WO1997048487A1 - Liquid-absorbing resin, process for the preparation thereof, and gel composition - Google Patents

Liquid-absorbing resin, process for the preparation thereof, and gel composition Download PDF

Info

Publication number
WO1997048487A1
WO1997048487A1 PCT/JP1997/002104 JP9702104W WO9748487A1 WO 1997048487 A1 WO1997048487 A1 WO 1997048487A1 JP 9702104 W JP9702104 W JP 9702104W WO 9748487 A1 WO9748487 A1 WO 9748487A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
organic solvent
absorbent resin
solution
gel composition
Prior art date
Application number
PCT/JP1997/002104
Other languages
English (en)
French (fr)
Inventor
Nobuyuki Harada
Koji Miyake
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP16208596A external-priority patent/JPH105582A/ja
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Priority to EP97927391A priority Critical patent/EP0846493A4/en
Priority to US09/011,997 priority patent/US6103425A/en
Publication of WO1997048487A1 publication Critical patent/WO1997048487A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/22Immobilising of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte

Definitions

  • the present invention relates to a liquid-absorbent resin having excellent liquid-absorbing properties and retention properties for various solutions containing an electrolyte or the like, a method for producing the same, and a gel composition containing the liquid-absorbing resin.
  • a water-swellable polymer having a structure in which a water-soluble polymer is crosslinked has been considered to be applied to various fields utilizing its liquid absorbing property and liquid retaining property.
  • water swelling in sanitary materials such as disposable diapers, sanitary products, contact lenses, cosmetics, paints, adhesives, water blocking agents, soil conditioners, etc., or in the medical field such as controlled drug release control.
  • Bolimar is being conducted.
  • the water-swellable polymer which is a crosslinked polymer is produced by various methods, and as a method often used industrially, one kind or plural kinds of vinyl compounds are used as monomers for radical polymerization and the like.
  • a polymer is obtained by addition polymerization according to the method described above, the vinyl compound and a compound having a plurality of functional groups such as a vinyl group copolymerizable with the vinyl compound (that is, a crosslinking agent) are used.
  • a method of introducing a crosslinking point into a polymer chain by polymerization is known.
  • Examples of the water-swellable polymer using the production method include a polyacrylic acid-based liquid-absorbing resin and a polyvinyl acetate-based liquid-absorbing resin (Japanese Patent Laid-Open Japanese Patent Application Laid-open No. Hei 4 — 23050 and Japanese Patent Application Laid-Open No. Hei 8-54973) are known.
  • any of the above-mentioned conventional liquid-absorbing resins has sufficient liquid-absorbing properties, particularly sufficient liquid-absorbing properties to absorb an electrolyte solution containing a large amount of salts and the like.
  • the above-mentioned conventional liquid-absorbent resin has a problem that it is limited in use when it is used in an application field in which it is necessary to absorb and hold an electrolyte solution containing various water-soluble substances.
  • the above-mentioned polyacrylic acid-based liquid-absorbent resin elutes a relatively large amount of soluble components when it comes into contact with an aqueous liquid. For this reason, the polyacrylic acid-based liquid-absorbing resin has problems in its safety and durability.
  • Examples of the polymer solid electrolyte used in such a battery include, for example, an organic solvent in which a crosslinked polymer obtained by reacting an ⁇ - ⁇ -based compound having a perylene bond is dissolved in an electrolyte (electrolyte containing organic compound). Solvent), a polymer solid electrolyte (JP-A-3-84807), diacrylate and / or dimethyl acrylate of propylene glycol, and A cross-linked polymer obtained by reacting a mixture of a polyester with monoacrylic acid and a di- or mono-methyl acrylate is a polymer solid electrolyte containing an electrolyte (Japanese Patent Publication No. 8-32). No. 75.5) is known.
  • any of the polymer solid electrolytes described in the above-mentioned conventional publications has a sufficient amount of an organic solvent in which the electrolyte is dissolved or an organic solvent in which the electrolyte can be dissolved (propylene carbonate).
  • an organic solvent in which the electrolyte is dissolved or an organic solvent in which the electrolyte can be dissolved (propylene carbonate).
  • the present invention has been made in view of the above-mentioned conventional problems, and has an object to solve the problem.
  • a liquid-absorbing resin excellent in liquid-absorbing property and holding property for various solutions including an electrolyte and the like, a production method thereof, and a gel composition To provide
  • a liquid-absorbent resin obtained by polymerizing a monomer component containing cyclic N-vinyl ratatam is an organic solvent, particularly an organic solvent containing an electrolyte.
  • the gel composition containing the above-mentioned liquid-absorbing resin that retains an organic solvent can be suitably used for various applications including batteries, while finding that the liquid-absorbent resin has excellent liquid absorption and retention properties. This finding has led to the completion of the present invention.
  • the gel composition of the present invention comprises a liquid-absorbent resin obtained by polymerizing a monomer component containing cyclic N-vinyllactam and an organic solvent; It is characterized in that the conductive resin holds the organic solvent therein.
  • the gel composition of the present invention A liquid absorbing resin obtained by polymerizing a monomer component containing N-vinyl lactam, and an organic solvent containing an electrolyte, wherein the liquid absorbing resin contains the above electrolyte inside It is characterized by holding an organic solvent.
  • the gel composition of the present invention comprises an N-vinyl-2-pyrrolidone cross-linked polymer, and a propylene carbonate containing a lithium ion salt.
  • Vinyl-2-pyrrolidone crosslinked polymer is characterized in that propylene carbonate containing a lithium ion salt is retained inside.
  • the above configuration it is possible to provide a gel composition having excellent liquid absorbability and retention of an organic solvent such as an electrolyte-containing organic solvent. Therefore, when the above gel composition is used as a polymer solid electrolyte of a battery, a battery capable of holding a large amount of an organic solvent such as an electrolyte-containing organic solvent and preventing the leakage of the organic solvent can be obtained. Can be provided.
  • the inventors of the present application have found that a monomer component containing cyclic N-vinyl lactam and a crosslinkable monomer containing a compound containing an aryl group are dissolved in a solution.
  • the present inventors have found that by performing gel polymerization, it is possible to obtain a liquid-absorbing resin having a higher liquid-absorbing property than before and having a small amount of soluble components, thereby completing the present invention.
  • the method for producing a liquid-absorbent resin of the present invention comprises: a monomer component containing a cyclic N-vinyl lactam; and a crosslinkable monomer containing an aryl group-containing compound.
  • the method includes a step of copolymerization in a solution, and in the above-mentioned step, the obtained liquid-absorbent resin intermediate is characterized in that the solution-absorbing resin intermediate is cross-linked while keeping the solution inside.
  • the method for producing a liquid-absorbent resin of the present invention achieves the above object.
  • a monomer component containing a cyclic N-vinyl lactam and a crosslinkable monomer containing an aryl group-containing compound are mixed in a solution having an affinity for the resulting liquid-absorbent resin.
  • the liquid-absorbing resin obtained by the above-described production method has a liquid absorption capacity of a 20% by weight aqueous solution of sodium chloride, a 20% by weight aqueous solution of calcium chloride, and a 20% by weight aqueous solution of magnesium chloride.
  • the total is 90 or more, and the soluble component is 20% by weight or less.
  • the above-mentioned liquid-absorbing resin has sufficient liquid-absorbing properties to absorb an electrolyte solution containing a large amount of salt and the like. Therefore, the above-mentioned liquid-absorbent resin can absorb and stably hold an electrolyte solution containing various water-soluble substances. Therefore, the above-mentioned liquid-absorbent resin can be suitably used in various fields in which holding of various electrolyte solutions needs to be controlled. Moreover, the above-mentioned liquid-absorbent resin has a low soluble component of not more than 20% by weight, is excellent in durability, and can be suitably used in a field where safety is required.
  • the liquid absorbing resin according to the present invention is a crosslinked polymer obtained by polymerizing a monomer component containing a cyclic N-vinyl lactam.
  • Examples of the cyclic N-vinyllactam used as a raw material of the crosslinked polymer in the present invention include N-vinylpyrrolidone, N-vinylcaprolactam, N-bulimidabrin and the like. These cyclic N-vinyl One type of lulactam may be used alone, or two or more types may be appropriately used in combination. Of these cyclic N-vinyl latams, N-vinylpyrrolidone and / or N-vinylcaprolactam are preferred, and N-vinyl-2— is preferred from the viewpoint of the safety of the monomer and the resulting liquid-absorbent resin. Pyrrolidone is particularly preferred. More preferably, N-vinyl-12-pyrrolidone is used.
  • the monomer component may be, if necessary, a monomer other than the cyclic N-vinyl lactam, ie, a monomer copolymerizable with the cyclic N-vinyl lactam, It may be included within the range not impairing the performance to be provided.
  • the above other monomers include (meth) acrylic acid, maleic acid, vinylsulfonic acid, 2- (meth) acrylamide 2-methylmethylsulfonic acid, Sulfoalkyl (meth) acrylates and their alkali metal salts or ammonium salts; dimethylaminoethyl (meth) acrylate and its tetrahydrate; (methyl) acrylate Mid, methoxypolyethylene glycol (meth) acrylate, hydroquinine alkyl (meth) acrylate, N-ib pill (meth) acrylamide, etc.
  • acrylic acid maleic acid
  • vinylsulfonic acid 2- (meth) acrylamide 2-methylmethylsulfonic acid
  • Sulfoalkyl (meth) acrylates and their alkali metal salts or ammonium salts dimethylaminoethyl (meth) acrylate and its tetrahydrate
  • One of these other monomers may be used alone, or two or more of them may be appropriately used in combination.
  • these other monomers (meth) atalylic acid, 2 — (meth) acrylamide 2 — methyl sulfonic acid, sulfoalkyl (meta) acrylate, and the like Alkali metal salt or ammonium salt, dimethylaminoethyl (meta) phthalate and its quaternary compound, (meth) acrylyl amide, methoxypoxide
  • Particularly preferred is at least one monomer selected from the group consisting of ethylene glycol (meta) acrylate.
  • the proportion of the cyclic N-vinyllactam in the above monomer component is preferably at least 40 mol%, more preferably at least 60 mol%, particularly preferably at least 80 mol%. And most preferably 100 mol%.
  • the proportion of the cyclic N-vinyl lactam in the above monomer component is less than 40 mol%, salt resistance, that is, poor liquid absorption to a solution having a high salt concentration is poor.
  • the above monomer component when absorbing an aqueous solution containing an organic solvent such as ethanol or propylene carbonate (4-dioxane 3-dioxol an-2-one) or a high concentration of inorganic salt, the above monomer component is used. It is desirable that the N-vinyl lactam contain at least 80 mol%, particularly preferably 100 mol%, of cyclic N-vinyl lactam.
  • the proportion of cyclic N-vinyllactam in the monomer component is preferably 50 mol% or more. Is at least 70 mol%, more preferably at least 90 mol%, and most preferably at most 100 mol%. If the proportion of cyclic N-vinyl lactam in the above monomer component is less than 50 mol%, the liquid-absorbing property for an organic solvent, particularly an organic solvent having a high salt concentration, in which a large amount of electrolyte is dissolved, is poor. .
  • the proportion of the cyclic N-vinyl lactam in the monomer component is preferably as close to 100 mol%.
  • the gel composition in order to use the gel composition in a battery, the gel composition must have an absorption ratio of the cross-linked polymer to an organic solvent containing an electrolyte of 2 times or more.
  • the proportion of the cyclic N-vinyl lactam required for this purpose is 50 mol ⁇ or more.
  • crosslinking agent when obtaining the above crosslinked polymer, a crosslinking agent is used as necessary.
  • the crosslinking ⁇ is not particularly limited as long as it is a compound having two or more polymerizable ethylenically unsaturated double bonds in the molecule.
  • cross-linking agent examples include, for example, N, N'-methylethylenebisacrylamide, ethylene glycol (meta) acrylate, and polyethylene glycol (meta) acrylate Relate, trimethy ⁇ —pro-pro-entry (meta) accredit, ⁇ , N '— divinyl 2 — imidazolidinone, N.N' — 1, 4 — Petite Revision ( ⁇ — Vinyl Set Set End), ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Lithia Nurate, Tri-Louis Soy Nurate, (Bol) Ethylene glycol Diaryl ether, Diaryl ether, Trimethylol broth Triaryl ether, Alisulfy Do, Ali Rudisulf Iodide, gallyl urea, triaryl trimellitate, sodium diaryl dimethyl
  • the monomer component contains a monomer having an acid group such as a carboxyl group and a sulfonic acid group
  • a functional group capable of reacting with an acid group is included in the molecule as the crosslinking agent.
  • the c such 'compounds a compound having two or more possible Toka Mochiiruko, for example, (poly) ethylene glycidyl Korujiguri ether, ethylene Njia Mi emissions, poly ethylene Le Ni Mi emissions, (poly) ethylene Lenglycol, glycerin, arylglycidyl ether And the like.
  • the above-mentioned crosslinking agent may be used alone, or may be used as a mixture of two or more types. If the above-mentioned crosslinking agent particularly contains an aryl group-containing compound, the crosslinking efficiency is increased. The amount of the crosslinking agent used can be suppressed, and the desired crosslinked polymer can be produced at low cost.
  • the aryl group-containing compound is not particularly limited as long as it is a crosslinkable monomer containing an aryl group.
  • a crosslinkable monomer having one aryl group in one molecule for example, aryl methacrylate diarylstructuredyl ether and the like can be mentioned.
  • arylene reglindyl ether can be used when copolymerizing a monomer having an acid group such as acrylic acid.
  • the crosslinkable monomers include dithiolinoleamine, trilinoleamine, tetraalkyloxetane, and triarylamine.
  • aryl group-containing compounds a crosslinkable monomer containing two or more aryl groups in one molecule is preferable.
  • compounds containing a tertiary group garylamin, triarylamine, tetraliloxetane, trilithia nurate, and triarylamine Nitrate, (poly) ethylene glycol diether, diaryl ether, tri At least one compound selected from the group consisting of methylolprono and methyltriallyl ether is preferred because it has good reactivity, is easily available, and can achieve high crosslinking efficiency with a small amount.
  • the amount of the cross-linking agent used that is, the amount of the cross-linking agent added to the monomer component depends on the polymerization conditions, the composition of the monomer component, and the like, but is generally 0.000 relative to the monomer component. It is preferably in the range of 1 mol% to 5 mol%, more preferably in the range of 0.01 mol% to 2 mol%. If the amount of the cross-linking agent used is as small as 0.001 mol%, a cross-linked polymer cannot be obtained, which may result in a water-soluble resin.
  • the amount of the cross-linking agent is more than 5 mol%, swelling due to absorption of water is hindered, and there is a possibility that insoluble resin whose liquid absorbing performance is deteriorated may be obtained.
  • the monomer component contains 90 mol% or more of cyclic N-vinyl lactam
  • the amount of the cross-linking agent may be in the range of 0.01 mol% to 2 mol%. I like it.
  • the method for producing the crosslinked polymer that is, the method for polymerizing the monomer component is not particularly limited, and includes, for example, a solution polymerization method such as a solution gel polymerization method and a precipitation polymerization method; Various methods such as a polymerization method, an emulsion polymerization method, and the like can be employed. Among them, the solution gel polymerization method is preferred.
  • a method for polymerizing the above monomer components specifically, for example, a method in which a monomer component in which a crosslinking agent is dissolved is directly suspended or emulsified in a hydrophobic organic solvent and polymerized is employed. be able to.
  • the methods described in the above (i) to (iii) include, for example, the following: (1) The above simple !: A solution containing a body component and a crosslinking agent is left standing or stirred in the presence of a polymerization initiator. (2) a method in which a solution containing at least the above monomer component is irradiated with an electron beam or 7 rays to polymerize it, and (3) a solution containing at least the above monomer component in a nonwoven fabric.
