WO1998014050A1 - Dispositif de culture et son procede de fabrication - Google Patents

Dispositif de culture et son procede de fabrication Download PDF

Info

Publication number
WO1998014050A1
WO1998014050A1 PCT/JP1997/003379 JP9703379W WO9814050A1 WO 1998014050 A1 WO1998014050 A1 WO 1998014050A1 JP 9703379 W JP9703379 W JP 9703379W WO 9814050 A1 WO9814050 A1 WO 9814050A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
cultivation apparatus
microporous
cultivation
nutrient
Prior art date
Application number
PCT/JP1997/003379
Other languages
English (en)
French (fr)
Inventor
Tatsuo Akai
Original Assignee
Phytoculture Control Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phytoculture Control Co., Ltd. filed Critical Phytoculture Control Co., Ltd.
Priority to AU43198/97A priority Critical patent/AU719594B2/en
Priority to AT97941212T priority patent/ATE228755T1/de
Priority to CA002267592A priority patent/CA2267592C/en
Priority to NZ334952A priority patent/NZ334952A/en
Priority to US09/269,233 priority patent/US6314678B1/en
Priority to DE69717665T priority patent/DE69717665T2/de
Priority to EP97941212A priority patent/EP0943234B1/en
Publication of WO1998014050A1 publication Critical patent/WO1998014050A1/ja
Priority to NO19991504A priority patent/NO316011B1/no
Priority to HK00101928A priority patent/HK1022808A1/xx

