 parts by weight of component (A).
  • the amount of the component (B) is 90 to 10 parts by weight to 90 parts by weight (however, the total of the components (A) and (B) is 100 parts by weight). If the component (A) is less than 1 part by weight, the curability at room temperature tends to be poor or sufficient film hardness cannot be obtained. On the other hand, when the component (A) exceeds 99 parts by weight, the curability tends to be unstable or the coating film tends to crack.
  • the mixing ratio of the component (C) is not particularly limited. For example, based on 100 parts by weight of the total solid content in terms of the total condensed compound of the component (A) and the component (B) It is preferably 0.0001 to 10 parts by weight, more preferably ⁇ 0.005 to 8 parts by weight, and still more preferably ⁇ 0.007 to 5 parts by weight. If the amount of the component (C) is less than 0.001 part by weight, the composition tends to harden at room temperature. On the other hand, when the amount exceeds 10 parts by weight, the heat resistance and weather resistance of the cured film tend to deteriorate.
  • the mixing ratio of the component (C) is not particularly limited.
  • the total solid content of the components (A), (B), and (D) in terms of the total condensed compound is 100 parts by weight. Is preferably 0.001 to 10 parts by weight, more preferably 0.005 to 8 parts by weight, and still more preferably 0.007 to 5 parts by weight. If the amount of the component (C) is less than 0.001 part by weight, the composition tends to harden at room temperature. On the other hand, when the amount exceeds 10 parts by weight, the heat resistance and weather resistance of the cured film tend to deteriorate.
  • component (A), component (B) and The mixing ratio of the component (D) is not particularly limited, but is, for example, 1 to 94 parts by weight of the component (A), 94 to 1 part by weight of the component (B) and (D) )
  • Component is preferably 5 to 35 parts by weight, more preferably 95 to 5 parts by weight of component (B) and 5 to 35 parts by weight of component (D) based on 5 to 95 parts by weight of component (A). It is more preferable that the amount of component (B) is 94 to 10 parts by weight and the amount of component (D) is 5 to 35 parts by weight with respect to 10 to 94 parts by weight of component (A). ), The sum of the components (D) is 100 parts by weight).
  • the amount of the component (A) is less than 1 part by weight, the curability at room temperature tends to be inferior or sufficient film hardness cannot be obtained. On the other hand, when the component (A) exceeds 94 parts by weight, the curability tends to be unstable or the coating film tends to crack. On the other hand, if the content of (D) is less than 5 parts by weight, sufficient toughness / adhesion tends not to be obtained. (D) If the component exceeds 35 parts by weight, the photocatalyst in the upper layer is more likely to accelerate the deterioration of the coating film.
  • the functional coating material (1) When the functional coating material (1) is heated at a low temperature or left at room temperature with a curing catalyst added thereto, the hydrolyzable groups of the component (E) form a cured film in response to condensation. Therefore, the functional coating material (1) is hardly affected by humidity even when cured at room temperature. Further, by performing the heat treatment, a condensation film can be formed by promoting the condensation reaction without using a curing catalyst.
  • the hydrolyzable group of the organosilane contained in the component (A) and the silanol group of the component (B) are cured in the presence of the curing catalyst (C).
  • the functional coating material (2) is hardly affected by humidity even when cured at room temperature.
  • a heat treatment can promote a condensation reaction to form a cured film.
  • the acrylic-modified silicone resin coating material comprises a hydrolyzable group of the organosilane oligomer contained in the component (A) and a hydrolyzable group of the acrylic resin (D) and a silanol group of the component (B). Forming a cured film by condensation reaction when left at room temperature or heated at low temperature in the presence of curing catalyst (C) I do. Therefore, the acrylic-modified silicone resin coating material is hardly affected by humidity even when cured at room temperature. Further, a heat treatment can promote a condensation reaction to form a cured film.
  • the acryl-modified silicone resin coating material may contain a pigment, if necessary.
  • the pigments that can be used are not particularly limited, but include, for example, organic pigments such as bonbon black, quinacridone, naphthyl red, cyanine blue, cyanine green, and Hansa yellow; titanium oxide, barium sulfate, red iron oxide, Inorganic pigments such as composite metal oxides are preferred, and one or two or more selected from these groups may be used in combination.
  • the dispersion of the pigment is not particularly limited, and may be a usual method, for example, a method of directly dispersing the pigment powder by Dino-Meal, Paint-Shier, or the like.
  • the amount of the pigment to be added is not particularly limited because the concealing property varies depending on the type of the pigment. On the other hand, it is preferably 5 to 80 parts by weight, more preferably 10 to 60 parts by weight. If the amount of the pigment is less than 5 parts by weight, the concealing property tends to be poor, and if it exceeds 80 parts by weight, the smoothness of the coating film may be poor.
  • the leveling agent, the dye, the metal powder, the glass powder, the antibacterial agent, the antioxidant, the antistatic agent, the ultraviolet absorber, and the like are also used as inorganic coating material compositions as long as the effects of the present invention are not adversely affected. It may be included in the object.
  • Each of the functional coating materials (1) and (2) and the acrylic-modified silicone resin coating material can be used by diluting them with various organic solvents as necessary for ease of handling. It may be diluted with the same organic solvent.
  • the type of the organic solvent may be the type of the monovalent hydrocarbon group contained in the component (A;), (B), (D) or (E), or (A), (B), (D) or ⁇ Can be appropriately selected according to the molecular weight of the component (E) and the like.
  • organic solvent examples include, but are not limited to, lower aliphatic alcohols such as methanol, ethanol, isopropanol, n-butanol, and isobutanol; ethylene glycol, ethylene glycol monobutyl ether, and ethylene acetate.
  • Glico Remo Ethylene glycol derivatives such as ethyl ether; diethylene glycol derivatives such as diethylene glycol and diethylene glycol monobutyl ether; and toluene, xylen, hexane, heptane, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and methyl ethyl keto
  • ethylene glycol derivatives such as ethyl ether
  • diethylene glycol derivatives such as diethylene glycol and diethylene glycol monobutyl ether
  • toluene, xylen, hexane, heptane, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and methyl ethyl keto Can be cited from the group consisting of
  • the dilution ratio in the organic solvent is not particularly limited, and the dilution ratio may be appropriately determined as needed.
  • the method of applying each coating material to the substrate is not particularly limited. For example, brush coating, spraying, dipping, flow, roll, force coating, knife coating, spin coating, etc. Various application methods can be selected.
  • a method for curing each coating material applied to the substrate may be a known method, and is not particularly limited.
  • the temperature at the time of curing is not particularly limited, either, and may be in a wide range from room temperature to heating temperature depending on the desired performance of the cured film, the use of a curing catalyst, the heat resistance of the photocatalyst, and the like.
  • the thickness of the cured film formed from the functional coating material (1) or (2) is not particularly limited, since the photocatalytic performance is exhibited regardless of its size.
  • the thickness is about 0.01 to 10
  • 0.05 to 5/5 m is preferable, and 0.05 to 2 m is more preferable.
  • the thickness of the cured film formed from the acryl-modified silicone resin coating material is not particularly limited, and may be, for example, about 0.1 to 10 Oim.
  • the thickness is preferably 0.5 to 50 m so that the coating film can be stably adhered and held for a long period of time and cracks and peeling do not occur.
  • the method for producing the functional coated article according to the present invention is not particularly limited, but for example, the production method of the present invention is preferable.
  • the manufacturing method of the present invention is performed, for example, as follows.
  • an acryl-modified silicone coating material is applied as a first coating layer on the surface of a base material, and then the first coating layer is semi-cured. Then, this semi-cured layer Apply a functional coating material (1) or (2) to the surface. That is, the functional coating material (1) or (2) is applied as the second coating layer when the first coating layer is still semi-cured. At this time, if the first coating layer is completely cured before applying the functional coating material (1) or (2), the functional coating material (1) or (2) Is repelled by the completely cured layer of the first coating layer and does not become a coating film. Also, when the functional coating material (1) or (2) is applied in a state where the first coating layer is still wet, the first coating layer causes lifting (between the first coating layer and the base material). Adhesion cannot be obtained).
  • “semi-cured” refers to “semi-cured drying” defined by JIS-K5400-1990, and is applied when the center of the painted surface is gently and lightly rubbed with a fingertip. It means that the surface is not scratched.
  • “completely cured” refers to “cured drying” specified in JI SK 5400-1990, and when the center of the painted surface is strongly sandwiched between the thumb and the finger, a dent due to fingerprints is formed on the painted surface. No paint is applied, no movement of the coating is felt, and no scratches are applied to the coating even if the center of the coating is repeatedly rubbed with a fingertip. Further, “the coating layer is still wet” means that the fingertip is stained when lightly touching the center of the coating surface with the fingertip.
  • the method for obtaining the functionally coated product of the present invention is not limited to the production method of the present invention.
  • the substrate used in the present invention is not particularly limited.
  • a metal substrate, an organic substrate, or an organic coating substrate having an organic coating on the surface of any one of these substrates may be used.
  • the effect of improving adhesion between the base material and the coating film or preventing deterioration of the base material by interposing the first coating layer consisting of a cured coating of acryl-modified silicon resin coating material The substrate is selected from the group consisting of a metal substrate, an organic substrate, and an organic coating substrate having an organic coating on any one of these substrates. Are preferred. However, it is not limited to these substrates.
  • metal base An organic substrate having an organic coating on the surface of an inorganic substrate other than the material and an inorganic substrate other than the metal substrate can also be used.
  • the inorganic substrate other than the metal substrate examples include, but are not particularly limited to, a glass substrate; a porcelain; an inorganic building material such as a water glass decorative plate, an inorganic cured product; and ceramics.
  • the metal substrate is not particularly limited.
  • non-ferrous metals eg, aluminum (JIS-H4000 etc.), aluminum alloys (duralumin etc.), copper, zinc etc.), iron, steel [eg, rolled steel (JIS — G31 01, etc.), hot-dip galvanized steel (JIS—G3302, etc.), (rolled) stainless steel (JIS—G4304, G4305, etc.), tinplate (JIS—G3303, etc.), and other metals in general ( Alloys).
  • non-ferrous metals eg, aluminum (JIS-H4000 etc.), aluminum alloys (duralumin etc.), copper, zinc etc.
  • iron, steel eg, rolled steel (JIS — G31 01, etc.), hot-dip galvanized steel (JIS—G3302, etc.), (rolled) stainless steel (JIS—G4304, G4305, etc.), tinplate (JIS—G3303, etc.), and other metals in general ( Alloys
  • a glass base material For example, a sodium soda glass, a Pyrex glass, a quartz glass, non-alliglass, etc. are mentioned.
  • the above-mentioned enamel is obtained by baking and coating a glassy enamel on a metal surface.
  • the base metal include, but are not particularly limited to, mild steel sheet, steel sheet, steel, and aluminum.
  • the enamel ordinary ones may be used, and there is no particular limitation.
  • the water glass decorative board refers to, for example, a decorative board obtained by applying sodium silicate to a cement base material such as slate and baking.
  • inorganic hardened material examples include, but are not limited to, fiber reinforced cement board (JIS-A5430, etc.), ceramic siding (JIS-A5422, etc.), wood wool cement board (JIS-A5404, etc.), pulp Cement board (JIS-A5414, etc.), Slate.
  • Wood wool cement laminate JIS-A5426, etc.
  • Gypsum board products JIS-A6901, etc.
  • Clay tile JIS-A5208, etc.
  • Thick slab Monoliths JIS-A5402, etc.
  • ceramic tiles JIS-A5209, etc.
  • concrete building blocks JIS-A5406, etc.
  • terrazzo JIS-A5411, etc.
  • prestress concrete doubles T slab JIS-A5412, etc.
  • ALC panel JIS-A5416, etc.
  • hollow prestress concrete panel JIS-A6511, etc.
  • plain brick JIS-R1250, etc.
  • the ceramic substrate is not particularly limited, and examples thereof include alumina, zirconia, silicon carbide, silicon nitride and the like.
  • the organic substrate is not particularly limited, and examples thereof include plastic, wood, wood, and paper.
  • the plastic substrate is not particularly limited.
  • a thermosetting resin such as a polycarbonate resin, an acrylic resin, an ABS resin, a vinyl chloride resin, an epoxy resin, a phenol resin, etc.
  • Fiber reinforced plastic (FRP) which is made by reinforcing the above plastics with fibers such as glass fiber, nylon fiber, and carbon fiber.
  • the organic coating constituting the organic coating substrate is not particularly limited, but includes, for example, acrylic, alkyd, polyester, epoxy, urethane, acrylic silicon, chloride rubber, phenol, melamine, etc. And a cured film of a coating material containing the above organic resin.
  • the form of the substrate is not particularly limited, and examples thereof include a film, a sheet, a plate, and a fiber.
  • the base material may be a molded body of a material having these shapes, or a structure partially including at least one of the materials having these shapes or the molded body.
  • the base material may be composed of the above-mentioned various materials alone, a composite material obtained by combining at least two of the above-described various materials, or a laminated material obtained by laminating at least two of the above-described various materials. May be.
  • the functional coated article of the present invention can be provided with at least a part of various materials or articles by utilizing the various effects derived from its excellent photocatalytic action. It can be suitably used for applications.
  • Building-related members or articles for example, exterior materials (eg, exterior wall materials, flat roof tiles-Japanese tiles, tiles such as metal tiles, etc.), resin rain gutters such as PVC rain gutters, and metal rain gutters such as stainless steel gutters
  • rain gutters, gates and components for use with them eg, gate 'gate post' gate fence, etc.
  • fences (fences) and components for use therewith garage doors, home terraces, doors, pillars, power poles , Bicycle parking, sign post, Delivery posts, wiring boards such as switchboards' switches, gas meters, interphones, TV doorphones and camera lens parts, electric locks, entrance poles, rims, ventilation fans, glass for buildings, etc .
  • windows for example, lighting windows, Opening windows such as skylights and louvers, etc.
  • members used therefor eg, window frames, shutters, blinds, etc.
  • automobiles railway vehicles, aircraft, ships, machinery, road peripherals
  • the first coating layer and the second coating layer may be directly formed on at least a part of the above-mentioned various materials or articles, but are not limited thereto.
  • a film using a film substrate as a substrate that is, a functional film comprising a first coating layer and a second coating layer on the surface of a film substrate is applied to at least a part of the above-mentioned various materials or articles. You may stick it.
  • the base material of such a film is, for example, polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, vinyl chloride resin, acryl resin, fluororesin, polypropylene (PP) resin and the like.
  • the resin is not particularly limited.
  • a silicone coating solution having a weight average molecular weight of about 1700 was obtained.
  • 0.2 parts of lithium formate as a curing catalyst and titanium oxide (STS-01, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, solid content 30%) as a photocatalyst were mixed with resin solid content of a silicone coating solution.
  • the functional coating material (1) was added by adding 80/20 in weight ratio (resin solids / photocatalyst) to and then diluting with methanol to a total solid content of 10%. — 1) was obtained.
  • a coating material for comparison (1) was obtained in the same manner as in Preparation Example 1, except that no photocatalyst was used. At this time, the weight average molecular weight of the organosiloxane was 1,700.
  • IPA-ST isopropanol-dispersed colloidal silica sol: particle size 10 to 2020171, solid content 30%, moisture 0.5%
  • 100 parts, 68 parts of methyltrimethoxysilane and 2.2 parts of water were added, and the mixture was hydrolyzed at 65 ° C for 5 hours with stirring, and then cooled to obtain (A- 1)
  • the components were obtained. This had a solid content of 37% in terms of total condensed compounds when left at room temperature for 48 hours.
  • a flask equipped with a stirrer, a heating jacket, a condenser, a dropping funnel and a thermometer is charged with a solution prepared by dissolving 220 parts (1 mol) of methyltriisopropoxysilane in 150 parts of toluene.
  • a solution prepared by dissolving 220 parts (1 mol) of methyltriisopropoxysilane in 150 parts of toluene is charged with a solution prepared by dissolving 220 parts (1 mol) of methyltriisopropoxysilane in 150 parts of toluene.
  • 108 parts of a 1% aqueous hydrochloric acid solution was added dropwise over 20 minutes, and methyltrisopropoxysilane was stirred 60. Hydrolysis with C. The stirring was stopped 40 minutes after the completion of the dropping.
  • the reaction solution was transferred to a separating funnel and allowed to stand, it was separated into two layers. The mixed solution of the lower layer of water and isopropyl alcohol containing
  • the components (A-1) and (B_1) obtained above were mixed with the following curing catalysts (C-1) and (C-2) in the following proportions, and titanium oxide (The weight ratio of the STS-02 (manufactured by Ishihara Sangyo Co., Ltd., average particle size 7 nm solid content 30%) to the total resin solid content of the components (A-1) and (B-1) (resin solids / After adding with a photocatalyst (80/20), it was diluted with methanol to a total solid content of 10% to obtain a functional coating material (2-1).
  • Component (C-2) 0.4 parts of dibutyltin dilaurate
  • Preparation Example 2-1 except that the addition amount of photocatalyst (resin solids / photocatalyst) (weight ratio) was changed to 60/40, 50/50, 40/60, and 20/80 in Preparation Example 2-1 In the same manner as above, the functional coating materials (2-2) to (2-5)
  • a coating material for comparison (2) was obtained in the same manner as in Preparation Example 2_1 except that no photocatalyst was used in Preparation Example 2_1.
  • the components (A), (B) and (D) used for it were prepared by the following method.
  • MA-ST methanol-dispersed co-idal silicic acid sol: particle size 10-20 nm, solid content 30%, moisture 0.5 °). / 0 , manufactured by Nissan Chemical Industries
  • the mixture was cooled to obtain the component (A-2). This had a solid content of 41% in terms of total condensed compounds when left at room temperature for 48 hours.
  • a flask equipped with a stirrer, a heating jacket, a condenser, a dropping funnel, and a thermometer is charged with 1,000 parts of water and 50 parts of acetone, and then 44.8 parts of methyltrik ⁇ silane (0.3 mo ⁇ ).
  • the solution was prepared by dissolving 84.6 parts (0.4 mol) of silane in the toluene and 200 parts of toluene, and was hydrolyzed at 60 ° C. while dropwise adding a solution with stirring. The stirring was stopped 40 minutes after the completion of the dropping. When the reaction solution was transferred to a separating funnel and allowed to stand, it was separated into two layers.
  • the lower layer aqueous hydrochloric acid solution is separated and the remaining water and hydrochloric acid remaining in the organopolysiloxane toluene solution are removed together with excess toluene by vacuum stripping to obtain a weight-average molecular weight of about A 3000% toluene solution of 3,000 silanol-containing polyorganosiloxanes was obtained. This was taken as the component (B-2). It has been confirmed that both the silanol group-containing polyorganosiloxane in the component (B-2) and the component (B-1) satisfy the above average composition formula (II).
  • n-butyl methacrylate (BMA) 6.05 parts (42.5 mmol) 0.62 parts (2.5 mmo ⁇ ) of trimethoxysilylpropyl methacrylate (SMA), 0.71 part (5 mmol) of glycidyl methacrylate (GMA), and amercapto as a chain transfer agent
  • SMA trimethoxysilylpropyl methacrylate
  • GMA glycidyl methacrylate
  • amercapto amercapto
  • SMA Trimethylsiloxypropyl methacrylate
  • GMA glycidyl methacrylate
  • amercaptopropyl as a chain transfer agent
  • the acryl-modified silicone resin coating material (1) was obtained by diluting it with isopropyl alcohol to a solid content of 25%.
  • (C-1 2) component 0.4 parts of dibutyltin dilaurate
  • Preparation Example 3 except that the proportions of the components (A-2), (B-2), (C-1), (C-2) and (D-1) in Preparation Example 3 were changed as follows: In the same manner as in 3, an acrylic-modified silicone resin coating material (2) was obtained.
  • Preparation Example 3 was the same as Preparation Example 3 except that the mixing ratios of the components (A-2), (B_2), (C-1), (C-12) and (D-11) were changed as follows. In the same manner as described above, an acryl-modified silicone resin coating material (3) was obtained.
  • a PC (polycarbonate) plate (50 mm x 50 mm x 2.5 mm) was used as the base material, and the acrylic-modified silicone resin coating material (1) obtained in Preparation Example 3 was spray-coated on the surface of the plate to cure. After coating so as to be 1 tm to form a first coating layer, the coating was cured at 60 ° C. for 15 minutes. After that, the setting time was set for 10 minutes. After the end of this setting time, place the center of the painted surface between your thumb and When I sandwiched it between my fingers and fingers, I felt a dent due to fingerprints on the painted surface, and I felt the movement of the paint film. However, even when the center of the painted surface was gently and lightly rubbed with a fingertip, the painted surface was not scratched. From this, it was confirmed that the first coating layer was in a semi-cured state.
  • a functional coating material (1-1-1) to (1-5), (2- "! To (2-5) or a coating material for comparison (1) is formed on the surface of the semi-cured first coating layer.