  • the above monomer is dissolved in a solution which does not show an affinity for the polymer when the monomer component is dissolved.
  • the monomer component may be polymerized or copolymerized with a crosslinking agent.
  • the solution used when the precipitation polymerization method is used as the solution polymerization method is mainly a water-hydrophobic organic solvent whose solubility parameter is smaller than 9 (cal / cm 3 ) ] 2 , for example, cyclohexane ( solubility parameter Isseki 8. 2 (cal / cm 3) 1/2) and hexane (solubility parameter menu Isseki 7. 3 (cal / cm 3) 1/2) , and the like.
  • a hydrophobic organic solvent whose solubility parameter is less than 9 [cal / cm 3 ) 1/2 is used as the above solution.
  • solubility parameter is greater than 9 (ca l / cm 3) 1/2
  • a hydrophobic organic solvent especially benzene (solubility parameter 9. 2 (ca l / cm 3) 1/2)
  • the crosslinked polymer and its intermediate precipitate from the solvent during the polymerization reaction and precipitate.
  • solution gel polymerization is particularly adopted as the above solution polymerization method
  • the above monomer component and a crosslinking agent can be copolymerized in a solution having an affinity for the obtained bridge polymer. Good.
  • the solution gel polymerization refers to a solution polymerization in which a monomer component and a crosslinking agent are substantially and uniformly dissolved, and after polymerization, the resulting crosslinked polymer and the solution are integrated.
  • Figure 4 shows polymerization to form a gelled gel.
  • the polymerization proceeds without precipitation of a crosslinked polymer or an intermediate thereof generated during the polymerization reaction. Therefore, control of polymerization is easy.
  • the crosslinked polymer obtained by the precipitation polymerization and the intermediate thereof hardly absorb the solvent used for the precipitation polymerization and do not form a gel, they do not hold a solution therein.
  • the crosslinked polymer intermediate obtained by the solution gel polymerization swells with the above solution, and is crosslinked while keeping the solution therein. For this reason, when the solution gel polymerization is used, the crosslinking agent is uniformly dispersed inside the crosslinked polymer intermediate, and as a result, uniform crosslinking is performed on the surface and inside of the crosslinked polymer intermediate. Can be.
  • liquid-absorbent resin obtained by the above method is excellent in handleability.
  • the solution used for the solution gel polymerization a solution having an affinity for the obtained crosslinked polymer is used.
  • the solution is not particularly limited as long as it can dissolve the monomer components and the crosslinking agent and form a uniform gel with the obtained crosslinked polymer after polymerization.
  • water, solubility parameter Isseki 9 (cal / cm 3) is properly preferred less than 1/2 1 0 (cal / cm 3) 1/2 or more hydrophilic organic solvent or water and the hydrophilic, A mixed solvent with an organic solvent or the like is used.
  • hydrophilic organic solvent examples include, for example, propylene carbonate (solubility parameter 13.3 (cal / cm 3 ) 1/2 ); Overnight), ethylene carbonate (14.7), dimethyl carbonate (9.9), butyl lactone (12.6), 1,4-dioxane (10.0) ), Tetrahydrofuran (9.1), methanol (14.5), ethanol (12.7), ethylene glycol (14.6), glycerol (16.5).
  • solubility parameter is a factor indicating the polarity of the compound. This is a commonly used value.
  • solubility parameter of the solvent described in Boliman Book 3rd Edition (WILEY (published by NTERSCIENCE)) pages 527 to 539 (( / cm 3 ) 1/2
  • WILEY published by NTERSCIENCE
  • solubility parameter of the solvent not described on the above page is described on page 524 of the polymer handbook.
  • the value derived by substituting the cohesive energy constant of Hoy described on page 525 into the formula of Sma II is applied.
  • a mixed solvent of water and the above-mentioned hydrophilic organic solvent is preferred, and water alone is most preferred.
  • the method of solution-gel polymerization of the monomer component and the crosslinking agent includes, for example, (a) dissolving the monomer component and the crosslinking agent in water and Z or the hydrophilic organic solvent to copolymerize the monomer component and the crosslinking agent. (B) a method in which an aqueous solution in which the above-mentioned monomer component and crosslinking agent are dissolved is suspended in a hydrophobic organic solvent in the presence of a dispersant, if necessary, and polymerized.
  • the methods shown in the above (a) and (b) include, for example, the methods shown in the above (i) to (iii). More specifically, the methods shown in the above (i) to (: iii) include, for example, 1) polymerizing a solution containing the above monomer component and a cross-linking agent while standing or stirring in the presence of a polymerization initiator. (2) The solution containing the monomer component and the cross-linking agent (3) Non-woven fabric (2) A solution containing the above monomer components and a crosslinking agent is applied to a substrate such as a microporous film and polymerized directly on the substrate. Is mentioned.
  • hydrophobic organic solvent when the method (b) is employed as the solution gel polymerization include the above-mentioned cyclohexane / cycloheptane, and the like. It is not particularly limited as long as it is an organic solvent that does not mix uniformly with water.
  • the polymerization reaction proceeds in the aqueous solution.
  • the amount of the hydrophobic organic solvent to be used in the aqueous solution in which the monomer component and the crosslinking agent are dissolved is not particularly limited.
  • the weight ratio of the hydrophobic organic solvent to the aqueous solution is 2 times to It may be used at a rate of 10 times.
  • the dispersant include surfactants such as sorbitan monostearate / sorbino monopalmitate and ethyl cellulose, but are not particularly limited thereto. The amount of the dispersant used is not particularly limited.
  • the monomer component and the crosslinking agent are used together in the above solution having an affinity for the obtained crosslinked polymer. Polymerizes to form a gel.
  • the proportion of the monomer in the solution is preferably in the range of 25% by weight to 80% by weight. If the concentration of the monomer component is less than 25% by weight, a crosslinked polymer cannot be obtained, and the obtained polymer may be dissolved in water or the like. Further, even when a crosslinked polymer is obtained, it becomes difficult to disintegrate the gelled polymer after polymerization. In addition, it takes a long time to dry the obtained gel polymer, The polymer may deteriorate during drying.
  • a polymerization initiator or an active energy ray such as an ultraviolet ray or an electron beam can be used.
  • the polymerization initiator used in the above polymerization reaction is not particularly limited, and various conventionally known polymerization initiators can be used.
  • azo-based initiators specifically, for example, 2,2'-zozobis (2-amidinoprono, ') dihydrochloride, 2,2'-azobis (2 -(N-aryluamidino) propane] dihydrochloride, 2,2'-azobis ⁇ 2- [N- (2—hydroxyxethyl) amidino] propane) dihydrochloride and other azomidine compounds, 2 2,2'-Abbis [2— (2—imidazoline—2—yl) propane] dihydrochloride and other cyclic azoamidine compounds; 2,2′-Abbis [2—methyl-N— (2—H 2,2'-azobisuisopthyronitrile, 2.2'-azobis (2,4-dimethylvaleronitrile) and the like are preferred.
  • 2'-Abbis (2-amidinopropane) dihydrochloride, 2'Abbis (2 , 4-dimethyl nitrone) and the like are more preferred.
  • redox polymerization may be performed using a reducing agent in combination.
  • the amount of the polymerization initiator used depends on the composition of the monomer component used, its concentration, polymerization conditions, etc. It is in the range of 0.1 g to 5 g, preferably in the range of 0.05 g to lg. If the amount of the polymerization initiator used is less than 0.01 g, there may be a problem that the polymerization does not start or an unpolymerized monomer component increases. If the amount of the polymerization initiator exceeds 5 g, it is difficult to control the polymerization, and it may not be possible to obtain a crosslinked polymer having excellent liquid absorption performance.
  • the polymerization temperature in the above polymerization reaction is not particularly limited, but is generally in the range of 0 to 95, preferably in the range of 20 ° C to 80 ° C. .
  • the polymerization temperature is lower than 0'C, the polymerization time is too long, and it is not preferable because a crosslinked polymer cannot be efficiently obtained.
  • the polymerization temperature exceeds 95 ° C., it becomes difficult to control the polymerization, and it may not be possible to obtain a liquid-absorbing resin having excellent liquid-absorbing properties.
  • the polymerization time is determined so that the polymerization reaction is completed, the polymerization method, the polymerization temperature, the type and amount of the monomer component, the type and amount of the crosslinking agent, and the type and amount of the solution, and a combination thereof. It may be set appropriately according to the situation. In addition, polymerization conditions such as pressure are not particularly limited.
  • the crosslinked polymer obtained by the above polymerization reaction is dried as it is or after performing predetermined operations such as washing and crushing as necessary.
  • the method for drying the crosslinked polymer is not particularly limited.
  • various conventionally known methods such as hot-air drying, thin-film drying using a drum dryer, vacuum drying, fluidized-bed drying, and freeze-drying may be used. Drying methods can be used.
  • the drying temperature of the above-mentioned crosslinked polymer is not particularly limited.
  • the dried product is pulverized by, for example, a hammer mill, a dit mill, etc., by performing operations such as pulverization, and then, if necessary, classified by sieving or the like. It is desirable to perform the operation.
  • liquid-absorbent resin crosslinked polymer obtained in this way is used for sanitary materials, processing supplies, contact lenses, cosmetics, paints, adhesives, waterproofing agents, soil conditioners, etc., and It can be used in various fields that require liquid absorption, such as the medical field such as controlled release of drugs.
  • the liquid-absorbent resin obtained by subjecting a monomer component containing cyclic N-vinyl lactam and a crosslinking agent containing an aryl group-containing compound to solution gel polymerization is: Contains high-concentration salts with a total of 90% or more absorption capacity for a 20% by weight aqueous solution of sodium chloride, a 20% by weight aqueous solution of calcium chloride, and a 20% by weight aqueous solution of magnesium chloride It has excellent liquid absorption properties for electrolyte solutions, and its water-soluble component is as small as 20 weight or less.
  • the above-mentioned liquid-absorbent resin obtained by solution-gel polymerization of a monomer component containing a cyclic N-vinyl lactam and a crosslinking agent containing an aryl group-containing compound is an electrolyte solution containing a large amount of salts and the like. Since the liquid-absorbing property of absorbing water is sufficient, it becomes possible to absorb and stably hold an electrolyte solution containing various water-soluble substances. In addition, the liquid-absorbent resin has a good liquid-retaining property, and the liquid once retained does not leak to the outside under normal use conditions.
  • the liquid-absorbent resin obtained by solution-gel polymerization of the monomer component containing the cyclic N-vinyl lactam and the cross-linking agent containing the aryl group-containing compound has various electrolytes. It can be particularly suitably used in each field where the retention of a solution needs to be controlled.
  • the liquid-absorbent resin obtained by solution-gel polymerization of the above monomer component containing a cyclic N-vinyl lactam and a crosslinking agent containing an aryl group-containing compound is an aqueous resin. Since it has a low soluble content of 20% by weight or less when it comes in contact with liquids and has excellent durability, it can be suitably used in fields where safety is required. It is preferable that the above-mentioned soluble components be as small as possible, but from the viewpoint of durability, it is sufficient if the amount is not more than 20% by weight, and from the viewpoint of safety, for example, sanitary materials such as disposable diapers.
  • liquid-absorbent resin When used for applications such as sanitary products, paints, adhesives, soil conditioners, and waterproofing materials for optical cables and mooring cables, a content of 20% by weight or less is sufficient.
  • the liquid-absorbent resin when used for applications such as sanitary products, paints, adhesives, soil conditioners, and waterproofing materials for optical cables and mooring cables, a content of 20% by weight or less is sufficient.
  • the combination of the monomer component and the aryl group-containing compound and the amount of addition are appropriately determined. By setting, soluble components can be further suppressed.
  • the above liquid-absorbent resin obtained by solution-gel polymerization of the above monomer component containing cyclic N-vinyllactam and a crosslinking agent containing an aryl group-containing compound has a high concentration even under a large dehydration pressure. Since the solution containing salt has excellent liquid absorbency, and the soluble component is as low as 20% by weight or less, it shows excellent water stopping performance for a long time when used as a water stopping material for submarine cables. Further, the liquid-absorbing resin is excellent in the liquid-absorbing properties of an organic solvent such as propylene carbonate and a hydrophilic organic solvent such as alcohol, which have been difficult in the past.
  • each of the above liquid-absorbent resins obtained by polymerizing a monomer component containing a cyclic N-vinyllactam can be used for a water-swellable polymer.
  • cyclic N-vinyl A liquid-absorbent resin obtained by solution-gel polymerization of a monomer component containing a lactam and a crosslinker containing an aryl group-containing compound has a particularly convenient liquid-absorbing property, and has a water-soluble component. It is also suitable for applications where safety is required because it has few.
  • the above-mentioned liquid-absorbent resin obtained by polymerizing a monomer component containing a cyclic N-vinyl lactam has a structure in which a water-soluble polymer is crosslinked.
  • a water-soluble polymer is crosslinked.
  • it is necessary to absorb and retain the organic solvent in addition to its use as a water-swellable polymer, as it has excellent liquid absorbability for various organic solvents such as organic solvents containing high-concentration salts. It has been found that it can be used particularly advantageously for certain applications.
  • liquid-absorbent resin obtained by polymerizing a monomer component containing cyclic N-bulactam can absorb and retain an organic solvent.
  • the gel composition of the present invention contains a liquid-absorbent resin obtained by polymerizing a monomer component containing cyclic N-vinylrathamam and an organic solvent, and contains the above-mentioned liquid-absorbent resin ⁇ It has a configuration that holds the organic solvent.
  • the organic solvent in the liquid-absorbent resin for example, an absorbent obtained by polymerizing a monomer component containing cyclic N-vinyl lactam in the presence of a crosslinking agent as necessary.
  • an absorbent obtained by polymerizing a monomer component containing cyclic N-vinyl lactam in the presence of a crosslinking agent as necessary.
  • Absorbing an organic solvent in a liquid resin, or directly polymerizing a monomer component containing cyclic N-vinyl ratatam in a solution gel in an organic solvent in the presence of a cross-linking agent What is necessary is just to manufacture a hydrophilic resin.
  • the above-described various polymerization methods may be used.
  • the obtained absorbent tree By making the fat absorb a desired organic solvent, a liquid-absorbing resin holding the organic solvent can be obtained.
  • the organic solvent that can be retained by the liquid-absorbent resin has an affinity for the liquid-absorbent resin, and can be gelled by swelling the liquid-absorbent resin.
  • the solubility parameter is not limited.
  • the monomer component containing a cyclic N-vinyl lactam is Solution gel polymerization may be performed in an organic solvent in the presence of a crosslinking agent.
  • a cross-linked polymer generated during the polymerization reaction or an intermediate thereof is precipitated.
  • Polymerization proceeds immediately, and after the polymerization, a gel-like crosslinked polymer (liquid-absorbent resin) can be directly obtained.
  • the organic solvent described above is simply used as the organic solvent.
  • An organic solvent that can form a uniform gel with the crosslinked polymer obtained by dissolving the monomer component and the crosslinking agent and polymerizing is used.
  • the solubility parameter Isseki 9 (ca l / cm 3) 2 or more favored properly may include 1 0 (ca l / cm 3 ) 1/2 or more hydrophilic organic solvents.
  • the liquid-absorbent resin thus obtained is, for example, an organic solvent
