WO1998003284A1 - Procedimiento para la fabricación de manguitos y otros elementos de mazarotaje y alimentación para moldes de fundición, y formulación para la obtención de dichos manguitos y elementos - Google Patents

Procedimiento para la fabricación de manguitos y otros elementos de mazarotaje y alimentación para moldes de fundición, y formulación para la obtención de dichos manguitos y elementos

Info

Publication number
WO1998003284A1
WO1998003284A1 PCT/ES1997/000172 ES9700172W WO9803284A1 WO 1998003284 A1 WO1998003284 A1 WO 1998003284A1 ES 9700172 W ES9700172 W ES 9700172W WO 9803284 A1 WO9803284 A1 WO 9803284A1
Authority
WO
WIPO (PCT)
Prior art keywords
resins
weight
formulation according
activated
sleeves
Prior art date
Application number
PCT/ES1997/000172
Other languages
English (en)
French (fr)
Inventor
Tomas Posada Fernandez
Rafael Sampedro Gerenabarrena
Francisco José Diaz Maruri
Jaime Prat Urrestieta
José Joaquin Lasa Urteaga
Luis Iglesias Hernandez
Original Assignee
Kemen Recupac, S.A.
Iberia Ashland Chemical, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26154980&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1998003284(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from ES9601607A external-priority patent/ES2114500B1/es
Priority to DE69725315T priority Critical patent/DE69725315T3/de
Priority to SI9720046A priority patent/SI9720046B/sl
Priority to PL97331248A priority patent/PL331248A1/xx
Priority to US09/043,350 priority patent/US6197850B1/en
Priority to KR1019980701872A priority patent/KR100523880B1/ko
Priority to CZ1999148A priority patent/CZ294298B6/cs
Priority to RO99-00050A priority patent/RO119517B1/ro
Priority to HU0000440A priority patent/HU222215B1/hu
Application filed by Kemen Recupac, S.A., Iberia Ashland Chemical, S.A. filed Critical Kemen Recupac, S.A.
Priority to EP97930527A priority patent/EP0913215B2/en
Priority to RU99103337/02A priority patent/RU2176575C2/ru
Priority to IL12808697A priority patent/IL128086A/xx
Priority to JP50659598A priority patent/JP4610679B2/ja
Priority to CA002232384A priority patent/CA2232384C/en
Priority to BR9702346-9A priority patent/BR9702346A/pt
Priority to AU34445/97A priority patent/AU729049B2/en
Priority to AT97930527T priority patent/ATE250995T1/de
Priority to TW086111588A priority patent/TW358048B/zh
Priority to UA99010251A priority patent/UA56175C2/uk
Publication of WO1998003284A1 publication Critical patent/WO1998003284A1/es
Priority to NO19990211A priority patent/NO334048B1/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/181Cements, oxides or clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/088Feeder heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/06Ingot moulds or their manufacture
    • B22D7/10Hot tops therefor