  • (2) is applied by spray coating so as to have a cured coating thickness of 0.5 ⁇ to form a second coating layer, and then the second coating layer is left at room temperature for one week to obtain a function. Painted products (1) to (10) and comparative painted products (1) to (2) were obtained.
  • Adhesion to the substrate was evaluated by a cross-cut adhesive tape (using cellophane tape) peel test.
  • Photocatalysis 50 ppm of acetate was injected into a 300 ml container containing the sample, irradiated with 10 W black light for 60 minutes, and then subjected to gas chromatography (GC 1 Shimadzu Corporation). Acetaldehyde removal rate (%) was measured using 4A).
  • Water wettability Evaluated by measuring the contact angle between water and the coating film. The contact angle was measured at the initial stage after the coating film was formed, and at the initial stage after 24 hours of irradiation with ultraviolet rays using an ultraviolet irradiation apparatus (Handy UV 300, manufactured by Oak Manufacturing Co., Ltd.). (Evaluation of deterioration of base material and coating film):
  • the contact angle which is related to the level of the photocatalyst content after irradiation with ultraviolet light, was several degrees, indicating high wettability after irradiation with ultraviolet light.
  • the functionally coated products (1) to (10) having a coating layer the photocatalyst-containing coating layer and the substrate were used despite the fact that a PC board, which is an organic substrate susceptible to degradation by a photocatalyst, was used as the substrate.
  • the deterioration of the base material was sufficiently prevented by the interposition of the coating layer of the acryl-modified silicone resin coating material between them, and no deterioration of the coating film was observed.
  • a comparative coated product was obtained by performing the same operation as in Example 1 except that a titanium oxide-only layer was provided instead of forming a cured coating of a functional coating material as the second coating layer in Example 1. (3) was obtained.
  • the properties of the coating film and the deterioration of the substrate and the coating film were evaluated by the method described above.
  • Table 3 shows the results. As shown in this table, the photocatalytic performance is very good, but the coating film is brittle because the second coating layer consists only of sol, and the first coating layer and the second coating layer do not adhere to each other. Hardness was also difficult to measure. As for the deterioration of the base material, yellowing was observed on the PC plate.
  • Example 3 instead of forming a cured film of the acryl-modified silicone resin coating material (1) as the first coating layer, a cured film of the comparative coating material (3) containing no component (D) was used. A comparative painted product (4) was obtained by performing the same operation as in Example 3 except that the coating was formed.
  • the properties of the coating film and the deterioration of the base material and the coating film were evaluated by the method described above.
  • Table 3 shows the results. As shown in this table, adhesion between the base material and the first coating layer could not be obtained. There was no problem with the deterioration of the substrate and the coating film.
  • Example 5 The same operation as in Example 3 except that the functional coating material (1-3) was directly applied and cured on the surface of the base material without applying any acrylic-modified silicone resin coating material on the surface of the base material. As a result, a comparative painted product (5) was obtained.
  • the properties of the coating film and the deterioration of the base material and the coating film were evaluated by the method described above.
  • Table 3 shows the results. As shown in this table, the adhesion between the base material and the cured coating of the functional coating material was not obtained. In addition, the substrate deteriorated due to the action of the photocatalyst contained in the cured film of the functional coating material.
  • Comparative Example 1 the same operation as in Comparative Example 1 was performed, except that the comparative coating material (1) was directly applied and cured without applying the entire acrylic-modified silicone resin coating material on the surface of the base material. As a result, a comparative painted product (6) was obtained. With respect to the comparative coated product (6), the properties of the coating film and the deterioration of the base material and the coating film were evaluated by the above-described method.
  • Table 3 shows the results. As shown in this table, no deterioration of the base material and the coating film was observed, but no adhesion between the base material and the cured coating material was obtained. ⁇ Examples 11 to 13> (Example of colored coating)
  • Example 3 instead of the acryl-modified silicone resin coating material (1) used for forming the first coating layer, the following pigments 1 to 3 were added to this acryl-modified silicone resin coating material (1). Functional coatings (11) to (13) were obtained by performing the same operation as in Example 3 except that the first coating layer was formed using the enamel thus obtained.
  • Pigment 1 White pigment (Ishihara Sangyo) P. W. C. 40
  • Pigment 2 Yellow pigment (Dainichi Seika) P. W. C. 40
  • Pigment 3 Black pigment (Dainichi Seika) P. W. C. 40
  • Example 8 (Example of colored coating)
  • the above-mentioned pigments 1 to 3 were added to this acrylic-modified silicone resin coating material (1).
  • Functional coatings (14) to (16) were obtained by performing the same operation as in Example 8 except that the first coating layer was formed using enamel.
  • the coating film properties and the deterioration of the base material and the coating film were evaluated by the above-described method.
  • Table 4 shows the results. As shown in this table, even if the first coating layer is an enamel coat, there is no problem with the coating film properties and the deterioration of the base material and the coating film.
  • a functionally coated product (17) was obtained by performing the same operation as in Example 3 except that the thickness of the cured film of the second coating layer was changed to 0.1 m in Example 3.
  • a functionally coated product (18) was obtained in the same manner as in Example 8, except that the thickness of the cured coating of the second coating layer was changed to 0.1 / m in Example 8. .
  • a comparative coated product (7) was obtained by performing the same operation as in Comparative Example 1 except that the thickness of the cured film of the second coating layer in Comparative Example 1 was changed to 0.1 ⁇ .
  • the coating film properties and the deterioration of the base material and the coating film were evaluated by the methods described above.
  • Table 5 shows the results. As shown in this table, the cured coatings of the functional coating materials containing photocatalysts of the functionally coated products (17) and (18) were all exposed to ultraviolet radiation despite their small film thickness. After the contact, the contact angle became several degrees, indicating high wettability. On the other hand, this performance was not observed in the coating film of the comparative coated product (7) using a silicone coating material containing no photocatalyst.
  • Example 3 an acrylic-modified silicone resin coating material (1) was used in place of
  • a functionally coated product (19) was obtained by performing the same operation as in Example 3 except that the acrylic-modified silicone resin coating material (2) obtained in Preparation Example 4 was used.
  • Example 3 the same operation as in Example 3 was performed except that the acrylic-modified silicone resin coating material (3) obtained in Preparation Example 5 was used instead of the acrylic-modified silicone resin coating material (1).
  • Table 6 shows the results. As shown in this table, there is no problem in the adhesion between the base material and the first coating layer and the adhesion between the first coating layer and the second coating layer, and there is no problem in other performances.
  • a functional coated product (21) was obtained in the same manner as in Example 3, except that a vinyl chloride plate of the same size was used instead of the PC plate as the base material.
  • a functional coated product (22) was obtained in the same manner as in Example 8, except that a vinyl chloride plate of the same size was used instead of the PC plate as the base material.
  • Example 3 a vinyl chloride plate of the same size was used instead of a PC plate as a base material, and a functional core was used without applying an acrylic-modified silicone resin coating material on the surface of the vinyl chloride plate at all.
  • a comparative coated product (8) was obtained by performing the same operation as in Example 3 except that the coating material (1-3) was directly applied and cured.
  • Example 3 the same size organic coating was used instead of the PC board as the base material The same operation as in Example 3 except that a plate (a surface of an inorganic base material made of a stainless steel plate and having a coating of acrylic paint (Permaloc manufactured by Rock Paint) with a thickness of 10 im) was used. As a result, a functionally coated product (23) was obtained.
  • a plate a surface of an inorganic base material made of a stainless steel plate and having a coating of acrylic paint (Permaloc manufactured by Rock Paint) with a thickness of 10 im
  • a functionally coated product (23) was obtained.
  • Example 8 in place of the PC board, a 10 m-thick organic paint board (the surface of an inorganic base material made of a stainless steel plate and an acrylic paint (Permaloc manufactured by Rock Paint Co., Ltd.) was used as the base material.
  • a functionally coated product (24) was obtained by performing the same operation as in Example 8 except that the above-mentioned product (having a coating having the above-mentioned film) was used. Comparative Example 9>
  • Example 3 in place of the PC board as the base material, an organic paint plate of the same size as the base plate (the surface of an inorganic base material made of a stainless steel plate, and a thickness of an acrylic paint (Palmock manufactured by Rock Paint Co., Ltd.)) was used. m), and apply the functional coating material (1-3) directly to the surface of this organic painted plate without applying the acryl-modified silicone resin coating material.
  • a comparative painted product (9) was obtained by performing the same operation as in Example 3 except that it was performed.
  • Table 7 shows the results. As shown in this table, all of the functionally coated products (21) to (24) in which the cured coating of the acrylic-modified silicone resin coating material was formed as the first coating layer had no problem in adhesion. No deterioration of the base material and the coating film was observed, and other performances were also good. On the other hand, in the comparative coated articles (8) to (9) of the comparative examples, the adhesion of the coating film to the substrate was poor, and the deterioration of the substrate due to the photocatalyst was observed.
  • a functional coated product (25) was obtained by performing the same operation as in Example 3 except that a stainless steel plate of the same size was used instead of the PC plate as the base material.
  • Example 8 the same size stainless steel was used instead of the PC board as the base material.
  • a functional coated product (26) was obtained by performing the same operation as in Example 8 except that a metal plate was used.
  • Example 3 a stainless steel plate of the same size was used in place of the PC plate as the base material, and the surface of this stainless plate was coated with the acrylic-modified silicone resin coating material entirely without functional coating. The same operation as in Example 3 was carried out except that the material (1-3) was directly applied and cured, to obtain a comparative coated product (10).
  • the coating film characteristics and the deterioration of the base material and the coating film were evaluated by the method described above.
  • Table 8 shows the results. As shown in this table, there is no problem with the deterioration of the base material because all of the coated products use an inorganic base material.However, a comparison was made in which the first coating layer consisting of a cured film of an acrylic modified silicone resin coating material was missing. Coating (10) lacks adhesion.
  • Example 3 a functional coated product (2) was obtained by performing the same operation as in Example 3 except that a glass plate of the same size was used instead of the PC plate as the base material.
  • Example 8 the same operation as in Example 8 was carried out except that a glass plate of the same size was used instead of the PC plate as the base material.
  • Example 3 the same operation as in Example 3 was carried out except that a tile having the same size was used instead of the PC plate as the base material, thereby obtaining a functional coated product (2
  • Example 8 the same operation as in Example 8 was carried out except that a tile of the same size was used instead of the PC board as the base material. 0).
  • a functionally coated product (3 1) was obtained by performing the same operation as in Example 3 except that a hood plate of the same size was used instead of the PC plate as the base material in Example 3. .
  • Example 8 a functional coated product (32) was obtained by performing the same operation as in Example 8 except that a single mouthpiece having the same size was used instead of the PC plate as the base material.
  • Tables 8 and 9 show the results. As can be seen from these tables, all of the coated products used inorganic base materials, so there was no problem with deterioration of the base materials. There were no problems with other performance.
  • Example 3 the acryl-modified silicone resin coating material (1) applied to the surface of the PC board was baked at 150 ° C. for 30 minutes to completely cure (the cured acryl-modified resin was obtained in the same manner as in Example 3). The same operation as in Example 3 was carried out except that the functional coating material (113) was applied to the surface after the silicone coating material had a ratio of 100% by weight).
  • the functional coating material (113) was applied to the surface after the silicone coating material had a ratio of 100% by weight).
  • Example 3 the acryl-modified silicone resin coating material (1) applied on the surface of the PC board was left at room temperature for 10 minutes, and the functional layer was applied to the surface of the PC board while the coating layer was still wet.
  • a comparative painted product (12) was obtained by performing the same operations as in Example 3 except that (1) -3) was applied. With respect to the comparative painted product (12), the properties of the coating film and the deterioration of the substrate and the coating film were evaluated by the method described above.
  • Example 3 a tile of the same size as that of the PC board was used as a base material, and an acryl-modified silicone resin coating material was used instead of the acryl-modified silicone resin coating material (1) to form the first coating layer.
  • an acryl-modified silicone resin coating material was used instead of the acryl-modified silicone resin coating material (1) to form the first coating layer.
  • Example 8 a tile of the same size as that of the PC board was used as the base material, and an acryl-modified silicone resin coating material was used instead of the acryl-modified silicone resin coating material (1) to form the first coating layer.
  • the functionally coated product (38) was reduced to 1 inch.
  • Example 8 a tile of the same size as that of the PC board was used as the base material, and a commercially available epoxy-based primer (eppo ⁇ primer) was used instead of the acrylic-modified silicone resin coating material (1) to form the first coating layer. — And Isamu Paint Co., Ltd.), and the same operation as in Example 8 was performed except that the cured coating thickness of the first coating layer was changed to 8 m. ).
  • Example 8 a tile having the same size as that of the PC board was used as a base material, and an acrylic-modified silicone resin coating material (7) was used instead of the acrylic-modified silicone resin coating material (1) to form the first coating layer.
  • the same procedure as in Example 8 was carried out except that the functional coating material (2-3) was used in place of the functional coating material (2-3) to form the second coating layer.
  • Product (14) was obtained.
  • functional coatings (29), (30), (33)-(38) and comparative coatings (13), (14) to the first coating layer of coating film durability and phototactility The following accelerated weathering resistance was evaluated using the above-mentioned Sunshine Weather Meter to confirm the effect of the weathering.
  • the reason why tiles were used as the base material for painted products is that the durability of the coating film itself can be clearly examined because the tiles have little deterioration in weather resistance.
  • the test time was 4000 hours, and the adhesion and the degree of discoloration of the coating film were examined. The adhesion and the degree of discoloration of the coating film were examined even during the course of 2500 hours.
  • the adhesion was examined by the method described above.
  • the coated product of Comparative Example 13 using a commercially available epoxy-based primer showed a remarkable decrease in coating film performance.
  • the functional coating product of Example 36 (36) and the first coating layer are the same, The degree of discoloration was reduced.
  • the first coating layer and the second coating layer were applied to the reflective tape for road signs (manufactured by Sumitomo Suriem) and the post cone for roads (manufactured by Nippon Mektron) in the same manner as in Example 3. Reflective tape was applied to the boss cone, and the headquarters of Matsushita Electric Works, Ltd. (Kadoma, Osaka Prefecture) was exposed to the roadside of the premises for about three months. Was.
  • Acrylic-modified silicone resin coating material (1) prepared in Preparation Example 3 is applied to the outer wall of the main building, about 1 Om 2 (wall with tiles), on the premises. It was painted to become. After being left at room temperature for 4 hours, the semi-cured state was confirmed, and the functional coating material (1-3) prepared in Preparation Examples 13 to 13 was applied so that the cured coating thickness was about 0.5 Atm. All paintings were made using hand knurls. After about three months of exposure, the painted building remained clean and clean.
  • the painted exterior material was free of stains and kept in the initial state of painting.
  • a reflector plate (steel plate coated with white melamine) for Fuji-type fluorescent light fixtures for 20 W (FA220263 manufactured by Matsushita Electric Works, Ltd.) was used. Except for drying for 15 minutes, a half area was painted in the same manner as in Example 3. All paintings used airless spray. Fluorescent lighting fixtures including the reflectors coated in this way were installed in the kitchen of the company cafeteria on the premises of Matsushita Electric Works Co., Ltd.'s head office (Kadomasa, Osaka Prefecture) and observed. Was less contaminated than the other parts.
  • Epolo Primer (made of Isamu Paint) is installed on approximately 1 m2 (unpainted) of concrete utility poles at the headquarters of Matsushita Electric Works Co., Ltd. (Kadomasa, Osaka) to prevent elution of alkaline components from concrete.
  • the pigment-containing acryl-modified silicone resin coating material prepared in Example 11 was colored so as to have a cured coating thickness of about 30 ⁇ m.
  • the functional coating material (1-3) prepared in Preparation Example 1-3 was applied to a cured coating thickness of about 0.5 Atm. . All paintings were made using hand rolls.
  • Coating Oxide Oxide Functionality Functionality Comparison material Tongue (1-3) (1-3) (1) 9th resin solids 50 50 100 Photocatalyst Z50 / 50/0 Film thickness (/ m) 0.5 0. 5 0.5 0.5 Photocatalysis 100 48 48 0 Substrate and 1st 100 50
  • the functional coated product of the present invention has excellent adhesion of the coating film to various base materials, hardly causes deterioration of the base material and the coating film due to the action of the photocatalyst, and has a smooth surface of the coating film. Due to its high cost, it is resistant to contamination and has high photocatalytic action.
  • a cured coating of an acryl-modified silicone resin coating material is interposed as a first coating layer between the base material and the cured coating of the functional coating material containing the photocatalyst. Therefore, even if the base material is an organic base material or an organic coating base material, the base material is not directly affected by the photocatalytic action, and thus the base material is not easily degraded by the photocatalytic action. In addition, the adhesion of the functional coating material to the base material is improved by the interposition of the first coating layer formed of the cured film of the acrylic-modified silicone resin coating material.
  • the functional coating material and the acryl-modified silicone resin coating material used in the present invention are all inorganic paints, their coating films are not easily degraded by the action of a photocatalyst.
  • the functional coated product of the present invention when exposed to ultraviolet light, has the effect of decomposing organic substances, deodorizing, antibacterial, antifungal, etc. It also has the property of decomposing dirt, etc., and improving the wettability of the coating film with water. This performance is exhibited regardless of the film thickness and the photocatalyst content. When the wettability of the coating film with respect to water is high, effects such as antifogging and antifouling due to rainwater washability for outdoor use are exhibited. Therefore, the functional coated product of the present invention also has the performance of preventing dew condensation on window glass and the like in winter and preventing dirt on buildings, road structures, automobiles, vehicles, and the like.
  • the coating film is colored in an arbitrary color. It is also possible.
  • the functional coating material used in the present invention controls the coating properties such as photocatalytic performance, hardness, and coating surface condition according to the use of the coated product by changing the ratio of the amount of resin to the amount of photocatalyst. be able to.
  • the coating material used in the production of the functional coated product of the present invention is only heat-curing.
  • it can be cured at room temperature, it can be used in a wide range of dry curing conditions or temperatures. Therefore, even if heat is applied evenly, it is not only possible to paint on a substrate with a large shape, a substrate with a large size, or a substrate with poor heat resistance. Since it can be painted even when it is difficult to apply heat as in the case of painting, its industrial value is high.
  • the coating for forming the second coating layer is performed in a state where the first coating layer is in a semi-cured state, the coating step can be performed in a short time by selecting a temperature condition or the like. Therefore, according to the production method of the present invention, it is possible to easily and efficiently obtain the functional coated product having the above-mentioned excellent performance.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