  • propylene carbonate or 7-butyrolactone is absorbed (held) as a solvent, regardless of whether the organic solvent contains, for example, a lithium ion salt as a decomposition agent, It shows a liquid absorption ratio as high as 5 times or more.
  • the liquid-absorbent resin has a good liquid-retaining property, and the liquid once retained does not leak out under normal use conditions.
  • an electrolyte-containing organic solution obtained by dissolving a lithium ion salt as an electrolyte in a non-brotonic organic solvent such as propylene carbonate or 7-butyrolactone is used as an electrolyte.
  • the solvent can be retained, and lithium having a strong reducing power can be used as the negative electrode active material.
  • the above-mentioned liquid-absorbing resin is used as a gelling agent for a solid polymer electrolyte, You can get a high electromotive force battery.
  • the gel composition of the present invention containing the liquid-absorbent resin holding the organic solvent is excellent in holding various organic solvents, and can be used in a battery and other devices such as a drug delivery system, a solid fuel, It can be suitably used for various applications that require absorption and retention of organic solvents, such as sustained-release drugs and gelling agents for fragrances.
  • the gel composition when used for a battery, the gel composition may be used as an organic solvent, an organic solvent capable of dissolving an electrolyte, or an organic solvent dissolving an electrolyte ( Or an organic solvent containing an electrolyte).
  • the solvent of the electrolyte-containing organic solvent used when the gel composition of the present invention contains an electrolyte-containing organic solvent as the organic solvent is not particularly limited as long as it is an organic solvent capable of dissolving the electrolyte.
  • an organic solvent capable of dissolving the electrolyte but propylene carbonate, ethylene carbonate, dimethyl carbonate, 7- butane
  • the organic solvent is preferably at least one organic solvent selected from the group consisting of tyrolactone, 1,4-dioxane, and tetrahydrofuran, and propylene carbonate is particularly preferable.
  • the electrolyte is not particularly limited as long as it is an ionic salt such as a lithium ion salt or a potassium ion salt. To obtain a high electromotive force battery, lithium ion is used. It is preferable to use a salt.
  • the electrolyte specifically, for example, L i C 1 0 4, L i BF 4, L i A s F «. L i CF 3 S_ ⁇ 3, L i PF 6, L i I, L i
  • the liquid-absorbing resin is poly N-vinyl 2-pyrrolidone in view of the liquid-absorbing property and the performance of the obtained battery.
  • the combination in which the solvent of the electrolyte-containing organic solvent is propylene-carbonate and the electrolyte is a salt of lithium ion is most preferable.
  • the mixing ratio of the above-mentioned liquid-absorbing resin and the organic solvent depends on the type of the liquid-absorbing resin and the organic solvent used and the content of the electrolyte. It is preferably at least 2 times, more preferably at least 5 times, even more preferably at least 10 times, although it depends on the presence or absence of the electrolyte, the type of electrolyte, the use, and the like.
  • the gel composition is excellent in liquid absorption and retention properties of an electrolyte-containing organic solvent and an organic solvent capable of dissolving the electrolyte, and can be suitably used as a polymer solid electrolyte of a battery. . Therefore, a battery comprising the above gel composition absorbs an organic solvent containing an electrolyte or an organic solvent capable of dissolving the electrolyte. It has excellent liquid and liquid retention properties and can prevent liquid leakage of the absorbed organic solvent, thereby improving the reliability of the battery. Further, the above gel composition can be suitably used for various batteries such as a primary battery and a secondary battery. Next, an example of a battery using the gel composition of the present invention is shown in FIG. This is explained below. As shown in FIG.
  • the battery includes a gel composition 1, a negative electrode 2, a positive electrode 3, a negative electrode lead 4, a negative electrode terminal 5, a positive electrode lead 6, a positive electrode terminal ⁇ ⁇ , and a plastic seal 8 as an exterior material.
  • the negative electrode 2 and the positive electrode 3 are laminated with the gel composition 1 interposed therebetween, and the negative electrode lead 4 or the positive electrode lead 6 respectively covers the plastic seal 8 covering the outer periphery of the battery. In this configuration, the portion is connected to the exposed negative electrode terminal 5 or positive electrode terminal 7.
  • the negative electrode active material forming the negative electrode 2 and the positive electrode active material forming the positive electrode 3 can be appropriately set according to the type, use, and the like of the gel composition 1.
  • Examples of the negative electrode active material include lithium, and examples of the positive electrode active material include graphite fluoride, manganese dioxide, and poly-2-vinylpyridin iodine complex. It is not something.
  • the above-mentioned battery uses the above-mentioned gel binding composition 1 as a polymer solid electrolyte instead of an electrolytic solution, liquid leakage can be prevented.
  • a sealing material such as a metal foil or a polymer film can be used. (Sealing material) is used for sealing, and it is thin and does not leak.
  • a lithium battery is obtained as the above-mentioned battery, it is preferable to completely seal the battery so that water does not enter the battery.
  • the above-mentioned battery does not necessarily require a metal can and can be set in any shape.Therefore, in addition to the shape shown in FIG. For example, it can be formed into various shapes such as a so-called coin type and bottle type. That is, in the present invention, the configuration of the battery other than the gel composition 1 is not particularly limited.
  • the battery using the gel composition according to the present invention has excellent liquid absorption and liquid retention properties with respect to an electrolyte-containing organic solvent, an organic solvent capable of dissolving an electrolyte, and the like. Since liquid leakage can be prevented, reliability can be improved. Further, since the battery can hold a large amount of an organic solvent containing an electrolyte or an organic solvent capable of dissolving the electrolyte, an improvement in ion conductivity and an increase in capacity can be expected. Further, in the battery, since the gel composition is used as the polymer solid electrolyte, ions in the electrolyte are easy to move, which can be expected to improve the ionic conductivity.
  • the gel composition functions not only as an electrolyte layer but also as a separator between the positive and negative electrodes and also as a separator, so the space required for the separation between the positive and negative electrodes is reduced, and the size is increased accordingly. Without this, it is possible to increase the liquid absorption of the electrolyte-containing organic solvent or the organic solvent capable of dissolving the electrolyte.
  • FIG. 1 is a schematic diagram showing the formation of a battery provided with a gel composition according to one embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited thereto.
  • the liquid absorption ratio of the liquid absorbing resin was measured by the following method.
  • N-vinyl-2-pyrrolidone (MW 11.1.1), a cyclic N-bulactam purified by vacuum distillation, an aryl group-containing compound
  • An aqueous solution of a monomer component was prepared by mixing 0.0374 g of triallyl cyanurate (Mw 249.3) as a mixture and 129.5 g of water with each other.
  • the content of cyclic N-vinyl lactam in the above monomer component was 100 mol%, the concentration of the monomer component in the aqueous solution was 30% by weight, and cyanuric acid with respect to N-vinyl-2-pyrrolidone.
  • the proportion of triaryl is 0.03 mol%.
  • liquid-absorbent resin (1) A liquid-absorbent resin having a remaining particle size (hereinafter referred to as liquid-absorbent resin (1)) was obtained. Thereafter, the soluble components of the liquid-absorbent resin (1) and the liquid absorption ratio in various test solutions were measured by the methods described above. Table 1 also shows the measurement results.
  • Aqueous solution 20% by weight aqueous solution of calcium chloride, 20% by weight aqueous solution of magnesium chloride, methanol (MeOH), ethanol (Et ⁇ H), ethylene glycol (EG) And propylene carbonate were used.
  • composition of the above-mentioned artificial urine and the amount thereof are as follows.
  • composition of artificial urine Amount of each composition
  • Deionized water 9 9. 4 7 5% by weight
  • comparative liquid-absorbent resin (1) polyacrylic acid-based liquid-absorbent resin (trade name: Aquaric CA, manufactured by Nippon Shokubai Co., Ltd .; hereinafter, referred to as comparative liquid-absorbent resin (1)) which is a conventional liquid-absorbent resin
  • the comparative liquid-absorbent resin (1) was sieved with each sieve in the same manner as in Example 1 to make the particle diameter uniform with the liquid-absorbent resin (1). Table 1 also shows the measurement results.
  • N-vinylacetamide-based liquid-absorbing resin (Product name: NA-010, Showa Density
  • Example 1 Using a comparative liquid-absorbent resin (2) manufactured by K. K.K., the soluble components and the liquid absorption ratio in various test solutions were measured in the same manner as in Example 1. The comparative liquid-absorbent resin (2) was sieved with each sieve in the same manner as in Example 1 to make the particle diameter uniform with that of the liquid-absorbent resin (1). Table 1 shows the measurement results.
  • Example i Comparative example 1 Comparative example 2 Soluble component (% by weight) 1 5.0 2 5.2 5.5 Pure water (g / g) 2 7.92 20.0 0.0 24.6 Physiology Saline (g / g) 2 9.3 2 9.3 26.7 Artificial urine (g / g) 3 0.2 4 2. 0 24.7 Artificial seawater (g / g) 3 1 2.8 26.1
  • Example 2 The same reaction and operation as in Example 1 were performed, except that the addition amount of triaryl cyanurate was changed from 0.0374 g to 0.0623 g. Thus, a liquid-absorbent resin (hereinafter referred to as liquid-absorbent resin (2)) was obtained. The ratio of triaryl cyanurate to N-vinyl-2-pyrrolidone was 0.05 mol%. The soluble components of the above liquid-absorbent resin (2) and the liquid absorbency in pure water and physiological saline were measured in the same manner as in Example 1. Table 2 shows the measurement results.
  • liquid-absorbent resin (2) The ratio of triaryl cyanurate to N-vinyl-2-pyrrolidone was 0.05 mol%.
  • the soluble components of the above liquid-absorbent resin (2) and the liquid absorbency in pure water and physiological saline were measured in the same manner as in Example 1. Table 2 shows the measurement results.
  • Example 2 The same reaction and operation as in Example 1 were carried out except that, instead of triaryl cyanurate, 0.0635 g of tetraroxyxetane as an acryl-based crosslinking agent was used. Thus, a liquid-absorbent resin (hereinafter, referred to as liquid-absorbent resin (3)) was obtained. In addition, the ratio of tetrahydrofuran to the N-vinyl-2-pyrrolidone is 0.05 mol%. The soluble component of the above liquid-absorbent resin (3) and the liquid absorption ratio in pure water and physiological saline were measured in the same manner as in Example 1. Table 2 shows the measurement results.
  • liquid-absorbent resin (3) The soluble component of the above liquid-absorbent resin (3) and the liquid absorption ratio in pure water and physiological saline were measured in the same manner as in Example 1. Table 2 shows the measurement results.
  • the liquid-absorbent resin (1) was inferior to the comparative liquid-absorbent resin (1) only in pure water and artificial urine as test solutions.
  • ethylene glycol and propylene carbonate used in other test solutions, especially in high concentration salt solutions, alcohols and antifreezes Organic solvents such as these have extremely large liquid absorption performance.
  • the liquid-absorbent resin (1) can be used to recover the test solution by absorbing the liquid, prevent inhalation of organic solvents that are harmful to the human body, a drug delivery system, a sustained-release drug, and a gel for fragrance. It can be seen that it is suitably used as an agent or a solid fuel.
  • the comparative liquid-absorbent resin (2) has a low soluble component, but does not have sufficient liquid-absorbing properties, especially high-concentration salt solutions and organic solvents such as propylene carbonate.
  • the liquid-absorbent resin (1) obtained in this example is, for example, a 20% by weight aqueous solution of sodium chloride and a 20% by weight of calcium chloride as compared with the comparative liquid-absorbent resin (2).
  • the test was performed so that the sum of the absorption capacities of the aqueous solution and magnesium chloride aqueous solution of 20% by weight was 90 (g /) or more, and the absorption capacity of propylene carbonate was 2 (g / g) or more. All of the solutions showed excellent liquid absorption performance. For this reason, it can be seen that the above-mentioned liquid-absorbent resin (1) is more suitably used for various test solutions than before.
  • the above liquid-absorbent resin (1) is compared with each of the comparative liquid-absorbent resins (1) and (2) by a centrifugal separator as in the method of measuring the liquid absorption ratio of the present application. It has good liquid retention performance even under a large dehydration pressure such as O rpm and liquid draining for 3 minutes.Under normal use conditions, once the liquid is retained, it should leak out. Has been prevented. Therefore, the liquid-absorbent resin of the present invention avoids the adverse effects caused by leakage of the retained liquid to the outside.
  • the soluble component of the obtained liquid-absorbent resin can be further reduced by the type and amount of the aryl group-containing compound. It can be seen that this is possible.
  • N-vinyl 2-pyrrolidone (MW 11.1.1), a cyclic N-vinyl ratatam purified by distillation under reduced pressure, was used as a cross-linking agent.
  • An aqueous solution of a monomer component was prepared by mixing 0.69 parts of luamide (MW 154.2) and 233 parts of water with each other.
  • the content of cyclic N-vinyllactam in the above monomer component was 100 mol%, the concentration of the monomer component in the aqueous solution was 30% by weight, and the content of the crosslinking agent was 0.5 mol? 6
  • the obtained gel polymer was cut into small pieces and dried at 80 ° C. for 3 hours. After drying, a white resin was obtained. Next, the obtained resin is pulverized, sieved with a sieve having a mesh size of 85 ⁇ / ⁇ and 150 im, passed through a sieve of 850 0 / m, A crosslinked polymer as a liquid absorbing resin having a particle size remaining on the sieve was obtained.
  • the crosslinked polyvinyl vinylidone which is the crosslinked polymer obtained in the above example, is not soluble in organic solvents capable of dissolving pyrolysis or electrolyte-containing organic solvents. High liquid absorption performance. Accordingly, the gel composition obtained by absorbing the organic solvent in the crosslinked polymer can hold the organic solvent in a gel state, and thus can be suitably used for applications such as a solid electrolyte of a battery.
  • the above crosslinked polyvinyl pyridone has good liquid retention performance even under a large dehydration pressure such as liquid removal at 1300 rpm for 3 minutes in a centrifugal separator. Under the conditions of use, the liquid once retained is prevented from leaking to the outside. Therefore, the gel composition of the present invention avoids the adverse effects caused by leakage of the retained organic solvent to the outside.
  • the gel composition as a solid electrolyte of a battery, It can be seen that a highly reliable battery in which the electrolyte-containing organic solvent and the organic solvent capable of dissolving the electrolyte have a high liquid absorbing property and a high retention property and in which the organic solvent does not leak can be obtained.
  • the liquid-absorbing resin according to the present invention has excellent liquid-absorbing properties with respect to a pyrolysis solution containing a high-concentration salt, and has a low soluble component. Therefore, the liquid-absorbent resin can stably hold by absorbing an electrolyte solution containing various water-soluble substances. Therefore, the above-mentioned liquid-absorbent resin can be suitably used in various fields where the retention of various electrolyte solutions needs to be controlled. Moreover, the liquid-absorbent resin has a low soluble component, is excellent in durability, and can be suitably used in a field where safety is required.
  • liquid-absorbent resins are used, for example, in sanitary materials, sanitary products, contact lenses, cosmetics, paints, adhesives, water blocking agents, soil conditioners, etc., and in the medical field such as controlled release of drugs.
  • the gel composition according to the present invention is obtained by polymerizing a monomer component containing cyclic N-vinyl lactam.
  • liquid-absorbent resin Since the liquid-absorbent resin has excellent liquid-absorbing properties and retention properties with respect to organic solvents, particularly organic solvents containing electrolytes, it is preferably used for applications that need to retain organic solvents containing electrolytes, for example, batteries. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Secondary Cells (AREA)