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics

Definitions

  • the present invention relates to a cultivation apparatus for growing by supplying nutrient water directly to cultivated plants ( Background Art
  • a porous pipe buried in the soil is connected to a water source via a water pipe, and water is exuded from the porous pipe using a negative pressure difference of the water level of the water source from the water pipe to form a cultivated plant root group. It is a cultivation device that supplies water.
  • the cultivation apparatus according to the conventional example utilizes the negative pressure difference of the water level of the water source, and supplies water to the cultivated plants through the soil. For this reason, the water supply became impossible because only a pinhole was generated in the water pipe, and maintenance was troublesome.
  • the above-mentioned cultivation apparatus requires soil, so that not only is the entire apparatus increased in size and size, but if the soil is spilled, the floor surface and the like are soiled, which is not suitable for indoor cultivation.
  • the present invention has been made in view of the above problems, and provides a cultivation device that can save water, can save water, can be easily miniaturized, and can be cultivated indoors. aimed to. Disclosure of the invention
  • a first feature of the present invention is that a root of a cultivated plant is brought into direct contact with the surface of the microporous fired body to supply nutrient water required by the cultivated plant.
  • a second feature is that the cultivation plant is cultivated with the root of the cultivation plant stretched on at least the inward surface of the opposed microporous fired body.
  • a third feature is that roots of cultivated plants are formed in gaps between the microporous fired body and the impermeable planar substrate covering the surface of the microporous fired body.
  • a fourth feature is that a part of the microporous fired body is brought into contact with a nutrient supply unit.
  • the cultivated plant directly absorbs nutrient water from the microporous fired body as needed, so that fine adjustment as in the conventional example is unnecessary.
  • the cultivation apparatus of the present application since water is not supplied through the soil, water is not evaporated from the soil and water can be saved. Therefore, it is only necessary to supply a minimum of water directly, and there is no need to use port water as in the past. As a result, the salt in the soil does not float on the surface, the salt can be prevented from condensing, and the desert can be easily greened. In addition, since cultivation can be carried out with a minimum amount of nutrient water, the consumption of fertilizer can be reduced, and the accumulation of salts in the fertilizer can be reduced, thereby suppressing salt damage.
  • the cultivation device of the present invention does not require soil, the size of the device can be reduced. It is easy and there is no risk of soiling the floor etc. with spilled soil. For this reason, a small cultivation apparatus suitable for indoor cultivation can be provided. As a result, a cultivation apparatus that can be used in outer space can be obtained.
  • microporous fired body does not allow bacteria to pass through, highly safe and clean cultivation is possible.
  • the cultivated plant can be cultivated in the gap between the opposing microporous fired bodies or in the gap between the microporous fired body and the impermeable sheet, A cultivation device with a small floor area can be obtained.
  • a fifth feature is that the nutrient and water supply means is an aggregate of fibers that can retain nutrient and moisture.
  • a sixth feature is that an internal space filled with fibers capable of retaining nutrient moisture is formed in the microporous fired body.
  • the internal space filled with the fiber for retaining nutrients and moisture is formed in the microporous fired body, even if the supply of nutrients from the outside is insufficient for a long time, Does not kill cultivated plants.
  • a seventh feature is that one end of a water supply rope for sucking up nutrient water by capillary action of a fiber bundle is connected to the nutrient supply unit.
  • one end of the fiber bundle is connected to the nutrient / water supply means of the microporous fired body. For this reason, nutrient water can be supplied by utilizing the capillary phenomenon, and a pump or the like is not required, and the apparatus is simplified.
  • An eighth feature is that at least two of the microporous fired bodies are formed.
  • One of the internal spaces was filled with fibers capable of retaining moisture, and the other internal space was filled with fertilizer.
  • the supply of water and the supply of nutrients can be separated. For this reason, the generation of bacteria, fungi, and algae is reduced, and clogging of water supply ropes and the like is less likely to occur than when supplying nutrient water in which water and nutrients are mixed in advance.
  • the ninth feature makes it easier to control the concentration of nutrients and water than in the case of direct supply.
  • the fiber filling the internal space is connected to one end of a water supply rope that sucks up water by capillary action of the fiber bundle. is there.
  • one of the internal spaces is filled with inorganic fibers, so that water can be supplied stably. Therefore, it is possible to stably supply the cultivated plants with nutrient water having a certain concentration.
  • a tenth feature is that the interior space filled with the fibers is a through-hole, and water can be supplied from openings on both sides thereof.
  • water can be supplied from both sides of the penetrating internal space, water can be supplied uniformly to the entire cultivation apparatus, and a constant concentration of nutrient water can be supplied uniformly.
  • a first feature is that the water supply rope is covered with a cylindrical shielding cover.
  • wasteful evaporation of water can be prevented, not only can the capillarity be ensured even when buried in the ground, but the light does not hit the water supply rope, so that the generation of algae and the like can be suppressed.
  • the first feature is that a cultivation apparatus is manufactured by firing a microporous fired body in which the surface of a cultivated plant is brought into direct contact with the surface and then removing a sulfur component.
  • the sulfur component is removed after firing the microporous fired body, so that growth inhibition of the cultivated plant can be prevented. For this reason, low firing temperature Thus, a microporous fired body having a higher water content and a higher porosity can be obtained. ( As a result, the range of cultivated plants that can be grown is expanded.
  • FIG. 1 is a perspective view showing a first embodiment according to the present invention.
  • FIG. 2A is a front view of the cultivation apparatus shown in FIG. 1, and FIG. 2B is a partially broken bottom view of the cultivation apparatus shown in FIG. 2A.
  • FIG. 3 is a perspective view showing a second embodiment according to the present invention.
  • FIG. 4 is an exploded perspective view of the cultivation apparatus shown in FIG.
  • FIG. 5A is a partially cutaway perspective view of a third embodiment according to the present invention
  • FIG. 5B is a longitudinal sectional view thereof
  • FIG. 5C is a perspective view of a microporous prism.
  • FIG. 6A is a perspective view showing a use state of the third embodiment shown in FIG. 5A.
  • B is a longitudinal sectional view thereof.
  • FIG. 7 is a perspective view showing a fourth embodiment according to the present invention.
  • FIG. 8 is a perspective view showing a fifth embodiment according to the present invention.
  • FIG. 9A is a side sectional view of a sixth embodiment according to the present invention
  • FIG. 9B is a front partial sectional view thereof.
  • FIG. 10 is a partially cutaway perspective view showing the arrangement of the cultivation apparatus shown in FIG. 9A.
  • FIG. 11A is a front sectional view of a seventh embodiment according to the present invention, and
  • FIG. 11B is a side view thereof.
  • FIG. 12 is a schematic diagram showing an arrangement of the cultivation apparatus shown in FIG. 11A.
  • FIG. 13 is a plan view showing the arrangement of the cultivation apparatus shown in FIG. 11A.
  • FIG. 14 is a graph showing the measurement results of the water absorption rate test.
  • FIG. 15 is a chart showing the measurement results of the permeability test.
  • FIG. 16 is a graph showing the measurement results of the permeation reduction test.
  • FIG. 17 is a chart showing the measurement results of the water content test.
  • the roots of the plant 30 are stretched in a gap 11 formed by overlapping two cultivation apparatuses 10 and 10. This is the case where nutrient water is supplied while supporting it.
  • the cultivation apparatus 10 includes a first microporous box 12 having a shallow bottom, and a shallow fittable inside the first microporous box 12. And a second microporous box 13 at the bottom. In both cases, the raw materials such as clay are compacted, compacted, and then fired.
  • the firing raw material a raw material that does not lose the void even when firing at a high temperature is preferable, and examples thereof include soil No. 10 and porcelain No. 2 (Shiroyama Serapot Co., Ltd.).
  • a powdery inorganic foam may be contained.
  • Betarai bets S i 0 2 7 6.8 1 wt%, A 1 2 0 3 1 6.9 6 wt%, L i 2 0 is 4.0 to 3 wt% , K 20 of 0.26% by weight and unavoidable impurities of 1.94% by weight are standard.
  • the molding method can be appropriately selected from existing methods such as, for example, extrusion molding, extrusion molding, press molding, and potter's wheel molding. Extrusion molding is particularly preferable from the viewpoint of mass production and cost. Drying after molding can be carried out by ordinary methods and conditions.
  • the firing temperature is preferably between 1000 ° C and 2000 ° C, particularly around 1200 ° C. Suitable. If the temperature is less than 100 ° C, the sulfur component tends to remain, and the desired strength cannot be obtained.If the temperature exceeds 2000 ° C, the desired water permeability cannot be obtained. It is.
  • the firing method can be appropriately selected from existing methods such as, for example, oxidation firing.
  • oxidation firing there is an advantage that desired voids are easily obtained.
  • the first microporous box 12 has substantially square protrusions 14 protruding in a grid pattern at a predetermined pitch on the bottom surface thereof.
  • the box 12 has a substantially rectangular rib 15 protruding from a corner of the opening edge opposite to the edge, and a notch 16 is formed on one side of the opening edge. It is.
  • the second microporous box 13 has a planar shape that can be fitted into the first microporous box 12.
  • the box 13 has a projection 14 similar to the first microporous box 12 formed on the bottom surface thereof, and a cutout 17 formed on one side of the opening edge. It is.
  • An internal space 18 formed by fitting the second microporous box 13 to the first microporous box 12 includes, for example, a glass fiber (not shown) capable of retaining nutrient water. , Filled with non-woven fabric.
  • a through-hole 19 formed by combining the cutouts 16 and 17 of the first and second microporous boxes 12 and 13 has a water supply filled with glass fibers 120.
  • the tube 21 is inserted so that nutrient water can be supplied into the internal space 18 by utilizing the capillary phenomenon.
  • the roots of the cultivated plant 30 are stretched in the gap 11 formed by overlapping the two cultivation apparatuses 10 and 10 having the above-described configuration, and the surface of the second microporous box 13 is The required nutrient water is absorbed. Therefore, a cultivation environment suitable for the cultivated plant 30 can be provided. According to this embodiment, the interior space 18 of the cultivation apparatus 10 can be filled with fibers (not shown), and a large amount of nutrient water can be stored therein. This has the advantage that cultivated plants can be prevented from withering even if the supply of nutrients and water for a long time is insufficient.
  • the cultivation plant is not necessarily limited to this.
  • seeds may be sown on one surface of one cultivation device. May be cultivated.
  • the roots of the cultivated plants that have germinated and emerged roots may be wrapped with a sponge or a nonwoven fabric soaked in water, and positioned in a gap between the two cultivation apparatuses 10 and rooted.
  • the surface shape of the microporous fired body of the cultivation apparatus is not limited to the above, and may have a large contact area with a plant root, for example, a combination of a protrusion and a ridge, or It may be a simple flat surface.