明 細 書 機能性塗装品とその製造方法および用途 発明の属する技術分野
本発明は、 光触媒作用を持つ機能性塗装品と、 その製造方法および用途に関 する。
従来の技術
コーティング材に光触媒を添加しておくと、 得られる塗膜は、 紫外線を受け て、 有機物の分解、 消臭、 抗菌等の効果を発現する。
このような光触媒作用を持つコーティング材としては、 たとえば、 有機の樹 脂に光触媒粒子を分散した光触媒有機塗料が知られている。 しかし、 光触媒有 機塗料は、 その塗膜を形成してから長時間が経過すると、 紫外線および光触媒 作用により該塗膜が劣化を起こすという欠点を持つ。
ケィ酸塩系、 リン酸塩系またはジルコニウム系の無機組成物に光触媒粒子を 分散した無機塗料も光触媒作用を持つコーティング材として知られている。 し かし、 これらの光触媒無機塗料は、 光触媒有機塗料に比べて耐久性がはるかに 勝るものの、 いずれも 2 0 0 °C以上での高溫焼き付けが必要であるため、 使用 範囲が限られ、 耐熱性の劣る建材やプラスチックに直接塗布するのには不適切 であった。 また、 ケィ酸塩系の無機塗料は、 長期間使用するとアルカリが表面 に溶出して白化現象を起こしゃすい欠点もあった。
特開昭 6 2 - 5 7 4 7 0号公報には、 金属アルコキシドを含有した無機塗料 が開示されている。 しかし、 この無機塗料は、 2 0 0 °C以下で硬化するものの、 塗膜に柔軟性が無く、 クラックが入りやすい問題があつた。
近年、 多種多様な材料に塗料を用いる必要性から、 長期間使用しても光触媒 性能を保持し、 塗膜そのものに耐久性があり、 かつ、 低温硬化性の塗料が求め られていた。
特開平 8— 6 7 8 3 5号公報には、 抗菌剤として、 光触媒機能を有する成分 である光触媒を含有した抗菌性無機塗料が提案されている。 ところが、 光触媒 を基材に担持する場合、 基材の制約や密着性に難点があった。 また、 塗料中に 光触媒が沈降してしまい、 光触媒の性能が若干発揮されにくいという傾向があ つた。
そこで、 特開平 8— 1 4 1 5 0 3号公報では、 光触媒を表面に担持し、 高い 光触媒性能を有する無機塗料塗膜の形成方法の改良が提案されている。しかし、 これも無機質基材への塗膜の密着性は高いが、 プラスチック、 有機塗装板等の 表面のような有機表面への密着性には欠ける。 また、 上記無機塗料の塗膜は、 表面の平滑性に欠けるので、 汚れがつきやすいという欠点も持つ。
また、 光触媒を含有する塗料を有機基材ゃ有機塗装基材の表面に直接塗布す ると、 該基材が光触媒の作用により劣化しやすいという問題があつた。
本発明は、 各種下地基材に対する塗膜の密着性に優れ、 光触媒の作用による 基材および塗膜の劣化が起こりにく く、 また、 塗膜表面の平滑性も高いため汚 れ難く、 かつ、 高い光触媒作用を持つ機能性塗装品と、 その製造方法および用 途を提供することを目的とする。
課題を解決するための手段
本発明に係る機能性塗装品は、 基材の表面に、 アクリル変性シリコン樹脂コ —ティング材の硬化被膜からなる第 1塗装層と、 この第 1塗装層の表面に形成 された機能性コーティング材 ( 1 ) または (2 ) の硬化被膜からなる第 2塗装 層とを える。
本発明に係る機能性塗装品の製造方法は、
基材の表面に、 ァクリル変性シリコン樹脂コ一ティング材を塗布することに より、 第 1塗布層を形成させる工程、
前記第 1塗布層を半硬化させることにより、 半硬化層を形成させる工程、 前記半硬化層の表面に、 機能性コ—ティング材 ( 1 ) または ( 2 ) を塗布す ることにより、 第 2塗布層を形成させる工程、 および
前記半硬化層と前記第 2塗布層を硬化させる工程
を含む。
前記アクリル変性シリコン樹脂コーティング材は、 下記 (A )、 (B )、 (C ) および ( D ) 成分を含む。 前記機能性コ—ティング材 ( 1 ) は、 下記 (E) および (F) 成分を含む。 前記機能性コ—ティング材 ( 2) は、 下記 (A)、 (B)、 (C) および (F) 成分を含む。
( A ) 成分:
― fclC Γλ m Ο 1 X 4 -m … (ェ )
(式中、 R ,は同一または異種の置換もしくは非置換の炭素数 1〜8の 1価 炭化水素基を示し、 mは 0〜3の整数、 Xは加水分解性基を示す。) で表され る加水分解性オルガノシランを、 有機溶媒、 水またはそれらの混合溶媒に分散 されたコロイダルシリカ中で、前記加水分解性基( X ) 1モル当量当たり水 0. 001〜0. 5モルを使用する条件下で部分加水分解してなる、 オルガノシラ ンのシリカ分散オリゴマー溶液。
( B )成分:
平均組成式 R2 aS i (OH) b0(4_ab)/2 - (II)
(式中、 R 2は同一または異種の置換もしくは非置換の炭素数 1〜8の 1価炭 化水素基を示し、 aおよび bはそれぞれ 0. 2≤a≤2、 0. 0001 ≤ b≤ 3、 a+ b< 4の関係を満たす数である) で表され、 分子中にシラノール基を 含有するポリオルガノシロキサン。
( C ) 成分:
硬化触媒。
( D ) 成分:
—般式 C H2 = C R3 (COOR4) -(III)
で表され、 式中、 R 3は水素原子および/またはメチル基であって、
R 4が置換もしくは非置換の炭素数 1〜9の 1価炭化水素基である第 1の (メタ) ァクリル酸エステル、
R 4がエポキシ基、 グリシジル基およびこれらのうちの少なくとも一方を含 む炭化水素基からなる群の中から選ばれる少なくとも 1種の基である第 2の (メタ) アクリル酸エステル、 および
R 4がアルコキシシリル基および/またはハロゲン化シリル基を含む炭化水 素基である第 3の (メタ) アクリル酸エステルと、 の共重合体であり、 (重量平均分子量 (ポリスチレン換算) 1000〜50000) であ るアクリル樹脂。
なお、 本明細書中、 (メタ) アクリル酸エステルは、 アクリル酸エステルお よびメタクリル酸エステルのいずれか一方または両方を指す。
( E ) 成分 :
(E 1 ) —般式 S i (OR5) 4で表されるケィ素化合物および/またはコ □ィダルシリ力 5〜30000重量部、
(E 2) 一般式 R6S i (OR5) 3で表されるケィ素化合物 1 00重量部、 および
(E 3) —般式 R6 2 S i (OR5) 2で表されるケィ素化合物 0〜60重量 部 (各式中、 R5、 R 6は 1価の炭化水素基を示す)
からなる混合物の加水分解重縮合物からなり、 その重量平均分子量がポリスチ レン換算で 800以上になるように調整されているオルガノシロキサン。
( F ) 成分:
光触媒。
前記ァクリル変性シリコン樹脂コーティング材においては、 全縮合化合物換 算固形分で述べると前記 (A) 成分 1〜94重量部に対し、 前記 (B) 成分 1 〜94重量部および前記 (D)成分 5〜35重量部 (ただし、前記 (A)、 (B)、 (D) 成分の合計は 1 00重量部である) が配合されていることが好ましい。 前記ァクリル変性シリコン樹脂コ一ティング材は、 顔料をも含むことができ る。
前記基材は、 金属基材、 有機質基材およびこれらのうちのいずれかの表面に 有機物被膜を有する有機塗装基材からなる群の中から選ばれていることが好ま しい。
本発明の機能性塗装品は、 それを少なくとも一部に装備させることにより、 例えば、 建物関連部材、 特に屋外用途の建物関連部材、 建物用門およびそれに 用いるための部材 (たとえば、 門柱等)、 建物用塀およびそれに用いるための 部材、 窓 (たとえば、 採光窓等) およびそれに用いるための部材 (たとえば、 窓枠等)、 自動車、 機械装置、 特に屋外用途の機械装置、 道路周辺部材 (特に 交通標識)、 広告塔、 特に屋外用途の広告塔、 屋外または屋内用照明器具およ びそれに用いるための部材 (たとえば、 樹脂部材、 金属部材等) 等の用途に用 いることができる。
機能性コ一ティング材 ( 1 ) の (E ) 成分であるオルガノシロキサン (E ) の原料として用いられるケィ素化合物 (E 1 ) 〜 (E 3 ) は、
一般式 R 6 n S i ( O R 5 ) 4n … ( IV)
で表すことができる。
ここで R 5、 R 6は 1価の炭化水素基を示し、 nは 0〜2の整数を表す。
R 6としては、 特に限定はされないが、 たとえば、 炭素数 1〜8の置換また は非置換の 1価の炭化水素基が挙げられる。具体的には、 メチル基、ェチル基、 プロピル基、 ブチル基、 ペンチル基、 へキシル基、 ヘプチル基、 才クチル基等 のアルキル基; シクロペンチル基、 シクロへキシル基等のシクロアルキル基; 2 _フエニルェチル基、 2—フエニルプロピル基、 3 —フエニルプロピル基等 のァラルキル基; フエニル基、 トリル基等のァリール基; ビニル基、 ァリル基 等のアルケニル基;クロロメチル基、 アーク□□プロピル基、 3 , 3, 3—ト リフル才ロプロピル基等のハロゲン置換炭化水素基; ァーメタクリロキシプロ ピル基、 ァ一グリシドキシプロピル基、 3 , 4—エポキシシクロへキシルェチ ル基、 ァーメルカプトプロピル基等の置換炭化水素基等を例示することができ る。 これらの中でも、 合成の容易さ或いは入手の容易さから炭素数 1〜4のァ ルキル基およびフエニル基が好ましい。
また、 R 5としては、 特に限定はされないが、 たとえば、 炭素数 1〜4のァ ルキル基を主原料とするものが用いられる。
特に、 n = 0のテトラアルコキシシランとしては、 テトラメ 卜キシシラン、 テ卜ラエトキシシランなどが例示でき、 n = 1のオルガノ 卜リアルコキシシラ ンとしては、 メチル卜リメ トキシシラン、 メチル卜リエトキシシラン、 メチル トリイソプロポキシシラン、 フエニル卜リメ トキシシラン、 フエニル卜リエ卜 キシシラン、 3, 3 , 3—トリフル才ロプロビルトリメ 卜キシシランなどが例 示できる。 また、 n = 2のジオルガノジアルコキシシランとしては、 ジメチル ジメ トキシシラン、ジメチルジェトキシシラン、ジフエ二ルジメ トキシシラン、 ジフエ二ルジェトキシシラン、 メチルフエ二ルジメ 卜キシシランなどが例示で さる。
これら R 5、 R 6は、 ケィ素化合物 (E 1 ) 〜 (E 3 ) の間で同一のもので あってもよいし、 違うものであってもよい。
前記オルガノシロキサン ( E ) は、 たとえば、 原料 (E 1 ) 〜 (E 3 ) を適 当な溶剤で希釈し、 そこに硬化剤としての水および触媒を必要量添加して、 加 水分解および重縮合反応を行わせてプレボリマ一化させることにより調製する ことができる力、 その際、 得られるプレポリマーの重量平均分子量 (M w ) が ポリスチレン換算で 8 0 0以上、 好ましくは 8 5 0以上、 より好ましくは 9 0 0以上になるように調整する。 その際、 分子量の上限は 50000以下、 好ましく は 45000以下、 より好ましくは 40000以下になるように調整する。
プレボリマ—の分子量分布 (重量平均分子量 (M w ) ) が 8 0 0より小さい ときは、 機能性コ一ティング材の縮重合の際の硬化収縮が大き〈て硬化後に塗 膜にクラックが発生しやすくなつたりする。 また、 分子量が 50000より大きい と硬化反応に時間を要し、 十分な塗膜硬度が得られないことがある。
オルガノシロキサン ( E ) を調製する際の原料 ( E 1 ) ~ ( E 3 ) の使用量 は、 (E 2 ) 1 0 0重量部に対して、 (E 1 ) 5〜30000重量部(好ましくは 10〜 25000重量部、より好ましくは 20〜20000重量部)、 (E 3 ) 0〜6 0重量部(好 ましくは 0〜4 0重量部、 より好ましくは 0〜3 0重量部)の割合である。( E 1 )の使用量が上記範囲より少ないと、硬化被膜の所望の硬度が得られない(硬 度が低くなる) という問題があり、 逆に上記範囲より多いと、 硬化被膜の架橋 密度が高すぎて硬度が高〈なりすぎ、 そのためクラックを発生しやすいという 問題がある。 また、 (E 3 )の使用量が上記範囲より多いと、 硬化被膜の所望の 硬度が得られない (硬度が低くなる) という問題がある。
原料 (E 1 ) として使用できるコロイダルシリカとしては、 特に限定はされ ないが、 たとえば、 水分散性あるいはアルコールなどの非水系の有機溶媒分散 性コロイダルシリカが使用できる。 一般に、 このようなコロイダルシリカは、 固形分としてのシリカを 2 0〜5 0重量%含有しており、 この値からシリカ配 合量を決定できる。 また、 水分散性コロイダルシリカを使用する場合には、 固 形分以外の成分として存在する水は、 後に示すように、 硬化剤として用いるこ とができる。 水分散性コロイダルシリカは、 通常、 水ガラスから作られるが、 市販品として容易に入手することができる。 また、 有機溶媒分散性コロイダル シリカは、 前記水分散性コロイダルシリカの水を有機溶媒と置換することで容 易に調製することができる。 このような有機溶媒分散性コ口ィダルシリカも水 分散性コ口ィダルシリ力と同様に市販品として容易に入手することができる。 有機溶媒分散性コロイダルシリカにおいて、 コロイダルシリカが分散している 有機溶媒の種類は、 特に限定はされないが、 たとえば、 メタノール、 ェタノ一 ル、 イソプロパノール、 n—ブタノ一ル、 イソブタノ一ル等の低級脂肪族アル コール類;エチレングリコール、 エチレングリコールモノブチルエーテル、 酢 酸エチレングリコールモノェチルエーテル等のエチレングリコール誘導体; ジ エチレングリコール、 ジエチレングリコールモノブチルエーテル等のジェチレ ングリコール誘導体;およびジァセ卜ンアルコール等を挙げることができ、 こ れらからなる群より選ばれた 1種もしくは 2種以上を使用することができる。 これらの親水性有機溶媒と併用して、 トルエン、 キシレン、 酢酸ェチル、 酢酸 ブチル、 メチルェチルケトン、 メチルイソブチルケトン、 メチルェチルケ卜才 キシ厶なども用いることができる。
また、 原料 (E 1 ) 〜 ( E 3 ) の加水分解重縮合反応の際に用いられる硬化 剤としては、水が用いられるが、 この量としては、ケィ素化合物( E 1 )〜(E 3 ) の 0 R 5基 1モル当量当たり、 水 0 . 0 1〜3 . 0モルが好まし <、 0 . 3 - 1 . 5モルがさらに好ましい。
原料 (E 1 ) 〜 (E 3 ) の加水分解重縮合反応の際に用いられる希釈溶剤と しては、 特に限定はされないが、 たとえば、 コロイダルシリカの分散溶媒とし て前述したものが使用できる。
また、 前記オルガノシロキサン (E ) の p Hは、 特に限定されるわけではな いが、 3 . 8〜6に調整することが好ましい。 p Hがこの範囲内にあると、 前 記の分子量の範囲内で、 安定してオルガノシロキサン (E ) を使用することが できる。 p Hが上記範囲外であると、 オルガノシロキサン ( E ) の安定性が悪 〈なるため、 塗料調製時からの使用できる期間が限られてしまう。 ここで、 P H調整方法は、 特に限定されるものではないが、 たとえば、 オルガノシ□キサ ン (E ) の原料混合時、 p Hが 3 . 8未満となった場合は、 たとえば、 アンモ ニァ等の塩基性試薬を用いて前記範囲内の p Hに調整すればよく、 p Hが 6を 超えた場合も、 たとえば、 塩酸等の酸性試薬を用いて調整すればよい。 また、 p Hによっては、 分子量が小さいまま逆に反応が進まず、 前記分子量範囲に到 達させるのに時間がかかる場合は、 オルガノシロキサン ( E ) を加熱して反応 を促進してもよいし、 酸性試薬で p Hを下げて反応を進めた後、 塩基性試薬で 所定の P Hに戻してもよい。
機能性コーティング材 ( 1 ) は、 加熱硬化させる場合は硬化触媒を含む必要 はないが、 オルガノシロキサン (E ) の縮合反応を促進することによって機能 性コ—ティング材 ( 1 ) の塗布被膜の加熱硬化を促進させたり同塗布被膜を常 温で硬化させたりする目的で必要に応じて、 硬化触媒をも含むことができる。 硬化触媒としては、特に限定はされないが、たとえば、アルキルチタン酸塩類; 才クチル酸錫、 ジブチル錫ジラウレート、 ジ才クチル錫ジマレエ一卜等のカル ボン酸金属塩類; ジブチルァミン一 2—へキソエー卜、 ジメチルァミンァセテ — 卜、 エタノールアミンァセテ一 ト等のアミン塩類;酢酸テ卜ラメチルアンモ ニゥ厶等のカルボン酸第 4級アンモニゥム塩;テ卜ラエチルペンタミン等のァ ミン類、 N— yS—アミノエチルーァ一ァミノプロピル卜リメ 卜キシシラン、 N — /3—ァミノェチル一ァ一ァミノプロピルメチルジメ トキシシラン等のアミン 系シランカヅプリング剤; p—トルエンスルホン酸、フタル酸、塩酸等の酸類; アルミニウムアルコキシド、 アルミニウムキレ一卜等のアルミニウム化合物; 酢酸リチウム、 酢酸力リゥ厶、 蟻酸リチウム、 蟻酸ナ卜リゥム、 リン酸カリゥ 厶、 水酸化力リゥ厶等のアル力リ金属塩;テトライソプロピルチタネー卜、 テ 卜ラブチルチタネ一卜、 チタニウムテトラァセチルァセ卜ネ一卜等のチタニゥ 厶化合物; メチル卜リク口口シラン、 ジメチルジクロロシラン、 卜リメチルモ ノクロロシラン等のハロゲン化シラン類等が挙げられる。 しかし、 これらの他 に、 オルガノシロキサン ( E ) の縮合反応の促進に有効なものであれば特に制 限はない。
機能性コ一ティング材 ( 1 ) が硬化触媒 (C ) をも含む場合、 その量は、 才 ルガノシロキサン (E ) の全縮合化合物換算固形分に対し、 好ましくは 2 5重 量%以下、 より好まし〈は 2 0重量 °/0以下である。 4 5重量%を超えると、 塗 料溶液の貯蔵安定性を損なう可能性がある。
機能性コーティング材 ( 1 ) および ( 2 ) の (F ) 成分として用いられる光 触媒 (光触媒 (F ) ) としては、 特に限定はされないが、 たとえば、 酸化チタ ン、 酸化亜鉛、 酸化錫、 酸化ジルコニウム、 酸化タングステン、 酸化クロム、 酸化モリブデン、 酸化鉄、 酸化ニッケル、 酸化ルテニウム、 酸化コバルト、 酸 化銅、 酸化マンガン、 酸化ゲルマニウム、 酸化鉛、 酸化力ドミゥ厶、 酸化バナ ジゥ厶、 酸化ニオブ、 酸化タンタル、 酸化ロジウム、 酸化レニウム等の酸化物 等が挙げられる。 これらの中でも、 酸化チタン、 酸化亜鉛、 酸化錫、 酸化ジル コニゥム、 酸化タングステン、 酸化鉄、 酸化ニオブが、 1 0 0 °C以下の低温で 焼き付け硬化を行った場合にでも活性を示す点から好ましい。 特に酸化チタン が好ましい。 塗膜の透明性が必要とされる場合は、 光触媒 (F ) の平均一次粒 子佳が 5 O Ai m以下であることが好ましく、 5 m以下であることがより好ま しく、 0 . 5 Ai m以下であることがさらに好ましい。 光触媒 (F ) は、 1種の み用いてもよいし、 2種以上を併用してもよい。
光触媒 (F ) は、 大気中で紫外線を照射されると、 活性酸素を発生する (光 触媒性) ことは公知である。 活性酸素は、 有機物を酸化、 分解させることがで きるため、 その特性を利用して、 塗装品に付着したカーボン系汚れ成分 (たと えば、 自動車の排気ガス中に含まれるカーボン留分や、 タバコのャ二等) を分 解する自己洗浄効果;ァミン化合物、 アルデヒド化合物に代表される悪臭成分 を分解する消臭効果;大腸菌、 黄色ブドウ球菌に代表される菌成分の発生を防 ぐ抗菌効果等を得ることができる。 また、 塗膜表面に付着した、 水をはじく有 機物等の汚れが光触媒 (F ) により分解除去されることにより、 水に対する塗 膜の濡れ性が向上するという効果もある。 この効果は、 膜厚、 光触媒含有量の 大小に関わらず発現する。
光触媒 (F ) は、 金属を担持したものであっても良い。 担持してよい金属と しては、 特に限定はされないが、 たとえば、 金、 銀、 銅、 鉄、亜鉛、 ニッケル、 コバルト、 白金、 ルテニウム、 パラジウム、 ロジウム、 カドミウム等が挙げら れ、 これらの中から 1種または 2種以上を適宜選択して使用できる。 金属の担 持により、 光触媒 (F) の電荷分離が促進されて光触媒作用がより効果的に発 揮される。 金属を担持した光触媒 (F) は、 光の存在下で酸化性能を有し、 こ の酸化性能によって脱臭、 抗菌等の効果を奏する。 更に、 光触媒 (F) を層間 に担持した粘土架橋体を用いても良い。光触媒(F)を層間に導入することで、 光触媒 (F) が微粒子に担持されて光触媒性能が向上する。
機能性コ—ティング材 ( 1 ) または ( 2) 中における光触媒 (F) の分散方 法は特に限定されない。
ァクリル変性シリコン樹脂コ一ティング材および機能性コ—ティング材 ( 2) の (A) 成分として用いられるシリカ分散オリゴマー溶液 (A) は、 硬 化被膜形成に際して、 硬化反応に預かる官能性基としての加水分解性基 (X) を有するベースポリマーの主成分である。 これは、 たとえば、 有機溶媒または 水 (有機溶媒と水との混合溶媒も含む) に分散されたコロイダルシリカに、 前 記一般式 ( I ) で表される加水分解性オルガノシランの 1種あるいは 2種以上 を加え、 水 (コロイダルシリカ中に予め含まれていた水および/または別途添 加された水) を前記加水分解性基 (X) 1モル当量当たり水 0. 001〜0. 5モルを使用する条件下で、 該加水分解性オルガノシランを部分加水分解する ことで得られる。
前記一般式 ( I )で表される加水分解性オルガノシラン中の基 R 1としては、 同一または異種の置換もしくは非置換の炭素数 1 ~8の 1価炭化水素基であれ ば特に限定はされないが、 たとえば、 メチル基、 ェチル基、 プロピル基、 プチ ル基、 ペンチル基、 へキシル基、 ヘプチル基、 才クチル基などのアルキル基; シクロペンチル基、 シクロへキシル基などのシクロアルキル基; 2—フエニル ェチル基、 2—フエニルプロピル基、 3 _フエニルプロピル基などのァラルキ ル基;フエニル基、 トリル基などのァリール基; ビニル基、 ァリル基などのァ ルケニル基; クロロメチル基、 アークロロプロピル基、 3, 3, 3—トリフル 才口プロピル基などのハロゲン置換炭化水素基; ァーメタクリロキシプロピル 基、 ァ―グリシドキシプロピル基、 3, 4一エポキシシクロへキシルェチル基、 ァ _メルカプトプロピル基などの置換炭化水素基などを例示することができる c これらの中でも、 合成の容易さ、 あるいは入手の容易さから炭素数 1〜4のァ ルキル基、 フエニル基が好ましい。
前記一般式 ( I ) 中、 加水分解性基 Xとしては、 特に限定はされないが、 た とえば、 アルコキシ基、 ァセトキシ基、 才キシム基、 エノキシ基、 アミノ基、 アミノキシ基、 アミド基などが挙げられる。 これらの中でも、 入手の容易さお よびオルガノシランのシリカ分散オリゴマー溶液 (A ) を調製しやすいことか ら、 アルコキシ基が好ましい。
前記加水分解性オルガノシランの具体例としては、 前記一般式 ( I ) 中の m が 0〜3の整数であるモノー、 ジー、 トリ—、 テ卜ラーの各官能性のアルコキ シシラン類、 ァセ卜キシシラン類、 才キシムシラン類、 エノキシシラン類、 ァ ミノシラン類、 アミノキシシラン類、 アミ ドシラン類などが挙げられる。 これ らの中でも、 入手の容易さおよびオルガノシランのシリカ分散オリゴマー溶液 ( A ) を調製しやすいことから、 アルコキシシラン類が好ましい。
アルコキシシラン類のうち、 特に、 m = 0のテ卜ラアルコキシシランとして は、 テ卜ラメ トキシシラン、 テ卜ラエトキシシランなどが例示でき、 m = 1の オルガノ トリアルコキシシランとしては、 メチル卜リメ 卜キシシラン、 メチル 卜リエトキシシラン、 メチル卜リイソプロポキシシラン、 フエニル卜リメ トキ シシラン、 フエニルトリエ卜キシシラン、 3 , 3, 3—トリフル才ロプロピル 卜リメ トキシシランなどが例示できる。 また、 m = 2のジオルガノジアルコキ シシランとしては、 ジメチルジメ 卜キシシラン、 ジメチルジェトキシシラン、 ジフエ二ルジメ 卜キシシラン、 ジフエ二ルジェ卜キシシラン、 メチルフエニル ジメ 卜キシシランなどが例示でき、 m = 3の卜リオルガノアルコキシシランと しては、 卜リメチルメ トキシシラン、 トリメチルエトキシシラン、 トリメチル ィソプロボキシシラン、ジメチルイソブチルメ 卜キシシランなどが例示できる。 さらに、 一般にシランカツプリング剤と呼ばれるオルガノシラン化合物もアル コキシシラン類に含まれる。
これらの前記一般式 ( I ) で表される加水分解性オルガノシランの内、 5 0 モル%以上、 好ましくは 6 0モル%以上、 より好ましくは 7 0モル%以上は、 m = 1で表される三官能性のものである。 これが、 5 0モル%未満では十分な 塗膜硬度が得られないとともに、 乾燥硬化性が劣りやすい。