Definitions

  • This invention relates to sleeves and other elements of mazarotage and feeding for foundry molds suitable for manufacturing metal parts, to a process for obtaining them, as well as to formulations suitable for manufacturing them.
  • the obtaining of metal parts by molding comprises the pouring of the molten metal into a mold, the solidification of the metal by cooling and the demoulding or extraction of the piece formed by the removal or destruction of the mold.
  • molds can be metallic or they can be formed by aggregates of different materials (ceramic, graphite and, above all, sand), normally hardened by the action of binders.
  • sand molds are obtained by filling a mold box with sand.
  • the drinking fountains through which molten metal is poured are also constructed of refractory, insulating and even exothermic materials, of a similar composition to that of the sleeves.
  • Insulating refractory compositions suitable for the manufacture of sleeves and other mazarotage and feed elements for foundry molds, with insulating properties, composed of a refractory material in the form of particles, organic and / or inorganic fibers and binders are known.
  • exothermic refractory compositions suitable for manufacturing sleeves and other elements of mazarotage and feed for foundry molds, with exothermic properties, composed of a refractory filler in the form of fibers or particles, binders and, optionally, loads selected from a metal easily oxidizable and an oxidizing agent capable of oxidizing said metal.
  • an inorganic fluorinated flux is usually included.
  • British patents nos. GB 627678, 774491, 889484 and 939541 describe exothermic refractory compositions containing inorganic fluorides.
  • sleeve suspend in water a mixture formed by the materials used for the manufacture of the sleeve, for example, silica-aluminous fibers, aluminum, iron oxide and phenolic resins, or alternatively, a mixture formed by siliceous sands, aluminum slag, cellulose, aluminum and phenolic resins;
  • silica-aluminous material is not in the form of fibers since a part of it may have been replaced by hollow microspheres of said silica-aluminous material in order to decrease the necessary amount of product and reduce the cost of the final product.
  • microspheres are then used as a loading element.
  • the materials used in the form of fibers can lead to allergic pathologies, such as itching and irritation of the skin and mucous membranes, among operators.
  • Another process for the manufacture of sleeves consists of mixing sands, exothermic materials and a specific type of resins, for example, mixing sodium silicate and alkaline or novolac phenolic resins, and subsequently, performing a manual or blow molding of the obtained mixtures.
  • this procedure is simpler than the wet one, its use has serious limitations because, on the one hand, it does not It is possible to obtain sleeves with insulating characteristics and, on the other hand, the sleeves obtained are extraordinarily hygroscopic.
  • application 094/23865 describes a blown composition based on hollow aluminum silicate microspheres, but which requires that the alumina content thereof be above 40%, which leaves a significant part of this by-product unusable. , since a very important part of the hollow microspheres of aluminum silicate generated as an industrial by-product have a wealth of less than 40% by weight of alumina.
  • the invention provides a solution to said problem comprising the use of a refractory material, such as aluminum silicate, in the form of hollow microspheres with an alumina content of less than 38% by weight, in the formulation of a composition suitable for manufacturing said sleeves and elements of mazarotage and feeding for foundry molds.
  • a refractory material such as aluminum silicate
  • an object of this invention is the use of hollow aluminum silicate microspheres with an alumina content of less than 38% by weight in the formulation of a composition totally free of refractory, insulating or exothermic material, in the form of fibers , suitable for manufacturing sleeves and other elements of mazarotage and feeding for cast, insulating or exothermic molds.
  • Another object of the invention is a formulation suitable for the manufacture of sleeves and other elements of mazarotage and feed for foundry molds, comprising hollow microspheres of aluminum silicate with an alumina content of less than 38% by weight, a binder and Optional charges.
  • the sleeves and other elements of mazarotage and feeding, manufactured from the aforementioned formulation, which can be insulating or exothermic, as well as their manufacturing process constitute additional objects of this invention.
  • the fluoride causing the rejection of the pieces can come from bentonite, water or sand, but, mainly, from the fluorinated derivatives used in the composition to obtain the exothermic sleeves, so if they are used in bulk These sleeves can cause the green sand circuit to reach undesirable limits of fluorine content.
  • the invention provides a solution to said problem which comprises the use of an insert, the composition of which contains an inorganic fluorinated flux, in the manufacture of sleeves and exothermic mazarotage and feeding elements suitable for nodular smelting, and which is fixed over an area of said sleeves and elements.
  • a further object of this invention is a process for the manufacture of sleeves and elements of exothermic mazarotage and feeding suitable for nodular cast iron comprising the formation and fixation of an insert comprising an inorganic fluorinated flux, on a precursor shaped composition of said sleeve or element consisting of hollow microspheres of aluminum silicate with an alumina content of less than 38% by weight, a binder and optional fillers.
  • Figure 1 represents a practical embodiment of the casting of a metal part as well as the main elements of the process.
  • this figure represents a practical and typical example of the traditional casting process of a piece (1), in whose casting process some upper (2), lateral (3) sleeves, a drinking fountain (4) ) and its filter (5).
  • the piece (1) when cooled contracts by absorbing metal from the sleeves (2) and (3), which, in order to allow said material to flow to the part, must have this liquid phase casting material since otherwise they will not be able to provide the material required by the part in its cooling.
  • Figure 2 is a graph showing the cooling curves of the metal as a function of the thickness of the sleeves used, showing that, in general, for the same overflow diameter, if the thickness of the sleeve increases the solidification time of the metal.
  • This figure highlights the lower curve (closest to the abscissa axis) that represents the cooling curve when a sleeve is not used and how the cooling of the material is extremely fast.
  • the upper curves define cooling curves achieved with the incorporation of thicker sleeves, checking how the cooling is slower the greater the thickness of the sleeves.
  • Figure 3 depicts a practical embodiment of an exothermic sleeve suitable for nodular cast iron having an insert at its base comprising an inorganic fluorinated flux.
  • the invention provides a formulation suitable for the manufacture of sleeves and other elements of mazarotage and feed for foundry molds, both insulating and exothermic, comprising hollow microspheres of aluminum silicate with an alumina content of less than 38% by weight, preferably comprised between 20 and 38%, a binder and optional charges, in non-fibrous form, selected from the group consisting of oxidizable metals, oxidants and inorganic fluorinated fluxes.
  • This formulation lacks completely of refractory material in the form of fibers.
  • the hollow microspheres of aluminum silicate (AI2O3.SIO2) which can be used in this invention have an alumina content of less than 38% by weight, preferably between 20 and 38% by weight, a grain diameter of up to 3 mm and, in general, any wall thickness.
  • hollow aluminum silicate microspheres with an average diameter of less than 1 mm and a wall thickness of approximately 10% of the grain diameter are used.
  • hollow aluminum silicate microspheres with an alumina content of less than 38% by weight commercially available can be used.
  • suitable formulations can be obtained to manufacture sleeves and other elements of mazarotage and feed for insulating or exothermic cast molds.
  • the density of the hollow microspheres the greater the insulating power of the sleeve obtained, while the denser microspheres have less insulating power.
  • Another important factor in selecting the hollow icrospheres is their specific surface area because the smaller this one, the consumption of binder (resin) will be lower, and therefore, the lower the overall cost of manufacturing the sleeves and elements of mazarotage and feeding, and lower will be the evolution of gas.
  • any type of resin, both solid and liquid, which polymerizes with its appropriate catalyst after blowing and molding of the binder can be used as binder.
  • formulation in hot box, in cold box, or by self-forging technique As an example, for cold box curing, amine-activated phenol-urethane resins (gas), SO2-activated epoxy-acrylic resins (gas), CO2-activated alkaline phenolic resins or methyl formate can be used ( gas), and CO2 activated sodium silicate resins.
  • furanic, phenolic and novolac resins, activated by the appropriate catalysts can be used.
  • silicate resins for example, sodium silicate
  • silicate resins activated by an ester that acts as a catalyst
  • ester-activated phenolic-alkaline resins activated by urethane-activated phenolic resins
  • phosphate resins activated by a metal oxide.
  • binders are suitable for the manufacture, according to the invention, of exothermic or insulating mazarotage and feeding sleeves and elements, the practical tests carried out suggest for cost, strength, mechanical characteristics and dimensional accuracy, the phenol-urethane resins activated by amine (gas) and epoxy-acrylic resins activated by SO2 (gas).
  • the formulation provided by this invention may contain optional charges, in non-fibrous form, selected from the group consisting of oxidizable metals, oxidants and inorganic fluorinated fluxes.
  • oxidizable metals aluminum, magnesium and silicon, preferably aluminum, can be used.
  • alkali or alkaline earth metal salts may be used, for example, nitrates, chlorates and permanganates of alkali and alkaline earth metals, and metal oxides, for example, iron and manganese oxides, preferably iron oxide.
  • inorganic fluorinated fluxes cryolite (Na3AlFg), potassium aluminum tetrafluoride, and potassium aluminum hexafluoride, preferably cryolite, can be used.
  • a typical composition provided by this invention comprises hollow microspheres of aluminum silicate with an alumina content comprised between 20 and 38% by weight, aluminum, iron oxide and cryolite.
  • an exothermic reaction begins on the mold and as a consequence of it the oxidation of aluminum, producing an additional alumina which, added to that already contained in the hollow silicate microspheres of aluminum, improves the refractory characteristics of the sleeve and any other element of mazarotage and feeding.
  • hollow aluminum silicate microspheres with a low alumina content can be used compared to what the state of the art teaches as advisable (greater than 40% by weight, W094 / 23865 ), which had not been previously used as a refractory component in the manufacture of sleeves and other elements of mazarotage and feeding due to its low alumina content.
  • these low alumina microspheres are cheaper than those with a higher alumina content, so their use has a double interest: take advantage of a by-product mainly from thermal power plants and reduce the cost of manufacturing the sleeves and other elements of mazarotage and feeding.
  • formulations provided by this invention are suitable for obtaining sleeves and elements of mazarotage and feed for foundry molds, insulating or exothermic.
  • a typical formulation suitable for the manufacture of sleeves and exothermic elements is that identified as Formulation [I].
  • the formulation [I] may contain up to 5% by weight of an inorganic fluorinated flux, such as cryolite, and up to 10% by weight of an oxidant, such as iron oxide or potassium permanganate.
  • an inorganic fluorinated flux such as cryolite
  • an oxidant such as iron oxide or potassium permanganate.
  • a typical formulation suitable for obtaining sleeves and insulating mazarotage and feeding elements is that identified as Formulation [II].
  • the formulations provided by this invention can be easily prepared by mixing their components until completely homogenized.
  • the sleeves and mazarotage and feeding elements provided by this invention can be produced automatically by blowing a formulation provided by this invention, or by the self-setting molding technique (molding manual) to form sleeves and other elements in those cases in which short production series do not justify the investment in tools.
  • This invention also provides a method for manufacturing sleeves and elements of mazarotage and feed for cast, insulating or exothermic castings, which uses one of the formulations of this invention, previously described, as a starting material and comprises molding said formulation either manually or by blowing in a conventional blowing machine, polymerize the resin used by adding the appropriate catalyst, and obtain the sleeve in short periods of time, generally of the order of a few seconds.
  • the dimensional accuracy obtained with this procedure is much higher than that obtained by other traditional molding procedures, which allows these sleeves and elements to be considered as accurate and, therefore, can be easily coupled to the cast mold after being made, No additional manipulations and manually or automatically.
  • the process of the invention comprises the molding of a formulation in which the refractory material (aluminum silicate) is in the form of hollow microspheres instead of having a fibrillar structure and in which the addition of resins of any type is possible.
  • aluminum silicate aluminum silicate
  • the use of non-fibrous solid materials allows a homogeneous and dry-looking mixture to be obtained, which allows dimensionally perfect parts to be obtained by blowing, in very short times, both internally and externally.
  • This procedure allows to manufacture sleeves and elements of mazarotaje and feeding for molds of smelting, exothermic or insulators, using appropriate formulations for each case, without more than varying the density of the microspheres, so that the lower the density of the same, the greater the insulating power of the product obtained.
  • the process also allows the use of microspheres with a small specific surface area, which means that the binder consumption is lower and, therefore, the manufacturing cost of the sleeve decreases.
  • the insulating capacity of the sleeve When it is desired to manufacture large diameter sleeves or sleeves for molding metals with low casting temperature (aluminum), the insulating capacity of the sleeve must be prioritized. On the contrary, when it is desired to manufacture sleeves of small diameter or for metals with high casting temperature, it is important to prioritize the exothermic capacity of the sleeve.
  • Another important advantage of this procedure is that thanks to the great accuracy in the shape, both external and internal of the sleeve, the placement of the sleeve inside the overflow is extremely simple. Another additional advantage of this procedure is that it allows to obtain sleeves, insulating or exothermic, faster and cheaper than traditional bodies made of fibers and wet.
  • the sleeves and mazarotage and feeding elements provided by this invention are composed of hollow aluminum silicate microspheres with an alumina content of less than 38% by weight, preferably between 20 and 38%, and a binder, together with other optional loads in non-fibrous form.
  • these sleeves have dimensional accuracy, so they can be easily attached to the cast iron after making it, without additional manipulations and manually or automatically.
  • design capable of providing minimum amounts of fluoride, constituted from a formulation provided by the invention suitable for the manufacture of said sleeves or elements but free of inorganic fluorinated fluxes.
  • it is based on a mixture based on hollow microspheres of aluminum silicate, with an alumina content of less than 38% by weight, preferably between 20 and 38% by weight, and optional loads selected from oxidizable and oxidizing metals , such as those mentioned previously, a mixture that, together with the chosen binder resin, is blown into the molding box where the sleeve or the element in question is to be formed.
  • the blowing operation of this mixture is used to fix at the base of the sleeve or of the element in question, or in a suitable area thereof, an insert, the composition of which comprises an inorganic fluorinated flux, which has been introduced into the box of molding before blowing the mixture free of inorganic fluorinated fluxes.
  • Said insert acts as a bait or initiator of the exothermic reaction.
  • the insert which has been produced either by agglomerate or by pressure molding, is constituted by a mixture of oxidizable oxidizable metals, oxidants and inorganic fluxes commonly used in the manufacture of sleeves and other elements of mazarotage and feeding, mentioned previously, together with , optionally, hollow microspheres of aluminum silicate or other suitable element to dilute or regulate the exothermicity
  • said insert is composed of a mixture based on aluminum, iron oxide and cryolite and, optionally, the diluent element of exothermicity.
  • the proportion by weight of the insert with respect to the sleeve or element in question is between 5 and 20%.
  • the exothermic reaction begins at the contact of the molten metal with the insert and extends rapidly and / or controlled mind to the rest of the sleeve or element.
  • the fluorine released by said reaction is minimal since it comes exclusively from the initiator of the exothermic reaction.
  • the fluorine intake is approximately 5 times lower when the insert is used [see Example 2].
  • Figure 3 shows an exothermic sleeve (6) suitable for nodular cast iron, consisting of a mixture of hollow aluminum silicate microspheres with an alumina content between 20 and 38% by weight, an oxidizable metal and an oxidizer, which It contains an insert (7) initiator of the exothermic reaction based on an oxidizable metal, an oxidant and an inorganic fluorinated flux.
  • a process for the manufacture of a sleeve or of an element of mazarotage and feed for cast molds, exothermic, suitable for nodular cast iron comprising the steps of: - introducing into the molding box an insert consisting of a mixture comprising oxidizable metals, oxidants and inorganic fluorinated fluxes, and, optionally, hollow microspheres of aluminum silicate or another diluent or regulator of exothermicity, the weight of which is between 5 and 20% of the total weight of the sleeve or element and which acts as the initiator of the exothermic reaction; Y
  • the binder resin is cured and the piece formed by conventional methods is removed.
  • Exothermic sleeves and insulating sleeves are prepared with the composition shown below.
  • the mixture of the different components is performed in a paddle mixer and fired on a metal box with a male Roperwerk pressure trigger with a trigger .O n ⁇ 6 kg / cm i.
  • the catalyst gas
  • the catalyst is passed by hardening the formed mixture as a sleeve in a time of 45 seconds. Then, it is demoulded leaving the sleeve ready for use.
  • - TS is the tensile strength (TENSILE STRENGHT). Values in kg to traction, for test tube of 3.5 cm section.
  • a 97 mm side hub is molded into molded steel, following the usual molding and fusion practices.
  • the liquid and solidification contraction of the hub is fed with a cylindrical sleeve 50 mm in diameter and 70 mm in height obtained as previously mentioned.
  • This sleeve is provided with an upper cover of the same sleeve material that makes it unnecessary to use an exothermic cover material.
  • the cube has a solidification module (M) of 1, 6 cm, and to feed it, a flask with a module larger than 1.6 cm would be needed.
  • M solidification module
  • the geometric modulus of the sleeve (Mm) used is 0.95 cm, that is, 1.7 times smaller. As the sucker does not reach the bucket, it can be said that, under the working conditions used, the Module Extension Factor
  • the insert is placed in the chosen housing on a male box that serves to produce the exothermic sleeve (base sleeve) by blowing a mixture of solids formed by:
  • a sleeve of 113 g of total weight is obtained, with an insert of 8 g of weight that will act as bait and avoid or minimize the need to use cryolite (fluorine content of 55% by weight) in the base sleeve in order to provide the minimum amount of fluoride possible to the sand circuit in which the piece with said sleeve will melt.
  • cryolite fluorine content of 55% by weight
  • Base sleeve weight 105 g
  • Fluoride intake in the cryolite 0 g
  • the fluorine content is 2,585 g, that is, about 5.4 times greater, so that the fluoride contribution to the green sand circuit would be substantially higher.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Motor Or Generator Current Collectors (AREA)
  • Casting Devices For Molds (AREA)
  • Continuous Casting (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Los manguitos y elementos de mazarotaje y alimentación, aislantes o exotérmicos, se obtienen por soplado o moldeo manual de una formulación que comprende microesferas huecas de silicato de aluminio con un contenido en alúmina inferior al 38 % en peso, un aglomerante y unas cargas opcionales, en forma no fibrosa. Dependiendo de la densidad de las microesferas se pueden obtener formulaciones adecuadas para fabricar manguitos y elementos de mazarotaje y alimentación aislantes o exotérmicos. Los manguitos obtenidos tienen exactitud dimensional externa e interna y se pueden acoplar al molde después de confeccionados, sin manipulaciones adicionales y de forma manual o automática. Estos manguitos tienen interés en la fabricación de piezas metálicas férreas o no férreas.