  • a clay is used.
  • This is a cultivation apparatus 10 comprising a microporous cylindrical body 22 having a rectangular cross section obtained by extruding, molding and baking this.
  • the microporous cylindrical body 22 has a plurality of ridges 23 arranged on one surface thereof.
  • the microporous cylindrical body 22 is filled with fibers such as glass fiber (not shown) in its internal space 24 similarly to the cultivating apparatus 10 described above, and its upper and lower openings are lids 25, Closed at 26. Further, the lid 26 has an inlet hole 27 into which a water supply rope 21 made of twisted glass fiber or the like can be inserted.
  • This water supply rope 21 is a cylindrical shielding cover Coated. This is to ensure capillary action, block light, prevent photosynthesis, and suppress the occurrence of fungi and algae.
  • the microporous cylindrical body 22 is substantially the same as the first embodiment in the sintering raw material, the sintering method, and the like, except for the molding method, and thus the description is omitted.
  • the cultivation apparatus 10 is formed by engaging the projections 25a, 26a of the lids 25, 26 with 22a, respectively. Then, as in the first embodiment described above, the two cultivation devices 10 and 10 are overlapped, and the roots of the cultivated plants 30 are placed in the gaps 11 formed between the cultivation devices 10 and 10. And grow it.
  • the clay is extruded and molded, there is an advantage that mass production is easy and productivity is high.
  • a microporous plate body 32 formed by combining a plurality of microporous prisms 31 is used as a nutrient and water supply device. This is a case where the cultivation apparatus 10 is configured by assembling the cultivation apparatus 10 with the cultivation apparatus 10.
  • the microporous prism 31 has a semicircular concave portion 33 and a convex portion that can be mutually fitted to the side end surfaces in order to increase a contact area and facilitate positioning.
  • the microporous plate 32 is formed by partially bonding the contact surfaces with an adhesive or by integrating them with a tightening belt (not shown).
  • the method of manufacturing the microporous prism 31 is the same as that of the above-described embodiment, and thus the description is omitted.
  • the nutrient and water supply device 40 is formed by laying fibers 42 such as glass fiber in a long box 41 with a shallow bottom and then erecting the microporous plate 32 described above.
  • One end of a water supply rope 44 made of a twisted glass fiber is inserted into a through hole 43 provided in a side end surface of the box body 41. Further, the other end of the water supply rope 44 is connected to a water supply tank 46 via a water supply pipe 45. Has been continued.
  • the front and back surfaces of the microporous plate 32 are made of a water-impermeable planar substrate. It is covered with a water-impermeable sheet 36, 36 made of a certain polypropylene or the like. Then, both ends of the water-impermeable sheets 36, 36 are supported by holders 35, 35 attached to both ends of the microporous plate 32. Thereby, the root of the cultivated plant 30 can be cultivated with the top end of the microporous plate 32 being extended.
  • the water-impermeable sheet 36 serves to suppress water evaporation while suppressing water evaporation.
  • the water-impermeable sheet 36 is a kind of a water-impermeable planar substrate, but the water-impermeable planar substrate is not limited to this, and may be, for example, a metal water supply tank.
  • a microporous plate body 32 that is curved by combining microporous prisms 31 is formed.
  • the box body 41 is formed of a flexible synthetic resin material.
  • both ends of the pair of microporous plates 32 are connected by holders 37 and 37.
  • the cultivated plant 30 is cultivated with the roots of the cultivated plant 30 set on the inward faces of both. Others are almost the same as those of the above-described embodiment, and the description is omitted.
  • the cultivated plant 30 can take root on the facing inward faces of the microporous plates 32, 32. For this reason, there is an advantage that a stable cultivation apparatus 10 which is hard to fall down can be obtained.
  • a plurality of rod-shaped protrusions 51 made of a microporous fired material are protruded from a plate-like base 50 made of a microporous fired material.
  • the rod-shaped protrusion 51 according to the present embodiment may be integrally formed on the plate-shaped base 50 and then fired. Alternatively, the fired rod-shaped base 50 may be separately fired rod-shaped.
  • the protrusion 51 may be retrofitted.
  • the ⁇ -shaped base 50 of the present embodiment is placed on an elastic porous material (not shown) that has absorbed nutrient water, and the nutrient water is supplied and used. .
  • FIG. 9A, FIG. 9B and FIG. 10 a case where a flower bed is created outdoors using the cultivation apparatus 10 according to the first embodiment or the second embodiment described above. It is.
  • a rectangular frame 60 is formed on a horizontal ground with a cement block, and moisture from the ground is blocked by a vinyl sheet (not shown). Then, a water supply pipe 61 is connected and connected to a water supply tank 62. Then, cultivation devices 10 are arranged on both sides of the water supply pipe 61 at a predetermined pitch, and the cultivation device 10 and the water supply pipe 61 are connected via a water supply rope 63 to supply nutrient water. .
  • the water supply rope 63 is formed by twisting glass fibers, and is inserted into a flexible tubular shielding cover to secure a capillary phenomenon and prevent photosynthesis.
  • crushed stones 64 are appropriately introduced into the frame 60, and cultivated plants 30 are planted.
  • the crushed stone 60 or the like is introduced, but may be sand or soil.
  • an organic substance such as a glass ball which does not include an organic substance may be used.
  • crushed stones or glass balls are charged, those with a diameter of 1 Omm or more are suitable. This is because the capillary phenomenon does not occur.
  • the amount of water to be supplied to the cultivation apparatus 10 can be adjusted by adjusting the height of the water supply pipe 61 and the water level in the water supply tank 62, so that labor for water supply can be reduced.
  • the cultivated plant 30 can be supported by the crushed stone 64 or the like. It can cultivate herbaceous and woody plants with high vegetation.
  • the present invention can be applied to places where maintenance is difficult, such as a median strip on a road and an inner surface of a soundproof wall.
  • an extruded cylindrical cultivation apparatus 10 having a rectangular section is embedded in a sandy ground at a predetermined pitch.
  • the cultivation apparatus 10 has its interior partitioned by two partition walls 71a, 71b to form cavities 72a, 72b, 72c.
  • a water supply rope 73 made of twisted glass fibers is inserted into the central hollow portion 72c, and an inorganic fiber 74 such as a glass fiber or a glass fiber cloth is filled.
  • the upper and lower cavities 72a and 72b are filled with slow-acting fertilizer 75, respectively.
  • the fertilizer 75 may be in the form of a replaceable film, rod, sphere, or plate, or may be color-coded according to its components.
  • the fertilizer 75 does not need to be solid, and may be, for example, a cream.
  • the cultivation apparatus 10 is placed at a predetermined pitch on one side of the water supply pipe 78. Place with Further, the tip of the water supply rope 73 is connected to the connection port 78 a of the water supply pipe 78 to supply water to the cultivation apparatus 10.
  • the water supply rope 73 between the cultivation apparatus 10 and the connection port 78a is covered with a tubular shielding cover (not shown).
  • the water sucked up by the capillary phenomenon from the water supply pipe 78 through the water supply rope 73 permeates the cultivation apparatus 10 through the inorganic fibers 74 in the hollow portion 72c.
  • the water that seeps into the cavities 72a and 72b dissolves the fertilizer 75 and becomes nutrient water.
  • the root of the cultivated plant 30 sucks out the nutrient water from the surface of the cultivation apparatus 10.
  • the amount of water supplied to the cultivation apparatus 10 of the present embodiment is adjusted by adjusting the height of the water supply pipe 78 and the water level in the water supply tank 77.
  • the water supply rope 73 sucks up only water by capillary action, the generation of bacteria, fungi, and algae is extremely small as compared with the case where the nutrient water in which the fertilizer is dissolved is directly supplied. For this reason, there is an advantage that the water supply cord 73 does not easily become clogged, the concentration of nutrient water can be easily controlled, and water and fertilizer can be saved.
  • the microporous fired material constituting the cultivation apparatus is not limited to the above-described embodiment, and may be, for example, a simple flat plate, or a flat plate having a plurality of ridges protruding on at least one surface, a corrugated plate. It may be a simple tubular shape or a bottomed tubular shape. Further, the microporous fired material may be lattice-shaped or spherical.
  • the present invention is not limited to this.
  • the lower end of the microporous fired body may be provided with water. It may be immersed directly in water to supply water.
  • the supply of the nutrient water is not limited to the lower end of the microporous fired body, but may be performed from the front and back surfaces, the side end surfaces, or the upper end.
  • Slurry No. 10 with the following composition is used as a slurry, poured into a gypsum mold while applying pressure, left for about 40 minutes, taken out, and dried in a drying oven at a temperature of 50 to 60 ° C for 9 to 10 hours As a result, a molded article having the same shape as the first microporous box of the first embodiment was obtained.
  • the molded body has an outer dimension of 140 mm in width, 140 mm in length, a maximum height of 27 mm, and a thickness of 6 mm, and has a square protrusion with a width of 13 mm and a height of lmm at a pitch of 2 lmm on one surface thereof. It is protruding.
  • the molded body was fired at a temperature of 1200 ° C. for 8 to 9 hours to obtain a sample.
  • Example 1 was the fastest and had the highest water absorption. Also, from FIG. 15, it was found that Example 1 was the most permeable to water.
  • Example 1 fired at a firing temperature of 1200 ° C. has the characteristic that water is most easily supplied to cultivated plants.
  • the amount of permeation reduction was measured by measuring the degree of permeation reduction of the impregnated water 100 cc in the same manner as in Example 1 described above.
  • the water content test was performed by measuring the weight of saturated water after immersion in water for 2 hours and the absolute dry weight (24 hours drying at 110).
  • the firing temperature when the firing temperature is low, a more porous fired body is obtained, but the strength is low and sulfur components that inhibit plant growth tend to remain.
  • the firing temperature if the firing temperature is high, a fired body with high strength can be obtained, but the vitreous material is melted and a desired microporous fired body cannot be obtained. For this reason, it is necessary to select the sintering raw material, sintering temperature and additives as appropriate for the plant to be sintered.
  • barium chloride solution Since barium chloride solution is highly toxic, it must be disposed of by adding a small amount of sulfur to white barium sulfate and treating it as a precipitate.
  • the method for removing the sulfur component described above is not limited to the method described above.For example, in order to remove excess sulfur, after immersing the fired body in carbon disulfide, washing with water, and further immersing in alcohol, There is a method of washing with water.
  • the fired body may be immersed in quicklime water, boiled for about 20 minutes, cooled, and then washed with water. Further, the amount of sulfate ion contained in the raw material for calcination, water, and the additive may be quantified by ion exchange, and the sulfate ion may be removed by adding an equivalent amount of barium carbonate to the sulfate ion.
  • the cultivation apparatus according to the present invention is not limited to the above-described embodiment, and can be applied to other cultivation apparatuses.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Hydroponics (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Medicinal Preparation (AREA)
  • Telephone Function (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Cultivation Of Plants (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Mushroom Cultivation (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