( A ) 成分中のコロイダルシリカは、 コーティング材の硬化被膜の硬度を高 < し、 平滑性と耐クラック性を改善する効果がある。 コロイダルシリカとして は、 特に限定はされないが、 たとえば、 オルガノシロキサン (E ) の原料 (E 1 ) として前述したものが使用できる。 水分散性コロイダルシリカを用いる場 合、 固形分以外の成分として存在する水は、 前記加水分解性オルガノシランの 加水分解に用いることができるとともに、 コ一ティング材の硬化剤として用い ることができる。
( A ) 成分中において、 ( I ) のオルガノシランの全縮合化合物換算固形分 に対してコロイダルシリカは、 シリカ分として、 好ましくは 5〜9 5重量%、 より好ましくは 1 0〜9 0重量 °/0、 さらに好ましくは 2 0〜8 5重量%の範囲 内で含有される。 含有量が 5重量%未満であると、 所望の被膜硬度が得られな くなる傾向がある。 一方、 9 5重量%を越えると、 シリカの均一分散が困難と なり、 (A ) 成分がゲル化する、 硬化被膜が硬〈なりすぎて同被膜のクラック の発生を招来しやすくなる等の不都合を招来することがある。
なお、 本明細書中、 コ—ティング材における (A ) 成分の配合割合は、 コ口 ィダルシリカの分散媒も含む値である。
オルガノシランのシリカ分散オリゴマー溶液 (A ) を調製する際に用いられ る水の量は、 前述のように、 前記加水分解性オルガノシランが持つ加水分解性 基 (X ) 1モル当量当たり水 0 . 0 0 1〜0 . 5モルの範囲内、好ましくは 0 . 0 1〜0 . 4モルの範囲内である。水の使用量が 0 . 0 0 1モル未満であると、 十分な部分加水分解物が得られず、 0 . 5モルを越えると、 部分加水分解物の 安定性が悪〈なる。 ここで、 加水分解性オルガノシランの部分加水分解反応に おける水の上記使用量は、 水を全〈含まないコロイダルシリカ (たとえば、 分 散媒として有機溶媒のみを用いたコロィダルシリ力) を用いた場合は別途に添 加された水の量であり、 水を含むコロイダルシリカ (たとえば、 コロイダルシ リ力の分散媒として水のみまたは有機溶媒と水との混合溶媒を用いたコ口イダ ルシリカ) を用いた場合は、 コロイダルシリカ中に予め含まれていた水および 別途添加の水のうちの少な〈ともコロイダルシリカ中に予め含まれていた水の 量である。 水の量がコロイダルシリカ中に予め含まれていた水だけで上記使用 量に足りるならば別途に 7kを添加しなくてもよいのであるが、 水の量がコロイ ダルシリカ中に予め含まれていた水だけでは上記使用量に足りない場合は、 別 途に水を上記使用量に達するまで添加する必要がある。 その場合、 上記水の使 用量は、 コロイダルシリカ中に予め含まれていた水と別途添加された水の合計 量である。 なお、 コロイダルシリカ中に予め含まれていた水だけで上記使用量 に足りる場合でも、 別途に水を添加してもよく、 その場合も、 上記水の使用量 は、 コロイダルシリカ中に予め含まれていた水と別途添加された水の合計量で ある。 ただし、 この合計量が上記上限 (加水分解性基 (X ) 1モル当量当たり 0 . 5モル) を超えないように別途に水を添加する。
加水分解性オルガノシランを部分加水分解する方法は、 特に限定されず、 た とえば、加水分解性オルガノシランとコロイダルシリ力とを混合すればよし、(コ □ィダルシリカに水が全く含まれていないかあるいは必要量含まれていない場 合はここで水を添加配合する)。 その際、 部分加水分解反応は常温で進行する が、 部分加水分解反応を促進させるために、 必要に応じ、 加温 (たとえば、 6 0〜1 0 0 °C ) するか、 あるいは、 触媒を用いてもよい。 この触媒としては、 特に限定はされないが、 たとえば、 塩酸、 酢酸、 ハロゲン化シラン、 クロ口酢 酸、 クェン酸、 安息香酸、 ジメチルマロン酸、 蟻酸、 プロピオン酸、 グル夕一 ル酸、 グリコール酸、 マレイン酸、 マロン酸、 トルエンスルホン酸、 シユウ酸 などの有機酸および無機酸等の 1種または 2種以上を用いることができる。
( A ) 成分は、 その性能を長期にわたり安定して得るために、 液の p Hを、 好ましくは 2 . 0〜7 . 0、 より好ましくは 2 . 5〜6 . 5、 さらに好ましく は 3 . 0〜6 . 0にすると良い。 p Hがこの範囲外であると、 特に水の使用量 が加水分解性基 (X ) 1モル当量当たり 0 . 3モル以上の条件下で (A ) 成分 の性能持続性の低下が著しい。 (A ) 成分の p Hが上記範囲外にあるときは、 この範囲より酸性側であれば、 アンモニア、 エチレンジァミン等の塩基性試薬 を添加して p Hを調整すれば良く、 塩基性側であれば、 塩酸、 硝酸、 酢酸等の 酸性試薬を用いて p Hを調整すればよい。 しかし、 その調整方法は特に限定さ れるものではない。 アクリル変性シリコン樹脂コ一ティング材ぉよび機能性コ—ティング材
( 2 ) の (B ) 成分として用いられるシラノール基含有ポリオルガノシロキサ ン (B ) は、 硬化反応に預かる官能性基としての加水分解性基を有するベース ポリマーである (A ) 成分と縮合反応して硬化被膜中に 3次元架橋を形成する ための架橋剤であり、 (A ) 成分の硬化収縮による歪みを吸収してクラック発 生を防止する効果のある成分である。
( B ) を表す前記平均組成式 (I I ) 中の R 2としては、 特に限定はされず、 前記式 ( I ) 中の R 1と同じものが例示されるが、 好ましくは、 炭素数 1〜4 のアルキル基、 フエニル基、 ビニル基、 ァ一グリシドキシプロピル基、 ァーメ タクリロキシプロピル基、 ァーァミノプロピル基、 3 , 3 , 3—トリフル才口 プロピル基などの置換炭化水素基、 より好ましくはメチル基およびフエニル基 である。 また、 前記式 (I I ) 中、 aおよび bはそれぞれ前記の関係を満たす数 であり、 aが 0 . 2未満または bが 3を超えると硬化被膜にクラックを生じる 等の不都合がある。また、 aが 2を超え且つ 4より小さい場合、 または bが 0 . 0 0 0 1未満では硬化がうまく進行しない。
シラノール基含有ポリオルガノシロキサン (B ) は、 特に限定されるわけで はないが、 たとえば、 メチル卜リクロロシラン、 ジメチルジクロロシラン、 フ ェニル卜リク口口シラン、 ジフエ二ルジク□ロシラン、 もし〈は、 これらに対 応するアルコキシシランの 1種もしくは 2種以上の混合物を公知の方法により 大量の水で加水分解することにより得ることができる。 このようにして得られ るポリオルガノシロキサンはポリスチレン換算の重量平均分子量( M w )で 700 〜20000、 好ましくは 750〜1 8000、 より好ましくは 800〜1 6000となるように 調整する。
ノ一ル基含有ポリオルガノシロキサン (B ) を得るために、 アルコキシ ンを用いて公知の方法で加水分解した場合、 加水分解されないアルコキシ 基が微量に残る場合がある。 すなわち、 シラノール基と極微量のアルコキシ基 とが共存するようなポリオルガノシロキサンが得られることもある力 本発明 においては、 このようなポリオルガノシロキサンを用いても差し支えない。 ァクリル変性シリコン樹脂コ一ティング材および機能性コーティング材 (2) の (C) 成分として用いられる硬化触媒 (C) は、 (A) 成分と (B) 成分との縮合反応を促進し、 被膜を硬化させる成分である。 硬化触媒 (C) の 例としては、 機能性コーティング材 ( 1 ) が必要に応じて含んでいてもよい硬 化触媒として前に例示したものすべてが挙げられる。 しかし、 硬化触媒 (C) は、 前に例示したもの以外に、 (A) 成分と (B) 成分との縮合反応の促進に 有効なものであれば特に制限はない。
アクリル変性シリコン樹脂コ一ティング材に含まれる (D) 成分として用い られるアクリル樹脂 (D) は、 アクリル変性シリコン樹脂コーティング材の硬 化被膜の靭性を改善する効果を持ち、 これによりクラックの発生を防止して厚 膜化を可能にする。 また、 アクリル樹脂 (D) は、 アクリル変性シリコン樹脂 コーティング材の硬化被膜の 3次元骨格となる (A) 成分と (B) 成分との縮 合架橋物に取り込まれて該縮合架橋物をァクリル変性にする。 前記縮合架橋物 がァクリル変性されると、 ァクリル変性シリコン樹脂コ一ティング材の硬化被 膜と基材との密着性が向上する。 ァクリル変性シリコン樹脂コ一ティング材の 硬化被膜と、 機能性コ—ティング材 ( 1 ) または ( 2) の硬化被膜とは、 いず れもポリシロキサン構造を持つシリコン樹脂硬化物であるため、 両被膜相互の 密着性は高い。 そのため、 機能性コーティング材 ( 1 ) または ( 2) の硬化被 膜と基材との間に、 それらとの密着性が高いァクリル変性シリコン樹脂コ一テ ィング材の硬化被膜が介在することになるので、 結局、 機能性コ一ティング材
( 1 ) または (2) の硬化被膜と基材との密着性が向上する。 また、 アクリル 変性シリコン樹脂は高い耐候性、 耐久性を示すので、 上層にある機能性コーテ イング材 ( 1 )、 ( 2) に含まれる光触媒の影響を受けない。
ァクリル樹脂 ( D) の構成モノマーの一つである第 1の (メタ) アクリル酸 エステルは、 それを表す前記式(III)中の R 4が炭素数 1〜9の置換または非 置換の 1価の炭化水素基、 たとえば、 メチル基、 ェチル基、 n—プロピル基、 i—プロピル基、 n—プチル基、 i _ブチル基、 s e c—ブチル基、 t e r t —プチル基、 ペンチル基、 へキシル基、 ヘプチル基、 才クチル基等のアルキル 基; シクロペンチル基、 シクロへキシル基等のシクロアルキル基; 2—フエ二 ルェチル基、 2—フエニルプロピル基、 3—フエニルプロピル基等のァラルキ ル基;フエニル基、 トリル基等のァリール基; クロロメチル基、 アークロロプ 口ピル基、 3 , 3 , 3—トリフル才ロプロピル基等のハロゲン化炭化水素基; 2—ヒドロキシェチル基等のヒドロキシ炭化水素基;等であるものの内の少な 〈とも 1種である。 好ましくはェチル基、 プロピル基、 ブチル基である。
アクリル樹脂 (D ) の別の構成モノマ一である第 2の (メタ) アクリル酸ェ ステルは、 それを表す前記式(III)中の R 4がエポキシ基、 グリシジル基およ びこれらのうちの少なくとも一方を含む炭化水素基 (たとえば、 ァーグリシド キシプロピル基等) からなる群の中から選ばれる少なくとも 1種の基であるも のの内の少なくとも 1種である。好ましくはエポキシ基、グリシジル基である。 アクリル樹脂 ( D ) のさらに別の構成モノマ一である第 3の (メタ) ァクリ ル酸エステルは、 それを表す前記式(III)中の R 4がアルコキシシリル基およ び/またはハロゲン化シリル基を含む炭化水素基、 たとえば、 卜リメ 卜キシシ リルプロピル基、 ジメ トキシメチルシリルプロピル基、 モノメ トキシジメチル シリルプロピル基、 卜リエ卜キシシリルプロピル基、 ジェ卜キシメチルシリル プロピル基、 ェ卜キシジメチルシリルプロピル基、 トリクロロシリルプロピル 基、 ジクロロメチルシリルプロピル基、 クロロジメチルシリルプロピル基、 ク □□ジメ トキシシリルプロピル基、 ジクロロメ 卜キシシリルプロピル基等であ るものの内の少な〈とも 1種である。 好まし〈は卜リメ トキシシリルプロピル 基、 ジメ 卜キシシリルプロピル基、 卜リエトキシシリルプロピル基、 である。 アクリル樹脂 (D ) は、 上記第 1 、 第 2、 第 3の (メタ) アクリル酸エステ ル中、 それぞれ少なくとも 1種、 合計少なくとも 3種を含む (メタ) アクリル 酸エステルの共重合体であり、 上記第 1 、 第 2、 第 3の (メタ) ァクリル酸ェ ステルの中から選ばれたさらに 1種あるいは 2種以上、あるいは上記以外の(メ タ) ァクリル酸エステルの中から選ばれたさらに 1種あるいは 2種以上を含む 共重合体であっても構わない。
上記第 1の (メタ) アクリル酸エステルは、 アクリル変性シリコン樹脂コ一 ティング材の硬化被膜の靭性を改善するために必須の成分であり、 さらに、 ( A ) 成分と (B ) 成分の間の相溶性を改善する効果もある。 これらの効果を より大きく得るためには、 R 4の置換あるいは非置換炭化水素基が、 ある程度 以上の体積を持つことが望ましく、 炭素数が 2以上であることが好ましい。 第 2の (メタ) アクリル酸エステルは、 アクリル変性シリコン樹脂コ一ティ ング材の硬化被膜と基材との密着性を向上させるために必須の成分である。 第 3の (メタ) アクリル酸エステルは、 アクリル変性シリコン樹脂コ一ティ ング材の塗膜硬化時に、 アクリル樹脂 (D) と (A) 成分および (B) 成分と の間に化学結合を形成し、 これによりアクリル樹脂 (D) が硬化被膜中に固定 化される。 また、 第 3の (メタ) アクリル酸エステルは、 アクリル樹脂 (D) と (A) 成分および (B) 成分との相溶性を改善する効果もある。
ァクリル樹脂( D )の分子量は、ァクリル樹脂( D ) と( A )成分および( B ) 成分との相溶性に大きく関わる。 アクリル樹脂 ( D) のポリスチレン換算重量 平均分子量が 50, 000を超えると、相分離し、塗膜が白化することがある。 従って、 アクリル樹脂 (D) のポリスチレン換算重量平均分子量を 50, 00 0以下にすることが望ましい。 また、 アクリル樹脂 (D) のポリスチレン換算 重量平均分子量の下限は 1 , 000であることが望ましい。 分子量が 1 , 00 0未満だと、 塗膜の靭性が下がり、 クラックが発生しやすくなる傾向があり、 好ましくない。
第 2の (メタ) アクリル酸エステルは、 アクリル樹脂 (D) である共重合体 中の単量体モル比率で 2%以上であることが望ましい。 2%未満では、 塗膜の 密着性が不十分となる傾向がある。
第 3の (メタ) アクリル酸エステルは、 共重合体中の単量体モル比率で 2〜 50%の範囲であることが望ましい。 2%未満においては、ァクリル樹脂(D) と (A)成分および(B)成分との相溶性が悪く、塗膜が白化することがある。 また、 50%を超えると、 ァクリル樹脂 ( D) と (A) 成分および (B) 成分 との結合密度が高くなり過ぎ、 ァクリル樹脂本来の目的である靭性の改善が見 られなくなる傾向がある。
アクリル樹脂 (D) の合成方法は、 たとえば、 公知の有機溶媒中での溶液重 合、 乳化重合、 懸濁重合によるラジカル重合法、 あるいはァニオン重合法、 力 チオン重合法等を用いることができるが、 これに特定するものではない。
溶液重合によるラジカル重合法においては、 たとえば、 公知の方法で、 前記 第 1 、 第 2および第 3の (メタ) アクリル酸エステル単量体を反応容器中で有 機溶媒に溶解し、 さらにラジカル重合開始剤を加え、 窒素気流下で加熱して反 応させる。 このときに用いられる有機溶媒は、 特に限定するものではないが、 たとえば、 トルエン、 キシレン、 酢酸ェチル、 酢酸プチル、 メチルェチルケト ン、 メチルイソブチルケトン、 エチレングリコールモノブチルエーテル、 ジェ チレングリコールモノブチルエーテル、 酢酸エチレングリコールモノェチルェ 一テルなどが使われる。 また、 ラジカル重合開始剤は特に限定するものではな いが、たとえば、 クメンヒドロペル才キシド、第 3プチルヒドロペル才キシド、 ジクミルペル才キシド、 ジ第 3ブチルペル才キシド、 過酸化べンゾィル、 過酸 化ァセチル、 過酸化ラウロイル、 ァゾビスイソプチロニトリル、 過酸化水素— F e 2 +塩、 過硫酸塩— N a H S O 3、 クメンヒドロペル才キシド— F e 2 + 塩、 過酸化ベンゾィル—ジメチルァニリン、 過酸化物—卜リエチルアルミニゥ ムなどが用いられる。 分子量をコントロールするためには、 連鎖移動剤を添加 することも可能である。 連鎖移動剤としては、 特に限定するわけではないが、 たとえば、 モノェチルハイ ドロキノン、 p—ベンゾキノンなどのキノン類; メ ルカプトァセチックァシッ ド一ェチルエステル、 メルカプトァセチックァシッ ド一 n _ブチルエステル、 メルカプトァセチックァシッ ド一 2—ェチルへキシ ルエステル、 メルカプトシクロへキサン、 メルカプトシクロペンタン、 2—メ ルカプトエタノ一ルなどのチオール類; ジ一 3—クロ口ベンゼンチ才一ル、 p 一トルエンチ才一ル、 ベンゼンチオールなどのチ才フエノ一ル類; ァーメルカ プ卜プロピル卜リメ 卜キシシランなどのチ才一ル誘導体;フエ二ルピクリルヒ ドラジン; ジフエニルァミン;第 3プチルカテコールなどが使える。
機能性コ一ティング材 ( 1 ) 中、 光触媒 (F ) の配合割合は、 その大小に関 わらず光触媒性能が発現されるので、 特に限定はされないが、 たとえば、 オル ガノシロキサン( E )の全縮合化合物換算樹脂固形分 1 0〜 9 0重量部に対し、 好まし〈は 9 0〜1 0重量部、 より好ましくは 5 0〜1 0重量部 (但し、 (E ) の樹脂固形分と (F ) の合計は 1 0 0重量部) である。 光触媒 (F ) が 1 0重 量部未満であると十分な光触媒性能が得られない傾向があり、 9 0重量部を超 えると、 脆く、 平滑性のない塗膜となる傾向がある。 機能性コーティング材 ( 2 ) 中、 光触媒 (F) の配合割合は、 その大小に関 わらず光触媒性能が発現されるので、 特に限定はされないが、 たとえば、 (A) 成分と (B) 成分の合計の全縮合化合物換算樹脂固形分 1 0〜90重量部に対 し、 好まし〈は 90〜1 0重量部、 より好ましくは 50〜1 0重量部 (但し、 (A)、 (B) 成分の樹脂固形分と (F ) 成分の合計は 1 00重量部) である。 光触媒 (F) が 1 0重量部未満であると十分な光触媒性能が得られない傾向が あり、 90重量部を超えると、 脆く、 平滑性のない塗膜となる傾向がある。 機能性コーティング材 ( 2 ) 中、 (A) 成分と ( B) 成分の配合割合は、 全 縮合化合物換算で特に限定はされないが、 たとえば、 好ましくは (A) 成分 1 〜99重量部に対して (B)成分 99〜1重量部であり、 より好ましくは(A) 成分 5~95重量部に対して ( B) 成分 95~ 5重量部であり、 さらに好まし くは (A) 成分 1 0〜90重量部に対して (B) 成分 90〜1 0重量部である (ただし、 (A) 成分と ( B) 成分の合計は 1 00重量部)。 (A) 成分が 1重 量部未満であると、 常温硬化性に劣ったり十分な被膜硬度が得られなかったり する傾向がある。 一方、 (A) 成分が 99重量部を超えると、 硬化性が不安定 であったり塗膜にクラックを生じやす〈なったりする傾向がある。
機能性コーティング材 ( 2 ) 中、 (C) 成分の配合割合は、 特に限定はされ ないが、 たとえば、 (A) 成分と ( B) 成分の全縮合化合物換算固形分合計 1 00重量部に対して、 好ましくは 0. 0001〜1 0重量部、 より好まし〈は 0. 005〜8重量部、 さらに好まし〈は 0. 007〜5重量部である。 (C) 成分が 0. 000 1重量部未満だと常温で硬化しにくい傾向がある。 一方、 1 0重量部を越えると硬化被膜の耐熱性ゃ耐候性が悪くなる傾向がある。
アクリル変性シリコン樹脂コーティング材中、 (C) 成分の配合割合は、 特 に限定はされないが、 たとえば、 (A)、 (B)、 (D) 成分の全縮合化合物換算 固形分合計 1 00重量部に対して、 好ましくは 0. 001〜1 0重量部、 より 好ましくは 0. 005〜8重量部、 さらに好ましくは 0. 007〜5重量部で ある。 (C)成分が 0. 001重量部未満だと常温で硬化しにくい傾向がある。 一方、 1 0重量部を越えると硬化被膜の耐熱性ゃ耐候性が悪くなる傾向がある。 アクリル変性シリコン樹脂コ一ティング材中、 (A) 成分、 (B) 成分および (D) 成分の配合割合は、 特に限定はされないが、 全縮合化合物換算固形分で たとえば、 (A) 成分 1〜94重量部に対して (B) 成分 94〜1重量部およ び (D) 成分 5〜35重量部であることが好ましく、 (A) 成分 5〜95重量 部に対して ( B) 成分 95〜5重量部および (D) 成分 5〜35重量部である ことがより好ましく、 (A) 成分 1 0〜 94重量部に対して ( B) 成分 94〜 1 0重量部および (D) 成分 5~35重量部であることがさらに好ましい (た だし、 (A)、 (B)、 (D) 成分の合計は 1 00重量部である)。 (A) 成分が 1 重量部未満であると常温硬化性に劣つたり十分な被膜硬度が得られなかったり する傾向がある。 一方、 (A) 成分が 94重量部を超えると硬化性が不安定に なったり塗膜にクラックが生じやすかつたりする傾向がある。 また、 (D) 成 分が 5重量部未満では十分な靭性ゃ密着性が得られない傾向がある。 (D) 成 分が 35重量部を超えると上層にある光触媒により塗膜の劣化が促進される可 能性が高くなる。
機能性コーティング材 ( 1 ) は、 低温加熱するか、 あるいは、 硬化触媒を加 えて常温放置することにより、 (E) 成分の有する加水分解性基同士が縮合反 応じて硬化被膜を形成する。 従って、 機能性コーティング材 ( 1 ) は、 常温で 硬化するときにも湿度の影響をほとんど受けない。 また、 加熱処理を行えば、 硬化触媒を使用することなく縮合反応を促進して硬化被膜を形成することがで きる。
機能性コーティング材 ( 2) は、 (A) 成分に含まれるオルガノシランの才 リゴマ一の有する加水分解性基と (B) 成分の有するシラノール基とが硬化触 媒 (C) の存在下で、 常温放置もしくは低温加熱することにより縮合反応して 硬化被膜を形成する。 従って、 機能性コ—ティング材 ( 2 ) は、 常温で硬化す るときにも湿度の影響をほとんど受けない。 また、 加熱処理により縮合反応を 促進して硬化被膜を形成することもできる。
アクリル変性シリコン樹脂コーティング材は、 (A) 成分に含まれるオルガ ノシランのオリゴマーの有する加水分解性基およびアクリル樹脂 (D) の有す る加水分解性基と (B) 成分の有するシラノール基とが硬化触媒 (C) の存在 下で、 常温放置もしくは低温加熱することにより縮合反応して硬化被膜を形成 する。 従って、 アクリル変性シリコン樹脂コーティング材は、 常温で硬化する ときにも湿度の影響をほとんど受けない。 また、 加熱処理により縮合反応を促 進して硬化被膜を形成することもできる。
ァクリル変性シリコン樹脂コ一ティング材は、 必要に応じて顔料を含んでい てもよい。 使用できる顔料としては、 特に限定はされないが、 たとえば、 力一 ボンブラック、 キナクリ ドン、 ナフ卜一ルレッ ド、 シァニンブル一、 シァニン グリーン、 ハンザイエロー等の有機顔料;酸化チタン、 硫酸バリウム、 弁柄、 複合金属酸化物等の無機顔料がよく、 これらの群から選ばれる 1種あるいは 2 種以上を組み合わせて使用しても差し支えない。 顔料の分散は、 特に限定はさ れず、 通常の方法、 たとえば、 ダイノ一ミール、 ペイントシエ一力一等により 顔料粉を直接分散させる方法等でよい。 その際、 分散剤、 分散助剤、 増粘剤、 カップリング剤等の使用が可能である。 顔料の添加量は、 顔料の種類により隠 蔽性が異なるので特に限定はされないが、 たとえば、 (A )、 (B )、 (D ) 成分 の全縮合化合物換算固形分合計 1 0 0重量部に対して、 好ましくは 5〜8 0重 量部、 より好ましくは 1 0〜6 0重量部である。 顔料の添加量が 5重量部未満 の場合は隠蔽性が悪くなる傾向があり、 8 0重量部を超えると塗膜の平滑性が 悪くなることがある。
なお、 レべリング剤、 染料、 金属粉、 ガラス粉、 抗菌剤、 酸化防止剤、 帯電 防止剤、 紫外線吸収剤等も、 本発明の効果に悪影響を与えない範囲内で無機質 コ—ティング材組成物に含まれていてもよい。