Description

PROCEDIMIENTO PARA LA FABRICACIÓN DE MANGUITOS Y OTROS ELEMENTOS DE MAZAROTAJE Y ALIMENTACIÓN PARA MOLDES DE FUNDICIÓN, Y FORMULACIÓN PARA LA OBTENCIÓN DE DICHOS MANGUITOS Y ELEMENTOS
CAMPO DE LA INVENCIÓN
Esta invención se refiere a unos manguitos y otros elementos de mazarotaje y alimentación para moldes de fundición adecuados para fabricar piezas metálicas, a un procedimiento para su obtención, así como a formulaciones adecuadas para la fabricación de los mismos.
ANTECEDENTES DE LA INVENCIÓN
Como es conocido, la obtención de piezas metálicas por moldeo comprende el vertido del metal fundido en el interior de un molde, la solidificación del metal por enfriamiento y el desmoldeo o extracción de la pieza formada mediante la retirada o destrucción del molde.
Estos moldes pueden ser metálicos o pueden estar formados por agregados de distintos materiales (cerámicos, grafito y sobre todo, arena) , endurecidos normalmente por acción de aglomerantes. En general, los moldes de arena se obtienen llenando con arena una caja de moldeo.
Estos moldes deben contar con bebederos u orificios de comunicación entre la cavidad interna y el exterior, a través de los cuales se vierte el metal fundido en fase de moldeo o colada. Asimismo, debido a la contracción del metal durante el enfriamiento se deben prever en el molde unas cavidades verticales o rebosaderos que se llenan con metal fundido de reserva al objeto de formar una mazarota destinada a compensar las contracciones o rechupes del metal. La mazarota tiene como fin alimentar la pieza cuando en ésta contrae el caldo, por lo que el metal debe mantenerse en la mazarota en estado líquido un tiempo más largo que la pieza. Por este motivo, los rebosaderos se suelen recubrir con unos manguitos compuestos por materiales refractarios isotérmicos (aislantes) o incluso exotérmicos que retardan el enfriamiento del metal contenido en las mazarotas para garantizar su fluidez cuando se produzcan los rechupes en el metal colado.
Los bebederos por los que se vierte el metal fundido, también están construidos de materiales refractarios, aislantes e incluso exotérmicos, de composición similar a la de los manguitos.
Se conocen composiciones refractarias aislantes adecuadas para la fabricación de manguitos y otros elementos de mazarotaje y alimentación para moldes de fundición, con propiedades aislantes, compuestas por un material refractario en forma de partículas, fibras orgánicas y/o inorgánicas y aglomerantes.
También se conocen composiciones refractarias exotérmicas adecuadas para fabricar manguitos y otros elementos de mazarotaje y alimentación para moldes de fundición, con propiedades exotérmicas, compuestas por un relleno refractario en forma de fibras o partículas, aglomerantes y, opcionalmente, unas cargas seleccionadas entre un metal fácilmente oxidable y un agente oxidante capaz de oxidar dicho metal. Adicionalmente, para mejorar la sensibilidad de la composición refractaria exotérmica se suele incluir un fundente fluorado inorgánico. Las patentes británicas nos. GB 627678, 774491, 889484 y 939541 describen composiciones refractarias exotérmicas que contienen fluoruros inorgánicos.
Adicionalmente, la solicitud PCT publicada con el número de publicación internacional 094/23865 describe una composición para un molde de colada de metales que comprende microesferas huecas que contienen alúmina en donde el contenido en alúmina es de, al menos, un 40% en peso.
La gran mayoría de los manguitos que se consumen a nivel mundial se fabrican por moldeo en vacío y vía húmeda, seguido de un secado y polimerizado de las resinas a alta temperatura, tal como se menciona en la patente española ns ES-8403346. Un procedimiento estándar de este tipo comprende las etapas de:
- suspender en agua una mezcla formada por los materiales utilizados para la fabricación del manguito, por ejemplo, fibras sílico-aluminosas, aluminio, óxido de hierro y resinas fenólicas, o alternativamente, una mezcla formada por arenas silíceas, escoria de aluminio, celulosas, aluminio y resinas fenólicas;
- aspirar dicha suspensión acuosa mediante vacío a través de un molde exterior e interior; y
- desmoldear el manguito en verde, o húmedo, que se deposita en una bandeja que a su vez se introduce en una estufa en la que permanece entre 2 y 4 horas, a una temperatura de unos 2002C, y finalmente, se deja enfriar.
En ocasiones, todo el material sílico-aluminoso de partida no se encuentra en forma de fibras ya que una parte del mismo puede haber sido sustituida por microesferas huecas de dicho material sílico-aluminoso al objeto de disminuir la cantidad necesaria de producto y abaratar el coste del producto final. Tales microesferas se utilizan entonces como elemento de carga.
Este procedimiento permite obtener manguitos aislantes o exotérmicos pero presenta numerosos inconvenientes, entre los que se encuentran los siguientes: - imposibilidad de obtener manguitos con suficiente exactitud dimensional externa, ya que la aspiración de la mezcla a través del molde produce una buena exactitud del manguito en la cara interna (la que está en contacto con el molde) pero no en la otra cara. Esta inexactitud hace que el contorno externo de los manguitos no coincida dimensionalmente con la cavidad interna de los rebosaderos provocando a menudo importantes dificultades para su colocación y fijación. Incluso cuando hay doble molde es difícil mantener las medidas debido a su posterior manejo en estado verde. En este sentido, se han desarrollado técnicas para la colocación de los manguitos en sus alojamientos, tales como la descrita en la Patente alemana ne DE P 29 23 393.0; - requiere elevados tiempos de fabricación;
- presenta dificultades en la homogeneización de las mezclas;
- imposibilidad de introducir cambios rápidos en la formulación; - presenta cierta peligrosidad durante el proceso de fabricación y polución de aguas residuales; y
- los materiales empleados en forma de fibras pueden dar lugar a patologías alérgicas, tales como picazón e irritación de la piel y de las mucosas, entre los operarios.
Otro procedimiento para la fabricación de manguitos consiste en mezclar arenas, materiales exotérmicos y un tipo concreto de resinas, por ejemplo, mezclar silicato sódico y resinas fenólicas alcalinas o novolaca, y posteriormente, efectuar un moldeo manual o por soplado de las mezclas obtenidas. Con este procedimiento se pueden obtener piezas de gran exactitud dimensional, tanto interna como externa, con propiedades exotérmicas, pero nunca con propiedades aislantes. Aunque este procedimiento es más sencillo que el de vía húmeda, su empleo presenta serias limitaciones pues, por un lado, no es posible obtener manguitos con características aislantes y, por otro lado, los manguitos obtenidos son extraordinariamente higroscópicos .
Por último, la solicitud 094/23865 describe una composición soplable a base de microesferas huecas de silicato de aluminio, pero que requiere que el contenido en alúmina de las mismas esté por encima del 40%, lo que deja inutilizables una parte significativa de este subproducto, pues una parte muy importante de las microesferas huecas de silicato de aluminio generadas como subproducto industrial tienen una riqueza menor del 40% en peso de alúmina.
Como puede apreciarse, existe un procedimiento de fabricación de manguitos por vía húmeda y moldeo a vacío que rinde manguitos provistos de propiedades aislantes o exotérmicas pero con inexactitud dimensional, cuyo desarrollo presenta numerosos inconvenientes, y por otra parte, existe un procedimiento más simple de fabricación de manguitos por vía seca y moldeo manual o por soplado, pero que únicamente permite obtener manguitos provistos de propiedades exotérmicas, no aislantes, pero con exactitud dimensional.
Sería muy deseable disponer de manguitos y otros elementos de mazarotaje y alimentación dotados de propiedades aislantes o exotérmicas, que presentaran exactitud dimensional, y que, además, pudieran ser fabricados mediante un procedimiento sencillo que superara los inconvenientes previamente señalados en relación con los procedimientos conocidos. La invención proporciona una solución a dicho problema que comprende el empleo de un material refractario, tal como silicato de aluminio, en forma de microesferas huecas con un contenido en alúmina inferior al 38% en peso, en la formulación de una composición adecuada para fabricar dichos manguitos y elementos de mazarotaje y alimentación para moldes de fundición.
Por tanto, un objeto de esta invención lo constituye el empleo de microesferas huecas de silicato de aluminio con un contenido en alúmina inferior al 38% en peso en la formulación de una composición totalmente exenta de material refractario, aislante o exotérmico, en forma de fibras, adecuada para fabricar manguitos y otros elementos de mazarotaje y alimentación para moldes de fundición, aislantes o exotérmicos.
Otro objeto de la invención lo constituye una formulación adecuada para la fabricación de manguitos y otros elementos de mazarotaje y alimentación para moldes de fundición, que comprende microesferas huecas de silicato de aluminio con un contenido en alúmina inferior al 38% en peso, un aglomerante y unas cargas opcionales. Los manguitos y demás elementos de mazarotaje y alimentación, fabricados a partir de la formulación antes mencionada, que pueden ser aislantes o exotérmicos, así como su procedimiento de fabricación constituyen objetos adicionales de esta invención.
Por otra parte, la experiencia industrial en la fundición nodular pone de manifiesto que para piezas con un contenido en silicio igual o superior a 2,8%, un espesor superior a 20 mm y un contenido en flúor en la arena verde superior a 300 pp (partes por millón) , tiene lugar una reacción que origina en las piezas unos poros blanquecinos que las hacen inservibles.
El flúor causante del rechazo de las piezas puede provenir de la bentonita, del agua o de la arena, pero, principalmente, de los derivados fluorados utilizados en la composición para la obtención de los manguitos exotérmicos, por lo que si se utilizan de forma masiva estos manguitos se puede llegar a originar que el circuito de la arena verde alcance límites no deseables de contenido en flúor.
Por tanto, sería muy deseable que los manguitos y demás elementos exotérmicos adecuados para la fundición nodular no aportaran flúor o que las aportaciones de flúor fueran muy reducidas. La invención proporciona una solución a dicho problema que comprende el empleo de un inserto, cuya composición contiene un fundente fluorado inorgánico, en la fabricación de manguitos y elementos de mazarotaje y alimentación exotérmicos adecuados para la fundición nodular, y que se fija sobre una zona de dichos manguitos y elementos.