明 細 書 栽培装置およびその製造方法 技術分野
本発明は、 養水分を栽培植物に直接供給して育成する栽培装置に関する ( 背景技術
従来、 植物に水分を供給する栽培装置としては、 例えば、 特公平 3— 5 6 6 8 9号公報に記載のものがある
すなわち、 土壌中に埋設した多孔質管を送水管を介して水源に接続し、 この送水管から水源の水位の負圧差を利用して前記多孔質管から水を滲出 させ、 栽培植物根群に水を供給する栽培装置である。
しかしながら、 従来例にかかる栽培装置は、 水源の水位の負圧差を利用 し、 かつ、 土壌を介して栽培植物に水を供給していた。 このため、 前記送 水管にピンホールが生じるだけで給水不能となり、 メインテナンスに手間 がかかった。
また、 土壌, 栽培植物等の種類に応じた適正量の水を供給しょうとする と、 微妙な調整が必要であり、 その調整が容易でなかった。
さらに、 前述の栽培装置では、 土壌を介して水が蒸発するため、 多量の 水を供給する必要があり、 水の無駄が多かった。
そして、 前述の栽培装置は、 土壌を必要とするため、 装置全体が大型化 しゃすいだけでなく、 土壌がこぼれると、 床面等を汚すので、 室内栽培に 適していないという問題点がある。
本発明は、 前記問題点に鑑み、 メインテナンスに手間がかからず、 節水 できるとともに、 小型化が容易で室内栽培も可能な栽培装置を提供するこ とを目的とする。 発明の開示
前記目的を達成するため、 本願発明の第 1の特徴は、 微多孔質焼成体の 表面に栽培植物の根を直接接触させ、 栽培植物が必要とする養水分を供給 する構成としてある。
第 2の特徴は、 対向する前記微多孔質焼成体の少なくとも内向面に栽培 植物の根を張らせて栽培することである。
第 3の特徴は、 前記微多孔質焼成体と、 この微多孔質焼成体の表面を被 覆する不透水性面状基体との隙間に栽培植物の根を張らせることである。 第 4の特徴は、 前記微多孔質焼成体の一部を養水分供給手段に接触させ たことである。
本発明にかかる第 1ないし 4の特徴によれば、 従来例と異なり、 微多孔 質焼成体から水を直接供給できるので、 メインテナンスに手間がかからな い。
また、 栽培植物が微多孔質焼成体から養水分を必要に応じて直接吸収す るので、 従来例のような微妙な調整が不要になる。
さらに、 本願の栽培装置によれば、 土壌を介して水を供給しないので、 土壌からの水の蒸発がなく、 節水できる。 このため、 最小限の水分を直接 供給すればよく、 従来のように港水しなくともよい。 この結果、 土壌中の 塩類が表面に浮き上がることがなく、 塩類の凝縮を防止でき、 砂漠の緑化 を容易に実現できる。 また、 最小限の養水分で栽培できるので、 肥料の消 費を低減できるとともに、 肥料中の塩類の蓄積が少なくなり、 塩類障害を 抑制できる。
そして、 本願の栽培装置は、 土壌を必要としないので、 装置の小型化が 容易であるとともに、 こぼれた土壌で床面等を汚す心配がない。 このため、 室内栽培に適した小型の栽培装置を提供できる。 この結果、 宇宙空間にお いても使用できる栽培装置が得られる。
さらに、 微多孔質焼成体は細菌を通さないので、 安全性の高い清浄栽培 が可能となる。
特に、 第 2または第 3の特徴によれば、 対向する前記微多孔質焼成体間 の隙間、 あるいは、 微多孔質焼成体と不透水性シートとの間の隙間で栽培 植物を栽培できるので、 床面積の小さい栽培装置が得られる。
また、 第 4の特徴によれば、 養水分供給手段に接触する微多孔質焼成体 が必要な養水分を吸収するので、 給水に手間がかからず、 便利である。 第 5の特徴は、 前記養水分供給手段が、 養水分を保持できる繊維の集合 体であることである。
第 5の特徴によれば、 繊維間に適量の養水分を保持するので、 安定した 供給が可能となる。
第 6の特徴は、 前記微多孔質焼成体内に、 養水分を保持できる繊維を充 填した内部空間を形成したことである。
第 6の特徴によれば、 前記微多孔質焼成体内に、 養水分を保持する繊維 を充填した内部空間が形成されているので、 外部からの養水分の供給が長 時間不足していても、 栽培植物を枯らすことがない。
第 7の特徴は、 前記養水分供給手段に、 繊維束の毛細管現象で養水分を 吸い上げる給水ロープの一端を接続したことである。
第 7の特徴によれば、 微多孔質焼成体の養水分供給手段に繊維束の一端 を接続してある。 このため、 毛細管現象を利用して養水分を供給でき、 ポ ンプ等が不要となり、 装置が簡単になる。
第 8の特徴は、 前記微多孔質焼成体内に形成された少なくとも 2つの内 部空間のうち、 一方の内部空間に水分を保持できる繊維を充填し、 他方の 内部空間に肥料を充填したことである。
第 8の特徴によれば、 水分の供給と養分の供給とを分離できる。 このた め、 予め水分と養分とを混合した養水分を供給する場合よりも、 細菌、 菌 類、 藻類の発生が少なくなり、 給水ロープ等の目詰まりが生じにく くなる また、 養水分を直接供給する場合よりも、 養水分の濃度管理が容易となる 第 9の特徴は、 前記内部空間に充填された繊維に、 繊維束の毛細管現象 で水分を吸い上げる給水ロープの一端を接続したことである。
第 9の特徴によれば、 一方の内部空間に無機繊維を充填してあるので、 水分を安定供給できる。 このため、 一定の濃度を有する養水分を栽培植物 に安定供給できる。
第 1 0の特徴は、 前記繊維を充填した内部空間が貫通孔であり、 その両 側開口部から水を供給できる構成としたことである。
第 1 0の特徴によれば、 貫通する内部空間の両側から水分を供給できる ので、 栽培装置全体に均一に水分を供給でき、 一定濃度の養水分を均一に 供給できる。
第 1 1の特徴は、 前記給水ロープが筒状遮蔽カバーで被覆されているこ とである。
第 1 1の特徴によれば、 水分の無駄な蒸発を防止でき、 地中に埋設して も毛細管現象を確保できるだけでなく、 給水ロープに光が当たらないので、 藻類等の発生を抑制できる。
第 1 2の特徴は、 表面に栽培植物の根を直接接触させる微多孔質焼成体 を焼成した後、 硫黄成分を除去して栽培装置を製造することである。
第 1 2の特徴によれば、 微多孔質焼成体を焼成した後、 その硫黄成分を 除去するので、 栽培植物の成育阻害を防止できる。 このため、 低い焼成温 度で焼成でき、 より一層多孔質で含水量の多い微多孔質焼成体が得られる ( この結果、 育成できる栽培植物の範囲が広がるという効果がある。 図面の簡単な説明
図 1は、 本願発明にかかる第 1実施形態を示す斜視図である。
図 2 Aは、 図 1で示した栽培装置の正面図、 図 2 Bは図 2 Aで示した栽 培装置の部分破断底面図を示す。
図 3は、 本願発明にかかる第 2実施形態を示す斜視図である。
図 4は、 図 3で示した栽培装置の分解斜視図である。
図 5 Aは、 本願発明にかかる第 3実施形態の一部破断斜視図、 図 5 Bは その縦断面図、 図 5 Cは微多孔質角柱の斜視図である。
図 6 Aは、 図 5 Aで示した第 3実施形態の使用状態を示す斜視図、 図 6
Bは、 その縦断面図である。
図 7は、 本願発明にかかる第 4実施形態を示す斜視図である。
図 8は、 本願発明にかかる第 5実施形態を示す斜視図である。
図 9 Aは、 本願発明にかかる第 6実施形態の側面断面図、 図 9 Bは、 そ の正面部分断面図である。
図 1 0は、 図 9 Aで示した栽培装置の配置を示す部分破断斜視図である。 図 1 1 Aは、 本願発明にかかる第 7実施形態の正面断面図、 図 1 1 Bは、 その側面図である。
図 1 2は、 図 1 1 Aで示した栽培装置の配置を示す概略図である。
図 1 3は、 図 1 1 Aで示した栽培装置の配置を示す平面図である。
図 1 4は、 吸水速度試験の測定結果を示すグラフ図である。
図 1 5は、 透水試験の測定結果を示す図表である。
図 1 6は、 透過減水試験の測定結果を示すグラフ図である。 図 1 7は、 含水比試験の測定結果を示す図表である。 発明を実施するための最良の形態
次に、 本発明にかかる実施形態を図 1ないし図 1 7の添付図面に従って 説明する。
第 1実施形態は、 図 1および図 2 A, 2 Bに示すように、 2個の栽培装 置 1 0 , 1 0を重ね合わせて形成される隙間 1 1に植物 3 0の根を張らせ て支持しつつ、 養水分を供給する場合である。
前記栽培装置 1 0は、 図 2 Aおよび図 2 Bに示すように、 浅底の第 1微 多孔質箱体 1 2と、 この第 1微多孔質箱体 1 2内に嵌合可能な浅底の第 2 微多孔質箱体 1 3とからなるものである。 そして、 両者はいずれも粘土な どの焼成原料を押し固めて成形した後、 焼成したものである。
前記焼成原料としては、 高温で焼成しても、 空隙が消失しない原料が好 ましく、 例えば、 1 0号土, 磁器 2号土 (城山セラポッ ト株式会社) が挙 げられる。 特に、 微多孔質とし、 水分を吸収, 放出しやすくす、るため、 例 えば、 ベタライ ト 5 0〜6 0重量%を含有させることが好ましい。 また、 粉状無機質発泡体を含有させておいてもよい。
なお、 一般的に、 前記ベタライ トとしては、 S i 02が 7 6. 8 1重量%、 A 1 203が 1 6. 9 6重量%、 L i 20が 4. 0 3重量%、 K 20が 0. 2 6 重量%、 および、 不可避的不純物 1 . 9 4重量%のものが標準的である。 成形方法は、 例えば、 铸込み成形、 押し出し成形、 プレス成形、 ろくろ 成形などの既存の方法から適宜選択できるが、 特に、 大量生産およびコス 卜の見地より、 押し出し成形が好適である。 そして、 成形後の乾燥は、 通 常の方法, 条件で行うことができる。
