WO1997042451A1 - Equipement a combustion et procede d'estimation de la duree de vie d'un equipement a combustion - Google Patents

Equipement a combustion et procede d'estimation de la duree de vie d'un equipement a combustion Download PDF

Info

Publication number
WO1997042451A1
WO1997042451A1 PCT/JP1997/001545 JP9701545W WO9742451A1 WO 1997042451 A1 WO1997042451 A1 WO 1997042451A1 JP 9701545 W JP9701545 W JP 9701545W WO 9742451 A1 WO9742451 A1 WO 9742451A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
carbon monoxide
value
life
predetermined
Prior art date
Application number
PCT/JP1997/001545
Other languages
English (en)
French (fr)
Inventor
Naoyuki Takeshita
Masanori Enomoto
Original Assignee
Gastar Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gastar Co., Ltd. filed Critical Gastar Co., Ltd.
Priority to EP97918384A priority Critical patent/EP0898120A1/en
Publication of WO1997042451A1 publication Critical patent/WO1997042451A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N2005/181Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/30Representation of working time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves

Definitions

  • the present invention relates to a combustion device provided with a carbon monoxide concentration detection sensor and a method for determining the life of the combustion device.
  • this combustion device detects the concentration of carbon monoxide (hereinafter referred to as CO) contained in the exhaust gas emitted by combustion with a CO concentration detection sensor (hereinafter referred to as a CO sensor), and determines the fuel supply amount.
  • CO carbon monoxide
  • the abnormal combustion is judged by comparing with the abnormality judgment limit value corresponding to the above, and a warning is issued when the CO concentration exceeds the abnormality judgment limit value. Or, if it is determined that the combustion is abnormal, the operation of the combustion equipment is forcibly stopped.
  • the increase in C ⁇ concentration in the exhaust gas due to abnormal combustion is not limited to degradation of equipment such as clogging or blockage due to deterioration of the air supply / exhaust system and heat exchanger. That is, it may be caused by blockage due to collapse or breakage of the air supply / exhaust pipe, insufficient exhaustion by strong wind in the operating environment, and the like.
  • the combustion fan of the combustion equipment throttled down even if there are no abnormalities in the combustion equipment, insufficient exhaust conditions caused by wind will occur, and the C0 concentration will increase. Rise easily.
  • the object of the present invention is to pay attention to such conventional problems, and to accurately detect abnormal combustion caused by blockage of the supply / exhaust system and the heat exchanger in the combustion equipment and perform combustion.
  • An object of the present invention is to provide a combustion device and a method for determining the life of the combustion device that can perform safe operation of the device and inform a user of an appropriate time for replacement or repair of a component based on an operation state of the combustion device.
  • a combustion apparatus having a CO concentration detecting section for detecting a CO concentration in exhaust gas generated by burning supplied fuel
  • a combustion device comprising: a control unit that determines a life based on a CO concentration detection value detected by the CO concentration detection unit when combustion in which a predetermined amount or more of fuel is supplied is performed. Is achieved by providing
  • a combustion apparatus having a CO concentration detecting section for detecting a CO concentration in exhaust gas generated by burning supplied fuel
  • Control means for performing the life determination based on a CO concentration detection value detected by the CO concentration detection unit when combustion in which a fuel of a predetermined reference amount or more is supplied is continuously performed for a predetermined time. Achieved by providing combustion equipment characterized by Is done.
  • the reference amount of the supplied fuel is preferably a value close to the maximum amount of the fuel that can be supplied.
  • the reference amount is 80% of the maximum amount.
  • control unit in the first and second configurations, is configured to, when it is detected that the CO concentration detection value exceeds a first predetermined concentration, Forcing the maximum amount of fuel to be supplied lower,
  • the combustion is stopped when it is detected that the CO concentration detection value exceeds a second predetermined concentration.
  • FIG. 1 is an explanatory diagram of a mounted state of a combustion device according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing a combustion device according to one embodiment of the present invention.
  • FIG. 3 is a block diagram of the combustion equipment according to one embodiment of the present invention.
  • FIG. 4 is a diagram showing the relationship between the supply gas amount and the number of revolutions of the combustion fan in combustion in the combustion improvement mode and the normal mode other than the combustion improvement mode.
  • FIG. 5 is a graph illustrating a combustion state in one combustion of the combustion equipment according to one embodiment of the present invention.
  • FIG. 6 is a flow chart showing the operation of the combustion equipment according to one embodiment of the present invention. It is.
  • the combustion equipment 10 according to the embodiment of the present invention is installed indoors as shown in FIG. Then, the exhaust gas generated by the combustion of the combustion device 10 is discharged outside through the exhaust passage 19.
  • FIG. 2 is a schematic configuration diagram of the combustion equipment 10.
  • a burner 13 is disposed below the combustion chamber 11 of the combustion device 10, and a combustion fan 12 for supplying and exhausting air is provided below the burner 13.
  • the combustion fan 12 is provided with a rotation detection sensor (not shown) for detecting the rotation state of the fan.
  • a heat exchanger 14 is provided in the upper part of the combustion chamber 11. To the heat exchanger 14, for example, a water supply pipe (not shown) is connected to the inlet side, and a hot water supply pipe (not shown) is connected to the outlet side.
  • the burner 13 is provided with a gas nozzle 22 and a nozzle holder 23, and a gas pipe 26 is connected to a gas valve 26 through a proportional valve 24 whose opening can be controlled by an actuator 27 and an electromagnetic valve 25 whose opening and closing are controlled. It is connected.
  • a gap is formed between the gas inlet of the burner 13 and the tip of the gas nozzle 22 so as to take in combustion air.
  • the lower part and the upper part of the burner 13 are connected by a bypass 17.
  • An air flow sensor 18 is provided at an intermediate portion of the bypass 17.
  • the uppermost part of the combustion chamber 11 communicates with an exhaust passage 19 for guiding exhaust gas to the outside of the device.
  • a CO sensor 48 is provided in the exhaust passage 19.
  • the CO sensor 48 is a contact combustion type with good sensitivity and reliability.
  • platinum wire is wound in a coil shape, and alumina is applied from above and solidified. This is based on the fact that the resistance of platinum increases when combustible gases such as come into contact and burn there.
  • a detection element in which a noble metal catalyst is coated or impregnated on alumina and an auxiliary element which does not react with gas may be assembled in a bridge shape.
  • a semiconductor type device using a change in electric resistance in a gas may be used. FIG.