Description

明 細 書 吸液性樹脂およびその製造方法並びにゲル状組成物 技術分野
本発明は、 電解質等を含む種々の溶液に対する吸液性や保持性に優れ る吸液性樹脂およびその製造方法並びに該吸液性樹脂を含むゲル伏組成 物に関するものである。 背景技術
近年、 水溶性のボリマーが架橋された構造を有する水膨潤性ポリマー は、 その吸液性や保液性を利用した種々の分野への適用が考えられてい る。 例えば、 紙おむつ等の衛生材料、 生理用品、 コンタ ク ト レ ンズ、 化 粧品、 塗料、 接着剤、 止水剤、 土壌改良剤等の用途、 あるいは薬物徐放 制御などの医療分野で該水膨潤性ボリマーの利用研究が行われている。
これら架橋された重合体である水膨潤性ポリマーは、 様々な方法で製 造されるが、 工業的にしばしば用いられる方法として、 一種類または複 数種のビニル化合物を単量体としてラジカル重合等の方法で付加重合す ることにより重合体を得るに際し、 当該ビニル化合物と、 該ビニル化合 物と共重合可能なビニル基等の官能基を複数個有する化合物 (即ち、 架 橋剤) とを共重合させるこ とによりポリマー鎖中に架橋点を導入する方 法が知られている。
該製造方法を用いた水膨潤性ポリマーと しては、 例えば、 ポリ アク リ ル酸系の吸液性樹脂や、 ポリ ビニルァセ トア ミ ド系の吸液性樹脂 (特開 平 4 — 2 3 0 2 5 0号公報、 特開平 8 — 5 9 7 4 3号公報参照) 等が知 られている。
ところが、 上記従来の吸液性樹脂は、 何れも、 吸液性、 特に塩等を多 く含む電解質溶液を吸液する吸液性が充分であるとは言い難い。 このた め、 上記従来の吸液性樹脂は、 種々の水溶性物質を含む電解質溶液を吸 液して保持する必要がある用途分野に用いる場合には、 使用上の制限を 受けるという問題点を有している。 また、 上記ボリァク リ ル酸系の吸液 性樹脂は、 水性液体と接触した場合に、 比較的多量の可溶成分が溶出し て く る。 このため、 上記ポリアク リ ル酸系の吸液性樹脂は、 その安全性 および耐久性にも問題を有している。
一方、 電解質溶液として電解質を含む有機溶媒を吸液させた吸液性樹 脂についても、 その吸液性や保液性を利用した種々の分野への適用が考 えられている。 特に、 近年、 携帯電話ゃノ ― ト型パソ コ ン等の普及に伴 つて、 薄型で大容量の電池が嘱望されている。 しかしながら、 電解液を 用いた電池は、 電解液の液モレを防ぐために金属缶等を用いて完全に密 封する必要があり、 また、 金属缶の薄型加工が難しいため、 薄型化か困 難である。 このため、 吸液性樹脂に電解質を含む有機溶媒を吸液させて なるゲル状組成物を高分子固体電解質と して電解液の代わりに用いた電 池の研究がなされている。
このような電池に用いられる高分子固体電解質としては、 例えば、 ゥ レ夕 ン結合を有するァク リ αィル系化合物を反応させてなる架橋重合体 が電解質を溶解した有機溶媒 (電解質含有有機溶媒) を含む高分子固体 電解質 (特開平 3 — 8 4 8 0 7号公報) や、 ポリプロ ピレ ングリ コール のジァク リル酸エステルおよび Ζまたはジメ 夕ク リ ル酸エステルと、 ポ リ エ一テルのモノ アク リ ル酸およびノまたはモノ メ 夕 ク リ ル酸エステル との混合物を反応させてなる架橋重合体が電解質を含んでなる高分子固 体電解質 (特公平 8 — 3 2 7 5 5号公報) 等が知られている。
ところが、 上記従来公報に記載の高分子固体電解質は、 何れも、 電解 質を溶解した有機溶媒、 或いは、 電解質を溶解し得る有機溶媒の保持量 が充分であるとは言い難く (プロ ピレンカーボネー トで架橋重合体の等 倍〜 2倍未満) 、 電池特性を向上させるためには、 これら有機溶媒の吸 液性や保持性のさらなる向上が望まれている。 発明の開示
本発明は、 上記従来の問題点に鑑みなされたものであり、 その目的は. 電解質等を含む種々の溶液に対する吸液性や保持性に優れる吸液性樹脂 およびその製造方法並びにゲル状組成物を提供するこ とにある。
本願発明者等は、 上記目的を達成すべく鋭意検討した結果、 環状 N - ビニルラタタムを含む単量体成分を重合してなる吸液性樹脂が、 有機溶 媒、 特に、 電解質を含有した有機溶媒の吸液性や保持性に優れることを 見いだすと共に、 有機溶媒を保持した上記の吸液性樹脂を含むゲル伏組 成物が、 電池をはじめとする種々の用途に好適に用いるこ とができるこ とを見いだして本発明を完成させるに至った。
即ち、 本発明のゲル伏組成物は、 上記の目的を達成するために、 環状 N — ビニルラクタムを含む単量体成分を重合してなる吸液性樹脂と有機 溶媒とを含み、 上記吸液性樹脂が、 その内部に上記有機溶媒を保持して いるこ とを特徴としている。
また、 本発明のゲル状組成物は、 上記の目的を達成するために、 環状 N - ビニルラクタムを含む単量体成分を重合してなる吸液性樹脂と、 電 解質を含有した有機溶媒とを含み、 上記吸液性樹脂が、 その内部に、 上 記の電解質を含有した有機溶媒を保持しているこ とを特徴としている。
さらに、 本発明のゲル状組成物は、 上記の目的を達成するために、 N — ビニルー 2 — ピロ リ ドン架橋重合体と、 リチウムイオンの塩を含むプ ロ ビレ ンカーボネー トとを含み、 上記 N —ビニル— 2 —ピロ リ ドン架橋 重合体が、 その内部に、 リチウムイオンの塩を含むプロピレンカーボネ — トを保持していることを特徴と している。
上記の構成によれば、 電解質含有有機溶媒等、 有機溶媒の吸液性や保 持性に優れるゲル状組成物を提供することができる。 従って、 上記のゲ ル伏組成物を電池の高分子固体電解質として用いれば、 電解質含有有機 溶媒等の有機溶媒の保持量が多く、 しかもこれら有機溶媒の液漏を防止 するこ とができる電池を提供することができる。
また、 本願発明者等は、 上記の目的を達成すべく鋭意検討した結果、 環状 N— ビニルラ クタムを含む単量体成分と、 了 リ ル基含有化合物を含 む架橋性単量休とを溶液ゲル重合させるこ とにより、 従来より も吸液性 が高く 、 しかも可溶成分が少ない吸液性樹脂を得るこ とができるこ とを 見いだして本発明を完成させるに至った。
即ち、 本発明の吸液性樹脂の製造方法は、 上記の目的を達成するため に、 環状 N—ビニルラ クタムを含む単量体成分と、 ァ リル基含有化合物 を含む架橋性単量体とを溶液中で共重合させる工程を含み、 上記工程に おいて、 得られる吸液性樹脂中間体は、 上記溶液をその内部に保持した 状態で架橋されるこ とを特徴としている。
さ らに、 本発明の吸液性樹脂の製造方法は、 上記の目的を達成するた めに、 環状 N— ビニルラ クタムを含む単量体成分と、 ァリ ル基含有化合 物を含む架橋性単量体とを、 得られる吸液性樹脂に対して親和性を有す る溶液中で共重合させてゲル状の吸液性樹脂を得るこ とを特徴と してい o
上記の構成によれば、 吸液性、 特に高濃度の電解質溶液に対する吸液 性に優れると共に、 可溶成分の少ない吸液性樹脂を安定して得るこ とが できる。
上記の製造方法により得られた吸液性樹脂は、 塩化ナ ト リ ウムの 2 0 重量%水溶液、 塩化カルシウムの 2 0重量%水溶液、 塩化マグネシウム の 2 0重量%水溶液に対するそれぞれの吸液倍率の合計が 9 0以上であ り、 かつ、 可溶成分が 2 0重量% 下である。
このように、 上記の吸液性樹脂は、 塩等を多く含む電解質溶液を吸液 する吸液性が充分である。 従って、 上記の吸液性樹脂は、 種々の水溶性 物質を含む電解質溶液を吸液して、 安定に保持するこ とが可能となる。 よって、 上記吸液性樹脂は、 種々の電解質溶液の保持を制御する必要が ある各分野に好適に用いることができる。 しかも、 上記吸液性樹脂は、 可溶成分が 2 0重量%以下と少なく、 耐久性に優れると共に、 安全性が 必要とされる分野にも好適に用いることができる。
以下、 本発明を更に詳しく説明する。
本発明にかかる吸液性樹脂は、 環状 N— ビニルラクタムを含む単量体 成分を重合してなる架樣重合体である。
本発明において上記架橋重合体の原料として用いられる上記環状 N— ビニルラクタムとしては、 N — ビニルピロ リ ドン、 N— ビニルカプロラ クタム、 N — ビュルイ ミ ダブリ ン等が挙げられる。 これら環状 N— ビニ ルラクタムは、 一種類のみを用いてもよいし、 適宜、 二種類以上を混合 して用いてもよい。 これら環状 N—ビニルラタ夕厶のなかでも、 N— ビ ニルピロ リ ドンおよび または N— ビニルカプロラクタムが好ま しく、 単量体および得られる吸液性樹脂の安全性の観点から、 N - ビニル - 2 —ピロ リ ドンが特に好ま しい。 さらに好ま しく は N— ビニル一 2 — ピロ リ ドンが举げられる。
上記単量体成分は、 必要に応じて上記環状 N - ビニルラクタム以外の その他の単量体、 即ち、 上記環伏 N— ビニルラ クタムと共重合可能な単 量体を、 上記ゲル伏組成物が備えるべき性能を損なわない範囲内で含ん でいてもよい。 上記その他の単量体としては、 具体的には、 例えば、 ( メ タ) アク リ ル酸、 マレイ ン酸、 ビニルスルホン酸、 2 - (メ タ) ァク リルア ミ ドー 2 —メチルプ ンスルホン酸、 スルホアルキル (メタ) ァク リ レー ト、 およびそれらの了ルカ リ金属塩またはアン乇ニゥ厶塩 ; ジメチルア ミ ノエチル (メタ) ァク リ レー トおよびその 4极化物 ; (メ 夕) アク リ ルア ミ ド、 メ トキシボリエチレ ングリ コール (メ夕) ァク リ レー ト、 ヒ ドロキンアルキル (メタ) ァク リ レー 卜、 N—イ ッブ口 ピル (メタ) アク リ ルア ミ ド等が挙げられるが、 特に限定されるものではな い。
これらその他の単量体は、 一種類のみを用いてもよいし、 適宜、 二種 類以上を混合して用いてもよい。 これらその他の単量体のなかでも、 ( メ タ) アタ リ ル酸、 2 — (メタ) アク リルア ミ ドー 2 —メチルプ 'ン スルホン酸、 スルホアルキル (メ タ) アタ リ レー ト、 およびそれらのァ ルカ リ金属塩またはアンモニゥ厶塩、 ジメチルア ミ ノエチル (メ タ) ァ タ リ レー トおよびその 4級化物、 (メタ) アク リルア ミ ド、 メ トキシポ リエチレングリ コール (メ タ) アタ リ レー トからなる群より選択される 少なく とも一種の単量体が特に好ま しい。 上記単量体成分が上記例示の その他の単量体を含むことで、 上記架橋重合体に有機溶媒を保持させた 場合、 これにより得られるゲル伏組成物の柔軟性を高めるこ とができる, 上記単量体成分における環状 N—ビニルラクタムの割合は、 好ま しく は 4 0 モル%以上であり、 さ らに好ま しく は 6 0 モル%以上であり、 特 に好ま しく は 8 0 モル%以上であり、 最も好ましく は 1 0 0 モル%であ る。 上記単量体成分における環状 N — ビニルラ クタムの割合が 4 0 モル %未満であれば、 耐塩性、 すなわち塩濃度の高い溶液に対する吸液性に 乏しいものとなる。 また、 エタノールや炭酸プロ ピレン (4 - Me t y卜し 3 - d i ox o l an -2- one ) 等の有機溶媒や高濃度無機塩を含有する水溶液を吸収 させる場合には、 上記単量体成分は、 環状 N— ビニルラ クタムを 8 0モ ル%以上、 特に好ま しく は 1 0 0 モル%含有しているこ とが望ま しい。
また、 上記架橋重合体を、 電池等の、 有機溶媒を吸液させる ffl途に用 いる場合には、 上記単量体成分における環状 N— ビニルラクタムの割合 は、 5 0 モル%以上、 好ま しく は 7 0 モル%以上、 さらに好ま しく は 9 0モル%以上、 最も好ま しく は 〗 0 0モル%である。 上記単量体成分に おける環状 N — ビニルラ クタムの割合が 5 0 モル%未満であれば、 有機 溶媒、 特に、 多量の電解質を溶解した塩濃度の高い有機溶媒に対する吸 液性に乏しいものとなる。 つまり、 電解質を溶解した有機溶媒である電 解質含有有機溶媒の吸液性を向上させるためには、 単量体成分における 環状 N— ビニルラ クタムの割合が 1 0 0 モル%に近い程好ましい。 そし て、 上記ゲル状組成物を電池に用いるためには、 該ゲル状組成物におけ る上記架榇重合体の電解質含有有機溶媒に対する吸液倍率が 2倍以上で あるこ とが好ま しく、 このために必要とされる上記環状 N— ビニルラ ク タムの割合は、 5 0モル ^以上である。
本発明において、 上記架橋重合体を得る際には、 必要に応じて架攝剤 が用いられる。 該架橋剂としては、 重合性を示すエチレン性不飽和二重 結合を分子内に 2個以上有する化合物であれば、 特に限定されるもので はない。 上記架橋剤としては、 具体的には、 例えば、 N , Ν ' ーメチレ ン ビスア ク リ ルア ミ ド、 エチ レ ングリ コールジ (メ タ) ア タ リ レー ト、 ボリ エチレ ングリ コールジ (メ タ) ア タ リ レー ト、 ト リ メチ□—ルプロ ノ ン ト リ (メ タ) ァク リ レ ー 卜、 Ν , N ' — ジビ二ルー 2 — イ ミ ダゾリ ジノ ン、 N . N ' — 1 , 4 —プチ レ ン ビス (Ν — ビニル了セ ト了 ミ ド) , 了 リ ルメ タ ク リ レー ト、 ジァ リ ルァ ミ ン、 ト リ ァ リ ノレア ミ ン、 テ ト ラァ リ ロキンェタ ン、 ト リ ァ リ ルシア ヌ レー ト、 ト リ ア リ ルイ ソ シァ ヌ レ一 ト 、 (ボリ ) エチ レ ングリ コールジァ リ ルエーテル、 ジァ リ ルエーテル、 ト リ メチロールブロハ'ン ト リ ア リ ルエーテル、 ァ リ ルスルフ イ ド、 ァ リ ルジスルフ イ ド、 ジァ リ ルゥ レア、 ト リ メ リ ッ ト酸 ト リ ア リ ル、 ジァ リ ルジメチルア ンモニゥムク ロライ ド、 ジァ リ ルシユ ウ酸ナ ト リ ウム、 フ タル酸ジァリルゃコハク酸ジァ リル等の多塩基酸のジァリルエステル等 が挙げられる。
また、 上記単量体成分が、 カルボキシル基ゃスルホン酸基等の酸基を 有する単量体を含む場合には、 上記架橋剤として、 酸基と反応するこ と のできる官能基を分子内に 2個以上有する化合物を用いるこ とかできる c このよう'な化合物としては具体的には、 例えば、 (ポリ ) エチレングリ コールジグリ シジルエーテル、 エチレ ンジァ ミ ン、 ポリ エチ レ ンィ ミ ン、 (ポリ ) エチ レ ングリ コール、 グリ セ リ ン、 ァ リ ルグリ シジルエーテル 等が挙げられる。
上記の架橋剤は、 一種類のみを用いてもよ く、 適宜、 二種類以上を混 合して用いてもよいが、 上記架橋剤が特にァ リル基含有化合物を含むこ とで、 架橋効率を向上させることができ、 架橋剤の使用量を抑え、 所望 する架橋重合体を安価に製造することができる。
上記ァ リル基含有化合物は、 ァリル基を含有する架橋性の単量体であ れば、 特に限定される ものではない。 例えば、 一分子中に了 リ ル基を 1 個有する架橋性の単量体としては、 例えば、 ァ リ ルメ夕ク リ レー トゃァ リ ルダリ ンジルエーテル等が挙げられる。 このう ち、 ァ リ ノレグリ ンジル エーテルは、 アク リル酸等、 酸基を有する単量体を共重合する場合に用 いるこ とができ る。