Por tanto, un objeto adicional de esta invención lo constituye un procedimiento para la fabricación de manguitos y elementos de mazarotaje y alimentación exotérmicos adecuados para fundición nodular que comprende la formación y fijación de un inserto que comprende un fundente fluorado inorgánico, sobre una composición conformada precursora de dicho manguito o elemento constituida por microesferas huecas de silicato de aluminio con un contenido en alúmina inferior al 38% en peso, un aglomerante y unas cargas opcionales.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 representa una realización práctica de la fundición de una pieza metálica así como de los principales elementos integrantes del proceso. Como puede apreciarse, en esta figura se representa un ejemplo práctico y típico del proceso tradicional de fundición de una pieza (1), en cuyo proceso de fundición se han empleado unos manguitos superior (2) , lateral (3) , un bebedero (4) y su filtro (5) . La pieza (1) al enfriarse se contrae absorbiendo metal desde los manguitos (2) y (3), los cuales, para permitir que dicho material fluya hacia la pieza deberán disponer de ese material de fundición en fase líquida ya que en caso contrario no podrán aportar el material requerido por la pieza en su enfriamiento.
La Figura 2 es un gráfico que muestra las curvas de enfriamiento del metal en función del espesor de los manguitos utilizados, poniéndose de manifiesto que, en general, para un mismo diámetro de rebosadero, si aumenta el espesor del manguito aumenta el tiempo de solidificación del metal. En esta figura destaca la curva inferior (más próxima al eje de abscisas) que representa la curva de enfriamiento cuando no se utiliza un manguito y cómo el enfriamiento del material es sumamente rápido. Las curvas superiores definen curvas de enfriamiento conseguidas con la incorporación de manguitos de mayor espesor, comprobándose cómo el enfriamiento es más lento cuanto mayor es el espesor de los manguitos.
La Figura 3 representa una realización práctica de un manguito exotérmico adecuado para fundición nodular que tiene fijado en su base un inserto que comprende un fundente fluorado inorgánico.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La invención proporciona una formulación adecuada para la fabricación de manguitos y otros elementos de mazarotaje y alimentación para moldes de fundición, tanto aislantes como exotérmicos, que comprende microesferas huecas de silicato de aluminio con un contenido en alúmina inferior al 38% en peso, preferentemente comprendido entre 20 y 38%, un aglomerante y unas cargas opcionales, en forma no fibrosa, seleccionadas del grupo formado por metales oxidables, oxidantes y fundentes fluorados inorgánicos. Dicha formulación carece completamente de material refractario en forma de fibras.
Las microesferas huecas de silicato de aluminio (AI2O3.SÍO2) que pueden utilizarse en esta invención tienen un contenido en alúmina inferior al 38% en peso, preferentemente entre 20 y 38% en peso, un diámetro de grano de hasta 3 mm y, en general, cualquier espesor de pared. No obstante, en una realización preferida de esta invención se utilizan microesferas huecas de silicato de aluminio con un diámetro medio inferior a 1 mm y un espesor de pared de aproximadamente el 10% del diámetro del grano.
Para su empleo en esta invención pueden utilizarse microesferas huecas de silicato de aluminio con un contenido en alúmina inferior al 38% en peso comercialmente disponibles.
Dependiendo fundamentalmente de la densidad de las microesferas huecas se pueden obtener formulaciones adecuadas para fabricar manguitos y otros elementos de mazarotaje y alimentación para moldes de fundición aislantes o exotérmicos. Así, cuanto menor es la densidad de las microesferas huecas, mayor es el poder aislante del manguito obtenido, mientras que las microesferas más densas tienen menos poder aislante. Otro factor importante para seleccionar las icroesferas huecas es su superficie específica ya que cuanto menor sea ésta, el consumo de aglomerante (resina) será menor, y por tanto, menor será el coste global de fabricación de los manguitos y elementos de mazarotaje y alimentación, y menor será la evolución gaseosa.
Como aglomerante se puede utilizar cualquier tipo de resina, tanto sólida como líquida, que se polimeriza con su catalizador apropiado tras el soplado y moldeo de la formulación en caja caliente, en caja fría, o bien, por técnica autofraguante. A modo de ejemplo, para el curado en caja fría, pueden utilizarse resinas de fenol-uretano activadas por amina (gas) , resinas epoxi-acrílicas activadas por SO2 (gas) , resinas fenólicas alcalinas activadas por CO2 o por for iato de metilo (gas) , y resinas de silicato sódico activadas por CO2. Para el curado en caja caliente, pueden emplearse resinas furánicas, fenólicas y novolacas, activadas por los catalizadores apropiados. En la técnica autofraguante (llenado manual de la caja de machos) pueden utilizarse resinas de silicato (por ejemplo, silicato sódico) activadas por un éster que actúa como catalizador, resinas alquídicaε activadas por uretano, resinas furánicas o fenólicas activadas por un catalizador ácido, resinas fenólico-alcalinas activadas por éster, resinas fenólicas activadas por uretano y resinas de fosfato activadas por un óxido metálico. Aunque todos estos aglomerantes son adecuados para la fabricación, según la invención, de manguitos y elementos de mazarotaje y alimentación, exotérmicos o aislantes, las pruebas prácticas realizadas sugieren por coste, resistencia, características mecánicas y exactitud dimensional, las resinas fenol-uretano activadas por amina (gas) y las resinas epoxi-acrilicas activadas por SO2 (gas) .
La formulación proporcionada por esta invención puede contener unas cargas opcionales, en forma no fibrosa, seleccionadas del grupo formado por metales oxidables, oxidantes y fundentes fluorados inorgánicos.
Como metales oxidables pueden utilizarse aluminio, magnesio y silicio, preferentemente aluminio. Como oxidantes pueden utilizarse sales de metales alcalinos o alcalinotérreos, por ejemplo, nitratos, cloratos y permanganatos de metales alcalinos y alcalinotérreos, y óxidos metálicos, por ejemplo, óxidos de hierro y de manganeso, preferentemente óxido de hierro. Como fundentes fluorados inorgánicos pueden utilizarse criolita (Na3AlFg) , tetrafluoruro de aluminio y potasio, y hexafluoruro de aluminio y potasio, preferentemente criolita .
Una composición típica proporcionada por esta invención comprende microesferas huecas de silicato de aluminio con un contenido en alúmina comprendido entre 20 y 38% en peso, aluminio, óxido de hierro y criolita. En este caso, al verter el metal fundido, por ejemplo acero, sobre el molde se inicia una reacción exotérmica y como consecuencia de ella la oxidación del aluminio, produciéndose una alúmina adicional que, añadida a la que ya contienen las microesferas huecas de silicato de aluminio, mejora las características refractarias del manguito y de cualquier otro elemento de mazarotaje y alimentación. De este modo se pueden utilizar unas microesferas huecas de silicato de aluminio con un bajo contenido en alúmina (inferior al 38% en peso) frente a lo que el estado de la técnica enseña como recomendable (superior al 40% en peso, W094/23865) , que no habían sido utilizadas previamente como componente refractario en la fabricación de manguitos y otros elementos de mazarotaje y alimentación por su bajo contenido en alúmina. Además, estas microesferas de bajo contenido en alúmina son más baratas que las que tienen un mayor contenido en alúmina, por lo que su empleo tiene un doble interés: aprovechar un subproducto procedente principalmente de las centrales térmicas y abaratar el coste de fabricación de los manguitos y demás elementos de mazarotaje y alimentación.
Las formulaciones proporcionadas por esta invención son adecuadas para obtener manguitos y elementos de mazarotaje y alimentación para moldes de fundición, aislantes o exotérmicos. Una formulación típica adecuada para la fabricación de manguitos y elementos exotérmicos es la identificada como Formulación [I].
Formulación [I] (Exotérmica)
Componente % en peso Microesferas huecas de silicato de aluminio
(contenido en alúmina entre 20-38% en peso) 10 - 90%
Aluminio (polvo o granulado) 7 - 40% Aglomerante 1 - 10%
Adicional y opcionalmente, la formulación [I] puede contener hasta un 5% en peso de un fundente fluorado inorgánico, tal como criolita, y hasta un 10% en peso de un oxidante, tal como óxido de hierro o permanganato potásico.
Una formulación típica adecuada para la obtención de manguitos y elementos de mazarotaje y alimentación aislantes es la identificada como Formulación [II].
Formulación [II] (Aislante)
Componente % en peso Microesferas huecas de silicato de aluminio (contenido en alúmina entre 20-38% en peso) 85 - 99% Aluminio (granulado) 0 - 10%
Aglomerante 1 - 10%
Las formulaciones proporcionadas por esta invención pueden prepararse fácilmente por mezcla de sus componentes hasta su total homogeneización.
Los manguitos y elementos de mazarotaje y alimentación proporcionados por esta invención pueden producirse bien automáticamente por soplado de una formulación proporcionada por esta invención, o bien mediante la técnica de moldeo auto-fraguante (moldeo manual) para conformar manguitos y demás elementos en aquellos casos en los que series de producción cortas no justifiquen la inversión en utillaje.
Esta invención también proporciona un procedimiento para fabricar manguitos y elementos de mazarotaje y alimentación para moldes de fundición, aislantes o exotérmicos, que utiliza una de las formulaciones de esta invención, previamente descritas, como material de partida y comprende moldear dicha formulación bien manualmente o bien por soplado en una máquina sopladora convencional, poli erizar la resina utilizada mediante la adición del catalizador apropiado, y obtener el manguito en cortos períodos de tiempo, generalmente del orden de unos pocos segundos. La precisión dimensional que se obtiene con este procedimiento es muy superior a la obtenida por otros procedimientos tradicionales de moldeo, lo que permite considerar a estos manguitos y elementos como precisos y, por tanto, se pueden acoplar fácilmente al molde de fundición después de confeccionados, sin manipulaciones adicionales y de forma manual o automática.
El procedimiento de la invención comprende el moldeo de una formulación en la que el material refractario (silicato de aluminio) tiene la forma de unas microesferas huecas en lugar de tener una estructura fibrilar y en la que es posible la adición de resinas de cualquier tipo. El empleo de materiales sólidos no fibrosos permite obtener una mezcla homogénea y de aspecto seco lo que permite obtener mediante soplado, en tiempos muy cortos, piezas dimensionalmente perfectas tanto interna como externamente.