  • the control device 30 includes a controller C, a memory 31, and a calculation unit 32. Then, the control device 30 drives the proportional valve 24 via the power amplifier 33 and the actuator 27 in accordance with the signal from the arithmetic unit 32, and controls the fuel supply amount. In addition, the combustion fan 12 is operated via the power amplifier 34 and the actuator 37 in accordance with a signal from the arithmetic unit 32 to control the supply amount of air for combustion.
  • the controller C receives an output signal from the CO sensor 48 and sends a control signal for performing various combustion controls to the factory or the like based on the output signal.
  • the memory 31 stores a control program for controlling the combustion device 10 and various constants (described later) for determining the life of the combustion device 10 based on the detected C ⁇ concentration detection value (hereinafter referred to as a CO value). It is remembered.
  • the memory 31 is made of ROM and RAM or rewritable EPROM.
  • the operation unit 32 performs an operation for determining the life as described below based on the input signal from the CO sensor 48 input via the controller C and the various constants stored in the memory 31. Do.
  • the control device 30 is preferably constituted by a micro combination.
  • the concentration of C ⁇ generated during combustion is measured by the CO sensor 48, and the control device 30 is configured by the control device 30 based on the measured value. Judgment is made on the combustion performance and life of 10 and combustion control is performed according to the combustion performance.
  • the control device 30 first determines that abnormal combustion has occurred when the measured CO value exceeds a predetermined abnormal value, and determines the frequency of occurrence of abnormal combustion to determine the combustion performance and life of the combustion device 10.
  • the abnormal value is a CO value equal to or higher than a predetermined concentration, specifically, an average value of the C0 value output every 10 seconds in the 2-minute measurement of the CO sensor 48, and the value is as follows. For example, 700 ppm.
  • the arithmetic unit 32 of the control device 30 compares the CO value from the CO sensor 48 with the abnormal value stored in the memory 31 in advance, and determines that the value is larger than the abnormal value. Outputs a signal to the power amplifier 34, and increases the number of revolutions of the combustion fan 12 via the actuator 37 to increase the amount of air supplied to the burner 13. In the following, The state in which the air supply amount is increased by this is referred to as “combustion improvement mode”. Once the combustion improvement mode is entered during the combustion, the first flag F1 set in the control device 30 becomes "1", and the combustion fan 12 increases the air supply until the combustion is stopped. It is controlled according to the relationship between the number of revolutions and the amount of combustion.
  • FIG. 4 is a diagram showing the relationship between the supply gas amount and the number of revolutions of the combustion fan in combustion in the combustion improvement mode and the normal mode other than the combustion improvement mode.
  • the number of revolutions of the combustion fan increases in the combustion in which the same gas amount is supplied. Then, once the combustion is stopped, the flag F 1 becomes “0 (zero)”, and when the operation is started again, the C ⁇ value is compared with the abnormal value again.
  • an increase in the C ⁇ value in the exhaust gas due to abnormal combustion is usually caused by deterioration in the performance of the equipment such as clogging due to deterioration of the air supply / exhaust system and the heat exchanger 14, etc., and collapse or breakage of the air supply / exhaust pipe. It also occurs when exhaust is insufficient due to strong winds in the operating environment. In particular, when operating near the minimum capacity of the combustion equipment with a small amount of fuel supplied, the insufficient exhaust condition caused by the wind raises the CO concentration, and abnormal combustion is likely to occur.
  • the control device 30 when burning with high performance, is, for example, at least a predetermined reference amount close to the maximum gas supply amount (for example, at least 80% of the maximum gas supply amount).
  • the combustion performance and life of the combustion device 10 are determined based on the frequency of abnormal combustion occurring during the combustion when the gas amount is supplied. At this time, it is supposed that the combustion is temporarily performed with the gas amount equal to or more than the reference amount due to the variation of the combustion capacity. The frequency of abnormal combustion occurrence when the combustion is continued for the duration of combustion or longer is measured.
  • the control device 30 has a first criterion that is, for example, a combination of the supply gas amount during combustion and the combustion duration time, and the supply gas amount is close to the maximum supply gas amount. ing.
  • the first criterion is, for example, that in a combustion device 10 having a maximum supply gas amount of 30,000 kca1, the supply gas amount is assumed to be 24,000 kcal / h.
  • the combustion duration is 2 minutes.
  • the second flag F2 set in the control device 30 becomes “1” as described later in detail.
  • the flag F2 becomes "1"
  • the combustion capacity decreases thereafter, and even if the combustion becomes lower than the first standard, the flag F2 remains "1".
  • the second flag F 2 becomes ⁇ 0 (zero) ”.
  • FIG. 5 is a graph showing an example of a combustion state in one combustion, in which the horizontal axis represents time and the vertical axis represents supply gas amount.
  • the combustion state above the first criterion is performed twice as shown in period G and period I.
  • the second flag F 2 is 1. Then, even if the fuel consumption drops below the first standard in period H, the second flag F 2 remains at 1 and, in combustion state H, the combustion above the first standard Is performed, the second flag F2 does not change.
  • the adverse effect on combustion due to blockage of the air supply / exhaust system and the heat exchanger 14 is greater as the combustion state is closer to the maximum capacity, that is, CO is easily generated.
  • the value increases and the combustion condition deteriorates when the combustion is performed at a low capacity as described above.
  • the more the combustion state is the state close to the maximum capacity the less chance of CO generation due to disturbances such as the effect of wind on exhaust. Therefore, by setting the gas amount in the first standard above to a value close to the maximum supply gas amount, an increase in the CO concentration in the exhaust gas due to abnormal combustion is caused by clogging of the supply / exhaust system and the heat exchanger 14. It is possible to increase the probability of being judged to be the one.
  • FIG. 6 is a flowchart showing an embodiment of the present invention. This is stored as a control program in the memory 31 of the control device 30, which is preferably a microcomputer. According to FIG. 6, after the operation switch is pushed (S 1), for example, when a hot water tap (not shown) is opened, a running water switch (not shown) detects a flow rate equal to or more than a predetermined amount, and the running water switch is turned on. Then, (S 2), combustion is started.
  • the combustion mode differs depending on the discrimination number M stored in the memory 31.
  • the discrimination number M will be described later.
  • the discrimination number M is, for example, 2 If it is less than 5, normal operation is performed in which the maximum combustion capacity of the combustion device 10 is not limited (S4A). If the discrimination number M is 25 or more, combustion is performed in the capacity limited operation (S4B) where the maximum combustion capacity of the combustion equipment 10 is limited. Even if the combustion equipment 10 has a maximum supply gas amount of 30,000 kca 1 Zh during normal operation, the maximum supply gas amount is, for example, up to 20 and OOO kcal Zh during the limited capacity operation. Is limited to