焼成温度は、 1 0 0 0 °Cないし 2 0 0 0 °C、 特に、 1 2 0 0 °C前後が好 適である。 1 0 0 o °c未満であると、 硫黄成分が残留しやすく、 所望の強 度が得られないからであり、 2 0 0 0 °Cを越えると、 所望の透水性が得ら れないからである。
焼成方法は、 例えば、 酸化焼成などの既存の方法から適宜選択できる。 そして、 特に、 焼成方法が酸化焼成であれば、 所望の空隙が得やすいとい う利点がある。
前記第 1微多孔質箱体 1 2は、 その底面に所定のピッチで略正方形の突 部 1 4が碁盤目状に突設されている。 また、 前記箱体 1 2は、 その開口縁 部の対向する角部に略く字形のリブ 1 5を突設しているとともに、 その開 口縁部の一辺に切り欠き部 1 6を形成してある。
前記第 2微多孔質箱体 1 3は、 前記第 1微多孔質箱体 1 2内に嵌合可能 な平面形状を有する。 また、 箱体 1 3は、 その底面に前記第 1微多孔質箱 体 1 2と同様な突部 1 4が形成されているとともに、 その開口縁部の一辺 に切り欠き部 1 7を形成してある。
そして、 前記第 1微多孔質箱体 1 2に第 2微多孔質箱体 1 3を嵌合して 形成される内部空間 1 8内には、 例えば、 養水分を保持できる図示しない グラスファイバ一, 不織布等が充填されている。
さらに、 前記第 1 , 第 2微多孔質箱体 1 2 , 1 3の切り欠き部 1 6, 1 7を組み合わせて形成される貫通孔 1 9には、 グラスファイバ一 2 0を充 填した給水管 2 1が挿入され、 毛細管現象を利用して前記内部空間 1 8内 に養水分を供給できるようになつている。
したがって、 前述の構成からなる 2個の栽培装置 1 0, 1 0を重ね合わ せて形成される隙間 1 1内で栽培植物 3 0の根が張り、 第 2微多孔質箱体 1 3の表面から必要な養水分が吸収される。 このため、 栽培植物 3 0に適 した栽培環境を提供できる。 本実施形態によれば、 栽培装置 1 0の内部空間 1 8内に繊維 (図示せず) を充填し、 これに養水分を多量に蓄えておくことができる。 このため、 長 時間の養水分の供給不足が生じても、 栽培植物の枯れを防止できるという 利点がある。
なお、 前述の実施形態では、 2個の栽培装置の隙間で栽培植物を栽培す る場合について説明したが、 必ずしもこれに限らず、 例えば、 1個の栽培 装置の片側表面に、 種を蒔いて栽培してもよい。 また、 発芽して根を出し た栽培植物の根を、 水を含ませたスポンジ, 不織布で包み、 これを 2個の 栽培装置 1 0の間の隙間に位置決めして根付けしてもよい。
また、 前述の実施形態では、 2個の栽培装置を重ね合わせて使用する場 合について説明したが、 必ずしもこれに限らず、 3個以上の栽培装置を重 ね合わせて使用してもよい。
さらに、 前記栽培装置の微多孔質焼成体の表面形状は前述のものに限ら ず、 植物の根との接触面積が大きい、 例えば、 突部と突条との組み合わせ であってもよく、 あるいは、 単なる平坦面であってもよい。
第 2実施形態は、 図 3または図 4に示すように、 前述の第 1実施形態が 別体の微多孔質箱体 1 2 , 1 3を組み合わせて形成した場合であるのに対 し、 粘土を押し出して成形し、 これを焼成して得た断面長方形の微多孔質 筒体 2 2からなる栽培装置 1 0である。
前記微多孔質筒体 2 2は、 その片側表面に複数本の突条 2 3が並設され ている。 そして、 前記微多孔質筒体 2 2は、 前述の栽培装置 1 0と同様、 その内部空間 2 4内に図示しないグラスファイバ一等の繊維が充填され、 その上下開口部は蓋体 2 5, 2 6で閉じられている。 さらに、 前記蓋体 2 6には、 グラスファイバー等をより合わせた給水ロープ 2 1を挿入できる 揷入孔 2 7が形成されている。 この給水ロープ 2 1は、 筒状遮蔽カバーで 被覆されている。 毛細管現象を確保するとともに、 光を遮断し、 光合成を 防止して菌類, 藻類等の発生を抑制するためである。
なお、 前記微多孔質筒体 2 2は、 成形方法を除き、 焼成原料, 焼成方法 等において前述の第 1実施形態とほぼ同様であるので、 説明を省略する。
したがって、 図示しない繊維を充填した前記微多孔質筒体 2 2の係合孔
2 2 aに、 蓋体 2 5, 2 6の突起 2 5 a , 2 6 aをそれぞれ係合して栽培 装置 1 0を形成する。 そして、 前述の第 1実施形態と同様、 2個の前記栽 培装置 1 0, 1 0を重ね合わせ、 栽培装置 1 0, 1 0間に形成された隙間 1 1内に栽培植物 3 0の根を張らせて栽培する。
本実施形態によれば、 粘土を押し出して成形するので、 大量生産が容易 であり、 生産性が高いという利点がある。
第 3実施形態は、 図 5 A, 図 5 Bおよび図 5 Cに示すように、 複数本の 微多孔質角柱 3 1を組み合わせて形成した微多孔質板体 3 2を、 養水分供 給具 4 0に組み付けて栽培装置 1 0を構成した場合である。
すなわち、 前記微多孔質角柱 3 1は、 接触面積を増大し、 かつ、 位置決 めを容易にするため、 側端面に相互に嵌合可能な半円形の凹部 3 3, 凸部
3 4を形成したものである。 そして、 その当接面を部分的に接着剤で接着 して一体化したり、 あるいは、 図示しない緊締ベルトで締め付けて一体化 することにより、 微多孔質板体 3 2が形成される。 微多孔質角柱 3 1の製 造方法は、 前述の実施形態と同様であるので、 説明を省略する。
養水分供給具 4 0は、 浅底の長尺な箱体 4 1にグラスファイバー等の繊 維 4 2を敷き詰めた後、 前述の微多孔質板体 3 2を立設したものである。 そして、 前記箱体 4 1の側端面に設けた貫通孔 4 3に、 より合わせたグラ スフアイバーからなる給水ロープ 4 4の一端が挿入されている。 さらに、 この給水ロープ 4 4の他端は給水パイプ 4 5を介して給水タンク 4 6に接 続されている。
第 3実施形態の栽培装置を使用する場合には、 例えば、 図 6 Aおよび図 6 Bに示すように、 前記微多孔質板体 3 2の表裏面を、 不透水性面状基体 の一種であるポリプロピレン等の不透水性シート 3 6 , 3 6で被覆する。 そして、 この不透水性シート 3 6 , 3 6の両端を、 前記微多孔質板体 3 2 の両端に取り付けたホルダー 3 5, 3 5で支持する。 これにより、 前記微 多孔質板体 3 2の上端部に栽培植物 3 0の根を張らせて栽培できる。 前記 不透水性シート 3 6は水の蒸発を抑制するとともに、 遮光するためのもの である。
なお、 前記不透水性シート 3 6は不透水性面状基体の一種であるが、 不 透水性面状基体は必ずしもこれに限らず、 例えば、 金属製給水タンクであつ てもよい。
第 4実施形態は、 図 7に示すように、 微多孔質角柱 3 1を組み合わせて 湾曲する微多孔質板体 3 2を形成した場合である。 このため、 前記箱体 4 1は可撓性を有する合成樹脂材にて形成されている。 さらに、 一対の前記 微多質板体 3 2の両端をホルダー 3 7, 3 7で連結する。 そして、 両者の 内向面に栽培植物 3 0の根を張らせて栽培する。 他は前述の実施形態とほ ぼ同様であるので、 説明を省略する。
本実施形態によれば、 前記微多孔質板体 3 2, 3 2の対向する内向面に 栽培植物 3 0が根を張ることができる。 このため、 倒れにくい安定した栽 培装置 1 0が得られるという利点がある。
第 5実施形態は、 図 8に示すように、 微多孔質焼成材からなる板状基台 5 0に、 微多孔質焼成材からなる複数本の棒状突部 5 1を突設した場合で ある。 本実施形態にかかる棒状突部 5 1は板状基台 5 0に一体成形した後、 焼成してもよく、 あるいは、 焼成した扳状基台 5 0に別体の焼成した棒状 突部 5 1を後付けしてもよい。
本実施形態の使用方法としては、 本実施形態の扳状基台 5 0を養水分を 吸水した図示しない弾性多孔質材に載置し、 これから養水分を供給して使 用する方法が考えられる。
第 6実施形態は、 図 9 A, 図 9 Bおよび図 1 0に示すように、 前述の第 1実施形態あるいは第 2実施形態にかかる栽培装置 1 0を利用して屋外に 花壇を造成した場合である。
すなわち、 図 1 0に示すように、 水平な地面にセメントブロックで長方 形の枠 6 0を形成し、 図示しないビニールシ一卜で地面からの水分を遮断 する。 そして、 給水パイプ 6 1を配管し、 給水タンク 6 2に接続する。 つ いで、 前記給水パイプ 6 1の両側に所定のピッチで栽培装置 1 0を配置し、 この栽培装置 1 0と給水パイプ 6 1とを給水ロープ 6 3を介して接続し、 養水分を供給する。 前記給水ロープ 6 3はグラスファイバをより合わせた ものであり、 毛細管現象を確保するとともに、 光合成を防止するため、 フ レキシブルな筒状遮蔽カバー内に挿入されている。
ついで、 前記枠 6 0内に碎石 6 4を適宜投入し、 栽培植物 3 0を植える。 本実施形態では、 碎石 6 0等を投入したが、 砂, 土であってもよい。 また、 必ずしも有機質を含むものである必要はなく、 例えば、 有機質を含まない ガラス玉等の無機物であってもよい。 特に、 砕石, ガラス玉を投入する場 合には、 直径 1 O mm以上のものが好適である。 毛細管現象が発現しない からである。
なお、 栽培装置 1 0に供給する水量の調整は、 給水パイプ 6 1の高さ、 給水タンク 6 2内の水位を調整して行うことができるので、 給水作業を省 力化できる。