また、 一分子中にァリル基を 2個以上含有する.架橋性の単量体として は、 ジ了 リ ノレア ミ ン、 ト リ ア リ ノレア ミ ン、 テ ト ラァ リ ロキシェタ ン、 ト リ ア リ ノレシァ ヌ レー ト、 ト リ ア リ ルイ ソ シァ ヌ レー ト、 (ボリ ) ェチ レ ングリ コールジァ リ ルエーテル、 ジァ リ ルエーテル、 ト リ メチロールブ ロノ、'ン ト リ ア リ ルエーテル、 ァ リ ルスルフ ィ ド、 ァ リ ルジスルフ ィ ド、 ジァ リ ルゥ レア、 ト リ メ リ ッ ト酸 ト リ ア リ ル、 ジァ リ ルジメ チル了 ンモ ニゥムク ロライ ド、 ジァ リ ルシユ ウ酸ナ ト リ ウム、 フタル酸ジァ リ ルや コハク酸ジァリ ル等の多塩基酸のジァリルエステル等が挙げられる。 これらァ リル基含有化合物のなかでも、 一分子中にァ リル基を 2個以 上含有する架橋性の単量体であるこ とが好ま しい。 上記了 リル基含有化 合物のなかでも、 ジァ リ ルァ ミ ン、 ト リ ア リ ルア ミ ン、 テ ト ラァ リ ロキ シェタ ン、 ト リ ァ リ ルシア ヌ レー ト、 ト リ ア リ ルイ ソ シ了 ヌ レー ト、 ( ボリ ) エチ レ ングリ コールジァ リ ルエーテル、 ジァ リ ルエーテル、 ト リ メチロールプロノ、'ン 卜 リアリルエーテルからなる群より選ばれる少なく とも一種の化合物が、 反応性が良好であり、 かつ、 入手が容易であると 共に、 少量で高い架橋効率を得ることができるので好ま しい。
上記架橋剤の使用量、 つまり、 上記単量体成分に対する架橋剤の添加 量は、 重合条件や単量体成分の組成等にもよるが、 一般に、 単量体成分 に対し、 0 . 0 0 1 モル%〜 5モル%の範囲内が好ま しく、 0 . 0 1 モ ル%〜 2モル%の範囲内がさらに好ま しい。 上記架橋剤の使用量が 0 . 0 0 1 モル%ょり も少なければ、 架橋した重合体が得られず、 水溶性の 樹脂となる虞れがある。 一方、 上記架橋剤の使用量が 5 モル%よりも多 ければ、 水の吸収による膨潤が阻害されて、 吸液性能が劣化した不溶性 の榭脂となる虞れがある。 尚、 上記単量体成分が 9 0 モル%以上の環状 N一ビニルラ クタムを含む場合には、 上記架橋剤の使用量は 0 . 0 1 モ ル%〜 2モル%の範囲内であることが好ま しい。
本発明において上記架橋重合体の製造方法、 即ち、 上記単量体成分の 重合方法としては、 特に限定されるものではなく、 例えば、 溶液ゲル重 合法や沈殿重合法等の溶液重合法 ; 懸濁重合法 ; 乳化重合法 ; 等の種々 の方法を採用するこ とができる。 そのなかでも、 好ま しく は溶液ゲル重 合法である。
上記単量体成分の重合方法としては、 具体的には、 例えば、 架橋剤を 溶解させた単量体成分を、 直接、 疎水性有機溶媒中に懸濁あるいは乳化 させて重合させる方法を採用することができる。
また、 上記重合方法として溶液重合法を採用する場合には、 (i ) ベル トゃバッ ト上、 あるいは、 ビーカー等の容器中で静置重合する方法や、
( i i )双腕型ニーダ一中で、 必要に応じて攪拌しながら重合する方法、 (iii) 単量体成分および架橋剤を含む溶液を、 不織布やフィ ルム等の基 材に塗工した後、 上記基材上で単量体成分の重合を行う方法等を用いる こ とができる。 そのなかでも、 上記(iii) の方法を用いれば、 重仓体と 基材とが一体化した複合体を得るこ とができる。
さ らに具体的には、 上記(i〉 ~(iii) に示す方法として、 例えば、 ① 上記単!:体成分および架橋剤を含む溶液を重合開始剤の存在下で静置ぁ るいは攪拌しながら重合させる方法、 ②上記単量体成分を少なく とも含 む溶液に、 電子線や 7線等を照射して重合させる方法、 ③上記単量体成 分を少なく とも含む溶液を、 不織布ゃ微孔性のフイ ルム等の基材に塗工 し、 基材上で直接重合させる方法、 ④上記単量体成分を重合して得られ た線状ポリマーを含む溶液に、 電子線や 7線等を照射し、 架橋させる方 法、 ⑤上記単量体成分を重合して得られた線状ボリマーを含む溶液を、 不織布ゃ微孔性のフィルム等の基材に塗工し、 基材上で直接重合させる 方法等を用いることができる。
また、 上記溶液重合法を採用する場合、 上記溶液重合法として特に沈 殿重合法を用いる場合には、 単量体成分は溶解するが重合体に対しては 親和性を示さない溶液中で上記単量体成分を重合するかあるいは架橋剤 と共重合させればよい。
上記溶液重合法として沈殿重合法を用いる場合に使用される溶液とし ては、 主に、 溶解度パラメータが 9 ( cal /cm3 ) ] 2 より も小さい疎 水性の有機溶媒、 例えば、 シクロへキサン (溶解度パラメ一夕 8. 2 ( cal /cm3 ) 1 /2 ) やへキサン (溶解度パラ メ一夕 7. 3 ( cal /cm3 ) 1 /2 ) 等が挙げられる。 つまり、 溶解度パラメ一夕が 9 〔 cal /cm3 ) 1/2 より も小さい疎水性の有機溶媒を上記の溶液として用いると、 重 合反応中に架橋重合体およびその中間体が上記溶媒から析出し、 沈殿す る。 また、 溶解度パラメータが 9 ( ca l / cm3 ) 1 / 2 より も大きい場合 であっても、 疎水性の有機溶媒、 特にベンゼン (溶解度パラメータ 9 . 2 ( ca l / cm3 ) 1 / 2 ) を用いた場合には、 重合反応中に架橋重合体お よびその中間体が上記溶媒から析出し、 沈殿する。
—方、 上記溶液重合法として特に溶液ゲル重合を採用する場合には、 得られる架棟重合体に対して親和性を有する溶液中で上記単量体成分と 架橋剤とを共重合させればよい。
本発明において、 溶液ゲル重合とは、 単量体成分と架橋剤とを、 実質 上、 均一に溶解させた溶液重合を行う こ とで、 重合後は、 得られる架橋 重合体と溶液とが一体化したゲル状物を形成する重合を示す。 該溶液ゲ ル重合では、 沈殿重合と異なり、 重合反応中に生成する架橋重合体ある いはその中間体が沈殿するこ となく重合が進行する。 このため、 重合の 制御が容易である。 しかも、 上記沈殿重合により得られる架橋重合体お よびその中間体が、 上記沈殿重合に用いられる溶媒を殆ど吸液せず、 ゲ ルを形成しないことから、 その内部に溶液を保持していないのに対し、 上記溶液ゲル重合により得られる架橋重合体中間体は、 上記の溶液によ つて膨潤し、 その内部に溶液を保持した状態で架橋される。 このため、 上記溶液ゲル重合を用いた場合、 上記架橋重合体中間体内部には、 架橋 剤が均一に分散され、 この結果、 架橋重合体中間体表面および内部にお いて均一な架橋を行うことができる。
特に、 環状 N — ビニルラ タタムを含む単量体成分と、 ァ リ ル基含有化 合物を含む架橋剤とを溶液ゲル重合させれば、 少量の架橋剤で高い架橋 効率を得るこ とができると共に、 重合の制御が容易で、 架橋重合体中間 体表面および内部において均一な架橋を行う こ とができる。 また、 上記 の方法により得られたゲル状の架橋重合体 (ゲル状重合体) は、 架橋効 率が良く、 ベとつき感の少ない解砕し易いものである。 従って、 瓚状 N 一ビニルラクタムを含む単量体成分と、 ァ リル基含有化合物を含む架橋 剤とを溶液ゲル重合させれば、 所望する吸液性樹脂を安価に製造するこ とができると共に、 吸液性に優れ、 かつ、 可溶成分が少ない吸液性樹脂 を得ることができる。 また、 上記の方法によ り得られた吸液性樹脂は、 取り扱い性にも優れている。
本発明において、 上記の溶液ゲル重合に用いられる溶液としては、 得 られる架橋重合体に対して親和性を有する溶液が用いられる。 上記の溶 液としては、 上記の単量体成分や架橋剤を溶解し、 重合後、 得られる架 榇重合体と均一なゲルを形成し得るものであれば、 特に限定されるもの ではないが、 具体的には、 水、 溶解度パラメ一夕 9 ( cal /cm3 ) 1/2 以上好ま しく は 1 0 ( cal /cm3 ) 1 /2 以上の親水性有機溶媒、 または 水と上記親水性有機溶媒との混合溶媒等が用いられる。
上記の親水性有機溶媒と しては、 例えば、 プロ ピレ ンカーボネー ト ( 溶解度パラメ一夕 1 3. 3 ( cal /cm3 ) 1 /2 ; 以下、 有機溶媒の例示 における括弧内の数字は溶解度パラメ一夕を示す) 、 エチレンカーボネ ー ト ( 1 4. 7 ) 、 ジメチルカーボネー ト ( 9. 9 ) 、 ァ ーブチルラ ク ト ン ( 1 2. 6 ) 、 1 , 4一ジォキサン ( 1 0. 0) 、 テ ト ラ ヒ ドロフ ラ ン ( 9. 1 ) 、 メ タノ ール ( 1 4. 5 ) 、 エタノ ール ( 1 2. 7) 、 エチ レ ングリ コール ( 1 4. 6 ) 、 グリ セ リ ン ( 1 6. 5 ) 等が挙げら れる。
尚、 上記の溶解度パラメータとは、 化合物の極性を表すファ クターと して一般に用いられる値である。 本発明においては、 上記の溶解度パラ メータに対して、 ボリマ ン ドブッ ク第 3版 (WILEY 【NTERSCIENCE社 発行) 5 2 7頁〜 5 3 9頁に記載されている溶媒の溶解度パラ メータ( ( cal /cm3 ) 1/2 の値を適用するこ ととする。 また、 上記の頁に記載 されていない溶媒の溶解度パラメ一夕に関しては、 該ポリマーハ ン ドブ ッ クの 5 2 4頁に記載されている Sm a I Iの式に、 同 5 2 5頁に記載 されている H o yの凝集エネルギー定数を代入して導かれる値を適用す るこ ととする。
上記の溶液のなかでも、 好ま しく は水と上記親水性有機溶媒との混合 溶媒であり、 最も好ま しく は水単独である。 上記の溶液として水を用い て水溶液重合 (水溶液ゲル重合) を行う こ とにより、 より吸液性に優れ る共に、 より可溶成分が少ない吸液性樹脂を得るこ とができる。 しかも. 水溶液重合を行う こ とで、 取り扱い性が向上すると共に、 重合熱の除去 がより一層容易になる。
上記の単量体成分と架橋剤とを溶液ゲル重合させる方法としては、 例 えば、 ( a) 上記単量体成分および架橋剤を、 水および Zまたは上記親 水性有機溶媒に溶解させて共重合させる方法、 (b) 上記の単量体成分 および架橋剤を溶解させた水溶液を、 必要により分散剤の存在下、 疎水 性有機溶媒中に懸濁させて重合させる方法等が挙げられる。
そして、 上記 (a) · (b) で示される方法の中には、 例えば、 前記 (i) 〜(iii) で示した方法等が含まれる。 さらに具体的には、 上記(i) 〜(: iii) で示される方法として、 例えば、 ①上記単量体成分および架橋 剤を含む溶液を重合開始剤の存在下で静置あるいは攪拌しながら重合さ せる方法、 ②上記単量体成分および架橋剤を含む溶液に、 電子線や 7線 等を照射して重合させる方法、 ③上記単量体成分および架橋剤を含む溶 液を、 不織布ゃ微孔性のフィ ルム等の基材に塗工し、 基材上で直接重合 させる方法等が挙げられる。
本発明において、 上記溶液ゲル重合として上記 ( b ) の方法を採用す る場合における上記疎水性有機溶媒としては、 具体的には、 前述したシ クロへキサンゃシクロへブタン等が挙げられるが、 水と均一に混合しな い有機溶媒であれぱ、 特に限定されるものではない。 上記 ( b ) の方法 を採用する場合、 重合反応は、 上記水溶液中で進行する。 従って、 上記 の単量体成分および架橋剤を溶解させた水溶液に対する疎水性有機溶媒 の使用量は、 特に限定されるものではないが、 例えば、 上記の水溶液に 対して、 重量比で 2倍〜 1 0倍の割合で用いればよい。 また、 上記分散 剤としては、 具体的には、 ソルビタンモノステア レー トゃソルビ夕ンモ ノパルミ テー ト、 ェチルセルロース等の界面活性剤が挙げられるが、 特 に限定されるものではない。 尚、 上記分散剤の使用量も特に限定される ものではない。
上記 ( a ) および ( b ) の何れの方法を採用した場合にも、 上記の単 量体成分と架橋剤とは、 得られる架橋重合体に対して親和性を有する上 記の溶液中で共重合されてゲルを形成する。 本発明において、 上記の溶 液 (架橋重合体に対して親和性を有する溶液) 中における単量体の割合 は、 2 5重量%〜 8 0重量%の範囲内であることが好ま しい。 上記単量 体成分の濃度が 2 5重量%未満であれば、 架橋した重合体が得られず、 得られた重合体が水等に溶解してしまう虞れがある。 また、 架橋した重 合体が得られた場合でも、 重合後のゲル状重合体を解砕することが困難 となる。 さ らに、 得られたゲル状重合体の乾燥に長い時間を必要とし、 乾燥中に重合体が劣化してしまう ことがある。 一方、 単量体成分の濃度 が 8 0重量%を越えると、 重合の制御が困難となり、 吸液性能に優れた 架橋重合体が得られなく なったり、 架榇が不均一となり、 可溶成分が増 加してしまう虞れがある。
また、 本発明において、 上記の重合反応を開始させる際には、 重合開 始剤、 或いは、 紫外線や電子線等の活性エネルギー線等を用いるこ とが できる。
上記の重合反応に用いられる重合開始剤と しては、 特に限定されるも のではなく、 従来公知の種々の重合開始剤を用いることができる。 上記 重合開始剤のなかでも、 了ゾ系開始剤、 具体的には、 例えば、 2 , 2 ' ー了ゾビス ( 2 —ア ミ ジノプロノ、'ン) 2塩酸塩、 2 , 2 ' —ァゾビス ( 2 - ( N—ァリ ルア ミ ジノ) プロパン〕 2塩酸塩、 2 , 2 ' —ァゾビス { 2 - 〔N— ( 2 — ヒ ドロキシェチル) アミ ジノ〕 プロパン) 2塩酸塩 等のァゾァ ミ ジン化合物、 2 , 2 ' —アブビス 〔 2 — ( 2 —イ ミ ダゾリ ン— 2 —ィル) プロパン〕 2塩酸塩等の環状ァゾア ミ ジン化合物、 2 , 2 ' 一アブビス 〔 2 — メチルー N— ( 2 — ヒ ドロキシェチル) プロ ピオ ンア ミ ド〕 等のァゾア ミ ド化合物、 2 , 2 ' —ァゾビスイ ソプチロニ ト リル、 2 . 2 ' —ァゾビス(2, 4ージメチルバレロニト リ ル) 等が好ま し く、 2 , 2 ' —アブビス ( 2 —ア ミ ジノプロパン) 2塩酸塩、 2 ' 一アブビス ( 2 , 4 —ジメチルノく レロニ ト リル) 等がさ らに好ま しい。 また、 上記重合開始剤として酸化性ラジカル重合開始剤を用いる場合に は、 還元剤を併用してレ ドッ クス重合を行ってもよい。
これら重合開始剤の使用量は、 用いる単量体成分の組成やその濃度お よび重合条件等により異なるが、 一股に、 単量体成分 1 モルに対し 0 . 0 1 g〜 5 gの範囲内であり、 好ま しく は 0 . 0 5 g〜 l gの範囲内で ある。 上記重合開始剤の使用量が 0 . 0 1 g未満であれば、 重合が開始 しなかったり、 未重合の単量体成分が多く なったりするという不都合を 生じるこ とがある。 また、 上記重合開始剤が 5 gを越えると、 重合の制 御が困難となり、 吸液性能に優れた架橋重合体が得られな くなる虞れが あ O o