  • step S 9 the combustion switches to combustion in the combustion improvement mode.
  • the first flag F The reason why 1 is determined to be “1” is that if it has already been switched to the combustion improvement mode, it is no longer necessary to switch
  • step S9 if the first flag F1 is not "1”, the first flag F1 is set to "1", and the number L of times of switching to the combustion improvement mode is added ( S10).
  • the accumulated number L of combustion improvement modes is stored in the memory 31.
  • the number of combustions K stored in the memory 31 is a predetermined number of times (for example, 10 0 (S11), it is determined whether or not the number L of combustion improvement modes accumulated during that time is equal to or greater than the first set number L1 (S14).
  • the first set number of times L1 is six.
  • the discrimination number M is stored in the memory 31.
  • This discrimination number M is a parameter that is integrated when the C ⁇ value measured during combustion with high performance of the combustion equipment 10 frequently becomes an abnormal value or more. Therefore, by determining the life of the combustion device 10 based on the discrimination number M as described below, the life of the combustion device 10 can be determined with high accuracy.
  • step S15 when the discrimination number M is integrated, the number of combustions K and the number of combustion improvement modes L stored in the memory 31 are reset to 0 (zero) (S16). In this way, every time the number of times of combustion K reaches 10 times, the number of times of the combustion improvement mode L is read from the memory 31. If the number of times is equal to or greater than the first set number of times L1, the number of determinations M Are integrated.
  • the integrated discrimination number M exceeds the first discrimination number Ml (for example, 50) (S17)
  • the safe operation limit of the combustion device 10 has been reached, and the life of the combustion device 10 has been reached. Then, the operation of the combustion device 10 is forcibly stopped (S18).
  • the maximum opening of the proportional valve 24 is limited and the combustion device 10 is restricted.
  • Combustion is performed by capacity-limited operation in which the maximum amount of gas supplied to the engine is limited (step S20). For example, in a combustion device with a maximum supply gas amount of 30,000 kca 1 Zh during normal operation, the maximum supply gas amount during capacity-limited operation is 20,000 kca 1 Zh. Limited.
  • step S14 if the number of times of the combustion improvement mode is equal to or less than the first set number L1, but is larger than the second set number L2 (for example, two times) smaller than that, (S2 1) It is judged that the performance of the combustion equipment 10 is not significantly deteriorated. Therefore, in this case, the number of determinations M is not integrated, and the number of combustions K and the number of combustion improvement modes L stored in the memory 31 are reset to 0 (S13) o
  • step S21 if the number L of combustion improvement modes is smaller than the second set number L2, the reason for switching to the combustion improvement mode is not due to the deterioration of the combustion performance of the combustion device 10; It is judged to be due to external factors such as sudden wind. This is because if the combustion performance of the combustion equipment 10 is degraded, the possibility of switching to the combustion improvement mode increases, and the number of combustion improvement modes L increases. This is because the probability of switching to the combustion improvement mode due to deterioration of combustion is low, and the number L of combustion improvement modes is estimated to be small.
  • the discrimination number M is less than the second discrimination number M2 (for example, 25), that is, during normal operation, the integrated discrimination number M is reset to 0 (zero) (S2 3).
  • step S12 when the combustion is stopped in step S12, the first and second flags F1 and F2 are set to "0 (zero)" as described above (S26).
  • step S3 when the number of determinations M is determined to be 25 or more and the combustion device 10 is in the capacity limited operation state (S4B), the controller 30 replaces the first criterion with the first criterion.
  • the control unit 30 sets the supply gas amount as a value close to the maximum supply gas amount (for example, 20 000 kca 1 / h) in the capacity-limited operation, which is a combination of the supply gas amount during combustion and the combustion duration time.
  • the second criterion is, for example, that the supply gas amount is 16, 000 kca 1 Zh with respect to the maximum supply gas amount of 20, 000 kca 1 Zh.
  • the burning duration is 2 minutes. .
  • the number of combustions P equal to or higher than the second standard is integrated, and the number of times L in which the combustion improvement mode is entered at that time is integrated. If the number of combustion times P equal to or more than the second reference is 010 times (S 11), in steps S 14 and S 21, the combustion improvement mode is entered during the 10 times of combustion. Is compared with the third set number L3 and the fourth set number L4 stored in the memory 31 in advance.
  • the third set number L3 and the fourth set number L4 may be the same as the first set number L1 and the second set number L2, respectively, or a capacity limit at which the number of revolutions of the combustion fan is reduced. Under driving, the influence of the wind increases, so the third and fourth set numbers L3 and L4 may be larger than L1 and L2. May be different.
  • the control device 30 sets the combustion device 10 to 20
  • the controller 30 judges that the life has expired, and the controller 30 forcibly stops the operation of the combustion equipment 10 (S18) o
  • the first and second criteria, the set number of times, the number of discriminations, and the like are illustrated by increasing specific numbers, but are not limited thereto.
  • the combustion device 10 changes the combustion capacity in accordance with the blocked state of the air supply / exhaust system and the heat exchanger 14 or Since the operation of the combustion device 10 is forcibly stopped, high safety can be obtained, and the user of the combustion device 10 can determine the life of the combustion device 10 very easily.
  • a combustion apparatus having a combustion capacity of 30,000 kca 1 Zh, combustion at 30,000 kcal Zh to 20, OOO kca 1 Zh Is multiplied by 1 to the discrimination number, and 20, 0 0 0 kcal Zh ⁇
  • the discrimination number M is multiplied by 0.2, and the discrimination number for 1 0, 0 0 0 kcal / h to 5, 0 0 0 kca 1 Zh combustion
  • the number of discriminations 1 is added. However, 1 may be added to the number of discriminations VI when the generation of CO is 100 minutes at the time of combustion in the vicinity of the minimum combustion capacity.
  • the combustion apparatus concerning this invention, it can judge whether a CO value is abnormal in the state which is not affected by the wind of the outdoors. Therefore, it is possible to judge the life of combustion equipment based on the accurate CO value.
  • the combustion equipment of the present invention when the CO value rises to a predetermined value or more, the operation is performed with the maximum supply gas amount of the combustion equipment limited. Therefore, it is possible to extend the life of the combustion equipment without making unnecessary life judgments of the combustion equipment.
  • the discrimination value M it is possible to determine the life of the combustion equipment with higher accuracy.
  • the combustion equipment according to the present invention has high safety and economic efficiency, and can perform efficient maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