機能性コ一ティング材 ( 1 )、 ( 2 ) およびアクリル変性シリコン樹脂コ―テ イング材は、 それぞれ、 取り扱いの容易さから、 必要に応じて各種有機溶媒で 希釈して使用できるし、 また、 同有機溶媒で希釈したものであってもよい。 有 機溶媒の種類は、 (A;)、 ( B )、 ( D ) もしくは (E ) 成分の有する 1価炭化水 素基の種類、 または、 (A )、 ( B )、 ( D ) もし〈は (E ) 成分の分子量の大き さ等に応じて適宜選定することができる。 このような有機溶媒としては、 特に 限定はされないが、 たとえば、 メタノール、 エタノール、 イソプロパノール、 n—ブ夕ノール、 イソブタノ一ル等の低級脂肪族ァルコール類;エチレングリ コール、 エチレングリコールモノブチルエーテル、 酢酸エチレングリコ一ルモ ノエチルエーテル等のエチレングリコール誘導体; ジエチレングリコール、 ジ エチレングリコールモノブチルエーテル等のジエチレングリコール誘導体;お よび、 トルエン、 キジレン、 へキサン、 ヘプタン、 酢酸ェチル、 酢酸プチル、 メチルェチルケトン、 メチルイソブチルケトン、 メチルェチルケト才キシ厶、 ジァセ卜ンアルコール等を挙げることができ、 これらからなる群より選ばれた
1種もしくは 2種以上を使用することができる。 有機溶媒での希釈割合は、 特 に制限はなく、 必要に応じて希釈割合を適宜決定すればよい。
各コ一ティング材を基材に塗布する方法は、 特に限定されるものではなく、 たとえば、 刷毛塗り、 スプレー、 浸滇、 フロー、 ロール、 力一テン、 ナイフコ —卜、 スピンコー卜等の通常の各種塗布方法を選択することができる。
基材に塗布された各コ一ティング材を硬化させる方法は、 公知の方法を用い ればよく、 特に限定はされない。 また、 硬化の際の温度も特に限定はされず、 所望される硬化被膜性能や硬化触媒の使用の有無や光触媒の耐熱性等に応じて 常温〜加熱温度の広い範囲をとることができる。
機能性コーティング材( 1 ) または ( 2 ) から形成される硬化被膜の厚みは、 その大小に関わらず光触媒性能が発現されるので、特に制限はなく、たとえば、 0 . 0 1〜1 0 程度であればよいが、 光触媒作用をより効果的に発揮させ るとともに、 硬化被膜が長期的に安定に密着、 保持され、 かつ、 クラックや剥 離が発生しないためには、 0 . 0 5〜5 / mが好ましく、 0 . 0 5〜2 mが より好ましい。
ァクリル変性シリコン樹脂コ一ティング材から形成される硬化被膜の厚みは、 特に制限はなく、 たとえば、 0 . 1〜1 0 O i m程度であればよいが、 光触媒 による基材の劣化を抑え、 硬化被膜が長期的に安定に密着、 保持され、 かつ、 クラックや剥離が発生しないためには、 0 . 5〜5 0 mが好ましい。
本発明に係る機能性塗装品を製造する方法としては、特に限定はされないが、 たとえば、 本発明の製造方法が好ましい。
本発明の製造方法は、 たとえば、 以下のようにして行われる。
まず、 基材の表面に、 第 1塗布層としてァクリル変性シリコーンコ一ティン グ材を塗布した後、 この第 1塗布層を半硬化させる。 その後、 この半硬化層の 表面に機能性コーティング材 ( 1 ) または (2) を塗布する。 すなわち、 第 1 塗布層がまだ半硬化の段階で第 2塗布層として機能性コーティング材 ( 1 ) ま たは (2 ) を塗布する。 このとき、 もしも、 機能性コ一ティング材 ( 1 ) また は (2) を塗布する前に第 1塗布層を完全硬化させてしまうと、 機能性コ一テ イング材 ( 1 ) または (2) が第 1塗布層の完全硬化層によりはじかれてしま し、、 塗膜とならない。 また、 第 1塗布層がまだゥエツ 卜な状態で機能性コ一テ イング材 ( 1 ) または (2 ) を塗布すると、 第 1塗装層がリフティングを起こ す (第 1塗装層と基材との密着性が得られない)。
ここで、 本明細書中、 「半硬化」 とは、 J I S— K 5400— 1 990で規 定されている 「半硬化乾燥」 を指し、 塗面の中央を指先で静かに軽くこすった 時に塗面に擦り傷が付かない状態を意味する。 また、 「完全硬化」 とは、 J I S-K 5400- 1 990で規定されている 「硬化乾燥」 を指し、 塗面の中央 を親指と人指指とで強く挟んだ時に塗面に指紋によるへこみが付かず、 塗膜の 動きが感じられず、 また、 塗面の中央を指先で急速に繰り返してこすっても塗 面に擦り傷が付かない状態を意味する。 また、 「塗布層がまだゥエツ 卜な状態」 とは、 塗面の中央に指先で軽く触れた時に指先が汚れる状態を意味する。
上記のようにァクリル変性シリコン樹脂コ一ティング材の半硬化層の表面に 機能性コ一ティング材 ( 1 ) または (2) を塗布して第 2塗布層を形成した後 は、 これら半硬化層と第 2塗布層を硬化させる。
なお、 本発明の機能性塗装品を得るための方法は、 本発明の製造方法に限定 されない。
本発明で用いられる基材としては、 特に限定はされないが、 たとえば、 金属 基材、 有機質基材、 または、 これらの基材のうちのいずれかの表面に有機物被 膜を有する有機塗装基材を基材として用いた場合は、 ァクリル変性シリコン樹 月旨コ一ティング材の硬化被膜からなる第 1塗装層の介在により、 基材と塗膜と の密着性向上または基材劣化防止等の効果がより顕著に発現されるので、 基材 としては、 金属基材、 有機質基材、 および、 これらの基材のうちのいずれかの 表面に有機物被膜を有する有機塗装基材からなる群れの中から選ばれたものが 好ましい。 しかし、 これらの基材に限定するものではない。 たとえば、 金属基 材以外の無機質基材、 および、 金属基材以外の無機質基材の表面に有機物被膜 を有する有機塗装基材も使用可能である。
金属基材以外の無機質基材としては、 特に限定はされないが、 たとえば、 ガ ラス基材;ホー口—;水ガラス化粧板、 無機質硬化体等の無機質建材;セラミ ックス等が挙げられる。
金属基材としては、特に限定はされないが、 たとえば、非鉄金属〔たとえば、 アルミニウム (J I S— H4000等)、アルミニウム合金(ジュラルミン等)、 銅、 亜鉛等〕、 鉄、 鋼 〔たとえば、 圧延鋼 ( J I S— G 31 01等)、 溶融亜鉛 めっき鋼 ( J I S— G 3302等)、 (圧延) ステンレス鋼 (J I S— G430 4、 G 4305等) 等〕、 ブリキ (J I S— G3303等)、 その他の金属全般 (合金含む) が挙げられる。
ガラス基材としては、 特に限定はされないが、 たとえば、 ナトリウムソ一ダ ガラス、パイレックスガラス、石英ガラス、無アル力リガラス等が挙げられる。 前記ホ一ローとは、 金属表面にガラス質のホ一ローぐすりを焼き付け、 被覆 したものである。 その素地金属としては、 たとえば、 軟鋼板、 鋼板、 錡鉄、 ァ ルミニゥ厶等が挙げられるが、 特に限定はされない。 ホ一ローぐすりも通常の ものを用いればよく、 特に限定はされない。
前記水ガラス化粧板とは、 たとえば、 ケィ酸ソ一ダをスレートなどのセメン ト基材に塗布し、 焼き付けた化粧板などを指す。
無機質硬化体としては、 特に限定はされないが、 たとえば、 繊維強化セメン 卜板( J I S— A 5430等)、窯業系サイディング( J I S— A 5422等)、 木毛セメント板 (J I S— A5404等)、 パルプセメント板 (J I S— A5 414等)、 スレー ト .木毛セメント積層板 (J I S— A5426等)、 石膏ボ 一ド製品 (J I S— A6901等)、 粘土瓦 (J I S— A5208等)、 厚形ス レ一卜 (J I S— A5402等)、 陶磁器質タイル (J I S— A5209等)、 建築用コンクリ一卜ブロック ( J I S— A 5406等)、 テラゾ ( J I S— A 541 1等)、 プレス卜レストコンクリ一卜ダブル Tスラブ ( J I S— A 54 1 2等)、 ALCパネル (J I S— A541 6等)、 空洞プレス 卜レス 卜コンク リ―卜パネル ( J I S— A 651 1等)、 普通煉瓦 (J I S— R 1 250等) 等の無機材料を硬化、 成形させた基材全般を指す。
セラミックス基材としては、 特に限定はされないが、 たとえば、 アルミナ、 ジルコニァ、 炭化ケィ素、 窒化ケィ素等が挙げられる。
有機質基材としては、特に限定はされないが、 たとえば、 プラスチック、木、 木材、 紙等が挙げられる。
プラスチック基材としては、 特に限定はされないが、 たとえば、 ポリカーボ ネー卜樹脂、 アクリル樹脂、 A B S樹脂、 塩化ビニル樹脂、 エポキシ樹脂、 フ エノ一ル樹脂等の熱硬化性もし〈は熱可塑性プラスチックおよびこれらのブラ スチックをガラス繊維、 ナイロン繊維、 力一ボン繊維等の繊維で強化した繊維 強化プラスチック (F R P ) 等が挙げられる。
有機塗装基材を構成する有機物被膜としては、 特に限定はされないが、 たと えば、 アクリル系、 アルキド系、 ポリエステル系、 エポキシ系、 ウレタン系、 アクリルシリコン系、 塩化ゴム系、 フエノール系、 メラミン系等の有機樹脂を 含むコ—ティング材の硬化被膜等が挙げられる。
基材の形態については、 特に限定はされず、 たとえば、 フィルム状、 シ一卜 状、 板状、 繊維状等が挙げられる。 また、 基材は、 これらの形状の材料の成形 体、 または、 これらの形状の材料もしくはその成形体の少なくとも 1つを一部 に備えた構成体等であってもよい。
基材は、 上述した各種材料単独からなるものでもよいし、 上述した各種材料 のうちの少なくとも 2つを組み合わせてなる複合材料または上述した各種材料 のうちの少なくとも 2つを積層してなる積層材料でもよい。
本発明の機能性塗装品は、 その優れた光触媒作用に由来する各種効果を利用 して、 該塗装品を各種材料または物品の少な〈とも一部に装備させることによ り、 たとえば、 下記の用途に好適に用いることができる。
建物関連の部材または物品、たとえば、外装材(たとえば、外壁材、平板瓦 - 日本瓦 ·金属瓦等の瓦等)、 塩ビ雨とい等の樹脂製雨とい · ステンレス雨とい 等の金属製雨とい等の雨とい、 門およびそれに用いるための部材 (たとえば、 門扉 '門柱 '門塀等)、 フェンス (塀) およびそれに用いるための部材、 ガレ —ジ扉、 ホームテラス、 ドア、 柱、 力一ポ一卜、 駐輪ポ一卜、 サインポスト、 宅配ポスト、 配電盤 ' スィッチ等の配線器具、 ガスメーター、 インタ—ホン、 テレビドアホン本体およびカメラレンズ部、 電気錠、 エントランスポール、 縁 側、 換気扇吹き出し口、 建物用ガラス等;窓 (たとえば、 採光窓、 天窓、 ルー バー等の開閉窓等) およびそれに用いるための部材 (たとえば、 窓枠、 雨戸、 ブラインド等)、 自動車、 鉄道車両、 航空機、 船舶、 機械装置、 道路周辺部材
(たとえば、 防音壁、 卜ンネル内装板、各種表示装置、 ガ—ドレール、車止め、 高欄、 交通標識の標識板および標識柱、 信号機、 ボストコーン等)、 広告塔、 屋外または屋内用照明器具およびそれに用いるための部材 (たとえば、 ガラス 部材、 樹脂部材、 金属部材、 セラミックス部材等)、 太陽電池用ガラス、 農業 用ビニールおよびガラスハウス、 エアコン用室外機、 VH F ' U H F ' B S - C S等のアンテナ等。
なお、 本発明に従って第 1塗装層と第 2塗装層を上記の各種材料または物品 の少なくとも一部に直接形成させてもよいが、 これに限定されず、 たとえば、 本発明の機能性塗装品において基材としてフィル厶基材を用いたもの、 すなわ ちフィルム基材の表面に第 1塗装層と第 2塗装層を備えてなる機能性フィル厶 を上記の各種材料または物品の少なくとも一部に貼るようにしてもよい。 この ようなフィルムの基材は、 たとえば、 ポリエチレンテレフタレ一卜 (P E T) 樹脂、 ポリブチレンテレフタレ一卜 (P B T) 樹脂、 塩化ビニル樹脂、 ァクリ ル樹脂、 フッ素樹脂、 ポリプロピレン ( P P) 樹脂およびそれらの複合樹脂等 の樹脂が挙げられるが、 特に限定はされない。
実施例
以下、 実施例及び比較例によって本発明を詳細に説明する。 実施例及び比較 例中、特に断らない限り、 「部」はすべて「重量部」を、 「%」はすべて「重量%」 を、 「p p m」 はすべて 「重量 p p m」 を表す。 また、 分子量は G P C (ゲル パーミエ一シヨンクロマトグラフィー) により、 測定機種として東ソー (株) の H LC 8020を用いて、 標準ポリスチレンで検量線を作成し、 測定したも のである。なお、下記実施例は本発明を限定する意図で記載するものではない。 まず、 以下のようにして、 機能性コ一ティング材 ( 1 )、 ( 2 )、 アクリル変 性シリコン樹脂コ一ティング材およびそれらとの比較用のコ一ティング材を調 製した。
〔機能性コ—ティング材 ( 1 ) およびその比較用コ一ティング材の調製〕: <調製例 1 — 1 >
撹拌機、 加温ジャケッ 卜、 コンデンサー、 滴下口一卜及び温度計を取り付け たフラスコに、 メチル卜リメ トキシシラン 1 00部、 テトラエ卜キシシラン 2 0部、 I PA— S T (イソプロパノール分散コロイダルシリカゾル:粒子径 1 0〜20 nm、 固形分 30%、 水分 0. 5%、 日産化学工業社製) 1 05部、 ジメチルジメ トキシシラン 30部、 イソプロパノール 1 00部を投入した後、 この溶液の全縮合化合物換算固形分(30%)に対して 1 00 p p mの塩酸と、 ゲイ素アルコキシドに対して 3%の水を滴下し撹拌しながら 25°Cで 30分間 加水分解を行った。 その後、 冷却することにより、 重量平均分子量約 1700の シリコーンコ一ティング溶液を得た。これに、硬化触媒としてギ酸リチウム 0. 2部、 および、 光触媒として酸化チタン (石原産業 (株) 製 S T S— 0 1 、 平 均粒子径 7 n m固形分 30%) をシリコーンコーティング溶液の樹脂固形分と の重量比 (樹脂固形分/光触媒) で 80/20になるように添加した後、 メタ ノールで全固形分 1 0%になるように希釈することにより、 機能性コ一ティン グ材 ( 1 — 1 ) を得た。
<調製例 1 — 2〜1 一 5〉
調製例 1 において、 光触媒の添加量 (樹脂固形分/光触媒) (重量比) を、 60/40、 50/50、 40/60、 20/80に変更したこと以外は調製 例 1 と同様にして、 機能性コ一ティング材 ( 1 — 2) 〜 ( 1 — 5 ) を得た。 な お、 この時のオルガノシロキサンの重量平均分子量は約 1700 ((1 -2) 〜 (1- 5)) であった。
<比較調製例 1 >
調製例 1 において、 光触媒を全く使用しなかったこと以外は調製例 1 と同様 にして、 比較用コ一ティング材 ( 1 ) を得た。 この時のオルガノシロキサンの 重量平均分子量は 1700であった。
〔機能性コ—ティング材 (2 ) およびその比較用コ一ティング材の調製〕: コ—ティング材の調製に先立ち、 それに用いる (A) 成分および ( B) 成分 を以下の方法で調製した。
<調製例 A— 1 >
撹拌機、 加温ジャケッ 卜、 コンデンサ一及び温度計をつけたフラスコ中に I P A— S T (イソプロパノ一ル分散コロイダルシリカゾル:粒子怪 1 0〜20 门171、 固形分30%、 水分0. 5%、 日産化学工業社製) 1 00部、 メチル卜 リメ トキシシラン 68部、 水 2. 2部を投入し、 撹拌しながら 65°Cで 5時間 加水分解を行った後、 冷却することにより、 (A— 1 ) 成分を得た。 このもの は、室温で 48時間放置したときの全縮合化合物換算固形分が 37%であった。
A - 1の調製条件
-加水分解性基 1モルに対する水のモル数 0. 1
■ (A— 1 ) 成分のシリカ分含有量 47. 3%
- m= 1の加水分解性オルガノシランのモル% 1 00 m o 1 %
<調製例 B— 1 >
撹拌機、 加温ジャケッ 卜、 コンデンサー、 滴下ロー卜及び温度計を取り付け たフラスコに、 メチル卜リイソプロポキシシラン 220部 ( 1 m o 1 ) がトル ェン 1 50部に溶解してなる溶液を仕込み、 これに、 1 %塩酸水溶液 1 08部 を 20分かけて滴下し、 メチル卜リィソプロボキシシランを撹拌下 60。Cで加 水分解した。 滴下が終了してから 40分後に撹拌を止めた。 反応液を分液ロー 卜に移し入れて静置したところ、 二層に分離した。 少量の塩酸を含んだ下層の 水とイソプロピルアルコールの混合溶液を分液除去し、 後に残ったトルエンの 樹脂溶液中に残存している塩酸を水洗で除去し、 更にトルエンを減圧除去した 後、 イソプロピルアルコ一ルで希釈することにより、 重量平均分子量約 200 0のシラノール基含有ポリオルガノシロキサンのィソプロピルアルコール 4 0%溶液を得た。 これを (B— 1 ) 成分とした。
<調製例 2— 1 >
上記で得られた (A— 1 ) 成分および (B_ 1 ) 成分を下記の硬化触媒 (C - 1 ) および (C— 2 ) と下記の割合で混合し、 これに、 光触媒として酸化チ タン(石原産業(株)製 S T S— 02、平均粒子怪 7 nm固形分 30%) を(A 一 1 ) 成分および (B— 1 ) 成分の合計樹脂固形分との重量比 (樹脂固形分/ 光触媒) で 80/20になるように添加した後、 メタノールで全固形分 1 0% になるように希釈することにより、 機能性コ一ティング材 ( 2— 1 ) を得た。
( A— 1 ) 成分 50部 (固形分 1 8. 5部)
( B— 1 ) 成分 50部 (固形分 20部)
( C— 1 ) 成分 N—/5—アミノエチルーァ一ァミノプロピルメチルジメ 卜 キシシラン 2部
(C— 2 ) 成分: ジブチル錫ジラウレ一卜 0. 4部
<調製例 2— 2〜 2— 5 >
調製例 2— 1において、 光触媒の添加量 (樹脂固形分/光触媒) (重量比) を、 60/40、 50/50、 40/60、 20/80に変更したこと以外は 調製例 2— 1 と同様にして、 機能性コーティング材 ( 2— 2 ) 〜 ( 2— 5 ) を
<比較調製例 2 >
調製例 2 _ 1において、 光触媒を全〈使用しなかったこと以外は調製例 2 _ 1 と同様にして、 比較用コ一ティング材 ( 2) を得た。
〔アクリル変性シリコン樹脂コ一ティング材ぉよびその比較用コ一ティング材 の調製〕:
ァクリル変性シリコン樹脂コーティング材の調製に先立ち、 それに用いる ( A) 成分、 (B) 成分および (D) 成分を以下の方法で調製した。
<調製例 A_ 2>
撹拌機、 加温ジャケッ 卜、 コンデンサ—及び温度計をつけたフラスコ中に、 MA— S T (メタノール分散コ口ィダルシリ力ゾル:粒子怪 1 0〜 20 n m、 固形分 30%、 水分 0. 5°/0、 日産化学工業社製) 1 00部、 メチル卜リメ 卜 キシシラン 68部、 フエニルトリメ トキシシラン 49. 5部、 水 1 6. 0部、 無水酢酸 0. 1部を投入し、撹拌しながら 60°Cで 5時間加水分解を行った後、 冷却することにより、 (A— 2 ) 成分を得た。 このものは、 室温で 48時間放 置したときの全縮合化合物換算固形分が 4 1 %であった。
A— 2の調製条件
-加水分解性基 1モルに対する水のモル数 0. 4 ■ (A— 2) 成分のシリカ分含有量 31 . 3%
- m= 1の加水分解性オルガノシランのモル% 1 00 m o 1 %
<調製例 B— 2>
撹拌機、 加温ジャケッ 卜、 コンデンサー、 滴下ロー卜及び温度計を取り付け たフラスコに水 1 000部、 アセトン 50部を仕込み、 更にメチル卜リク□□ シシラン 44. 8部 (0. 3 mo Ί ) およびフエニル卜リク口口シラン 84. 6部 (0. 4mo 1 ) がトルエン 200部に溶解してなる溶液を撹拌下に滴下 しながら 60°Cで加水分解した。滴下が終了してから 40分後に撹拌を止めた。 反応液を分液ロートに移し入れて静置したところ、 二層に分離した。 下層の塩 酸水を分液除去し、 後に残つたオルガノポリシロキサンの卜ルェン溶液中に残 存している水と塩酸を減圧ス卜リッビングにより過剰のトルエンとともに除去 することにより、 重量平均分子量約 3000のシラノール基含有ポリオルガノ シロキサンのトルエン 60%溶液を得た。 これを (B— 2) 成分とした。 この (B-2) 成分中および前記 (B— 1 ) 成分中のシラノール基含有ポリオルガ ノシロキサンはいずれも前記平均組成式 (II) を満たすものであることが確認 されている。
<調製例 D_ 1 >
撹拌機、 加温ジャケヅ 卜、 コンデンサ—、 滴下口—卜、 窒素ガス導入■排出 口及び温度計を取り付けたフラスコ中で、 n_プチルメタクリレート (BMA) 5. 69部(40mmo l )、 卜リメ トキシシリルプロピルメタクリレー卜 (S M A ) 1 . 24部 ( 5 m m o 1 )、 グリシジルメタクリレー卜 ( G M A ) 0. 71部 (5mmo 1 )、 更に連鎖移動剤としてァ一メルカプトプロピル卜リメ 卜キシシラン 0. 784部 (4 mmo 1 ) をトルエン 8. 49部に溶解させて なる反応液に、 ァゾビスイソプチロニトリル 0. 025部( 0. 1 5 mmo 1 ) がトルエン 3部に溶解してなる溶液を窒素気流下で滴下し、 70°Cで 2時間反 応させた。 これにより、 重量平均分子量 1 000の重合物が得られ、 このァク リル樹脂溶液をそのまま (D— 1 ) 成分とした。
D - 1の調製条件
•単量体モル比率 BMA/SMA/GMA = 8. 0/1 . 0/1 . 0 -重量平均分子量 1 000
- 固形分含有量 40 %
ぐ調製例 D— 2 >
撹拌機、 加温ジャケッ 卜、 コンデンサ—、 滴下口—卜、 窒素ガス導入 '排出 口及び温度計を取り付けたフラスコ中で、 n—プチルメタクリレー卜(BMA) 0. 71部 ( 5 mmo 1 )、 卜リメ トキシシリルプロピルメタクリレー卜 ( S MA) 0. 62部 ( 2. 5 m m o 1 )、 グリシジルメタクリレート ( G M A ) 6. 04部 (42. 5mmo l )、 更に連鎖移動剤としてァ—メルカプトプロ ピル卜リメ 卜キシシラン 0. 1 96部 ( 1 mm o 1 ) をトルエン 8. 06部に 溶解させてなる反応液に、 ァゾビスイソプチロニ卜リル 0. 025部 (0. 1 5 mmo 1 )がトルエン 3部に溶解してなる溶液を窒素気流下で滴下し、 70°C で 2時間反応させた。これにより、重量平均分子量 3000の重合物が得られ、 このアクリル樹脂溶液をそのまま (D— 2)成分とした。
D— 2の調整条件
-単量体モル比率 BM A/SM A/GMA= 1 . 0/0. 5/8. 5 •重量平均分子量 3000
-固形分含有量 40 %
<調製例 D— 3>
撹拌機、 加温ジャケッ 卜、 コンデンサー、 滴下口一卜、 窒素ガス導入■排出 口及び温度計を取り付けたフラスコ中で、 n—プチルメタクリレー卜 (BMA) 6. 05部 (42. 5mmo l )、 卜リメ 卜キシシリルプロピルメタクリレー 卜 ( S M A ) 0. 62部 ( 2. 5 m m o Ί )、 グリシジルメタクリレー卜 ( G MA) 0. 71部 (5mmo l )、 更に連鎖移動剤としてァーメルカプトプロ ビルトリメ 卜キシシラン 0. 098部 (0. 5 mm o 1 ) をトルエン 8. 06 部に溶解させてなる反応液に、ァゾビスイソプチロニ卜リル 0. 025部(0. 1 5 mmo 1 ) がトルエン 3部に溶解してなる溶液を窒素気流下で滴下し、 7 0°Cで 2時間反応させた。 これにより、 重量平均分子量 5000の重合物が得 られ、 このアクリル樹脂溶液をそのまま (D— 3) 成分とした。
D-3の調整条件 ■単量体モル比率 BM A/SM A/GMA = 8. 5/0. 5/1 . 0 ■重量平均分子量 5000
■固形分含有量 40 %
<調製例 D— 4>
撹拌機、 加温ジャケッ 卜、 コンデンサ—、 滴下口—卜、 窒素ガス導入 '排出 口及び温度計を取り付けたフラスコ中で、 n_ブチルメタクリレート (BMA) 3. 20部 ( 22. 5mmo l )、 卜リメ 卜キシシリルプロピルメタクリレー 卜 ( S M A ) 1 . 24部 ( 5 m m o 1 )、 グリシジルメタクリ レー卜 ( G M A ) 3. 20部 ( 22. 5mmo l )、 更に連鎖移動剤としてァ一メルカプトプロ ピル卜リメ 卜キシシラン 0. 784部 ( 4 mm o 1 ) をトルエン 8. 46咅0に 溶解させてなる反応液に、 ァゾビスイソプチロニ卜リル 0. 025部 (0. 1 5 mmo 1 )がトルエン 3部に溶解してなる溶液を窒素気流下で滴下し、 70 °C で 2時間反応させた。これにより、重量平均分子量 1 000の重合物が得られ、 このアクリル樹脂溶液をそのまま (D— 4) 成分とした。
D-4の調整条件
-単量体モル比率 BM A SM A/GMA二 4. 5/1 . 0/4. 5 -重量平均分子量 1 000
-固形分含有量 40 %
<調製例 3>