また、 上記の重合反応における重合温度は、 特に限定されるものでは ないが、 一般に 0て〜 9 5ての範囲内であり、 好ま しく は 2 0 °C - 8 0 °Cの範囲内である。 重合温度が 0 'Cよりも低い場合には、 重合時間が長 く なり過ぎ、 架橋重合体を効率的に得ることかできなく なるので好ま し く ない。 また、 重合温度か 9 5 °Cを越えると、 重合の制御が困難となり、 吸液性に優れた吸液性樹脂を得るこ とができなく なる虞れがある。
さらに、 重合時間は、 上記重合反応が完結するように、 重合方法、 重 合温度、 単量体成分の種類や量、 架橋剤の種類や量、 および溶液の種類 や量、 並びに、 これらの組み合わせ等に応じて、 適宜設定すればよい。 また、 その他、 圧力等の重合条件も特に限定されるものではない。
上記の重合反応により得られる架橋重合体は、 そのまま、 或いは、 必 要に応じて洗浄や解砕等の所定の操作を行なった後、 乾燥される。 上記 架橋重合体の乾燥方法としては、 特に限定されるものではな く、 例えば、 熱風乾燥、 ドラム ドライヤー等を用いた薄膜乾燥、 減圧乾燥、 流動床乾 燥、 凍結乾燥等、 従来公知の種々の乾燥方法を用いることができる。 尚、 この場合の上記架橘重合体の乾燥温度は、 特に限定されるものではない。 また、 乾燥物は、 例えば、 ハンマ一ミル、 ジヱ ッ ト ミ ル等により、 粉 砕等の操作を行なって細粒化した後、 必要に応じてふるい分け等の分級 操作を行なう こ とが望ま しい。
このようにして得られた吸液性樹脂 (架橋重合体) は、 衛生材料、 生 理用品、 コンタ ク ト レンズ、 化粧品、 塗料、 接着剤、 止水剤、 土壌改良 剤等の用途、 および、 薬物徐放制御等の医療分野等、 吸液性を必要とさ れる各種分野に用いることができる。
そして、 上記吸液性樹脂のなかでも、 特に、 環伏 N— ビニルラ クタム を含む単量体成分と、 ァリル基含有化合物を含む架橋剤とを溶液ゲル重 合させてなる吸液性樹脂は、 塩化ナ ト リ ウムの 2 0重量%水溶液、 塩化 カルシウムの 2 0重量%水溶液、 塩化マグネシウムの 2 0重量%水溶液 に対するそれぞれの吸液倍率の合計が 9 0以上という、 高濃度の塩を含 む電解質溶液に対する優れた吸液性を有し、 かつ、 水可溶成分が 2 0重 量 以下と少ない。
従って、 環状 N— ビニルラ ク タムを含む単量体成分と、 ァリ ル基含有 化合物を含む架撟剤とを溶液ゲル重合させてなる上記の吸液性樹脂は、 塩等を多く含む電解質溶液を吸液する吸液性が充分であるから、 種々 の 水溶性物質を含む電解質溶液を吸液して、 安定に保持することが可能と なる。 しかも該吸液性樹脂は、 良好な保液性能を有し、 通常の使用条件 下においては、 一度、 保液したものが外部に漏出するこ とがない。 よつ て、 上記環状 N — ビニルラ ク タムを含む単量体成分と、 ァ リ ル基含有化 合物を含む架橋剤とを溶液ゲル重合させてなる吸液性樹脂は、 種々 の電 解質溶液の保持を制御する必要がある各分野に特に好適に用いるこ とが できる。
また、 上記環状 N— ビニルラ ク タムを含む単量体成分と、 ァ リ ル基含 有化合物を含む架橋剤とを溶液ゲル重合させてなる吸液性樹脂は、 水性 液体と接触した場合の可溶成分か 2 0重量%以下と少な く、 耐久性に優 れるこ とから、 安全性が必要とされる分野にも好適に用いるこ とができ る。 尚、 上記可溶成分は、 できるだけ少ない方が好ま しいが、 耐久性の 点からは、 2 0重量%以下であれば充分であり、 安全性の点からも、 例 えば、 紙おむつ等の衛生材料や生理用品、 塗料、 接着剤、 土壌改良剤、 光ケーブルゃ篦線ケーブル用止水材等の用途に用いる場合には、 2 0重 量%以下であれば充分である。 しかしながら、 該吸液性樹脂を食品の保 存剤等、 さ らに高い安全性を要する用途に用いる場合には、 単量体成分 とァリ ル基含有化合物との組み合わせや添加量等を適宜設定するこ とに より、 可溶成分をさらに抑えることができる。
従って、 上記環状 N— ビニルラクタムを含む単量体成分と、 ァ リル基 含有化合物を含む架橋剤とを溶液ゲル重合させてなる上記の吸液性樹脂 は、 大きな脱水圧力下においても高濃度の塩を含む溶液の吸液性に優れ、 しかも、 可溶成分も 2 0重量%以下と少ないので、 海底ケーブルの止水 材等に用いると長期に渡って優れた止水性能を示す。 さらに、 該吸液性 樹脂は、 従来困難であった例えば炭酸プロ ピレン等の有機溶媒やアルコ ール等の親水性有機溶媒の吸液性にも優れることから、 これら有機溶媒 等の回収や、 人体に有害性を有する有機溶媒の吸引の防止、 ドラ ッ クデ リバリ ーシステム、 徐放性薬剤、 芳香剤用ゲル化剤や固形燃料等の用途 に好適に用いるこ とができると共に、 電池用のゲル化剤等の用途にも好 適に用いるこ とができる。
以上のように、 環状 N— ビニルラクタムを含む単量体成分を重合して なる上記の吸液性樹脂は、 各々、 水膨潤性ポリマーとしての用途に用い るこ とができる。 そして、 上記吸液性樹脂のなかでも、 環状 N— ビニル ラクタムを含む単量体成分と、 ァリル基含有化合物を含む架橘剤とを溶 液ゲル重合させてなる吸液性樹脂は、 特に便れた吸液性を有し、 かつ、 水可溶成分が少ないので、 安全性が必要とされる用途にも好適である。
しかしながら、 本願発明者等の研究によれば、 上記環伏 N—ビニルラ クタムを含む単量体成分を重合してなる上記の吸液性樹脂は、 水溶性の ボリマーが架橋された構造を有するものであるにも拘らず、 高嫫度の塩 を含む有機溶媒等、 各種有機溶媒の吸液性に優れ、 水膨潤性ボリマーと しての用途以外に、 有機溶媒を吸液、 保持する必要がある用途に特に好 適に用いることができることが判った。
尚、 環状 N - ビュルラ クタムを含む単量体成分を重合してなる吸液性 樹脂が、 有機溶媒を吸液し、 保持することができることは、 未だ知られ ていない。
即ち、 本発明のゲル状組成物は、 環状 N — ビニルラ タタムを含む単量 体成分を重合してなる吸液性樹脂と有機溶媒とを含み、 上記吸液性榭脂 力 <、 その内部に上記有機溶媒を保持している構成を有している。
上記ゲル状組成物において、 上記吸液性樹脂に有機溶媒を保持させる には、 例えば、 環状 N— ビニルラ クタムを含む単量体成分を必要に応じ て架橋剤の存在下で重合してなる吸液性樹脂に有機溶媒を吸液させるか、 あるいは、 環状 N - ビニルラタタムを含む単量体成分を、 有機溶媒中、 架橋剤の存在下で溶液ゲル重合させることにより、 直接、 ゲル状の吸液 性樹脂を製造すればよい。
本発明において、 上記環状 N - ビニルラクタムを含む単量体成分を重 合した後、 得られた吸液性樹脂に有機溶媒を吸液させる場合には、 前述 した種々の重合方法を用いるこ とができる。 そして、 得られた吸液性樹 脂に所望の有機溶媒を吸液させるこ とにより、 有機溶媒を保持した吸液 性樹脂を得ることができる。
本発明において、 上記吸液性樹脂が保持し得る有機溶媒と しては、 上 記吸液性樹脂に対して親和性を有し、 上記吸液性樹脂を膨潤させること によってゲル化することができるものであれば、 特に限定されるもので はない。 このような有機溶媒としては、 具体的には、 溶解度パラメ一夕
9 ( ca l / cm3 ) 1 / 以上好ま しく は 1 0 ( ca l / cm3 ) 1 / 2 以上の親 水性有機溶媒が挙げられる。
また、 本発明において、 上記環伏 N - ビニルラ クタムを含む単量体成 分から直接ゲル状の吸液性樹脂を得る場合には、 上記環状 N— ビニルラ ク夕ムを含む単量体成分を、 有機溶媒中、 架橋剤の存在下で溶液ゲル重 合させればよい。 上記環状 N— ビニルラクタムを含む単量体成分を、 有 機溶媒中、 架橋剤の存在下で溶液ゲル重合させるこ とにより、 重合反応 中に生成する架橋重合体あるいはその中間体が沈殿するこ となく重合が 進行し、 重合後、 ゲル状の架橋重合体 (吸液性樹脂) を直接、 得ること かできる。
従って、 本発明において、 有機溶媒を保持した吸液性樹脂を得るべく、 上記単量体成分から直接ゲル状の吸液性樹脂を得る場合には、 上記の有 機溶媒としては、 上記の単量体成分や架橋剤を溶解し、 重合後、 得られ る架橋重合体と均一なゲルを形成し得る有機溶媒が用いられる。 このよ うな有機溶媒としては、 具体的には、 溶解度パラメ一夕 9 ( ca l / cm3 ) 2 以上好ま しく は 1 0 ( ca l / cm3 ) 1 / 2 以上の親水性有機溶媒が 挙げられる。
このようにして得られた上記の吸液性樹脂は、 例えば、 上記有機溶媒 としてプロ ピレンカーボネー トや 7 —プチロラ ク ト ンを吸液 (保持) さ せる場合には、 該有機溶媒が ¾解質として例えばリチウムイオンの塩を 含有しているか否かに関わらず、 1 5倍以上もの高い吸液倍率を示す。 しかも、 上記吸液性樹脂は良好な保液性能を有し、 通常の使用条件下に おいては、 一度保液したものが外部に漏出するこ とがない。
従って、 上記吸液性樹脂を用いれば、 電解液として、 プロ ピレ ンカー ボネー トや 7 —ブチロラク トン等の非ブロ ト ン性有機溶媒に電解質とし てリチウムイオンの塩を溶解してなる電解質含有有機溶媒の保持が可能 となり、 負極活物質に還元力の強いリチウムを用いるこ とが可能となる, このため、 高分子固体霉解質のゲル化剤と して上記吸液性樹脂を用いれ ば、 高起電力の電池を得ることかできる。
従って、 上記有機溶媒を保持した吸液性樹脂を含む本発明のゲル状組 成物は、 各種有機溶媒の保持性に優れ、 電池をはじめと して、 例えば ド ラ ッ クデリバリ ーシステムや固形燃料、 徐放性薬剤、 芳香剤用ゲル化剤 等、 有機溶媒の吸液や保持を必要とする各種用途に好適に用いるこ とが できる。
本発明において、 上記ゲル状組成物を電池に用いる場合には、 上記ゲ ル状組成物は、 有機溶媒と して、 電解質を溶解し得る有機溶媒、 あるい は、 電解質を溶解した有機溶媒 (電解質含有有機溶媒) を含んでいるこ とか好ま しい。
本発明のゲル状組成物が有機溶媒として電解質含有有機溶媒を含む場 合に用いられる上記電解質含有有機溶媒の溶媒としては、 電解質を溶解 し得る有機溶媒であれば、 特に限定されるものではないが、 プロピレン カーボネー ト、 エチレン力一ボネー ト、 ジメチルカーボネー ト、 7 —ブ チロラク ト ン、 1 , 4 —ジォキサン、 テトラ ヒ ドロフランからなる群よ り選ばれる少なく とも一種の有機溶媒であるこ とが好ま しく、 プロ ピレ ンカーボネー トであることが特に好ましい。
また、 上記電解質としては、 例えば、 リチウムイオンの塩やカ リ ウム イオンの塩等、 イオン性塩であれば特に限定されるものではないか、 高 起電力の電池を得るためには、 リチウムイオンの塩を用いることが好ま しい。 上記電解質としては、 具体的には、 例えば、 L i C 1 0 4 、 L i B F 4 、 L i A s F « . L i C F 3 S〇 3 、 L i P F 6 , L i I、 L i
B r、 L i S C N、 L i 2 B 1 0 C 1 l fl . L i C F 3 C 0 2 等が挙げられ る。
上記吸液性樹脂と電解質含有有機溶媒との組合せのなかでも、 吸液性. および、 得られる電池の性能の面から、 上記吸液性樹脂がポリ N - ビニ ルー 2 — ピロ リ ドンであり、 電解質含有有機溶媒の溶媒がプロ ピレン力 —ボネー トであり、 電解質がリチウムイオンの塩である組合せが最も好 ま しい。
上記吸液性樹脂と有機溶媒との配合割合、 即ち、 ゲル状組成物におけ る吸液性樹脂の有機溶媒の吸液量は、 用いる吸液性樹脂や有機溶媒の種 類、 電解質の含有の有無、 電解質の種類、 および用途等にもよるが、 2 倍以上であるこ とが好ましく、 5倍以上であることがさらに好ま しく 、 1 0倍以上であることがさらに好ま しい。
このように、 上記ゲル状組成物は、 電解質含有有機溶媒や電解質を溶 解し得る有機溶媒等の吸液性や保持性に優れ、 電池の高分子固体電解質 と して好適に用いることができる。 従って、 上記ゲル状組成物を備えて なる電池は、 電解質含有有機溶媒や電解質を溶解し得る有機溶媒等の吸 液性や保液性に優れ、 吸液した有機溶媒の液漏を防止することができる ので、 電池の信頼性を向上させることができる。 また、 上記ゲル状組成 物は、 一次電池、 二次戴池等、 種々の電池に好適に用いることができる, 次に、 本発明のゲル状組成物を用いた ¾池の一例を図 1 に基づいて以 下に説明する。 図 1 に示すように、 該電池は、 ゲル状組成物 1 、 負極 2 , 正極 3、 負極リー ド 4、 負極端子 5、 正極リー ド 6、 正極端子 Ί、 外装 材としてのブラスチッ クシール 8を備えている。 上記電池において負極 2 と正極 3 とはゲル状組成物 1 を介して積層され、 それぞれ負極リ ー ド 4あるいは正極リ ー ド 6によって、 該電池の外周を覆うプラスチッ クシ ール 8外部にその一部が露出した負極端子 5あるいは正極端子 7に接続 された構成である。
上記負極 2を構成する負極活物質および正極 3を構成する正極活物質 は、 上記ゲル状組成物 1 の種類や用途等に応じて適宜設定するこ とが可 能である。 上記負極活物質としては、 例えばリチウムが、 また、 上記正 極活物質と しては、 例えばフ ッ化黒鉛や、 二酸化マンガン、 ポリ — 2 — ビニルピリ ジンヨウ素錯体等が挙げられるが、 特に限定されるものでは ない。
上記電池は、 電解液の代わりに高分子固体電解質として上記ゲル伏組 成物 1 を用いているため、 液漏を防止することができ、 例えば金属箔ゃ 高分子フ ィ ルム等の封ロ材 (外装材) を用いて封口するだけでよ く、 薄 型で、 しかも、 液漏しない。 尚、 上記電池としてリチウム電池を得る場 合には、 ¾池の中に水分が混入しないように、 完全密閉するこ とが好ま しい。 また、 上記電池は、 金属缶を必ずしも必要とせず、 自由な形状に 設定するこ とができるので、 図 1 に示す形状以外にも、 用途等に応じて, 例えば、 所謂コイ ン型、 ビン型等、 種々の形状に形成するこ とができる, つまり、 本発明において、 上記ゲル状組成物 1 以外の電池の構成は特に 限定されるものではない。
以上のように、 本発明にかかるゲル状組成物を用いてなる電池は、 電 解質含有有機溶媒や電解質を溶解し得る有機溶媒等に対する吸液性や保 液性に優れ、 これら有機溶媒の液漏を防止することができるので、 信頼 性を向上させるこ とができる。 また、 該電池は、 多量の電解質含有有機 溶媒や電解質を溶解し得る有機溶媒を保持することができるため、 ィォ ン導電率の向上並びに容量の増加が期待できる。 また、 該電池は、 高分 子固体電解質としてゲル状組成物を用いていることで、 電解質中のィォ ンが動き易く、 このこ とからもイオン導電率の向上が期待できる。 しか も、 上記ゲル状組成物は、 電解質層であると同時に正負両極間の隔膜で あるセパレ一夕としても機能するため、 正負両極間のしきりに要する空 間が縮小され、 その分、 大型化するこ となく電解質含有有機溶媒、 或い は、 電解質を溶解し得る有機溶媒の吸液量を増やすことができる。