明細書
[発明の名称]
燃焼機器および燃焼機器の寿命判断方法
[技術分野]
本発明は、 一酸化炭素濃度検出センサを備えた燃焼機器及び該燃焼機器の寿命 判断方法に閱する。
[背景技術]
従来、 この種の燃焼機器においては、 例えば、 燃焼状態を判断するものとして 日本特願平 1 一 2 9 5 3 7 4号がある。 すなわち、 この燃焼装置は、 燃焼により 排出される排気ガス中に含まれる一酸化炭素 (以下 C Oという) の濃度を C O濃 度検出センサ (以下 C Oセンサーという) により検出し、 その濃度を燃料供給量 に対応する異常判定限度値と比較して異常燃焼を判断し、 C O濃度が異常判定限 度値を越えたときは警告を発する。 または、 異常燃焼と判断したときに燃焼機器 の運転を強制的に停止する。
このような装置においては、 前述の警告動作や機器の運転の強制的停止等がな された後は人間が機器の点検を行って異常の原因やその程度を判断していた。 しかしながら、 異常燃焼による排気ガス中の C〇濃度の上昇は、 給排気系や熱 交換器の劣化による詰まり即ち閉塞状態といった機器の性能低下に起因するもの に限らない。 即ち、 給排気管の潰れや破損などによる閉塞状態、 使用環境におけ る強風による不十分な排気等が原因となって起こることもある。 特に、 燃焼機器 の燃焼ファンの能力を絞って最小能力付近で運転しているときは、 燃焼機器に全 く異常がなくても風に起因する不十分な排気状態が発生することにより C 0濃度 の上昇が起こり易くなる。
そのため従来、 C O濃度の上昇が起こった場合、 機器の劣化による閉塞状態が 生じているのか、 風の影響によるものなのか或いは他の原因によるものなのかを 調べなければならず、 その間、 燃焼機器の運転を停止する時間が長くなり不便で あるという問題点があった。
特に、 機器の破損等が原因である場合は比較的短時間で容易に発見できるが、 機器の劣化による閉塞状態によるものかまたは屋外の風によるものか、 或いはそ れらが複合したものによるのかの判断には時間と手間がかかり不便であつた。 また、 機器の劣化による閉塞が原因となった場合、 燃焼機器の安全な運転に支 障の有る状態、 即ち機器に寿命が来たのか或いは支障の無い状態なのかの判断は 必ずしも容易ではない。 従って安全のために閉塞状態の発生した部分の部品交換 や修理を行っていた。 しかし、 機器の軽度の閉塞と一時的な強風とが複合して原 因となつた場合などは、 燃焼機器の安全な運転に支障がないにも拘わらず部品交 換ゃ修理をすることになり不経済であるという問題点があつた。
従って、 本発明の目的は、 このような従来の問題点に着目してなされたもので 、 燃焼機器における給排気系及び熱交換器の閉塞に起因する異常燃焼を適確に発 見して燃焼機器の安全な運転を行い、 且つ、 使用者に燃焼機器の運転状態から部 品の交換や修理の適切な時期を知らせることができる燃焼機器及び燃焼機器の寿 命判断方法を提供することを目的としている。
[発明の開示]
上記の目的は、 本発明の第一の構成によれば、 供給される燃料が燃焼すること により生成される排気ガス中の C O濃度を検出する C O濃度検出部を有する燃焼 機器において、
所定の基準量以上の燃料が供給される燃焼が行われたときに前記 C O濃度検出部 により検出される C O濃度検出値に基づいて、 寿命判断を行う制御手段を有する ことを特徴とする燃焼機器を提供することによって達成される。
また、 上記目的は、 本発明の第二構成によれば、 供給される燃料が燃焼するこ とにより生成される排気ガス中の C O濃度を検出する C O濃度検出部を有する燃 焼機器において、
所定の基準量以上の燃料が供給される燃焼が所定時間継続して行われたときに 前記 C O濃度検出部により検出される C O濃度検出値に基づいて、 前記寿命判断 を行う制御手段を有することを特徴とする燃焼機器を提供することによつて達成 される。
これらのような構成にすることにより、 屋外の風の影響のない伏態で、 c〇濃 度検出値が異常か否かを判断することができる。 従って、 正確な C O濃度検出値 により燃焼機器の寿命判断を行うことが可能である。
即ち、 多量の燃料を供給して燃焼機器を高い能力で運転しているときは、 燃焼 ファンの回転数が高く、 上記のような風に起因する異常な燃焼は発生しにく くな る。 従って、 高い能力での燃焼運転時に検出される C O濃度検出値を用いること により、 燃焼機器の寿命を正確に判断することができる。 よって、 供給される燃 料の前記基準量は、 供給できる燃料の最大量に近い値であることが好ましく、 例 えば、 その基準量は前記最大量の 8 0 %である。
また、 本発明の第三の構成は、 上記第一及び第二の構成において、 前記制御手 段は、 前記 C O濃度検出値が、 第一の所定濃度を超えたことが検出されたとき、 前記供給される燃料の最大量を強制的に低く し、
該低下された最大燃料量のもとでの燃焼において、 前記 C O濃度検出値が第二の 所定濃度を超えたことが検出されたとき燃焼を停止することを特徴とする燃焼機
¾ 、める。
このような構成にすることにより C〇濃度検出値が所定値以上に上昇した場合
、 燃焼機器の最大供給ガス量を制限した運転が行われる。 従って、 不必要な寿命 判断をせずに、 燃焼機器の延命を図ることが可能となる。
[図面の簡単な説明]
第 1図は、 本発明の実施の一形態にかかる燃焼機器の装着状態説明図である。 第 2図は、 本発明の実施の一形態にかかる燃焼機器を示す概念図である。 第 3図は、 本発明の実施の一形態にかかる燃焼機器のプロック図である。 第 4図は、 燃焼改善モード及び燃焼改善モードでない通常モードでの燃焼にお ける供給ガス量と燃焼ファンの回転数の関係を示す図である。
第 5図は、 本発明の実施の一形態にかかる燃焼機器の一回の燃焼における燃焼 状態をグラフに例示したものである。
第 6図は、 本発明の実施の一形態にかかる燃焼機器の動作を示すフローチヤ一 トである。
[発明を実施するための最良の形態]
以下、 本発明の実施の形態について図面に従って説明する。 しかしながら、 本 発明の技術的範囲はかかる実施の形態によって限定されるものではない。
本発明の実施の形態における燃焼機器 1 0は、 第 1図に示すように、 屋内に取 り付けられている。 そして、 その燃焼機器 1 0の燃焼により発生する排気ガスは 、 排気通路 1 9を通って屋外に排出される。
第 2図は、 燃焼機器 1 0の概略構成図である。 第 2図によれば、 燃焼機器 1 0 の燃焼室 1 1内の下部にはバーナー 1 3が配設され、 バーナー 1 3の下方には給 排気を行う燃焼ファン 1 2が設けられている。 燃焼ファン 1 2にはそのファンの 回転状態を検出するための回転検出センサー (図示せず) が設けられている。 燃焼室 1 1内の上部には熱交換器 1 4が配設されている。 熱交換器 1 4には、 例えば入口側に給水管 (図示せず) が接続され、 出口側には給湯管 (図示せず) が接続されている。