Este procedimiento permite fabricar manguitos y elementos de mazarotaje y alimentación para moldes de fundición, exotérmicos o aislantes, utilizando formulaciones adecuadas para cada caso, sin más que variando la densidad de las microesferas, de forma que a menor densidad de las mismas mayor será el poder aislante del producto obtenido. El procedimiento permite además el empleo de microesferas con una superficie específica pequeña con lo que el consumo de aglomerante es menor y, por tanto, el coste de fabricación del manguito disminuye.
Cuando se desea fabricar manguitos de gran diámetro o manguitos para moldeo de metales con baja temperatura de colada (aluminio) , se debe primar la capacidad aislante del manguito. Por el contrario, cuando se desean fabricar manguitos de pequeño diámetro o para metales con alta temperatura de colada, interesa primar la capacidad exotérmica del manguito.
Una de las ventajas de este procedimiento es que permite utilizar todo tipo de resinas y no únicamente unos tipos concretos de resinas. Otra ventaja importante de este procedimiento se refiere a que gracias a la gran exactitud en la forma, tanto externa como interna del manguito conseguido, la colocación de éste en el interior del rebosadero resulta extremadamente sencilla. Otra ventaja adicional de este procedimiento radica en que permite obtener manguitos, aislantes o exotérmicos, de forma más rápida y económica que los tradicional ente fabricados con fibras y por vía húmeda.
Los manguitos y elementos de mazarotaje y alimentación proporcionados por esta invención, conformados por soplado, están compuestos por microesferas huecas de silicato de aluminio con un contenido en alúmina inferior al 38% en peso, preferentemente entre 20 y 38%, y un aglomerante, junto con otras cargas opcionales en forma no fibrosa. En general, estos manguitos tienen exactitud dimensional, por lo que se pueden acoplar fácilmente al molde de fundición después de confeccionado, sin manipulaciones adicionales y de forma manual o automática.
En otro aspecto de esta invención, se han desarrollado unos manguitos y unos elementos de mazarotaje y alimentación exotérmicos adecuados para fundición nodular, manguitos y elementos que podrían llamarse de diseño, capaces de aportar cantidades mínimas de flúor, constituidos a partir de una formulación proporcionada por la invención adecuada para la fabricación de dichos manguitos o elementos pero exenta de fundentes fluorados inorgánicos. Para ello, se parte de una mezcla a base de microesferas huecas de silicato de aluminio, con un contenido en alúmina inferior al 38% en peso, preferentemente comprendido entre 20 y 38% en peso, y unas cargas opcionales seleccionadas entre metales oxidables y oxidantes, tales como los mencionados previamente, mezcla que junto con la resina aglomerante elegida se sopla en el interior de la caja de moldeo donde ha de conformarse el manguito o el elemento en cuestión. La operación de soplado de esta mezcla se aprovecha para fijar en la base del manguito o del elemento en cuestión, o en una zona adecuada de los mismos, un inserto, cuya composición comprende un fundente fluorado inorgánico, que se ha introducido en la caja de moldeo antes del soplado de la mezcla exenta de fundentes fluorados inorgánicos. Dicho inserto actúa como cebo o iniciador de la reacción exotérmica. El inserto, que ha sido producido bien por aglomerado o por moldeo a presión, está constituido por una mezcla de metales oxidables, oxidantes y fundentes fluorados inorgánicos habitualmente utilizados en la fabricación de manguitos y otros elementos de mazarotaje y alimentación, mencionados previamente, junto con, opcionalmente, microesferas huecas de silicato de aluminio u otro elemento apropiado para diluir o regular la exotermicidad . En una realización particular y preferida, dicho inserto está compuesto por una mezcla a base de aluminio, óxido de hierro y criolita y, opcionalmente, el elemento diluyente de la exotermicidad.
La proporción en peso del inserto respecto al manguito o elemento en cuestión está comprendida entre 5 y 20%.
En estos manguitos y elementos exotérmicos de diseño, la reacción exotérmica se inicia al contacto del metal fundido con el inserto y se extiende rápida y/o controlada mente al resto del manguito o elemento. Sin embargo, el flúor desprendido por la citada reacción es mínimo puesto que procede exclusivamente del iniciador de la reacción exotérmica. El aporte de flúor es de aproximadamente 5 veces menor cuando se utiliza dicho inserto [véase el Ejemplo 2].
En la Figura 3 se muestra un manguito exotérmico (6) adecuado para fundición nodular, constituido por una mezcla de microesferas huecas de silicato de aluminio con un contenido en alúmina comprendido entre 20 y 38% en peso, un metal oxidable y un oxidante, que contiene un inserto (7) iniciador de la reacción exotérmica a base de un metal oxidable, un oxidante y un fundente fluorado inorgánico.
Por consiguiente, en una realización particular de esta invención se proporciona un procedimiento para la fabricación de un manguito o de un elemento de mazarotaje y alimentación para moldes de fundición, exotérmico, adecuado para fundición nodular, que comprende las etapas de: - introducir en la caja de moldeo un inserto compuesto por una mezcla que comprende metales oxidables, oxidantes y fundentes fluorados inorgánicos, y, opcionalmente, microesferas huecas de silicato de aluminio u otro elemento diluyente o regulador de la exotermicidad, cuyo peso está comprendido entre el 5 y el 20% del peso total del manguito o elemento y que actúa como iniciador de la reacción exotérmica; y
- soplar en el interior de la caja de moldeo una mezcla de microesferas huecas de silicato de aluminio, con un contenido en alúmina inferior al 38% en peso, preferentemente comprendido entre 20 y 38%, metales oxidables y oxidantes, junto con un aglomerante. En esta operación de soplado queda embebido parcialmente en el manguito el inserto iniciador de la reacción exotérmica.
Posteriormente se cura la resina aglomerante y se retira la pieza conformada por métodos convencionales.
EJEMPLO 1
Obtención de manguitos
Se preparan unos manguitos exotérmicos y unos manguitos aislantes con la composición que se muestra a continuación.
1. Sólidos de la mezcla exotérmica Componente % en peso - Microesferas huecas de silicato de aluminio3^
(contenido en alúmina: 20-38% en peso) 55%
- Aluminio1) (metal polvo) 16%
- Aluminio0^ (metal polvo) 17%
- Oxido de hierro"^ 7% - Criolitae) 5% a Extendospheres SG (The P.Q. Corporation), absorción en aceite (por 100 g) : 57,5; densidad: 0,4 g/ml; ^: luz de malla < 200; pureza: 99% Al; c': granulometría: < 1 mm; pureza: 96-99% Al; d^: Fe3θ4; granulometría: < 150 μm; y e': granulometría: < 63 μm; pureza: 99%. 2. Sólidos de la mezcla aislante
Componente % en peso
- Microesferas huecas de silicato de aluminio3) (contenido en alúmina: 20-38% en peso) 95% - Aluminio0) (metal polvo) 5% a); Extendospheres SG (The P.Q. Corporation) , absorción en aceite (por 100 g) : 57,5; densidad: 0,4 g/ml; y c); granulometría: < 1 mm; pureza: 96-99% Al.
Aglomerante
En ambos casos se utiliza como aglomerante una mezcla de las resinas de fenol-uretano Isocure 323 (Ashland) e Isocure 623 (Ashland) activables por un catalizador a base de di etiletilamina (Isocure 702, Ashland), en la siguiente proporción:
- 100 kg de sólidos de la mezcla exotérmica;
- 3 kg de Isocure 323;
- 3 kg de Isocure 623; y
- 0,1 kg de Isocure 702.
La mezcla de los distintos componentes se efectúa en una mezcladora de paletas y se dispara sobre una caja de machos metálica con una disparadora Roperwerk con una presi .ó n de disparo de 6 kg/cm i . Una vez llenada la caja de machos, se hace pasar el catalizador (gas) endureciendo la mezcla conformada ya como un manguito en un tiempo de 45 segundos. Seguidamente, se desmoldea quedando el manguito listo para su utilización.
Las características de resistencia a la abrasión y a la tracción de los manguitos así obtenidos se resumen en la tabla siguiente:
TS SH
Salida de Caja 85 73 1 hora 94 78
48 horas 104 73 1 h a ire y 48 h
100% humedad 41 68 donde:
- SH es la resistencia a la abrasión (SCRATCH HARDNESS) . Máquina Test: DIETER DETROIT Ns 674.
- TS: es la resistencia a la tracción (TENSILE STRENGHT) . Valores en kg a la tracción, para probeta de 3,5 cm de sección.
Para estudiar el funcionamiento de los manguitos obtenidos, se funde un cubo de 97 mm de lado en acero moldeado, siguiendo las prácticas habituales de moldeo y fusión.
La contracción líquida y de solidificación del cubo se alimenta con un manguito cilindrico de 50 mm de diámetro y 70 mm de altura obtenido como se ha mencionado previamente. Este manguito va provisto de una tapa superior del mismo material del manguito que hace innecesario el uso de un material exotérmico de cobertura.
El cubo tiene un módulo de solidificación (M) de 1 , 6 cm, y para alimentarlo se necesitaría una mazarota con un módulo superior a 1,6 cm.
El módulo geométrico del manguito (Mm) utilizado es de 0,95 cm, es decir, 1,7 veces menor. Como el rechupe no llega al cubo se puede decir que, en las condiciones de trabajo utilizadas, el Factor de Extensión del Módulo
(FEM) del manguito es:
M
FEM = = 1,7 Mm es decir, similar al FEM de un manguito fabricado con fibras por vía húmeda.
EJEMPLO 2 Obtención de un manguito exotérmico con inserto
Se prepara un inserto de 8 g de peso en forma tronco-cónica de 20 mm (0) x 30 mm (h) x 10 mm (0) , bien por aglomerado o por presión, con la siguiente composición:
Componente % en peso
Aluminio atomizado 73
Oxido de hierro 16
Criolita 11
El inserto se coloca en el alojamiento elegido sobre una caja de machos que sirve para producir el manguito exotérmico (manguito base) por soplado de una mezcla de sólidos formada por:
Componente % en peso Microesferas huecas de silicato de aluminio (contenido en alúmina inferior a 38%) 60 Aluminio atomizado 33
Oxido de hierro 7
que es aglomerada con una mezcla de un 3% en peso de Isocure 323 (Ashland) y de un 3% en peso de Isocure 623 (Ashland) . Posterior al soplado sobre la caja de machos se gasea con Isocure 702 (Ashland) quedando la mezcla endurecida por acción del gas.
Como resultado final se obtiene un manguito de 113 g de peso total, con un inserto de 8 g de peso que actuará como cebo y evitará o minimizará la necesidad de utilizar criolita (contenido en flúor del 55% en peso) en el manguito base con el fin de aportar la mínima cantidad de flúor posible al circuito de arena en el que se fundirá la pieza con dicho manguito.
1. Peso del manguito base: 105 g Aportación de flúor en la criolita: 0 g
2. Peso del inserto: 8 g
Peso flúor: 8 x 0,11 x 0,55: 0,48 g
3. Flúor total en el manguito: 0,48 g
Sin embargo, en un manguito exotérmico obtenido según el procedimiento descrito en el Ejemplo 1, el contenido en flúor es de 2,585 g, es decir, unas 5,4 veces mayor, con lo que el aporte de flúor al circuito de arena verde sería sustancialmente mayor.