尚、 本発明のさ らに他の目的、 特徴、 および優れた点は、 以下に示す 記載によって十分わかるであろう。 また、 本発明の利益は、 次の説明で 明白になるであろう。 図面の簡単な説明
図 1 は、 本発明の一実施の形態にかかるゲル状組成物を備える電池の 楫成を示す概略図である。 発明を実施するための最良の形態 以下、 実施例および比較例により、 本発明をさ らに詳細に説明するが. 本発明はこれらにより何ら限定されるものではない。 尚、 吸液性樹脂の 吸液倍率は、 以下の方法で測定した。
( a ) 吸収倍率
吸水性樹脂約 0. 2 gを正確に抨量し、 5 c m四方の不織布製のティ 一バッ グの中に入れ、 ヒー トシールにより封入した。 このティーバッ グ を、 試験溶液中に室温で浸漬した。 2 4時間後にティ —バッ グを引き上 げ、 遠心分離器機を用いて 1 3 0 0 r pmで 3分間液切りを行った後、 上記ティ ーバッ グの重量 W> ( g) を測定した。 別途、 同様の操作を架 橋重合体を用いないで行い、 そのときのティ ーバッ グの重量 W。 ( g) をブラ ンク として求めた。 吸液倍率は次式
吸液倍率 ( gノ g ) =
(W, ( g) — W。 ( g) —吸水性樹脂の重量 ( g ) ) 吸水性樹脂の重量 ( g)
に基づいて算出した。
( b ) 可溶成分量
吸水性樹脂約 0.5gを正確に抨量し、 1 0 0 0 gの純水中に添加して
1 6時問攪拌した後、 予め抨量した濾紙およびメ ンブラ ンフ ィ ルターで 爐過した。 次いでこの據液をエバポレー夕で瀵縮した後、 秤量瓶中で 1 0 5 'Cで乾燥し、 残査の重量 ( g ) を測定した。 可溶成分量は、 次式 可溶成分量 (重量%) =
1 0 0 0 ( g ) 残查の重量 ( g )
1 0 0 滤液の重量 ( g) 吸水性樹脂の重量 ( g) に基づいて算出した。 〔実施例 1 :)
まず、 減圧蒸留により精製した環状 N— ビュルラクタムである N— ビ ニル一 2 — ピロ リ ドン (MW 1 1 1 . 1 ) 5 5. 5 g ( 0. 5 m o 1 ) 、 ァ リル基含有化合物としてのシァヌル酸ト リアリル (Mw 2 4 9. 3 ) 0. 0 3 7 4 g、 および水 1 2 9. 5 gを互いに混合して単量体成 分の水溶液を調製した。 上記単量体成分における環状 N— ビニルラ クタ ムの含有量は 1 0 0モル%、 水溶液中における単量体成分の濃度は 30重 量%、 N— ビニルー 2— ピロ リ ドンに対するシァ ヌ ル酸ト リ ア リ ルの割 合は 0. 0 3モル%である。
次に、 上記の水溶液に窒素ガスを吹き込んで溶存酸素を追い出すと共 に、 反応系を窒素ガス ¾換した。 続いて、 上記水溶液に重合開始剤とし ての 2, 2 ' ーァゾビス ( 2 —ア ミ ジノプロパン) 2塩酸塩 0. 1 2 5 gを添加し、 2 5 0 m l のビーカー中、 窒素雰囲気下で 2時間重合させ てゲル伏重合体を得た。
次に、 得られたゲル伏重合体をハサミで約 5 mmの大きさに裁断し、 窒素雰囲気下、 1 2 0てで 3時間乾燥させた。 尚、 上記ゲル状重合体は ベとつき感が少なく、 ハサミで容易に裁断するこ とができた。 その後、 乾燥物を粉砕し、 メ ッ シュの大きさが 8 5 0 zmおよび 1 5 0 u mの各 ふるいでふるって、 8 5 0 mのふるいを通過し、 1 5 0 ΠΙのふるし、 上に残る粒径を有する吸液性樹脂 (以下、 吸液性樹脂 ( 1 ) と記す) を 得た。 その後、 上記吸液性樹脂 ( 1 ) の可溶成分並びに各種試験溶液中 での吸液倍率を上述した方法により測定した。 上記測定結果を併せて表 1 に示す。
尚、 上記試験溶液としては、 表 1 の上段から下段に順に示すように、 純水、 生理食塩水 ( 0. 9重量%食塩水) 、 人工尿、 人工海水 (商品名 : ア クアマ リ ン S、 八洲薬品株式会社製) 、 塩化ナ ト リ ウムの 2 0重量
%水溶液、 塩化カルンゥムの 2 0重量%水溶液、 塩化マグネ シウムの 2 0重量%水溶液、 メ タノ ール (M e O H) 、 エタ ノ ール ( E t 〇H) 、 エチ レ ングリ コール ( E G) 、 炭酸プロ ピレ ンをそれぞれ用いた。
また、 上記の人工尿の組成およびそれらの配合量は、 以下の通りであ る。
人工尿の組成 各組成の配合量
硫酸ナ ト リ ウム 0 . 2 0 0重量%
塩化力 リ ウ厶 0. 2 0 0重量%
塩化マグネシゥム 6水和物 0. 0 5 0重量%
塩化力ルシゥム 2水和物 0. 0 2 5重量%
リ ン酸 2水素アンモニゥム 0. 0 3 5重量%
リ ン酸水素 2アンモニゥム 0. 0 1 5重量%
脱イオン水 9 9. 4 7 5重量%
〔比較例 1 〕
従来の吸液性樹脂である市販のポリアク リル酸系吸液性樹脂 (商品名 : アクア リ ッ ク C A、 株式会社日本触媒製、 以下、 比較吸液性樹脂 ( 1 ) と記す) について、 実施例 1 と同様の測定方法により可溶成分、 並び に、 各種試験溶液中での吸液倍率を则定した。 尚、 上記比較吸液性樹脂 ( 1 ) は、 実施例 1 と同様に各ふるいでふるつて、 吸液性樹脂 ( 1 ) と 粒径を揃えた。 上記測定結果を併せて表 1 に示す。
〔比較例 2〕
特開平 4 一 2 3 0 2 5 0号公報に記載に相当する吸液性樹脂と して、 2 θ
N - ビニルァセ トァ ミ ド系吸液性樹脂 (商品名 : N A - 0 1 0、 昭和電 脂率吸性樹吸液倍液の
ェ株式会社製、 以下、 比較吸液性樹脂 ( 2 ) と記す) を用い、 実施例 1 と同様の測定方法により可溶成分、 並びに、 各種試験溶液中での吸液倍 率を測定した。 尚、 上記比較吸液性樹脂 ( 2 ) は、 実施例 1 と同様に各 ふるいでふるって、 吸液性樹脂 ( 1 ) と粒径を揃えた。 上記測定結果を 表 1 に示す。 表 1 実施例 i 比較例 1 比較例 2 可溶成分 (重量%) 1 5. 0 2 5. 2 5. 5 純水 ( g/g ) 2 7. 9 2 8 0. 0 2 4. 6 生理食塩水 ( g/g ) 2 9. 3 2 9. 3 2 6. 7 人工尿 ( g/g) 3 0. 2 4 2. 0 2 4. 7 人工海水 ( g/g) 3 1 2. 8 2 6. 1
20%N a C 1 ( / g ) 3 0. 6 8. 9 2 5. 5
20% C a C 1 2 ( g / g ) 3 8. 7 0. 9 2 9. 8
20%M g C 1 ( g / g ) 3 4. 9 2. 7 3 3. 6
M e 0 H ( g /g ) 2 3. 2 2 2. 2
E t 0 H 2 0. 6 1 7. 1
E G ( g/ g ) 2 5. 0 2 5. 6 炭酸プロ ピレ ン ( gZ g ) 1 6. 1 1 4
〔実施例 2 ) 実施例 1 において、 シァヌル酸 ト リアリ ルの添加量を 0. 0 3 7 4 g から 0. 0 6 2 3 gに変更した以外は、 実施例 1 と同様の反応 , 操作を 行って吸液性樹脂 (以下、 吸液性樹脂 ( 2 ) と記す) を得た。 尚、 上記 N - ビニルー 2 — ピロ リ ドンに対するシァヌル酸 ト リァ リルの割合は 0 , 0 5 モル%である。 上記吸液性樹脂 ( 2 ) の可溶成分並びに純水および 生理食塩水中での吸液倍率を実施例 1 と同様の方法により測定した。 上 記測定結果を表 2 に示す。
〔実施例 3〕
実施例 1 において、 シァヌル酸ト リァ リルに代えてァリル系架橋剤と してのテ トラァ リ ロキシェタ ン 0 . 0 6 3 5 gを用いた以外は、 実施例 1 と同様の反応 · 操作を行って吸液性樹脂 (以下、 吸液性樹脂 ( 3 ) と 記す) を得た。 尚、 上記 N — ビニル— 2 — ピロ リ ドンに対するテ ト ラァ リ 口キシェ夕 ンの割合は 0 . 0 5モル%である。 上記吸液性樹脂 ( 3 ) の可溶成分並びに純水および生理食塩水中での吸液倍率を実施例 1 と同 様の方法により则定した。 上記測定結果を表 2に示す。
表 2
Figure imgf000032_0001
表 1 の結果から明らかなように、 吸液性樹脂 ( 1 ) は、 比較吸液性樹 脂 ( 1 ) と比べて、 試験溶液としての純水および人工尿においてのみ吸 液性能が劣っていたが、 他の試験溶液、 特に、 高濃度の各塩溶液や、 ァ ルコ一ル類ゃ不凍液に用いられるエチレングリ コール、 炭酸プロ ピレン などの有機溶媒については、 極めて大きな吸液性能を有している。 この ため、 吸液性樹脂 ( 1 ) は、 上記試験溶液の吸液による回収や、 人体に 有害性を有する有機溶媒の吸引の防止、 ドラ ッ クデリバリーシステム、 徐放性薬剤、 芳香剤用ゲル化剤や固形燃料等に好適に用いられるこ とが 判る。
また、 比較吸液性樹脂 ( 2 ) は、 可溶成分は少ないものの、 吸液性、 特に、 高濃度の各塩溶液や、 炭酸プロ ピレンなどの有機溶媒の吸液性が 充分ではない。 本実施例で得られた吸液性樹脂 ( 1 ) は、 比較吸液性樹 脂 ( 2 ) と比べて、 例えば、 塩化ナ ト リ ウムの 2 0重量%水溶液、 塩化 カルシウムの 2 0重量%水溶液、 塩化マグネシゥ厶の 2 0重量%水溶液 に対するそれぞれの吸液倍率の合計が、 9 0 ( g / ) 以上、 炭酸プロ ピレ ンの吸液倍率が 2 ( g / g ) 以上というように、 試験された各溶液 の全てに対して、 優れた吸液性能をそれぞれ示している。 このため、 上 記吸液性樹脂 ( 1 ) は、 種々な試験溶液に対して、 従来より好適に用い られるものであるこ とが判る。
その上、 上記吸液性樹脂 ( 1 ) は、 各比較吸液性樹脂 ( 1 ) · ( 2 ) と比べて、 本願の吸液倍率の測定方法のように、 遠心分離器にて 1 3 0 O r p m、 3分間の液切り といった、 大きな脱水圧力下においても、 良 好な保液性能を有するものであり、 通常の使用条件下においては、 一度、 保液したものが外部に漏出するこ とが防止されている。 よって、 本発明 の吸液性樹脂は、 保液したものが外部に漏出するこ とによる弊害が回避 されたものとなっている。
また、 表 2の結果から明らかなように、 ァ リ ル基含有化合物の種類や 添加量により、 得られる吸液性樹脂の可溶成分をより一層低減させるこ とが可能であるこ とが判る。
〔実施例 4〕
まず、 減圧蒸留により精製した環状 N - ビニルラタタムである N— ビ 二ルー 2 — ピロ リ ドン (MW 1 1 1 . 1 ) 1 0 0部、 架橋剤としての N, Ν' ー メチ レ ン ビスアク リ ルア ミ ド (MW 1 5 4. 2 ) 0. 6 9 部、 および水 2 3 3部を互いに混合して単量体成分の水溶液を調製した。 上記単量体成分における環状 N—ビニルラクタムの含有量は 1 0 0モル %であり、 水溶液中における単量体成分の濃度は 30重量%、 架橋剤の含 有量は 0. 5モル? 6である。
次に、 上記の水溶液に窒素ガスを吹き込んで溶存酸素を追い出すと共 に、 反応系を窒素ガス置換した。 続いて、 上記水溶液に重合開始剤とし ての 2.2 ' —アブビス ( 2 —ア ミ ジノプロパン) 2塩酸塩 0. 2 3部を添 加し、 5 0 °Cの湯浴に 2時間浸して反応させた。 2時間後、 透明なゲル 状重合体が得られた。
その後、 得られたゲル状重合体を細かく裁断し、 8 0 °Cで 3時間乾燥 させた。 乾燥後、 白色の樹脂か得られた。 次に、 得られた樹脂を粉砕し、 メ ッ シュの大きさが 8 5 Ο /ζιηおよび 1 5 0 i mの各ふるいでふるって、 8 5 0 / mのふるいを通過し、 1 5 0 mのふるい上に残る粒径を有す る吸液性樹脂としての架橋重合体を得た。
次いで、 上記架橋重合体の各種有機溶媒に対する吸液倍率を上述した 方法により測定した。 この結果を表 3に示す。 表 3
Figure imgf000035_0001
表 3 の結果から明らかなように、 上記実施例で得られた架橋重合体で ある架橋ボリ ビニルビ口 リ ドンは、 鼋解質を溶解し得る有機溶媒、 或い は、 電解質含有有機溶媒に対して高い吸液性能を示す。 従って、 上記架 橋重合体にこれら有機溶媒を吸収させてなるゲル状組成物は、 これら有 機溶媒をゲル状で保持できるので、 電池の固体電解質等の用途に好適に 用いることかできる。
その上、 上記架橋ポリ ビニルピ^ リ ドンは、 遠心分雜器にて 1 3 0 0 r p mで 3分間の液切りといった、 大きな脱水圧力下においても、 良好 な保液性能を有するものであり、 通常の使用条件下においては、 一度、 保液したものが外部に漏出することが防止されている。 よって、 本発明 のゲル状組成物は、 保液した有機溶媒が外部に漏出することによる弊害 が回避されたものとなっている。
従って、 上記ゲル状組成物を電池の固体電解質と して用いるこ とで、 電解質含有有機溶媒や電解質を溶解し得る有機溶媒等の吸液性および保 持性が高く、 これら有機溶媒が漏液しない信頼性の高い電池を得ること ができることが判る。
尚、 発明を実施するための最良の形態の項においてなした具体的な実 施態様または実施例は、 あく までも、 本発明の技術内容を明らかにする ものであって、 そのような具体例にのみ限定して狭義に解釈されるべき ものではなく、 本発明の精神と次に記載する特許請求の範囲内で、 いろ いろと変更して実施するこ とができるものである。 産業上の利用可能性
本発明に係る吸液性樹脂は、 高濃度の塩を含む ¾解質溶液に対する優 れた吸液性を有すると共に、 可溶成分が少ない。 このため、 上記吸液性 樹脂は、 種々の水溶性物質を含む電解質溶液を吸液して安定に保持する こ とが可能となる。 よって、 上記吸液性樹脂は、 種々の電解質溶液の保 持を制御する必要がある各分野に好適に用いることができる。 しかも、 上記吸液性樹脂は、 可溶成分が少なく、 耐久性に優れ、 安全性が必要と される分野に好適に用いることができる。 上記吸液性樹脂は、 例えば、 衛生材料、 生理用品、 コ ンタ ク ト レ ンズ、 化粧品、 塗料、 接着剤、 止水 剤、 土壌改良剤等の用途、 および、 薬物徐放制御等の医療分野、 光ケ一 ブル用止水材、 電線ケーブル用止水材、 海底ケーブル用止水材、 有機溶 媒等の回収、 人体に有害性を有する有機溶媒の吸引の防止、 ドラ ッ クデ リバリ ーシステム、 芳香剤用ゲル化剤、 固形燃料、 電池の高分子固体電 解質等の用途に好適に用いるこ とができる。 また、 本発明にかかるゲル 状組成物は、 環状 N — ビニルラクタムを含む単量体成分を重合してなる 吸液性樹脂が有機溶媒、 特に、 電解質を含む有機溶媒に対する吸液性お よび保持性に優れるこ とから、 電解質を含む有機溶媒を保持する必要が ある用途、 例えば、 電池等に好適に用いることができる。