バーナー 1 3は、 ガスノズル 2 2、 ノズルホルダ 2 3を備え、 ァクチユエ一夕 - 2 7により開度制御可能な比例弁 2 4及び開閉制御される電磁弁 2 5を介して ガス用配管 2 6が接続されている。 バーナー 1 3のガス取込み口とガスノズル 2 2の先端部との間には、 燃焼用の空気を取込み可能な間隙が形成されている。 バーナー 1 3の下方と上方とはバイパス 1 7により連通している。 バイパス 1 7の中間部には、 空気量センサー 1 8が設けられている。
燃焼室 1 1の最上部には、 排気を装置外部へ導くための排気通路 1 9が連通し ている。 その排気通路 1 9内には、 C Oセンサー 4 8が設けられている。 C Oセ ンサー 4 8は感度および信頼性ともに良好な接触燃焼式のものであり、 代表的に は白金の钿線をコイル状に巻き、 この上からアルミナを塗布して固めたもので、 C 0等の可燃性ガスが接触してそこで燃焼すると白金の抵抗が増加することを利 用したものである。 また、 アルミナに貴金属触媒を塗布又は含浸させた検知素子 とガスに反応しない補偾素子をブリッジ状に組んだものでもよい。 さらに、 ガス 中での電気抵抗の変化を利用した半導体式のものでもよい。 第 3図は、 燃焼機器 1 0に備えられた制御装置 3 0のブロック図である。 制御 装置 3 0は、 制御器 C、 メモリ 3 1、 演算部 3 2を備えている。 そして、 制御装 置 3 0は、 演算部 3 2からの信号に応じてパワーアンプ 3 3およびァクチユエ一 夕 2 7を介して比例弁 2 4を駆動し、 燃料の供給量を制御する。 また、 演算部 3 2からの信号に応じてパワーアンプ 3 4およびァクチユエ一夕 3 7を介して燃焼 ファン 1 2を作動させて燃焼のための空気の供給量を制御する。
制御器 Cは C Oセンサー 4 8からの出力信号を受け取り、 該出力信号に基づい て各種燃焼制御を行うための制御信号をァクチユエ一夕などに送る。
メモリ 3 1には燃焼機器 1 0を制御するための制御プログラム及び検出された C 〇濃度検出値 (以下 C O値という) から燃焼機器 1 0の寿命判断を行うための各 種定数 (後述) が記憶されている。 メモリ 3 1は R O M及び R A M又は書き換え 可能な E E P R O Mが用いられている。
演算部 3 2は制御器 Cを経由して入力される C Oセンサー 4 8からの入力信号 と、 メモリ 3 1に記憶された前記各種定数に基づいて、 後述するような寿命判断 のための演算を行う。 制御装置 3 0は、 マイクロコンビユー夕により構成される ことが好ましい。
このような構成の燃焼機器 1 0において、 本発明の実施の態様では、 燃焼中に 発生する C〇の濃度を C Oセンサー 4 8によって測定し、 その測定値に基づいて 制御装置 3 0が燃焼機器 1 0の燃焼性能と寿命を判断し、 燃焼性能に応じた燃焼 制御が行われる。
制御装置 3 0は、 まず、 測定した C O値が予め設定した異常値を超えた場合を 、 異常燃焼の発生とみなし、 異常燃焼の発生頻度を燃焼機器 1 0の燃焼性能およ び寿命の判断基準とする。 上記異常値は、 所定濃度以上の C O値、 具体的には、 C Oセンサー 4 8の 2分間の測定において、 1 0秒間毎に出力される C 0値の平 均値であって、 その値は例えば 7 0 0 ppm である。
制御装置 3 0の演算部 3 2は、 C Oセンサー 4 8からの C O値と、 メモリ 3 1 に予め記憶された上記異常値とを比較して、 異常値よりも大きレ、場合は制御器 C がパワーアンプ 3 4に信号を出力し、 ァクチユエ一夕 3 7を介して燃焼ファン 1 2の回転数を上げてバーナー 1 3への給気量を増大させる。 以下、 このようにし て給気量を増大させた状態を 「燃焼改善モード」 と称する。 燃焼中に一度燃焼改 善モードに入ると、 制御装置 3 0に設定された第一のフラグ F 1力 「 1」 となり 、 燃焼が停止されるまで給気量を増大させた燃焼ファン 1 2の回転数と燃焼量と の関係に従って制御される。
第 4図は、 燃焼改善モード及び燃焼改善モードでない通常モードでの燃焼にお ける供給ガス量と燃焼ファンの回転数の関係を示す図である。 第 4図によれば、 燃焼が通常モードから燃焼改善モ一ドに切り替わると、 同じガス量が供給される 燃焼において、 燃焼ファンの回転数が増加する。 そして、 一度燃焼が停止される と、 上記フラグ F 1は 「 0 (ゼロ) 」 となり、 再度運転が開始された時に、 再度 C〇値が上記異常値と比較される。
このとき、 通常、 異常な燃焼による排気ガス中の C〇値の上昇は給排気系や熱 交換器 1 4等の劣化による詰まりといった機器の性能低下及び給排気管の潰れや 破損に起因する。 また、 使用環境における強風により排気が不十分となった場合 にも起こる。 特に、 供給燃料を少量にして燃焼機器の最小能力付近で運転してい るときは、 風に起因する不十分な排気状態の発生により C O濃度が上昇し、 異常 な燃焼が発生し易くなる。
逆に、 多量の燃料を供給して燃焼機器を高い能力で運転しているときは、 燃焼 ファンの回転数が高く、 上記のような風に起因する異常な燃焼は発生しにく くな る。 従って、 本発明の実施の形態においては、 制御装置 3 0は、 高い能力での燃 焼時、 例えば最大ガス供給量に近い所定の基準量以上 (例えば、 最大ガス供給量 の 8 0 %以上) のガス量が供給される燃焼時での異常燃焼発生頻度によって燃焼 機器 1 0の燃焼性能と寿命を判断する。 このとき、 燃焼能力のばらつきなどから 一時的に上記基準量以上のガス量での燃焼が行われる場合が想定されるので、 好 ましくは、 上記基準量以上のガス量での燃焼が所定の燃焼継続時間以上継続して 行われた場合の異常燃焼発生頻度の測定が行われる。
具体的には、 制御装置 3 0には、 例えば燃焼時の供給ガス量と燃焼継続時間と の組合わせからなり供給ガス量が最大供給ガス量に近い値である第一の基準が設 定されている。 第一の基準は、 例えば、 最大供給ガス量が 3 0 , 0 0 0 k c a 1 である燃焼機器 1 0において、 供給ガス量を 2 4 , 0 0 0 k c a l / hとし 、 その燃焼継挠時間を 2分とする。
そして、 制御装置 3 0が上記第一の基準以上の燃焼を検出すると、 後に詳述す るように、 制御装置 3 0に設定された第二のフラグ F 2が 「 1」 となる。 フラグ F 2が 「 1」 となると、 その後燃焼能力が低下し、 第一の基準以下の燃焼になつ た場合であっても、 フラグ F 2は 「 1」 のままであり、 その燃焼が停止すると第 二のフラグ F 2は Γ 0 (ゼロ) 」 となる。
第 5図は、 一回の燃焼における燃焼状態をグラフに例示したもので、 横軸に時 間を縦軸に供給ガス量をとつたものである。 ここでは、 上述の第 1の基準以上の 燃焼状態は期間 G及び期間 Iで示したように 2回行われている。 第 5図において は、 燃焼状態 Gにおいて、 第二のフラグ F 2は 1 となる。 そして、 その後、 期間 Hにおいて第一の基準以下の燃焼に低下した場合であっても、 第二のフラグ F 2 は 1のままであり、 さらに、 燃焼状態 Hにおいて、 第一の基準以上の燃焼が行わ れても、 第二のフラグ F 2は変化しない。