Claims

REIVINDICACIONES
1. Una formulación adecuada para la fabricación de manguitos y otros elementos de mazarotaje y alimentación para moldes de fundición, aislantes o exotérmicos, que comprende microesferas huecas de silicato de aluminio con un contenido en alúmina inferior al 38% en peso, un aglomerante y unas cargas opcionales, en forma no fibrosa.
2. Formulación según la reivindicación 1, en la que dichas microesferas huecas de silicato de aluminio tienen un contenido en alúmina comprendido entre 20 y 38% en peso.
3. Formulación según la reivindicación 1, en la que dichas microesferas huecas de silicato de aluminio tienen un diámetro de grano de hasta 3 mm.
4. Formulación según la reivindicación 1, en la que dicho aglomerante es una resina seleccionada del grupo formado por resinas de curado en caja fría, resinas de curado en caja caliente y resinas de curado por autofraguado .
5. Formulación según la reivindicación 4, en la que dicho aglomerante se selecciona del grupo formado por:
- resinas para curado en caja fría: resinas de fenol-uretano activadas por amina, resinas epoxi- acrílicas activadas por S07, resinas fenólicas alcalinas activadas por CO2 o por formiato de metilo, y resinas de silicato sódico activadas por CO2;
- resinas para curado en caja caliente: resinas furánicas, fenólicas y novolacas; y - resinas de curado por autofraguado: resinas de silicato activadas por éster, resinas alquídicas activadas por uretano, resinas furánicas o fenólicas activadas por un catalizador ácido, resinas fenólico- alcalinas activadas por éster, resinas fenólicas activadas por uretano y resinas de fosfato activadas por un óxido metálico.
6. Formulación según la reivindicación 1, en la que dichas cargas opcionales en forma no fibrosa se seleccionan del grupo formado por metales oxidables, oxidantes y fundentes fluorados inorgánicos.
7. Formulación según la reivindicación 6, en la que dichos metales oxidables se seleccionan del grupo formado por aluminio, magnesio y silicio.
8. Formulación según la reivindicación 6, en la que dichos oxidantes se seleccionan del grupo formado por sales de metales alcalinos o alcalinotérreos, y óxidos metálicos, preferentemente, óxidos de hierro y manganeso.
9. Formulación según la reivindicación 6, en la que dichos fundentes fluorados inorgánicos se seleccionan del grupo formado por criolita (Na^AlF^) , tetrafluoruro de aluminio y potasio, y hexafluoruro de aluminio y potasio.
10. Formulación según la reivindicación 1, que comprende:
Componente % en peso Microesferas huecas de silicato de aluminio
(contenido en alúmina entre 20-38% en peso) 10 - 90%
Aluminio (polvo o granulado) 7 - 40%
Aglomerante 1 - 10%
11. Formulación según la reivindicación 10, que comprende además, hasta un 5% en peso de un fundente fluorado inorgánico, y hasta un 10% en peso de un oxidante .
12. Formulación según la reivindicación 1, que comprende:
Componente % en peso
Microesferas huecas de silicato de aluminio
(contenido en alúmina entre 20-38% en peso) 85 - 99% Aluminio (granulado) 0 - 10%
Aglomerante 1 - 10%
13. Un procedimiento para la fabricación de manguitos y otros elementos de mazarotaje y alimentación para moldes de fundición, que comprende moldear manualmente o por soplado, una formulación según cualquiera de las reivindicaciones 1 a 12 y polimerizar la resina utilizada como aglomerante.
14. Un manguito para moldes de fundición que comprende una formulación según cualquiera de las reivindicaciones 1 a 12.
15. Un procedimiento para la fabricación de un manguito o de un elemento de mazarotaje y alimentación para moldes de fundición, exotérmico, adecuado para fundición nodular, que comprende las etapas de: introducir en la caja de moldeo un inserto compuesto por una mezcla que comprende metales oxidables, oxidantes y fundentes fluorados inorgánicos, y, opcionalmente, microesferaε huecas de silicato de aluminio u otro elemento apropiado para diluir o regular la exotermicidad, estando el peso del inserto comprendido entre el 5 y el 20% del peso total del manguito o elemento de mazarotaje y alimentación, inserto que actúa como iniciador de la reacción exotérmica; y
- soplar en el interior de la caja de moldeo una mezcla de microesferas huecas de silicato de aluminio, con un contenido en alúmina comprendido entre 20 y 38% en peso, metales oxidables y oxidantes, junto con un aglomerante, operación en la que queda parcialmente embebido el inserto en la masa del manguito o elemento.
16. Procedimiento según la reivindicación 15, en el que dichos metales oxidables se seleccionan del grupo formado por aluminio, magnesio y silicio.
17. Procedimiento según la reivindicación 15, en el que dichos oxidantes se seleccionan del grupo formado por sales de metales alcalinos o alcalinotérreos, y óxidos metálicos, preferentemente, óxidos de hierro y manganeso.
18. Procedimiento según la reivindicación 15, en el que dichos compuestos fluorados inorgánicos se seleccionan del grupo formado por criolita (Na-^AIF^) y tetrafluoruro de aluminio y potasio.
19. Procedimiento según la reivindicación 15, en el que dicho aglomerante se selecciona del grupo formado por una resina de curado en caja caliente, una resina de curado en caja fría y una resina de curado por autofraguado.
PCT/ES1997/000172 1996-07-18 1997-07-09 Procedimiento para la fabricación de manguitos y otros elementos de mazarotaje y alimentación para moldes de fundición, y formulación para la obtención de dichos manguitos y elementos WO1998003284A1 (es)

Priority Applications (19)