Claims

請 求 の 範 囲
1 . 環状 N - ビニルラ ク タムを含む単量体成分と、 ァ リ ル基含有化合 物を含む架榇性単量体とを、 得られる吸液性樹脂に対して親和性を有す る溶液中で共重合させてゲル状の吸液性樹脂を得るこ とを特徴とする吸 液性樹脂の製造方法。
2 . 上記溶液が、 水を含むこ とを特徴とする請求項 1記載の吸液性樹 脂の製造方法。
3 . 上記の溶液が、 溶解度パラメータ 9 ( ca l / cm 3 ) 1 / 2 以上の親 水性有機溶媒を含むことを特徴とする請求項 1記載の吸液性樹脂の製造 方法。
4 . 上記溶液中の単量体濃度を、 2 5重量%~ 8 0重量%の範囲内に 調整することを特徴とする請求項 1 〜 3の何れか 1 項に記載の吸液性樹 脂の製造方法。
5 . 上記単量体成分中の環状 N - ビニルラ ク タムの含有量が 4 0 モル %以上であるこ とを特徴とする請求項 1記載の吸液性樹脂の製造方法。
6 . 上記ァ リ ル基含有化合物が、 ジァ リ ルァ ミ ン、 ト リ ア リ ルア ミ ン. テ ト ラ了 リ ロキンェタ ン、 ト リ ァ リ ルシア ヌ レー ト、 ト リ 了 リ ルイ ソシ ァ ヌ レー 卜、 (ボリ) エチ レ ングリ コールジァ リ ルエーテル、 ト リ メ チ π—ルプロパン ト リア リ ルエーテルからなる群より選ばれる少なく とも 一種の化合物であることを特徴とする請求項 1 記載の吸液性樹脂の製造 方法。
7 . 上記環状 N — ビニルラクタムが N - ビニルピロ リ ドンおよび N— ビニルカプロラ クタムのうち少なく とも一方であるこ とを特徴とする請 求項 1 記載の吸液性樹脂の製造方法。
8 . 環伏 N— ビニルラ ク タムを含む単量体成分と、 ァ リル基含有化合 物を含む架橋性単量体とを溶液中で共重合させる工程を含み、
上記工程において、 得られる吸液性樹脂中間体は、 上記溶液をその内 部に保持した状態で架橋されることを特徴とする吸液性樹脂の製造方法 <
9. 上記溶液が、 水を含むことを特徴とする請求項 8記載の吸液性樹 脂の製造方法。
1 0. 上記の溶液が、 溶解度パラメ—夕 9 ( cal /cm3 ) ' 以上の親 水性有機溶媒を含むことを特徴とする請求項 8記載の吸液性樹脂の製造 方法。
1 1 . 塩化ナ ト リ ウムの 2 0重量%水溶液、 塩化カルシウムの 2 0重量 %水溶液、 塩化マグネシウムの 2 0重量%水溶液に対するそれぞれの吸 液倍率の合計が、 9 0以上であり、 かつ、 可溶成分が 2 0重量%以下で あることを特徴とする吸液性樹脂。
1 2. 環状 N— ビニルラクタムを含む単量体成分を重合してなる吸液性 樹脂と有機溶媒とを含み、
上記吸液性樹脂が、 その内部に上記有機溶媒を保持しているこ とを特 徵とするゲル伏組成物。
1 3 . 上記有機溶媒が電解質を溶解し得る有機溶媒であるこ とを特徴と する請求項 1 2記載のゲル状組成物。
1 4. 上記有機溶媒が溶解度パラメータ 9 ( cal /cm3 ) 1 /2 以上の親 水性有機溶媒であることを特徴とする請求項 1 2記載のゲル状組成物。
1 5 . 上記単量体成分における環状 N -ビニルラ ク タムの含有量が 50モ ル%以上であることを特徴とする請求項 1 2記載のゲル状組成物。
1 6 . 上記有機溶媒がプロ ビレ ンカーボネー ト、 エチレンカーボネ一 ト、 ジメチルカーボネー ト、 ?· —プチ口ラタ ト ン、 1 , 4 一 ジォキサン、 テ ト ラ ヒ ドロフラ ンからなる群より選ばれる少なく とも一種の有機溶媒であ ることを特徴とする請求項 1 2記載のゲル状組成物。
1 7 . 上記環状 N —ビニルラ クタムが N— ビニルー 2 — ピロ リ ドンであ ることを特徴とする請求項 1 2記載のゲル状組成物。
1 8 . 上記有機溶媒が電解質を含有していることを特徴とする請求項 1 2記載のゲル状組成物。
1 9 . 上記吸液性樹脂が N — ビニルー 2 — ピロ リ ドン架橋重合体であり、 該 N — ビニル— 2 — ピロ リ ドン架橋重合体が、 その内部に、 リ チウムィ オンの塩を含むプロ ピレ ンカーボネー トを保持していることを特徴とす る請求項 1 2記載のゲル状組成物。
2 0 . ク レーム 1 2に記載のゲル状組成物を高分子固体電解質と して備 えることを特徵とする電池。
PCT/JP1997/002104 1996-06-21 1997-06-19 Liquid-absorbing resin, process for the preparation thereof, and gel composition WO1997048487A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP97927391A EP0846493A4 (en) 1996-06-21 1997-06-19 LIQUID-ABSORBING RESIN, PROCESS FOR ITS PRODUCTION AND GEL COMPOSITION
US09/011,997 US6103425A (en) 1996-06-21 1997-06-19 Liquid-absorbing resin, manufacturing method thereof and gel composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8/162085 1996-06-21
JP16208596A JPH105582A (ja) 1996-06-21 1996-06-21 吸液性樹脂およびその製造方法
JP21029396 1996-08-08
JP8/210293 1996-08-08
JP8/210292 1996-08-08
JP21029296 1996-08-08

Publications (1)

Publication Number Publication Date
WO1997048487A1 true WO1997048487A1 (en) 1997-12-24

Family

ID=27321949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002104 WO1997048487A1 (en) 1996-06-21 1997-06-19 Liquid-absorbing resin, process for the preparation thereof, and gel composition

Country Status (3)

Country Link
US (1) US6103425A (ja)
EP (1) EP0846493A4 (ja)
WO (1) WO1997048487A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3847003B2 (ja) * 1998-07-07 2006-11-15 日東電工株式会社 ゲル状組成物とその利用
JP3323468B2 (ja) * 1999-02-17 2002-09-09 三洋化成工業株式会社 アルカリ電池用ゲル化剤及びアルカリ電池
US20020084438A1 (en) * 2000-11-14 2002-07-04 Kazuhiro Okamura Hygroscopic composition, hygroscopic agent, and production process therefor
US7803880B2 (en) 2003-09-19 2010-09-28 Nippon Shokubai Co., Ltd. Water absorbent and producing method of same
US7214753B2 (en) * 2004-03-24 2007-05-08 Nippon Shokubai Co., Ltd. N-vinyl amide polymer and production method thereof
JP6826599B2 (ja) 2016-07-08 2021-02-03 株式会社日本触媒 N−ビニルラクタム系架橋重合体、化粧料、インク用吸収剤及び吸収性複合体

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166764A (ja) * 1987-11-25 1989-06-30 Minnesota Mining & Mfg Co <3M> 医療用シーラント組成物およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158089A (en) * 1977-12-27 1979-06-12 Wesley-Jessen Inc. Contact lenses of high water content
DE3124008A1 (de) * 1981-06-19 1983-01-27 Chemische Fabrik Stockhausen & Cie, 4150 Krefeld Vernetzte, in wasser quellbare copolymerisate und ihre verwendung als absorptionsmittel fuer waessrige koerperfluessigkeiten wie urin
DE3209224A1 (de) * 1982-03-13 1983-09-15 Basf Ag Verfahren zur herstellung von unloeslichen, nur wenig quellbaren polymerisaten von basischen vinylheterocyclen und deren verwendung
JPH0384807A (ja) * 1989-08-28 1991-04-10 Yuasa Battery Co Ltd 高分子固体電解質
EP0473881B1 (en) * 1990-09-03 2001-11-07 Showa Denko Kabushiki Kaisha Liquid absorption agent
US5073614A (en) * 1990-10-18 1991-12-17 Isp Investments Inc. Strongly swellable, moderately crosslinked polyvinylpyrrolidone
JPH0832755A (ja) * 1994-05-09 1996-02-02 Ricoh Co Ltd 画像読取装置
JPH0859743A (ja) * 1994-08-24 1996-03-05 Showa Denko Kk 液体吸収剤
US5658685A (en) * 1995-08-24 1997-08-19 Motorola, Inc. Blended polymer gel electrolytes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166764A (ja) * 1987-11-25 1989-06-30 Minnesota Mining & Mfg Co <3M> 医療用シーラント組成物およびその製造方法

Also Published As

Publication number Publication date
US6103425A (en) 2000-08-15
EP0846493A1 (en) 1998-06-10
EP0846493A4 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
JP2922216B2 (ja) 高吸水性ポリマー製造法
KR101564526B1 (ko) 흡수성 수지 및 이의 제조 방법
JP2003514352A (ja) ゲル電解質を含むリチウム電池
CN113307904B (zh) 一种吸水性树脂的制备方法
JP2018145210A (ja) 新規アクリル酸架橋重合体およびその使用
JP2019513171A (ja) 電気伝導性親水性コポリマー
JP2022108284A (ja) 電気活性親水性バイオポリマー
WO1997048487A1 (en) Liquid-absorbing resin, process for the preparation thereof, and gel composition
KR980012681A (ko) 전해질 및 전해전지
JP2002110245A (ja) ポリマー固体電解質リチウムイオン2次電池
JPH10101886A (ja) ゲル状組成物および電池
JP4025843B2 (ja) 非水系吸収体
JP2017031299A (ja) 発泡親水性架橋重合体およびその製造方法
JPH0828216B2 (ja) アルカリ電池のゲル状陰極用ゲル化剤
JP2009193755A (ja) 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれより得られる電極/セパレータ接合体
JPH10101745A (ja) 吸液性樹脂およびその製造方法
JP5514117B2 (ja) アルカリ電池用増粘剤及びアルカリ電池
JP3843505B2 (ja) 高分子電解質及び電池
JP2640354B2 (ja) アルカリ電池のゲル状陰極用ゲル化剤
JP2711880B2 (ja) 乾電池の電解液ゲル化剤及びゲル状電解液
Nicolau et al. Applications of Functional Polymeric Eutectogels
JP4700182B2 (ja) ビニルラクタム系架橋体用組成物、およびその用途
JPH105582A (ja) 吸液性樹脂およびその製造方法
JP2679732B2 (ja) 耐光性、耐熱性に優れた吸水ゲル組成物
JP2960495B2 (ja) 吸水剤及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09011997

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997927391

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997927391

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1997927391

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997927391

Country of ref document: EP