上記で得られた (A— 2 ) 成分、 (B— 2) 成分および (D— 1 ) 成分を下 記の硬化触媒 (C一 1 ) および (C— 2 ) と下記の割合で混合した後、 イソプ 口ピルアルコールで固形分 25%になるように希釈することにより、 ァクリル 変性シリコン樹脂コ一ティング材 ( 1 ) を得た。
( A— 2 ) 成分 50部 (固形分 20. 5部)
( B - 2 ) 成分 50部 (固形分 30部)
( C— 1 ) 成分 N— 3—アミノェチルーァ一ァミノプロピルメチルジメ キシシラン 2部
(C一 2 ) 成分: ジブチル錫ジラウレート 0. 4部
(0— 1 ) 成分: 20. 25部 (固形分 8. 1部) ぐ調製例 4 >
調製例 3において、 (A— 2 )、 (B— 2)、 (C- 1 )、 (C- 2 ) および ( D - 1 ) 成分の配合割合を下記のように変更したこと以外は調製例 3と同様にし て、 アクリル変性シリコン樹脂コーティング材 ( 2 ) を得た。
(A- 2 ) 成分: 50部 (固形分 20. 5部)
(B - 2 ) 成分: 50部 (固形分 30部)
(C- 1 ) 成分: 2部
(C- 2 ) 成分: 0. 4部
(D- 1 ) 成分: 6部 (固形分 2. 4部)
ぐ調製例 5 >
調製例 3において、 (A— 2 )、 (B_ 2)、 (C— 1 )、 (C一 2 ) および ( D 一 1 ) 成分の配合割合を下記のように変更したこと以外は調製例 3と同様にし て、 ァクリル変性シリコン樹脂コ一ティング材 ( 3 ) を得た。
( A— 2 ) 成分 50部 (固形分 20. 5部)
( B— 2 ) 成分 50部 (固形分 30部)
( C— 1 ) 成分 2部
( C— 2 ) 成分 0. 4部
( D— 1 ) 成分 53部 (固形分 20部)
<比較調製例 3 >
調製例 3において、 ( D— 1 ) 成分を全く使用しなかつたこと以外は調製例
3と同様にして、 比較用コーティング材 (3) を得た。
ぐ調製例 6 >
調整例 3において、 (A— 2 ) 成分、 (B— 2 ) 成分をそれぞれ (A— 1 ) 成 分、 (B— 1 ) 成分に変更するとともに、 各成分の配合割合を下記の通りとし たこと以外は調整例 3と同様にして、 ァクリル変性シリコン樹脂コ一ティング 材 (4) を得た。
( A - 1 ) 成分 1 0部 (固形分 3. 7部)
( B _ 1 ) 成分 1 0部 (固形分 4部)
(C— 1 ) 成分 3部 (C一 2) 成分: 0. 4部
(D— 1 ) 成分: 1 80部 (固形分 72部)
ぐ調製例 7 >
調整例 3において、 (A— 2 ) 成分、 (B— 2 ) 成分をそれぞれ (A— 1 ) 成 分、 (B— 1 ) 成分に変更するとともに、 各成分の配合割合を下記の通りとし たこと以外は調整例 3と同様にして、 ァクリル変性シリコン樹脂コ一ティング 材 ( 5) を得た。
(A - 1 ) 成分 50部 (固形分 1 8 · 5部)
(B - 1 ) 成分 50部 (固形分 20部)
(。- 1 ) 成分 3部
(C - 2) 成分 0. 4部
(D— 1 ) 成分 50部 (固形分 20部)
<調整例 8 >
調整例 3において、 (A— 2) 成分、 (B— 2 ) 成分、 (D— 1 ) 成分をそれ それ (A— 1 ) 成分、 ( B— 1 ) 成分、 (D— 2 ) 成分に変更するとともに、 各 成分の配合割合を下記の通りとしたこと以外は調整例 3と同様にして、 ァクリ ル変性シリコン樹脂コーティング材 (6 ) を得た。
(A - 1 ) 成分 1 0部 (固形分 3. 7部)
(B - 1 ) 成分 1 0部 (固形分 4部)
(C- 1 ) 成分 2部
(C- 2 ) 成分 0. 4部
(D— 2) 成分 80部 (固形分 32部)
<調整例 9 >
調整例 3において、 (A— 2 ) 成分、 (B— 2 ) 成分、 (D— 1 ) 成分をそれ それ (A— 1 ) 成分、 ( B— 1 ) 成分、 (D— 2) 成分に変更するとともに、 各 成分の配合割合を下記の通りとしたこと以外は調整例 3と同様にして、 ァクリ ル変性シリコン樹脂コーティング材 ( 7 ) を得た。
(A— 1 ) 成分: 1 0部 (固形分 3. 7部)
(B— 1 ) 成分: 1 0部 (固形分 4部) (C_ 1 ) 成分: 3部
(C— 2 ) 成分: 0. 4部
(D— 2 ) 成分: 1 80部 (固形分 72部)
<調整例 1 0>
調整例 3において、 (A— 2 ) 成分、 (B— 2) 成分、 (D— 1 ) 成分をそれ それ (A— 1 ) 成分、 (B— 1 ) 成分、 (D— 3 ) 成分に変更するとともに、 各 成分の配合割合を下記の通りとしたこと以外は調整例 3と同様にして、 ァクリ ル変性シリコン樹脂コーティング材 (8) を得た。
(A- 1 ) 成分 1 0部 (固形分 3. 7部)
(B- 1 ) 成分 1 0部 (固形分 4部)
(C- 1 ) 成分 3部
(C- 2 ) 成分 0. 4部
(D- 3 ) 成分 1 80部 (固形分 72部)
<調整例 1 1 >
調整例 3において、 (A— 2 ) 成分、 (B— 2 ) 成分、 (D— 1 ) 成分をそれ それ (A— 1 ) 成分、 (B— 1 ) 成分、 (D— 4) 成分に変更するとともに、 各 成分の配合割合を下記の通りとしたこと以外は調整例 3と同様にして、 ァクリ ル変性シリコン樹脂コーティング材 ( 9 ) を得た。
(A- 1 ) 成分 1 0部 (固形分 3. 7部)
(B- 1 ) 成分 1 0部 (固形分 4部)
(C- 1 ) 成分 3部
(C- 2 ) 成分 0. 4部
(D— 4) 成分 1 80部 (固形分 72部)
<実施例 1〜1 0および比較例 1 2 >
基材として PC (ポリカーボネ 卜)板(50mmx 50mmx 2. 5 mm) を用い、 その表面に、 調製例 3で得られたアクリル変性シリコン樹脂コ—ティ ング材 ( 1 ) をスプレー塗装で硬化被膜厚 1 tmになるように塗布して第 1塗 布層を形成させた後、 60°Cで 1 5分間硬化させた。 その後、 1 0分間セッテ イング時間をおいた。 このセッティング時間の終了後、 塗面の中央を親指と人 指指とで強〈挟んでみたところ、 塗面に指紋によるへこみが付き、 塗膜の動き が感じられた。 しかし、 塗面の中央を指先で静かに軽くこすっても塗面に擦り 傷が付かなかった。 このことから、 第 1塗布層が半硬化状態にあることが確認 された。
この半硬化状態の第 1塗布層の表面に機能性コーティング材( 1— 1 )〜( 1 — 5 )、 (2— "! ) 〜 ( 2— 5 ) または比較用コ一ティング材 ( 1 ) 〜 ( 2 ) を スプレ一塗装で硬化被膜厚 0 . 5 μ ηηになるように塗布して第 2塗布層を形成 させた後、 この第 2塗布層を室温で一週間放置することにより、 機能性塗装品 ( 1 ) 〜 ( 1 0 ) および比較用塗装品 ( 1 ) 〜 ( 2 ) を得た。
機能性塗装品 ( 1 ) 〜 ( 1 0 ) および比較用塗装品 ( 1 ) 〜 ( 2 ) について、 塗膜特性試験と、基材および塗膜の劣化防止性試験を下記の評価方法で行つた。 (塗膜特性評価):
密着性:基材への密着性を碁盤目粘着テープ (セロハンテープ使用) 剥離試 験で評価した。
表面硬度:鉛筆硬度試験 ( J I S— K 5 4 0 0に準ずる) による。
光触媒作用 :サンプルを入れた 3 0 0 m lの容器中に 5 0 p p mのァセ卜ァ ルデヒドを注入し、 1 0 Wのブラックライ 卜を 6 0分間照射し、 ガスクロマ卜 グラフィー (島津製作所 G C 1 4 A ) を用いてァセ卜アルデヒド除去率 (%) を測定した。
水に対する濡れ性:水と塗膜との接触角を測定することにより評価した。 接 触角は、 塗膜作成後の初期のものと、 紫外線照射装置 (オーク製作所ハンディ U V 3 0 0 ) を用いて紫外線を 2 4時間照射後のものとをそれぞれ測定した。 (基材および塗膜の劣化の有無の評価):
サンシャインゥェザオメ一ター (J I S— K 5 4 0 0に準ずる) で 2 5 0 0 時間照射後、 基材と塗膜を観察して変化のないものを良好とした。
評価結果を表 1、 2に示した。 これらの表にみるように、 第 2塗装層中、 光 触媒として用いた酸化チタンの含有量が多いぼど光触媒性能は良好であるが、 逆に、 硬度は酸化チタンの割合が 8割にもなると若干劣る。 また、 基材と第 1 塗装層との密着性、 および第 1塗装層と第 2塗装層との密着性はいずれも良好 であった。 また、 機能性塗装品 ( 1 ) 〜 ( 1 0 ) (こついては、 光触媒を含む第 2塗装層が室温で硬化させた塗膜であるにも関わらず、 十分な光触媒性能を示 した。 塗膜の濡れ性については、 いづれの機能性塗装品も、 紫外線照射後は光 触媒の含有量の大小に関係な〈接触角が数度となり、 高い濡れ性を示した。 さ らに、光触媒を含む塗装層を有する機能性塗装品 ( 1 ) 〜 ( 1 0 ) については、 基材として光触媒による劣化を受けやすい有機基材である P C板を用いたにも 関わらず、 光触媒含有塗装層と基材の間にァクリル変性シリコン樹脂コーティ ング材の塗装層が介在することにより、基材の劣化が十分に防止された。また、 塗膜の劣化も見られなかった。
<比較例 3 >
実施例 1において、 第 2塗装層として、 機能性コーティング材の硬化被膜を 形成させる代わりに酸化チタンのみの層をもうけたこと以外は実施例 1 と同様 の操作を行うことにより、 比較用塗装品 (3 ) を得た。
比較用塗装品 (3 ) について、 前述の方法で塗膜特性と基材および塗膜の劣 化の評価を行った。
その結果を表 3に示した。 この表にみるように、 光触媒性能は非常に良好で あるが、 第 2塗装層はゾルのみからなるため塗膜は脆く、 第 1塗装層と第 2塗 装層とは密着せず、 また、 硬度も測定しがたいものとなった。 基材の劣化につ いては、 P C板に黄変が見られた。
<比較例 4 >
実施例 3において、 第 1塗装層として、 ァクリル変性シリコン樹脂コ一ティ ング材 ( 1 ) の硬化被膜を形成させる代わりに、 (D ) 成分を含まない比較用 コーティング材 (3 ) の硬化被膜を形成させたこと以外は実施例 3と同様の操 作を行うことにより、 比較用塗装品 (4 ) を得た。
比較用塗装品 (4 ) について、 前述の方法で塗膜特性と基材および塗膜の劣 化の評価を行った。
その結果を表 3に示した。 この表にみるように、 基材と第 1塗装層との密着 性が得られなかった。 基材および塗膜の劣化については問題なかった。
<比較例 5 > 実施例 3において、 基材の表面に、 アクリル変性シリコン樹脂コーティング 材を全く塗布せずに機能性コーティング材 ( 1 —3) を直接塗布し、 硬化させ たこと以外は実施例 3と同様の操作を行うことにより、 比較用塗装品 (5) を 得た。
比較用塗装品 (5) について、 前述の方法で塗膜特性と基材および塗膜の劣 化の評価を行った。
その結果を表 3に示した。 この表にみるように、 基材と機能性コ一ティング 材の硬化被膜との密着性は得られなかった。 また、 機能性コーティング材の硬 化被膜に含まれる光触媒の作用により基材が劣化した。
<比較例 6>
比較例 1において、 基材の表面に、 アクリル変性シリコン樹脂コーティング 材を全〈塗布せずに比較用コーティング材 ( 1 ) を直接塗布し、 硬化させたこ と以外は比較例 1 と同様の操作を行うことにより、比較用塗装品(6)を得た。 比較用塗装品 (6) について、 前述の方法で塗膜特性と基材および塗膜の劣 化の評価を行った。
その結果を表 3に示した。 この表にみるように、 基材および塗膜の劣化はみ られなかったが、基材とコーティング材硬化被膜との密着性は得られなかった。 <実施例 1 1〜1 3> (着色塗装の例)
実施例 3において、 第 1塗装層の形成に用いたァクリル変性シリコン樹脂コ 一ティング材 ( 1 ) の代わりに、 このァクリル変性シリコン樹脂コ一ティング 材 ( 1 ) に下記の顔料 1〜3を添加してなるエナメルを用いて第 1塗装層の形 成を行ったこと以外は実施例 3と同様の操作を行うことにより、 機能性塗装品 ( 1 1 ) 〜 ( 1 3) を得た。
顔料 1 : 白色顔料 (石原産業製) P. W. C. 40
顔料 2 :黄色顔料 (大日精化製) P. W. C. 40
顔料 3 :黒色顔料 (大日精化製) P. W. C. 40
但し、 P. W. C . : Pigment Weight Concentration: (固形分中の顔料 の重量%)
<実施例 1 4〜1 6> (着色塗装の例) 実施例 8において、 第 1塗装層の形成に用いたァクリル変性シリコン樹脂コ —ティング材 ( 1 ) の代わりに、 このアクリル変性シリコン樹脂コーティング 材 ( 1 ) に上記顔料 1〜3を添加してなるエナメルを用いて第 1塗装層の形成 を行ったこと以外は実施例 8と同様の操作を行うことにより、機能性塗装品( 1 4) 〜 ( 1 6 ) を得た。
機能性塗装品 ( 1 1 ) 〜 ( 1 6) について、 前述の方法で塗膜特性と基材ぉ よび塗膜の劣化の評価を行った。
その結果を表 4に示した。 この表にみるように、 第 1塗装層をエナメルコ一 卜としても、 塗膜特性と基材および塗膜の劣化に問題はない。
<実施例 1 7〉
実施例 3において、 第 2塗装層の硬化被膜の厚みを 0. 1 mに変更したこ と以外は実施例 3と同様の操作を行うことにより、 機能性塗装品 ( 1 7 ) を得 た。
<実施例 1 8>
実施例 8において、 第 2塗装層の硬化被膜の厚みを 0. 1 / mに変更したこ と以外は実施例 8と同様の操作を行うことにより、 機能性塗装品 ( 1 8) を得 た。
ぐ比較例 7 >
比較例 1において、 第 2塗装層の硬化被膜の厚みを 0. 1 μηηに変更したこ と以外は比較例 1 と同様の操作を行うことにより、比較用塗装品(7 ) を得た。 機能性塗装品 ( 1 7 )、 ( 1 8) および比較用塗装品 (7) について、 前述の 方法で塗膜特性と基材ぉよび塗膜の劣化の評価を行つた。
その結果を表 5に示した。 この表にみるように、 機能性塗装品 ( 1 7 )、 ( 1 8 ) の、 光触媒を含む機能性コーティング材の硬化被膜は、 膜厚が小さいにも 関わらず、 いづれも紫外線の照射を受けた後は、 接触角が数度となり、 高い濡 れ性を示した。 一方、 光触媒を含まないシリコーンコーティング材を用いた比 較用塗装品 (7 ) の塗膜では、 この性能は見られなかった。
ぐ実施例 1 9>
実施例 3において、 アクリル変性シリコン樹脂コーティング材 ( 1 ) の代わ りに調製例 4で得られたアクリル変性シリコン樹脂コーティング材 ( 2) を用 いたこと以外は実施例 3と同様の操作を行うことにより、機能性塗装品( 1 9) を得た。
<実施例 20>
実施例 3において、 アクリル変性シリコン樹脂コーティング材 ( 1 ) の代わ りに調製例 5で得られたアクリル変性シリコン樹脂コーティング材 (3 ) を用 いたこと以外は実施例 3と同様の操作を行うことにより、機能性塗装品( 20) ¾1=g=/ o
機能性塗装品 ( 1 9 ) 〜 (20) について、 前述の方法で塗膜特性と基材ぉ よび塗膜の劣化の評価を行った。
その結果を表 6に示した。 この表にみるように、 基材と第 1塗装層との密着 性および第 1塗装層と第 2塗装層との密着性に問題はなく、 その他の性能に関 しても問題はない。
ぐ実施例 2 1 >
実施例 3において、 基材として P C板の代わりにそれと同サイズの塩化ビニ ル板を用いたこと以外は実施例 3と同様の操作を行うことにより、 機能性塗装 品 ( 21 ) を得た。
<実施例 22>
実施例 8において、 基材として P C板の代わりにそれと同サイズの塩化ビニ ル板を用いたこと以外は実施例 8と同様の操作を行うことにより、 機能性塗装 品 ( 22 ) を得た。
<比較例 8>
実施例 3において、 基材として P C板の代わりにそれと同サイズの塩化ビニ ル板を用いるとともに、 この塩化ビニル板の表面に、 アクリル変性シリコン樹 脂コーティング材を全く塗布せずに機能性コ一ティング材 ( 1 — 3 ) を直接塗 布し、 硬化させたこと以外は実施例 3と同様の操作を行うことにより、 比較用 塗装品 (8) を得た。
ぐ実施例 23>
実施例 3において、 基材として PC板の代わりにそれと同サイズの有機塗装 板 (ステンレス板からなる無機基材の表面に、 アクリル系塗料 (ロックペイン 卜社製パーマロック) の厚さ 1 0 imの被膜を有するもの) を用いたこと以外 は実施例 3と同様の操作を行うことにより、 機能性塗装品 (23) を得た。 <実施例 24>
実施例 8において、 基材として P C板の代わりにそれと同サイズの有機塗装 板 (ステンレス板からなる無機基材の表面に、 アクリル系塗料 (ロックペイン 卜社製パーマロック) の厚さ 1 0 mの被膜を有するもの) を用いたこと以外 は実施例 8と同様の操作を行うことにより、 機能性塗装品 ( 24) を得た。 ぐ比較例 9 >
実施例 3において、 基材として PC板の代わりにそれと同サイズの有機塗装 板 (ステンレス板からなる無機基材の表面に、 アクリル系塗料 (ロックペイン 卜社製パ一マロック)の厚さ 1 0 mの被膜を有するもの)を用いるとともに、 この有機塗装板の表面に、 ァクリル変性シリコン樹脂コ—ティング材を全〈塗 布せずに機能性コーティング材 ( 1—3) を直接塗布し、 硬化させたこと以外 は実施例 3と同様の操作を行うことにより、 比較用塗装品 (9) を得た。
機能性塗装品 ( 21 ) 〜 ( 24 ) および比較用塗装品 ( 8 ) 〜 ( 9 ) につい て、 前述の方法で塗膜特性と基材および塗膜の劣化の評価を行った。
その結果を表 7に示した。 この表にみるように、 アクリル変性シリコン樹脂 コ—ティング材の硬化被膜を第 1塗装層として形成させた実施例の機能性塗装 品 ( 21 ) 〜 ( 24 ) はいずれも密着性に問題はなく、 基材および塗膜の劣化 も見られず、 その他の性能も良好であった。 これに対し、 比較例の比較用塗装 品 (8) 〜 (9) は、 基材に対する塗膜の密着性も悪く、 また、 光触媒による 基材の劣化が見られた。
ぐ実施例 25>
実施例 3において、 基材として PC板の代わりにそれと同サイズのステンレ ス板を用いたこと以外は実施例 3と同様の操作を行うことにより、 機能性塗装 品 (25 ) を得た。
<実施例 26>
実施例 8において、 基材として P C板の代わりにそれと同サイズのステンレ ス板を用いたこと以外は実施例 8と同様の操作を行うことにより、 機能性塗装 品 ( 26 ) を得た。
く比較例 1 0>
実施例 3において、 基材として PC板の代わりにそれと同サイズのステンレ ス板を用いるとともに、 このステンレス板の表面に、 アクリル変性シリコン樹 脂コ—ティング材を全〈塗布せずに機能性コーティング材 ( 1 — 3 ) を直接塗 布し、 硬化させたこと以外は実施例 3と同様の操作を行うことにより、 比較用 塗装品 ( 1 0) を得た。
機能性塗装品 ( 25 ) 〜 ( 26 ) および比較用塗装品 ( 1 0) について、 前 述の方法で塗膜特性と基材および塗膜の劣化の評価を行った。
その結果を表 8に示した。 この表にみるように、 いずれの塗装品も、 無機基 材を使用しているため基材の劣化に問題はないが、 アクリル変性シリコン樹脂 コーティング材硬化被膜からなる第 1塗装層が欠如した比較用塗装品 ( 1 0) については密着性に欠ける。
<実施例 27>
実施例 3において、 基材として PC板の代わりにそれと同サイズのガラス板 を用いたこと以外は実施例 3と同様の操作を行うことにより、機能性塗装品( 2
7) を ί寻た。
<実施例 28>
実施例 8において、 基材として P C板の代わりにそれと同サイズのガラス板 を用いたこと以外は実施例 8と同様の操作を行うことにより、機能性塗装品( 2
8) を得た。
<実施例 29>
実施例 3において、 基材として P C板の代わりにそれと同サイズのタィルを 用いたこと以外は実施例 3と同様の操作を行うことにより、 機能性塗装品 (2
9 ) を得た。
<実施例 30>
実施例 8において、 基材として PC板の代わりにそれと同サイズのタイルを 用いたこと以外は実施例 8と同様の操作を行うことにより、 機能性塗装品 (3 0) を得た。
<実施例 3 1 >
実施例 3において、 基材として PC板の代わりにそれと同サイズのホー口一 板を用いたこと以外は実施例 3と同様の操作を行うことにより、 機能性塗装品 (3 1 ) を得た。
<実施例 32>
実施例 8において、 基材として P C板の代わりにそれと同サイズのホ一口一 板を用いたこと以外は実施例 8と同様の操作を行うことにより、 機能性塗装品 (32) を得た。
機能性塗装品 ( 27 ) 〜 ( 32 ) について、 前述の方法で塗膜特性と基材ぉ よび塗膜の劣化の評価を行った。
その結果を表 8、 9に示した。 これらの表にみるように、 いずれの塗装品も、 無機基材を使用しているため基材の劣化に問題はなかった。 また、 その他の性 能にも問題はなかった。
<比較例 1 1 >
実施例 3において、 P C板の表面に塗布したァクリル変性シリコン樹脂コ— ティング材 ( 1 ) を 1 50°Cで 30分間焼き付けて完全硬化 (実施例 3と同様 にして求めた、 硬化したァクリル変性シリコーンコ一ティング材の割合が 1 0 0重量%) させてから、 その表面に機能性コーティング材 ( 1 一 3 ) を塗布し たこと以外は実施例 3と同様の作業を行うことにより、 比較用塗装品 ( 1 1 ) を
しかし、 機能性コーティング材 ( 1 —3 ) がアクリル変性シリコン樹脂コ一 ティング材 ( 1 ) の完全硬化層によりはじかれてしまったため、 機能性コ一テ イング材 ( 1 —3 ) の塗膜を形成することができなかった。
<比較例 1 2>
実施例 3において、 P C板の表面に塗布したァクリル変性シリコン樹脂コ― ティング材 ( 1 ) を室温で 1 0分間放置し、 その塗布層がまだゥエツ 卜な状態 でその表面に機能性コーティング材 ( 1 一 3) を塗布したこと以外は実施例 3 と同様の作業を行うことにより、 比較用塗装品 ( 1 2 ) を得た。 比較用塗装品 ( 1 2 ) について、 前述の方法で塗膜特性と基材および塗膜の 劣化の評価を行った。
その結果を表 1 0に示した。 この表にみるように、 基材と第 1塗装層の間に 十分な密着性が得られなかった。
<実施例 33〜37>
実施例 3において、 基材として PC板の代わりにそれと同サイズのタイルを 用いるとともに、 第 1塗装層の形成にァクリル変性シリコン樹脂コ一ティング 材 ( 1 ) の代わりにァクリル変性シリコン樹脂コ一ティング材 (4 ) 〜 (8) を用いたこと以外は実施例 3と同様の操作を行うことにより、機能性塗装品(3 3 ) 〜 (37) を得た。
ぐ実施例 38>
実施例 8において、 基材として PC板の代わりにそれと同サイズのタイルを 用いるとともに、 第 1塗装層の形成にァクリル変性シリコン樹脂コ一ティング 材 ( 1 ) の代わりにァクリル変性シリコン樹脂コ一ティング材 ( 9 ) を用いた こと以外は実施例 8と同様の操作を行うことにより、 機能性塗装品 (38 ) を 1寸,こ o
<比較例 1 3>
実施例 8において、 基材として PC板の代わりにそれと同サイズのタイルを 用い、 第 1塗装層の形成にアクリル変性シリコン樹脂コーティング材 ( 1 ) の 代わりに市販エポキシ系プライマ— (ェポ αΖプライマ—、 イサム塗料株式会 社製) を用い、 さらに、 第 1塗装層の硬化被膜厚を 8 mに変更したこと以外 は実施例 8と同様の操作を行うことにより、 比較用塗装品 ( 1 3 ) を得た。 <比較例 1 4>
実施例 8において、 基材として P C板の代わりにそれと同サイズのタィルを 用い、 第 1塗装層の形成にアクリル変性シリコン樹脂コーティング材 ( 1 ) の 代わりにアクリル変性シリコン樹脂コーティング材 (7 ) を用い、 第 2塗装層 の形成に機能性コーティング材 (2— 3 ) の代わりに比較用コーティング材 ( 1 ) を用いたこと以外は実施例 8と同様の操作を行うことにより、 比較用塗 装品 ( 1 4) を得た。 機能性塗装品 (29)、 (30)、 (33) 〜 (38) および比較用塗装品 ( 1 3)、 ( 1 4) について、 塗膜の耐久性と光触能の第 1塗装層への影響を確認す るため、 前述のサンシャインゥェザ才メーターを用い、 以下の促進耐候性評価 を行った。 なお、 塗装品の基材としてタイルを用いたのは、 タイルは耐候性劣 化が少ないため、 塗膜自身の耐久性を明確に調べることができるからである。 試験時間は 4000時間で、 塗膜の密着性と変色度合いを調べた。 なお、 途 中 2500時間でも、 塗膜の密着性と変色度合いを調べた。