Application Number Priority Date Filing Date Title
AU34445/97A AU729049B2 (en) 1996-07-18 1997-07-09 Procedure for the production of ferrules and other feeding head and supply elements for casting molds, and formulation for the obtention of said ferrules and elements
AT97930527T ATE250995T1 (de) 1996-07-18 1997-07-09 Verfahren zur herstellung von speisern und anderen beschickungs- und zuführungs-elementen für giessformen und zusammensetzung zur herstellung der speiser und elemente
IL12808697A IL128086A (en) 1996-07-18 1997-07-09 Procedure for the production of ferrules and other feeding head and supply elements for casting molds, and formulation for the obtention of said ferrules and elements
PL97331248A PL331248A1 (en) 1996-07-18 1997-07-09 Method of making sleeves and other components of riser and gating portions of iron casting moulds and composition used as material for making such components
US09/043,350 US6197850B1 (en) 1996-07-18 1997-07-09 Process for fabricating couplings and other elements for hot topping and supply for castiron molds, and formulation for producing such couplings and elements
KR1019980701872A KR100523880B1 (ko) 1996-07-18 1997-07-09 주형의페룰및공급요소제조방법상기페룰및요소제조를위한조성물
CZ1999148A CZ294298B6 (cs) 1996-07-18 1997-07-09 Směs na výrobu izolačních nebo exotermických ochranných kroužků a dalších nálitkových a přívodních prvků pro licí formy a způsob této výroby
RO99-00050A RO119517B1 (ro) 1996-07-18 1997-07-09 Procedeu pentru fabricarea manşoanelor de siguranţă pentru maselote şi alte elemente de alimentare, pentru forme de turnare, şi compoziţie pentru obţinerea acestora
HU0000440A HU222215B1 (hu) 1996-07-18 1997-07-09 Keverék és eljárás öntőformák tápfejeinek hőszigetelő és/vagy hőfejlesztő hüvelyei vagy egyéb tápfejelemei előállítására
DE69725315T DE69725315T3 (de) 1996-07-18 1997-07-09 Verfahren zur Herstellung von Speisern und anderen Beschickungs- und Zuführungs-Elementen für Giessformen und Zusammensetzung zur Herstellung der Speiser und Elemente
EP97930527A EP0913215B2 (en) 1996-07-18 1997-07-09 Process for fabricating couplings and other elements for hot topping and supply for cast-iron molds
RU99103337/02A RU2176575C2 (ru) 1996-07-18 1997-07-09 Способ изготовления втулок и других элементов литников и питателей для литейных форм и состав для их изготовления
SI9720046A SI9720046B (sl) 1996-07-18 1997-07-09 Postopek za izdelovanje kovinskih kapic in drugihdovodnih gornjih delov in elasticnih elementov kalupov za litje in oblikovanje takih kapic in elementov
JP50659598A JP4610679B2 (ja) 1996-07-18 1997-07-09 鋳型用のフェルールと他のフィーディングヘッドと供給要素との製造手順、及び前記フェルールと要素の作製のための組成物
CA002232384A CA2232384C (en) 1996-07-18 1997-07-09 Procedure for the production of ferrules and other feeding head and supply elements for casting molds, and formulation for the obtention of said ferrules and elements
BR9702346-9A BR9702346A (pt) 1996-07-18 1997-07-09 Processo para a produção de manguitos e outros elementos de alimentação para moldes de fundição, e formulação para a abtenção dos manguitos e dos elementos
TW086111588A TW358048B (en) 1996-07-18 1997-08-13 Procedure for the production of ferrules and other feeding head supply elements for casting molds, and formulation for the obtention of said ferrules and elements
UA99010251A UA56175C2 (uk) 1996-07-18 1997-09-07 Композиція, придатна для виготовлення гільз та інших елементів додатків і ливників для ливарних форм (варіанти), спосіб виготовлення гільз та інших елементів додатків та ливників для ливарних форм (варіанти), гільза для ливарних форм
NO19990211A NO334048B1 (no) 1996-07-18 1999-01-18 Fremgangsmåte ved fremstilling av koblinger og andre elementer for synkeboksstøping og tilførsel for støpejernformer, samt blandinger for fremstilling av slike koblinger og elementer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ESP9601607 1996-07-18
ES9601607A ES2114500B1 (es) 1996-07-18 1996-07-18 Procedimiento para la fabricacion de manguitos exactos y otros elmentos de mazarotaje y alimentacion para moldes de fundicion, incluyendo la formulacion para la obtencion de dichos manguitos y elementos.
ESP9701518 1997-07-08
ES009701518A ES2134729B1 (es) 1996-07-18 1997-07-08 Mejoras introducidas en objeto solicitud patente invencion española n. 9601607 por "procedimiento para fabricacion manguitos exactos y otros elementos de mazarotaje y alimentacion para moldes de fundicion, incluyendo la formulacion para obtencion de dichos manguitos y elementos".

Publications (1)

Publication Number Publication Date
WO1998003284A1 true WO1998003284A1 (es) 1998-01-29

Family

ID=26154980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1997/000172 WO1998003284A1 (es) 1996-07-18 1997-07-09 Procedimiento para la fabricación de manguitos y otros elementos de mazarotaje y alimentación para moldes de fundición, y formulación para la obtención de dichos manguitos y elementos

Country Status (25)

Country Link
US (2) US6197850B1 (es)
EP (2) EP0913215B2 (es)
JP (2) JP4610679B2 (es)
KR (1) KR100523880B1 (es)
CN (1) CN1111104C (es)
AT (1) ATE250995T1 (es)
AU (1) AU729049B2 (es)
BR (1) BR9702346A (es)
CA (1) CA2232384C (es)
CZ (1) CZ294298B6 (es)
DE (1) DE69725315T3 (es)
ES (3) ES2134729B1 (es)
HU (1) HU222215B1 (es)
IL (1) IL128086A (es)
IN (1) IN191120B (es)
MX (1) MX9802106A (es)
NO (1) NO334048B1 (es)
PL (1) PL331248A1 (es)
RO (1) RO119517B1 (es)
RU (1) RU2176575C2 (es)
SI (1) SI9720046B (es)
TR (1) TR199900199T2 (es)
TW (1) TW358048B (es)
UA (1) UA56175C2 (es)
WO (1) WO1998003284A1 (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0993889A1 (en) * 1998-10-09 2000-04-19 Masamitsu Miki Foundry exothermic assembly
US6133340A (en) * 1996-03-25 2000-10-17 Ashland Inc. Sleeves, their preparation, and use
US6286585B1 (en) 2000-03-21 2001-09-11 Ashland Inc. Sleeve mixes containing stabilized microspheres and their use in making riser sleeves
US6335387B1 (en) 2000-03-21 2002-01-01 Ashland Inc. Insulating sleeve compositions containing fine silica and their use
US7455798B2 (en) 2002-08-23 2008-11-25 James Hardie International Finance B.V. Methods for producing low density products
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2134729B1 (es) * 1996-07-18 2000-05-16 Kemen Recupac Sa Mejoras introducidas en objeto solicitud patente invencion española n. 9601607 por "procedimiento para fabricacion manguitos exactos y otros elementos de mazarotaje y alimentacion para moldes de fundicion, incluyendo la formulacion para obtencion de dichos manguitos y elementos".
EP1153678B1 (en) 2000-05-10 2006-08-23 Nissin Kogyo Co., Ltd Method of casting and casting machine
DE10065270B4 (de) * 2000-12-29 2006-04-20 Chemex Gmbh Speiser und Zusammensetzungen zu deren Herstellung
EP1240960B1 (en) * 2001-03-15 2007-07-25 Nissin Kogyo Co., Ltd Method of deoxidation casting and deoxidation casting machine
JP4002200B2 (ja) * 2002-03-13 2007-10-31 花王株式会社 鋳物製造用抄造部品
EP1543897B1 (en) * 2002-09-09 2007-06-20 Iberia Ashland Chemical, S.A. Sleeve, production method thereof and mixture for production of same
RU2299781C2 (ru) * 2002-09-09 2007-05-27 Иберия Эшланд Кемикал, С.А. Вставка, способ ее изготовления и смесь для изготовления указанной вставки
KR100890310B1 (ko) * 2005-03-09 2009-03-26 이베리아 애쉬랜드 케미칼 쏘시에떼 퍼 아찌오니 슬리브, 슬리브의 제조 공정 및 상기 슬리브를 생성하기 위한 혼합물
US7282964B2 (en) * 2005-05-25 2007-10-16 Texas Instruments Incorporated Circuit for detecting transitions on either of two signal lines referenced at different power supply levels
FR2887890B1 (fr) * 2005-06-30 2007-10-12 Snecma Composition de materiau abradable, piece thermomecanique ou carter comprenant un revetement et procede de fabrication ou de reparation d'un revetement presentant cette composition
JP4749948B2 (ja) * 2006-06-23 2011-08-17 滲透工業株式会社 鋳造用発熱性造形品
DE102007012489A1 (de) 2007-03-15 2008-09-25 AS Lüngen GmbH Zusammensetzung zur Herstellung von Speisern
DE102007012660B4 (de) 2007-03-16 2009-09-24 Chemex Gmbh Kern-Hülle-Partikel zur Verwendung als Füllstoff für Speisermassen
WO2009097619A1 (en) * 2008-01-31 2009-08-06 Rohrbacker David A Molding composition and method using same to form displacements for use in a metal casting process
DE102008058205A1 (de) * 2008-11-20 2010-07-22 AS Lüngen GmbH Formstoffmischung und Speiser für den Aluminiumguss
DE202010007015U1 (de) 2010-05-20 2010-08-26 AS Lüngen GmbH Magnetischer Speiser
CA2799924C (en) * 2010-05-25 2015-04-28 Saint-Gobain Performance Plastics Corporation System, method and apparatus for polymer seals to form positive shut-off for insert molding of liquid silicone rubber
EP2581149B1 (en) * 2010-06-08 2018-01-03 Ask Chemicals España, S.A. Method for producing a metal part
DE102011079692A1 (de) 2011-07-22 2013-01-24 Chemex Gmbh Speiser und formbare Zusammensetzungen zu deren Herstellung
DE102012200967A1 (de) 2012-01-24 2013-07-25 Chemex Gmbh Speiser und formbare Zusammensetzung zu deren Herstellung enthaltend kalzinierte Kieselgur
RU2492960C1 (ru) * 2012-05-05 2013-09-20 Владимир Евгеньевич Сошкин Способ изготовления экзотермических и изоляционных вставок литниковых систем
CN103551515B (zh) * 2013-11-22 2015-05-13 哈尔滨理工大学 铸造用发热保温冒口及其制备方法
BE1022048B1 (nl) 2014-04-11 2016-02-10 Ugentec Bvba Methoden voor fluorescentie data correctie
CN107073562A (zh) * 2014-05-19 2017-08-18 卡萨·马里斯塔斯·阿斯特兰 可插入式冒口窝、砂模、包括可插入式冒口窝和砂模的模制设备和生产模制设备的方法
CN104139154B (zh) * 2014-07-30 2016-04-27 吴江市液铸液压件铸造有限公司 一种酚醛树脂自硬砂及其制备方法
DE102016211948A1 (de) 2016-06-30 2018-01-04 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Kern-Hülle-Partikel zur Verwendung als Füllstoff für Speisermassen
WO2018047893A1 (ja) * 2016-09-08 2018-03-15 旭有機材株式会社 シェルモールド用樹脂組成物及びそれを用いて得られるレジンコーテッドサンド
DE102020131492A1 (de) 2020-11-27 2022-06-02 Chemex Foundry Solutions Gmbh Herstellverfahren, Gießformen, Kerne oder Speiser sowie Kit und Verfahren zur Herstellung eines metallischen Gussteils.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB939541A (en) * 1960-05-23 1963-10-16 Foseco Int Improvements in the production of castings and ingots
GB2001658A (en) * 1977-07-28 1979-02-07 Huta Kosciuszko Przed Panstwow Insulating material, particularly for insulating plates for ingot moulds
WO1981001971A1 (en) * 1980-01-19 1981-07-23 Foseco Int Self drying aluminium-containing compositions
WO1994023865A1 (en) * 1993-04-22 1994-10-27 Foseco International Limited A mould and a method for the casting of metals and refractory compositions for use therein