本実施形態によれば、 栽培植物 3 0を砕石 6 4等で支持できるので、 背 の高い草本植物, 木本植物を栽培できる。
特に、 砕石, ガラス玉等で栽培植物を支持すれば、 植え替えが容易であ るだけでなく、 雑草が生えにく く、 生えても処理が簡単である。
さらに、 塵埃が溜まっても、 高圧水で容易に洗浄でき、 排水も手間がか からない。 このため、 融雪材の散布によって残留する塩類も容易に除まで き、 植物の塩類障害を防止できる。 この結果、 例えば、 道路の中央分離帯、 防音壁の内側面などのメインテナンスが困難な場所にも適用できるという 利点がある。
第 7実施形態は、 図 1 1 Aないし図 1 3に示すように、 押し出し成形し た断面長方形の筒状栽培装置 1 0を砂地に所定のピッチで埋設する場合で める。
すなわち、 前記栽培装置 1 0は、 その内部を 2つの仕切り壁 7 1 a , 7 1 bで仕切って空洞部 7 2 a , 7 2 b , 7 2 cを形成してある。 そして、 中央の空洞部 7 2 cには、 グラスファイバーをより合わせた給水ロープ 7 3を挿通するとともに、 グラスファイバ一, グラスファイバークロス等の 無機繊維 7 4を充填してある。
一方、 上下の空洞 7 2 a , 7 2 bには、 遅効性肥料 7 5がそれぞれ充填 されている。 この肥料 7 5は取り替え可能なフィルム状, 棒状, 球状, 板 状であってもよく、 その成分に応じて色分けしたものであってもよい。 ま た、 肥料 7 5は固形である必要はなく、 例えば、 クリーム状のものであつ てもよい。
そして、 図 1 3に示すように、 砂地に設けた枠 7 6内に給水タンク 7 7 および給水パイプ 7 8を配置した後、 前記給水パイプ 7 8の片側に栽培装 置 1 0を所定のピッチで配置する。 さらに、 前記給水パイプ 7 8の接続口 7 8 aに前記給水ロープ 7 3の先端を接続し、 栽培装置 1 0に給水する。 なお、 栽培装置 1 0から接続口 7 8 aまでの間の給水ロープ 7 3は、 図 示されていない筒状遮蔽カバーで被覆されている。
したがって、 給水パイプ 7 8から給水ロープ 7 3を介して毛細管現象で 吸い上げられた水は、 空洞部 7 2 c内の無機繊維 7 4を介して栽培装置 1 0に染み込む。 そして、 空洞 7 2 a , 7 2 b内に染み出した水は肥料 7 5 を溶かして養水分となる。 ついで、 この養水分を栽培装置 1 0の表面から 栽培植物 3 0の根が吸い出す。
なお、 本実施形態の栽培装置 1 0に供給する水量の調整は、 給水パイプ 7 8の高さ、 給水タンク 7 7内の水位を調整することによって行われる。 本実施形態によれば、 給水ロープ 7 3は水だけを毛細管現象で吸い上げ るので、 肥料を溶かした養水分を直接供給する場合よりも、 細菌, 菌類, 藻類の発生が極めて少ない。 このため、 給水紐 7 3が目詰まりしにく くな るとともに、 養水分の濃度管理が容易になり、 さらに、 水および肥料を節 約できるという利点がある。
なお、 栽培装置を構成する微多孔質焼成材は、 前述の実施形態に限らず、 例えば、 単なる平板状、 あるいは、 平板の少なくとも片面に複数の突条を 突設した形状のもの、 波板状、 単なる筒状、 または、 有底筒状であっても よい。 さらに、 微多孔質焼成材は格子状または球状であってもよい。
また、 前述の実施形態によれば、 より合わせたグラスファイバーからな る給水ロープを介して給水する場合について説明したが、 必ずしもこれに 限らず、 例えば、 前記微多孔質焼成体の下端部を水に直接浸漬して給水し てもよい。
さらに、 養水分の供給は、 微多孔質焼成体の下端部に限らず、 表裏面, 側端面あるいは上端部から行ってもよいことは勿論である。 【実施例】
次に、 栽培装置として使用される微多孔質焼成体の実施例について説明 する。
(実施例 1 )
成分組成が以下に示す 10号土を泥漿とし、 これを石膏型に加圧しなが ら流し込み、 約 40分間放置して取り出した後、 温度 50〜60°Cの乾燥 炉で 9~10時間乾燥することにより、 第 1実施形態の第 1微多孔質箱体 と同一形状を有する成形体を得た。
前記 10号土の成分組成は、 S i 02が 64.0重量%、 A 1203が 24. 5重量%、 F e 203が 0.4重量%、 Na20が 0.4重量%、 K20が 0. 3重量%、 L i 20が 2.6重量%、 Mg, C aが合計 0.5重量%、 およ び、 不可避的不純物が 6.5重量%であり、 残部は測定誤差と考えられる。 また、 前記成形体は、 巾 140mm、 長さ 140mm、 最大高さ 27m m、 肉厚 6mmの外形寸法を有し、 その片面に、 巾 13mm, 高さ lmm の正方形の突部をピッチ 2 lmmで突設したものである。
そして、 この成形体を温度 1200°Cで 8〜9時間焼成することにより、 サンプルを得た。
このサンプルの下端 10 mmを水に浸漬し、 水の吸水速度を測定した。 測定結果を図 14に示す。
また、 前記サンプルを飽水後、 水 100 c cを注入し、 水の透過量を測 定した。 測定結果を図 15に示す。
(比較例 1 )
焼成温度を 760°Cとした点を除き、 他は前述の実施例 1と同様に処理 して得たサンプルにっき、 前述と同一の条件で水の吸水速度および透過量 を測定した。 測定結果を図 14, 15に示す。 (比較例 2 )
焼成温度を 1 1 0 0 °Cとした点を除き、 他は前述と同様に処理して得た サンプルにっき、 水の吸水速度および透過量を測定した。 測定結果を図 1 4, 1 5に示す。
図 1 4から明らかなように、 実施例 1が最も速く、 かつ、 高く水を吸い 上げることが判った。 また、 図 1 5から、 実施例 1が最も水を透過させや すいことが判った。
以上の結果より、 焼成温度 1 2 0 0 °Cで焼成した実施例 1が栽培植物に 最も水を供給しやすい特性を有するものであると考えられる。
(実施例 2 )
実施例 1と同様に処理して得られたサンプルにっき、 透過減水量を測定 するとともに、 含水比試験を行った。 それぞれの測定結果を図 1 6 , 図 1 7に示す。
透過減水量の測定は、 前述の実施例 1と同様、 含浸させた水 1 0 0 c c の透過減水の度合いを測定して行った。
また、 含水比試験は、 水に 2時間浸漬した後の飽水重量と、 絶乾重量 (1 1 0でで2 4時間乾燥) とを測定して行った。
(比較例 3 )
焼成温度を 1 1 0 0 °Cとした点を除き、 他は前述の実施例 1と同様に処 理して得たサンプルにっき、 前述と同一の条件で透過減水量を測定すると ともに、 含水比試験を行った。 それぞれの測定結果を図 1 6, 図 1 7に示 す。
(比較例 4 )
焼成温度を 1 0 0 0 °Cとした点を除き、 他は前述の実施例 1と同様に処 理して得たサンプルにっき、 前述と同一の条件で透過減水量を測定すると ともに、 含水比試験を行った。 それぞれの測定結果を図 1 6, 図 1 7に示 す。
図 1 6および図 1 7から明らかなように、 この実施例においては、 焼成 温度が高い程、 水が透過しやすく、 一方、 焼成温度が低い程、 含水比が大 きくなることが判った。
一般に、 焼成温度が低いと、 より多孔質の焼成体が得られるが、 強度が 低いとともに、 植物の成育を阻害する硫黄成分が残留しやすい。 一方、 焼 成温度が高いと、 強度の大きい焼成体が得られるが、 ガラス質が溶融して 所望の微多孔質焼成体が得られない。 このため、 育成する植物に応じ、 焼 成原料, 焼成温度, 添加剤を適宜選択して焼成する必要がある。
また、 前述の比較例 3, 4では、 水を吸水させると、 黄色の縞模様が現 れた。 これは、 硫黄成分が析出しているためであると考えられる。 硫黄ィ オンは植物の成育を妨げ、 特に、 植物が苗の場合には、 植物が枯れてしま うという問題点がある。 このため、 焼成体中の硫黄成分を除去すべく、 以 下のような実験を行った。
(実施例 3 )
過剰な硫黄を除去すべく、 比較例 3, 4で使用した 2種類のサンプルを 濃度 3 0 %の過酸化水素溶液に一昼夜浸漬して酸化した。 そして、 生石灰 液で中和して水洗いした後、 アルコールで洗浄し、 ついで、 水洗した。 そして、 前記サンプルの表面を目視して観察したところ、 いずれのサン プルも黄色の縞模様は消失していた。
(実施例 4 )
硫酸イオンを除去すべく、 比較例 3 , 4で使用した 2種類のサンプルを、 純水 1 0 0 0 c cに塩化バリウム 1 0 gを溶解した溶液に一昼夜浸漬した 後、 水洗いした。 そして、 前記サンプルの表面を目視して観察したところ、 いずれのサン プルも黄色の縞模様は消失していた。
なお、 塩化バリウム溶液は毒性が強いので、 その処分は硫黄を少量加え て白色の硫酸バリウムとし、 沈殿物として処理する必要がある。
なお、 前述の硫黄成分を除去する方法は前述の方法に限らず、 例えば、 過剰な硫黄を除去するため、 二硫化炭素に焼成体を浸漬した後、 水洗いし、 さらに、 アルコールに浸漬した後、 水洗いする方法がある。
さらに、 硫酸イオンを除去する方法としては、 焼成体を生石灰水の中に 浸漬して約 2 0分間煮沸し、 冷却した後、 水洗いしてもよい。 また、 焼成 原料、 水、 添加剤に含まれている硫酸イオン量をイオン交換で定量し、 そ の硫酸イオンと等量の炭酸バリウムを加えることにより、 硫酸イオンを除 去してもよい。 産業上の利用可能性
本願発明にかかる栽培装置は前述の実施形態に限らず、 他の栽培装置に 適用できるものである。