通常、 給排気系や熱交換器 1 4の閉塞による燃焼への悪影響は、 燃焼状態が最 大能力に近い程大きく、 すなわち C Oが発生し易く、 一方、 風による排気への影 響で C 0値が上昇し、 燃焼状態が悪くなるのは上述のように低い能力で燃焼を行 つているときである。 そして、 燃焼伏態が最大能力に近い伏態であればあるほど 風による排気への影響等、 外乱による C Oの発生機会が少なくなる。 従って、 上 記第一の基準におけるガス量を最大供給ガス量に近い値とすることによって、 異 常燃焼による排気ガス中の C O濃度の上昇が給排気系や熱交換器 1 4の詰まりに よるものであると判断できる確率を高くすることができる。
第 6図は本発明の実施の形態を示すフローチャートである。 これは、 好ましく はマイクロコンピュータである制御装置 3 0のメモリ 3 1内に制御プログラムと して格納されている。 第 6図によれば、 運転スィツチが押された後 (S 1 ) 、 例 えば図示しない給湯栓が開かれることによって図示しない流水スィツチが所定量 以上の流量を検知し、 流水スィッチが O N状態になると (S 2 ) 、 燃焼が開始さ れる。
このとき、 メモリ 3 1に記憶されている判別数 Mに応じて、 燃焼モードが異な る。 判別数 Mについては後述する。 ステップ S 3において、 判別数 Mが例えば 2 5未満である場合は、 燃焼機器 1 0の最大燃焼能力が制限されない通常運転が行 われる (S 4 A) 。 判別数 Mが 2 5以上であった場合は、 燃焼機器 1 0の最大燃 焼能力が制限される能力制限運転 (S 4 B) にて燃焼が行われる。 通常運転時の 最大供給ガス量が 3 0, 00 0 k c a 1 Zhである燃焼機器 1 0であっても、 能 力制限運転時においては、 最大供給ガス量は例えば 2 0, O O O k c a l Zhま でに制限される。
燃焼が開始され、 上記第一の基準以上の燃焼が検出されると (S 5) 、 上記第 二のフラグ F 2力 「 1 j か否かが判断される (S 6) 。 そして、 上記第 4図に示 した期間 Gにおける燃焼のような最初の第一の基準以上の燃焼が検出されると、 最初は上記第二のフラグ F 2が 「 0 (ゼロ) j であるので、 第二のフラグ F 2が 「 1」 とされる。 さらに、 上記第一の基準を満たす燃焼が行われた回数 Kが積算 される (S 7) 。 そして、 積算された燃焼回数 Kはメモリ 3 1に記憶される。 一方、 上記第 4図に示した期間 Iで第一の基準以上の燃焼が検出されたとき、 第二のフラグ F 2はすでに 「 1」 になっているので、 燃焼回数 Kの積算は行われ ない。 即ち、 一回の燃焼において、 その燃焼能力が時間的に変化して、 複数回上 記第一の基準以上の燃焼が行われた場合であっても、 燃焼回数 Kとして積算され る回数は 1回である。
そして、 このような第一の基準以上の燃焼 (第 4図における期間 G及び期間 I での燃焼) が行われているときに、 COセンサー 4 8が検出する CO値が上記異 常値以上であると (S 8) 、 ステップ S 9で第一のフラグ F 1力 「 0 (ゼロ) J の場合は、 燃焼が燃焼改善モードによる燃焼に切り替わる。 ステップ S 9で、 上 記第一のフラグ F 1が 「 1」 か否かが判断される理由は、 すでに、 燃焼改善モー ドによる運転に切り替わつている場合は、 もはや切り替え不要であるからである
O
ステップ S 9において、 第一のフラグ F 1が 「 1」 でない場合は、 第一のフラ グ F 1が 「 1」 とされ、 さらに、 燃焼改善モー ドに切り替えられた回数 Lが積算 される (S 1 0) 。 積算された燃焼改善モード回数 Lはメモリ 3 1に記憶される
0
そして、 メモリ 3 1に記憶されている上記燃焼回数 Kが所定回数 (例えば 1 0 回) に達したとき (S 1 1 ) 、 その間に積算された燃焼改善モード回数 Lが第一 設定回数 L 1以上であるか否かが判断される (S 1 4 ) 。 ステップ S 1 4におい ては、 第一設定回数 L 1は 6回である。
このとき、 上記第一の基準以上の燃焼が行われた回数 Kが 1 0回のうち、 C O 値の上昇により燃焼改善モードに切り替えられた燃焼改善モード回数 Lが 6回以 上ある場合、 それを一回として判別数 Mが積算される (S 1 5 ) 。 判別数 Mはメ モリ 3 1に記憶される。
この判別数 Mは、 燃焼機器 1 0の高い能力での燃焼時において測定された C〇 値が、 異常値以上になる頻度が高い場合に積算されるパラメ一夕である。 従って 、 この判別数 Mに基づいて、 以下に述べるように燃焼機器 1 0の寿命を判断する ことにより、 燃焼機器 1 0の寿命を高い精度で判断することが可能となる。
ステップ S 1 5において、 判別数 Mが積算されると、 メモリ 3 1に記憶されて いる燃焼回数 K及び燃焼改善モード回数 Lは 0 (ゼロ) にリセッ トされる (S 1 6 ) 。 このようにして、 燃焼回数 Kが 1 0回に達する毎に、 燃焼改善モード回数 Lの回数がメモリ 3 1から読み出され、 それが上記第一設定回数 L 1以上の場合 は、 判別数 Mが積算される。
積算された判別数 Mが、 第一判別数 M l (例えば 5 0 ) を超えると (S 1 7 ) 、 燃焼機器 1 0の安全運転の限界に達しており、 燃焼機器 1 0の寿命であるとし て、 燃焼機器 1 0の運転を強制的に停止する (S 1 8 ) 。
さらに、 好ましくは、 判別数 Mが上記第一判別数 M 1以下である場合であって も、 それより小さい第二判別数 M 2 (例えば 2 5 ) 以上である場合は (S 1 9 ) 、 燃焼機器 1 0の寿命には達してはいないものの、 燃焼性能が劣化しているため 、 燃焼能力を制限すべきであるとして、 比例弁 2 4の最大開度を制限して燃焼機 器 1 0への最大供給ガス量が制限される能力制限運転による燃焼が行われる (ス テツプ S 2 0 ) 。 例えば、 通常運転時での最大供給ガス量が 3 0 , 0 0 0 k c a 1 Z hである燃焼機器において、 能力制限運転時での最大供給ガス量は 2 0, 0 0 0 k c a 1 Z hに制限される。
従って、 燃焼機器 1 0が能力制限運転に入ると、 使用者は給排気系及び熱交換 器 1 4に閉塞状態が生じてはいるが燃焼機器 1 0をそのまま継続使用しても C O 値の点から安全性に問題がないことを知ることができる。
一方、 ステップ S 1 4において、 燃焼改善モード回数しが、 上記第一設定回数 L 1以下であるが、 それより小さい第二の設定回数 L 2 (例えば 2回) より大き い場合は (S 2 1 ) 、 燃焼機器 1 0の性能の劣化は大きくないと判断される。 従 つて、 この場合は、 判別数 Mの積算は行われずに、 メモリ 3 1に記憶されている 燃焼回数 K及び燃焼改善モード回数 Lは 0 (ゼロ) にリセッ トされる (S 1 3 ) o