密着性は、 前述した方法で調べた。
変色度合いの測定には J I S— Z 8730に規定する色差(ΔΕ)を用いた。 一般的に人間の目視評価では、 △ Eが 3以上では変色が確認できると言われて いる。 また、 サンシャインゥェザ才メータ一照射 4000時間は自然環境暴露 下で約 1 0年に相当すると言われている。
評価結果を表 1 1、 1 2に示す。
表 1 1、 1 2にみるように、 実施例の機能性塗装品 ( 29 )、 (30)、 (33) 〜 (38) については、 第 1塗装層中の (D) 成分比率が多くなると、 特に 4 000時間後での変色が大きくなつている。 しかし、 高耐久が要求される用途 以外では実用上問題はないと思われる。 特に、 実施例 36の機能性塗装品 (3 6) では、 4000時間後に第 1塗装層と第 2塗装層の間で一部密着不良が発 生したが、 2500時間では劣化は確認されなかった。
また、 市販エポキシ系プライマ一を用いた比較例 1 3の塗装品では、 著しい 塗膜性能の低下を示している。 比較例 1 4の塗装品については、 第 2塗装層に 光触媒を含まないため、 実施例 36の機能性塗装品 (36) と第 1塗装層が同 じであるにも関わらず、 塗膜の変色度合いは軽減されていた。
<実施例 39>
松下電工 (株) 本社 (大阪府門真市) 構内の道路側面のコンクリー卜約 5 m 2 (無塗装) に、 コンクリートのアルカリ成分溶出を防ぐためにェポ α Εブラ イマ一 (イサム塗料製) を所定の条件で下地処理し、 24時間乾燥後、 実施例 1 1で作製した顔料含有ァクリル変性シリコン樹脂コ—ティング材を硬化被膜 厚約 30 mになるように着色塗装した。 室温で 5時間放置後、 半硬化状態を 確認し、 調製例 2— 3で作製した機能性コーテイ ング材 ( 2— 3 ) を硬化被膜 厚約 0. 5 Aimになるように塗装した。 塗装は全てハンドロールを用いた。 約 3ヶ月暴露後、 塗装した道路側壁は、 汚れもなく、 塗装初期の状態を保つ ていた。
ぐ実施例 40>
松下電工 (株) 本社 (大阪府門真巿) 構内の道路標識 (横 600 mm X縦 3 50mmの一方通行標識) 及びポールに、 エタノールで汚れを拭き取った後、 調製例 3で作製したアクリル変性シリコン樹脂コーティング材 ( 1 ) を硬化被 膜厚約 になるように塗装した。 室温で 5時間放置後、 半硬化状態を確認 し、 調製例 1—3で作製した機能性コーティング材 ( 1—3) を硬化被膜厚約 0. 5Aimになるように塗装した。 塗装は全て刷毛を用いた。
約 3ヶ月暴露後、 塗装した道路標識は、 汚れもなく、 塗装初期の状態を保つ ていた。
<実施例 41 >
道路標識用反射テープ (住友スリ一ェム製) 及び道路用ポストコーン (日本 メク トロン製) に、 実施例 3と同様にして第 1塗装層および第 2塗装層を施し た。 反射テープをボス卜コーンに貼り付け、 松下電工 (株) 本社 (大阪府門真 巿) 構内の道路脇に約 3ヶ月暴露したところ、 ポス卜コーンは、 汚れもなく、 塗装初期の状態を保っていた。
<実施例 42>
松下電工 (株) 本社 (大阪府門真巿) 構内の本館外壁約 1 Om2 (タイル貼 り壁面) に、 調製例 3で作製したアクリル変性シリコン樹脂コーティング材 ( 1 ) を硬化被膜厚約 8 zmになるように塗装した。 室温で 4時間放置後、 半 硬化状態を確認し、さらに、調製例 1一 3で作製した機能性コーティング材( 1 -3) を硬化被膜厚約 0. 5 Atmになるように塗装した。 塗装は全てハンド口 ールを用いた。 約 3ヶ月暴露後、 塗装した建物は、 汚れもなく、 塗装初期の状 態を保っていた。
ぐ実施例 43 >
松下電工 (株) 本社 (大阪府門真巿) 構内の研究所 (東面 2階) ガラス約 1 m 2 (厚み 6 mm) に、 エタノールで汚れを拭き取った後、 調製例 3で作製し たアクリル変性シリコン樹脂コーティング材 ( 1 ) を硬化被膜厚約 にな るように塗装した。 室温で 2時間放置後、 半硬化状態を確認し、 さらに、 調製 例 2— 3で作製した機能性コーティング材 (2— 3 ) を硬化被膜厚約 0. 5 mになるように塗装した。塗装方法は全てフローコー卜 (流し塗り)を用いた。 約 3ヶ月暴露後、 塗装した建物は、 汚れもなく、 塗装初期の状態を保ってい た。
ぐ実施例 44 >
松下電工 (株) 本社 (大阪府門真巿) 構内の道路灯 (松下電工 (株) 製 YA 32020歩道用) 前面ガラス及びポール、 反射板外面等の器具全体に、 エタ ノールで汚れを拭き取った後、 調製例 3で作製したァクリル変性シリコン樹脂 コ—ティング材 ( 1 ) を硬化被膜厚約 1 μιηになるように塗装した。 室温で 2 時間放置後、 半硬化状態を確認し、 さらに調製例 1 一 3で作製した機能性コ— ティング材 ( 1 — 3) を硬化被膜厚約 0. 5 mになるように塗装した。 塗装 は全てスポンジロールを用いた。
約 3ヶ月暴露後、塗装した前面ガラス及びポール、反射板等は、汚れもなく、 塗装初期の状態を保っていた。
ぐ実施例 45>
自動車 (トヨタスプリンター平成 2年式) の車体に、 エタノールで汚れを拭 き取つた後、 調製例 3で作製したァクリル変性シリコン樹脂コーティング材 ( 1 ) を硬化被膜厚約 1 mになるように塗装した。 室温で 2時間放置後、 半 硬化状態を確認し、 さらに調製例 1 一 3で作製した機能性コ—ティング材 ( 1 -3 ) を硬化被膜厚約 0. 5 mになるように塗装した。 塗装は全てスポンジ ロールを用いた。
約 3ヶ月暴露後、 塗装した自動車は、 汚れもなく、 塗装初期の状態を保って いた。
<実施例 46>
セメント系外装材(松下電工(株)製マルチサイディングプリックタイル柄) に、 アルカリ成分溶出を防ぐためェポロ巳プライマ一 (イサム塗料製) を所定 の条件で下地処理し、 2 4時間乾燥後、 実施例 1 1で作製した顔料含有ァクリ ル変性シリコン樹脂コ—ティング材を硬化被膜厚約 S O mになるように着色 塗装した。 室温で 5時間放置後、 半硬化状態を確認し、 調製例 2— 3で作製し た機能性コ一ティング材 ( 2— 3 ) を硬化被膜厚約 0 . 5 / mになるように塗 装した。 塗装は全てエアレススプレーを用いた。
約 3ヶ月暴露後、 塗装した外装材は、 汚れもなく、 塗装初期の状態を保って いた。
く実施例 4 7 >
富士型蛍光灯器具 2 0 W用(松下電工(株)製 F A 2 2 0 6 3 )の反射板(鋼 板に白色メラミン塗装を施したもの) に、 第 2塗装層を 9 0 °Cで 1 5分間乾燥 させたこと以外は実施例 3と同様にして半分の面積だけ塗装した。 塗装は全て エアレススプレーを用いた。 このようにして塗装を施した反射板を含む蛍光灯 器具を松下電工 (株) 本社 (大阪府門真巿) 敷地内の社内食堂の厨房に設置し 観察したところ、 約 3ヶ月後、 塗装した部分は、 その他の部分に比べて汚れが 少なかった。
<実施例 4 8 >
松下電工(株)本社(大阪府門真巿)構内のコンクリ一卜製電柱約 1 m 2 (無 塗装)に、コンクリ一卜のアルカリ成分溶出を防ぐためェポロ プライマ一(ィ サム塗料製) を所定の条件で下地処理し、 2 4時間乾燥後、 実施例 1 1で作製 した顔料含有ァクリル変性シリコン樹脂コーティング材を硬化被膜厚約 3 0 μ mになるように着色塗装した。 室温で 5時間放置後、 半硬化状態を確認し、 調 製例 1 ― 3で作製した機能性コ一ティング材 ( 1 — 3 ) を硬化被膜厚約 0 . 5 At mになるように塗装した。 塗装は全てハンドロールを用いた。
約 3ヶ月暴露後、 塗装した電柱は、 汚れもなく、 塗装初期の状態を保ってい た。
<実施例 4 9 >
松下電工 (株) 本社 (大阪府門真巿) 構内の防護柵 (亜鉛メツキ鋼板) に、 エタノールで汚れを拭き取った後、 調製例 3で作製したァクリル変性シリコン 樹脂コーティング材 ( 1 ) を硬化被膜厚約 1 mになるように塗装した。 室温 で 1時間放置後、 半硬化状態を確認し、 調製例 1 一 3で作製した機能性コ一テ ィング材 ( 1 —3 ) を硬化被膜厚約 0. 5 I71になるように塗装した。 塗装は 全てハンドロールを用いた。
約 3ヶ月暴露後、 塗装した防護柵は、 汚れもなく、 塗装初期の状態を保って いた。
1
実施例 実施例 実施例 実施例 実施例 比較例
1 2 3 4 5 1 徐 口口口 機能性 機能性 機能性 機能性 機能性 比較用
(1) (2) (3) (4) (5) (1) 材 P c板 P C板 p c板 p c板 P C板 P C板 コーティ 了クリ ァク リ " クリ ァクリ 了々 11 ァクリ ング材 ル変性 ル変性 ル変性 ル変性 ル変性 ル変性 第 1塗 シリ η シリコ シリコ シリコ シリコ シリコ ン樹脂 ン樹脂 ン樹脂 ン樹脂 ン樹脂 ン樹脂 (1) (1) (1) (1) (1) (1) 膜厚( /ID) 1 1 1 1 1 1 コーティ 機能性 機能性 機能性 機能性 機能性 比較用 ング材 (1:1) (1-2) (1-3) (1-4) (1-5) (1 ) 第 2塗 樹脂固形分 80 60 50 40 20 100
Z光触媒 /20 /40 /50 /60 /80 /0 膜厚(; am) 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 光触媒作用 10 40 47 56 79 0 基材と第 1 100 100 100 100 100 100 塗装層の間 /100 /100 /100 /100 /100 /100 密着性 100 100 100 100 100 100 と第 塗装 /100 /100 /100 /100 /100 /100 層の間
硬 度 5Η 4Η 4H 3Η 2Η 6H 接触角 初 期 75° 73° 72° 60° 50° 75°
UV照射後 <10° く 10° く 10° く 10° く 10° 75° 塗膜劣化の有無 な し な し な し な し な し な し 基材劣化の有無 な し な し な し な し な し な し 2
夫 rtE 'J 夫胞 リ
6 7 8 9 10 2 塗 装 品 烛台匕 : 燃 匕 烛台匕 他 匕 :
(6) (7) (8) (9) (10) (2) 基 材 PC板 PC板 PC板 PC板 PC板 PC板 コーティ ァクリ ァクリ ァクリ ァクリ ァクリ ァクリ ング材 ノレ ノレ ϋ¾· ノレ ϋ"£Ε ノレ^: ΐ生 ノレ 第 1塗 シリ コ シリ コ シリ コ シリ コ シリ コ シリ コ ン樹脂 ン樹脂 ン樹脂 ン樹脂 ン樹脂 ン樹脂
(1) (1) (1) (1) (1) (1) 膜厚( im) 1 1 1 1 1 1 コーティ 機能性 機能性 機能性 機能性 機能性 比較用 ング材 (2-1) (2-2) (2-3) (2-4) (2-5) (2) 第 2塗 樹脂固形分 80 60 50 40 20 100 ノ光触媒 /20 /40 /50 /60 /80 /0 (重量比)
膜厚( m) 0 5 0 5 0 5 0 5 0 5 0 5 光触媒作用 8リ 36 A A 55 7 9 o 基材と第 1 100 100 100 100 100 100 塗装層の間 /100 /100 /100 /100 /100 /100 密着性 100 100 100 100 100 100, と第- 2塗装 /100 /100 /100 /100 /100 /100 層の間
硬 度 4Η 4H 4H 3Η 2H 5H 接触角 初 期 80° 78° 78。 74° 65° 80°
UV照射後 < <10° く 10° く 10° <10° 80° 塗膜劣化の有無 な し な し な し な し な し な し 基材劣化の有無 な し な し な し な し な し な し 3 比較例 比較例 比較例 比較例 r- a O 4 0 0 塗 装 品 比較用 s Wm 比しレ較用 m 比較用
(3) (4) (5) (6) 基 材 rし し 反 ■ し 1¾ Fし牧 コーティ ァクリ
ング材 ル変性 比較用
第 1塗 ンリ コ oヽ
ン樹脂
(1)
膜厚( /m) 1 1
コーティ 酸化チ 機能性 機能性 比較用 ング材 タン (1-3) (1-3) (1) 第 9徐 樹脂固形分 50 50 100 光触媒 Z50 Ζ50 /0 膜厚( /m) 0. 5 0. 5 0. 5 0. 5 光触媒作用 100 48 48 0 基材と第 1 100 50
塗装層の間 /100 /100
密着性 20 98
と第 2塗 /100 /100
層の間
基材と第 2 onU 4U 塗装層の間 /100 /100 硬 度 < 2 B 4H 4H 6H 接触角 初 期 49° 71° 72° 76°
UV照射後 <10° <10° く 10° 75° 塗膜劣化の有無 な し な し な し な し 基材劣化の有無 あ り な し あ り な し
(変色) 4 実施例 実施例 実施例 実施例 実施例 実施例
1丄 丄 1 1丄 0 丄 ο 1 A 1 丄 Ό 壮 口
ロロ 恢 ι!匕 lit 恢 B匕 li 機台 g匕 l± 倾台目匕' liitt i慨¾台目匕匕 lih ½慨台 g匕匕 +!4
(12) (12) (13) (14) (15) (16) 材 P ■ ΓしΙ^^) ■Γ し し ^J r し ■ し ¾x コーティ ァクリ ァクリ ァクリ ァクリ ァクリ ァクリ ノク Μ ル変性 ル変性 ル変性 ル変性 ル変性 ル変性 第 1塗 、、/ つ 、 リ "1 / 1 ] つ 、、 /リ 、、/リ ノリコ ン樹脂 ン樹脂 ン樹脂 ン樹脂 ン樹脂 ン樹脂
(1) (1) (1) (1) (1) (1)
+ + + + + + 顔料 1 顔料 2 顔料 3 顔料 1 顔料 2 顔料 3 膜厚( m) 1 1 1 1 1 1 コ一ティ 機能性 機能性 機能性 機能性 機能性 機能性 ング材 (1-3) (1-3) (1-3) (2-3) (2-3) (2-3) 第 2塗 樹脂固形分 50 50 50 50 50 50 ノ光触媒 /50 / 50 /50 / 50 /50 /50 膜厚(/Win) 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 光触媒作用 47 49 47 44 46 47 基材と第 1 100 100 100 100 100 100
<
塗装層の間 /100 /扇 /ノ100 /100 /ノ1■00 /100 密着性 100 100 100 100 100 100 と第 2塗装 /100 /100 /100 /100 /100 /100 層の間
硬 度 4H 4Η 4H 4H 4Η 4H 接触角 初 期 70° 71° 71° 78° 78° 78°
UV照射後 く 10° <10° <10° く 10° <10° <10° 塗膜劣化の有無 な し な し な し な し な し な し 基材劣化の有無 な し な し な し な し な し な し 5
ま夫胞 lyij 1 Φ ΐίΡΪ -ίϊίΐί
17 18 7 塗 装 品 娥慨台目匕匕' l fcitb 概 H匕
匕'『王 じ罕乂田
(17) (18) (7) 基 材 PC板 P C板 P C板 コーティ ァクリ ァクリ ァクリ ング材 ノ ;しレ久 lit ノ \±1 ノ ;しレ亦'ト \ ±. 第 1塗 シリコ シリコ シリコ ン樹脂 ン樹脂 ン樹脂
(1) (1) (1) 膜厚(WDl) 1 1 1 コーティ 機能性 機能性 比較用 ング材 (1-3) (2-3) (1) 第 2塗 樹脂固形分 50 50 100
Z光触媒 /50 / 50 /0 膜厚(/zra) 0. 1 0. 1 0. 1 光触媒作用 33 30 0 基材と第 1 100 100 100
/100 /100 /100 密着性 100 100 100
/100 /100 /謂 層の間
硬 度 4H 4H 5H 接触角 初 期 74° 78° 75°
UV照射後 <10° <10° 75° 塗膜劣化の有無 な し な し な し 基材劣化の有無 な し な し な し 実施例 実施例 19 20 塗 装 品 機能性 機能性
. (19) (20) 基 材 P C板 PC板 コーティ ァクリ ァクリ ング材 ル変性 ル変性 第 1塗 シリ コ シ リ つ
、ノ ソ; 曰
(2) (3) 膜厚( m) 1 1 コーティ 台匕 +
倾台 Β匕 ½ 匕 lit ング材 (1-3) (2-3) 第 2塗 樹脂固形分 50 50
Z光触媒 / D O / / c A U 膜厚(; m) 0. 5 0. 5 光触媒作用 48 46 基材と第 1 100 100 塗装層の間 八 00 八 00 密着性 100 100 と第 2塗装 /100 /100 層の間
硬 度 4H 4H 接触角 初 期 70° 79°
UV照射後 ぐ 10° <10° 塗膜劣化の有無 な し な し 基材劣化の有無 な し な し 7 実施例 実施例 比較例 実施例 実施例 比較例 21 22 8 23 24 9 塗 装 品 機能性 機能性 比較用 機能性 機能性 比較用
(21) (22) (8) (23) (24) (9) 基 材 塩化ビ 塩化ビ 塩化ビ 有機塗 有機塗 有機塗 ニル板 ニル板 ニル板 装板 装板 装板 ティ ァクリ ァクリ ァクリ ァクリ ング材 ル変性 ル変性 ル変性 ル変性 第 1塗 シリ コ シリコ シリ コ シリコ
ン樹脂 ン樹脂 ン樹脂 ン樹脂
(1) (1) (1) (1)
1 1 1 1
ティ 機能性 機能性 機能性 機能性 機能性' 機能性 ング材 (1-3) (2-3) (1-3) (1-3) (2-3) (1-3) 第 2塗 樹脂固形分 50 50 50 50 50 50 ノ光触媒 /50 /50 /50 /50 /50 /50 膜厚 C) 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 光触媒作用 49 47 48 48 46 48 基材と第 1 100 100 100 100
塗装層の間 /100 /100 /100 /100 密着性 100 100 100 100
/100 /100 /100 /100 層の間
基材と第 2 25 30
/100 /100 硬 度 4H 4H 4H 4H 4H 3H 接触角 初 期 70° 80° 72° 72° 78° 72
UV照射後 <10° <10° く 10° <10° <10° <10° 塗膜劣化の有無 な し な し な し な し な し な し 基材劣化の有無 な し な し あ り な し な し あ り 8 実施例 実施例 比較例 実施例 実施例
25 26 10 27 28 塗 壮 口
35ζ 機能性 機能性 比較用 機能性 機能性
(2 Λ5) (26) (10) (27) (28) 材 ステン ステン ステン ガラス ガラス
1 1 ¾ά 1 マ似^ wC コ一ティ ァクリ ァクリ ァクリ ァクリ z ノゲ fcf" ル変性 ル変性 ル変性 ル変性 第 1塗 、 リ つ U つ ;/ U つ / リ つ ン樹脂 ン樹脂 ン樹脂 ン樹脂 (1) (1) (1) (1) 膜厚( m) 1 1 1 1 コーティ 機能性 機能性 機能性 機能性 機能性 ング材 (1-3) (2-3) (1-3) (1-3) (2-3) 第 2塗 樹脂固形分 50 50 50 50 50
/光触媒 /50 /50 Ζ50 /50 /50 膜厚 0. 5 0. 5 0. 5 0. 5 0. 5 光触媒作用 47 47 45 47 46 基材と第 1 100 100 100 100 塗装層の間 /100 /100 /100 /100 密着性 100 100 100 100 と第"塗装 /100 /100 /100 /100 層の間
基材と第 2 30
塗装層の間 /100
硬 度 4H 4Η 4Η 4H 4H 接触角 初 期 69° 78 70° 78° 79°
UV照射後 く 10° <10° <10° <10° ぐ 10° 塗膜劣化の有無 な し な し な し な し な し 基材劣化の有無 な し な し な し な し な し 9 実施例 実施例 実施例 実施例 29 30 31 32 塗 装 品 機能性 機能性 機能性 機能性
(29) ヽ ヽ
^όΐ)
基 材 タイノレ タイル ホ一口 ホー口 — V コ一ティ ァクリ ァクリ ァクリ ァクリ ング材 ル変性 ル変性 ル変性 ル変性 、、/ リ つ 、 リ コ 、 リ つ - リ つ ン樹脂 ン樹脂 ン樹脂 ン樹脂 (1) (1) (1) (1) 膜厚(/ m) 1 1 1 1 コ 一ティ 機能性 機能性 機能性 機能性 ング材 (1-3) (2-3) (1-3) (2-3) 第 2塗 樹脂固形分 50 50 50 50
/光触媒 /50 /50 /50 /50 (重量比)
膜厚 0. 5 0. 5 0. 5 0. 5 光触媒作用 46 46 46 48 基材と第 1 100 100 100 100 塗装層の間 /100 /100 /100 /100 密着性 100 100 100 100 と第- 2塗装 /100 /100 /100 /100 層の間
基材と第 2 硬 度 4Η 4H 4Η 4H 接触角 初 期 70。 80D 79° 79°
UV照射後 <10° く 10。 <10° く 10° 塗膜劣化の有無 な し な し な し な し 基材劣化の有無 な し な し な し な し
Figure imgf000061_0001
* 1:塗布後、 15 0°Cで 30分間焼き付け ( * 2:塗布後、 室温で 10分間放置。 1 1
Figure imgf000062_0001
1 2
Figure imgf000063_0001
発明の効果
本発明の機能性塗装品は、 各種下地基材に対する塗膜の密着性に優れ、 光触 媒の作用による基材および塗膜の劣化が起こりにく く、 また、 塗膜表面の平滑 性も高いため汚れ難く、 かつ、 高い光触媒作用を持つ。
本発明の機能性塗装品においては、 基材と、 光触媒を含む機能性コ—ティン グ材の硬化被膜との間に第 1塗装層としてァクリル変性シリコン樹脂コ一ティ ング材の硬化被膜が介在するため、 基材が有機基材または有機塗装基材であつ ても、 基材が光触媒作用の影響を直接受けに〈いので、 光触媒作用による基材 の劣化が起こりに〈い。 また、 上記アクリル変性シリコン樹脂コ一ティング材 硬化被膜からなる第 1塗装層の介在により、 基材に対する上記機能性コ—ティ ング材の密着性が向上している。
本発明で用いられる機能性コ一ティング材ぉよびァクリル変性シリコン樹脂 コーティング材は、 いずれも無機系塗料であるため、 その塗膜は、 光触媒の作 用を受けても劣化しにくい。
本発明の機能性塗装品は、 紫外線の照射を受けると、 第 2塗装層に含まれる 光触媒の作用により、 有機物の分解、 消臭、 抗菌、 防カビ等の効果の他に、 水 をはじく有機物等の汚れが分解されて、 水に対する塗膜の濡れ性が向上すると いう特性も持つ。 この性能は、膜厚、光触媒含有量の大小に関わらず発現する。 水に対する塗膜の濡れ性が高いと、 防曇、 屋外用途での雨水洗浄性による防汚 等の効果が発揮される。 従って、 本発明の機能性塗装品は、 冬季の窓ガラス等 の結露防止や、 建築物、 道路構造物、 自動車、 車両等の汚れ防止等の性能も併 せ持つ。
本発明の機能性塗装品においては、 第 1塗装層を形成するァクリル変性シリ コン樹脂コ—ティング材に顔料を分散配合しても変わらぬ性能を示すため、 塗 膜が任意の色に着色されることも可能である。
本発明で用いられる機能性コーティング材は、 樹脂量と光触媒量の比率を変 えることにより、 塗装品の用途に応じて光触媒性能、 硬度、 塗膜表面状態等の 塗膜特性をコン卜ロールすることができる。
本発明の機能性塗装品の製造に用いられるコ—ティング材は、 加熱硬化だけ でなく、 常温硬化も可能であるため、 広い乾燥硬化条件範囲あるいは温度範囲 での使用が可能である。 従って、 熱を均等にかけに〈い形状を持つ基材、 大き な寸法を持つ基材または耐熱性に劣る基材等に対しても塗装ができるのみでな <、 屋外等で塗装作業を行ったりする場合等のように熱をかけにくい場合でも 塗装できることから、 その産業旳価値が高い。
本発明の製造方法では、 第 1塗布層が半硬化の状態で第 2塗装層形成のため の塗布を行うので、 温度条件の選択等により、 塗装工程を短時間で行うことが 可能である。 従って、 本発明の製造方法によれば、 上記の優れた性能を持つ機 能性塗装品を容易に効率よ〈得ることができる。