Claims

請 求 の 範 囲
1 . 微多孔質焼成体の表面に栽培植物の根を直接接触させ、 栽培植物 が必要とする養水分を供給することを特徴とする栽培装置。
2. 対向する前記微多孔質焼成体の少なくとも内向面に栽培植物の根 を張らせて栽培することを特徴とする請求項 1に記載の栽培装置。
3. 前記微多孔質焼成体と、 この微多孔質焼成体の表面を被覆する不 透水性面状基体との隙間に栽培植物の根を張らせることを特徴とする請求 項 1に記載の栽培装置。
4. 前記微多孔質焼成体の一部を養水分供給手段に接触させたことを 特徴とする請求項 1ないし 3のいずれか 1項に記載の栽培装置。
5. 前記養水分供給手段が、 養水分を保持できる繊維の集合体である ことを特徴とする請求項 1ないし 4のいずれか 1項に記載の栽培装置。
6. 前記微多孔質焼成体内に、 養水分を保持できる繊維を充填した内 部空間を設けたことを特徴とする請求項 1ないし 5のいずれか 1項に記載 の栽培装置。
7. 前記養水分供給手段に、 繊維束の毛細管現象で養水分を吸い上げ る給水ロープの一端を接続したことを特徴とする請求項 1ないし 6のいず れか 1項に記載の栽培装置。
8. 前記微多孔質焼成体内に形成された少なくとも 2つの内部空間の うち、 一方の内部空間に水分を保持できる繊維を充填し、 他方の内部空間 に肥料を充填したことを特徴とする請求項 1ないし 3のいずれか 1項に記 載の栽培装置。
9. 前記内部空間に充填された繊維に、 繊維束の毛細管現象で水分を 吸い上げる給水ロープの一端を接続したことを特徴とする請求項 8に記載 の栽培装置。
1 0. 前記繊維を充填した内部空間が貫通孔であり、 その両側開口部 から水を供給できることを特徴とする請求項 8または 9に記載の栽培装置 c
1 1 . 前記給水ロープが筒状遮蔽カバーで被覆されていることを特徴 とする請求項 7または 9に記載の栽培装置。
1 2. 表面に栽培植物の根を直接接触させる微多孔質焼成体を焼成し た後、 硫黄成分を除去することを特徴とする栽培装置の製造方法。
PCT/JP1997/003379 1996-09-30 1997-09-24 Dispositif de culture et son procede de fabrication WO1998014050A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU43198/97A AU719594B2 (en) 1996-09-30 1997-09-24 Cultivation device and method of manufacturing same
AT97941212T ATE228755T1 (de) 1996-09-30 1997-09-24 Kulturvorrichtung und verfahren zu seiner herstellung
CA002267592A CA2267592C (en) 1996-09-30 1997-09-24 Cultivation device and method of manufacturing same
NZ334952A NZ334952A (en) 1996-09-30 1997-09-24 Cultivating apparatus comprising a microporous fired element
US09/269,233 US6314678B1 (en) 1996-09-30 1997-09-24 Ceramic wicking device and method of manufacturing same
DE69717665T DE69717665T2 (de) 1996-09-30 1997-09-24 Kulturvorrichtung und verfahren zu seiner herstellung
EP97941212A EP0943234B1 (en) 1996-09-30 1997-09-24 Cultivation device and method of manufacturing same
NO19991504A NO316011B1 (no) 1996-09-30 1999-03-26 Dyrkingsapparat
HK00101928A HK1022808A1 (en) 1996-09-30 2000-03-29 Cultivation device and method of manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/258555 1996-09-30
JP25855596 1996-09-30
JP9193984A JP3044006B2 (ja) 1996-09-30 1997-07-18 栽培装置およびその製造方法
JP9/193984 1997-07-18

Publications (1)

Publication Number Publication Date
WO1998014050A1 true WO1998014050A1 (fr) 1998-04-09

Family

ID=26508227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003379 WO1998014050A1 (fr) 1996-09-30 1997-09-24 Dispositif de culture et son procede de fabrication

Country Status (14)