また、 ステップ S 2 1において、 燃焼改善モード数 Lが第二の設定数 L 2より 小さい場合、 燃焼改善モードに切り替わった原因が、 燃焼機器 1 0の燃焼性能の 劣化によるものではなく、 例えば、 突発的な風などの外因によるものと判断され る。 これは、 燃焼機器 1 0の燃焼性能が劣化していると、 燃焼改善モードに切り 替わる可能性が高くなり、 燃焼改善モード回数 Lが多くなるが、 通常燃焼状態で は、 風による一時的な燃焼悪化によって燃焼改善モードに切り替わる確率は低く 、 燃焼改善モード回数 Lは少ないと推定されるからである。 従って、 この場合は 、 判別数 Mが第二判別数 M 2 (例えば 2 5 ) 未満のとき、 即ち通常運転のとき、 積算された判別数 Mは 0 (ゼロ) にリセッ トされる (S 2 3 ) 。 但し、 ステップ S 2 3において、 判別数 Mが第二判別数 M 2 ( = 2 5 ) 以上であるとき、 即ち、 能力制限運転の場合は、 能力制限運転において燃焼性能の劣化がないと判断され る。 従って、 判別数 Mは、 能力制限運転に切り替えられる閾値である第二 判別数 M 2、 例えば 2 5にリセッ トされる。
そして、 ステップ S 1 2において、 燃焼停止された場合は、 上述のように上記 第一及び第二のフラグ F 1及び F 2力 Γ 0 (ゼロ) 」 にされる (S 2 6 ) 。
さらに、 ステップ S 3において、 判別数 Mが 2 5以上と判断され、 燃焼機器 1 0が能力制限運転状態に入っている場合 (S 4 B ) 、 制御装置 3 0は第一の基準 の代わりに、 燃焼時の供給ガス量と燃焼継続時間との組合せからなり供給ガス量 が能力制限運転における最大供給ガス量 (例えば 2 0 , 0 0 0 k c a 1 / h ) に 近い値として制御装置 3 0に予め設定された第二の基準以上の燃焼に対して上述 と同様の処理が行われる。 ここで、 第二の基準は、 例えば、 最大供給ガス量 2 0 , 0 0 0 k c a 1 Z hに対し供給ガス量を 1 6 , 0 0 0 k c a 1 Z hとし、 その
1 o 燃焼継続時間は 2分である。 。
即ち、 第二の基準以上の燃焼の回数 Pが積算され、 そのときに燃焼改善モード に入った回数 Lが積算される。 そして、 この第二の基準以上の燃焼回数 Pが例え ぱ 1 0回あると (S 1 1 ) 、 ステップ S 1 4及び S 2 1において、 その 1 0回の 燃焼の間において燃焼改善モードに入った回数 が、 メモリ 3 1に予め記憶され た第 3設定数 L 3および第 4設定数 L 4と比較される。 なお、 第 3設定数 L 3お よび第 4設定数 L 4は、 それぞれ第 1設定数 L 1及び第 2設定数 L 2と同一でも よいし、 燃焼ファンの回転数が低下している能力制限運転のもとでは、 風の影響 が大きくなるので、 その分、 第三、 第四設定数 L 3、 L 4は、 L 1、 L 2より大 きく してもよレ、。 異なってもよい。
その結果、 燃焼改善モードに入った回数 Lが第 3設定数 L 3以上あった場合、 それを判別数 Mとして 1を積算する。 以降、 燃焼改善モードに入った回数 Lが第 3設定数 L 3以上あるごとに、 判別数 Mに 1が加算される (S 1 5 ) 。
燃焼改善モードとなった回数 Lが第 3設定数 L 3未満で且つ第 4設定数 L 4以 上であった場合は (S 2 1 ) 、 判別数 Mへの 1の加算は行わずその数を維持する 燃焼回数 P及び燃焼改善モード回数 Lが 0 (ゼロ) にリセッ トされる。
また、 燃焼改善モードに入った回数 Lが第 4設定数 L 4以下の場合には (S 2 1 ) 、 上述のように、 それまでに加算した判別数 Mは第二判別数 M 2である 2 5 にリセッ トされる (S 2 4 ) 。
上記過程を繰り返して累積加算した判別数 Mがメモリ 3 1に記録された第一判別 数 M l (例えば 5 0 ) に達すると (S 1 7 ) 、 制御装置 3 0は燃焼機器 1 0の 20 寿命であると判断し、 制御装置 3 0は燃焼機器 1 0の運転を強制的に停止する ( S 1 8 ) o
従って、 燃焼機器 1 0の運転が強制的に停止されれば、 使用者は燃焼機器 1 0 の寿命が来たことを知ることができる。
本実施の形態では、 第一及び第二の基準、 設定回数、 判別数等を具体的な数字 を上げて例示したが、 それらに限定されるものではない。
このように上記実施の形態に係る燃焼機器の寿命判断方法によれば、 燃焼機器 1 0がその給排気系や熱交換器 1 4の閉塞状態に応じて燃焼能力を変え、 あるい は燃焼機器 1 0の運転を強制停止するので高い安全性が得られるとともに、 燃焼 機器 1 0の使用者は極めて容易に燃焼機器 1 0の寿命を判断することができる。 なお、 本発明の別の実施の態様においては、 3 0, 0 0 0 k c a 1 Zhの燃焼 能力を有する燃焼機器において、 3 0, 0 0 0 k c a l Zh〜2 0, O O O k c a 1 Zhでの燃焼に対して判別数に 1を積算し、 20, 0 0 0 k c a l Zh〜
1 0, 0 0 0 k c a 1 Zhの燃焼に対して判別数 Mに 0. 2を積算し、 1 0, 0 0 0 k c a l /h〜5, 0 0 0 k c a 1 Zhの燃焼に対して判別数に 0. 0 1を 積算するように、 複数の基準燃焼量を設定し、 その複数基準燃焼量における判別 数 Mの積算する値に重みをつけることによって (例えば、 S 7において K = K + 0. 2、 S 1 0において L = L+ 0. 2等) 、 超大型の給湯器において通常使 用状態において常に中間程度の燃焼量しか用いられないような場合でも寿命判断 が可能になる。
また、 上記のように 3段階ではなく、 無段階にして最大燃焼能力付近での燃焼 時には COの発生が 7 O O p pmの COの発生が 1 0分あった場合に判別数 1を 加算して、 最小燃焼能力付近での燃焼時には COの発生が 1 0 0 p pmの COの 発生が 1 0分あった場合に判別数] VIに 1を加算してもよい。
[産業上の利用の可能性]
本発明にかかる燃焼機器によれば、 屋外の風の影響のない状態で、 CO値が異 常か否かを判断することができる。 従って、 正確な CO値により燃焼機器の寿命 判断を行うことが可能である。
また、 本発明にかかる燃焼機器によれば、 CO値が所定値以上に上昇した場合、 燃焼機器の最大供給ガス量を制限した運転が行われる。 従って、 燃焼機器の不必 要な寿命判断をせずに、 燃焼機器の延命を図ることが可能となる。
さらに、 判別値 Mを用いることにより、 より精度の高い燃焼機器の寿命を判定 することが可能である。
このように、 本発明による燃焼機器は、 安全性及び経済性が高く、 効率的なメン テナンスが可能である。