Claims

請 求 の 範 囲
1 . 基材の表面に、 下記 (A)、 (B)、 (C) および (D) 成分を含むァクリ ル変性シリコン樹脂コ一ティング材の硬化被膜からなる第 1塗装層と、 この第 1塗装層の表面に形成された下記 (E) および (F) 成分を含む機能性コ一テ ィング材の硬化被膜からなる第 2塗装層とを備えた機能性塗装品;
( A ) 成分:
—般式 r\ m S Ί ズ 4 m ··· I )
(式中、 R 1は同一であっても異なっていてもよい置換もしくは非置換の炭素 数 1〜8の 1価炭化水素基を示し、 mは 0〜3の整数、 Xは加水分解性基を示 す) で表される加水分解性オルガノシランを、 有機溶媒、 水またはそれらの混 合溶媒に分散されたコロイダルシリカ中で、 前記加水分解性基 (X) 1モル当 量当たり水 0. 001〜0. 5モルを使用する条件下で部分加水分解してなる、 オルガノシランのシリカ分散オリゴマー溶液;
( B )成分:
平均組成式 R2 aS i (O H) bO(4_a_b)/2 - (II)
(式中、 R 2は同一であっても異なっていてもよい置換しくは非置換の炭素数 1〜8の 1価炭化水素基を示し、 aおよび bはそれぞれ 0. 2≤a≤ 2、 0. 0001 ≤ b≤ 3 , a + b<4の関係を満たす) で表され分子中にシラノール 基を含有する、 重量平均分子量 (ポリスチレン換算) 700〜20000であ るポリオルガノシロキサン;
( C )成分:
硬化触媒。
( D )成分:
—般式 C H2 = C R3 (COOR4) -(III)
で表され、 式中、 R 3が水素原子および/またはメチル基であって;
R 4が置換もしくは非置換の炭素数 1〜9の 1価炭化水素基である第 1の (メタ) ァクリル酸エステル、
R 4がエポキシ基、 グリシジル基およびこれらのうちの少なくとも一方を含 む炭化水素基からなる群の中から選ばれる少なくとも 1種の基である第 2の (メタ) アクリル酸エステル、 および
R 4がアルコキシシリル基および/またはハロゲン化シリル基を含む炭化水 素基である第 3の (メタ) アクリル酸エステル
との共重合体であり、 重量平均分子量 (ポリスチレン換算) 1000〜50000以下 であるァクリル樹脂;
( E )成分:
—般式 S i (OR5) 4で表されるケィ素化合物および/またはコロイダル シリカ 5〜30000重量部、
—般式 R6S i (0R5) 3で表されるケィ素化合物 1 00重量部、 および —般式 R6 2 S i (O R5) 2で表されるケィ素化合物 0〜60重量部
(式中、 R5、 R 6は 1価の炭化水素基を示す)
との加水分解重縮合物からなり、 その重量平均分子量がポリスチレン換算で 8 00以上になるように調整されているオルガノシロキサン;
( F ) 成分:
光触媒。
2. 基材の表面に、 下記 (A)、 (B)、 (C) および (D) 成分を含むァクリ ル変性シリコン樹脂コ一ティング材の塗布硬化被膜からなる第 1塗装層と、 こ の第 1塗装層の表面に形成された下記 (A;)、 (B)、 (C) および (F) 成分を 含む機能性コ一ティング材の塗布硬化被膜からなる第 2塗装層とを備えた機能
( A )成分:
—— fe C ΓΛ M 1 X 4 -m … (エノ
(式中、 R 1は同一であっても異なっていてもよい置換もしくは非置換の炭素 数 1〜8の 1価炭化水素基を示し、 mは 0〜3の整数、 Xは加水分解性基を示 す) で表される加水分解性オルガノシランを、 有機溶媒、 水またはそれらの混 合溶媒に分散されたコロイダルシリカ中で、 前記加水分解性基 (X) 1モル当 量当たり水 0. 001〜0. 5モルを使用する条件下で部分加水分解してなる、 オルガノシランのシリカ分散オリゴマ一溶液; ( B ) 成分 :
平均組成式 R2 aS i (OH) bO(4ab)/2 … (II)
(式中、 R 2は同一であっても異なっていてもよい置換しくは非置換の炭素数 1〜8の 1価炭化水素基を示し、 aおよび bはそれぞれ 0. 2≤a≤2、 0. 0001 ≤b≤3s a+ b<4の関係を满たす) で表され分子中にシラノール 基を含有する、 重量平均分子量 (ポリスチレン換算) 700〜 20000であ るポリオルガノシロキサン;
( C ) 成分:
硬化触媒。
( D )成分 :
—般式 C H2 = C R3 (COO R4) -(III)
で表され、 式中、 R3が水素原子および/またはメチル基であって;
R 4が置換もしくは非置換の炭素数 1〜 9の 1価炭化水素基である第 1の (メタ) ァクリル酸エステル、
R 4がエポキシ基、 グリシジル基およびこれらのうちの少なくとも一方を含 む炭化水素基からなる群の中から選ばれる少なくとも 1種の基である第 2の (メタ) アクリル酸エステル、 および
R 4がアルコキシシリル基および/またはハロゲン化シリル基を含む炭化水 素基である第 3の (メタ) アクリル酸エステル
との共重合体であり、 (令?重量平均分子量 (ポリスチレン換算) 1000〜50000 であるァクリル樹脂;
( F )成分 :
光触媒。
3. 前記アクリル変性シリコン樹脂コーティング材において、 全縮合化合物 換算で述べると前記 (A) 成分 1〜94重量部に対し、 前記 (B) 成分 1〜9 4重量部および前記 (D) 成分 5〜35重量部 (ただし、 (A)、 (B) および
(D)成分の合計は 1 00重量部である) が配合されている、 請求項 1 または 2に記載の機能性塗装品。
4. 前記アクリル変性シリコン樹脂コ一ティング材がさらに顔料を含む、 請 求項 1から 3いずれかに記載の機能性塗装品。
5. 基材が、 金属基材、 有機質基材およびこれらのうちのいずれかの表面に 有機物被膜を有する有機塗装基材からなる群の中から選ばれる、 請求項 1から 4いずれかに記載の機能性塗装品。
6. 基材の表面に、 下記 (A)、 (B)、 (C) および (D) 成分を含むァクリ ル変性シリコン樹脂コ一ティング材を塗布することにより、 第 1塗布層を形成 させる工程、
前記第 1塗布層を半硬化させることにより、 半硬化層を形成させる工程、 前記半硬化層の表面に、 下記 (E) および (F) 成分を含む機能性コ—ティ ング材を塗布することにより、 第 2塗布層を形成させる工程、 および
前記半硬化層と前記第 2塗布層を硬化させる工程、
を含む機能性塗装品の製造方法;
( A )成分:
―般; λ R m S 1 X 4 -m V I )
(式中、 R 1は同一であっても異なっていてもよい置換もしくは非置換の炭素 数 1〜8の 1価炭化水素基を示し、 mは 0〜3の整数、 Xは加水分解性基を示 す) で表される加水分解性オルガノシランを、 有機溶媒、 水またはそれらの混 合溶媒に分散されたコロイダルシリカ中で、 前記加水分解性基 (X) 1モル当 量当たり水 0. 001〜0. 5モルを使用する条件下で部分加水分解してなる、 オルガノシランのシリカ分散オリゴマー溶液;
( B )成分:
平均組成式 R2 aS i (OH) bO(4_a_b)/2 … (II)
(式中、 R 2は同一であっても異なっていてもよい置換し〈は非置換の炭素数 1〜8の 1価炭化水素基を示し、 aおよび bはそれぞれ 0. 2≤a^ 2、 0. 0001 ≤ b≤ 3 , a + b<4の関係を満たす) で表され分子中にシラノール 基を含有する、 重量平均分子量 (ポリスチレン換算) 700〜 20000であ るポリオルガノシロキサン;
( C )成分:
硬化触媒。 ( D )成分:
—般式 C H2 = C R3 (COO R4) -(III)
で表され、 式中、 R 3が水素原子および/またはメチル基であって;
R 4が置換もしくは非置換の炭素数 1〜9の 1価炭化水素基である第 1の (メタ) ァクリル酸エステル、
R 4がエポキシ基、 グリシジル基およびこれらのうちの少なくとも一方を含 む炭化水素基からなる群の中から選ばれる少なくとも 1種の基である第 2の (メタ) アクリル酸エステル、 および
R 4がアルコキシシリル基および/またはハ口ゲン化シリル基を含む炭化水 素基である第 3の (メタ) アクリル酸エステル
との共重合体であり、 (令?重量平均分子量 (ポリスチレン換算) 1000〜50000 であるァクリル樹脂;
( E )成分:
—般式 S i (OR5) 4で表されるケィ素化合物および/またはコロイダル シリカ 5〜30000重量部、
—般式 R6S i (0R5) 3で表されるケィ素化合物 1 00重量部、 および —般式 R6 2S i (OR5) 2で表されるケィ素化合物 0〜60重量部
(式中、 R5、 R 6は 1価の炭化水素基を示す)
との加水分解重縮合物からなり、 その重量平均分子量がポリスチレン換算で 8 00以上になるように調整されているオルガノシロキサン;
( F )成分:
光触媒。
7. 基材の表面に、 下記 (A)、 (B)、 (C) および (D) 成分を含むァクリ ル変性シリコン樹脂コ一ティング材を塗布することにより、 第 1塗布層を形成 させる工程、
前記第 1塗布層を半硬化させることにより、 半硬化層を形成させる工程、 前記半硬化層の表面に、 下記 (A)、 (B)、 (C) および (F) 成分を含む機 能性コ一ティング材を塗布することにより、 第 2塗布層を形成させる工程、 お よび 前記半硬化層と前記第 2塗布層を硬化させる工程、
を含む機能性塗装品の製造方法;
( A )成分:
—般式 Γλ m S 1 X 4-m *"* V I )
(式中、 R 1は同一であっても異なっていてもよい置換もしくは非置換の炭素 数 1〜8の 1価炭化水素基を示し、 mは 0〜3の整数、 Xは加水分解性基を示 す) で表される加水分解性オルガノシランを、 有機溶媒、 水またはそれらの混 合溶媒に分散されたコロイダルシリカ中で、 前記加水分解性基 (X) 1モル当 量当たり水 0. 001〜0. 5モルを使用する条件下で部分加水分解してなる、 オルガノシランのシリ力分散才リゴマ一溶液;
( B )成分:
平均組成式 R2 aS i (OH) bO(4_a_b)/2 - (II)
(式中、 R 2は同一であっても異なっていてもよい置換しくは非置換の炭素数 1〜8の 1価炭化水素基を示し、 aおよび bはそれぞれ 0. 2≤a≤2、 0. 0001 ≤b≤3 a+ b<4の関係を満たす) で表され分子中にシラノール 基を含有する、 重量平均分子量 (ポリスチレン換算) 700〜 20000であ るポリオルガノシロキサン;
( C ) 成分:
硬化触媒。
( D ) 成分:
一般式 C H2 = C R3 (COOR4) -(III)
で表され、 式中、 R 3が水素原子および/またはメチル基であって;
R 4が置換もしくは非置換の炭素数 1〜 9の 1価炭化水素基である第 1の (メタ) アクリル酸エステル、
R 4がェポキシ基、 グリシジル基およびこれらのうちの少な〈とも一方を含 む炭化水素基からなる群の中から選ばれる少なくとも 1種の基である第 2の (メタ) アクリル酸エステル、 および
R 4がアルコキシシリル基および/またはハロゲン化シリル基を含む炭化水 素基である第 3の (メタ) アクリル酸エステル との共重合体であり、 重量平均分子量 (ポリスチレン換算) 1000〜50000であ るァクリル樹脂;
( F ) 成分 :
光触媒。
8 . 前記アクリル変性シリコン樹脂コーティング材において、 全縮合化合物 換算固形分で述べると前記 (A ) 成分 1〜 9 4重量部に対し、 前記 (B ) 成分 1 - 9 4重量部および前記( D )成分 5〜 3 5重量部(ただし、前記( A )、( B )、 ( D ) 成分の合計は 1 0 0重量部である) が配合されている、 請求項 6または 7に記載の機能性塗装品の製造方法。
9 . 前記アクリル変性シリコン樹脂コーティング材がさらに顔料を含む、 請 求項 6から 8いずれかに記載の機能性塗装品の製造方法。
1 0 . 前記基材が、 金属基材、 有機質基材およびこれらのうちのいずれかの 表面に有機物被膜を有する有機塗装基材からなる群の中から選ばれる、 請求項 6から 9までのいずれかに記載の機能性塗装品の製造方法。
1 1 . 請求項 1から 5までのいずれかに記載の機能性塗装品を少なくとも一 部に備えた建物関連部材。
1 2 . 請求項 1から 5までのいずれかに記載の機能性塗装品を少なくとも一 部に備えた建物用門。
1 3 . 一部が門柱である請求項 1 2に記載の建物用門。
1 4 . 請求項 1から 5までのいずれかに記載の機能性塗装品を少なくとも一 部に備えた建物用塀。
1 5 . 基材が塀に使用するための部材である請求項 1記載の機能性塗装品。
1 6 . 請求項 1から 5までのいずれかに記載の機能性塗装品を少なくとも一 部に備えた窓。
1 7 . 窓が採光窓である請求項 1 6に記載の窓。
1 8 . —部が窓枠である請求項 1 6記載の窓。
1 9 . 請求項 1から 5までのいずれかに記載の機能性塗装品を少なくとも一 部に備えた自動車。
2 0 . 請求項 1から 5までのいずれかに記載の機能性塗装品を少なくとも一 部に備えた機械装置。
2 1 . 請求項 1から 5までのいずれかに記載の機能性塗装品を少なくとも一 部に備えた道路周辺部材。
2 2 . 道路周辺部材が交通標識、 道路側壁、 電柱または防護柵である請求項 2 1に記載の道路周辺部材。
2 3 . 請求項 1から 5までのいずれかに記載の機能性塗装品を少なくとも一 部に備えた広告塔。
2 4 . 請求項 1から 5までのいずれかに記載の機能性塗装品を少なくとも一 部に備えた照明器具。
2 5 . 基材が照明器具に用いるための樹脂部材である請求項 1に記載の機能 性塗装品。
2 6 . 基材が照明器具に用いるための金属部材である請求項 1 に記載の機能
□□o
PCT/JP1997/004559 1996-12-13 1997-12-11 Articles enduits fonctionnels, procede de production et application correspondante WO1998025711A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1019980706271A KR100325530B1 (ko) 1996-12-13 1997-12-11 기능성도장품과그제조방법및용도
US09/117,738 US6165619A (en) 1996-12-13 1997-12-11 Functional coated product and process for producing the same and the use thereof
EP97947894A EP0916411A4 (en) 1996-12-13 1997-12-11 FUNCTIONALLY COATED OBJECTS, METHOD FOR THEIR PRODUCTION AND THEIR USE
CA 2244752 CA2244752C (en) 1996-12-13 1997-12-11 Functional coated product and process for producing the same and the use thereof
US10/336,919 USRE38850E1 (en) 1996-12-13 1997-12-11 Functional coated product and process for producing the same and the use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/334024 1996-12-13
JP33402496 1996-12-13
JP4608797A JP3182107B2 (ja) 1996-12-13 1997-02-28 機能性塗装品とその製造方法および用途
JP9/46087 1997-02-28

Publications (1)

Publication Number Publication Date
WO1998025711A1 true WO1998025711A1 (fr) 1998-06-18

Family

ID=26386209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004559 WO1998025711A1 (fr) 1996-12-13 1997-12-11 Articles enduits fonctionnels, procede de production et application correspondante

Country Status (6)

Country Link
US (2) US6165619A (ja)
EP (1) EP0916411A4 (ja)
JP (1) JP3182107B2 (ja)
KR (1) KR100325530B1 (ja)
CA (1) CA2244752C (ja)
WO (1) WO1998025711A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010028137A (ko) * 1999-09-17 2001-04-06 구자홍 광촉매를 이용한 함수성 막의 제조방법 및 제조된 함수성 막
EP1022318A3 (en) * 1999-01-19 2001-11-28 JSR Corporation Method of making coating layers containing photocatalyst and a photocatalyst coating film formed thereby
EP1022319A3 (en) * 1999-01-19 2001-12-12 JSR Corporation Method of making coating layers containing photocatalyst and a photocatalyst coating glass formed thereby
JP2002045705A (ja) * 2000-08-08 2002-02-12 Nippon Soda Co Ltd 光触媒担持構造体及び光触媒層形成用組成物
US9945075B2 (en) 2013-09-25 2018-04-17 Valinge Photocatalytic Ab Method of applying a photocatalytic dispersion
US11045798B2 (en) 2011-07-05 2021-06-29 Valinge Photocatalytic Ab Coated wood products and method of producing coated wood products
US11666937B2 (en) 2012-12-21 2023-06-06 Valinge Photocatalytic Ab Method for coating a building panel and a building panel

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830785B1 (en) * 1995-03-20 2004-12-14 Toto Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof
JP3327207B2 (ja) * 1998-04-06 2002-09-24 信越化学工業株式会社 親水性塗膜を有する物品及びその製造方法
JP2008274306A (ja) * 1998-05-26 2008-11-13 Jsr Corp 組成物
FR2779751B1 (fr) * 1998-06-10 2003-11-14 Saint Gobain Isover Substrat a revetement photocatalytique
JP3784981B2 (ja) * 1999-02-26 2006-06-14 オリヱント化学工業株式会社 有機−無機ハイブリッド材料及びその製造方法
JP2000212509A (ja) * 1999-01-20 2000-08-02 Jsr Corp 塗膜の形成方法およびそれより得られる硬化体
JP2000334308A (ja) * 1999-05-25 2000-12-05 Shinichi Harigai 光触媒用担体及びそれを用いた光触媒
JP2000334309A (ja) * 1999-05-25 2000-12-05 Shinichi Harigai 光触媒
US6231990B1 (en) * 1999-06-21 2001-05-15 General Electric Company Adhesion primer for use with RTV silicones
JP3932083B2 (ja) * 1999-07-30 2007-06-20 株式会社豊田自動織機 光触媒機能を有する被膜の形成方法
TWI260332B (en) * 1999-09-16 2006-08-21 Hitachi Chemical Co Ltd Compositions, methods of forming low dielectric coefficient film using the composition, low dielectric coefficient films, and electronic components having the film
JP2001105535A (ja) * 1999-10-13 2001-04-17 Hiraoka & Co Ltd 変退色防止性に優れた着色シート
JP3346474B2 (ja) * 1999-10-15 2002-11-18 平岡織染株式会社 防汚性シート
JP4549477B2 (ja) * 2000-02-25 2010-09-22 日本曹達株式会社 抗菌及び防黴効果を有する光触媒担持構造体
EP1146099B1 (en) * 2000-04-13 2006-03-22 JSR Corporation Coating composition, method for producing the same, cured product and coating film
CA2344780A1 (en) * 2000-04-20 2001-10-20 Kse Inc. Method, catalyst and photocatalyst for the destruction of phosgene
JP2001323189A (ja) * 2000-05-12 2001-11-20 Showa Highpolymer Co Ltd 酸化チタン光触媒コーティング膜接着保護層用組成物およびこれを用いた複合体
JP4667562B2 (ja) * 2000-06-29 2011-04-13 日新製鋼株式会社 加工性,光反射性及び光反射持続性に優れた白色塗装金属板
CA2414323A1 (en) 2000-06-30 2002-01-10 Ravindranathan Thampi Carboxylate-containing photocatalytic body, manufacture and use thereof
US6971948B2 (en) * 2001-02-08 2005-12-06 Cardinal Cg Company Method and apparatus for removing coatings applied to surfaces of a substrate
BR0209708A (pt) * 2001-05-31 2004-07-27 Akzo Nobel Coatings Int Bv Revestimento de azulejos brutos com um revestimento resistente à abrasão e a arranhões
ES2206431T3 (es) * 2002-04-17 2004-05-16 Goldschmidt Ag Uso de formulaciones de organopolisiloxanos exentes de disolvente, agua y emulsionante como lubricante para empaquetaduras perfiladas.
EP1518601A4 (en) * 2002-06-03 2007-12-19 Asahi Chemical Ind PHOTO CATALYST COMPOSITION
JP4041966B2 (ja) * 2002-06-18 2008-02-06 信越化学工業株式会社 ハードコート剤及びハードコート膜が形成された物品
US20040048032A1 (en) * 2002-09-06 2004-03-11 Lear Corporation Vehicle part and method of making the same
JP3840552B2 (ja) * 2002-09-24 2006-11-01 平岡織染株式会社 変退色防止性に優れた着色シート
EP1599294A4 (en) * 2002-12-13 2010-03-03 Georgia Pacific Gypsum Llc PLASTER PLATE HAVING UV RESISTANT MOISTURE RESISTANT COATING AND METHOD OF MANUFACTURING SAME
JP3795867B2 (ja) * 2003-01-30 2006-07-12 株式会社ルネサステクノロジ エッチング装置、エッチング方法および半導体装置の製造方法
JP3888317B2 (ja) * 2003-03-14 2007-02-28 株式会社日立製作所 セラミックスチューブ製造用コーティング液及びセラミックスチューブの製造法
JP2004359902A (ja) * 2003-06-06 2004-12-24 Matsushita Electric Works Ltd 光触媒塗料
JP5128044B2 (ja) * 2003-12-10 2013-01-23 東京応化工業株式会社 シリコン基板又は金属配線パターンが設けられたシリコン基板被覆用シリカ系被膜形成用材料の製造方法
US9096041B2 (en) 2004-02-10 2015-08-04 Evonik Degussa Gmbh Method for coating substrates and carrier substrates
DE102004009907A1 (de) * 2004-02-26 2005-09-29 Mann + Hummel Gmbh Flüssigkeitsfilter, insbesondere Ölfilter für eine Brennkraftmaschine
DE102004018338A1 (de) * 2004-04-15 2005-11-10 Sto Ag Beschichtungsmaterial
WO2006031012A1 (en) * 2004-09-15 2006-03-23 Lg Chem, Ltd. Films or structural exterior materials using coating composition having self-cleaning property and preparation method thereof
DE102005052940A1 (de) * 2005-11-03 2007-05-10 Degussa Gmbh Verfahren zur Beschichtung von Substraten
CN101360800B (zh) * 2005-12-21 2014-02-12 卡尔蔡司视觉澳大利亚控股有限公司 用于光学元件的涂层
JP4681483B2 (ja) * 2006-03-30 2011-05-11 新日本製鐵株式会社 表面処理金属
JP5324048B2 (ja) * 2007-03-20 2013-10-23 ニチハ株式会社 建築板
DE102008041740A1 (de) * 2007-08-31 2009-03-05 Profine Gmbh Kunststoffprofil mit photokatalytisch wirksamer Oberfläche
AU2007359712B2 (en) * 2007-10-01 2014-03-06 Advanced Construction Materials Inc. Method of making a sheet of building material
JP4730400B2 (ja) 2007-10-09 2011-07-20 住友化学株式会社 光触媒体分散液
JP5082950B2 (ja) * 2008-03-13 2012-11-28 住友化学株式会社 揮発性芳香族化合物の分解方法
WO2009145209A1 (ja) * 2008-05-27 2009-12-03 Toto株式会社 光触媒塗装体
JP2010115635A (ja) 2008-06-05 2010-05-27 Sumitomo Chemical Co Ltd 光触媒体分散液、その製造方法およびその用途
JP5308737B2 (ja) * 2008-08-21 2013-10-09 昭和電工株式会社 ランプリフレクター用不飽和ポリエステル樹脂組成物及びその成形物、並びにランプリフレクター
JP5436910B2 (ja) * 2009-03-31 2014-03-05 株式会社きもと 光触媒積層体
JP2011005475A (ja) 2009-05-29 2011-01-13 Sumitomo Chemical Co Ltd 光触媒体分散液およびそれを用いた光触媒機能製品
US8906153B2 (en) * 2009-06-24 2014-12-09 Asahi Kasei E-Materials Corporation Product of polysiloxane condensation
JP2011224534A (ja) 2009-09-16 2011-11-10 Sumitomo Chemical Co Ltd 光触媒複合体、およびこれを用いた光触媒機能製品
JP2011136325A (ja) 2009-12-01 2011-07-14 Sumitomo Chemical Co Ltd 貴金属担持光触媒体粒子分散液の製造方法、貴金属担持光触媒体粒子分散液、親水化剤及び光触媒機能製品
CN102762301A (zh) 2009-12-01 2012-10-31 住友化学株式会社 抗病毒剂和使用其的抗病毒剂功能性产品
WO2011118073A1 (ja) * 2010-03-25 2011-09-29 Toto株式会社 光触媒塗装体
WO2012012765A2 (en) 2010-07-22 2012-01-26 Green Bubble Technologies Llc Biooptical and biofunctional properties, applications and methods of polylactic acid films
JP5304803B2 (ja) * 2011-01-04 2013-10-02 新日鐵住金株式会社 表面処理金属
WO2012173277A1 (ja) 2011-06-17 2012-12-20 新日鐵住金株式会社 表面処理金属及びその製造方法
KR101281271B1 (ko) * 2011-08-25 2013-07-03 공주대학교 산학협력단 표면 도색 도로 구조물
US9017815B2 (en) * 2012-09-13 2015-04-28 Ppg Industries Ohio, Inc. Near-infrared radiation curable multilayer coating systems and methods for applying same
MX366483B (es) * 2012-12-21 2019-07-09 Vaelinge Photocatalytic Ab Un metodo para revestir un panel de construccion y un panel de contruccion.
FR3004130B1 (fr) * 2013-04-08 2015-12-11 Ecole Norm Superieure Lyon Procede de depot d'un revetement photocatalytique, revetements, materiaux textiles et utilisation en photocatalyse associes
US11916205B2 (en) 2013-10-02 2024-02-27 Lt 350, Llc Energy storage canopy
US10587015B2 (en) 2013-10-02 2020-03-10 Lt350, Llc Energy storage canopy
WO2015051021A1 (en) 2013-10-02 2015-04-09 Lt350, Llc Solar canopy with integral storage compartment to receive high capacity batteries
US10069456B2 (en) 2013-10-02 2018-09-04 Lt 350, Llc Methods for loading battery storage compartments into a solar canopy support structure
CN106068161B (zh) 2014-03-11 2022-07-01 日东电工株式会社 光催化元件
CN103965727B (zh) * 2014-05-20 2016-04-27 长安大学 一种可吸附空气中细颗粒物的道路涂层材料
CN104497757A (zh) * 2014-11-27 2015-04-08 浙江大学自贡创新中心 负离子基础漆的制备方法
KR102311060B1 (ko) * 2015-07-06 2021-10-12 삼성디스플레이 주식회사 플라스틱 기판 및 이를 포함하는 표시장치
EP3369753B1 (en) 2015-10-28 2020-12-02 LG Hausys, Ltd. Antifouling acrylic resin for additive
KR102590498B1 (ko) * 2016-02-19 2023-10-19 삼성디스플레이 주식회사 플렉서블 표시장치, 윈도우 부재의 제조방법 및 하드 코팅 조성물

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867835A (ja) * 1994-08-31 1996-03-12 Matsushita Electric Works Ltd 抗菌性無機塗料
JPH08259891A (ja) * 1995-03-24 1996-10-08 Matsushita Electric Works Ltd 無機塗料塗膜の形成方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4699802A (en) * 1983-10-03 1987-10-13 Loctite Corporation Dual curing coating method for substrates with shadow areas
JPS63168469A (ja) * 1986-12-29 1988-07-12 Shin Etsu Chem Co Ltd 室温硬化性塗料組成物
US5066698A (en) * 1990-05-10 1991-11-19 E. I. Du Pont De Nemours And Company Coating composition of an acrylic polymer, a crosslinking agent and a silane oligomer
JPH05117590A (ja) * 1991-10-28 1993-05-14 Matsushita Electric Works Ltd 無機塗料
AU676299B2 (en) 1993-06-28 1997-03-06 Akira Fujishima Photocatalyst composite and process for producing the same
EP0923988B1 (en) 1995-06-19 2008-04-09 Nippon Soda Co., Ltd. Photocatalyst-carrying structure and photocatalyst coating material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867835A (ja) * 1994-08-31 1996-03-12 Matsushita Electric Works Ltd 抗菌性無機塗料
JPH08259891A (ja) * 1995-03-24 1996-10-08 Matsushita Electric Works Ltd 無機塗料塗膜の形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0916411A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022318A3 (en) * 1999-01-19 2001-11-28 JSR Corporation Method of making coating layers containing photocatalyst and a photocatalyst coating film formed thereby
EP1022319A3 (en) * 1999-01-19 2001-12-12 JSR Corporation Method of making coating layers containing photocatalyst and a photocatalyst coating glass formed thereby
KR20010028137A (ko) * 1999-09-17 2001-04-06 구자홍 광촉매를 이용한 함수성 막의 제조방법 및 제조된 함수성 막
JP2002045705A (ja) * 2000-08-08 2002-02-12 Nippon Soda Co Ltd 光触媒担持構造体及び光触媒層形成用組成物
US11045798B2 (en) 2011-07-05 2021-06-29 Valinge Photocatalytic Ab Coated wood products and method of producing coated wood products
US11666937B2 (en) 2012-12-21 2023-06-06 Valinge Photocatalytic Ab Method for coating a building panel and a building panel
US9945075B2 (en) 2013-09-25 2018-04-17 Valinge Photocatalytic Ab Method of applying a photocatalytic dispersion

Also Published As

Publication number Publication date
USRE38850E1 (en) 2005-10-25
US6165619A (en) 2000-12-26
CA2244752C (en) 2005-06-28
KR100325530B1 (ko) 2002-04-17
EP0916411A1 (en) 1999-05-19
JP3182107B2 (ja) 2001-07-03
KR19990082535A (ko) 1999-11-25
EP0916411A4 (en) 2001-03-21
CA2244752A1 (en) 1998-06-18
JPH10225658A (ja) 1998-08-25

Similar Documents

Publication Publication Date Title
WO1998025711A1 (fr) Articles enduits fonctionnels, procede de production et application correspondante
JP2920140B2 (ja) 防汚性シリコーンエマルジョンコーティング材組成物とその製造方法およびそれを用いた防汚性塗装品
WO1998041589A1 (fr) Composition pour revetement antisalissures a emulsion de silicone, procede pour produire de revetement et article antisalissures recouvert de ce revetement
JP3367953B2 (ja) 親水性無機塗膜形成方法及び無機塗料組成物
EP2426175B1 (en) Plastic article for automotive glazing
JP2004359902A (ja) 光触媒塗料
JP2001270044A (ja) プラスチック部材およびその用途
JP2000239608A (ja) コーティング用樹脂組成物とこれを用いた塗装品
JP3772524B2 (ja) 水系コーティング樹脂組成物およびそれを用いた塗装品
JP3424533B2 (ja) 親水性無機塗料とそれを用いた親水性塗装品
JP4010049B2 (ja) 機能性無機塗料、それを用いた塗装品およびそれらの用途
WO1999052983A1 (fr) Composition de revetement inorganique et film de revetement inorganique hydrophile
JP2004202328A (ja) 耐候性シリコーン樹脂塗膜を有する塗装品及びその製造方法
JPH10245505A (ja) 耐雨垂れ汚染性塗膜、塗料組成物、塗膜形成方法及び塗装物
JP2001200202A (ja) 無機質膜の形成方法
JP2001137711A (ja) 光触媒層の形成方法
JPH1161042A (ja) 高親水性無機塗料、それを用いた塗装品およびそれらの用途
JP2000185368A (ja) 塗装品
JP4088995B2 (ja) 機能性無機塗膜の形成方法および機能性塗装品
JP2001220543A (ja) 紫外線吸収コーティング材樹脂組成物とそれを用いた塗装品
JP2000212510A (ja) 機能性無機塗料、その塗装方法および機能性塗装品
JPH10237358A (ja) 帯電防止機能無機塗料、それを用いた塗装品およびそれらの用途
JPH10287846A (ja) 機能性無機塗料、それを用いた塗装品およびそれらの用途
JP4374807B2 (ja) 親水性塗膜及び親水性塗膜の塗装方法
JPH11166156A (ja) 低温硬化性無機塗料とそれを用いた塗装品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2244752

Country of ref document: CA

Ref country code: CA

Ref document number: 2244752

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997947894

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09117738

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019980706271

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997947894

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980706271

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980706271

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997947894

Country of ref document: EP