Country Link
US (1) US6314678B1 (ja)
EP (1) EP0943234B1 (ja)
JP (1) JP3044006B2 (ja)
KR (1) KR100404673B1 (ja)
CN (1) CN1105490C (ja)
AT (1) ATE228755T1 (ja)
AU (1) AU719594B2 (ja)
CA (1) CA2267592C (ja)
DE (1) DE69717665T2 (ja)
HK (1) HK1022808A1 (ja)
NO (1) NO316011B1 (ja)
NZ (1) NZ334952A (ja)
TW (1) TW381000B (ja)
WO (1) WO1998014050A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1177157A1 (en) * 1999-03-09 2002-02-06 Si-Hoon Song A vital matter and a producing method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100952246B1 (ko) * 2001-11-16 2010-04-09 화이토칼쳐 가부시키가이샤 생물 배양 장치 및 생물 배양 방법
WO2003086053A1 (fr) * 2002-04-15 2003-10-23 Phytoculture Control Co., Ltd. Systeme de transformation de plantes
KR100499203B1 (ko) * 2002-10-14 2005-07-05 주식회사 셀그린 저면관수용 식물재배기
TW201100003A (en) * 2009-06-18 2011-01-01 Univ Nat Pingtung Sci & Tech Active type water-supplying device used for plant pots
CN107079797A (zh) 2012-04-09 2017-08-22 三井化学株式会社 植物栽培用材料及利用该材料的植物栽培方法
AU2014250390B9 (en) 2013-04-03 2017-05-25 Mitsui Chemicals, Inc. Plant cultivation system, cultivation method utilizing same and manufacturing method therefor
JP6255848B2 (ja) * 2013-09-27 2018-01-10 小松精練株式会社 植物育成装置およびその植物育成装置を用いた植物の育成方法
JP2015065865A (ja) * 2013-09-27 2015-04-13 小松精練株式会社 植物育成装置を用いた植物育成方法
CN106718788A (zh) * 2015-05-15 2017-05-31 邹祥茂 一种养花的工具
JP6427832B2 (ja) * 2017-06-02 2018-11-28 小松マテーレ株式会社 植物育成装置
US11297783B2 (en) 2018-02-23 2022-04-12 DeFoor Innovations, LLC Growing system
AT522984B1 (de) * 2019-09-30 2021-06-15 Mohsen Hedjazi Seyed Bewässerungsvorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262929A (ja) * 1986-05-09 1987-11-16 株式会社クラレ 水耕栽培装置
JPH0383045U (ja) * 1989-12-18 1991-08-23
JPH03272622A (ja) * 1990-03-22 1991-12-04 Tomonori Shiraishi 植木鉢への水供給装置
JPH0630665A (ja) * 1992-07-14 1994-02-08 Norihisa Komori 水耕栽培用施肥装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2084005A (en) * 1934-10-25 1937-06-15 Richards Lorenzo Adolph Auto irrigation system
US2629204A (en) * 1949-04-26 1953-02-24 Dodds John Self-watering flowerpot
US3990181A (en) * 1970-05-25 1976-11-09 Do Valle Fernando Ribetro Novel irrigation system and method for its application
US3797738A (en) * 1972-11-02 1974-03-19 D Fitzhugh Controlled water distribution system and methods
US4216623A (en) * 1977-05-25 1980-08-12 Silver Stanley M Plant watering system and process
DE3211985A1 (de) * 1982-03-31 1983-10-13 Esto-Klinker Ebersdorfer Schamotte- und Tonwerke GmbH, 8624 Ebersdorf Pflanzenbehaelter oder -topf
DE3231694A1 (de) * 1982-08-26 1984-03-01 Hubert 6729 Jockgrim Gebhart Pflanzgefaess fuer erdkulturen auf hydrobasis und verfahren zum herstellen keramischer pflanzgefaesse fuer diesen zweck
US4651468A (en) * 1984-03-19 1987-03-24 Systemic Nutrigation Concepts Method and apparatus for natural fertilization and irrigation of plants
DE3514733A1 (de) * 1985-04-24 1987-01-15 Hubert K Block Vorrichtung zu langzeitversorgung von pflanzen verschiedener kulturarten wie erd-, hydro-, hetero- und bonsai-kulturen
US4982527A (en) * 1986-12-30 1991-01-08 Sprung Philip D Seedling propagation assembly
LU86799A1 (fr) * 1987-03-04 1988-09-20 Luc Janssens Bac de plantation
US5099609A (en) * 1991-01-31 1992-03-31 Ceramic Creations Self-watering ceramic planter
JPH04356689A (ja) 1991-05-31 1992-12-10 Kazumi Seisakusho:Kk 自然対流式熱交換器用の放熱管およびその製造方法
FR2690812A1 (fr) 1992-05-05 1993-11-12 Rhone Poulenc Geronazzo Spa Composition phytosanitaire hydrosoluble incorporant un dérivé de semisulfosuccinate.
US5315783A (en) * 1992-07-29 1994-05-31 Peng Luke S Flowerpot with water/soil separative planting system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262929A (ja) * 1986-05-09 1987-11-16 株式会社クラレ 水耕栽培装置
JPH0383045U (ja) * 1989-12-18 1991-08-23
JPH03272622A (ja) * 1990-03-22 1991-12-04 Tomonori Shiraishi 植木鉢への水供給装置
JPH0630665A (ja) * 1992-07-14 1994-02-08 Norihisa Komori 水耕栽培用施肥装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1177157A1 (en) * 1999-03-09 2002-02-06 Si-Hoon Song A vital matter and a producing method
EP1177157A4 (en) * 1999-03-09 2004-08-25 Si-Hoon Song ESSENTIAL MATERIAL AND METHOD FOR THE PRODUCTION THEREOF

Also Published As

Publication number Publication date
EP0943234A1 (en) 1999-09-22
JPH10150871A (ja) 1998-06-09
DE69717665D1 (de) 2003-01-16
KR100404673B1 (ko) 2003-11-07
CN1105490C (zh) 2003-04-16
ATE228755T1 (de) 2002-12-15
AU719594B2 (en) 2000-05-11
HK1022808A1 (en) 2000-08-25
US6314678B1 (en) 2001-11-13
NZ334952A (en) 2001-05-25
NO991504L (no) 1999-05-31
NO991504D0 (no) 1999-03-26
DE69717665T2 (de) 2003-08-21
NO316011B1 (no) 2003-12-01
EP0943234A4 (en) 2001-01-24
CA2267592A1 (en) 1998-04-09
AU4319897A (en) 1998-04-24
CA2267592C (en) 2002-12-03
KR20000048610A (ko) 2000-07-25
TW381000B (en) 2000-02-01
JP3044006B2 (ja) 2000-05-22
CN1232364A (zh) 1999-10-20
EP0943234B1 (en) 2002-12-04

Similar Documents

Publication Publication Date Title
EP1339275B1 (de) Formkörper zur verbesserung der kultivierungsbedingungen von pflanzen
JP3044006B2 (ja) 栽培装置およびその製造方法
US20090199473A1 (en) Horticultural Growth Medium
JP5283024B2 (ja) 植栽ベース
US20180116137A1 (en) Dual-media horticultural plug
JP7074346B2 (ja) 植栽土壌の灌水装置
DE3523004A1 (de) Vorrichtung zur langzeitversorgung von pflanzen
KR200461692Y1 (ko) 가습기능이 구비된 화분받침대
JP2004337117A (ja) 浮上する毛管吸水体または毛管吸水箱及びその毛管吸水容器
JPH11275992A (ja) 栽培システム
JP3037905B2 (ja) 植木鉢を利用するプランター
JPH11113399A (ja) 植物栽培ユニットおよびこれを使用した植物栽培用施工方法
JPS59138609A (ja) 灌漑水の自動給排水装置
KR200230305Y1 (ko) 화분용 급수판
JP2004097235A (ja) 貯水器
JP2004041095A (ja) 緑化植栽用貯水部材とこれを用いた植栽装置
JP2001299094A (ja) 植物栽培用構造体
JP3205786U (ja) 底面給水式プランター
JP2005168447A (ja) 緑化設備及び緑化ユニット
JPH1084785A (ja) 底面給水用トレイ
JPH042206B2 (ja)
JPH08280264A (ja) 植木鉢装置
JPH09224503A (ja) 給水栽培方法
JPH06141709A (ja) 乾燥土壌における植物栽培法
JPH10309128A (ja) 植物栽培用資材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97198611.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR NO NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09269233

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997941212

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997002546

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2267592

Country of ref document: CA

Ref document number: 2267592

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 334952

Country of ref document: NZ

WWP Wipo information: published in national office

Ref document number: 1997941212

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997002546

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997941212

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997002546

Country of ref document: KR