Claims

請求の範囲
1 . 供給される燃料が燃焼することにより生成される排気ガス中の一酸化炭素濃 度を検出する一酸化炭素濃度検出部を有する燃焼機器において、
所定の基準量以上の燃料が供給される燃焼が行われたときに前記一酸化炭素濃 度検出部により検出される一酸化炭素濃度検出値に基づいて、 寿命判断を行う 制御手段を有することを特徴とする燃焼機器。
2 . 供給される燃料が燃焼することにより生成される排気ガス中の一酸化炭素濃 度を検出する一酸化炭素濃度検出部を有する燃焼機器において、
0 所定の基準量以上の燃料が供給される燃焼が所定時間継続して行われたときに 前記一酸化炭素濃度検出部により検出される一酸化炭素濃度検出値に基づいて 、 前記寿命判断を行う制御手段を有することを特徴とする燃焼機器。
3 . 請求の範囲 1又は 2において、
前記制御手段は、 前記一酸化炭素濃度検出値が、 第一の所定濃度を超えたこと5 が検出されたとき、 前記供給される燃料の最大量を強制的に低く し、
該低下された最大燃料量のもとでの燃焼において、 前記一酸化炭素濃度検出値 が第二の所定濃度を超えたことが検出されたとき燃焼を停止することを特徴と する燃焼機器。
4 . 請求の範囲 1、 2又は 3において、
0 前記制御手段は、 前記一酸化炭素濃度検出値が所定濃度を超えたことが検出さ れる高濃度検出回数に基づいて、 前記燃焼機器の寿命を判断することを特徴と する燃焼機器。
5 . 請求の範囲 4において、
前記制御手段は、 所定の複数燃焼回数において積算された前記高濃度検出回数 5 が設定回数を超えたとき、 前記燃焼機器の寿命を判断することを特徴とする燃 焼機 。
6 . 請求の範囲 4において、
' 前記制御手段は、 所定の複数燃焼回数において積算された前記高濃度検出回数 が設定回数を超える現象が、 所定の寿命判定回数を超えた時に燃焼を停止する ことを特徴とする燃焼機器。
7 . 請求の範囲 4において、
前記制御手段は、 所定の複数燃焼回数において積算された前記高濃度検出回数 が設定回数を超えたとき、 寿命判定するための判別値に所定値加算し、 該判別 値が、 所定の寿命判定値を超えたとき、 燃焼を停止することを特徴とする燃焼
8 . 請求の範囲 4において、
前記制御手段は、 所定の複数燃焼回数において積算された前記高濃度検出回数 が設定回数を超えたとき、 寿命判定するための判別値に所定値加算し、 該判別 値が、 第一の寿命判定値を超えたとき、 燃焼を停止し、 該第一の寿命判定値よ り小さレ、第二の寿命判定値を超えたとき、 供給される燃料の最大量を強制的に 少なくすることを特徴とする燃焼機器。
9 . 請求の範囲 1乃至 8において、
供給される燃料の前記基準量は、 供給できる燃料の最大量に近い値であること を特徴とする燃焼機器。
1 0 . 請求の範囲 9において、
前記最大量に近い値は、 前記最大量の 8 0 %であることを特徴とする燃焼機器
】 1 . 供給される燃料が燃焼することにより生成される排気ガス中の一酸化炭素 濃度を検出する一酸化炭素濃度検出部を有する燃焼機器において、
前記一酸化炭素濃度検出部によつて所定濃度以上の一酸化炭素濃度が検出され る高濃度検出回数を積算し、
所定の複数燃焼回数において積算される該高濃度検出回数が設定回数を超えた とき、 寿命判定するための判別値に供給燃料量に応じて設定された加算値を加 算し、 該判別値が所定の寿命判定値を超えたとき、 燃焼を俘止する制御手段を 有することを特徴とする燃焼機器。
1 2 . 供給される燃料が燃焼することにより生成される排気ガス中の一酸化炭素 ' 濃度を検出する一酸化炭素濃度検出部を有する燃焼機器において、
所定の基準量以上の風量が供給される燃焼が行われたときに前記一酸化炭素濃 度検出部により検出される一酸化炭素濃度検出値に基づいて、 寿命判断を行う 制御手段を有することを特徴とする燃焼機器。
3 . 供給される燃料が燃焼することにより生成される排気ガス中の一酸化炭素 濃度を検出する一酸化炭素濃度検出部を有する燃焼機器において、
所定の基準量以上の風量が供給される燃焼が所定時間継続して行われたときに 前記一酸化炭素濃度検出部により検出される一酸化炭素濃度検出値に基づいて 、 前記寿命判断を行う制御手段を有することを特徴とする燃焼機器。
4 . 供給される燃料が燃焼することにより生成される排気ガス中の一酸化炭素 濃度を検出する一酸化炭素濃度検出部を有する燃焼機器の寿命判断方法におい て、
所定の基準量以上の燃料が供給される燃焼が行われたときに前記一酸化炭素濃 度検出部によって検出される一酸化炭素濃度検出値に基づいて寿命判断が行わ れることを特徴とする燃焼機器の寿命判断方法。
5 . 供給される燃料が燃焼することにより生成される排気ガス中の一酸化炭素 濃度を検出する一酸化炭素濃度検出部を有する燃焼機器の寿命判断方法におい て、
所定の基準量以上の燃料が供給される燃焼が所定時間継続して行われたときに 前記一酸化炭素濃度検出部によって検出される一酸化炭素濃度検出値に基づい て寿命判断が行われることを特徴とする燃焼機器の寿命判断方法。
PCT/JP1997/001545 1996-05-09 1997-05-08 Equipement a combustion et procede d'estimation de la duree de vie d'un equipement a combustion WO1997042451A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97918384A EP0898120A1 (en) 1996-05-09 1997-05-08 Combustion equipment and method of judging life of combustion equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/115153 1996-05-09
JP11515396A JP3667871B2 (ja) 1996-05-09 1996-05-09 燃焼機器および燃焼機器の寿命判断方法

Publications (1)

Publication Number Publication Date
WO1997042451A1 true WO1997042451A1 (fr) 1997-11-13

Family

ID=14655643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001545 WO1997042451A1 (fr) 1996-05-09 1997-05-08 Equipement a combustion et procede d'estimation de la duree de vie d'un equipement a combustion

Country Status (3)

Country Link
EP (1) EP0898120A1 (ja)
JP (1) JP3667871B2 (ja)
WO (1) WO1997042451A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7021925B2 (en) * 2001-05-16 2006-04-04 Invensys Controls Limited Safety module for fuel-burning appliance, and appliance using such a module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5820763B2 (ja) * 2012-05-09 2015-11-24 リンナイ株式会社 燃焼装置
EP3260777B1 (de) * 2016-06-22 2020-02-19 Bosch Termoteknik Isitma ve Klima Sanayi Ticaret Anonim Sirketi Verfahren zur detektion einer blockade einer abgasabführung eines brennersystems und brennersystem
CA3111102A1 (en) * 2020-03-06 2021-09-06 Wolf Steel Ltd. A control system for a fuel burning appliance and a method of operating such an appliance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295374A (ja) 1988-01-26 1989-11-29 Toshiba Corp 輪郭ベクトルデータ生成装置
JPH03156211A (ja) * 1989-11-14 1991-07-04 Paloma Ind Ltd 燃焼機器の不完全燃焼検出装置
JPH07133929A (ja) * 1993-11-11 1995-05-23 Osaka Gas Co Ltd 燃焼機器の不完全燃焼検出装置
JPH07332667A (ja) * 1994-06-02 1995-12-22 Harman Co Ltd 燃焼装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295374A (ja) 1988-01-26 1989-11-29 Toshiba Corp 輪郭ベクトルデータ生成装置
JPH03156211A (ja) * 1989-11-14 1991-07-04 Paloma Ind Ltd 燃焼機器の不完全燃焼検出装置
JPH07133929A (ja) * 1993-11-11 1995-05-23 Osaka Gas Co Ltd 燃焼機器の不完全燃焼検出装置
JPH07332667A (ja) * 1994-06-02 1995-12-22 Harman Co Ltd 燃焼装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7021925B2 (en) * 2001-05-16 2006-04-04 Invensys Controls Limited Safety module for fuel-burning appliance, and appliance using such a module

Also Published As

Publication number Publication date
JPH09303768A (ja) 1997-11-28
EP0898120A1 (en) 1999-02-24
JP3667871B2 (ja) 2005-07-06

Similar Documents

Publication Publication Date Title
US5810908A (en) Electronic control for air filtering apparatus
US10024536B2 (en) Combined combustion device
US5067318A (en) Regeneration system for particulate trap
CN113048657A (zh) 燃气热水器抗风控制方法及燃气热水器
WO1997042451A1 (fr) Equipement a combustion et procede d'estimation de la duree de vie d'un equipement a combustion
EP0781966A1 (en) Combustion equipment for judging abnormality or life
JP3029551B2 (ja) 燃焼機器
JP3566757B2 (ja) 燃焼機器
JP3566765B2 (ja) 燃焼装置
JP3474040B2 (ja) 燃焼装置
JP3036977U (ja) 燃焼制御装置
JP2002156113A (ja) ガス機器
JP3312968B2 (ja) 燃焼装置およびその煤詰まり検知方法とそれを利用したcoセンサ付燃焼装置のcoセンサ故障検知方法
JPH08312337A (ja) 内燃機関の2次空気供給装置
JPH10122562A (ja) 燃焼制御装置
JPH09178176A (ja) 安全燃焼装置
JP3365131B2 (ja) 燃焼装置
JP2975531B2 (ja) 燃焼装置
JP3967481B2 (ja) 燃焼機器
JP3767985B2 (ja) 給湯器およびその制御方法
JP3611399B2 (ja) 燃焼機器
KR20240079888A (ko) 가스보일러의 배기연도 막힘 감지방법
JP3366396B2 (ja) 燃焼装置
JP3438590B2 (ja) Coセンサ付き燃焼器
JP2860926B2 (ja) 燃焼機器の排気系統異常検出方法及び装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE DE FR GB NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997918384

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997918384

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997918384

Country of ref document: EP