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB627678A (en) 1947-08-19 1949-08-12 Foundry Services Ltd Improvements in or relating to heat producing mixtures containing aluminium and an oxidising agent
GB774491A (en) 1954-05-10 1957-05-08 Foundry Services Ltd Improvements in or relating to heat producing agents
GB889484A (en) 1958-11-28 1962-02-14 Foundry Services Int Ltd Improvements in or relating to exothermic compositions
SU598684A1 (ru) * 1976-04-28 1978-03-25 Полтавский Проектно-Конструкторский Технологический Институт Экзотермическа смесь дл обогрева прибыльных частей литейных форм
DE7916621U1 (de) 1979-06-08 1981-07-09 Foseco Gesellschaft für chemischmetallurgische Erzeugnisse mbH, 4280 Borken Vorrichtung zur verwendung bei der herstellung von giessformen mit speisern
ES512514A0 (es) 1982-05-25 1984-03-16 Foseco Trading Ag Perfeccionamientos en recipientes para la manipulacion de metales fundidos.
SU1435374A1 (ru) * 1987-06-20 1988-11-07 Предприятие П/Я В-2190 Керамическа смесь дл изготовлени литейных стержней
JP2648918B2 (ja) * 1987-09-11 1997-09-03 日東電工株式会社 コーティング方法
US5252526A (en) * 1988-03-30 1993-10-12 Indresco Inc. Insulating refractory
BR9601454C1 (pt) * 1996-03-25 2000-01-18 Paulo Roberto Menon Processo para produção de luvas exotérmicas e isolantes.
ES2134729B1 (es) * 1996-07-18 2000-05-16 Kemen Recupac Sa Mejoras introducidas en objeto solicitud patente invencion española n. 9601607 por "procedimiento para fabricacion manguitos exactos y otros elementos de mazarotaje y alimentacion para moldes de fundicion, incluyendo la formulacion para obtencion de dichos manguitos y elementos".

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB939541A (en) * 1960-05-23 1963-10-16 Foseco Int Improvements in the production of castings and ingots
GB2001658A (en) * 1977-07-28 1979-02-07 Huta Kosciuszko Przed Panstwow Insulating material, particularly for insulating plates for ingot moulds
WO1981001971A1 (en) * 1980-01-19 1981-07-23 Foseco Int Self drying aluminium-containing compositions
WO1994023865A1 (en) * 1993-04-22 1994-10-27 Foseco International Limited A mould and a method for the casting of metals and refractory compositions for use therein

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133340A (en) * 1996-03-25 2000-10-17 Ashland Inc. Sleeves, their preparation, and use
EP0993889A1 (en) * 1998-10-09 2000-04-19 Masamitsu Miki Foundry exothermic assembly
US6286585B1 (en) 2000-03-21 2001-09-11 Ashland Inc. Sleeve mixes containing stabilized microspheres and their use in making riser sleeves
US6335387B1 (en) 2000-03-21 2002-01-01 Ashland Inc. Insulating sleeve compositions containing fine silica and their use
US7455798B2 (en) 2002-08-23 2008-11-25 James Hardie International Finance B.V. Methods for producing low density products
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element

Also Published As

Publication number Publication date
CZ294298B6 (cs) 2004-11-10
IN191120B (es) 2003-09-20
JP2009023003A (ja) 2009-02-05
DE69725315D1 (de) 2003-11-06
AU729049B2 (en) 2001-01-25
US20010000180A1 (en) 2001-04-05
EP0913215B1 (en) 2003-10-01
KR100523880B1 (ko) 2006-01-12
ES2134729B1 (es) 2000-05-16
JP4610679B2 (ja) 2011-01-12
UA56175C2 (uk) 2003-05-15
CA2232384A1 (en) 1998-01-29
ES2208920T3 (es) 2004-06-16
TR199900199T2 (xx) 1999-04-21
ES2155001B1 (es) 2001-12-01
CZ14899A3 (cs) 1999-08-11
RO119517B1 (ro) 2004-12-30
NO334048B1 (no) 2013-11-25
RU2176575C2 (ru) 2001-12-10
EP1273369A3 (en) 2010-03-31
HUP0000440A3 (en) 2000-08-28
PL331248A1 (en) 1999-07-05
NO990211D0 (no) 1999-01-18
US6197850B1 (en) 2001-03-06
SI9720046B (sl) 2006-10-31
IL128086A (en) 2005-09-25
CN1111104C (zh) 2003-06-11
DE69725315T3 (de) 2009-10-29
SI9720046A (sl) 1999-10-31
ES2155001A1 (es) 2001-04-16
ATE250995T1 (de) 2003-10-15
AU3444597A (en) 1998-02-10
CA2232384C (en) 2005-05-03
DE69725315T2 (de) 2004-07-22
IL128086A0 (en) 1999-11-30
ES2208920T5 (es) 2009-08-25
TW358048B (en) 1999-05-11
ES2134729A1 (es) 1999-10-01
CN1230139A (zh) 1999-09-29
JP2000514364A (ja) 2000-10-31
KR20000064241A (ko) 2000-11-06
EP1273369A2 (en) 2003-01-08
EP0913215B2 (en) 2009-04-15
HU222215B1 (hu) 2003-05-28
HUP0000440A2 (hu) 2000-06-28
NO990211L (no) 1999-03-11
US6414053B2 (en) 2002-07-02
EP0913215A1 (en) 1999-05-06
MX9802106A (es) 1998-10-31
BR9702346A (pt) 1999-12-28

Similar Documents

Publication Publication Date Title
WO1998003284A1 (es) Procedimiento para la fabricación de manguitos y otros elementos de mazarotaje y alimentación para moldes de fundición, y formulación para la obtención de dichos manguitos y elementos
ES2219974T3 (es) Estructura exotermica de fundicion.
ITMI970688A1 (it) Procedimento senza cottura e a freddo per realizzare manicotti esotermici e/o isolanti realizzati mediante questo procedimento
US20080121363A1 (en) Sleeve, procedure for the manufacture thereof and mixture for the production of said sleeve
CN102271836A (zh) 造型材料混合物和铸造铝的冒口
US4629708A (en) Moulding
ES2318736T3 (es) Piezas de insercion de mazarotas exotermicas y aislantes con elevada permeabilidad a los gases.
US4480681A (en) Refractory mould body and method of casting using the mould body
GB2105312A (en) Moulding
JP2916593B2 (ja) 鋳造用鋳型
KR100890310B1 (ko) 슬리브, 슬리브의 제조 공정 및 상기 슬리브를 생성하기 위한 혼합물
JP2024106916A (ja) 押湯空間形成部材
SU506464A1 (ru) Состав дл упрочнени оболочковых керамических литейных форм
JPS6045974B2 (ja) チタン製品の鋳造方法
HK1078288B (en) Sleeve, production method thereof and mixture for production of same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97197782.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ

WWE Wipo information: entry into national phase

Ref document number: 1019980701872

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 9850005

Country of ref document: ES

Kind code of ref document: A

Ref document number: 2232384

Country of ref document: CA

Ref document number: 2232384

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P009850005

Country of ref document: ES

Ref document number: PA/A/1998/002106

Country of ref document: MX

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1997930527

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1998 43350

Country of ref document: US

Date of ref document: 19980407

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09043350

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PV1999-148

Country of ref document: CZ

Ref document number: 1999/00199

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 128086

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 99-00050

Country of ref document: RO

WWP Wipo information: published in national office

Ref document number: 1997930527

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: PV1999-148

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1019980701872

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 9850005

Country of ref document: ES

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 9850005

Country of ref document: ES

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 1997930527

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019980701872

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: PV1999-148

Country of ref document: CZ